WorldWideScience

Sample records for thermal control surfaces

  1. Evaluation of Surface Modification as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces

    Science.gov (United States)

    Gaier, James R.; Waters, Deborah L.; Misconin, Robert M.; Banks, Bruce A.; Crowder, Mark

    2011-01-01

    Three surface treatments were evaluated for their ability to lower the adhesion between lunar simulant dust and AZ93, AlFEP, and AgFEP thermal control surfaces under simulated lunar conditions. Samples were dusted in situ and exposed to a standardized puff of nitrogen gas. Thermal performance before dusting, after dusting, and after part of the dust was removed by the puff of gas, were compared to perform the assessment. None of the surface treatments was found to significantly affect the adhesion of lunar simulants to AZ93 thermal control paint. Oxygen ion beam texturing also did not lower the adhesion of lunar simulant dust to AlFEP or AgFEP. But a workfunction matching coating and a proprietary Ball Aerospace surface treatment were both found to significantly lower the adhesion of lunar simulants to AlFEP and AgFEP. Based on these results, it is recommended that all these two techniques be further explored as dust mitigation coatings for AlFEP and AgFEP thermal control surfaces.

  2. Thermal control surfaces on the MSFC LDEF experiments

    International Nuclear Information System (INIS)

    Wilkes, D.R.; Whitaker, A.F.; Zwiener, J.M.; Linton, R.C.; Shular, D.; Peters, P.N.; Gregory, J.C.

    1992-01-01

    There were five Marshall Space Flight Center (MSFC) experiments on the LDEF. Each of those experiments carried thermal control surfaces either as test samples or as operational surfaces. These materials experienced varying degrees of mechanical and optical damage. Some materials were virtually unchanged by the extended exposure while others suffered extensive degradation. The synergistic effects due to the constituents of the space environment are evident in the diversity of these material changes. The sample complement for the MSFC experiments is described along with results of the continuing analyses efforts

  3. Combined Contamination and Space Environmental Effects on Solar Cells and Thermal Control Surfaces

    Science.gov (United States)

    Dever, Joyce A.; Bruckner, Eric J.; Scheiman, David A.; Stidham, Curtis R.

    1994-01-01

    For spacecraft in low Earth orbit (LEO), contamination can occur from thruster fuel, sputter contamination products and from products of silicone degradation. This paper describes laboratory testing in which solar cell materials and thermal control surfaces were exposed to simulated spacecraft environmental effects including contamination, atomic oxygen, ultraviolet radiation and thermal cycling. The objective of these experiments was to determine how the interaction of the natural LEO environmental effects with contaminated spacecraft surfaces impacts the performance of these materials. Optical properties of samples were measured and solar cell performance data was obtained. In general, exposure to contamination by thruster fuel resulted in degradation of solar absorptance for fused silica and various thermal control surfaces and degradation of solar cell performance. Fused silica samples which were subsequently exposed to an atomic oxygen/vacuum ultraviolet radiation environment showed reversal of this degradation. These results imply that solar cells and thermal control surfaces which are susceptible to thruster fuel contamination and which also receive atomic oxygen exposure may not undergo significant performance degradation. Materials which were exposed to only vacuum ultraviolet radiation subsequent to contamination showed slight additional degradation in solar absorptance.

  4. Methane Lunar Surface Thermal Control Test

    Science.gov (United States)

    Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.

    2012-01-01

    NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.

  5. Control of surface thermal scratch of strip in tandem cold rolling

    Science.gov (United States)

    Chen, Jinshan; Li, Changsheng

    2014-07-01

    The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.

  6. A thermal control system for long-term survival of scientific instruments on lunar surface

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K., E-mail: ogawa@astrobio.k.u-tokyo.ac.jp [Department of Complexity Science and Engineering, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba (Japan); Iijima, Y.; Tanaka, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa (Japan); Sakatani, N. [The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa (Japan); Otake, H. [JAXA Space Exploration Center, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa (Japan)

    2014-03-15

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  7. A thermal control system for long-term survival of scientific instruments on lunar surface.

    Science.gov (United States)

    Ogawa, K; Iijima, Y; Sakatani, N; Otake, H; Tanaka, S

    2014-03-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  8. A thermal control system for long-term survival of scientific instruments on lunar surface

    International Nuclear Information System (INIS)

    Ogawa, K.; Iijima, Y.; Tanaka, S.; Sakatani, N.; Otake, H.

    2014-01-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system

  9. Micro-Scalable Thermal Control Device

    Science.gov (United States)

    Moran, Matthew E. (Inventor)

    2002-01-01

    A microscalable thermal control module consists of a Stirling cycle cooler that can be manipulated to operate at a selected temperature within the heating and cooling range of the module. The microscalable thermal control module is particularly suited for controlling the temperature of devices that must be maintained at precise temperatures. It is particularly suited for controlling the temperature of devices that need to be alternately heated or cooled. The module contains upper and lower opposing diaphragms, with a regenerator region containing a plurality of regenerators interposed between the diaphragms. Gaps exist on each side of each diaphragm to permit it to oscillate freely. The gap on the interior side one diaphragm is in fluid connection with the gap on the interior side of the other diaphragm through regenerators. As the diaphragms oscillate working gas is forced through the regenerators. The surface area of each regenerator is sufficiently large to effectively transfer thermal energy to and from the working gas as it is passed through them. The phase and amplitude of the oscillations can be manipulated electronically to control the steady state temperature of the active thermal control surface, and to switch the operation of the module from cooling to heating, or vice versa. The ability of the microscalable thermal control module to heat and cool may be enhanced by operating a plurality of modules in series, in parallel, or in connection through a shared bottom layer.

  10. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    Science.gov (United States)

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  11. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    Science.gov (United States)

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  12. Thermal inertia and surface heterogeneity on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  13. Insights into Near-Surface Structural Control of Hydrothermal Fluid Movement at Rabbit Creek Thermal Area, Yellowstone National Park

    Science.gov (United States)

    Carr, B.; Elliot, M.; Sims, K. W. W.

    2017-12-01

    Recent geophysical imaging efforts at Yellowstone National Park have generated questions about the geologic controls of hydrothermal fluid movement within the parks thermal areas. Currently, faults and lava flow contacts are assumed to be the primary permeability pathways for deeper fluid migration to the surface. Although intuition dictates that these structures are responsible, few studies have definitively shown that this is true. Earlier geophysical imaging efforts of phase separation in Norris Geyser Basin have shown strong evidence for fractures and faulting conducting hydrothermal waters. However, no geologically mapped faults are at the surface to confirm these interpretations. Therefore, during the summer of 2017, UW surface geophysical data acquisition focused on understanding the geologic controls for a thermal area within the well-mapped Rabbit Creek Fault Zone (RCFZ). The RCFZ strikes N-S along the eastern edge of Midway Geyser Basin (i.e. the western edge of the Mallard Lake Dome) about 2.8 Km SE of Grand Prismatic spring. The section of the fault zone within the Rabbit Creek thermal area is exposed on the eastern valley wall and dips steeply to the west. Regardless at our site, this puts the two of the plateau rhyolites (i.e. the Biscuit Basin Flow and Mallard Lake flow) next to each other ( 100 m apart) with a small amount of overlying alluvial, glacial and hydrothermal deposits covering the actual fault trace. Interestingly, at least two mapped reverse faults from the Mallard Lake Dome trend NW-SE into the site and are interpreted to intersect to the RCFZ. At RCFZ, DC resistivity and seismic refraction profiling combined with Self-Potential, Magnetics, and Transient Electromagnetic soundings were acquired to provide images and in situ geophysical properties. These data highlight the variable fracturing and surface expressions of the hydrothermal fluids associated with the RCFZ and the NW trending fault zone associated with the Mallard Lake Dome

  14. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.; Kusch, Gunnar; Schmidt, Michael; Collins, Timothy; Glynn, Colm; Martin, Robert W.; O’Dwyer, Colm; Morris, Michael D.; Holmes, Justin D.; Parbrook, Peter J.

    2016-12-07

    With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure can be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.

  15. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    Science.gov (United States)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  16. Dislocation behavior of surface-oxygen-concentration controlled Si wafers

    International Nuclear Information System (INIS)

    Asazu, Hirotada; Takeuchi, Shotaro; Sannai, Hiroya; Sudo, Haruo; Araki, Koji; Nakamura, Yoshiaki; Izunome, Koji; Sakai, Akira

    2014-01-01

    We have investigated dislocation behavior in the surface area of surface-oxygen-concentration controlled Si wafers treated by a high temperature rapid thermal oxidation (HT-RTO). The HT-RTO process allows us to precisely control the interstitial oxygen concentration ([O i ]) in the surface area of the Si wafers. Sizes of rosette patterns, generated by nano-indentation and subsequent thermal annealing at 900 °C for 1 h, were measured for the Si wafers with various [O i ]. It was found that the rosette size decreases in proportion to the − 0.25 power of [O i ] in the surface area of the Si wafers, which were higher than [O i ] of 1 × 10 17 atoms/cm 3 . On the other hand, [O i ] of lower than 1 × 10 17 atoms/cm 3 did not affect the rosette size very much. These experimental results demonstrate the ability of the HT-RTO process to suppress the dislocation movements in the surface area of the Si wafer. - Highlights: • Surface-oxygen-concentration controlled Si wafers have been made. • The oxygen concentration was controlled by high temperature rapid thermal oxidation. • Dislocation behavior in the surface area of the Si wafers has been investigated. • Rosette size decreased with increasing of interstitial oxygen atoms. • The interstitial oxygen atoms have a pinning effect of dislocations at the surface

  17. Ultraviolet and visible BRDF data on spacecraft thermal control and optical baffle materials

    Science.gov (United States)

    Viehmann, W.; Predmore, R. E.

    1987-01-01

    Bidirectional scattering functions of numerous optical baffle materials and of spacecraft thermal control coatings and surfaces are presented. Measurements were made at 254 nm and at 633 nm. The coatings and surfaces include high-reflectance white paints, low-reflectance optical blacks, thermal control blankets, and various conversion coatings on aluminum.

  18. Thermal repellent properties of surface coating using silica

    Science.gov (United States)

    Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.

    2017-11-01

    Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.

  19. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  20. Thermal stress mitigation by Active Thermal Control

    DEFF Research Database (Denmark)

    Soldati, Alessandro; Dossena, Fabrizio; Pietrini, Giorgio

    2017-01-01

    This work proposes an Active Thermal Control (ATC) of power switches. Leveraging on the fact that thermal stress has wide impact on the system reliability, controlling thermal transients is supposed to lengthen the lifetime of electronic conversion systems. Indeed in some environments...... results of control schemes are presented, together with evaluation of the proposed loss models. Experimental proof of the ability of the proposed control to reduce thermal swing and related stress on the device is presented, too....

  1. Surface Thermal Insulation and Pipe Cooling of Spillways during Concrete Construction Period

    Directory of Open Access Journals (Sweden)

    Wang Zhenhong

    2014-01-01

    Full Text Available Given that spillways adopt a hydraulic thin concrete plate structure, this structure is difficult to protect from cracks. The mechanism of the cracks in spillways shows that temperature stress is the major reason for cracks. Therefore, an effective way of preventing cracks is a timely and reasonable temperature-control program. Studies show that one effective prevention method is surface thermal insulation combined with internal pipe cooling. The major factors influencing temperature control effects are the time of performing thermal insulation and the ways of internal pipe cooling. To solve this problem, a spillway is taken as an example and a three-dimensional finite element program and pipe cooling calculation method are adopted to conduct simulation calculation and analysis on the temperature fields and stress fields of concretes subject to different temperature-control programs. The temperature-control effects are then compared. Optimization results show that timely and reasonable surface thermal insulation and water-flowing mode can ensure good temperature-control and anticrack effects. The method has reference value for similar projects.

  2. Thermal behavior of horizontally mixed surfaces on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.

  3. Local thermal property analysis by scanning thermal microscopy of an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F.A. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China) and Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France)]. E-mail: guofuan@yahoo.com; JI, Y.L. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China); Trannoy, N. [Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France); Lu, J. [LASMIS, Universite de Technologie de Troyes, 12 Rue Marie Curie, Troyes 10010 (France)

    2006-06-15

    Scanning thermal microscopy (SThM) was used to map thermal conductivity images in an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment (SMAT). It is found that the deformed surface layer shows different thermal conductivities that strongly depend on the grain size of the microstructure: the thermal conductivity of the nanostructured surface layer decreases obviously when compared with that of the coarse-grained matrix of the sample. The role of the grain boundaries in thermal conduction is analyzed in correlation with the heat conduction mechanism in pure metal. A theoretical approach, based on this investigation, was used to calculate the heat flow from the probe tip to the sample and then estimate the thermal conductivities at different scanning positions. Experimental results and theoretical calculation demonstrate that SThM can be used as a tool for the thermal property and microstructural analysis of ultrafine-grained microstructures.

  4. Thermal desorption and surface modification of He+ implanted into tungsten

    International Nuclear Information System (INIS)

    Fu Zhang; Yoshida, N.; Iwakiri, H.; Xu Zengyu

    2004-01-01

    Tungsten divertor plates in fusion reactors will be subject to helium bombardment. Helium retention and thermal desorption is a concerned issue in controlling helium ash. In the present study, fluence dependence of thermal desorption behavior of helium in tungsten was studied at different irradiation temperatures and ion energies. Results showed that helium desorption could start at ∼400 K with increasing fluence, while no noticeable peaks were detected at low fluence. Total helium desorption reached a saturation value at high fluence range, which was not sensitive to irradiation temperature or ion energy for the conditions evaluated. Surface modifications caused by either ion irradiation or thermal desorption were observed by SEM. The relationship of surface modifications and helium desorption behavior was discussed. Some special features of elevated irradiation temperature and lower ion energy were also indicated

  5. Preservation of Thermal Control Specular Gold Baffle Surface on the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC)

    Science.gov (United States)

    MonteedeGarcia, Kristina; Patel, Jignasha; Perry, Radford, III

    2010-01-01

    Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources

  6. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States)

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  7. Quality control for total evaporation technique by surface/thermal ionization mass spectrometer

    International Nuclear Information System (INIS)

    Kato, Seikou; Inoue, Sinichi; Yamaguchi, Katsuyuki; Tsutaki, Yasuhiro

    2007-01-01

    For the measurement of uranium and plutonium isotopic composition, the surface/thermal ionization mass spectrometry is widely used at the both nuclear facilities and safeguards verification laboratories. The progress of instrument specification makes higher sensitivity. The total evaporation technique is one of the latest measurement techniques by using this progress, in which all of uranium or plutonium on the filament would be evaporated by increasing the filament current. The accuracy and precision of this technique is normally checked by using the certified isotope reference materials measurement. But the fluctuation of ion beam is very different by each filament, depending on the chemical form of evaporation. So, it should be considered how to check the measurement quality of unknown samples which has no certified values. This presentation is focused on the monitoring of ion yields and pattern of isotope ratio fluctuation to attain the traceability between reference material and unknown sample as quality control approach of total evaporation technique. (author)

  8. Thermal performance of a phase change material on a nickel-plated surface

    International Nuclear Information System (INIS)

    Nurmawati, M.H.; Siow, K.S.; Rasiah, I.J.

    2004-01-01

    Thermal control becomes increasingly vital with IC chips becoming faster and smaller. The need to keep chips within acceptable operating temperatures is a growing challenge. Thermal interface materials (TIM) form the interfaces that improve heat transfer from the heat-generating chip to the heat dissipating thermal solution. One of the most commonly used materials in today's electronics industry is phase change material (PCM). Typically, the heat spreader is a nickel-plated copper surface. The compatibility of the PCM to this surface is crucial to the performance of the TIM. In this paper, we report on the performance of this interface. To that end, an instrument to suitably measure critical parameters, like the apparent and contact thermal resistance of the TIM, is developed according to the ASTM D5470 and calibrated. A brief theory of TIM is described and the properties of the PCM were investigated using the instrument. Thermal resistance measurements were made to investigate the effects of physical parameters like pressure, temperature and supplied power on the thermal performance of the material on nickel-plated surface. Conclusions were drawn on the effectiveness of the interface and their application in IC packages

  9. The Calipso Thermal Control Subsystem

    Science.gov (United States)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth s cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system s operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system s survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  10. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    Science.gov (United States)

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  11. A thermal manikin with human thermoregulatory control: implementation and validation.

    Science.gov (United States)

    Foda, Ehab; Sirén, Kai

    2012-09-01

    Tens of different sorts of thermal manikins are employed worldwide, mainly in the evaluation of clothing thermal insulation and thermal environments. They are regulated thermally using simplified control modes. This paper reports on the implementation and validation of a new thermoregulatory control mode for thermal manikins. The new control mode is based on a multi-segmental Pierce (MSP) model. In this study, the MSP control mode was implemented, using the LabVIEW platform, onto the control system of the thermal manikin 'Therminator'. The MSP mode was then used to estimate the segmental equivalent temperature (t(eq)) along with constant surface temperature (CST) mode under two asymmetric thermal conditions. Furthermore, subjective tests under the same two conditions were carried out using 17 human subjects. The estimated segmental t(eq) from the experiments with the two modes and from the subjective assessment were compared in order to validate the use of the MSP mode for the estimation of t(eq). The results showed that the t(eq) values estimated by the MSP mode were closer to the subjective mean votes under the two test conditions for most body segments and compared favourably with values estimated by the CST mode.

  12. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de [German Aerospace Center (DLR) Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  13. Apparent thermal inertia and the surface heterogeneity of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.

  14. Experimentally Reproducing Thermal Breakdown of Rock at Earth's Surface

    Science.gov (United States)

    Eppes, M. C.; Griffiths, L.; Heap, M. J.; Keanini, R.; Baud, P.

    2016-12-01

    Thermal stressing induces microcrack growth in rock in part due to thermal expansion mismatch between different minerals, mineral phases, or crystalline axes and/or thermal gradients in the entire rock mass. This knowledge is largely derived from experimental studies of thermal microcracking, typically under conditions of very high temperatures (hundreds of °C). Thermal stressing at lower temperatures has received significantly less attention despite the fact that it may play an important role in rock breakdown at and near Earth's surface (Aldred et al., 2015; Collins and Stock, 2016). In particular, Eppes et al. (2016) attribute recorded Acoustic Emissions (AE) from a highly instrumented granite boulder sitting on the ground in natural conditions to subcritical crack growth driven by thermal stresses arising from a combination of solar- and weather-induced temperature changes; however the maximum temperature the boulder experienced was just 65 °C. In order to better understand these results without complicating factors of a natural environment, we conducted controlled laboratory experiments on cylindrical samples (40 mm length and 20 mm diameter) cored from the same granite as the Eppes et al. (2016) experiment, subjecting them to temperature fluctuations that reproduced the field measurements. We used a novel experimental configuration whereby two high temperature piezo-transducers are each in contact with an opposing face of the sample. The servo-controlled uniaxial press compensates for the thermal expansion and contraction of the pistons and the sample, keeping the coupling between the transducers and the sample, and the axial force acting on the sample, constant throughout. The system records AE, as well as P-wave velocity, both independent proxies for microfracture, as well as strain and temperature. Preliminary tests, heating and cooling granite at a rate of 1 °C/min, show that a large amount of AE occurs at temperatures as low as 100 °C. Ultimately, by

  15. The CALIPSO Integrated Thermal Control Subsystem

    Science.gov (United States)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth's cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system's operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system's survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  16. Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia

    Science.gov (United States)

    Putzig, N. E.; Mellon, M. T.

    2005-12-01

    Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.

  17. Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity

    Directory of Open Access Journals (Sweden)

    F. Dubuffet

    2002-01-01

    Full Text Available The thermal conductivity of mantle materials has two components, the lattice component klat from phonons and the radiative component krad due to photons. These two contributions of variable thermal conductivity have a nonlinear dependence in the temperature, thus endowing the temperature equation in mantle convection with a strongly nonlinear character. The temperature derivatives of these two mechanisms have different signs, with ∂klat /∂T negative and dkrad /dT positive. This offers the possibility for the radiative conductivity to control the chaotic boundary layer instabilities developed in the deep mantle. We have parameterized the weight factor between krad and klat with a dimensionless parameter f , where f = 1 corresponds to the reference conductivity model. We have carried out two-dimensional, time-dependent calculations for variable thermal conductivity but constant viscosity in an aspect-ratio 6 box for surface Rayleigh numbers between 106 and 5 × 106. The averaged Péclet numbers of these flows lie between 200 and 2000. Along the boundary in f separating the chaotic and steady-state solutions, the number decreases and the Nusselt number increases with internal heating, illustrating the feedback between internal heating and radiative thermal conductivity. For purely basal heating situation, the time-dependent chaotic flows become stabilized for values of f of between 1.5 and 2. The bottom thermal boundary layer thickens and the surface heat flow increases with larger amounts of radiative conductivity. For magnitudes of internal heating characteristic of a chondritic mantle, much larger values of f , exceeding 10, are required to quench the bottom boundary layer instabilities. By isolating the individual conductive mechanisms, we have ascertained that the lattice conductivity is partly responsible for inducing boundary layer instabilities, while the radiative conductivity and purely depth-dependent conductivity exert a stabilizing

  18. Controllable laser thermal cleavage of sapphire wafers

    Science.gov (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  19. Structured thermal surface for radiative camouflage.

    Science.gov (United States)

    Li, Ying; Bai, Xue; Yang, Tianzhi; Luo, Hailu; Qiu, Cheng-Wei

    2018-01-18

    Thermal camouflage has been successful in the conductive regime, where thermal metamaterials embedded in a conductive system can manipulate heat conduction inside the bulk. Most reported approaches are background-dependent and not applicable to radiative heat emitted from the surface of the system. A coating with engineered emissivity is one option for radiative camouflage, but only when the background has uniform temperature. Here, we propose a strategy for radiative camouflage of external objects on a given background using a structured thermal surface. The device is non-invasive and restores arbitrary background temperature distributions on its top. For many practical candidates of the background material with similar emissivity as the device, the object can thereby be radiatively concealed without a priori knowledge of the host conductivity and temperature. We expect this strategy to meet the demands of anti-detection and thermal radiation manipulation in complex unknown environments and to inspire developments in phononic and photonic thermotronics.

  20. Phase change thermal control materials, method and apparatus

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  1. Arc-textured metal surfaces for high thermal emittance space radiators

    International Nuclear Information System (INIS)

    Banks, B.A.; Rutledge, S.K.; Mirtich, M.J.; Behrend, T.; Hotes, D.; Kussmaul, M.; Barry, J.; Stidham, C.; Stueber, T.; DiFilippo, F.

    1994-01-01

    Carbon arc electrical discharges struck across the surfaces of metals such as Nb-1% Zr, alter the morphology to produce a high thermal emittance surface. Metal from the surface and carbon from the arc electrode vaporize during arcing, and then condense on the metal surface to produce a microscopically rough surface having a high thermal emittance. Quantitative spectral reflectance measurements from 0.33 to 15 μm were made on metal surfaces which were carbon arc treated in an inert gas environment. The resulting spectral reflectance data were then used to calculate thermal emittance as a function of temperature for various methods of arc treatment. The results of arc treatment on various metals are presented for both ac and dc arcs. Surface characterization data, including thermal emittance as a function of temperature, scanning electron microscopy, and atomic oxygen durability, are also presented. Ac arc texturing was found to increase the thermal emittance at 800 K from 0.05. to 0.70

  2. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  3. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste

  4. Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces

    Science.gov (United States)

    Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao

    2018-01-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.

  5. Plasma effects on the passive external thermal control coating of Space Station Freedom

    Science.gov (United States)

    Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.

    1992-01-01

    The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.

  6. Surface flaw in a thermally shocked hollow cylinder

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Polvanich, N.; Love, W.J.

    1975-01-01

    The objective of this paper is to illustrate a procedure for estimating the stress intensity factors of a semi-elliptical crack located in the inner or outer surface of a thermally shocked hollow cylinder. The first step in this procedure is to estimate the transient thermal elastic stresses induced by sudden cooling of an uncracked cylinder by numerically evaluating standard heat transfer and thermal stress formulae. The stresses at the location of the crack surface in the uncracked cylinder are eliminated by the method of superposition in order to obtain a stress free crack surface. The stress intensity factors are then determined by a judicious use of two sets of solutions, one set involving stress intensity factors for a semi-elliptical crack in a flat plate and subjected to a polynomial distribution of pressure loading, and another set involving single-edge notched plates with prescribed edge-displacements and single-edge internally or externally notched cylinders with thermal shock loading. The former solutions are determined by the alternating technique in three-dimensional fracture mechanics with a fourth order polynomial pressure distribution on the crack surface where both the front and back surface effects are accounted for. The latter solutions involve two-dimensional finite element solutions of single-edge notched plates with prescribed edge-displacements and single-edge notched cylinders with thermal shock loading. By comparing these two two-dimensional solutions, an estimate of the effect of the cylindrical curvature on an edge-cracked plate is obtained. The combination of these two sets of solutions thus yields an estimate of the stress intensity factor in an internal and external semi-elliptical crack in a thermally shocked cylinder

  7. Thermal healing of the sub-surface damage layer in sapphire

    International Nuclear Information System (INIS)

    Pinkas, Malki; Lotem, Haim; Golan, Yuval; Einav, Yeheskel; Golan, Roxana; Chakotay, Elad; Haim, Avivit; Sinai, Ela; Vaknin, Moshe; Hershkovitz, Yasmin; Horowitz, Atara

    2010-01-01

    The sub-surface damage layer formed by mechanical polishing of sapphire is known to reduce the mechanical strength of the processed sapphire and to degrade the performance of sapphire based components. Thermal annealing is one of the methods to eliminate the sub-surface damage layer. This study focuses on the mechanism of thermal healing by studying its effect on surface topography of a- and c-plane surfaces, on the residual stresses in surface layers and on the thickness of the sub-surface damage layer. An atomically flat surface was developed on thermally annealed c-plane surfaces while a faceted roof-top topography was formed on a-plane surfaces. The annealing resulted in an improved crystallographic perfection close to the sample surface as was indicated by a noticeable decrease in X-ray rocking curve peak width. Etching experiments and surface roughness measurements using white light interferometry with sub-nanometer resolution on specimens annealed to different extents indicate that the sub-surface damage layer of the optically polished sapphire is less than 3 μm thick and it is totally healed after thermal treatment at 1450 deg. C for 72 h.

  8. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    Science.gov (United States)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  9. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  10. Optimal control in thermal engineering

    CERN Document Server

    Badescu, Viorel

    2017-01-01

    This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.

  11. D Surface Generation from Aerial Thermal Imagery

    Science.gov (United States)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  12. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    Science.gov (United States)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  13. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  14. Surface properties of thermally treated composite wood panels

    Science.gov (United States)

    Croitoru, Catalin; Spirchez, Cosmin; Lunguleasa, Aurel; Cristea, Daniel; Roata, Ionut Claudiu; Pop, Mihai Alin; Bedo, Tibor; Stanciu, Elena Manuela; Pascu, Alexandru

    2018-04-01

    Composite finger-jointed spruce and oak wood panels have been thermally treated under standard pressure and oxygen content conditions at two different temperatures, 180 °C and respectively 200 °C for short time periods (3 and 5 h). Due to the thermally-aided chemical restructuration of the wood components, a decrease in water uptake and volumetric swelling values with up to 45% for spruce and 35% for oak have been registered, comparing to the reference samples. In relation to water resistance, a 15% increase of the dispersive component of the surface energy has been registered for the thermal-treated spruce panels, which impedes water spreading on the surface. The thermal-treated wood presents superior resistance to accelerated UV exposure and subsequently, with up to 10% higher Brinell hardness values than reference wood. The proposed thermal treatment improves the durability of the finger-jointed wood through a more economically and environmental friendly method than traditional impregnation, with minimal degradative impact on the structural components of wood.

  15. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  16. Thermally controlled growth of surface nanostructures on ion-modified AIII-BV semiconductor crystals

    Science.gov (United States)

    Trynkiewicz, Elzbieta; Jany, Benedykt R.; Wrana, Dominik; Krok, Franciszek

    2018-01-01

    The primary motivation for our systematic study is to provide a comprehensive overview of the role of sample temperature on the pattern evolution of several AIII-BV semiconductor crystal (001) surfaces (i.e., InSb, InP, InAs, GaSb) in terms of their response to low-energy Ar+ ion irradiation conditions. The surface morphology and the chemical diversity of such ion-modified binary materials has been characterized by means of scanning electron microscopy (SEM). In general, all surface textures following ion irradiation exhibit transitional behavior from small islands, via vertically oriented 3D nanostructures, to smoothened surface when the sample temperature is increased. This result reinforces our conviction that the mass redistribution of adatoms along the surface plays a vital role during the formation and growth process of surface nanostructures. We would like to emphasize that this paper addresses in detail for the first time the topic of the growth kinetics of the nanostructures with regard to thermal surface diffusion, while simultaneously offering some possible approaches to supplementing previous studies and therein gaining a new insight into this complex issue. The experimental results are discussed with reference to models of the pillars growth, abutting on preferential sputtering, the self-sustained etch masking effect and the redeposition process recently proposed to elucidate the observed nanostructuring mechanism.

  17. Thermal equilibrium, stability and burn control

    International Nuclear Information System (INIS)

    Cohn, D.

    1982-01-01

    A number of aspects of the thermal stability and equilibrium control of ignited tokamak plasma have been investigated. Examined approaches were passive control (the effect of radial motion, the effect of radial motion and small additional transport loss), active control (the compression and decompression of plasma, subignited operation with small amount of variable external heating, and density control), and thermal equilibrium control (additional power loss from impurity radiation and enhanced transport from increased ripple). One-D calculation has been made on thermal instability eigen-modes. It was found that for electron thermal induction loss given by Alcator scaling and for neoclassical ion transport, there was at most one unstable mode with a temperature profile which maintains the temperature profile at thermal equilibrium. The effect of the coupling of temperature fluctuation and the fluctuation in major radius was investigated. Temperature driven radial motion combined with a small amount of ripple transport loss was found to be a very effective mechanism for passive thermal stability control. (Kato, T.)

  18. Thermal Control Subsystem Design for the Avionics of a Space Station Payload

    Science.gov (United States)

    Moran, Matthew E.

    1996-01-01

    A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.

  19. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  20. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces

    Science.gov (United States)

    Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.

  1. Towards the control of car underhood thermal conditions

    International Nuclear Information System (INIS)

    Khaled, Mahmoud; Harambat, Fabien; Peerhossaini, Hassan

    2011-01-01

    The present paper reports an experimental study of the aerothermal phenomena in the vehicle underhood compartment as investigated by measuring temperature, convective heat flux, and radiative heat flux. Measurements are carried out on a passenger vehicle in wind tunnel S4 of Saint-Cyr-France. The underhood space is instrumented by 120 surface and air thermocouples and 20 fluxmeters. Measurements are performed for three thermal functioning conditions while the engine is in operation and the front wheels are positioned on the test facility with power-absorption-controlled rollers. In the thermal analysis, particular attention is given to measuring absorbed convective heat fluxes at component surfaces. It is shown that, in some components, the outside air entering the engine compartment (for cooling certain components) can in fact heat other components. This problem arises from the underhood architecture, specifically the positioning of some components downstream of warmer components in the same airflow. Optimized thermal management suggests placing these components further upstream or isolating them from the hot stream by deflectors. Given style constraints, however, the use of air deflectors is more suitable than underhood architectural changes. Much of the present paper is devoted to heat flux analysis of the specific thermal behaviours in the underhood compartment (especially the absorption of convective heat fluxes) and to a description of a new control approach exploiting air deflectors to optimize underhood aerothermal management. - Research highlights: → We present a physical analysis of particular underhood aerothermal behaviors. → In this analysis, convective heat flux absorption should be noted. → A new optimization procedure based on this physical analysis is proposed. → It entails airflow redistribution in the underhood through deflectors. → The new procedures are simple and easy to implement in the car underhood.

  2. Effects of nonideal surfaces on the derived thermal properties of Mars

    International Nuclear Information System (INIS)

    Jakosky, B.M.

    1979-01-01

    The thermal inertia of the surface of Mars varies spatially by a factor of 8. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks an fine material. The effects of these nonideal properties on the surface temperatures and derived thermal inertias are modeled, along with the effects of slopes, CO 2 condensed onto the surface, and layering of fine material upon solid rock. The nonideal models are capable of producing thermal behavior similar to that observed by the Viking infrared thermal mapper, including a morning delay in the postdawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking 1 landing site is reproduced by the nonideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry. A histogram of surface thermal inertia versus elevation shows at least two distinct classes: a single region near Amazonis Planitia has low inertias at low elevation; many of the remaining data show an anticorrelation between inertia and elevation, expected because of the change in thermal inertia produced by changes in the atmospheric pressure an dust opacity with elevation

  3. Surface effects on the thermal conductivity of silicon nanowires

    Science.gov (United States)

    Li, Hai-Peng; Zhang, Rui-Qin

    2018-03-01

    Thermal transport in silicon nanowires (SiNWs) has recently attracted considerable attention due to their potential applications in energy harvesting and generation and thermal management. The adjustment of the thermal conductivity of SiNWs through surface effects is a topic worthy of focus. In this paper, we briefly review the recent progress made in this field through theoretical calculations and experiments. We come to the conclusion that surface engineering methods are feasible and effective methods for adjusting nanoscale thermal transport and may foster further advancements in this field. Project supported by the National Natural Science Foundation ofChina (Grant No. 11504418), China Scholarship Council (Grant No. 201706425053), Basic Research Program in Shenzhen, China (Grant No. JCYJ20160229165210666), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).

  4. Safe, Non-Corrosive Dielectric Fluid for Stagnating Radiator Thermal Control System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Paragon proposes to develop a single-loop, non-toxic, stagnating active pumped loop thermal control design for NASA's Orion or Lunar Surface Access Module (LSAM)...

  5. Contamination Control for Thermal Engineers

    Science.gov (United States)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  6. Negative thermal expansion materials: technological key for control of thermal expansion

    OpenAIRE

    Koshi Takenaka

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  7. Spatial and temporal control of thermal waves by using DMDs for interference based crack detection

    Science.gov (United States)

    Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias

    2016-02-01

    Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples' surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces - via absorption at the sample's surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection.

  8. Improved the Surface Roughness of Silicon Nanophotonic Devices by Thermal Oxidation Method

    Energy Technology Data Exchange (ETDEWEB)

    Shi Zujun; Shao Shiqian; Wang Yi, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No. 1037, Luoyu Street, Wuhan 430074 (China)

    2011-02-01

    The transmission loss of the silicon-on-insulator (SOI) waveguide and the coupling loss of the SOI grating are determined to a large extent by the surface roughness. In order to obtain smaller loss, thermal oxidation is a good choice to reduce the surface roughness of the SOI waveguide and grating. Before the thermal oxidation, the root mean square of the surface roughness is over 11 nm. After the thermal oxidation, the SEM figure shows that the bottom of the grating is as smooth as quartz surface, while the AFM shows that the root mean square of the surface is less than 5 nm.

  9. Kinetically controlled thermal response of beta2-microglobulin amyloid fibrils.

    Science.gov (United States)

    Sasahara, Kenji; Naiki, Hironobu; Goto, Yuji

    2005-09-23

    Calorimetric measurements were carried out using a differential scanning calorimeter in the temperature range from 10 to 120 degrees C for characterizing the thermal response of beta2-microglobulin amyloid fibrils. The thermograms of amyloid fibril solution showed a remarkably large decrease in heat capacity that was essentially released upon the thermal unfolding of the fibrils, in which the magnitude of negative heat capacity change was not explicable in terms of the current accessible surface area model of protein structural thermodynamics. The heat capacity-temperature curve of amyloid fibrils prior to the fibril unfolding exhibited an unusual dependence on the fibril concentration and the heating rate. Particularly, the heat needed to induce the thermal response was found to be linearly dependent on the heating rate, indicating that its thermal response is under a kinetic control and precluding the interpretation in terms of equilibrium thermodynamics. Furthermore, amyloid fibrils of amyloid beta peptides also exhibited a heating rate-dependent exothermic process before the fibril unfolding, indicating that the kinetically controlled thermal response may be a common phenomenon to amyloid fibrils. We suggest that the heating rate-dependent negative change in heat capacity is coupled to the association of amyloid fibrils with characteristic hydration pattern.

  10. Thermal equilibrium of pure electron plasmas across a central region of magnetic surfaces

    Science.gov (United States)

    Hahn, Michael; Pedersen, Thomas Sunn

    2009-06-01

    Measurements of the equilibria of plasmas created by emission from a biased filament located off the magnetic axis in the Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois et al., Fusion Sci. Technol. 50, 372 (2006)] show that such plasmas have equilibrium properties consistent with the inner surfaces being in a state of cross-surface thermal equilibrium. Numerical solutions to the equilibrium equation were used to fit the experimental data and demonstrate consistency with cross-surface thermal equilibrium. Previous experiments in CNT showed that constant temperatures across magnetic surfaces are characteristic of CNT plasmas, implying thermal confinement times much less than particle confinement times. These results show that when emitting off axis there is a volume of inner surfaces where diffusion into that region is balanced by outward transport, producing a Boltzmann distribution of electrons. When combined with the low thermal energy confinement time this is a cross-surface thermal equilibrium.

  11. Thermal equilibrium of pure electron plasmas across a central region of magnetic surfaces

    International Nuclear Information System (INIS)

    Hahn, Michael; Pedersen, Thomas Sunn

    2009-01-01

    Measurements of the equilibria of plasmas created by emission from a biased filament located off the magnetic axis in the Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois et al., Fusion Sci. Technol. 50, 372 (2006)] show that such plasmas have equilibrium properties consistent with the inner surfaces being in a state of cross-surface thermal equilibrium. Numerical solutions to the equilibrium equation were used to fit the experimental data and demonstrate consistency with cross-surface thermal equilibrium. Previous experiments in CNT showed that constant temperatures across magnetic surfaces are characteristic of CNT plasmas, implying thermal confinement times much less than particle confinement times. These results show that when emitting off axis there is a volume of inner surfaces where diffusion into that region is balanced by outward transport, producing a Boltzmann distribution of electrons. When combined with the low thermal energy confinement time this is a cross-surface thermal equilibrium.

  12. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  13. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  14. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    Science.gov (United States)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  15. Investigation on the Temporal Surface Thermal Conditions for Thermal Comfort Researches Inside A Vehicle Cabin Under Summer Season Climate

    Directory of Open Access Journals (Sweden)

    Zhang Wencan

    2016-01-01

    Full Text Available With the proposes of improving occupant's thermal comfort and reducing the air conditioning power consumption, the present research carried out a comprehensive study on the surface thermal conductions and their influence parameters. A numerical model was built considering the transient conduction, convective and radiation heat transfer inside a vehicle cabin. For more accurate simulation of the radiation heat transfer behaviors, the radiation was considered into two spectral bands (short wave and long wave radiation, and the solar radiation was calculated by two solar fluxes (beam and diffuse solar radiation. An experiment was conducted to validate the numerical approach, showing a good agreement with the surface temperature. The surface thermal conditions were numerically simulated. The results show that the solar radiation is the most important factor in determining the internal surface thermal conditions. Effects of the window glass properties and the car body surface conditions were investigated. The numerical calculation results indicate that reducing the transitivity of window glass can effectively reduce the internal surface temperature. And the reflectivity of the vehicle cabin also has an important influence on the surface temperature, however, it's not so obvious as comparison to the window glass.

  16. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    International Nuclear Information System (INIS)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun; Park, Joon B.; Ito, Eisuke; Hara, Masahiko

    2011-01-01

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41".deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C_5H_9 "+, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C_5H_9SH"+, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs

  17. Space thermal control development

    Science.gov (United States)

    Hoover, M. J.; Grodzka, P. G.; Oneill, M. J.

    1971-01-01

    The results of experimental investigations on a number of various phase change materials (PCMs) and PCMs in combination with metals and other materials are reported. The evaluations include the following PCM system performance characteristics: PCM and PCM/filler thermal diffusivities, the effects of long-term thermal cycling, PCM-container compatibility, and catalyst effectiveness and stability. Three PCMs demonstrated performance acceptable enough to be considered for use in prototype aluminum thermal control devices. These three PCMs are lithium nitrate trihydrate with zinc hydroxy nitrate catalyst, acetamide, and myristic acid. Of the fillers tested, aluminum honeycomb filler was found to offer the most increase in system thermal diffusivity.

  18. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    Science.gov (United States)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  19. A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles

    Science.gov (United States)

    Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig

    2015-01-01

    Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.

  20. CubeSat Form Factor Thermal Control Louvers

    Science.gov (United States)

    Evans, Allison L. (Inventor)

    2018-01-01

    Thermal control louvers for CubeSats or small spacecraft may include a plurality of springs attached to a back panel of the thermal control louvers. The thermal control louvers may also include a front panel, which includes at least two end panels interlocked with one or more middle panels. The front panel may secure the springs, shafts, and flaps to the back panel.

  1. Diode temperature sensor array for measuring and controlling micro scale surface temperature

    International Nuclear Information System (INIS)

    Han, Il Young; Kim, Sung Jin

    2004-01-01

    The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, thermal finger print, Micro PCR(Polymer Chain Reaction), TAS and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 array of diodes(1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters (1K) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  2. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  3. Negative thermal expansion materials: technological key for control of thermal expansion.

    Science.gov (United States)

    Takenaka, Koshi

    2012-02-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over -30 ppm K -1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  4. Negative thermal expansion materials: technological key for control of thermal expansion

    Directory of Open Access Journals (Sweden)

    Koshi Takenaka

    2012-01-01

    Full Text Available Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  5. Negative thermal expansion materials: technological key for control of thermal expansion

    International Nuclear Information System (INIS)

    Takenaka, Koshi

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K −1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade. (topical review)

  6. Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity

    International Nuclear Information System (INIS)

    Cheng Wenlong; Liu Na; Wu Wanfan

    2012-01-01

    In order to overcome the difficulty of conventional phase change materials (PCMs) in packaging, the shape-stabilized PCMs are proposed to be used in the electronic device thermal control. However, the conventional shape-stabilized PCMs have the drawback of lower thermal conductivity, so a new shape-stabilized PCM with high thermal conductivity, which is suitable for thermal control of electronic devices, is prepared. The thermal properties of n-octadecane-based shape-stabilized PCM are tested and analyzed. The heat storage/release performance is studied by numerical simulation. Its thermal control effect for electronic devices is also discussed. The results show that the expanded graphite (EG) can greatly improve the thermal conductivity of the material with little effect on latent heat and phase change temperature. When the mass fraction of EG is 5%, thermal conductivity has reached 1.76 W/(m K), which is over 4 times than that of the original one. Moreover, the material has larger latent heat and good thermal stability. The simulation results show that the material can have good heat storage/release performance. The analysis of the effect of thermal parameters on thermal control effect for electronic devices provides references to the design of phase change thermal control unit. - Highlights: ► A new shape-stabilized PCM with higher thermal conductivity is prepared. ► The material overcomes the packaging difficulty of traditional PCMs used in thermal control unit. ► The EG greatly improves thermal conductivity with little effect on latent heat. ► The material has high thermal stability and good heat storage/release performance. ► The effectiveness of the material for electronic device thermal control is proved.

  7. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    Science.gov (United States)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  8. Pumped Fluid Loop Heat Rejection and Recovery Systems for Thermal Control of the Mars Science Laboratory

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael

    2006-01-01

    This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.

  9. Evolution of surface topography in dependence on the grain orientation during surface thermal fatigue of polycrystalline copper

    CERN Document Server

    Aicheler, M; Taborelli, M; Calatroni, S; Neupert, H; Wuensch, W; Sgobba, S

    2011-01-01

    Surface degradation due to cyclic thermal loading plays a major role in the Accelerating Structures (AS) of the future Compact Linear Collider (CLIC) In this article results on surface degradation of thermally cycled polycrystalline copper as a function of the orientation of surface grains are presented Samples with different grain sizes were subjected to thermal fatigue using two different methods and were then characterized using roughness measurements and Orientation Imaging Scanning-Electron-Microscopy (OIM-SEM) Samples fatigued by a pulsed laser show the same trend in the orientation-fatigue damage accumulation as the sample fatigued by pulsed Radio-Frequency-heating (RF) it is clearly shown that 11 1 1] surface grains develop significantly more damage than the surface grains oriented in {[}100] and three reasons for this behaviour are pointed out Based on observations performed near grain boundaries their role in the crack initiation process is discussed The results are in good agreement with previous f...

  10. STRESSES IN CEMENT-CONCRETE PAVEMENT SURFACING CAUSED BY THERMAL SHOCK

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available It is necessary to mention specially so-called thermal shock among various impacts on highway surface. Ice layer is formed on a concrete surface during the winter period of pavement surfacing operation. Sodium chloride which lowers temperature of water-ice transition temperature and causes ice thawing at negative temperature is usually used to remove ice from the pavement surface. Consequently, temperature in the concrete laying immediately under a thawing ice layer is coming down with a run that leads to significant stresses. Such phenomenon is known as a thermal shock with a meaning of local significant change in temperature. This process is under investigation, it has practical importance for an estimation of strength and longevity of a cement-concrete pavement surfacing and consequently it is considered as rather topical issue. The purpose of investigations is to develop a mathematical model and determination of shock blow permissible gradients for a cementconcrete road covering. Finite difference method has been used in order to determine stressed and deformed condition of the cement-concrete pavement surfacing of highways. A computer program has been compiled and it permits to carry out calculation of a road covering at various laws of temperature distribution in its depth. Regularities in distribution of deformation and stresses in the cement-concrete pavement surfacing of highways at thermal shock have been obtained in the paper. A permissible parameter of temperature distribution in pavement surfacing thickness has been determined in the paper. A strength criterion based on the process of micro-crack formation and development in concrete has been used for making calculations. It has been established that the thermal shock causes significant temperature gradients on the cement-concrete surfacing that lead to rather large normal stresses in the concrete surface layer. The possibility of micro-crack formation in a road covering is

  11. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  12. A thermal spike analysis of low energy ion activated surface processes

    International Nuclear Information System (INIS)

    Gilmore, G.M.; Haeri, A.; Sprague, J.A.

    1989-01-01

    This paper reports a thermal spike analysis utilized to predict the time evolution of energy propagation through a solid resulting from energetic particle impact. An analytical solution was developed that can predict the number of surface excitations such as desorption, diffusion or chemical reaction activated by an energetic particle. The analytical solution is limited to substrates at zero Kelvin and to materials with constant thermal diffusivities. These limitations were removed by developing a computer numerical integration of the propagation of the thermal spike through the solid and the subsequent activation of surface processes

  13. An automatic energy-saving and thermal monitoring/controlling system for a pond

    Directory of Open Access Journals (Sweden)

    Cheng Ching-Chien

    2017-01-01

    Full Text Available Because of low temperatures and oxygen in cold water, fish will die when cold currents arrive. This will cause tremendous loss of money. In order reduce the cooling of the pond, an automatic thermal detecting and cold-roofing system using a wind-proofing device, heaters, and thermal detectors is proposed. To reduce heat loss due to thermal convection above the pond surface, a motor-driven wind-proofing device automatically controlled by a PLC controller is adopted. Here, the wind-proofing device, thermal detectors, and heating system are connected to the PLC controller. The PLC will also be connected to the PC interface. The temperature thresholds used to trigger the heater and the wind proofing device can be set at the PC interface. Two options for manipulating the heating and the automatic heating can be selected. The related wind-proofing area and the number of heaters will be determined according to the current temperature. Moreover, the PLC can be wirelessly connected to the server PC in the control room. The pond keeper can monitor everything online and control the pond water's temperature. With this, the problem of fish dying in a cold wave can be solved. Consequently, to reduce the electrical exhaust when heating up the pond water, green energy, solar energy and wind energy, is used.

  14. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun [Hanyang University, Seoul (Korea, Republic of); Park, Joon B. [Chonbuk National University, Jeonju (Korea, Republic of); Ito, Eisuke; Hara, Masahiko [RIKEN-HYU Collaboration Center, Saitama (Japan)

    2011-04-15

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41{sup .}deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C{sub 5}H{sub 9} {sup +}, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C{sub 5}H{sub 9}SH{sup +}, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

  15. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  16. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    International Nuclear Information System (INIS)

    Choi, Yu-Ri; Kwon, Jae-Sung; Song, Doo-Hoon; Choi, Eun Ha; Lee, Yong-Keun; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2013-01-01

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering

  17. A novel approach to generate random surface thermal loads in piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir; Cizelj, Leon

    2014-07-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures.

  18. A novel approach to generate random surface thermal loads in piping

    International Nuclear Information System (INIS)

    Costa Garrido, Oriol; El Shawish, Samir; Cizelj, Leon

    2014-01-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures

  19. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging.

    Science.gov (United States)

    Azharuddin, Mohammad; Bera, Sumanta Kr; Datta, Himadri; Dasgupta, Anjan Kr

    2014-03-01

    In this paper we have studied the thermal fluctuation patterns occurring at the ocular surface of the left and right eyes for aqueous deficient dry eye (ADDE) patients and control subjects by thermal imaging. We conducted our experiment on 42 patients (84 eyes) with aqueous deficient dry eyes and compared with 36 healthy volunteers (72 eyes) without any history of ocular surface disorder. Schirmer's test, Tear Break-up Time, tear Meniscus height and fluorescein staining tests were conducted. Ocular surface temperature measurement was done, using an FL-IR thermal camera and thermal fluctuation in left and right eyes was calculated and analyzed using MATLAB. The time series containing the sum of squares of the temperature fluctuation on the ocular surface were compared for aqueous deficient dry eye and control subjects. Significant statistical difference between the fluctuation patterns for control and ADDE was observed (p eyes are significantly correlated in controls but not in ADDE subjects. The possible origin of such correlation in control and lack of correlation in the ADDE subjects is discussed in the text. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  1. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  2. Luminescent nanoprobes for thermal bio-sensing: Towards controlled photo-thermal therapies

    Energy Technology Data Exchange (ETDEWEB)

    Jaque, Daniel, E-mail: daniel.jaque@uam.es [Fluorescence Imaging Group, Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Grupo de Fotônica e Fluidos Complexos (GFFC), Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil); Jacinto, Carlos [Grupo de Fotônica e Fluidos Complexos (GFFC), Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2016-01-15

    Photo-thermal therapies, based on the light-induced local heating of cancer tumors and tissues, are nowadays attracting an increasing attention due to their effectiveness, universality, and low cost. In order to avoid undesirable collateral damage in the healthy tissues surrounding the tumors, photo-thermal therapies should be achieved while monitoring tumor’s temperature in such a way that thermal therapy could be stopped before reaching the damage limit. Measuring tumor temperature is not an easy task at all and novel strategies should be adopted. In this work it is demonstrated how luminescent nanoparticles, in particular Neodymium doped LaF{sub 3} nanoparticles, could be used as multi-functional agents capable of simultaneous heating and thermal sensing. Advantages and disadvantages of such nanoparticles are discussed and the future perspectives are briefly raised. - Highlights: • Thermal control is essential in novel photo-thermal therapies. • Thermal control and heating can be achieved by Neodymium doped nanoparticles. • Perspectives of Neodymium doped nanoparticles in potential in vivo applications are discussed.

  3. Near-surface thermal characterization of plasma facing components using the 3-omega method

    International Nuclear Information System (INIS)

    Dechaumphai, Edward; Barton, Joseph L.; Tesmer, Joseph R.; Moon, Jaeyun; Wang, Yongqiang; Tynan, George R.; Doerner, Russell P.; Chen, Renkun

    2014-01-01

    Near-surface regime plays an important role in thermal management of plasma facing components in fusion reactors. Here, we applied a technique referred to as the ‘3ω’ method to measure the thermal conductivity of near-surface regimes damaged by ion irradiation. By modulating the frequency of the heating current in a micro-fabricated heater strip, the technique enables the probing of near-surface thermal properties. The technique was applied to measure the thermal conductivity of a thin ion-irradiated layer on a tungsten substrate, which was found to decrease by nearly 60% relative to pristine tungsten for a Cu ion dosage of 0.2 dpa

  4. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Binyan; Lu, Shixiang, E-mail: shixianglu@bit.edu.cn; Xu, Wenguo, E-mail: wenguoxu60@bit.edu.cn; Cheng, Yuanyuan

    2016-01-01

    Graphical abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching, electrodeposition of ZnO coatings and annealing. Such superhydrophobic surfaces offer possibilities for chemical, biological, electronic and microfluidic applications. - Highlights: • Superhydrophobic surface was fabricated via electrodeposition of ZnO and annealing. • The ZnO hierarchical micro/nanostructures contribute to the surface superhydrophobicity. • Surface wettability and morphology can be controlled by varying process conditions. • The anti-icing properties and reversible wetting behaviors of the ZnO coatings were studied. - Abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at −1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH{sub 3}COO){sub 2} concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH{sub 3}COO){sub 2} concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and

  5. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    International Nuclear Information System (INIS)

    Zhang, Binyan; Lu, Shixiang; Xu, Wenguo; Cheng, Yuanyuan

    2016-01-01

    Graphical abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching, electrodeposition of ZnO coatings and annealing. Such superhydrophobic surfaces offer possibilities for chemical, biological, electronic and microfluidic applications. - Highlights: • Superhydrophobic surface was fabricated via electrodeposition of ZnO and annealing. • The ZnO hierarchical micro/nanostructures contribute to the surface superhydrophobicity. • Surface wettability and morphology can be controlled by varying process conditions. • The anti-icing properties and reversible wetting behaviors of the ZnO coatings were studied. - Abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at −1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH_3COO)_2 concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH_3COO)_2 concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and reversibly switched

  6. Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence

    International Nuclear Information System (INIS)

    Arunachalam, K; Maccarini, P F; Craciunescu, O I; Stauffer, P R; Schlorff, J L

    2010-01-01

    The aim of this study was to investigate temperature and thermal dose distributions of thermobrachytherapy surface applicators (TBSAs) developed for concurrent or sequential high dose rate (HDR) brachytherapy and microwave hyperthermia treatment of chest wall recurrence and other superficial diseases. A steady-state thermodynamics model coupled with the fluid dynamics of a water bolus and electromagnetic radiation of the hyperthermia applicator is used to characterize the temperature distributions achievable with TBSAs in an elliptical phantom model of the human torso. Power deposited by 915 MHz conformal microwave array (CMA) applicators is used to assess the specific absorption rate (SAR) distributions of rectangular (500 cm 2 ) and L-shaped (875 cm 2 ) TBSAs. The SAR distribution in tissue and fluid flow distribution inside the dual-input dual-output (DIDO) water bolus are coupled to solve the steady-state temperature and thermal dose distributions of the rectangular TBSA (R-TBSA) for superficial tumor targets extending 10-15 mm beneath the skin surface. Thermal simulations are carried out for a range of bolus inlet temperature (T b = 38-43 deg. C), water flow rate (Q b = 2-4 L min -1 ) and tumor blood perfusion (ω b = 2-5 kg m -3 s -1 ) to characterize their influence on thermal dosimetry. Steady-state SAR patterns of the R- and L-TBSA demonstrate the ability to produce conformal and localized power deposition inside the tumor target sparing surrounding normal tissues and nearby critical organs. Acceptably low variation in tissue surface cooling and surface temperature homogeneity was observed for the new DIDO bolus at a 2 L min -1 water flow rate. Temperature depth profiles and thermal dose volume histograms indicate bolus inlet temperature (T b ) to be the most influential factor on thermal dosimetry. A 42 deg. C water bolus was observed to be the optimal choice for superficial tumors extending 10-15 mm from the surface even under significant blood perfusion

  7. Controlling Thermal Conduction by Graded Materials

    Science.gov (United States)

    Ji, Qin; Huang, Ji-Ping

    2018-04-01

    Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity is equal to that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace’s equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles. The two methods agree with each other for both external and internal heat sources, as confirmed by simulation and experiment. This work provides different methods for designing new thermal metamaterials (including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat. Support by the National Natural Science Foundation of China under Grant No. 11725521, by the Science and Technology Commission of Shanghai Municipality under Grant No. 16ZR1445100

  8. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  9. Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort.

    Science.gov (United States)

    Zhou, X; Ouyang, Q; Zhu, Y; Feng, C; Zhang, X

    2014-04-01

    To investigate whether occupants' anticipated control of their thermal environment can influence their thermal comfort and to explain why the acceptable temperature range in naturally ventilated environments is greater than that in air-conditioned environments, a series of experiments were conducted in a climate chamber in which the thermal environment remained the same but the psychological environment varied. The results of the experiments show that the ability to control the environment can improve occupants' thermal sensation and thermal comfort. Specifically, occupants' anticipated control decreased their thermal sensation vote (TSV) by 0.4-0.5 and improved their thermal comfort vote (TCV) by 0.3-0.4 in neutral-warm environment. This improvement was due exclusively to psychological factors. In addition, having to pay the cost of cooling had no significant influence on the occupants' thermal sensation and thermal comfort in this experiment. Thus, having the ability to control the thermal environment can improve occupants' comfort even if there is a monetary cost involved. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Practical Calculation of Thermal Deformation and Manufacture Error uin Surface Grinding

    Institute of Scientific and Technical Information of China (English)

    周里群; 李玉平

    2002-01-01

    The paper submits a method to calculate thermal deformation and manufacture error in surface grinding.The author established a simplified temperature field model.and derived the thermal deformaiton of the ground workpiece,It is found that there exists not only a upwarp thermal deformation,but also a parallel expansion thermal deformation.A upwarp thermal deformation causes a concave shape error on the profile of the workpiece,and a parallel expansion thermal deformation causes a dimension error in height.The calculations of examples are given and compared with presented experiment data.

  11. Investigation on Active Thermal Control Method with Pool Boiling Heat Transfer at Low Pressure

    Science.gov (United States)

    Sun, Chuang; Guo, Dong; Wang, Zhengyu; Sun, Fengxian

    2018-06-01

    In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m2 and 20 kW/m2. The chosen material of the heat surface was aluminium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10°C for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the horizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm.

  12. Control of propagation characteristics of spin wave pulses via elastic and thermal effects

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Arista, Ivan [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico); Kolokoltsev, O., E-mail: oleg.kolokoltsev@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico); Acevedo, A.; Qureshi, N. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico); Ordóñez-Romero, César L. [Instituto de Física, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico)

    2017-05-01

    A study of the magnetoelastic (ME) and thermal effects governing the phase (φ) and amplitude of magnetostatic surface spin wave (MSSW) pulses propagating in Ga:YIG/GGG and permalloy magnonic waveguides is presented. The ME effects were studied in a flexural configuration, under punctual mechanical force (F). Thermally induced ME and demagnetization phenomena were controlled by optically injected thermal power P{sub th}. It was determined that in an unclamped Ga:YIG waveguide, the force F that induces the phase shift Δφ=π, decreases by a quadratic law in the range from 1 mN to nN, and the P{sub th} at which Δφ=π decreases linearly from mW to μW as the waveguide volume decreases from mm{sup 3} to nm{sup 3}. For nano-volume waveguides the ME control energy (E{sub me}) can be of order of aJ, and the thermal control energy (ΔE{sub th}) can be as small as 50 fJ. The response time of these effects lies in the ns time scale. Both the mechanical and the thermo-magnetic forces provide an effective control of MSSW pulse amplitude, in addition to its phase shift. The thermo-magnetic effect allows one to realize variable delays of a MSSW pulse. - Highlights: • The Magneto-elastic (ME) and optically induced thermal effects governing the phase and amplitude of magnetostatic surface spin wave (MSSW) pulses propagating in Ga:YIG/GGG and permalloy magnonic waveguides are presented. • A mechanical force that causes phase shift Δφ=π for spin waves in the waveguides decreases by a quadratic law in the range from 1 mN to nN, and the optical power that induces the phase shift Δφ=π, decreases linearly from mW to μW as the waveguide volume decreases from mm{sup 3} to nm{sup 3}. • The response time of these effects can lie in the ns time scale.

  13. Formation of polyhedral ceria nanoparticles with enhanced catalytic CO oxidation activity in thermal plasma via a hydrogen mediated shape control mechanism

    International Nuclear Information System (INIS)

    Zheng Jie; Zhang Yaohua; Song Xubo; Li Xingguo

    2011-01-01

    Ceria nanoparticles with well defined facets are prepared in argon–hydrogen thermal plasma followed by controlled oxidation. With increasing hydrogen fraction in the plasma, a clear sphere-to-polyhedron shape transition is observed. The heat released during the hydrogenation of cerium, which significantly enhances the species mobility on the surface, favors the growth of well defined facets. The polyhedron ceria nanoparticles, though lower in specific surface area, exhibit superior catalytic performance for CO oxidation over the round particles, which is attributed to the higher density of the reactive {200} and {220} facets on the surface. The hydrogen mediated shape control mechanism provides new insights into the shape control of nanoparticles during thermal plasma processing.

  14. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  15. Electrically conductive, black thermal control coatings for spacecraft applications. III - Plasma-deposited ceramic matrix

    Science.gov (United States)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1987-01-01

    Five black, electrically-conductive thermal control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consist of both organic and inorganic systems applied on titanium, aluminum, and glass/epoxy composite surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation, convective and combustive heating, and cryogenic conditions over a temperature range between -196 C and 538 C. Mechanical, physical, thermal, electrical, and thermooptical properties are presented for one of these coatings. This paper describes the preparation, characteristics, and spraying of iron titanate on titanium and aluminum, and presents performance results.

  16. [Effect of thermal cycling on surface microstructure of different light-curing composite resins].

    Science.gov (United States)

    Lv, Da; Liu, Kai-Lei; Yao, Yao; Zhang, Wei-Sheng; Liao, Chu-Hong; Jiang, Hong

    2015-04-01

    To evaluate the effect of thermal cycling on surface microstructure of different light-curing composite resins. A nanofilled composite (Z350) and 4 microhybrid composites (P60, Z250, Spectrum, and AP-X) were fabricated from lateral to center to form cubic specimens. The lateral surfaces were abrased and polished before water storage and 40 000 thermal cycles (5/55 degrees celsius;). The mean surface roughness (Ra) were measured and compared before and after thermal cycling, and the changes of microstructure were observed under scanning electron microscope (SEM). Significant decreases of Ra were observed in the composites, especially in Spectrum (from 0.164±0.024 µm to 0.140±0.017 µm, Presins, and fissures occurred on Z350 following the thermal cycling. Water storage and thermal cycling may produce polishing effect on composite resins and cause fissures on nanofilled composite resins.

  17. Experimental and Numerical Investigation of Design Parameters for Hydronic Embedded Thermally Active Surfaces

    DEFF Research Database (Denmark)

    Marcos-Meson, Victor; Pomianowski, Michal Zbigniew; E. Poulsen, Søren

    2015-01-01

    This paper evaluates the principal design parameters affecting the thermal performance of embedded hydronic Thermally Active Surfaces (TAS), combining the Response Surface Method (RSM) with the Finite Elements Method (FEM). The study ranks the combined effects of the parameters on the heat flux i...

  18. Thermal oxidation for air toxics control

    International Nuclear Information System (INIS)

    Pennington, R.L.

    1991-01-01

    The Administration projects annual expenditures of $1.1 billion by 1995, increasing to $6.7 billion by 2005, in order to comply with the new Clean Air Act Title III hazardous air pollutant requirements. The Title III requirements include 189 hazardous air pollutants which must be reduced or eliminated by 2003. Twenty of the 189 listed pollutants account for approximately 75 percent of all hazardous air pollutant emissions. Ninety percent of these 20 pollutants can be effectively controlled through one or mote of the thermal oxidation technologies. This paper reports that the advantages and disadvantages of each thermal oxidation technology vary substantially and must be reviewed for each application in order to establish the most effective thermal oxidation solution. Effective thermal oxidation will meet MACT (maximum achievable control technology) emission standards

  19. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    Science.gov (United States)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-12-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  20. Low thermal budget surface preparation of Si and SiGe

    International Nuclear Information System (INIS)

    Abbadie, A.; Hartmann, J.M.; Holliger, P.; Semeria, M.N.; Besson, P.; Gentile, P.

    2004-01-01

    Using a two-step cleaning, we have investigated the low thermal budget surface preparation of Si and Si 1-x Ge x (x=0.2-0.33). It consists of an ex situ 'HF-last' wet-cleaning and an in situ low thermal budget H 2 bake in a reduced pressure-chemical vapor deposition reactor. Using secondary ion mass spectrometry, we have evaluated the effects of different H 2 bake temperatures (in between 750 and 850 deg. C for 2 min) on the removal efficiency of C, O and F atoms still present on the surface of Si and SiGe virtual substrates after the 'HF-last' wet-cleaning. We have then examined the impact of the (wet-cleaning+H 2 bake) combination on the surface cross-hatch of SiGe as-grown virtual substrates, focusing on the analysis, notably by atomic force microscopy, of the surface topography before and after the miscellaneous thermal treatments. In situ hydrogen baking steps in between 775 and 850 deg. C do not modify the surface morphology and roughness. An easy and rapid optical characterization method, i.e. the optical interferometry, is presented as well to monitor in line the morphological changes induced by such processing steps as chemical mechanical polishing, wet-cleaning, H 2 bake, etc. Despite the lower resolution of the optical profilometer, the surface roughness values coming from it have been correctly correlated with those obtained from AFM. An optimized 'HF-last' wet-cleaning using a diluted chemistry in conjunction with a H 2 bake at 800 deg. C for 2 min (775 deg. C, 2') is a good compromise for SiGe (Si) surface preparation

  1. Thermal and UV Hydrosilylation of Alcohol-Based Bifunctional Alkynes on Si (111) surfaces: How surface radicals influence surface bond formation.

    Science.gov (United States)

    Khung, Y L; Ngalim, S H; Scaccabarozi, A; Narducci, D

    2015-06-12

    Using two different hydrosilylation methods, low temperature thermal and UV initiation, silicon (111) hydrogenated surfaces were functionalized in presence of an OH-terminated alkyne, a CF3-terminated alkyne and a mixed equimolar ratio of the two alkynes. XPS studies revealed that in the absence of premeditated surface radical through low temperature hydrosilylation, the surface grafting proceeded to form a Si-O-C linkage via nucleophilic reaction through the OH group of the alkyne. This led to a small increase in surface roughness as well as an increase in hydrophobicity and this effect was attributed to the surficial etching of silicon to form nanosize pores (~1-3 nm) by residual water/oxygen as a result of changes to surface polarity from the grafting. Furthermore in the radical-free thermal environment, a mix in equimolar of these two short alkynes can achieve a high contact angle of ~102°, comparable to long alkyl chains grafting reported in literature although surface roughness was relatively mild (rms = ~1 nm). On the other hand, UV initiation on silicon totally reversed the chemical linkages to predominantly Si-C without further compromising the surface roughness, highlighting the importance of surface radicals determining the reactivity of the silicon surface to the selected alkynes.

  2. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    Science.gov (United States)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  3. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  4. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    Science.gov (United States)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  5. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    Science.gov (United States)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more

  6. Thermal Interaction of Closely Spaced Persons

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.; Tøgersen, Michael

    2011-01-01

    This paper presents results from a pilot study on the thermal interaction of closely spaced persons in a large enclosure. The surface temperature at different densities of persons is evaluated using a high resolution thermo vision camera in a controlled thermal environment. The corresponding ther...... thermal sensation is evaluated using questionnaires for the various densities. The results indicate that it may be acceptable to consider persons standalone, in a thermal sense, disregarding thermal interaction at usual densities in the design of large enclosures.......This paper presents results from a pilot study on the thermal interaction of closely spaced persons in a large enclosure. The surface temperature at different densities of persons is evaluated using a high resolution thermo vision camera in a controlled thermal environment. The corresponding...

  7. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  8. Controlling Thermal Expansion: A Metal-Organic Frameworks Route.

    Science.gov (United States)

    Balestra, Salvador R G; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2016-11-22

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal-organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host-guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion.

  9. Controlling Thermal Expansion: A Metal–Organic Frameworks Route

    Science.gov (United States)

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal–organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host–guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion. PMID:28190918

  10. Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition

    International Nuclear Information System (INIS)

    Attar, Elham; Koerner, Carolin

    2011-01-01

    Purpose: The main objective of this work is to develop an algorithm to use the Lattice Boltzmann method for solving free surface thermal flow problems with solid/liquid phase changes. Approach: A multi-distribution function model is applied to simulate hydrodynamic flow and the coupled thermal diffusion-convection problem. Findings: The free surface problem, i.e. the reconstruction of the missing distribution functions at the interface, can be solved by applying a physical transparent momentum and heat flux based methodology. The developed method is subsequently applied to some test cases in order to assess its computational potentials. Practical implications: Many industrial processes involve problems where non-isothermal motion and simultaneous solidification of fluids with free surface is important. Examples are all castings processes and especially foaming processes which are characterized by a huge and strongly changing surface. Value: A reconstruction algorithm to treat a thermal hydrodynamic problem with free surfaces is presented which is physically transparent and easy to implement.

  11. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  12. Thermographic method for evaluation of thermal influence of exterior surface colour of buildings

    Science.gov (United States)

    Wu, Yanpeng; Li, Deying; Jin, Rendong; Liu, Li; Bai, Jiabin; Feng, Jianming

    2008-12-01

    Architecture colour is an important part in urban designing. It directly affects the expressing and the thermal effect of exterior surface of buildings. It has proved that four factors affect the sign visibility, graphics, colour, lighting condition and age of the observers, and colour is the main aspect. The best method is to prevent the exterior space heating up in the first place, by reflecting heat away room the exterior surface.The colour of paint to coat building's exterior wall can have a huge impact on energy efficiency. While the suitable colour is essential to increasing the energy efficiency of paint colour during the warm summer months, those products also help paint colour efficiency and reduce heat loss from buildings during winter months making the interior more comfortable all year long. The article is based on analyzing the importance of architecture color design and existing urban colour design. The effect of external surface colour on the thermal behaviour of a building has been studied experimentally by Infrared Thermographic method in University of Science and technology Beijing insummer.The experimental results showed that different colour has quietly different thermal effect on the exterior surface of buildings. The thermal effect of carmine and fawn has nearly the same values. The main factor which is color express, give some suggest ting about urban color design. The investigation reveals that the use of suitable surface colour can dramatically reduce maximum the temperatures of the exterior wall. Keywords: architectural colour, thermal, thermographic

  13. Tuning the surface chemistry of lubricant-derived phosphate thermal films: The effect of boron

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, F. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland); Rossi, A., E-mail: antonella.rossi@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, I-09100, Cagliari (Italy); Lainé, E.; Woodward, P. [Enabling Research, Infineum UK Ltd., Milton Hill, Steventon, Oxfordshire OX13 6BD (United Kingdom); Spencer, N.D., E-mail: nicholas.spencer@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland)

    2017-02-28

    Highlights: • The additives bulk interactions in “neat” blends at high temperatures is evaluated. • The competition among the different additives to react with air-oxidized steel surfaces under pure thermal condition is investigated. • Different thermal films are grown, their in depth-composition and thickness is determined by ARXPS. • A reaction mechanism is proposed for elucidating the composition of the thermals films. - Abstract: Understanding the interactions among the various additives in a lubricant is important because they can have a major influence on the performance of blends under tribological conditions. The present investigation is focused on the interactions occurring between ZnDTP and dispersant molecules in an oil formulation, and on their reactivity under purely thermal conditions in the presence of air-oxidized iron surfaces. Nuclear magnetic resonance spectroscopy (NMR) was performed on undiluted blends at different temperatures, while angle-resolved X-ray photoelectron spectroscopy (ARXPS) was exploited to investigate the surface reactivity on oxidized iron surfaces. The results indicate that the dispersant, generally added to blends for preventing the deposition of sludge, varnish and soot on the surface, might also inhibit the reaction of all other additives with the steel surface.

  14. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    Science.gov (United States)

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban

  15. Effect of stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites

    Science.gov (United States)

    Papanicolaou, G. C.; Pappa, E. J.; Portan, D. V.; Kotrotsos, A.; Kollia, E.

    2018-02-01

    The aim of the present investigation was to study the effect of both the stacking sequence and surface treatment on the thermal conductivity of multilayered hybrid nano-composites. Four types of multilayered hybrid nanocomposites were manufactured and tested: Nitinol- CNTs (carbon nanotubes)- Acrylic resin; Nitinol- Acrylic resin- CNTs; Surface treated Nitinol- CNTs- Acrylic resin and Surface treated Nitinol- Acrylic resin- CNTs. Surface treatment of Nitinol plies was realized by means of the electrochemical anodization. Surface topography of the anodized nitinol sheets was investigated through Scanning Electron Microscopy (SEM). It was found that the overall thermal response of the manufactured multilayered nano-composites was greatly influenced by both the anodization and the stacking sequence. A theoretical model for the prediction of the overall thermal conductivity has been developed considering the nature of the different layers, their stacking sequence as well as the interfacial thermal resistance. Thermal conductivity and Differential Scanning Calorimetry (DSC) measurements were conducted, to verify the predicted by the model overall thermal conductivities. In all cases, a good agreement between theoretical predictions and experimental results was found.

  16. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    Science.gov (United States)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  17. Thermal grafting of fluorinated molecular monolayers on doped amorphous silicon surfaces

    International Nuclear Information System (INIS)

    Sabbah, H.; Zebda, A.; Ababou-Girard, S.; Solal, F.; Godet, C.; Conde, J. P.; Chu, V.

    2009-01-01

    Thermally induced (160-300 deg. C) gas phase grafting of linear alkene molecules (perfluorodecene) was performed on hydrogenated amorphous silicon (a-Si:H) films, either nominally undoped or doped with different boron and phosphorus concentrations. Dense and smooth a-Si:H films were grown using plasma decomposition of silane. Quantitative analysis of in situ x-ray photoelectron spectroscopy indicates the grafting of a single layer of organic molecules. The hydrophobic properties of perfluorodecene-modified surfaces were studied as a function of surface coverage. Annealing experiments in ultrahigh vacuum show the covalent binding and the thermal stability of these immobilized layers up to 370 deg. C; this temperature corresponds to the Si-C bond cleavage temperature. In contrast with hydrogenated crystalline Si(111):H, no heavy wet chemistry surface preparation is required for thermal grafting of alkene molecules on a-Si:H films. A threshold grafting temperature is observed, with a strong dependence on the doping level which produces a large contrast in the molecular coverage for grafting performed at 230 deg. C

  18. Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond

    International Nuclear Information System (INIS)

    Xu Xiangyang; Yu Zhiming; Zhu Yongwei; Wang Baichun

    2005-01-01

    In order to improve the dispersion of detonation nanodiamonds (ND) in aqueous and non-aqueous media, a series of thermal treatments have been conducted in air ambient to modify ND surface. Small angle X-ray scattering (SAXS) technique and high resolution transmission electron microscopy (HRTEM) were introduced to observe the primary size of ND. Differential thermal analysis (DTA), X-ray diffraction (XRD) methodology, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were adopted to analyze the structure, bonds at surfaces of the treated ND. Malvern instrument Zetasizer3000HS was used for measuring the surface electric potential and the size distribution of ND. As thermal treatments can cause graphitization and oxidization of functional groups at the surface, ND treated at high temperature is correspondingly more negatively charged in an aqueous medium, and the increased absolute value of zeta potential ensures the electrostatic stability of ND particles. Specially, after being treated at a temperature more than 850K, ND can be well dispersed in various media

  19. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces.

    Science.gov (United States)

    Sakai, Masatoshi; Watanabe, Kento; Ishimine, Hiroto; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Kudo, Kazuhiro

    2017-12-01

    In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces, enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by touching an object was detected from the drain current response. This type of device will lead to the development of robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.

  20. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  1. Temperature-gated thermal rectifier for active heat flow control.

    Science.gov (United States)

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  2. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  3. Ground-based thermal imaging of stream surface temperatures: Technique and evaluation

    Science.gov (United States)

    Bonar, Scott A.; Petre, Sally J.

    2015-01-01

    We evaluated a ground-based handheld thermal imaging system for measuring water temperatures using data from eight southwestern USA streams and rivers. We found handheld thermal imagers could provide considerably more spatial information on water temperature (for our unit one image = 19,600 individual temperature measurements) than traditional methods could supply without a prohibitive amount of effort. Furthermore, they could provide measurements of stream surface temperature almost instantaneously compared with most traditional handheld thermometers (e.g., >20 s/reading). Spatial temperature analysis is important for measurement of subtle temperature differences across waterways, and identification of warm and cold groundwater inputs. Handheld thermal imaging is less expensive and equipment intensive than airborne thermal imaging methods and is useful under riparian canopies. Disadvantages of handheld thermal imagers include their current higher expense than thermometers, their susceptibility to interference when used incorrectly, and their slightly lower accuracy than traditional temperature measurement methods. Thermal imagers can only measure surface temperature, but this usually corresponds to subsurface temperatures in well-mixed streams and rivers. Using thermal imaging in select applications, such as where spatial investigations of water temperature are needed, or in conjunction with stationary temperature data loggers or handheld electronic or liquid-in-glass thermometers to characterize stream temperatures by both time and space, could provide valuable information on stream temperature dynamics. These tools will become increasingly important to fisheries biologists as costs continue to decline.

  4. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    Science.gov (United States)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  5. Thermal control for the MFTF magnet

    International Nuclear Information System (INIS)

    Vansant, J.H.; Russ, R.M.

    1980-01-01

    The external dimensions of the Yin-Yang magnet of the Mirror Fusion Test Facility will be 7.8 by 8.5 by 8.5 m, and it will weigh approximately 300 tons. More than 8000 liters of circulating liquid helium will be required to maintain the nearly 50 km of superconductor at below 5.0 K while the latter carries almost 6000 A in a magnetic field of up to nearly 7.7 T. This paper describes several features of the thermal control plans for the Yin-Yang: (1) the proposed cooldown and warmup schedules for the MFTF and the procedure for regenerating external cooling surfaces (2) the design of an external quench resistor based on an estimate of the superconductor's maximum temperature and (3) the use of a computer model of liquid helium circulation in choosing pipe size for the liquid helium lines

  6. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R; Pandya, R; Mathur, K.M.; Charyulu, R; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  7. Semi-transparent solar energy thermal storage device

    Science.gov (United States)

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  8. New flexible thermal control material for long-life satellite

    International Nuclear Information System (INIS)

    Sasaki, Shigekuni; Hasuda, Yoshinori; Ichino, Toshihiro

    1986-01-01

    Flexible thermal control materials are light weight, cheap and excellent in the practical applicability, and are expected to be applied to future long life, large capacity satellites. However, the flexible thermal control materials used at present have the defect that either the space environment withstanding capability or the thermal control performance is poor. Therefore, the authors examined the flexible thermal control materials which are excellent in both these properties, and have developed the thermal control material PEI-OSR using polyether imide films as the substrate. In this study, while comparing with the FEP Teflon with silver vapor deposition, which has been used so far for short life satellites, the long term reliability of the PEI-OSR supposing the use for seven years was examined. As the results, the FEP Teflon with silver vapor deposition caused cracking and separation by irradiation and heat cycle test, and became unusable, but the PEI-OSR did not change its flexibility at all. Also the thermal control performance of the PEI-OSR after the test equivalent to seven years was superior to the initial performance of the Kaptone with aluminum vapor deposition, which has excellent space environment endurance, thus it was clarified that the PEI-OSR is the most excellent for this purpose. (Kako, I.)

  9. Transient thermal camouflage and heat signature control

    Science.gov (United States)

    Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong

    2016-09-01

    Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.

  10. A Numerical Proof of Concept for Thermal Flow Control

    Directory of Open Access Journals (Sweden)

    V. Dragan

    2017-02-01

    Full Text Available In this paper computational fluid dynamics is used to provide a proof of concept for controlled flow separation using thermal wall interactions with the velocity boundary layer. A 3D case study is presented, using a transition modeling Shear Stress Transport turbulence model. The highly loaded single slot flap airfoil was chosen to be representative for a light aircraft and the flow conditions were modeled after a typical landing speed. In the baseline case, adiabatic walls were considered while in the separation control case, the top surface of the flaps was heated to 500 K. This heating lead to flow separation on the flaps and a significant alteration of the flow pattern across all the elements of the wing. The findings indicate that this control method has potential, with implications in both aeronautical as well as sports and civil engineering applications.

  11. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn

    2017-08-31

    Highlights: • The KMC method is adopted to investigate the relationships between surface evolution and hydrogen thermal treatment conditions. • The reduction in surface roughness is divided into two stages at relatively low temperatures, both exhibiting exponential dependence on the time. • The optimized surface structure can be obtained by precisely adjusting thermal treatment temperatures and hydrogen pressures. - Abstract: The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  12. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Directory of Open Access Journals (Sweden)

    Ramanathan Sugumaran

    2008-08-01

    Full Text Available The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  13. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Science.gov (United States)

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800

  14. Determination of residual boron in thermally treated controlled-porosity glasses, by colorimetry, spectrography and isotachophoresis

    International Nuclear Information System (INIS)

    Dawidowicz, A.L.; Matusewicz, J.; Wysocka-Lisek, J.

    1989-01-01

    Controlled-porosity glasses (CPGs) are often applied as sorbents in chromatography. Besides having high thermal, chemical and mechanical resistance they are characterized by a very narrow pore-size distribution and the choice of mean pore diameter and porosity covers a wide range. In spite of these advantages, their range of use in chromatography is restricted because of their strong adsorption properties, which are connected with the presence of residual boron atoms in the porous CPG skeleton. The boron concentration on the CPG surface can be increased by proper thermal treatment. When CPGs are heated in the range 400-800 0 the residual boron atoms in the network diffuse from the bulk to the surface. The paper discusses the boron content in porous glasses of different mean pore diameters and the determination of the enrichment of boron on the GPG surface, by three independent methods: colorimetry, spectrography and isotachophoresis. (author)

  15. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Science.gov (United States)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  16. Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification

    Science.gov (United States)

    Chen, Xiuyong; Gong, Yongfeng; Suo, Xinkun; Huang, Jing; Liu, Yi; Li, Hua

    2015-11-01

    Here we report a simple and cost-effective technical route for constructing superhydrophobic surfaces with excellent abrasion resistance on various substrates. Rough surface structures were fabricated by thermal spray deposition of a variety of inorganic materials, and further surface modification was made by applying a thin layer of polytetrafluoroethylene. Results show that the Al, Cu, or NiCrBSi coatings with the surface roughness of up to 13.8 μm offer rough surface profile to complement the topographical morphology in micro-/nano-scaled sizes, and the hydrophobic molecules facilitate the hydrophobicity. The contact angles of water droplets of ∼155° with a sliding angle of up to 3.5° on the samples have been achieved. The newly constructed superhydrophobic coatings tolerate strong abrasion, giving clear insight into their long-term functional applications.

  17. Integrated control of the cooling system and surface openings using the artificial neural networks

    International Nuclear Information System (INIS)

    Moon, Jin Woo

    2015-01-01

    This study aimed at suggesting an indoor temperature control method that can provide a comfortable thermal environment through the integrated control of the cooling system and the surface openings. Four control logic were developed, employing different application levels of rules and artificial neural network models. Rule-based control methods represented the conventional approach while ANN-based methods were applied for the predictive and adaptive controls. Comparative performance tests for the conventional- and ANN-based methods were numerically conducted for the double-skin-facade building, using the MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation) software, after proving the validity by comparing the simulation and field measurement results. Analysis revealed that the ANN-based controls of the cooling system and surface openings improved the indoor temperature conditions with increased comfortable temperature periods and decreased standard deviation of the indoor temperature from the center of the comfortable range. In addition, the proposed ANN-based logic effectively reduced the number of operating condition changes of the cooling system and surface openings, which can prevent system failure. The ANN-based logic, however, did not show superiority in energy efficiency over the conventional logic. Instead, they have increased the amount of heat removal by the cooling system. From the analysis, it can be concluded that the ANN-based temperature control logic was able to keep the indoor temperature more comfortably and stably within the comfortable range due to its predictive and adaptive features. - Highlights: • Integrated rule-based and artificial neural network based logics were developed. • A cooling device and surface openings were controlled in an integrated manner. • Computer simulation method was employed for comparative performance tests. • ANN-based logics showed the advanced features of thermal environment. • Rule

  18. The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor

    Science.gov (United States)

    Jung, Min-Jung; Jeong, Euigyung; Lee, Young-Seak

    2015-08-01

    The surfaces of multi-walled carbon nanotubes (MWCNTs) were thermally fluorinated at various temperatures to enhance the electrochemical properties of the MWCNTs for use as electric double-layer capacitor (EDLC) electrodes. The fluorine functional groups were added to the surfaces of the MWCNTs via thermal fluorination. The thermal fluorination exposed the Fe catalyst on MWCNTs, and the specific surface area increased due to etching during the fluorination. The specific capacitances of the thermally fluorinated at 100 °C, MWCNT based electrode increased from 57 to 94 F/g at current densities of 0.2 A/g, respectively. This enhancement in capacitance can be attributed to increased polarization of the thermally fluorinated MWCNT surface, which increased the affinity between the electrode surface and the electrolyte ions.

  19. Experimental study of the surface thermal signature of gravity currents: application to the assessment of lava flow effusion rate

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2011-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a

  20. Corrosion and biofouling on the non-heat-exchanger surfaces of an ocean thermal energy conversion power plant: a survey

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, V.J. (ed.)

    1979-05-01

    Of the many foreseeable problems confronting economical ocean thermal energy conversion operation, two major items are the deterioration of the structural and functional components, which prevents efficient operation, and the biofouling of the surfaces, which adds excess weight to the floating ocean platform. The techniques required for effective long-term control of deterioration and corrosion have been investigated actively for many years, and successful solutions for most situations have been developed. For the most part, these solutions can be directly transferred to the ocean thermal energy conversion plant. The majority of problems in these areas are expected to be associated with scale-up and will require some advanced development due to the immensity of the ocean thermal energy conversion platform. Current antifouling control systems are not effective for long-term fouling prevention. Commercially available antifouling coatings are limited to a 3-year service life in temperate waters, and even shorter in tropical waters. However, underwater cleaning techniques and some fouling-control systems presently being used by conventional power plants may find utility on an ocean thermal energy conversion plant. In addition, some recent major advances in long-term antifouling coatings sponsored by the Navy may be applicable to ocean thermal energy conversion. 132 references.

  1. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-01-01

    The age of nuclear waste - the length of time between its removal from the reactor cores and its emplacement in a repository - is a significant factor in determining the thermal loading of a repository. The surface cooling period as well as the density and sequence of waste emplacement affects both the near-field repository structure and the far-field geologic environment. To investigate these issues, a comprehensive review was made of the available literature pertaining to thermal effects and thermal properties of mined geologic repositories. This included a careful evaluation of the effects of different surface cooling periods of the wastes, which is important for understanding the optimal thermal loading of a repository. The results led to a clearer understanding of the importance of surface cooling in evaluating the overall thermal effects of a radioactive waste repository. The principal findings from these investigations are summarized in this paper

  2. Thermal conductance of a surface phonon-polariton crystal made up of polar nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez-Miranda, Jose; Joulain, Karl; Ezzahri, Younes [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We demonstrate that the energy transport of surface phonon-polaritons can be large enough to be observable in a crystal made up of a three-dimensional assembly of nanorods of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure along with its high surface area-to-volume ratio allows the predominance of the polariton energy over that generated by phonons. The dispersion relation, propagation length, and thermal conductance of polaritons are numerically determined as functions of the radius and temperature of the nanorods. It is shown that the thermal conductance of a crystal with nanorods at 500 K and diameter (length) of 200 nm (20 μm) is 0.55 nW.K{sup -1}, which is comparable to the quantum of thermal conductance of polar nanowires.

  3. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy

    Science.gov (United States)

    Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294

  4. Thermally and magnetically controlled superconducting rectifiers

    International Nuclear Information System (INIS)

    Mulder, G.B.J.; TenKate, H.H.J.; Krooshoop, H.J.G.; Van de Klundert, L.J.M.

    1989-01-01

    The switches of a superconducting rectifier can be controlled either magnetically or thermally. The main purpose of this paper is to point out the differences between both methods of switching and discuss the consequences for the operation of the rectifier. The discussion is illustrated by the experimental results of a rectifier which was tested with magnetically as well as thermally controlled switches. It has an input current of 30 A, an output current of more than 1 kA and an operating frequency of a few Hertz. A superconducting magnet connected to this rectifier can be energized at a rate exceeding 1 MJ/hour and an efficiency of about 97%

  5. Disilicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis

    Directory of Open Access Journals (Sweden)

    Carlo Fornaini

    2018-01-01

    Full Text Available Lithium disilicate dental ceramic bonding, realized by using different resins, is strictly dependent on micro-mechanical retention and chemical adhesion. The aim of this in vitro study was to investigate the capability of a 1070 nm fiber laser for their surface treatment. Samples were irradiated by a pulsed fiber laser at 1070 nm with different parameters (peak power of 5, 7.5 and 10 kW, repetition rate (RR 20 kHz, speed of 10 and 50 mm/s, and total energy density from 1.3 to 27 kW/cm2 and the thermal elevation during the experiment was recorded by a fiber Bragg grating (FBG temperature sensor. Subsequently, the surface modifications were analyzed by optical microscope, scanning electron microscope (SEM, and energy dispersive X-ray spectroscopy (EDS. With a peak power of 5 kW, RR of 20 kHz, and speed of 50 mm/s, the microscopic observation of the irradiated surface showed increased roughness with small areas of melting and carbonization. EDS analysis revealed that, with these parameters, there are no evident differences between laser-processed samples and controls. Thermal elevation during laser irradiation ranged between 5 °C and 9 °C. A 1070 nm fiber laser can be considered as a good device to increase the adhesion of lithium disilicate ceramics when optimum parameters are considered.

  6. Emission and thermal performance upgrade through advanced control backfit

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, A.K. [Stone & Webster Engineering Corporation, Boston, MA (United States)

    1994-12-31

    Reducing emission and improving thermal performance of currently operating power plants is a high priority. A majority of these power plants are over 20 years old with old control systems. Upgrading the existing control systems with the latest technology has many benefits, the most cost beneficial are the reduction of emission and improving thermal performance. The payback period is usually less than two years. Virginia Power is installing Stone & Webster`s NO{sub x} Emissions Advisor and Advanced Steam Temperature Control systems on Possum Point Units 3 and 4 to achieve near term NO{sub x} reductions while maintaining high thermal performance. Testing has demonstrated NO{sub x} reductions of greater than 20 percent through the application of NO{sub x} Emissions Advisor on these units. The Advanced Steam Temperature Control system which has been operational at Virginia Power`s Mt. Storm Unit 1 has demonstrated a signification improvement in unit thermal performance and controllability. These control systems are being combined at Units 3 and 4 to reduce NO{sub x} emissions and achieve improved unit thermal performance and control response with the existing combustion hardware. Installation has been initiated and is expected to be completed by the spring of 1995. Possum Point Power Station Units 3 and 4 are pulverized coal, tangentially fired boilers producing 107 and 232 MW and have a distributed control system and a PC based performance monitoring system. The installation of the advanced control and automation system will utilize existing control equipment requiring the addition of several PCs and PLC.

  7. Rapid thermal processing by stamping

    Science.gov (United States)

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  8. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  9. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    Science.gov (United States)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime

  10. Relative importance of different surface regions for thermal comfort in humans.

    Science.gov (United States)

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Kasuga, Momoko; Uchida, Yuki; Tokizawa, Ken; Nagashima, Kei; Kanosue, Kazuyuki

    2013-01-01

    In a previous study, we investigated the contribution of the surface of the face, chest, abdomen, and thigh to thermal comfort by applying local temperature stimulation during whole-body exposure to mild heat or cold. In hot conditions, humans prefer a cool face, and in cold they prefer a warm abdomen. In this study, we extended investigation of regional differences in thermal comfort to the neck, hand, soles, abdomen (Experiment 1), the upper and lower back, upper arm, and abdomen (Experiment 2). The methodology was similar to that used in the previous study. To compare the results of each experiment, we utilized the abdomen as the reference area in these experiments. Thermal comfort feelings were not particularly strong for the limbs and extremities, in spite of the fact that changes in skin temperature induced by local temperature stimulation of the limbs and extremities were always larger than changes that were induced in the more proximal body parts. For the trunk areas, a significant difference in thermal comfort was not observed among the abdomen, and upper and lower back. An exception involved local cooling during whole-body mild cold exposure, wherein the most dominant preference was for a warmer temperature of the abdomen. As for the neck and abdomen, clear differences were observed during local cooling, while no significant difference was observed during local warming. We combined the results for the current and the previous study, and characterized regional differences in thermal comfort and thermal preference for the whole-body surface.

  11. Desorption of surface positrons: A source of free positronium at thermal velocities

    International Nuclear Information System (INIS)

    Mills, A.P. Jr.; Pfeiffer, L.

    1979-01-01

    A direct measurement is reported of the velocity of positronium (Ps) ejected into a vacuum when 0- to 100-eV positrons (e + ) strike a negatively biased Cu(111) surface. At 30 0 C, about half the e + form Ps with normal energy component E-bar=3.4(3) eV. At 790 0 C, most of the remaining e + form Ps but with E-bar=0.14(1) eV, and a non-Maxwellian thermal distribution. We infer that surface-bound e + are thermally desorbed to form the extra Ps. These low Ps velocities suggest exciting possibilities for experiments on free Ps

  12. Thermal desorption study of physical forces at the PTFE surface

    Science.gov (United States)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  13. Transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations

    International Nuclear Information System (INIS)

    Sugano, Y.

    1980-01-01

    The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)

  14. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation.

    Science.gov (United States)

    Di Luca, Andrea; de Wijn, Joost R; van Blitterswijk, Clemens A; Camarero-Espinosa, Sandra; Moroni, Lorenzo

    2017-08-01

    The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    Science.gov (United States)

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface.

  16. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  17. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    OpenAIRE

    Shibe, Vineet; Chawla, Vikas

    2016-01-01

    Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 ste...

  18. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan

    2015-01-01

    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...

  19. Thermal analysis of dry eye subjects and the thermal impulse perturbation model of ocular surface.

    Science.gov (United States)

    Zhang, Aizhong; Maki, Kara L; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Hindman, Holly B; Aquavella, James V; Zavislan, James M

    2015-03-01

    In this study, we explore the usage of ocular surface temperature (OST) decay patterns to distinguished between dry eye patients with aqueous deficient dry eye (ADDE) and meibomian gland dysfunction (MGD). The OST profiles of 20 dry eye subjects were measured by a long-wave infrared thermal camera in a standardized environment (24 °C, and relative humidity (RH) 40%). The subjects were instructed to blink every 5 s after 20 ∼ 25 min acclimation. Exponential decay curves were fit to the average temperature within a region of the central cornea. We find the MGD subjects have both a higher initial temperature (p model, referred to as the thermal impulse perturbation (TIP) model. We conclude that long-wave-infrared thermal imaging is a plausible tool in assisting with the classification of dry eye patient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Thermal Advantages for Solar Heating Systems with a Glass Cover with Antireflection Surfaces

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles....... The two glasses are identical, except for the fact that one of them is equipped with antireflection surfaces by the company SunArc A/ S. The transmittance was increased by 5–9%-points due to the antireflection surfaces. The increase depends on the incidence angle. The efficiency at incidence angles of 08...... and the incidence angle modifier were measured for a flat-plate solar collector with the two cover plates. The collector efficiency was increased by 4–6%-points due to the antireflection surfaces, depending on the incidence angle. The thermal advantage with using a glass cover with antireflection surfaces...

  1. Surface state of GaN after rapid-thermal-annealing using AlN cap-layer

    Energy Technology Data Exchange (ETDEWEB)

    El-Zammar, G., E-mail: georgio.elzammar@univ-tours.fr [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Khalfaoui, W. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Oheix, T. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); STMicroelectronics, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Yvon, A.; Collard, E. [STMicroelectronics, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France); Cayrel, F.; Alquier, D. [Université François Rabelais, Tours, GREMAN, CNRS UMR 7347, 10 rue Thalès de Milet CS 97155, 37071 Tours Cedex 2 (France)

    2015-11-15

    Graphical abstract: Surface state of a crack-free AlN cap-layer reactive sputtered on GaN and annealed at high temperature showing a smooth, pit-free surface. - Highlights: • We deposit a crystalline AlN layer by reactive magnetron sputtering on GaN. • We show the effect of deposition parameters of AlN by reactive magnetron sputtering on the quality of the grown layer. • We demonstrate the efficiency of double cap-layer for GaN protection during high temperature thermal treatments. • We show an efficient selective etch of AlN without damaging GaN surface. - Abstract: Critical issues need to be overcome to produce high performance Schottky diodes on gallium nitride (GaN). To activate dopant, high temperature thermal treatments are required but damage GaN surface where hexagonal pits appear and prevent any device processing. In this paper, we investigated the efficiency of cap-layers on GaN during thermal treatments to avoid degradation. Aluminum nitride (AlN) and silicon oxide (SiO{sub x}) were grown on GaN by direct current reactive magnetron sputtering and plasma-enhanced chemical vapor deposition, respectively. AlN growth parameters were studied to understand their effect on the grown layers and their protection efficiency. Focused ion beam was used to measure AlN layer thickness. Crystalline quality and exact composition were verified using X-ray diffraction and energy dispersive X-ray spectroscopy. Two types of rapid thermal annealing at high temperatures were investigated. Surface roughness and pits density were evaluated using atomic force microscopy and scanning electron microscopy. Cap-layers wet etching was processed in H{sub 3}PO{sub 4} at 120 °C for AlN and in HF (10%) for SiO{sub x}. This work reveals effective protection of GaN during thermal treatments at temperatures as high as 1150 °C. Low surface roughness was obtained. Furthermore, no hexagonal pit was observed on the surface.

  2. Thermal treating of acrylic matrices as a tool for controlling drug release.

    Science.gov (United States)

    Hasanzadeh, Davood; Ghaffari, Solmaz; Monajjemzadeh, Farnaz; Al-Hallak, M H D-Kamal; Soltani, Ghazal; Azarmi, Shirzad

    2009-12-01

    The purpose of the present study was to investigate the effect of thermal-treating on the release of ibuprofen from the granules prepared using aqueous dispersions of Eudragit. To accomplish this goal, different formulations were prepared using wet granulation method containing two different types of Eudragit aqueous dispersions, RS30D, RL30D and Avicel as filler. Tablets were prepared using direct compression method. The prepared tablets were thermally treated at 50 and 70 degrees C for 24 h. The drug release from tablets was assessed before and after thermal-treating. The results of release study showed that, thermally-treating the tablets at the temperatures higher than glass transition temperature (Tg) of the polymer can decrease the drug release from matrices. For mechanistic evaluation of the effect of thermal-treating, powder X-ray diffraction (XPD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), Fourier transform infrared (FT-IR) and helium pycnometer have been employed. The SEM graphs showed that the tablets have smoother surface with less porosity after thermal-treating. FT-IR spectra showed no change in the spectrum of thermally-treated tablet compared to control. In DSC graphs, no crystalline change was seen in the heat-treated samples of ibuprofen tablets, but decreased and widened peak size were related to the probable formation of solid solution of ibuprofen in Eudragit matrix. The results of helium pycnometer showed a significant decrease in the total porosity of some heat-treated samples. This study revealed the importance of thermal treating on the drug release from sustained release tablets containing Eudragit polymer.

  3. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    Science.gov (United States)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  4. Experimental and Numerical Studies of Controlling Thermal Cracks in Mass Concrete Foundation by Circulating Water

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-04-01

    Full Text Available This paper summarizes an engineering experience of solving the problem of thermal cracking in mass concrete by using a large project, Zhongguancun No.1 (Beijing, China, as an example. A new method is presented for controlling temperature cracks in the mass concrete of a foundation. The method involves controlled cycles of water circulating between the surface of mass concrete foundation and the atmospheric environment. The temperature gradient between the surface and the core of the mass concrete is controlled at a relatively stable state. Water collected from the well-points used for dewatering and from rainfall is used as the source for circulating water. Mass concrete of a foundation slab is experimentally investigated through field temperature monitoring. Numerical analyses are performed by developing a finite element model of the foundation with and without water circulation. The calculation parameters are proposed based on the experiment, and finite element analysis software MIDAS/CIVIL is used to calculate the 3D temperature field of the mass concrete during the entire process of heat of hydration. The numerical results are in good agreement with the measured results. The proposed method provides an alternative practical basis for preventing thermal cracks in mass concrete.

  5. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    Science.gov (United States)

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Modelling and Control of Thermal System

    Directory of Open Access Journals (Sweden)

    Vratislav Hladky

    2014-01-01

    Full Text Available Work presented here deals with the modelling of thermal processes in a thermal system consisting of direct and indirect heat exchangers. The overal thermal properties of the medium and the system itself such as liquid mixing or heat capacity are shortly analysed and their features required for modelling are reasoned and therefore simplified or neglected. Special attention is given to modelling heat losses radiated into the surroundings through the walls as they are the main issue of the effective work with the heat systems. Final part of the paper proposes several ways of controlling the individual parts’ temperatures as well as the temperature of the system considering heating elements or flowage rate as actuators.

  7. Controlling Thermal Expansion: A Metal?Organic Frameworks Route

    OpenAIRE

    Balestra, Salvador R. G.; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A. Rabdel; Calero, Sofia

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal?organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model m...

  8. Thermal stability studies on atomically clean and sulphur passivated InGaAs surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalit; Hughes, Greg [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2013-03-15

    High resolution synchrotron radiation core level photoemission measurements have been used to study the high temperature stability of sulphur passivated InGaAs surfaces and comparisons made with atomically clean surfaces subjected to the same annealing temperatures. Sulphur passivation of clean InGaAs surfaces prepared by the thermal removal of an arsenic capping layer was carried out using an in situ molecular sulphur treatment in ultra high vacuum. The elemental composition of the surfaces of these materials was measured at a series of annealing temperatures up to 530 C. Following a 480 C anneal In:Ga ratio was found to have dropped by 33% on sulphur passivated surface indicating a significant loss of indium, while no drop in indium signal was recorded at this temperature on the atomically InGaAs surface. No significant change in the As surface concentration was measured at this temperature. These results reflect the reduced thermal stability of the sulphur passivated InGaAs compared to the atomically clean surface which has implications for device fabrication. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; Anjum, Dalaver; Kanoun, Mohammed; Scaranto, Jessica; Hedhili, Mohamed Nejib; Khalid, Syed; Laveille, Paco; D'Souza, Lawrence; Clo, Alain M.; Basset, Jean-Marie

    2015-01-01

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  10. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  11. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  12. Nucleation of 2D nanoislands in surface thermal spikes from swift heavy ions

    International Nuclear Information System (INIS)

    Volkov, Alexander E.; Sorokin, Michael V.

    2003-01-01

    Possibility of nucleation of nanoislands in the surface thermal spikes caused by swift heavy ions or intense femptosecond laser pulses is investigated. Nanoislands may occur when the characteristic nucleation time becomes shorter than that cooling down of the thermal spot. The values of system parameters favorable for the nucleation are estimated

  13. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  14. Thermal, spectral, and surface properties of LED light-polymerized bulk fill resin composites.

    Science.gov (United States)

    Pişkin, Mehmet Burçin; Atalı, Pınar Yılmaz; Figen, Aysel Kantürk

    2015-02-01

    The aim of this study was to evaluate the thermal, spectral, and surface properties of four different bulk fill materials – SureFil SDR (SDR, Dentsplay DETREY), QuixFil (QF, Dentsplay DETREY), X-tra base (XB, Voco) X-tra fil (XF, Voco) – polymerized by light-emitting diode (LED). Resin matrix, filler type, size and amount, and photoinitiator types influence the degree of conversion. LED-cured bulk fill composites achieved sufficient polymerization. Scanning electron microscope (SEM) analysis revealed different patterns of surface roughness, depending on the composite material. Bulk fill materials showed surface characteristics similar to those of nanohybrid composites. Based on the thermal analysis results, glass transition (T(g)) and initial degradation (T(i)) temperatures changed depending on the bulk fill resin composites.

  15. Gas Analysis and Control Methods for Thermal Batteries

    Science.gov (United States)

    2013-09-01

    when using highly efficient microporous thermal insulation packages. An easily implemented method of H2 gas removal from vendor thermal batteries is... microporous thermal insulation packages (1, 4, 5) or reduce volume requirements significantly. More rigorous gas control methods combined with...measured from the DCM pressures and known internal volumes of the 3 GHS that were measured using the ideal gas law with a 10-cc internal volume SS

  16. Thermal battery for portable climate control

    International Nuclear Information System (INIS)

    Narayanan, Shankar; Li, Xiansen; Yang, Sungwoo; Kim, Hyunho; Umans, Ari; McKay, Ian S.; Wang, Evelyn N.

    2015-01-01

    Highlights: • ATB is adsorptive thermal battery delivering both heating and cooling via storage. • The novel design promotes transport and maximizes ATB performance. • A general theoretical framework is developed to analyze ATB performance. • NaX–water is used as the adsorbent–refrigerant pair as a specific case study. • The effect of key geometric parameters and operating conditions are presented. - Abstract: Current technologies that provide climate control in the transportation sector are quite inefficient. In gasoline-powered vehicles, the use of air-conditioning is known to result in higher emissions of greenhouse gases and pollutants apart from decreasing the gas-mileage. On the other hand, for electric vehicles (EVs), a drain in the onboard electric battery due to the operation of heating and cooling system results in a substantial decrease in the driving range. As an alternative to the conventional climate control system, we are developing an adsorption-based thermal battery (ATB), which is capable of storing thermal energy, and delivering both heating and cooling on demand, while requiring minimal electric power supply. Analogous to an electrical battery, the ATB can be charged for reuse. Furthermore, it promises to be compact, lightweight, and deliver high performance, which is desirable for mobile applications. In this study, we describe the design and operation of the ATB-based climate control system. We present a general theoretical framework to determine the maximum achievable heating and cooling performance using the ATB. The framework is then applied to study the feasibility of ATB integration in EVs, wherein we analyze the use of NaX zeolite–water as the adsorbent–refrigerant pair. In order to deliver the necessary heating and cooling performance, exceeding 2.5 kW h thermal capacity for EVs, the analysis determines the optimal design and operating conditions. While the use of the ATB in EVs can potentially enhance its driving

  17. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Youyun, E-mail: lianyy@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Liu, Xiang; Wang, Jianbao; Feng, Fan [Southwestern Institute of Physics, Chengdu (China); Lv, Yanwei; Song, Jiupeng [China National R& D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd, 361026 Xiamen (China); Chen, Jiming [Southwestern Institute of Physics, Chengdu (China)

    2016-12-30

    Highlights: • Thick CVD-W coatingswere deposited at a rapid growth rate. • The polished CVD-W coatings have highly textured structure and exhibited a very strong preferred orientation. • The polished CVD tungsten coatings show superior thermal shock resistance as compared with that of the as-deposited coatings. • The crack formation of the polished CVD-W was almost suppressed at an elevated temperature. - Abstract: Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m{sup 2}. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  18. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Energy, Power, and Thermal Technologies and Processes Experimental Research. Subtask: Thermal Management of Electromechanical Actuation System for Aircraft Primary Flight Control Surfaces

    Science.gov (United States)

    2014-05-01

    Computer FHPCP Flexible Heat Pipe Cold Plate HPEAS High Performance Electric Actuation System HPU Hydraulic Power Unit HSM Hydraulic Service...provide improved thermal paths and phase change materials offer energy storage. Loop heat pipes (LHP’s) and Flexible Heat Pipe Cold Plates (FHPCP’s...flows upward due to density difference through centrally located vapor channels called risers and then condenses on the colder surface associated

  19. Processing, structure, property and performance relationships for the thermal spray of the internal surface of aluminum cylinders

    Science.gov (United States)

    Cook, David James

    The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips

  20. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  1. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    International Nuclear Information System (INIS)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-01-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second

  2. Graphoepitaxy of sexithiophene and orientation control by surface treatment

    International Nuclear Information System (INIS)

    Ikeda, Susumu; Saiki, Koichiro; Wada, Yasuo; Inaba, Katsuhiko; Ito, Yoshiyasu; Kikuchi, Hirokazu; Terashima, Kazuo; Shimada, Toshihiro

    2008-01-01

    The factors influencing the graphoepitaxy of organic semiconductor α-sexithiophene (6T) on thermally oxidized silicon substrates were studied and it was discovered that a wider pitch in the microgrooves decreased the degree of graphoepitaxy. A more significant finding was that in-plane orientation could be changed by simple surface treatment. On UV/ozone-treated substrates (hydrophilic condition), the b-axis of 6T was parallel to the grooves. Further surface treatment with hexamethyl-disiloxane (under hydrophobic conditions) changed this in-plane orientation by 90 deg. This change is due to the interaction between the topmost chemical species (functional groups) of the groove walls and organic molecules, a behavior peculiar to organic graphoepitaxy and exploitable for optimal orientation control in device processing. The nucleation and growth processes that cause the graphoepitaxy are discussed, based on the experimental results

  3. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  4. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    A new method for performing thermal stress analyses in structures with multiple penetrations was applied to these analyses. This method couples the development of an equivalent thermal conductivity for the blocks, a technique that has been used extensively for modeling the thermal characteristics of reactor cores, with the use of the equivalent solid plate method for stress analysis. Using this equivalent thermal conductivity, which models as one material the heat transfer characteristics of the fuel, coolant, and graphite two-dimensional, steady-state thermal analyses of the fuel and control rod fuel blocks were performed to establish all temperature boundaries required for the stress analyses. In applying the equivalent solid plate method, the region of penetrations being modeled was replaced by a pseudo material having the same dimensions but whose materials properties were adjusted to account for the penetration. The peak stresses and strains were determined by applying stress and strain intensification factors to the calculated distributions. The condition studied was where the blocks were located near the center of the furnace. In this position, the axial surface of the block is heated near one end and cooled near the other. The approximate axial surface temperatures ranged from 1521 0 C at both the heated and the cooled ends to a peak of 1800 0 C near the center. Five specific cases were analyzed: plane (two-dimensional thermal, plane stress strain) analyses of each end of a standard fuel block (2 cases), plane analyses of each end of a control rod fuel block (2 cases), and a two-dimensional analysis of a fuel block treated as an axisymmetric cylind

  5. Study of the thermal effect on silicon surface induced by ion beam from plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Z., E-mail: pscientific5@aec.org.sy [Scientific Service Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Ahmad, M. [IBA Laboratory, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Chemistry Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box: 6091, Damascus (Syrian Arab Republic)

    2017-04-01

    Structural modifications in form of ripples and cracks are induced by nitrogen ions from plasma focus on silicon surface. The investigation of such structures reveals correlation between ripples and cracks formation in peripheral region of the melt spot. The reason of such correlation and structure formation is explained as result of thermal effect. Melting and resolidification of the center of irradiated area occur within one micro second of time. This is supported by a numerical simulation used to investigate the thermal effect induced by the plasma focus ion beams on the silicon surface. This simulation provides information about the temperature profile as well as the dynamic of the thermal propagation in depth and lateral directions. In accordance with the experimental observations, that ripples are formed in latter stage after the arrival of last ion, the simulation shows that the thermal relaxation takes place in few microseconds after the end of the ion beam arrival. Additionally, the dependency of thermal propagation and relaxation on the distance of the silicon surface from the anode is presented.

  6. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  7. 'Thermal ghosts': apparent decay of fixed surfaces caused by heat diffusion

    International Nuclear Information System (INIS)

    Livadiotis, George

    2007-01-01

    The behaviour concerning classical heat diffusion on fixed thermal surfaces, studied by observations, still holds surprises. As soon as convective and radiative processes are negligible within the medium, this is considered to be free from energy sources and sinks. Then, the heat diffusion equation is conveniently solved using standard Fourier methods. Some considerations about the contrast effect suggest that the surface boundary would rather be observed to follow specific area decay dynamics than remaining fixed and static. Here it is shown that the apparent boundary lies on a specific isothermal spatiotemporal curve, which depends on the observing device. This is characterized by a slight, though determinative, difference between its radiance and that of the ambient background. Thereafter, the heat diffusion yields apparent boundary shrinkage with the passing of time. This phenomenon is particularly notable for two reasons: its lifetime and final decay rate depend only on the medium thermal properties, while being independent of the apparent boundary spatiotemporal curve. Thus, the former provides a suitable method for measuring the medium thermal properties via the observational data. The latter strongly reveal a kind of universality of some characteristic properties of the phenomenon, common to all observers

  8. Transient thermal stresses in a transversely isotropic finite hollow circular cylinder due to arbitrary surface heat generations

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Nakanishi, Takanori.

    1980-01-01

    The materials macroscopically regarded as anisotropic materials such as fiber-reinforced composite materials have become to be used for the structural elements at elevated temperature, and the studies on the problem of thermal stress in anisotropic bodies are carried out actively. The unsteady thermal stress in anisotropic finite circular cylinders has not been analyzed so far. In this study, the problem of unsteady thermal stress in an anisotropic finite circular cylinder having arbitrary surface heat generation in axial direction on the internal and external surfaces, and emitting heat from both ends and the internal and external surfaces, was analyzed. For the analysis of temperature distribution, generalized finite Fourier transformation and finite Hankel transformation were used, and thermal stress and thermal displacement were analyzed by the use of the stress function of Singh. By adopting the function used for the transformation nucleus in generalized finite Fourier transformation as the stress function, the analysis was made without separating symmetric and opposite symmetric problems. Numerical calculation was carried out on the basis of the analytical results, and the effects of the anisotropy in thermal conductivity, Young's modulus and linear expansion on unsteady temperature distribution, thermal stress and thermal displacement were quantitatively examined. (Kako, I.)

  9. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  10. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    Science.gov (United States)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  11. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization.

    Science.gov (United States)

    Miao, Xiang; Qu, Dan; Yang, Dongxue; Nie, Bing; Zhao, Yikang; Fan, Hongyou; Sun, Zaicheng

    2018-01-01

    Multiple-color-emissive carbon dots (CDots) have potential applications in various fields such as bioimaging, light-emitting devices, and photocatalysis. The majority of the current CDots to date exhibit excitation-wavelength-dependent emissions with their maximum emission limited at the blue-light region. Here, a synthesis of multiple-color-emission CDots by controlled graphitization and surface function is reported. The CDots are synthesized through controlled thermal pyrolysis of citric acid and urea. By regulating the thermal-pyrolysis temperature and ratio of reactants, the maximum emission of the resulting CDots gradually shifts from blue to red light, covering the entire light spectrum. Specifically, the emission position of the CDots can be tuned from 430 to 630 nm through controlling the extent of graphitization and the amount of surface functional groups, COOH. The relative photoluminescence quantum yields of the CDots with blue, green, and red emission reach up to 52.6%, 35.1%, and 12.9%, respectively. Furthermore, it is demonstrated that the CDots can be uniformly dispersed into epoxy resins and be fabricated as transparent CDots/epoxy composites for multiple-color- and white-light-emitting devices. This research opens a door for developing low-cost CDots as alternative phosphors for light-emitting devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Shape memory thermal conduction switch

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  13. Thiol-ene thermosets exploiting surface reactivity for layer-by-layer structures and control of penetration depth for selective surface reactivity

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Westh, Andreas; Pereira Rosinha Grundtvig, Ines

    Thiol-ene thermosets have been shown to be an efficient platform for preparation of functional polymer surfaces. Especially the effectiveness and versatility of the system has enabled a large variety of network properties to be obtained in a simple and straight-forward way. Due to its selectivity......, various thiols and allyl or other vinyl reactants can be used to obtain either soft and flexible1 or more rigid functional thermosets 2. The methodology permits use of etiher thermal or photochemical conditions both for matrix preparation as well as for surface functionalization. Due to excess reactive...... groups in thµe surface of thiol-ene thermosets, it is possible to prepare surface functional thermosets or to exploit the reactive groups for modular construction and subsequent chemical bonding. Here a different approach preparing monolithic layer-by-layer structures with controlled mechanical...

  14. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    Science.gov (United States)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC

  15. Impact of the surface quality on the thermal shock performance of beryllium armor tiles for first wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, B., E-mail: b.spilker@fz-juelich.de; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-11-01

    Highlights: • Different surface qualities of S-65 beryllium are tested under high heat flux conditions. • After 1000 thermal shocks, the loaded area exhibits a crucial destruction. • Stress accelerated grain boundary oxidation/dynamic embrittlement effects are linked to the thermal shock performance of beryllium. • Thermally induced cracks form between 1 and 10 pulses and grow wider and deeper between 10 and 100 pulses. • Thermally induced cracks form and propagate independently from surface grooves and the surface quality. - Abstract: Beryllium will be applied as first wall armor material in ITER. The armor has to sustain high steady state and transient power fluxes. For transient events like edge localized modes, these transient power fluxes rise up to 1.0 GW m{sup −2} with a duration of 0.5–0.75 ms in the divertor region and a significant fraction of this power flux is deposited on the first wall as well. In the present work, the reference beryllium grade for the ITER first wall application S-65 was prepared with various surface conditions and subjected to transient power fluxes (thermal shocks) with ITER relevant loading parameters. After 1000 thermal shocks, a crucial destruction of the entire loaded area was observed and linked to the stress accelerated grain boundary oxidation (SAGBO)/dynamic embrittlement (DE) effect. Furthermore, the study revealed that the majority of the thermally induced cracks formed between 1 and 10 pulses and then grew wider and deeper with increasing pulse number. The surface quality did not influence the cracking behavior of beryllium in any detectable way. However, the polished surface demonstrated the highest resistance against the observed crucial destruction mechanism.

  16. The effects of 1 kW class arcjet thruster plumes on spacecraft charging and spacecraft thermal control materials

    Science.gov (United States)

    Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.

    1992-01-01

    Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.

  17. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  18. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova

    2016-02-01

    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  19. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  20. Preterm infant thermal care: differing thermal environments produced by air versus skin servo-control incubators.

    Science.gov (United States)

    Thomas, K A; Burr, R

    1999-06-01

    Incubator thermal environments produced by skin versus air servo-control were compared. Infant abdominal skin and incubator air temperatures were recorded from 18 infants in skin servo-control and 14 infants in air servo-control (26- to 29-week gestational age, 14 +/- 2 days postnatal age) for 24 hours. Differences in incubator and infant temperature, neutral thermal environment (NTE) maintenance, and infant and incubator circadian rhythm were examined using analysis of variance and scatterplots. Skin servo-control resulted in more variable air temperature, yet more stable infant temperature, and more time within the NTE. Circadian rhythm of both infant and incubator temperature differed by control mode and the relationship between incubator and infant temperature rhythms was a function of control mode. The differences between incubator control modes extend beyond temperature stability and maintenance of NTE. Circadian rhythm of incubator and infant temperatures is influenced by incubator control.

  1. Transient stress control of aeroengine disks based on active thermal management

    International Nuclear Information System (INIS)

    Ding, Shuiting; Wang, Ziyao; Li, Guo; Liu, Chuankai; Yang, Liu

    2016-01-01

    Highlights: • The essence of cooling in turbine system is a process of thermal management. • Active thermal management is proposed to control transient stress of disks. • The correlation between thermal load and transient stress of disks is built. • Stress level can be declined by actively adjusting the thermal load distribution. • Artificial temperature gradient can be used to counteract stress from rotating. - Abstract: The physical essence of cooling in the turbine system is a process of thermal management. In order to overcome the limits of passive thermal management based on thermal protection, the concept of active thermal management based on thermal load redistribution has been proposed. On this basis, this paper focuses on a near real aeroengine disk during a transient process and studies the stress control mechanism of active thermal management in transient conditions by a semi-analytical method. Active thermal management is conducted by imposing extra heating energy on the disk hub, which is represented by the coefficient of extra heat flow η. The results show that the transient stress level can be effectively controlled by actively adjusting the thermal load distribution. The decline ratio of the peak equivalent stress of the disk hub can be 9.0% for active thermal management load condition (η = 0.2) compared with passive condition (η = 0), even at a rotation speed of 10,000 r/min. The reason may be that the temperature distribution of the disk turns into an artificial V-shape because of the extra heating energy on the hub, and the resulting thermal stresses induced by the negative temperature gradients counteract parts of the stress from rotating.

  2. Thermal-driven attachment of gold nanoparticles prepared with ascorbic acid onto indium tin oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Md. Abdul; Oyama, Munetaka, E-mail: oyama.munetaka.4m@kyoto-u.ac.jp [Kyoto University, Department of Material Chemistry, Graduate School of Engineering (Japan)

    2013-05-15

    Thermal-driven attachment of gold nanoparticles (AuNPs), of which size was less than 50 nm, onto the surfaces of indium tin oxide (ITO) is reported as a new phenomenon. This was permitted by preparing AuNPs via the reduction of hydrogen tetrachloroaurate (HAuCl{sub 4}) with ascorbic acid (AA). While the AuNPs prepared via the AA reduction sparsely attached on the surface of ITO even at room temperature, a heat-up treatment at ca. 75 Degree-Sign C caused denser attachment of AuNPs on ITO surfaces. The attached density and the homogeneity after the thermal treatment were better than those of AuNP/ITO prepared using 3-aminopropyl-trimethoxysilane linker molecules. The denser attachment was observed similarly both by the immersion of ITO samples after the preparations of AuNPs by AA and by the in situ preparation of AuNPs with AA together with ITO samples. Thus, it is considered that the thermal-driven attachment of AuNPs would occur after the formation of AuNPs in the aqueous solutions, not via the growth of AuNPs on ITO surfaces. The preparation of AuNPs with AA would be a key for the thermal-driven attachment because the same attachments were not observed for AuNPs prepared with citrate ions or commercially available tannic acid-capped AuNPs.

  3. Comparative performance analysis of the artificial-intelligence-based thermal control algorithms for the double-skin building

    International Nuclear Information System (INIS)

    Moon, Jin Woo

    2015-01-01

    This study aimed at developing artificial-intelligence-(AI)-theory-based optimal control algorithms for improving the indoor temperature conditions and heating energy efficiency of the double-skin buildings. For this, one conventional rule-based and four AI-based algorithms were developed, including artificial neural network (ANN), fuzzy logic (FL), and adaptive neuro fuzzy inference systems (ANFIS), for operating the surface openings of the double skin and the heating system. A numerical computer simulation method incorporating the matrix laboratory (MATLAB) and the transient systems simulation (TRNSYS) software was used for the comparative performance tests. The analysis results revealed that advanced thermal-environment comfort and stability can be provided by the AI-based algorithms. In particular, the FL and ANFIS algorithms were superior to the ANN algorithm in terms of providing better thermal conditions. The ANN-based algorithm, however, proved its potential to be the most energy-efficient and stable strategy among the four AI-based algorithms. It can be concluded that the optimal algorithm can be differently determined according to the major focus of the strategy. If comfortable thermal condition is the principal interest, then the FL or ANFIS algorithm could be the proper solution, and if energy saving for space heating and system operation stability is the main concerns, then the ANN-based algorithm may be applicable. - Highlights: • Integrated control algorithms were developed for the heating system and surface openings. • AI theories were applied to the control algorithms. • ANN, FL, and ANFIS were the applied AI theories. • Comparative performance tests were conducted using computer simulation. • AI algorithms presented superior temperature environment.

  4. Transient thermal stresses in an orthotropic rectangular plate with convective heat transfer at upper and lower surfaces

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Nakanishi, Takanori; Ito, Masahiko; Saito, Koichi.

    1982-01-01

    Recently, anisotropic materials have been used widely for reactor core elements and fast flying objects, therefore, the problem of thermal stress in anisotropic bodies has been studied actively. In this study, the unsteady plane thermal stress in an orthotropic rectangular thin plate heated by the temperature of ambient medium was analyzed, taking the heat transfer on both surfaces into account. The influence that the anisotropy of material constants and the heat transfer on both surfaces exert on the temperature and thermal stress of the plate was examined. Moreover, in order to investigate into the effect of the aspect ratio of the plate on the temperature and thermal stress, the unsteady distributions of temperature and thermal stress in an orthotropic semi-infinite band, of which the end surfaces are heated by ambient medium, were analyzed. The numerical calculation was carried out, and the results are shown. Before, it was difficult to satisfy the boundary condition related to shearing stress, accordingly, the analysis has not been performed, but in this study, it was shown that the analysis is possible. (Kako, I.)

  5. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    Science.gov (United States)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  6. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  7. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    Science.gov (United States)

    Garrod, R. T.; Wakelam, V.; Herbst, E.

    2007-06-01

    Aims:The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely constrained by theoretical work. Results: Our results show that the chemistry of dark clouds is altered slightly at times up to 106 yr, mainly by the enhancement in the gas-phase abundances of hydrogen-rich species such as methanol that are formed on grain surfaces. At later times, however, there is a rather strong change. Instead of the continuing accretion of most gas-phase species onto dust particles, a steady-state is reached for both gas-phase and grain-surface species, with significant abundances for the former. Nevertheless, most of the carbon is contained in an undetermined assortment of heavy surface hydrocarbons. Conclusions: The desorption mechanism discussed here will be better constrained by observational data on pre-stellar cores, where a significant accretion of species such as CO has already occurred.

  8. Effect of high surface area activated carbon on thermal degradation of jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gergova, K.; Eser, S.; Arumugam, R.; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. We also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.

  9. Application of the thermal plasma technique in the treatment of stone surfaces

    International Nuclear Information System (INIS)

    Gonzalez A, Z.I.

    2000-01-01

    The stone materials which form part of the cultural heritage of Mexico, are degraded under the united action of water, atmospheric gases, air pollution, temperature changes and the microorganisms action; provoking on the stone: fissures, crevices, scalings, fragmentations, pulverizations, etc. Therefore, the purpose of this work is to study the possibilities to apply a protective coating on the stone surfaces, previously clean and consolidated, through the thermal plasma technique. The purpose is to analyse the physical and chemical properties of three types of stone materials: quarry, tezontle and chiluca, usually used in constructions of cultural interest such as: historical monuments, churches, sculptures, etc., before and after to be submitted to the action of thermal plasma in order to examine the feasibility in the use of this coating technique in this type of applications. The application of conventional techniques to determine: porosity, density, absorption, low pressure water absorption and crystallization by total immersion of nuclear techniques such as: neutron activation analysis, x-ray diffraction and scanning electron microscopy as well as of instrumental techniques: optical microscopy, mechanical assays of compression, flexure and surface area calculations, allowed to know the chemical and physical properties of the stone material before and after to be treated through the thermal plasma technique, projecting quartz on the stones surface at different distances and current intensity and showing the effect caused by the modifications or surface alterations present by cause of the application of that coating. the obtained results provide a general panorama of the application of this technique as an alternative to the maintenance of the architectural inheritance built in stone. (Author)

  10. Functionalization of polymer surfaces by medium frequency non-thermal plasma

    Science.gov (United States)

    Felix, T.; Trigueiro, J. S.; Bundaleski, N.; Teodoro, O. M. N. D.; Sério, S.; Debacher, N. A.

    2018-01-01

    This work addresses the surface modification of different polymers by argon dielectric barrier discharge, using bromoform vapours. Atomic Force Microscopy and Scanning Electron Microscopy showed that plasma etching occurs in stages and may be related to the reach of the species generated and obviously the gap between the electrodes. In addition, the stages of flatten surface or homogeneity may be the result of the transient crosslinking promoted by the intense UV radiation generated by the non- thermal plasma. X-ray Photoelectron Spectroscopy analysis showed that bromine was inserted on the polymer surface as Csbnd Br bonds and as adsorbed HBr. The obtained results demonstrate that the highest degree of bromofunctionalization was achieved on polypropylene surface, which contains about 8,5% of Br. After its derivatization in ammonia, Br disappeared and about 6% of nitrogen in the form of amine group was incorporated at the surface. This result can be considered as a clear fingerprint of the Br substitution by the amine group, thus illustrating the efficiency of the proposed method for functionalization of polymer surfaces.

  11. Model of thermal fatigue of a copper surface under the action of high-power microwaves

    Science.gov (United States)

    Kuzikov, S. V.; Plotkin, M. E.

    2007-10-01

    The accelerating structures of modern supercolliders, as well as the components of high-power microwave electron devices operated in strong cyclic electromagnetic fields should have long lifetimes. Along with the electric breakdown, the surfaces of these microwave components deteriorate and their lifetimes decrease due to thermal strains and subsequent mechanical loads on the surface metal layer. The elementary theory of thermal fatigue was developed in the 1970s. In particular, a model of metal as a continuous medium was considered. Within the framework of this model, thermal fatigue is caused by the strains arising between the hot surface layer and the cold internal layer of the metal. However, this theory does not describe all the currently available experimental data. In particular, the notion of “safe temperature” of the heating, i.e., temperature at which the surface is not destroyed during an arbitrarily long series of pulses, which was proposed in the theoretical model, is in poor agreement with the experiment performed in the Stanford Linear Accelerator Center (SLAC, USA). In this work, the thermal-fatigue theory is developed on the basis of consideration of the copper polycrystalline structure. The necessity to take it into account was demonstrated by the results of the SLAC experiment, in which a change in the mutual orientation of copper grains and the formation of cracks at their boundaries was recorded for the first time. The developed theory makes it possible to use the experimental data to refine the coefficients in the obtained formulas for the lifetime of the metal surface and to predict the number of microwave pulses before its destruction as a function of the radiation power, the surface-temperature increase at the pulse peak, and the pulse duration.

  12. All Organic Polymers Based Morphing Skin with Controllable Surface Texture

    KAUST Repository

    Favero Bolson, Natanael

    2018-05-01

    Smart skins are integrating an increasing number of functionalities in order to improve the interaction between the systems they equip and their ambient environment. Here we have developed an electromechanical soft actuator with controlled surface texture due to applied thermal gradient via electrical voltage. The device was fabricated and integrated with optimized process parameters for a prepared heater element [doped PEDOT: PSS (poly-(3, 4 ethylenedioxythiophene): poly (styrene sulfonic acid))], a soft actuator (Ecoflex 00-50/ethanol) and overall packaging case [PDMS (polydimethylsiloxane)]. To study a potential application of the proposed smart skin, we analyze the fluid drag reduction in a texture controlled water flow unit. As a result, we obtained a reduction of approximately 14% in the skin drag friction coefficient during the actuation. We conclude that the proposed soft actuator device is a preferred option for a texture-controlled skin that reduces the skin drag friction coefficient.

  13. Thermal inertia of eclipsing binary asteroids : the role of component shape

    NARCIS (Netherlands)

    Mueller, Michael; van de Weijgaert, Marlies

    2015-01-01

    Thermal inertia controls the temperature distribution on asteroid surfaces. This is of crucial importance to the Yarkovsky effect and for the planning of spacecraft operations on or near the surface. Additionally, thermal inertia is a sensitive indicator for regolith structure.A uniquely direct way

  14. CubeSat Form Factor Thermal Control Louvers

    Data.gov (United States)

    National Aeronautics and Space Administration — As small spacecraft become a part of NASA’s repertoire of missions, one reoccurring theme is an increased need for thermal control as power budgets increase and...

  15. Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment

    International Nuclear Information System (INIS)

    Wu, Wan-fan; Liu, Na; Cheng, Wen-long; Liu, Yi

    2013-01-01

    Highlights: ► A shape-stabilized PCM is used to protect the spacecraft attacked by high energy. ► Taking a satellite as example, it proves the solution given in the work is feasible. ► Low thermal conductivity makes the material above its thermal stability limit. ► It provides guidance on how to choose the shape-stabilized PCM for similar problems. - Abstract: In space, the emergencies such as short-term high heat flux is prone to cause spacecraft thermal control system faults, resulting in temperature anomalies of electronic equipment of the spacecraft and even failures in them. In order to protect the spacecraft attacked by the high energy, a new guard method is proposed. A shape-stabilized phase change material (PCM), which has high thermal conductivity and does not require being tightly packaged, is proposed to be used on the spacecraft. To prove the feasibility of using the material on spacecraft attacked by high energy, the thermal responses for spacecraft with shape-stabilized PCM are investigated in situations of normal and short-term high heat flux, in contrast to that with conventional thermal control system. The results indicate that the shape-stabilized PCM can effectively absorb the heat to prevent the thermal control system faults when the spacecraft’s outer heat flux changes dramatically and has no negative effect on spacecraft in normal heat flux. Additionally the effect of thermal conductivity of PCM on its application effectiveness is discussed

  16. Integrated thermal control and system assessment in plug-chip spray cooling enclosure

    International Nuclear Information System (INIS)

    Zhang, Wei-Wei; Cheng, Wen-Long; Shao, Shi-Dong; Jiang, Li-Jia; Hong, Da-Liang

    2016-01-01

    Highlights: • A novel multi-heat source plug-chip spray cooling enclosure was designed. • Enhanced surfaces with different geometric were analyzed in integrated enclosure. • Overall thermal control with adjustable parameters in enclosure was studied. • Temperature disequilibrium of multi-heat source in enclosure was tested. • A comprehensive assessment system used to evaluate the practicality was proposed. - Abstract: Practical and integrated spray cooling system is urgently needed for the cooling of high-performance electronic chips due to the growth requirements of thermal management in workstation. The integration of multi heat sources and the management of integral system are particularly lacking. In order to fill the vacancies in the study of plug-chip spray cooling, an integrated cooling enclosure was designed in this paper. Multi heat sources were placed in sealed space and the heat was removed by spray. The printed circuit board plug-ins and radio frequency resistors were used as analog motherboards and chips, respectively. The enhanced surfaces with four different geometries and the plain surface were studied under the conditions of different inclination angles. The results were compared and the maximum critical heat flux (CHF) was obtained. Moreover, with the intention of the overall management of multi-heat source in integrated enclosure, the effect of the flow rate and the temperature disequilibrium, and the pulse heating in the process of transient cooling were also analyzed. In addition, a comprehensive assessment system, used to evaluate the practicality of spray cooling experimental devices, was proposed and the performance of enclosure was evaluated.

  17. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2004-01-01

    .... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...

  18. Evaluation of Haney-Type Surface Thermal Boundary Conditions Using a Coupled Atmosphere and Ocean Model

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    2001-01-01

    ... (Russell et al,, 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference DeltaT by a relaxation coefficient K...

  19. Mapping Thermal Habitat of Ectotherms Based on Behavioral Thermoregulation in a Controlled Thermal Environment

    Science.gov (United States)

    Fei, T.; Skidmore, A.; Liu, Y.

    2012-07-01

    Thermal environment is especially important to ectotherm because a lot of physiological functions rely on the body temperature such as thermoregulation. The so-called behavioural thermoregulation function made use of the heterogeneity of the thermal properties within an individual's habitat to sustain the animal's physiological processes. This function links the spatial utilization and distribution of individual ectotherm with the thermal properties of habitat (thermal habitat). In this study we modelled the relationship between the two by a spatial explicit model that simulates the movements of a lizard in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton algorithm as a way to link the physiology knowledge of the animal with the spatial utilization of its microhabitat. On a larger spatial scale, 'thermal roughness' of the habitat was defined and used to predict the habitat occupancy of the target species. The results showed the habitat occupancy can be modelled by the cellular automaton based algorithm at a smaller scale, and can be modelled by the thermal roughness index at a larger scale.

  20. Thermal fatigue of austenitic stainless steel: influence of surface conditions through a multi-scale approach

    International Nuclear Information System (INIS)

    Le-Pecheur, Anne

    2008-01-01

    Some cases of cracking of 304L austenitic stainless steel components due to thermal fatigue were encountered in particular on the Residual Heat Removal Circuits (RHR) of the Pressurized Water Reactor (PWR). EDF has initiated a R and D program to understand assess the risks of damage on nuclear plant mixing zones. The INTHERPOL test developed at EDF is designed in order to perform pure thermal fatigue test on tubular specimen under mono-frequency thermal load. These tests are carried out under various loadings, surface finish qualities and welding in order to give an account of these parameters on crack initiation. The main topic of this study is the research of a fatigue criterion using a micro:macro modelling approach. The first part of work deals with material characterization (stainless steel 304L) emphasising the specificities of the surface roughness link with a strong hardening gradient. The first results of the characterization on the surface show a strong work-hardening gradient on a 250 microns layer. This gradient does not evolved after thermal cycling. Micro hardness measurements and TEM observations were intensively used to characterize this gradient. The second part is the macroscopic modelling of INTHERPOL tests in order to determine the components of the stress and strain tensors due to thermal cycling. The third part of work is thus to evaluate the effect of surface roughness and hardening gradient using a calculation on a finer scale. This simulation is based on the variation of dislocation density. A goal for the future is the determination of the fatigue criterion mainly based on polycrystalline modelling. Stocked energy or critical plane being available that allows making a sound choice for the criteria. (author)

  1. Clinical effect of vitamin A palmitate eye gel on early ocular surface reconstruction after thermal or chemical injuries

    Directory of Open Access Journals (Sweden)

    Fen-Dui Zhang

    2015-11-01

    Full Text Available AIM: To evaluate the clinical effect of vitamin A palmitate eye gel on early ocular surface reconstruction after thermal or chemical injuries. METHODS: Seventy-eight cases with thermal or chemical injuries to eyes were selected and divided into two groups by randomized, double-blind, positive drug parallel controlled method: group A(40 cases were treated with vitamin A palmitate eye geland group B \\〖38 cases were treated with basic fibroblast growth factor(bFGF\\〗. The bFGF and vitamin A palmitate eye gel were used 4 times a day. The treatment course was 14d. Restoration of epithelial defect, Schirmer's test values, tear break-up time(BUT, and subjective assessment of symptoms and signs were observed on D1, D3, D5, D7, D10 and D14.RESULTS: In group A, 31 cases were cured, 5 cases were effective, with the cure rate of 76% and efficiency 90%. In group B, 32 cases were cured, 3 cases were effective, with the cure rate of 84% and efficiency 92%. There were no significant differences between the two groups(P>0.05. However, there were significant differences on the results of Schirmer's test and BUT(PPCONCLUSION: Vitamin A palmitate eye gel is valuable and safe on early ocular surface reconstruction of the eyes suffered from thermal or chemical injuries.

  2. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    Directory of Open Access Journals (Sweden)

    Vineet Shibe

    2016-01-01

    Full Text Available Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.

  3. Advances in thermal control and performance of the MMT M1 mirror

    Science.gov (United States)

    Gibson, J. D.; Williams, G. G.; Callahan, S.; Comisso, B.; Ortiz, R.; Williams, J. T.

    2010-07-01

    Strategies for thermal control of the 6.5-meter diameter borosilicate honeycomb primary (M1) mirror at the MMT Observatory have included: 1) direct control of ventilation system chiller setpoints by the telescope operator, 2) semiautomated control of chiller setpoints, using a fixed offset from the ambient temperature, and 3) most recently, an automated temperature controller for conditioned air. Details of this automated controller, including the integration of multiple chillers, heat exchangers, and temperature/dew point sensors, are presented here. Constraints and sanity checks for thermal control are also discussed, including: 1) mirror and hardware safety, 2) aluminum coating preservation, and 3) optimization of M1 thermal conditions for science acquisition by minimizing both air-to-glass temperature differences, which cause mirror seeing, and internal glass temperature gradients, which cause wavefront errors. Consideration is given to special operating conditions, such as high dew and frost points. Precise temperature control of conditioned ventilation air as delivered to the M1 mirror cell is also discussed. The performance of the new automated controller is assessed and compared to previous control strategies. Finally, suggestions are made for further refinement of the M1 mirror thermal control system and related algorithms.

  4. Data on the interaction between thermal comfort and building control research.

    Science.gov (United States)

    Park, June Young; Nagy, Zoltan

    2018-04-01

    This dataset contains bibliography information regarding thermal comfort and building control research. In addition, the instruction of a data-driven literature survey method guides readers to reproduce their own literature survey on related bibliography datasets. Based on specific search terms, all relevant bibliographic datasets are downloaded. We explain the keyword co-occurrences of historical developments and recent trends, and the citation network which represents the interaction between thermal comfort and building control research. Results and discussions are described in the research article entitled "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review" (Park and Nagy, 2018).

  5. Sensitivity of control times in function of core parameters and oscillations control in thermal nuclear systems

    International Nuclear Information System (INIS)

    Amorim, E.S. do; D'Oliveira, A.B.; Galvao, O.B.; Oyama, K.

    1981-03-01

    Sensitivity of control times to variation of a thermal reactor core parameters is defined by suitable changes in the power coefficient, core size and fuel enrichment. A control strategy is developed based on control theory concepts and on considerations of the physics of the problem. Digital diffusion theory simulation is described which tends to verify the control concepts considered, face dumped oscillations introduced in one thermal nuclear power system. The effectivity of the control actions, in terms of eliminating oscillations, provided guidelines for the working-group engaged in the analysis of the control rods and its optimal performance. (Author) [pt

  6. Experimental and economic study of a greenhouse thermal control system using aquifer water

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 008, Punjab (India)]. E-mail: vpsethi68@yahoo.co.in; Sharma, S.K. [Energy Research Centre, Punjab University, Chandigarh 160 017, Punjab (India)

    2007-01-15

    Underground aquifer water is used for thermal control (heating as well as cooling) of a greenhouse in which chilli and capsicum are grown. Year round performance of the designed system is experimentally evaluated and presented. The designed system utilizes the constant temperature aquifer water available on the ground surface at around 24 deg. C (year round) in the agricultural field through deep tubewell used for irrigation purposes for heating a greenhouse in winter nights and cooling in summer days. Experimental performance of the designed system is tested during a full winter as well as for summer conditions. To enhance the efficiency of the system and to improve relative humidity during extreme summer conditions, a simple evaporative cooling process is also added within the same designed system. The experimental results show that the average greenhouse room air temperature is maintained 7-9 deg. C above ambient during winter nights and 6-7 deg. C below ambient in summer days besides decreasing the daily temperature fluctuations inside the greenhouse. Improvement in the average relative humidity during extreme summer conditions is also observed. Technoeconomic analysis of the greenhouse integrated to the designed aquifer coupled cavity flow heat exchanger system (ACCFHES) is also conducted based on the yield of capsicum and chilli crops and compared with those of the greenhouse without any thermal control system and the open field condition yields. An economic comparison of the ACCFHES has also been made with other existing thermal control technologies such as the earth air heat exchanger system, ground air collector, evaporative cooling using foggers and a fan and pad system.

  7. Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2015-01-01

    Most greenwall studies focus on cooling and energy conservation in the warm season, and tropical cold-season has received little attention. This field-experimental study in humid-subtropical Hong Kong evaluated winter thermal behavior of climber greenwalls. Orientation and weather factors regulated solar-irradiation regimes with critical impact on vegetation thermal responses. Temperature differentiation occurred mainly on sunny day, with subdued variations on cloudy and rainy days. The south greenwall on sunny day received the highest solar-energy input, bringing divergent surface temperature in three climber species. The daytime descending cooling sequence was: Control-air > Pyrostegia venusta > Bauhinia corymbosa > Ficus pumila > Control-surface. Heat-sink effect related to foliage-thickness and moisture-content influenced climber thermal responses. Exceeding a solar-irradiance threshold of 500 Wm"−"2 was a prerequisite for notable solar-warming and transpiration-cooling, bringing well-differentiated climber-surface temperature. Cooling of vegetation-surface and Anterior-ambient-air was contrasted by warming behind the greenwall. Posterior-airgap with trapped stagnant air and Posterior-concrete-surface were warmed consistently above control concrete-surface on sunny and cloudy days. This winter passive warming mechanism denotes a new dimension in thermal benefits operating behind the greenwall. The thermal-gradient can transmit heat into indoor space, with benefits on human comfort, health and energy conservation. - Highlights: • Cold-season thermal regimes and benefits of climber greenwalls in tropics was studied. • Greenwall plots were installed as a field-experiment to evaluated six related factors. • Descending cooling sequence: Pyrostegia venusta > Bauhinia corymbosa > Ficus pumila. • Solar radiation intensity and foliage heat-sink effect determined climber cooling. • Posterior airgap and Posterior concrete-surface were warmed to provide indoor

  8. Thermal Diffusion Processes in Metal-Tip-Surface Interactions: Contact Formation and Adatom Mobility

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Jonsson, Hannes

    1996-01-01

    and the surface can occur by a sequence of atomic hop and exchange processes which become active on a millisecond time scale when the tip is about 3-5 Angstrom from the surface. Adatoms on the surface are stabilized by the presence of the tip and energy barriers for diffusion processes in the region under the tip......We have carried out computer simulations to identify and characterize various thermally activated atomic scale processes that can play an important role in room temperature experiments where a metal tip is brought close to a metal surface. We find that contact formation between the tip...

  9. Ion beam surface treatment: A new capability for rapid melt and resolidification of surfaces

    International Nuclear Information System (INIS)

    Stinnett, R.W.; McIntyre, D.C.; Buchheit, R.G.; Greenly, J.B.; Thompson, M.O.

    1994-01-01

    The emerging capability to produce high average power (5--250 kW) pulsed ion beams at 0.2--2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This technique uses high energy, pulsed (≤100 ns) ion beams to directly deposit energy in the top 2--20 micrometers of the surface of any material. Depth of treatment is controllable by varying the ion energy and species. Deposition of the energy with short pulses in a thin surface layer allows melting of the layer with relatively small energies and allows rapid cooling of the melted layer by thermal diffusion into the underlying substrate. Typical cooling rates of this process (10 9 10 10 K/sec) cause rapid resolidification, resulting in production of non-equilibrium microstructures (nano-crystalline and metastable phases) that have significantly improved corrosion, wear, and hardness properties. We have conducted IBEST feasibility experiments with results confirming surface hardening, nanocrystaline grain formation, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning

  10. Tenskinmetric Evaluation of Surface Energy Changes in Adult Skin: Evidence from 834 Normal Subjects Monitored in Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Camilla Dal Bosco

    2014-03-01

    Full Text Available To evaluate the influence of the skin aging critical level on the adult skin epidermal functional state, an improved analytical method based on the skin surface energetic measurement (TVS modeling was developed. Tenskinmetric measurements were carried out non-invasively in controlled conditions by contact angle method using only a water-drop as reference standard liquid. Adult skin was monitored by TVS Observatory according to a specific and controlled thermal protocol (Camianta protocol in use at the interconnected “Mamma Margherita Terme spa” of Terme Euganee. From June to November 2013, the surface free energy and the epidermal hydration level of adult skin were evaluated on arrival of 265 male and 569 female adult volunteers (51–90 years of age and when they departed 2 weeks later. Sensitive measurements were carried out at 0.1 mN/m. High test compliance was obtained (93.2% of all guests. Very interesting results are obtained. The high sensitivity and discrimination power of tenskinmetry combined with a thermal Camianta protocol demonstrate the possibility to evaluate at baseline level the surface energetic changes and the skin reactivity which occurs on adult skin.

  11. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. I., E-mail: gor@tornado.nsk.ru [JSC “Tornado Modular Systems” (Russian Federation); Serdyukov, O. V. [Siberian Branch of the Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation)

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  12. Site-specific Pt deposition and etching on electrically and thermally isolated SiO2 micro-disk surfaces

    International Nuclear Information System (INIS)

    Saraf, Laxmikant V

    2010-01-01

    Electrically and thermally isolated surfaces are crucial for improving the detection sensitivity of microelectronic sensors. The site-specific in situ growth of Pt nano-rods on thermally and electrically isolated SiO 2 micro-disks using wet chemical etching and a focused ion/electron dual beam (FIB-SEM) is demonstrated. Fabrication of an array of micro-cavities on top of a micro-disk is also demonstrated. The FIB source is utilized to fabricate through-holes in the micro-disks. Due to the amorphous nature of SiO 2 micro-disks, the Ga implantation possibly modifies through-hole sidewall surface chemistry rather than affecting its transport properties. Some sensor design concepts based on micro-fabrication of SiO 2 micro-disks utilizing thermally and electrically isolated surfaces are discussed from the viewpoint of applications in photonics and bio-sensing.

  13. Manipulation and control of a single molecular rotor on Au (111) surface

    International Nuclear Information System (INIS)

    Hai-Gang, Zhang; Jin-Hai, Mao; Qi, Liu; Nan, Jiang; Hai-Tao, Zhou; Hai-Ming, Guo; Dong-Xia, Shi; Hong-Jun, Gao

    2010-01-01

    Three different methods are used to manipulate and control phthalocyanine based single molecular rotors on Au (111) surface: (1) changing the molecular structure to alter the rotation potential; (2) using the tunnelling current of the scanning tunnelling microscope (STM) to change the thermal equilibrium of the molecular rotor; (3) artificial manipulation of the molecular rotor to switch the rotation on or off by an STM tip. Furthermore, a molecular 'gear wheel' is successfully achieved with two neighbouring molecules. (cross-disciplinary physics and related areas of science and technology)

  14. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene.

    Science.gov (United States)

    Choi, Jae-Kyung; Kwak, Jinsung; Park, Soon-Dong; Yun, Hyung Duk; Kim, Se-Yang; Jung, Minbok; Kim, Sung Youb; Park, Kibog; Kang, Seoktae; Kim, Sung-Dae; Park, Dong-Yeon; Lee, Dong-Su; Hong, Suk-Kyoung; Shin, Hyung-Joon; Kwon, Soon-Yong

    2015-01-27

    Growth of large-scale patterned, wrinkle-free graphene and the gentle transfer technique without further damage are most important requirements for the practical use of graphene. Here we report the growth of wrinkle-free, strictly uniform monolayer graphene films by chemical vapor deposition on a platinum (Pt) substrate with texture-controlled giant grains and the thermal-assisted transfer of large-scale patterned graphene onto arbitrary substrates. The designed Pt surfaces with limited numbers of grain boundaries and improved surface perfectness as well as small thermal expansion coefficient difference to graphene provide a venue for uniform growth of monolayer graphene with wrinkle-free characteristic. The thermal-assisted transfer technique allows the complete transfer of large-scale patterned graphene films onto arbitrary substrates without any ripples, tears, or folds. The transferred graphene shows high crystalline quality with an average carrier mobility of ∼ 5500 cm(2) V(-1) s(-1) at room temperature. Furthermore, this transfer technique shows a high tolerance to variations in types and morphologies of underlying substrates.

  15. Fuzzy logic-based advanced on–off control for thermal comfort in residential buildings

    International Nuclear Information System (INIS)

    Kang, Chang-Soon; Hyun, Chang-Ho; Park, Mignon

    2015-01-01

    Highlights: • Fuzzy logic-based advanced on–off control is proposed. • An anticipative control mechanism is implemented by using fuzzy theory. • Novel thermal analysis program including solar irradiation as a factor is developed. • The proposed controller solves over-heating and under-heating thermal problems. • Solar energy compensation method is applied to compensate for the solar energy. - Abstract: In this paper, an advanced on–off control method based on fuzzy logic is proposed for maintaining thermal comfort in residential buildings. Due to the time-lag of the control systems and the late building thermal response, an anticipative control mechanism is required to reduce energy loss and thermal discomfort. The proposed controller is implemented based on an on–off controller combined with a fuzzy algorithm. On–off control was chosen over other conventional control methods because of its structural simplicity. However, because conventional on–off control has a fixed operating range and a limited ability for improvements in control performance, fuzzy theory can be applied to overcome these limitations. Furthermore, a fuzzy-based solar energy compensation algorithm can be applied to the proposed controller to compensate for the energy gained from solar radiation according to the time of day. Simulations were conducted to compare the proposed controller with a conventional on–off controller under identical external conditions such as outdoor temperature and solar energy; these simulations were carried out by using a previously reported thermal analysis program that was modified to consider such external conditions. In addition, experiments were conducted in a residential building called Green Home Plus, in which hydronic radiant floor heating is used; in these experiments, the proposed system performed better than a system employing conventional on–off control methods

  16. 0-π phase-controllable thermal Josephson junction

    Science.gov (United States)

    Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco

    2017-05-01

    Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| heat currents can be inverted by adding a π shift to ϕ. In the static electrical case, this effect has been obtained in a few systems, for example via a ferromagnetic coupling or a non-equilibrium distribution in the weak link. These structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.

  17. Multifunctional Thermal Structures Using Cellular Contact-Aided Complaint Mechanisms

    Science.gov (United States)

    2016-10-31

    that it transfers heat away from (or insulates) the electronics modules in order to ensure that the electronics do not overheat (or become too cold...conventional active thermal control systems whenever possible. The basic aim of a passive thermal control system is to control heat transfer from...electronic devices to a radiating exterior surface. Heat may need to be retained when the devices generate little heat , and high heat transfer

  18. Multifunctional Thermal Structures Using Cellular Contract-Aided Complaint Mechanisms

    Science.gov (United States)

    2017-01-26

    that it transfers heat away from (or insulates) the electronics modules in order to ensure that the electronics do not overheat (or become too cold...conventional active thermal control systems whenever possible. The basic aim of a passive thermal control system is to control heat transfer from...electronic devices to a radiating exterior surface. Heat may need to be retained when the devices generate little heat , and high heat transfer

  19. Surface analytical investigations of the thermal behaviour of passivated Zircaloy-4 surfaces and of the reaction behaviour of iodine with Zircaloy-4 surfaces

    International Nuclear Information System (INIS)

    Kaufmann, R.

    1988-07-01

    In the first part of the present work the thermal behaviour of atmospherically oxidized Zircaloy-4 samples was investigated at various temperatures. In a next step the amount of iodine adsorbed at the metallic surface was determined as well at room temperature with varying iodine exposures as for constant exposure but varying temperatures. Furthermore, the zirconium iodide species resulting from the interaction of iodine with the Zircaloy-4 and desorbed at higher temperatures were identified by means of residual gas analysis. During these studies it was found that the oxidic overlayer of the passivated Zircaloy-4 samples is decomposed at temperatures above 200 0 C. The iodine uptake at metallic surfaces (cleaned by Ar-ion sputtering) at room temperature slows markedly down after formation of a closed zirconium-iodide overlayer and consequently the further reaction proceeds diffusion-controlled. At 200 0 C ZrI 4 is formed being the thermodynamically most stable Zr-iodide. During desorption experiments using iodine exposed Zircaloy-4 samples the release of ZrI 4 was proved. The results obtained from the various experiments are finally discussed with respect to the iodine-induced stress corrosion cracking process and the underlying basic mechanisms and a transport mechanism for the SCC in nuclear fuel rods is proposed. (orig./RB) [de

  20. Using geophysical techniques to control in situ thermal remediation

    International Nuclear Information System (INIS)

    Boyd, S.; Daily, W.; Ramirez, A.; Wilt, M.; Goldman, R.; Kayes, D.; Kenneally, K.; Udell, K.; Hunter, R.

    1994-01-01

    Monitoring the thermal and hydrologic processes that occur during thermal environmental remediation programs in near real-time provides essential information for controlling the process. Geophysical techniques played a crucial role in process control as well as for characterization during the recent Dynamic Underground Stripping Project demonstration in which several thousand gallons of gasoline were removed from heterogeneous soils both above and below the water table. Dynamic Underground Stripping combines steam injection and electrical heating for thermal enhancement with ground water pumping and vacuum extraction for contaminant removal. These processes produce rapid changes in the subsurface properties including changes in temperature fluid saturation, pressure and chemistry. Subsurface imaging methods are used to map the heated zones and control the thermal process. Temperature measurements made in wells throughout the field reveal details of the complex heating phenomena. Electrical resistance tomography (ERT) provides near real-time detailed images of the heated zones between boreholes both during electrical heating and steam injection. Borehole induction logs show close correlation with lithostratigraphy and, by identifying the more permeable gravel zones, can be used to predict steam movement. They are also useful in understanding the physical changes in the field and in interpreting the ERT images. Tiltmeters provide additional information regarding the shape of the steamed zones in plan view. They were used to track the growth of the steam front from individual injectors

  1. 3D thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  2. Application of Terrestrial Laser Scanner with an Integrated Thermal Camera in Non-Destructive Evaluation of Concrete Surface of Hydrotechnical Objects

    Science.gov (United States)

    Kaczmarek, Łukasz Dominik; Dobak, Paweł Józef; Kiełbasiński, Kamil

    2017-12-01

    The authors present possible applications of thermal data as an additional source of information on an object's behaviour during the technical assessment of the condition of a concrete surface. For the study one of the most recent propositions introduced by Zoller + Fröhlich company was used, which is an integration of a thermal camera with a terrestrial laser scanner. This solution enables an acquisition of geometric and spectral data on the surveyed object and also provides information on the surface's temperature in the selected points. A section of the dam's downstream concrete wall was selected as the subject of the study for which a number of scans were carried out and a number of thermal images were taken at different times of the day. The obtained thermal data was confronted with the acquired spectral information for the specified points. This made it possible to carry out broader analysis of the surface and an inspection of the revealed fissure. The thermal analysis of said fissure indicated that the temperature changes within it are slower, which may affect the way the concrete works and may require further elaboration by the appropriate experts. Through the integration of a thermal camera with a terrestrial laser scanner one can not only analyse changes of temperature in the discretely selected points but on the whole surface as well. Moreover, it is also possible to accurately determine the range and the area of the change affecting the surface. The authors note the limitations of the presented solution like, inter alia, the resolution of the thermal camera.

  3. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Arun Kumar Gupta

    2012-01-01

    Full Text Available The effect of surface treated sisal fiber on the mechanical, thermal, flammability, and morphological properties of sisal fiber (SF reinforced recycled polypropylene (RPP composites was investigated. The surface of sisal fiber was modified with different chemical reagent such as silane, glycidyl methacrylate (GMA, and O-hydroxybenzene diazonium chloride (OBDC to improve the compatibility with the matrix polymer. The experimental results revealed an improvement in the tensile strength to 11%, 20%, and 31.36% and impact strength to 78.72%, 77%, and 81% for silane, GMA, and OBDC treated sisal fiber reinforced recycled Polypropylene (RPP/SF composites, respectively, as compared to RPP. The thermogravimetric analysis (TGA, differential scanning calorimeter (DSC, and heat deflection temperature (HDT results revealed improved thermal stability as compared with RPP. The flammability behaviour of silane, GMA, and OBDC treated SF/RPP composites was studied by the horizontal burning rate by UL-94. The morphological analysis through scanning electron micrograph (SEM supports improves surface interaction between fiber surface and polymer matrix.

  4. Optimal control theory applied to fusion plasma thermal stabilization

    International Nuclear Information System (INIS)

    Sager, G.; Miley, G.; Maya, I.

    1985-01-01

    Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research

  5. Desiccant wheel thermal performance modeling for indoor humidity optimal control

    International Nuclear Information System (INIS)

    Wang, Nan; Zhang, Jiangfeng; Xia, Xiaohua

    2013-01-01

    Highlights: • An optimal humidity control model is formulated to control the indoor humidity. • MPC strategy is used to implement the optimal operation solution. • Practical applications of the MPC strategy is illustrated by the case study. - Abstract: Thermal comfort is an important concern in the energy efficiency improvement of commercial buildings. Thermal comfort research focuses mostly on temperature control, but humidity control is an important aspect to maintain indoor comfort too. In this paper, an optimal humidity control model (OHCM) is presented. Model predictive control (MPC) strategy is applied to implement the optimal operation of the desiccant wheel during working hours of a commercial building. The OHCM is revised to apply the MPC strategy. A case is studied to illustrate the practical applications of the MPC strategy

  6. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials.

    Science.gov (United States)

    Han, Tiancheng; Bai, Xue; Thong, John T L; Li, Baowen; Qiu, Cheng-Wei

    2014-03-19

    Thermal camouflage and cloaking can transform an actual heat signature into a pre-controlled one. A viable recipe for controlling and manipulating heat signatures using thermal metamaterials to empower cloaking and camouflage in heat conduction is demonstrated. The thermal signature of the object is thus metamorphosed and perceived as multiple targets with different geometries and compositions, with the original object cloaked. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High temperature glass thermal control structure and coating. [for application to spacecraft reusable heat shielding

    Science.gov (United States)

    Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)

    1983-01-01

    A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.

  8. Stage I surface crack formation in thermal fatigue: A predictive multi-scale approach

    International Nuclear Information System (INIS)

    Osterstock, S.; Robertson, C.; Sauzay, M.; Aubin, V.; Degallaix, S.

    2010-01-01

    A multi-scale numerical model is developed, predicting the formation of stage I cracks, in thermal fatigue loading conditions. The proposed approach comprises 2 distinct calculation steps. Firstly, the number of cycles to micro-crack initiation is determined, in individual grains. The adopted initiation model depends on local stress-strain conditions, relative to sub-grain plasticity, grain orientation and grain deformation incompatibilities. Secondly, 2-4 grains long surface cracks (stage I) is predicted, by accounting for micro-crack coalescence, in 3 dimensions. The method described in this paper is applied to a 500 grains aggregate, loaded in representative thermal fatigue conditions. Preliminary results provide quantitative insight regarding position, density, spacing and orientations of stage I surface cracks and subsequent formation of crack networks. The proposed method is fully deterministic, provided all grain crystallographic orientations and micro-crack linking thresholds are specified. (authors)

  9. Feedback control of thermal instability by compression and decompression

    International Nuclear Information System (INIS)

    Okamoto, M.; Hirano, K.; Amano, T.; Ohnishi, M.

    1983-01-01

    Active feedback control of the fusion output power by means of plasma compression-decompression is considered with the purpose of achieving steady-state plasma ignition in a tokamak. A simple but realistic feedback control system is modelled and zero-dimensional energy balance equations are solved numerically by taking into account the errors in the measurements, a procedure that is necessary for the feedback control. It is shown that the control can stabilize the thermal runaway completely and maintain steady-state operation without any significant change in major radius or thermal output power. Linear stability is analysed for a general type of scaling law, and the dependence of the stability conditions on the scaling law is studied. The possibility of load-following operation is considered. Finally, a one-dimensional analysis is applied to the large-aspect-ratio case. (author)

  10. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    Science.gov (United States)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  11. Thermal Characteristics of Pyranometers and Pyrgeometers in Atmosphere-Surface Energetic Measurements

    Science.gov (United States)

    Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Since the introduction of thermopile, pyranometers (solar, e.g., 0.3 - 3.0 microns) and pyrgeometers (terrestrial, e.g., 4 - 50 microns) have become instruments commonly used for measuring the broadband hemispherical irradiances at the surface in a long-term, monitoring mode for decades. These commercially available radiometers have been manufactured in several countries such as from the United States, Asia, and Europe, and are generally reliable and economical. These worldwide distributions of surface measurements become even more important in the era of Earth remote sensing in studying climate change. However, recent studies from field campaigns have pointed out that erroneous factors (e.g., temperature gradients between the filter dome and detector, emissivity of the thermopile) are responsible for the unacceptable level of uncertainty (e.g., 20 W/sq m). It is best to utilize an energy balance equation to describe the thermal dome effect of pyranometers and pyrgeometers. Therefore, quality of pyranometer and pyrgeometer measurements can be improved largely by applying proper knowledge of the thermal parameters affecting the operation of the thermopile systems. Data correction procedure and algorithm will be presented and discussed.

  12. Optical and thermal properties in ultrafast laser surface nanostructuring on biodegradable polymer

    Science.gov (United States)

    Yada, Shuhei; Terakawa, Mitsuhiro

    2015-03-01

    We investigate the effect of optical and thermal properties in laser-induced periodic surface structures (LIPSS) formation on a poly-L-lactic acid (PLLA), a biodegradable polymer. Surface properties of biomaterials are known to be one of the key factors in tissue engineering. Methods to process biomaterial surfaces have been studied widely to enhance cell adhesive and anisotropic properties. LIPSS formation has advantages in a dry processing which is able to process complex-shaped surfaces without using a toxic chemical component. LIPSS, however, was difficult to be formed on PLLA due to its thermal and optical properties compared to other polymers. To obtain new perspectives in effect of these properties above, LIPSS formation dependences on wavelength, pulse duration and repetition rate have been studied. At 800 nm of incident wavelength, high-spatial frequency LIPSS (HSFL) was formed after applying 10000 femtosecond pulses at 1.0 J/cm2 in laser fluence. At 400 nm of the wavelength, HSFL was formed at fluences higher than 0.20 J/cm2 with more than 3000 pulses. Since LIPSS was less formed with lower repetition rate, certain heat accumulation may be required for LIPSS formation. With the pulse duration of 2.0 ps, higher laser fluence as well as number of pulses compared to the case of 120 fs was necessary. This indicates that multiphoton absorption process is essential for LIPSS formation. Study on biodegradation modification was also performed.

  13. Control of Alq3 wetting layer thickness via substrate surface functionalization.

    Science.gov (United States)

    Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J

    2007-06-05

    The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.

  14. Control of thermal therapies with moving power deposition field

    International Nuclear Information System (INIS)

    Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B

    2006-01-01

    A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with

  15. EFFECTS OF PAVEMENT SURFACE TEMPERATURE ON THE MODIFICATION OF URBAN THERMAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    SARAT, Adebayo-Aminu

    2012-07-01

    Full Text Available Urban centres continue to experience escalating average summer temperature over the last fifty years. Temperature in the urban core cites have been rising due to rapid growth of urbanization in the latter half of the twentieth century (Akbari et al., 1989. Outdoor experiments were conducted to investigate the effects of different movement of materials on the urban thermal environment. Meteorological conditions such as air temperature, pavement surface temperature, Relative humidity and wind velocity were recorded to determine temperature differences among Asphalt/concrete, interlocking bricks and grass surfaces.

  16. Variable Emissive Smart Radiator for Dynamic Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Trending towards reduced power and mass budget on satellites with a longer mission life, there is a need for a reliable thermal control system that is more efficient...

  17. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    Science.gov (United States)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  18. Study of defects near molybdenum surface using thermal desorption spectrometer

    International Nuclear Information System (INIS)

    Naik, P.K.

    1980-01-01

    Thermal desorption spectrometry is utilized to study the migration of atoms and defects near molybdenum surface. The thermal desorption spectra of inert gas ions (neon, argon and krypton) injected with various energies (430-1950 eV) into a polycrystalline molybdenum target with various dosages (6.4 x 10sup(12) - 3.9 x 10sup(14) ions/cmsup(2)) are investigated. Four different states of binding of the trapped atoms corresponding to the activation energies for desorption have been revealed from the spectra. The activation energies are found to be relatively insensitive to the species of the bombarding ion, incident ion energy and the dosage. The patterns of the spectra are strongly influenced by the mean projected range of the ions into the solid. The activation energies deduced are in good agreement with those reported for the migration of atoms and defects in molybdenum. (auth.)

  19. Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lifang; Yuan, Li; Guan, Qingbao; Gu, Aijuan, E-mail: ajgu@suda.edu.cn; Liang, Guozheng, E-mail: lgzheng@suda.edu.cn

    2017-07-31

    Highlights: • A green technology is setup to build unique surface structure on aramid fiber (AF). • The method is layer-by-layer self-assembling SiO{sub 2} and layered double hydroxide. • The surface of AF is adjustable by controlling the self-assembly cycle number. • New AF has excellent surface activity, anti-UV, thermal and mechanical properties. • The origin behind attractive performances of new AFs was intensively studied. - Abstract: Combining green preparation and high performance is becoming the direction of sustainable development of materials. How to simultaneously overcome the two bottlenecks (poor surface activity and UV resistance) of aramid fibers (AFs) while improving thermal and mechanical properties through a green process is still an interesting issue with big challenge. Herein, new AFs (BL-AFs) were prepared by alternately self-assembling SiO{sub 2} and MgAlFe layered double hydroxide (LDH) on surfaces of AFs, successively, through a green layer-by-layer (LBL) self-assembly technique without using high temperature and organic solvent. The structures and properties of BL-AFs were systematically studied, which are controllable by adjusting the number of self-assembly cycle. The new fibers with three or more self-assembly cycles have remarkably improved surface activity, thermal resistance, mechanical properties and UV resistance compared with AFs. Typically, with three self-assembly cycles, the initial degradation temperature and char yield of the new fiber (3BL-AF) are as high as 552.9 °C and 81.2%, about 92 °C and 25.2% higher than those of AF, respectively; after 168 h-UV irradiation, the retention of tensile performances of 3BL-AF fiber is as high as 91–95%, about 29–14% higher than that of AF, showing the best overall performances among all modified AFs prepared using a green technique reported so far. The origin behind the attractive performances of BL-AFs is revealed through correlating with structures of original and

  20. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients

    Science.gov (United States)

    Cady, S. L.; Farmer, J. D.

    1996-01-01

    To enhance our ability to extract palaeobiological and palaeoenvironmental information from ancient thermal spring deposits, we have studied the processes responsible for the development and preservation of stromatolites in modern subaerial thermal spring systems in Yellowstone National Park (USA). We investigated specimens collected from silica-depositing thermal springs along the thermal gradient using petrographic techniques and scanning electron microscopy. Although it is known that thermophilic cyanobacteria control the morphogenesis of thermal spring stromatolites below 73 degrees C, we have found that biofilms which contain filamentous thermophiles contribute to the microstructural development of subaerial geyserites that occur along the inner rims of thermal spring pools and geyser effluents. Biofilms intermittently colonize the surfaces of subaerial geyserites and provide a favoured substrate for opaline silica precipitation. We have also found that the preservation of biotically produced microfabrics of thermal spring sinters reflects dynamic balances between rates of population growth, decomposition of organic matter, silica deposition and early diagenesis. Major trends in preservation of thermophilic organisms along the thermal gradient are defined by differences in the mode of fossilization, including replacement, encrustation and permineralization.

  1. Thermal effects of λ = 808 nm GaAlAs diode laser irradiation on different titanium surfaces.

    Science.gov (United States)

    Giannelli, Marco; Lasagni, Massimo; Bani, Daniele

    2015-12-01

    Diode lasers are widely used in dental laser treatment, but little is known about their thermal effects on different titanium implant surfaces. This is a key issue because already a 10 °C increase over the normal body temperature can induce bone injury and compromise osseo-integration. The present study aimed at evaluating the temperature changes and surface alterations experienced by different titanium surfaces upon irradiation with a λ = 808 nm diode laser with different settings and modalities. Titanium discs with surfaces mimicking different dental implant surfaces including TiUnite and anodized, machined surfaces were laser-irradiated in contact and non-contact mode, and with and without airflow cooling. Settings were 0.5-2.0 W for the continuous wave mode and 10-45 μJ, 20 kHz, 5-20 μs for the pulsed wave mode. The results show that the surface characteristics have a marked influence on temperature changes in response to irradiation. The TiUnite surface, corresponding to the osseous interface of dental implants, was the most susceptible to thermal rise, while the machined surfaces, corresponding to the implant collar, were less affected. In non-contact mode and upon continuous wave emission, the temperature rose above the 50 °C tissue damage threshold. Scanning electron microscopy investigation of surface alterations revealed that laser treatment in contact mode resulted in surface scratches even when no irradiation was performed. These findings indicate that the effects of diode laser irradiation on implant surfaces depend on physical features of the titanium coating and that in order to avoid thermal or physical damage to implant surface the irradiation treatment has to be carefully selected.

  2. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review

    International Nuclear Information System (INIS)

    Sun, Yongjun; Wang, Shengwei; Xiao, Fu; Gao, Diance

    2013-01-01

    Highlights: • Little study reviews the load shifting control using different facilities. • This study reviews load shifting control using building thermal mass. • This study reviews load shifting control using thermal energy storage systems. • This study reviews load shifting control using phase change material. • Efforts for developing more applicable load shifting control are addressed. - Abstract: For decades, load shifting control, one of most effective peak demand management methods, has attracted increasing attentions from both researchers and engineers. Different load shifting control strategies have been developed when diverse cold thermal energy storage facilities are used in commercial buildings. The facilities include building thermal mass (BTM), thermal energy storage system (TES) and phase change material (PCM). Little study has systematically reviewed these load shifting control strategies and therefore this study presents a comprehensive review of peak load shifting control strategies using these thermal energy storage facilities in commercial buildings. The research and applications of the load shifting control strategies are presented and discussed. The further efforts needed for developing more applicable load shifting control strategies using the facilities are also addressed

  3. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2018-05-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  4. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  5. PID temperature controller in pig nursery: spatial characterization of thermal environment.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-28

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  6. Influences of the wavy surface inserted in the middle of a circular tube heat exchanger on thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Jedsadaratanancai, Withada [King Mongkut' s Institute of Technology Ladkrabang, Bangkok (Thailand); Boonloi, Amnart [King Mongkut' s University of Technology North Bangkok, Bangkok (Thailand)

    2015-09-15

    Numerical investigations on flow topology, heat transfer behavior and performance evaluation in a circular tube inserted with various configurations of wavy surfaces, Inclined wavy surface (IWS), V-downstream wavy surface (VDWS), V-Upstream wavy surface (VUWS) are presented. The effects of the flow attack angles; 20 .deg., 30 .deg., 45.deg. and 60.deg. are studied for the Reynolds numbers, Re = 100-2000. The numerical results are compared with the smooth circular tube with no wavy surface and the previous works. It is found that the IWS, VDWS and VUWS can produce longitudinal vortex flow and impinging jet of the fluid flow like inclined baffle, V-downstream baffle and V-Upstream baffle, respectively, but give lower friction loss. The flow phenomena created by the wavy surfaces help to augment the heat transfer rate and thermal performance in the test tube. In the range studied, the order of enhancement for heat transfer rate is around 1.40-3.75, 1.60-6.25 and 1.30-5.80 times higher than the smooth tube for IWS, VDWS and VUWS, respectively. Moreover, the maximum thermal performance, presented in terms of the Thermal enhancement factor (TEF), is found to be about 1.60, 2.40 and 2.10, respectively, for IWS, VUWS and VDWS.

  7. Different Approaches to Control of TISO Thermal System

    Directory of Open Access Journals (Sweden)

    Jaroslava KRÁLOVÁ

    2009-06-01

    Full Text Available The contribution is aimed on problematic of multivariable control. Multivariable system can be controlled by multivariable controller or we can use decentralized control. Control of thermal system with two inputs and one output is shown in the paper. The goal of paper is to find what sort of results we can get by classical approaches and by more sophisticated strategies. Two discrete-time PID controllers are selected as a representative of classical approach and split-range with discrete-time PID controller is selected as a representative of more sophisticated strategy. Control strategies are compared in the view of control quality and costs, information and knowledge required by control design and application.

  8. Low-Cost Radiator for Fission Power Thermal Control

    Science.gov (United States)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  9. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  10. Evaluating local and overall thermal comfort in buildings using thermal manikins

    Energy Technology Data Exchange (ETDEWEB)

    Foda, E.

    2012-07-01

    Evaluation methods of human thermal comfort that are based on whole-body heat balance with its surroundings may not be adequate for evaluations in non-uniform thermal conditions. Under these conditions, the human body's segments may experience a wide range of room physical parameters and the evaluation of the local (segmental) thermal comfort becomes necessary. In this work, subjective measurements of skin temperature were carried out to investigate the human body's local responses due to a step change in the room temperature; and the variability in the body's local temperatures under different indoor conditions and exposures as well as the physiological steady state local temperatures. Then, a multi-segmental model of human thermoregulation was developed based on these findings to predict the local skin temperatures of individuals' body segments with a good accuracy. The model predictability of skin temperature was verified for steady state and dynamic conditions using measured data at uniform neutral, cold and warm as well as different asymmetric thermal conditions. The model showed very good predictability with average absolute deviation ranged from 0.3-0.8 K. The model was then implemented onto the control system of the thermal manikin 'THERMINATOR' to adjust the segmental skin temperature set-points based on the indoor conditions. This new control for the manikin was experimentally validated for the prediction of local and overall thermal comfort using the equivalent temperature measure. THERMINATOR with the new control mode was then employed in the evaluation of localized floor-heating system variants towards maximum energy efficiency. This aimed at illustrating a design strategy using the thermal manikin to find the optimum geometry and surface area of a floor-heater for a single seated person. Furthermore, a psychological comfort model that is based on local skin temperature was adapted for the use with the model of human

  11. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation

    Directory of Open Access Journals (Sweden)

    Neha Batra

    2015-06-01

    Full Text Available The effect of deposition temperature (Tdep and subsequent annealing time (tanl of atomic layer deposited aluminum oxide (Al2O3 films on silicon surface passivation (in terms of surface recombination velocity, SRV is investigated. The pristine samples (as-deposited show presence of positive fixed charges, QF. The interface defect density (Dit decreases with increase in Tdep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s is realized for Tdep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min.

  12. Modeling and analysis of a robust thermal control system based on forced convection thermal switches

    Science.gov (United States)

    Williams, Andrew D.; Palo, Scott E.

    2006-05-01

    There is a critical need, not just in the Department of Defense (DOD) but the entire space industry, to reduce the development time and overall cost of satellite missions. To that end, the DOD is actively pursuing the capability to reduce the deployment time of a new system from years to weeks or even days. The goal is to provide the advantages space affords not just to the strategic planner but also to the battlefield commanders. One of the most challenging aspects of this problem is the satellite's thermal control system (TCS). Traditionally the TCS must be vigorously designed, analyzed, tested, and optimized from the ground up for every satellite mission. This "reinvention of the wheel" is costly and time intensive. The next generation satellite TCS must be modular and scalable in order to cover a wide range of applications, orbits, and mission requirements. To meet these requirements a robust thermal control system utilizing forced convection thermal switches was investigated. The problem was investigated in two separate stages. The first focused on the overall design of the bus. The second stage focused on the overarching bus architecture and the design impacts of employing a thermal switch based TCS design. For the hot case, the fan provided additional cooling to increase the heat transfer rate of the subsystem. During the cold case, the result was a significant reduction in survival heater power.

  13. MHD natural convection from a heated vertical wavy surface with variable viscosity and thermal conductivity

    International Nuclear Information System (INIS)

    Choudhury, M.; Hazarika, G.C.; Sibanda, P.

    2013-01-01

    We investigate the effects of temperature dependent viscosity and thermal conductivity on natural convection flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface. The flow is permeated by uniform transverse magnetic field. The fluid viscosity and thermal conductivity are assumed to vary as inverse linear functions of temperature. The coupled non-linear systems of partial differential equations are solved using the finite difference method. The effects of variable viscosity parameter, variable thermal conductivity parameter and magnetic parameter on the flow field and the heat transfer characteristics are discussed and shown graphically. (author)

  14. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  15. Reduction of thermal conductivity in phononic nanomesh structures.

    Science.gov (United States)

    Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas; Varghese, Joseph; Heath, James R

    2010-10-01

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.

  16. Thermally induced growth of ZnO nanocrystals on mixed metal oxide surfaces.

    Science.gov (United States)

    Inayat, Alexandra; Makky, Ayman; Giraldo, Jose; Kuhnt, Andreas; Busse, Corinna; Schwieger, Wilhelm

    2014-06-23

    An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG-MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X-ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Molecular-beam epitaxial growth of insulating AlN on surface-controlled 6H-SiC substrate by HCl gas etching

    International Nuclear Information System (INIS)

    Onojima, Norio; Suda, Jun; Matsunami, Hiroyuki

    2002-01-01

    Insulating AlN layers were grown on surface-controlled 6H-SiC subtrates by molecular-beam epitaxy (MBE) using elemental Al and rf plasma-excited nitrogen (N*). HCl gas etching was introduced as an effective pretreatment method of substrate for MBE growth of AlN. 6H-SiC substrates pretreated by HCl gas etching had no surface polishing scratches and an atomically flat surface. In addition, evident ( 3 √x 3 √)R30 deg. surface reconstruction was observed even before thermal cleaning. AlN layers grown on this substrate had no defects related to surface polishing scratches and excellent insulating characteristics

  18. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  19. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain

    2016-04-15

    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Nuclear thermal rocket engine operation and control

    International Nuclear Information System (INIS)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs

  1. Effect of low thermal budget annealing on surface passivation of silicon by ALD based aluminum oxide films.

    Science.gov (United States)

    Vandana; Batra, Neha; Gope, Jhuma; Singh, Rajbir; Panigrahi, Jagannath; Tyagi, Sanjay; Pathi, P; Srivastava, S K; Rauthan, C M S; Singh, P K

    2014-10-21

    Thermal ALD deposited Al2O3 films on silicon show a marked difference in surface passivation quality as a function of annealing time (using a rapid thermal process). An effective and quality passivation is realized in short anneal duration (∼100 s) in nitrogen ambient which is reflected in the low surface recombination velocity (SRV passivation. Both as-deposited and low thermal budget annealed films show the presence of positive fixed charges and this is never been reported in the literature before. The role of field and chemical passivation is investigated in terms of fixed charge and interface defect densities. Further, the importance of the annealing step sequence in the MIS structure fabrication protocol is also investigated from the view point of its effect on the nature of fixed charges.

  2. Preparing Al-Mg Substrate for Thermal Spraying: Evaluation of Surface State After Different Pretreatments

    Science.gov (United States)

    Lukauskaitė, R.; Valiulis, A. V.; Černašėjus, O.; Škamat, J.; Rębiś, J. A.

    2016-08-01

    The article deals with the pretreatment technique for preparing the surface of aluminum alloy EN AW 5754 before thermal spray. The surface after different pretreatments, including degreasing with acetone, chemical etching with acidic and alkali solutions, grit-blasting, cathodic cleaning, and some combinations of these techniques, has been studied. The investigation of pre-treated surfaces covered the topographical study (using scanning electron microscopy, atomic force microscopy, and 3D profilometry), the chemical analysis by x-ray photoelectron spectroscopy, the evaluation of surface wettability (sessile drop method), and the assessment of surface free energy. Compared with all the techniques used in present work, the cathodic cleaning and its combination with grit-blasting provide the most preferable chemistry of the surface. Due to the absence of hydroxides at the surface and, possible, due to the diffusion of magnesium to the surface of substrate, the surface wettability and the surface free energy have been significantly improved. No direct correlation between the surface topography and the surface wettability has been established.

  3. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2008-01-01

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x m , where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation

  4. Thermal diffusivity effect in opto-thermal skin measurements

    International Nuclear Information System (INIS)

    Xiao, P; Imhof, R E; Cui, Y; Ciortea, L I; Berg, E P

    2010-01-01

    We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.

  5. Point, surface and volumetric heat sources in the thermal modelling of selective laser melting

    Science.gov (United States)

    Yang, Yabin; Ayas, Can

    2017-10-01

    Selective laser melting (SLM) is a powder based additive manufacturing technique suitable for producing high precision metal parts. However, distortions and residual stresses within products arise during SLM because of the high temperature gradients created by the laser heating. Residual stresses limit the load resistance of the product and may even lead to fracture during the built process. It is therefore of paramount importance to predict the level of part distortion and residual stress as a function of SLM process parameters which requires a reliable thermal modelling of the SLM process. Consequently, a key question arises which is how to describe the laser source appropriately. Reasonable simplification of the laser representation is crucial for the computational efficiency of the thermal model of the SLM process. In this paper, first a semi-analytical thermal modelling approach is described. Subsequently, the laser heating is modelled using point, surface and volumetric sources, in order to compare the influence of different laser source geometries on the thermal history prediction of the thermal model. The present work provides guidelines on appropriate representation of the laser source in the thermal modelling of the SLM process.

  6. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna

    2013-01-01

    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  7. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Science.gov (United States)

    Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang

    2017-11-01

    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  8. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Directory of Open Access Journals (Sweden)

    Jin Tea-Hwan

    2017-01-01

    Full Text Available A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  9. Application of Terrestrial Laser Scanner with an Integrated Thermal Camera in Non-Destructive Evaluation of Concrete Surface of Hydrotechnical Objects

    Directory of Open Access Journals (Sweden)

    Kowalska Maria

    2017-12-01

    Full Text Available The authors present possible applications of thermal data as an additional source of information on an object’s behaviour during the technical assessment of the condition of a concrete surface. For the study one of the most recent propositions introduced by Zoller + Fröhlich company was used, which is an integration of a thermal camera with a terrestrial laser scanner. This solution enables an acquisition of geometric and spectral data on the surveyed object and also provides information on the surface’s temperature in the selected points. A section of the dam’s downstream concrete wall was selected as the subject of the study for which a number of scans were carried out and a number of thermal images were taken at different times of the day. The obtained thermal data was confronted with the acquired spectral information for the specified points. This made it possible to carry out broader analysis of the surface and an inspection of the revealed fissure. The thermal analysis of said fissure indicated that the temperature changes within it are slower, which may affect the way the concrete works and may require further elaboration by the appropriate experts. Through the integration of a thermal camera with a terrestrial laser scanner one can not only analyse changes of temperature in the discretely selected points but on the whole surface as well. Moreover, it is also possible to accurately determine the range and the area of the change affecting the surface. The authors note the limitations of the presented solution like, inter alia, the resolution of the thermal camera.

  10. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    Science.gov (United States)

    Rahimi, Eesa; Şendur, Kürşat

    2018-02-01

    Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  11. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    Directory of Open Access Journals (Sweden)

    Rahimi Eesa

    2018-02-01

    Full Text Available Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse’s spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  12. Thermal convection as a possible mechanism for the origin of polygonal structures on Pluto's surface

    Science.gov (United States)

    Vilella, Kenny; Deschamps, Frédéric

    2017-05-01

    High-resolution pictures of Pluto's surface obtained by the New Horizons spacecraft revealed, among other surface features, a large nitrogen ice glacier informally named Sputnik Planitia. The surface of this glacier is separated into a network of polygonal cells with a wavelength of ˜20-40 km. This network is similar to the convective patterns obtained under certain conditions by laboratory experiments, suggesting that it is the surface expression of thermal convection. Here we investigate the surface planform obtained for different convective systems in 3-D Cartesian geometry with different modes of heating and rheologies. We find that bottom heated systems, as assumed by previous studies, do not produce surface planforms consistent with the observed pattern. Alternatively, for a certain range of Rayleigh-Roberts number, RaH, a volumetrically heated system produces a surface planform similar to this pattern. We then combine scaling laws with values of RaH within its possible range to establish relationships between the critical parameters of Sputnik Planitia. In particular, our calculations indicate that the glacier thickness and the surface heat flux are in the ranges 2-10 km and 0.1-10 mW m-2, respectively. However, a difficulty is to identify a proper source of internal heating. We propose that the long-term variations of surface temperature caused by variations in Pluto's orbit over millions of years produces secular cooling equivalent to internal heating. We find that this source of heating is sufficient to trigger thermal convection, but additional investigations are needed to determine under which conditions it can produce surface patterns similar to those of Sputnik Planitia.

  13. Automatic control of human thermal comfort with a liquid-cooled garment

    Science.gov (United States)

    Kuznetz, L. H.

    1977-01-01

    Water cooling in a liquid-cooled garment is used to maintain the thermal comfort of crewmembers during extravehicular activity. The feasibility of a simple control that will operate automatically to maintain the thermal comfort is established. Data on three test subjects are included to support the conclusion that heat balance can be maintained well within allowable medical limits. The controller concept was also successfully demonstrated for ground-based applications and shows potential for any tasks involving the use of liquid-cooled garments.

  14. A 1-D Analytical Model for the Thermally Induced Stresses in the Mould Surface During Die Casting

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1994-01-01

    This paper presents an anlytically based method for predicting the normal stresses in a die mold surface exposed to a thermal load. A example of application of the method is the high-pressure di casting process where the surface stresses in critical cases lead to cracks. Expressions for the normal...... stresses as afunction of the thermal and mechanical properties have been developed for a casting both without and with a coating. Finally, the resulting relationships are derived and evaluated, with particular emphasis on the effect of the heat transfer coefficient between the casting and the mold....

  15. Thermal Stability and Surface Wettability Studies of Polylactic Acid/Halloysite Nanotube Nanocomposite Scaffold for Tissue Engineering Studies

    Science.gov (United States)

    Nizar, M. Mohd; Hamzah, M. S. A.; Razak, S. I. Abd; Mat Nayan, N. H.

    2018-03-01

    This paper reports the preliminary study about the incorporation of halloysite nanotubes (HNT) into polylactic acid (PLA) scaffold to improve the thermal resistance and surface wettability properties. The fabrication of the porous scaffold requires a simple yet effective technique with low-cost materials within freeze extraction method. The thermal stability of PLA/HNT scaffold compared to neat PLA scaffold achieved with increased content of HNT by 5 wt%. Moreover, the surface wettability of the scaffold also shows a positive impact with high content of HNT by 5 wt%. This new nanocomposite scaffold may have high potential as a suitable template for tissue regeneration.

  16. Thermal Analysis of TRIO-CINEMA Mission

    Directory of Open Access Journals (Sweden)

    Jaegun Yoo

    2012-03-01

    Full Text Available Thermal analysis and control design are prerequisite essential to design the satellite. In the space environment, it makes satellite survive from extreme hot and cold conditions. In recent years CubeSat mission is developed for many kinds of purpose. Triplet Ionospheric Observatory (TRIO–CubeSat for Ion, Neutral, Electron, MAgnetic fields (CINEMA is required to weigh less than 3 kg and operate on minimal 3 W power. In this paper we describe the thermal analysis and control design for TRIO-CINEMA mission. For this thermal analysis, we made a thermal model of the CubeSat with finite element method and NX6.0 TMG software is used to simulate this analysis model. Based on this result, passive thermal control method has been applied to thermal design of CINEMA. In order to get the better conduction between solar panel and chassis, we choose aluminum 6061-T6 for the material property of standoff. We can increase the average temperature of top and bottom solar panels from -70°C to -40°C and decrease the average temperature of the magnetometer from +93°C to -4°C using black paint on the surface of the chassis, inside of top & bottom solar panels, and magnetometer.

  17. Optimization of Thermal Object Nonlinear Control Systems by Energy Efficiency Criterion.

    Science.gov (United States)

    Velichkin, Vladimir A.; Zavyalov, Vladimir A.

    2018-03-01

    This article presents the results of thermal object functioning control analysis (heat exchanger, dryer, heat treatment chamber, etc.). The results were used to determine a mathematical model of the generalized thermal control object. The appropriate optimality criterion was chosen to make the control more energy-efficient. The mathematical programming task was formulated based on the chosen optimality criterion, control object mathematical model and technological constraints. The “maximum energy efficiency” criterion helped avoid solving a system of nonlinear differential equations and solve the formulated problem of mathematical programming in an analytical way. It should be noted that in the case under review the search for optimal control and optimal trajectory reduces to solving an algebraic system of equations. In addition, it is shown that the optimal trajectory does not depend on the dynamic characteristics of the control object.

  18. Thermal Storage Power Balancing with Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2013-01-01

    The method described in this paper balances power production and consumption with a large number of thermal loads. Linear controllers are used for the loads to track a temperature set point, while Model Predictive Control (MPC) and model estimation of the load behavior are used for coordination....... The total power consumption of all loads is controlled indirectly through a real-time price. The MPC incorporates forecasts of the power production and disturbances that influence the loads, e.g. time-varying weather forecasts, in order to react ahead of time. A simulation scenario demonstrates...

  19. Experimental results of thermally controlled superconducting switches for high frequency operation

    International Nuclear Information System (INIS)

    Mulder, G.B.J.; IerAvest, D.; Tenkate, H.H.J.; Krooshoop, H.J.G.; Van de Klundert, L.

    1988-01-01

    The aim of this study is to develop thermally controlled switches which are to be used in superconducting rectifiers operating at a few hertz and 1 kA. Usually, the operating frequency of thermally controlled rectifiers is limited to about 0.1 Hz due to the thermal recovery times of the switches. The thermal switches have to satisfy two conditions which are specific for the application in a superconducting rectifier: a) they have to operate in the repetitive mode so beside short activation times, fast recovery times of the switches are equally important, b) the power required to effect and maintain the normal state of the switches should be low since it will determine the rectifier efficiency. To what extent these obviously conflicting demands can be satisfied depends on the material and geometry of the switch. This paper presents a theoretical model of the thermal behaviour of a switch. The calculations are compared with experimental results of several switches having recovery times between 40 and 200 ms. Also, the feasibility of such switches for application in superconducting rectifiers operating at a few hertz with an acceptable efficiency is demonstrated

  20. Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen J.; Yuko, James

    2010-01-01

    This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.

  1. An atlast of XBT thermal structures and TOPEX/POSEIDON sea surface heights in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Ali, M.M.; Araligidad, N.; Shenoi, S.S.C.; Shum, C.K.; Yi, Y.

    the Indian XBT Program were used to plot the sub-surface thermal structures of the Indian Ocean for 1993 to 2003. Since these in situ measurements are just along the ship tracks, sea surface height observations from the TOPEX altimeter were also plotted over...

  2. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  3. Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation

    International Nuclear Information System (INIS)

    Chen, Xiao; Wang, Qian; Srebric, Jelena

    2016-01-01

    Highlights: • This study evaluates an occupant-feedback driven Model Predictive Controller (MPC). • The MPC adjusts indoor temperature based on a dynamic thermal sensation (DTS) model. • A chamber model for predicting chamber air temperature is developed and validated. • Experiments show that MPC using DTS performs better than using Predicted Mean Vote. - Abstract: In current centralized building climate control, occupants do not have much opportunity to intervene the automated control system. This study explores the benefit of using thermal comfort feedback from occupants in the model predictive control (MPC) design based on a novel dynamic thermal sensation (DTS) model. This DTS model based MPC was evaluated in chamber experiments. A hierarchical structure for thermal control was adopted in the chamber experiments. At the high level, an MPC controller calculates the optimal supply air temperature of the chamber heating, ventilation, and air conditioning (HVAC) system, using the feedback of occupants’ votes on thermal sensation. At the low level, the actual supply air temperature is controlled by the chiller/heater using a PI control to achieve the optimal set point. This DTS-based MPC was also compared to an MPC designed based on the Predicted Mean Vote (PMV) model for thermal sensation. The experiment results demonstrated that the DTS-based MPC using occupant feedback allows significant energy saving while maintaining occupant thermal comfort compared to the PMV-based MPC.

  4. Performance Assessment of Low-Temperature Thermal Storage with Electromagnetic Control

    Directory of Open Access Journals (Sweden)

    Ya-Wei Lee

    2014-08-01

    Full Text Available This study presents electromagnetic-controlled thermal storage (ECTS that can be directly implemented in strategies of low-temperature waste heat recovery for energy-consuming equipment. A magnetic nanofluid (MNF prepared from fine iron ferrite ferromagnetic particles is recommended as a latent heat medium (LHM. During electromagnetic induction, local flow fluctuations are generated and thermal convection in the MNF can be enhanced. The achieved results demonstrated that ECTS has a wide operational range and an optimum storage efficiency of 84.46%. Thus, a self-perturbation mode used to enhance thermal energy transportation can be designed for numerous waste heat management applications.

  5. Thermal performance of climber greenwalls: Effects of solar irradiance and orientation

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2015-01-01

    Highlights: • Field experiment tested solar irradiance effect on greenwall thermal performance. • Climber greenwalls were planted on four orientations of circular concrete tank. • High solar-energy input had high bare-surface temperature but maximum cooling. • Threshold solar intensity of 300 Wm −2 was needed for effective greenwall cooling. • Transpiration cooled anterior air better than shading and thermal insulation. - Abstract: Thermal performance of greenwalls, a critical and common concern, is regulated by solar irradiance vis-à-vis orientation and shading. A field experiment was conducted in humid-tropical Hong Kong to address the research question under typical summer-weather scenarios: sunny, cloudy and rainy. On a large circular concrete tank, climber-greenwall experimental plots were established with duplication in four cardinal compass directions. Air and infrared-radiometer surface temperature sensors monitored at different greenwall positions: ambient-air (control), bare-concrete-surface (control), vegetation-surface, behind-mesh-airgap, and behind-mesh-concrete surface. Pyranometers were installed vertically at four orientations and horizontally at tank-top (control) to monitor solar-energy input. Habitat verticality induces notable variations in solar-energy capture at four orientations by daily total, peak level, intensity, duration and timing. On sunny day, solar fraction reaching east side was only 37.1% of tank-top. Early morning sunshine striking east side nearly perpendicularly brings maximum intensity. South side facing the sun but at tangential incident angle has only 23.3% reception. Strong irradiance drives high control-surface temperature, but also induces notable vegetation-surface and adjacent ambient-air cooling by transpiration. A threshold solar intensity of about 300 Wm −2 is necessary to impart notable cooling-effect. Summer-sunny day and rainy-day sunshine-burst episodes could satisfy this condition; cloudy day and

  6. Reduction of thermal conductivity in phononic nanomesh structures

    KAUST Repository

    Yu, Jen-Kan

    2010-07-25

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. © 2010 Macmillan Publishers Limited. All rights reserved.

  7. The Measurement of Thermal Diffusivity in Conductor and Insulator by Photodeflection Technique

    Science.gov (United States)

    Achathongsuk, U.; Rittidach, T.; Tipmonta, P.; Kijamnajsuk, P.; Chotikaprakhan, S.

    2017-09-01

    The purpose of this study is to estimate thermal diffusivities of high thermal diffusivity bulk material as well as low thermal diffusivity bulk material by using many types of fluid such as Ethyl alcohol and water. This method is studied by measuring amplitude and phase of photodeflection signal in various frequency modulations. The experimental setup consists of two laser lines: 1) a pump laser beams through a modulator, varied frequency, controlled by lock-in amplifier and focused on sample surface by lens. 2) a probe laser which parallels with the sample surface and is perpendicular to the pump laser beam. The probe laser deflection signal is obtained by a position sensor which controlled by lock-in amplifier. Thermal diffusivity is calculated by measuring the amplitude and phase of the photodeflection signal and compared with the thermal diffusivity of a standard value. The thermal diffusivity of SGG agrees well with the literature but the thermal diffusivity of Cu is less than the literature value by a factor of ten. The experiment requires further improvement to measure the thermal diffusivity of Cu. However, we succeed in using ethyl alcohol as the coupling medium instead of CCl4 which is highly toxic.

  8. Reduced near-surface thermal inversions in 2005-06 in the southeastern Arabian Sea (Lakshadweep Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Nisha, K.; Rao, S.A.; Gopalakrishna, V.V.; Rao, R.R.; GirishKumar, M.S.; Pankajakshan, T.; Ravichandran, M.; Rajesh, S.; Girish, K.; Johnson, Z.; Anuradha, M.; Gavaskar, S.S.M.; Suneel, V.; Krishna, S.M.

    Repeat XBT transects made at near-fortnightly intervals in the Lakshadweep Sea (southeastern Arabian Sea) and ocean data assimilation products are examined to describe the year-to-year variability in the observed near-surface thermal inversions...

  9. Neuromechanical Control for Hexapedal Robot Walking on Challenging Surfaces and Surface Classification

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    The neuromechanical control principles of animal locomotion provide good insights for the development of bio-inspired legged robots for walking on challenging surfaces. Based on such principles, we developed a neuromechanical controller consisting of a modular neural network (MNN) and of virtual...... agonist–antagonist muscle mechanisms (VAAMs). The controller allows for variable compliant leg motions of a hexapod robot, thereby leading to energy-efficient walking on different surfaces. Without any passive mechanisms or torque and position feedback at each joint, the variable compliant leg motions...... are achieved by only changing the stiffness parameters of the VAAMs. In addition, six surfaces can be also classified by observing the motor signals generated by the controller. The performance of the controller is tested on a physical hexapod robot. Experimental results show that it can effectively walk...

  10. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    Science.gov (United States)

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  11. Effect of engine-based thermal aging on surface morphology and performance of Lean NOx Traps

    International Nuclear Information System (INIS)

    Toops, Todd J.; Bunting, Bruce G.; Nguyen, Ke; Gopinath, Ajit

    2007-01-01

    A small single-cylinder diesel engine is used to thermally age model (Pt + Rh/Ba/γ-Al 2 O 3 ) lean NO x traps (LNTs) under lean/rich cycling at target temperatures of 600 C, 700 C, and 800 C. During an aging cycle, fuel is injected into the exhaust to achieve reproducible exotherms under lean and rich conditions with the average temperature approximating the target temperature. Aging is performed until the cycle-average NO x conversion measured at 400 C is approximately constant. Engine-based NO x conversion decreased by 42% after 60 cycles at 600 C, 36% after 76 cycles at 700 C and 57% after 46 cycles at 800 C. The catalyst samples were removed and characterized by XRD and using a microreactor that allowed controlled measurements of surface area, precious metal size, NO x storage, and reaction rates. Three aging mechanisms responsible for the deactivation of LNTs have been identified: (1) loss of dispersion of the precious metals, (2) phase transitions in the washcoat materials, and (3) loss of surface area of the storage component and support. These three mechanisms are accelerated when the aging temperature exceeds 850 C - the γ to (delta) transition temperature of Al 2 O 3 . Normalization of rates of NO reacted at 400 C to total surface area demonstrates the biggest impact on performance stems from surface area losses rather than from precious metal sintering. (author)

  12. Robust multi-model predictive control of multi-zone thermal plate system

    Directory of Open Access Journals (Sweden)

    Poom Jatunitanon

    2018-02-01

    Full Text Available A modern controller was designed by using the mathematical model of a multi–zone thermal plate system. An important requirement for this type of controller is that it must be able to keep the temperature set-point of each thermal zone. The mathematical model used in the design was determined through a system identification process. The results showed that when the operating condition is changed, the performance of the controller may be reduced as a result of the system parameter uncertainties. This paper proposes a weighting technique of combining the robust model predictive controller for each operating condition into a single robust multi-model predictive control. Simulation and experimental results showed that the proposed method performed better than the conventional multi-model predictive control in rise time of transient response, when used in a system designed to work over a wide range of operating conditions.

  13. Thermal-hydraulic performance of the finned surface of a compact heat exchanger

    International Nuclear Information System (INIS)

    Errasti Cabrera, Michel

    2015-01-01

    In this work the thermal-hydraulic behavior of the finned surface of a compact heat exchanger is obtained in tube-fin configuration corrugated (wavy). Through numerical simulation are determined average values ​​of intensification of heat transfer and pressure loss in the inter-channel finned. The objective is to characterize the surface to use as a reference, to make comparisons with other heat exchange surfaces enhanced using traditional techniques combined with more current, such as vortex generators. The study is conducted in laminar flow, with Reynolds numbers below 1000. In the working model compact exchanger tubes and corrugated fins (wavy) heat is described, and the results of the coefficient of overall heat transfer and the pressure drop are explained from the local characteristics of the velocity field and temperature inside the heat exchanger. (Full text)

  14. Programmable thermal emissivity structures based on bioinspired self-shape materials

    Science.gov (United States)

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-12-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.

  15. Evidence of a metal-rich surface for the Asteroid (16) Psyche from interferometric observations in the thermal infrared

    Science.gov (United States)

    Matter, Alexis; Delbo, Marco; Carry, Benoit; Ligori, Sebastiano

    2013-09-01

    We describe the first determination of thermal properties and size of the M-type Asteroid (16) Psyche from interferometric observations obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer. We used a thermophysical model to interpret our interferometric data. Our analysis shows that Psyche has a low macroscopic surface roughness. Using a convex 3-D shape model obtained by Kaasalainen et al. (Kaasalainen, M., Torppa, J., Piironen, J. [2002]. Icarus 159, 369-395), we derived a volume-equivalent diameter for (16) Psyche of 247 ± 25 km or 238 ± 24 km, depending on the possible values of surface roughness. Our corresponding thermal inertia estimates are 133 or 114 J m-2 s-0.5 K-1, with a total uncertainty estimated at 40 J m-2 s-0.5 K-1. They are among the highest thermal inertia values ever measured for an asteroid of this size. We consider this as a new evidence of a metal-rich surface for the Asteroid (16) Psyche.

  16. Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission

    International Nuclear Information System (INIS)

    Escobar, Emanuel; Diaz, Marcos; Zagal, Juan Cristóbal

    2016-01-01

    Highlights: • GAs applied to automate design of CubeSat passive thermal control system (coating). • Simulation adapted with real physical data (mockup experiment in vacuum chamber). • Obtained coating patterns consistently outperform engineered solutions (by 5 K). • Evolved coating patterns are far superior (by 8 K) than unpainted aluminum. - Abstract: This paper studies the use of artificial evolution to automate the design of a satellite passive thermal control system. This type of adaptation often requires the use of computer simulations to evaluate fitness of a large number of candidate solutions. Simulations are required to be expedient and accurate so that solutions can be successfully transferred to reality. We explore a design process that involves three steps. On a first step candidate solutions (implemented as surface paint tiling patterns) are tested using a FEM model and ranked according to their quality to meet mission temperature requirements. On a second step the best individual is implemented as a real physical satellite mockup and tested inside a vacuum chamber, having light sources imitating the effect of solar light. On a third step the simulation model is adapted with data obtained during the real evaluation. These updated models can be further employed for continuing genetic search. Current differences between our simulation and our real physical setup are in the order of 1.45 K mean squared error for faces pointing toward the light source and 2.4 K mean squared errors for shadowed faces. We found that evolved tiling patterns can be 5 K below engineered patterns and 8 K below using unpainted aluminum satellite surfaces.

  17. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  18. Experimental determination of the thermal contact conductance between two solid surfaces by the energy pulse technique

    International Nuclear Information System (INIS)

    Rubin, Gerson Antonio

    1979-01-01

    An experimental procedure for the determination of the thermal contact conductance between two solid surfaces as a function of the contact pressure and the energy of the laser radiation has been developed using the laser pulse method. A rubi laser with variable energy levels was employed as a radiating pulse energy source. The laser beam was allowed to impinge perpendicularly on the front face of a electrolytic iron 73 4 . The temperature fluctuations resulting on the back surface of the sample was detected by a thermocouple, which Is coupled to a PDP-11/45 Computer 32 Kbytes of memory, through a Analog-Digital Converter. A theoretical function, derived exclusively for the problem mentioned in this work, was adjusted by a method of least square fitting of experimental results. This adjustment yielded the value of a parameter related to the contact conductance between two surfaces. The experimental error obtained for the thermal contact conductance was +- 4.9%. (author)

  19. A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator

    Science.gov (United States)

    Chen, Weibo; Fogg, David; Mancini, Nick; Steele, John; Quinn, Gregory; Bue, Grant; Littibridge, Sean

    2013-01-01

    Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to effectively control cabin and equipment temperatures under widely varying heat loads and ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-based working fluid that is compatible with existing lightweight aluminum heat exchangers. The TCS is lightweight, compact, and requires very little pumping power. The critical characteristics of the core enabling technologies were demonstrated. Functional testing with condenser tubes demonstrated the key operating characteristics required for a reliable, freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on aluminum by an order of magnitude. Performance comparison with state-of-the-art designs shows significant mass and power saving benefits of this technology.

  20. Passive Set-Point Thermal Control Skin for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current manned and unmanned spacecraft require sophisticated thermal control technologies to keep systems at temperatures within their proper operating ranges....

  1. FAULT DIAGNOSIS OF AN AIRCRAFT CONTROL SURFACES WITH AN AUTOMATED CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Blessing D. Ogunvoul

    2017-01-01

    Full Text Available This article is devoted to studying of fault diagnosis of an aircraft control surfaces using fault models to identify specific causes. Such failures as jamming, vibration, extreme run out and performance decrease are covered.It is proved that in case of an actuator failure or flight control structural damage, the aircraft performance decreases significantly. Commercial aircraft frequently appear in the areas of military conflicts and terrorist activity, where the risk of shooting attack is high, for example in Syria, Iraq, South Sudan etc. Accordingly, it is necessary to create and assess the fault model to identify the flight control failures.The research results demonstrate that the adequate fault model is the first step towards the managing the challenges of loss of aircraft controllability. This model is also an element of adaptive failure-resistant management model.The research considers the relationship between the parameters of an i th state of a control surface and its angular rate, also parameters classification associated with specific control surfaces in order to avoid conflict/inconsistency in the determination of a faulty control surface and its condition.The results of the method obtained in this article can be used in the design of an aircraft automated control system for timely identification of fault/failure of a specific control surface, that would contribute to an effective role aimed at increasing the survivability of an aircraft and increasing the acceptable level of safety due to loss of control.

  2. Phase change material thermal capacitor clothing

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  3. Laboratory electron exposure of TSS-1 thermal control coating

    Science.gov (United States)

    Vaughn, J. A.; Mccollum, M.; Carruth, M. R., Jr.

    1995-01-01

    RM400, a conductive thermal control coating, was developed for use on the exterior shell of the tethered satellite. Testing was performed by the Engineering Physics Division to quantify effects of the space environment on this coating and its conductive and optical properties. Included in this testing was exposure of RM400 to electrons with energies ranging from 0.1 to 1 keV, to simulate electrons accelerated from the ambient space plasma when the tethered satellite is fully deployed. During this testing, the coating was found to luminesce, and a prolonged exposure of the coating to high-energy electrons caused the coating to darken. This report describes the tests done to quantify the degradation of the thermal control properties caused by electron exposure and to measure the luminescence as a function of electron energy and current density to the satellite.

  4. Effect of Personal Control over Thermal Environment in a Laboratorium Setting

    DEFF Research Database (Denmark)

    Kulve, M. te; Boerstra, A. C.; Toftum, Jørn

    Field studies have demonstrated that personal control over the indoor climate may increase comfort and could reduce SBS symptoms. A laboratory study was performed to investigate if being in control over the thermal environment influences comfort, symptoms and performance. The central hypothesis...... was that human responses to a thermal indoor environment depend on the availability of control opportunities. This was tested in a field lab where subjects had a personal desk fan with a stepless controller at their workplace. Two conditions were tested: one (the first) with individual control and one without......, but with identical indoor climate exposure as recorded during the first session. During both experimental conditions, 23 subjects were exposed for 120 min to an operative temperature of 28 °C and they were provided with a personal desk fan. During the first exposure subjects were allowed to adjust air velocity (and...

  5. The Effect of Thermal Radiation on Entropy Generation Due to Micro-Polar Fluid Flow Along a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Kuei-Hao Chang

    2011-09-01

    Full Text Available In this study, the effect of thermal radiation on micro-polar fluid flow over a wavy surface is studied. The optically thick limit approximation for the radiation flux is assumed. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transferred into a calculable plane coordinate system. The governing equations of micro-polar fluid along a wavy surface are derived from the complete Navier-Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations so they can be solved numerically by the cubic spline collocation method. A modified form for the entropy generation equation is derived. Effects of thermal radiation on the temperature and the vortex viscosity parameter and the effects of the wavy surface on the velocity are all included in the modified entropy generation equation.

  6. A Tunable Mid-Infrared Solid-State Laser with a Compact Thermal Control System

    Directory of Open Access Journals (Sweden)

    Deyang Yu

    2018-05-01

    Full Text Available Tunable mid-infrared lasers are widely used in laser spectroscopy, gas sensing and many other related areas. In order to solve heat dissipation problems and improve the environmental temperature adaptability of solid-state laser sources, a tunable all-fiber laser pumped optical parametric oscillator (OPO was established, and a compact thermal control system based on thermoelectric coolers, an automatic temperature control circuit, cooling fins, fans and heat pipes was integrated and designed for the laser. This system is compact, light and air-cooling which satisfies the demand for miniaturization of lasers. A mathematical model and method was established to estimate the cooling capacity of this thermal control system under different ambient environments. A finite-element model was built and simulated to analyze the thermal transfer process. Experiments in room and high temperature environments were carried out and showed that the substrate temperature of a pump module could be maintained at a stable value with controlled precision to 0.2 degrees, while the output power stability of the laser was within ±1%. The experimental results indicate that this compact air-cooling thermal control system could effectively solve the heat dissipation problem of mid-infrared solid-state lasers with a one hundred watts level pump module in room and high temperature environments.

  7. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very

  8. Electronic and surface properties of pentacene films deposited on SiO2 prepared by the sol–gel and thermally grown methods

    International Nuclear Information System (INIS)

    Dai, Chi-Jie; Tsao, Hou-Yen; Lin, Yow-Jon; Liu, Day-Shan

    2014-01-01

    This study investigates the effect of different types of SiO 2 on the electronic and surface properties of pentacene films. Developing better contacts on dielectrics is one of the main challenges for pentacene-based transistor technology. The water contact angle variation indicates more hydrophobic thermally grown SiO 2 surfaces than sol–gel SiO 2 surfaces, suggesting that the thermally grown SiO 2 dielectric enables a better molecular arrangement as the pentacene layer is deposited. It is found that the carrier mobility in pentacene on thermally grown SiO 2 dielectrics is higher than that in pentacene on sol–gel SiO 2 dielectrics. The Hall-effect analysis by using the polaron theory revealed that the enhanced carrier mobility is due to the increased spacing between molecules. - Highlights: • The carrier mobility of pentacene on thermally grown and sol–gel SiO 2 was researched. • The enhanced carrier mobility of pentacene on thermally grown SiO2 was observed. • The dominance of tunneling (hopping) at low (high) temperatures was observed. • The carrier mobility is correlated with the morphology of pentacene films

  9. Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process

    Science.gov (United States)

    Ghosh, P. K.; Kumar, Ravindra

    2015-02-01

    Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.

  10. Colour interceptions, thermal stability and surface morphology of polyester metal complexes

    International Nuclear Information System (INIS)

    Zohdy, M.H.

    2005-01-01

    Chelating copolymers via grafting of acrylic acid (AAc) and acrylamide (AAm/AAc) comonomer mixture onto polyester micro fiber fabrics (PETMF) using gamma-radiation technique were prepared. The prepared graft chains (PETMF-g-AAc) and (PETMF-g-PAAc/PAAm) acted as chelating sites for some selected transition metal ions. The prepared graft copolymers and their metal complexes were characterized using thermogravimetric analysis (TGA), colour parameters and surface morphology measurements. The colour interception and strength measurements showed that the metal complexation is homogeneously distributed. The results showed that the thermal stability of PETMF was improved after graft copolymerization and metal complexes. Moreover, the degree of grafting enhanced the thermal stability values of the grafted and complexed copolymers up to 25% of magnitude, on the other hand the activation energy of the grafted-copolymer with acrylic acid increased up to 80%. The SEM observation gives further supports to the homogenous distribution of grafting and metal complexation

  11. The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane

    Science.gov (United States)

    Zheng, Guikai; Lu, Ming; Rui, Xiaoping

    2017-03-01

    Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.

  12. Control of grinding polygonal surfaces

    Directory of Open Access Journals (Sweden)

    Юрій Володимирович Петраков

    2017-12-01

    Full Text Available Grinding of non-round surfaces, in particular polygonal surfaces of dies, is characterized by substantial non stationary. At different sections of the profile, the change in the main characteristic (Material Removal Rate – MRR process reaches tens of times. To stabilize the grinding process, it is recommended to control the spindle speed of the workpiece CNC grinding machine. Created software that allows to design the control program on the basis of mathematical model of the system. The determination of MRR is realized automatically in the simulation of the grinding process which uses the algorithm developed for solving problems in geometric interaction of the workpiece and the wheel. In forming the control program is possible takes into account the limitations on the maximum circumferential force of cutting, and the maximum allowable acceleration of the machine spindle. Practice has shown that full stabilization is not obtained, even though the performance is increased more than 2 times, while ensuring the quality of the surface. The developed block diagram of the grinding process can serve as a basis for further improvement in the solution of dynamic problems.

  13. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    Science.gov (United States)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  14. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

  15. Modelling and Design of Active Thermal Controls for Power Electronics of Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Blaabjerg, Frede; Ma, Ke

    2017-01-01

    of active thermal control methods for the power devices of a motor drive application. The motor drive system together with the thermal cycling of the power devices have been modelled, and adverse temperature swings could be noticed during the start-up and deceleration periods of the motor. Based...... on the electrical response of the system, the junction temperature of the semiconductor devices is estimated, and consequently three active thermal control methods are proposed and practically designed with respect to the following parameters: switching frequency, deceleration slope and modulation technique....... Finally, experimental results are provided in order to validate the effectiveness of the proposed control methods....

  16. Enhanced surface transfer doping of diamond by V{sub 2}O{sub 5} with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Kevin G., E-mail: k.crawford.2@research.gla.ac.uk; Moran, David A. J. [School of Engineering, University of Glasgow, Glasgow G12 8LT (United Kingdom); Cao, Liang [High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui (China); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore 117542 (Singapore); Qi, Dongchen, E-mail: d.qi@latrobe.edu.au [Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 (Australia); Tallaire, Alexandre [LSPM-CNRS, Université Paris 13, Villetaneuse 93430 (France); Limiti, E.; Verona, C. [Department of Industrial Engineering, “Tor Vergata” University, Rome 00173 (Italy); Wee, Andrew T. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore 117542 (Singapore)

    2016-01-25

    Surface transfer doping of hydrogen-terminated diamond has been achieved utilising V{sub 2}O{sub 5} as a surface electron accepting material. Contact between the oxide and diamond surface promotes the transfer of electrons from the diamond into the V{sub 2}O{sub 5} as revealed by the synchrotron-based high resolution photoemission spectroscopy. Electrical characterization by Hall measurement performed before and after V{sub 2}O{sub 5} deposition shows an increase in hole carrier concentration in the diamond from 3.0 × 10{sup 12} to 1.8 × 10{sup 13 }cm{sup −2} at room temperature. High temperature Hall measurements performed up to 300 °C in atmosphere reveal greatly enhanced thermal stability of the hole channel produced using V{sub 2}O{sub 5} in comparison with an air-induced surface conduction channel. Transfer doping of hydrogen-terminated diamond using high electron affinity oxides such as V{sub 2}O{sub 5} is a promising approach for achieving thermally stable, high performance diamond based devices in comparison with air-induced surface transfer doping.

  17. Thermal performance analysis of reciprocating compressor with stepless capacity control system

    International Nuclear Information System (INIS)

    Bin, Tang; Yuanyang, Zhao; Liansheng, Li; Guangbin, Liu; Le, Wang; Qichao, Yang; Haiping, Xu; Feng, Zhu; Wenhui, Meng

    2013-01-01

    On the basic principle of stepless capacity control system for large reciprocating compressor, the thermal cycle was analyzed. The equations for the process of suction, reverse flow, compression, discharge and expansion of clearance gas were established. According to these equations, p–V diagrams at various situations were simulated. An experimental platform was setup and the compressor with designed stepless capacity control system run well. The experimental results show that the capacity of compressor can be regulated steplessly, and the motor power is reduced proportionally with respect to the reduction of capacity. During the suction process, both the flow resistance of valve and the pressure fluctuation in cylinder can be reduced by opening the suction valves with the actuators. The simulated and experimental results showed good coincidence. The clearance volume and valve clearance Mach number had a negative influence on the thermal performance of compressor with stepless capacity control system. -- Highlights: ► Flow resistance of valve can be reduced and pressure fluctuation can be reduced. ► Equivalent Mach number of reverse flow is much higher than that of suction process. ► Response of stepless capacity control system is important for regulation accuracy. ► Clearance and valve clearance Mach number have influence on thermal performance

  18. Enhanced thermal expansion control rod drive lines for improving passive safety of fast reactors

    International Nuclear Information System (INIS)

    Edelmann, M.; Baumann, W.; Kuechle, M.; Kussmaul, G.; Vaeth, W.; Bertram, A.

    1992-01-01

    The paper presents a device for increasing the thermal expansion effect of control rod drive lines on negative reactivity feedback in fast reactors. The enhanced thermal expansion of this device can be utilized for both passive rod drop and forced insertion of absorbers in unprotected transients, e.g. ULOF. In this way the reactor is automatically brought into a permanently subcritical state and temperatures are kept well below the boiling point of the coolant. A prototype of such a device called ATHENa (German: Shut-down by THermal Expansion of Na) is presently under construction and will be tested. The paper presents the principle, design features and thermal properties of ATHENs as well as results of reactor dynamics calculations of ULOF's for EFR with enhanced thermal expansion control rod drive lines. (author)

  19. Thermal Characteristics of Urban Landscapes

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.

    1998-01-01

    Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., less than 15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for Huntsville, AL.

  20. Cryogenic cooler thermal coupler

    International Nuclear Information System (INIS)

    Green, K.E.; Talbourdet, J.A.

    1984-01-01

    A thermal coupler assembly mounted to the coldfinger of a cryogenic cooler which provides improved thermal transfer between the coldfinger and the detector assembly mounted on the dewar endwell. The thermal coupler design comprises a stud and spring-loaded cap mounted on the coldfinger assembly. Thermal transfer is made primarily through the air space between the cap and coldwell walls along the radial surfaces. The cap is spring loaded to provide thermal contact between the cap and endwell end surfaces

  1. A novel method for biopolymer surface nanostructuring by platinum deposition and subsequent thermal annealing

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Juřík, P.; Kolská, Z.; Malinský, Petr; Macková, Anna; Michaljaničová, I.; Švorčík, V.

    2012-01-01

    Roč. 7, č. 671 (2012), s. 1-6 ISSN 1931-7573 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : nanopattering * surface morphology * biopolymer * platinum sputtering * thermal annealing Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.524, year: 2012

  2. A Hybrid Power Control Concept for PV Inverters with Reduced Thermal Loading

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    on a single-phase PV inverter under yearly operation is presented with analyses of the thermal loading, lifetime, and annual energy yield. It has revealed the trade-off factors to select the power limit and also verified the feasibility and the effectiveness of the proposed control concept.......This letter proposes a hybrid power control concept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum Power Point Tracking (MPPT) control or a Constant Power Generation (CPG) control depending on the instantaneous available power from the PV panels....... The essence of the proposed concept lies in the selection of an appropriate power limit for the CPG control to achieve an improved thermal performance and an increased utilization factor of PV inverters,and thus to cater for a higher penetration level of PV systems with intermittent nature. A case study...

  3. Optimal Control Surface Layout for an Aeroservoelastic Wingbox

    Science.gov (United States)

    Stanford, Bret K.

    2017-01-01

    This paper demonstrates a technique for locating the optimal control surface layout of an aeroservoelastic Common Research Model wingbox, in the context of maneuver load alleviation and active utter suppression. The combinatorial actuator layout design is solved using ideas borrowed from topology optimization, where the effectiveness of a given control surface is tied to a layout design variable, which varies from zero (the actuator is removed) to one (the actuator is retained). These layout design variables are optimized concurrently with a large number of structural wingbox sizing variables and control surface actuation variables, in order to minimize the sum of structural weight and actuator weight. Results are presented that demonstrate interdependencies between structural sizing patterns and optimal control surface layouts, for both static and dynamic aeroelastic physics.

  4. Thermal-Hydraulic Performance of a Corrugated Cooling Fin with Louvered Surfaces

    DEFF Research Database (Denmark)

    Sønderby, Simon Kaltoft; Hosseini, Seyed Mojtaba Mir; Rezaniakolaei, Alireza

    2017-01-01

    The main objective of the article is to investigate thermal-hydraulic performance of a corrugated cooling fin with louvered surfaces. The investigation is carried out using the fin geometry of one most commonly used liquid-to-air heat exchangers. The investigation was carried out by numerically...... simulating the airflow with louvered fin geometry. The simulation model was verified by comparing simulated j- and f-factors with the corresponding values of several experimental correlations. The j-factors deviated less than 10.7 % from two of the experimental correlations, whereas deviations ranging...

  5. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  6. Thermal Infrared Spectra of Microcrystalline Sedimentary Phases: Effects of Natural Surface Roughness on Spectral Feature Shape

    Science.gov (United States)

    Hardgrove, C.; Rogers, A. D.

    2012-03-01

    Thermal infrared spectral features of common microcrystalline phases (chert, alabaster, micrite) are presented. Spectra are sensitive to mineralogy and micron-scale (~1-25 µm) surface roughness. Roughness is on the scale of the average crystal size.

  7. Thermal Load Reduction System Development in a Hyundai Sonata PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Cory J.; Rugh, John; Tomerlin, Jeff

    2017-03-28

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces demonstrated significant reductions in energy use from steady-state heating, including a 29%-59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.

  8. Development of a Microelectromechanical System for Small Satellite Thermal Control

    National Research Council Canada - National Science Library

    Beasley, Matthew

    2004-01-01

    .... This new direction requires a similar evolution in thermal control. Previous techniques such as heat pipes and conventional radiators have large masses themselves and are not scaleable to fit these smaller designs...

  9. Thermal stresses calculations in near-surface layers of sphere bodies, falling to the Sun

    International Nuclear Information System (INIS)

    Demchenko, B.I.; Shestakova, L.I.

    2005-01-01

    Profiles of temperature and temperature stresses in surface layers of silicate and icy spheric bodies, falling to the Sun along parabolic orbits were obtained on the base of the analytical solution of the linear heat diffusion equation. Results may be useful for thermal evolution analysis of meteor and comet bodies in the Sun system. (author)

  10. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian

    2015-10-28

    To explore the surface effect on resistive random-access memory (ReRAM), the impact of surface roughness on the characteristics of ZnO ReRAM were studied. The thickness-independent resistance and the higher switching probability of ZnO ReRAM with rough surfaces indicate the importance of surface oxygen chemisorption on the switching process. Furthermore, the improvements in switching probability, switching voltage and resistance distribution observed for ReRAM with rough surfaces can be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  11. Automatic thermal control switches. [for use in Space Shuttle borne Get Away Special container

    Science.gov (United States)

    Wing, L. D.

    1982-01-01

    Two automatic, flexible connection thermal control switches have been designed and tested in a thermal vacuum facility and in the Get Away Special (GAS) container flown on the third Shuttle flight. The switches are complementary in that one switch passes heat when the plate on which it is mounted exceeds some selected temperature and the other switch will pass heat only when the mounting plate temperature is below the selected value. Both switches are driven and controlled by phase-change capsule motors and require no other power source or thermal sensors.

  12. Non-invasive thermal profiling of silicon wafer surface during RTP using acoustic and signal processing techniques

    Science.gov (United States)

    Syed, Ahmed Rashid

    Among the great physical challenges faced by the current front-end semiconductor equipment manufacturers is the accurate and repeatable surface temperature measurement of wafers during various fabrication steps. Close monitoring of temperature is essential in that it ensures desirable device characteristics to be reliably reproduced across various wafer lots. No where is the need to control temperature more pronounced than it is during Rapid Thermal Processing (RTP) which involves temperature ramp rates in excess of 200°C/s. This dissertation presents an elegant and practical approach to solve the wafer surface temperature estimation problem, in context of RTP, by deploying hardware that acquires the necessary data while preserving the integrity and purity of the wafer. In contrast to the widely used wafer-contacting (and hence contaminating) methods, such as bonded thermocouples, or environment sensitive schemes, such as light-pipes and infrared pyrometry, the proposed research explores the concept of utilizing Lamb (acoustic) waves to detect changes in wafer surface temperature, during RTP. Acoustic waves are transmitted to the wafer via an array of quartz rods that normally props the wafer inside an RTP chamber. These waves are generated using piezoelectric transducers affixed to the bases of the quartz rods. The group velocity of Lamb waves traversing the wafer surface undergoes a monotonic decrease with rise in wafer temperature. The correspondence of delay in phase of the received Lamb waves and the ambient temperature, along all direct paths between sending and receiving transducers, yields a psuedo real-time thermal image of the wafer. Although the custom built hardware-setup implements the above "proof-of-concept" scheme by transceiving acoustic signals at a single frequency, the real-world application will seek to enhance the data acquistion. rate (>1000 temperature measurements per seconds) by sending and receiving Lamb waves at multiple frequencies (by

  13. Characterization of chemical composition, surface area pore, and thermal properties of zeolites from Bayah, Tasikmalaya, and Lampung

    International Nuclear Information System (INIS)

    Ginting, Aslina Br.; Dian Anggraini; Sutri Indaryati; Rosika Kriswarini

    2007-01-01

    Characterization of chemical composition, surface area, pore radius, adsorption, and thermal properties of zeolites from Bayah, Tasikmalaya, and Lampung have been performed. The purpose of the characterization is to understand the characteristics of the three zeolites since different types of zeolite will yield different chemical composition, surface area, pore radius, and adsorption. The analysis shows that zeolites from Bayah, Tasikmalaya, and Lampung consist of chemical elements Al, Si, P, K, Ca, Ti, Fe, and S. The analysis of the surface area indicates that zeolite from Lampung has surface area of 10.0477 m 2 , pore radius of 16.0653 Å, and adsorption of 24.500 ml/g, which are greater than those of zeolite from Tasikmalaya with surface area of 6.3319 m2, pore radius of 16.2350 Å, adsorption of 13.2500 ml/g, zeolite from Bayah with surface area of 8.3528 m2, pore radius of 16.2350 Å, and adsorption of 13.250 ml/g. From of the thermal properties characterization it is shown the three zeolites experienced weight reduction from 5.93% to 8.33%, which results in the formation of new phases as indicated by endothermic reactions from 150 °C to 600 °C and from 850 °C to 1000 °C. The three zeolites experienced a decrease in heat capacity up to temperature of 199.96 °C, whereas at temperatures above 216.66 °C the zeolites experienced an increase in heat capacity up to 437.78 °C. The results of the characterization indicate that different types of zeolite do not yield significant difference in chemical composition and thermal characteristics as proven with F test, however different surface area, pore radius, and adsorption characteristics are observed. The characterization results are expected to be the first step in determining the characteristics of the three zeolites that are to be used for cesium ion exchange in the incoming research. (author)

  14. Interface conductance between roughened Be and steel under thermal deformation

    International Nuclear Information System (INIS)

    Tillack, M.S.; Abelson, R.D.

    1995-01-01

    Predictability and control over temperatures and stresses are necessary in order to assure acceptable tritium release, component reliability and lifetime in solid breeder blankets. These blankets usually contain beryllium multiplier in either pebble-bed or solid block forms. For the solid block forms, uncertainties remain in the prediction of the thermal resistance between the Be and its cladding. Several parameters are important, including surface roughness and flatness, background gas pressure, and external loads which may result from blanket thermal deformations and/or pressure stresses. Differential thermal deformation between Be and steel can cause separation to occur between the two solid surfaces, which could seriously degrade the heat transfer. Existing models and data for solid-solid conductance show inconsistencies, even for steel surfaces. Little data or none exists for the Be-steel system, in which differential surface deformations are expected. In this work, we describe a new model which incorporates the combined influences of thermal deformation and contact pressure. Data were taken with small Be specimens as a function of the relevant parameters. The results show that the inclusion of non-conforming surfaces provides a richer range of behavior. Thermal deformations degrade the heat transfer by about a factor of two from flat surfaces, but this effect tends to decrease above about 100 kW m -2 . Contact pressure (above about 1 MPa) between the two materials can effectively maintain good conductance. The flatness and roughness of the surfaces are the most critical parameters. The work also demonstrates the large degree of variation in conductance with background gas pressure. (orig.)

  15. Surface modification of gutta-percha cones by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Maíra, E-mail: maira@metalmat.ufrj.br [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Menezes, Marilia Santana de Oliveira [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Gomes, Brenda Paula Figueiredo de Almeida [Department of Restorative Dentistry, Endodontics Division, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP (Brazil); Barbosa, Carlos Augusto de Melo [Department of Clinical Dentistry, Endodontic Division, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Athias, Leonardo [Social Indicators Division, Brazilian Institute of Geography and Statistics, Rio de Janeiro, RJ (Brazil); Simão, Renata Antoun [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil)

    2016-11-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  16. Surface modification of gutta-percha cones by non-thermal plasma

    International Nuclear Information System (INIS)

    Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun

    2016-01-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  17. The performance of thermal control coatings on LDEF and implications to future spacecraft

    Science.gov (United States)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  18. Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation

    International Nuclear Information System (INIS)

    Liao, B; Stangl, R; Ma, F; Mueller, T; Lin, F; Aberle, A G; Bhatia, C S; Hoex, B

    2013-01-01

    We demonstrate that by using a water (H 2 O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al 2 O 3 ) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s −1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2 O 3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100–400 °C range and peak firing temperatures of about 800 °C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance–voltage measurements reveal that the negative fixed charge density near the AlO x /c-Si interface increases from 1.4 × 10 12 to 3.3 × 10 12 cm −2 due to firing, while the midgap interface defect density reduces from 3.3 × 10 11 to 0.8 × 10 11 cm −2 eV −1 . This work demonstrates that direct firing activation of thermal ALD Al 2 O 3 is feasible, which could be beneficial for solar cell manufacturing. (paper)

  19. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    Science.gov (United States)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  20. Prediction and control of the coefficient of thermal expansion of concrete

    International Nuclear Information System (INIS)

    Ziegeldorf, S.; Kleiser, K.; Hilsdorf, H.K.

    1979-01-01

    Prediction and control of the coefficient of thermal expansion of concrete. In this report various procedures for the prediction of the coefficient of thermal expansion of concrete are summarized. The values predicted with these procedures are compared to experimental data. In the experimental investigation the coefficient of thermal expansion of various types of aggregates and types of concrete both in a dry and a moist state in the temperature range RT/180 0 C have been measured. The most significant result obtained is that for equal volume fractions the thermal properties of coarse aggregates have a more pronounced effect upon thermal expansion of concrete than those of fine aggregates. In the analysis an attempt has been made to estimate the thermal expansion of concrete from the properties of the concrete components by means of a finite element procedure. On the basis of the experimental data and of the analysis of internal temperature stresses in the concrete a simple relationship for the determination of the coefficient of thermal expansion of concrete has been deduced. In this relationship different thermal properties of coarse and fine aggregates may be taken into account. Compared to other methods this relationship yields, both for dry and for moist concrete, values which are in good agreement with the experimental data. (orig.) [de

  1. Electronic and surface properties of pentacene films deposited on SiO{sub 2} prepared by the sol–gel and thermally grown methods

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chi-Jie [Department of Physics, National Changhua University of Education, Changhua 500, Taiwan (China); Tsao, Hou-Yen [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Liu, Day-Shan [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, Huwei 632, Taiwan (China)

    2014-02-03

    This study investigates the effect of different types of SiO{sub 2} on the electronic and surface properties of pentacene films. Developing better contacts on dielectrics is one of the main challenges for pentacene-based transistor technology. The water contact angle variation indicates more hydrophobic thermally grown SiO{sub 2} surfaces than sol–gel SiO{sub 2} surfaces, suggesting that the thermally grown SiO{sub 2} dielectric enables a better molecular arrangement as the pentacene layer is deposited. It is found that the carrier mobility in pentacene on thermally grown SiO{sub 2} dielectrics is higher than that in pentacene on sol–gel SiO{sub 2} dielectrics. The Hall-effect analysis by using the polaron theory revealed that the enhanced carrier mobility is due to the increased spacing between molecules. - Highlights: • The carrier mobility of pentacene on thermally grown and sol–gel SiO{sub 2} was researched. • The enhanced carrier mobility of pentacene on thermally grown SiO2 was observed. • The dominance of tunneling (hopping) at low (high) temperatures was observed. • The carrier mobility is correlated with the morphology of pentacene films.

  2. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements.

    Science.gov (United States)

    Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M

    2014-08-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼10 4  m 2 to ∼10 7  m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼10 2  m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I  = 452 J m -2  K -1  s -1/2 (SI units used throughout this article) is found at YKB followed by PL with I  = 306 and RCK with I  = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.

  3. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  4. Minimum scale controlled topology optimization and experimental test of a micro thermal actuator

    DEFF Research Database (Denmark)

    Heo, S.; Yoon, Gil Ho; Kim, Y.Y.

    2008-01-01

    This paper is concerned with the optimal topology design, fabrication and test of a micro thermal actuator. Because the minimum scale was controlled during the design optimization process, the production yield rate of the actuator was improved considerably; alternatively, the optimization design ...... tested. The test showed that control over the minimum length scale in the design process greatly improves the yield rate and reduces the performance deviation....... without scale control resulted in a very low yield rate. Using the minimum scale controlling topology design method developed earlier by the authors, micro thermal actuators were designed and fabricated through a MEMS process. Moreover, both their performance and production yield were experimentally...

  5. Surface Catalytic Efficiency of Advanced Carbon Carbon Candidate Thermal Protection Materials for SSTO Vehicles

    Science.gov (United States)

    Stewart, David A.

    1996-01-01

    The catalytic efficiency (atom recombination coefficients) for advanced ceramic thermal protection systems was calculated using arc-jet data. Coefficients for both oxygen and nitrogen atom recombination on the surfaces of these systems were obtained to temperatures of 1650 K. Optical and chemical stability of the candidate systems to the high energy hypersonic flow was also demonstrated during these tests.

  6. Thermal crackling: study of the mechanical effects of quick temperature fluctuations on metallic surfaces

    International Nuclear Information System (INIS)

    Pradel, P.

    1984-05-01

    After a brief overview of the thermohydraulical conditions of liquid sodium leading to important temperature fluctuations near the metallic surfaces, the author examines the transfer modes of these fluctuations in the structure thickness and the long term mechanical effects. Dimensioning models based on thermal and metallurgical properties are under study for structures subject to such sodium loads [fr

  7. Facile synthesis of biphasic calcium phosphate microspheres with engineered surface topography for controlled delivery of drugs and proteins.

    Science.gov (United States)

    Zarkesh, Ibrahim; Ghanian, Mohammad Hossein; Azami, Mahmoud; Bagheri, Fatemeh; Baharvand, Hossein; Mohammadi, Javad; Eslaminejad, Mohamadreza Baghaban

    2017-09-01

    Biphasic calcium phosphate (BCP) microspheres are of great interest due to their high stability and osteoinductive properties at specific compositions. However, the need for optimal performance at a unique composition limits their flexibility for tuning drug release by modulation of bulk properties and presents the question of engineering surface topography as an alternative. It is necessary to have a facile method to control surface topography at a defined bulk composition. Here, we have produced BCP microspheres with different surface topographies that have the capability to be used as tunable drug release systems. We synthesized calcium deficient hydroxyapatite (CDHA) microparticles by precipitating calcium and phosphate ions onto ethylenediaminetetraacetic acid (EDTA) templates. The morphology and surface topography of CDHA microparticles were controlled using process parameters, which governed nucleation and growth. These parameters included template concentration, heat rate, and stirring speed. Under low heat rate and static conditions, we could obtain spherical microparticles with long and short nanosheets on their surfaces at low and high EDTA concentrations, respectively. These nanostructured microspheres were subsequently crystallized by thermal treatment to produce EDTA-free BCP microspheres with intact morphology. These biocompatible BCP microspheres were highly effective in loading and prolonged release of both small molecule [dexamethasone (Dex)] and protein [bovine serum albumin (BSA)] models. This strategy has enabled us to control the surface topography of BCP microspheres at defined compositions and holds tremendous promise for drug delivery and tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Thermal design and validation of radiation detector for the ChubuSat-2 micro-satellite with high-thermal-conductive graphite sheets

    Science.gov (United States)

    Park, Daeil; Miyata, Kikuko; Nagano, Hosei

    2017-07-01

    This paper describes thermal design of the radiation detector (RD) for the ChubuSat-2 with the use of high-thermal-conductive materials. ChubuSat-2 satellite is a 50-kg-class micro-satellite joint development with Nagoya University and aerospace companies. The main mission equipment of ChubuSat-2 is a RD to observe neutrons and gamma rays. However, the thermal design of the RD encounters a serious problem, such as no heater for RD and electric circuit alignment constrain. To solve this issue, the RD needs a new thermal design and thermal control for successful space missions. This paper proposes high-thermal-conductive graphite sheets to be used as a flexible radiator fin for the RD. Before the fabrication of the device, the optimal thickness and surface area for the flexible radiator fin were determined by thermal analysis. Consequently, the surface area of flexible radiator fin was determined to be 8.6×104 mm2. To verify the effects of the flexible radiator fin, we constructed a verification model and analyzed the temperature distributions in the RD. Also, the thermal vacuum test was performed using a thermal vacuum chamber, which was evacuated at a pressure of around 10-4 Pa, and its internal temperature was cooled at -80 °C by using a refrigerant. As a result, it has been demonstrated that the flexible radiator fin is effective. And the thermal vacuum test results are presented good correlation with the analysis results.

  9. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.

    Science.gov (United States)

    Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad

    2018-04-18

    Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

  10. Parameter optimization of thermal-model-oriented control law for PEM fuel cell stack via novel genetic algorithm

    International Nuclear Information System (INIS)

    Li Xi; Deng Zhonghua; Wei Dong; Xu Chunshan; Cao Guangyi

    2011-01-01

    Highlights: →We build up the thermal expressions of PEMFC stack. → The expressions are converted into the affine state space control-oriented model for the VSC strategy. → The NGA is developed to optimize the parameter of thermal-model-oriented control law. → Numerical results demonstrate the effectiveness and rationality of the method proposed. - Abstract: It is critical to understand and manage the thermal effects in optimizing the performance and durability of proton exchange membrane fuel cell (PEMFC) stack. And building up the control-oriented thermal model of PEMFC stack is necessary. The thermal model, a set of differential equations, is established according to the conservation equations of mass and energy, which can be used to reflect truly the actual temperature response of PEMFC stack, however, the expressions of the model are too complicated to be used in the design of control. For this reason, the expressions are converted into the affine state space control-oriented model in detail for the variable structure control (VSC) strategy. Meanwhile, the accurate model must be established for the VSC and the parameters of VSC laws should be optimized. Consequently, a novel genetic algorithm (NGA) is developed to optimize the parameter of thermal-model-oriented control law for PEMFC stack. Finally, numerical test results demonstrate the effectiveness and rationality of the method proposed in this paper. It lays the foundation for the realization of online thermal management of PEMFC stack based on VSC.

  11. Model Predictive Control of Hybrid Thermal Energy Systems in Transport Refrigeration

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Alleyne, Andrew

    2015-01-01

    A predictive control scheme is designed to control a transport refrigeration system, such as a delivery truck, that includes a vapor compression cycle configured in parallel with a thermal energy storage (TES) unit. A novel approach to TES utilization is introduced and is based on the current...

  12. Flexible composite material with phase change thermal storage

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  13. Heat transfer control in a plane magnetic fluid layer with a free surface

    International Nuclear Information System (INIS)

    Bashtovoi, V.G.; Pogirnitskaya, S.G.; Reks, A.G.

    1993-01-01

    The heat transfer mechanisms that are specific to a magnetic liquid have been already investigated extensively. The high sensitivity of the free magnetic liquid surface to the external magnetic field introduces a new feature into the heat transfer process. In the present work, the authors have investigated the possibility of controlling the heat transfer through the phenomenon of magnetic liquid surface instability in a uniform magnetic field. The conditions for heat transfer through a chamber, partially filled with a magnetic liquid, are governed by the characteristics of the free liquid surface and by its stability and development in the supercritical magnetic fields. The authors consider a model two-dimensional problem of heat transfer through a two-layer medium consisting of horizontally situated immiscible layers of magnetic and nonmagnetic liquids with given thermal conductivities. In the absence of an external magnetic field, the interface of the liquids represents a plane surface. In fields which exceed the critical magnitude, the interface is deformed along the wave. As the field intensity is increased, the amplitude of interface distortion becomes larger. The two-dimensional shape of the free magnetic liquid surface may be realized experimentally using two plane layers of magnetic and nonmagnetic liquids in a uniform magnetic field tangent to the interface of the component layers. 7 refs., 9 figs

  14. Performance maps for the control of thermal energy storage

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Zeiler, Wim

    2017-01-01

    Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change mat...... material tanks, and thermochemical material tanks. The results show that these performance maps can fully account for the dynamics of thermal energy storage tanks.......Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change...

  15. Evaluation of building envelopes from the viewpoint of capability of controlling thermal environment; Onnetsu kankyo chosei noryoku ni yoru kenchiku gaihi no hyoka no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, K; Ono, S [Taisei Corp., Tokyo (Japan); Shukuya, M [Musashi Institute of Technology, Tokyo (Japan)

    1996-10-27

    The ability that architectural space improves the thermal environment in comparison with outdoor environment is called the `capability of controlling thermal environment.` As the value becomes higher, the indoor thermal environment is more improved. In this paper, the controlling capability of six building envelopes with different window systems was compared. The heat transfer in the wall and window system is approximated using a lumped mass model of heat capacity to obtain a heat balance equation and combined with the heat balance equation in indoor air for backward difference. The wall surface temperature and indoor air temperature in a calculation model are then calculated. A radiation absorption coefficient is used for mutual radiation on each wall. In the model, the adjoining room or first- and second-floor rooms were made the same in conditions as the model on the assumption that the one-side lighted office in an RC reference floor is in the non-illumination and non-airconditioning state. In summer, the controlling capability remarkably varies depending on the window system. For the window facing the south, the annual capability is more advanced than in other directions and the indoor thermal environment is improved on the average. 7 refs., 12 figs., 1 tab.

  16. Thermally controlled comb generation and soliton modelocking in microresonators.

    Science.gov (United States)

    Joshi, Chaitanya; Jang, Jae K; Luke, Kevin; Ji, Xingchen; Miller, Steven A; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L

    2016-06-01

    We report, to the best of our knowledge, the first demonstration of thermally controlled soliton mode-locked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton mode-locked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of mode-locked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.

  17. Controllable magnetic thermal rectification in a SMM dimmer with the Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Xu, Ai-Hua; Liu, Juan; Luo, Bo

    2016-10-01

    Using the quantum master equation, we studied the thermally driven magnonic spin current in a single-molecule magnet (SMM) dimer with the Dzyaloshinskii-Moriya interaction (DMI). Due to the asymmetric DMI, one can observe the thermal rectifying effect in the case of the spatial symmetry coupling with the thermal reservoirs. The properties of the thermal rectification can be controlled by tuning the angle and intensity of the magnetic field. Specially, when the DM vector and magnetic field point at the specific angles, the thermal rectifying effect disappears. And this phenomenon does not depend on the intensities of DMI and magnetic field, the temperature bias and the magnetic anisotropies of the SMM.

  18. Balanced and servo control surfaces

    Science.gov (United States)

    1930-01-01

    Many reports on various control systems are available, but the results cannot be generally applied since the effect of particular changes of surface-form and mounting are subject to variations depending upon airfoil section and influences of airplane layout. This report presents a simple analysis of several control systems in more general use. Elevators, ailerons, and rudders are all discussed.

  19. Optimizing phonon scattering by tuning surface-interdiffusion-driven intermixing to break the random-alloy limit of thermal conductivity

    Science.gov (United States)

    Yang, Xiaolong; Li, Wu

    2018-01-01

    We investigate the evolution of the cross-plane thermal conductivity κ of superlattices (SLs) as interfaces change from perfectly abrupt to totally intermixed, by using nonequilibrium molecular dynamics simulations in combination with the spectral heat current calculations. We highlight the role of surface-interdiffusion-driven intermixing by calculating the κ of SLs with changing interface roughness, whose tuning allows for κ values much lower than the "alloy limit" and the abrupt interface limit in same cases. The interplay between alloy and interface scattering in different frequency ranges provides a physical basis to predict a minimum of thermal conductivity. More specifically, we also explore how the interface roughness affects the thermal conductivities for SL materials with a broad span of atomic mass and bond strength. In particular, we find that (i) only when the "spacer" thickness of SLs increases up to a critical value, κ of rough SLs can break the corresponding "alloy limit," since SLs with different "spacer" thickness have different characteristic length of phonon transport, which is influenced by surface-interdiffusion-driven intermixing to different extend. (ii) Whether κ changes monotonically with interface roughness strongly depends on the period length and intrinsic behavior of phonon transport for SL materials. Especially, for the SL with large period length, there exists an optimal interface roughness that can minimize the thermal conductivity. (iii) Surface-interdiffusion-driven intermixing is more effective in achieving a low κ below the alloy limit for SL materials with large mass mismatch than with small one. (iv) It is possible for SL materials with large lattice mismatch (i.e., bond strength) to design an ideally abrupt interface structure with κ much below the alloy limit. These results have clear implications for optimization of thermal transport for heat management and for the development of thermoelectric materials.

  20. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    Science.gov (United States)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  1. Optically-controlled long-term storage and release of thermal energy in phase-change materials

    OpenAIRE

    Han, Grace G. D.; Li, Huashan; Grossman, Jeffrey C.

    2017-01-01

    Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid–solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive ...

  2. Sequential cryogen spraying for heat flux control at the skin surface

    Science.gov (United States)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  3. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Felix, T., E-mail: tsfelix81@gmail.com [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Cassini, F.A.; Benetoli, L.O.B. [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Dotto, M.E.R. [Physics Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Debacher, N.A. [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil)

    2017-05-01

    Highlights: • Polymeric surfaces were etched using non-thermal plasma at different intensities. • Polymers of low mechanical hardness reached the saturation level faster. • A mathematical model based on scaling laws was proposed. - Abstract: The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, R{sub RMS} (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91{sub (PET)} and 0.88{sub (PEEK)}, β = 0.25{sub (PET)} and z = 3,64{sub (PET)}.

  4. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    International Nuclear Information System (INIS)

    Felix, T.; Cassini, F.A.; Benetoli, L.O.B.; Dotto, M.E.R.; Debacher, N.A.

    2017-01-01

    Highlights: • Polymeric surfaces were etched using non-thermal plasma at different intensities. • Polymers of low mechanical hardness reached the saturation level faster. • A mathematical model based on scaling laws was proposed. - Abstract: The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, R_R_M_S (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91_(_P_E_T_) and 0.88_(_P_E_E_K_), β = 0.25_(_P_E_T_) and z = 3,64_(_P_E_T_).

  5. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    The equivalent solid plate method, in conjunction with two-dimensional plane stress and plane strain analyses, was used in assessing the thermal stress behavior of HTGR fuel and control rod fuel blocks. For the control rod fuel blocks, particular attention was given to ascertaining the effects of the reserve shutdown hole and the control rod channel holes. The assumed safety factor of 2 on the failure criteria was considered adequate to account for neglecting the axial temperature gradient in the plane analyses of the ends of the blocks. The analyses indicated that the maximum calculated tensile stress values were smaller than the criteria values except for the plane strain analysis of the control rod fuel block end surfaces and the axisymmetric analysis of the fuel block as a circular cylinder. However, most of the maximum calculated strain values were greater than the criteria values

  6. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

    Science.gov (United States)

    Elzouka, Mahmoud; Ndao, Sidy

    2018-01-01

    The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

  7. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  8. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    Science.gov (United States)

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  9. Analysis of dual-phase-lag thermal behaviour in layered films with temperature-dependent interface thermal resistance

    International Nuclear Information System (INIS)

    Liu, K-C

    2005-01-01

    This work analyses theoretically the dual-phase-lag thermal behaviour in two-layered thin films with an interface thermal resistance, which is predicted by the radiation boundary condition model. The effect of the interface thermal resistance on the transmission-reflection phenomenon, induced by a pulsed volumetric source adjacent to the exterior surface of one layer, is investigated. Due to the difference between the two layers in the relaxation times, τ q and τ T , and the nonlinearity of the interfacial boundary condition, complexity is introduced and some mathematical difficulties are involved in solving the present problem. A hybrid application of the Laplace transform method and a control-volume formulation are used along with the linearization technique. The results show that the effect of the thermophysical properties on the behaviour of the energy passing across the interface gradually reduces with increasing interface thermal resistance. The lagging thermal behaviour depends on the magnitude of τ T and τ q more than on the ratio of τ T /τ q

  10. DACS II - A distributed thermal/mechanical loads data acquisition and control system

    Science.gov (United States)

    Zamanzadeh, Behzad; Trover, William F.; Anderson, Karl F.

    1987-01-01

    A distributed data acquisition and control system has been developed for the NASA Flight Loads Research Facility. The DACS II system is composed of seven computer systems and four array processors configured as a main computer system, three satellite computer systems, and 13 analog input/output systems interconnected through three independent data networks. Up to three independent heating and loading tests can be run concurrently on different test articles or the entire system can be used on a single large test such as a full scale hypersonic aircraft. Thermal tests can include up to 512 independent adaptive closed loop control channels. The control system can apply up to 20 MW of heating to a test specimen while simultaneously applying independent mechanical loads. Each thermal control loop is capable of heating a structure at rates of up to 150 F per second over a temperature range of -300 to +2500 F. Up to 64 independent mechanical load profiles can be commanded along with thermal control. Up to 1280 analog inputs monitor temperature, load, displacement and strain on the test specimens with real time data displayed on up to 15 terminals as color plots and tabular data displays. System setup and operation is accomplished with interactive menu-driver displays with extensive facilities to assist the users in all phases of system operation.

  11. Simulation study of multi-step model algorithmic control of the nuclear reactor thermal power tracking system

    International Nuclear Information System (INIS)

    Shi Xiaoping; Xu Tianshu

    2001-01-01

    The classical control method is usually hard to ensure the thermal power tracking accuracy, because the nuclear reactor system is a complex nonlinear system with uncertain parameters and disturbances. A sort of non-parameter model is constructed with the open-loop impulse response of the system. Furthermore, a sort of thermal power tracking digital control law is presented using the multi-step model algorithmic control principle. The control method presented had good tracking performance and robustness. It can work despite the existence of unmeasurable disturbances. The simulation experiment testifies the correctness and effectiveness of the method. The high accuracy matching between the thermal power and the referenced load is achieved

  12. Instrumentation and control systems for monitoring and data acquisition for thermal recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, J.; Hernandez, E.; Perozo, H. [PDVSA Intevep, S.A. (Venezuela)

    2011-07-01

    Thermal recovery methods are often applied to enhance oil recovery in heavy oil reservoirs, one of its challenges is to control the displacement of the thermal front. Methods are thus implemented to obtain data on the temperatures in the wells at any given time and to monitor other variables so that the behaviour of the thermal front can be predicted. The aim of this paper is to present a new control and instrumentation scheme to measure all of the variables. A software was created using Labview a graphs-based programming language software and PostgreSQL, a database management system. Using this software, sensors can be added or removed at any time; trends can be immediately visualized; and quality of the information is ensured since there is no human intervention in the data collection or processing. This paper presented a software which improves monitoring of all of the variables affecting the behaviour of the thermal front.

  13. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  14. Surface Magnetism of Cobalt Nanoislands Controlled by Atomic Hydrogen.

    Science.gov (United States)

    Park, Jewook; Park, Changwon; Yoon, Mina; Li, An-Ping

    2017-01-11

    Controlling the spin states of the surface and interface is key to spintronic applications of magnetic materials. Here, we report the evolution of surface magnetism of Co nanoislands on Cu(111) upon hydrogen adsorption and desorption with the hope of realizing reversible control of spin-dependent tunneling. Spin-polarized scanning tunneling microscopy reveals three types of hydrogen-induced surface superstructures, 1H-(2 × 2), 2H-(2 × 2), and 6H-(3 × 3), with increasing H coverage. The prominent magnetic surface states of Co, while being preserved at low H coverage, become suppressed as the H coverage level increases, which can then be recovered by H desorption. First-principles calculations reveal the origin of the observed magnetic surface states by capturing the asymmetry between the spin-polarized surface states and identify the role of hydrogen in controlling the magnetic states. Our study offers new insights into the chemical control of magnetism in low-dimensional systems.

  15. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage

    International Nuclear Information System (INIS)

    Fiorentini, Massimo; Wall, Josh; Ma, Zhenjun; Braslavsky, Julio H.; Cooper, Paul

    2017-01-01

    Highlights: • A comprehensive approach to managing thermal energy in residential buildings. • Solar-assisted HVAC system with on-site energy generation and storage. • Mixed logic-dynamical building model identified using experimental data. • Design and implementation of a logic-dynamical model predictive control strategy. • MPC applied to the Net-Zero Energy house winner of the Solar Decathlon China 2013. - Abstract: This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a 1-h control step is used to select the operating mode of the HVAC system. At the low-level, each operating mode is optimised using a 1-h rolling prediction horizon with a 5-min control step. The proposed control strategy has been practically implemented on the Building Management and Control System (BMCS) of a Net Zero-Energy Solar Decathlon house. This house features a sophisticated HVAC system comprising of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal storage integrated with the air-handling unit (AHU) of a ducted reverse-cycle heat pump system. The simulation and experimental results demonstrated the high performance achievable using an HMPC approach to optimising complex multimode HVAC systems in residential buildings, illustrating efficient selection of the appropriate operating modes

  16. The summer thermal behaviour of 'skin' materials for vertical surfaces in Athens, Greece, as a decisive parameter for their selection

    Energy Technology Data Exchange (ETDEWEB)

    Bougiatioti, F.; Evangelinos, E.; Poulakos, G.; Zacharopoulos, E. [National Technical University of Athens, School of Architecture, Department of Architectural Technology, 42, Patission Street, 10682 Athens (Greece)

    2009-04-15

    This paper analyses the thermal behaviour of the materials, which are widely used on the vertical surfaces of Greek cities. This analysis is based on surface temperatures measurements, which were carried out both in situ in various buildings of Athens, Greece and experimentally on samples of building materials exposed to solar radiation on a building's flat roof. The study includes surfacing materials, which are usually applied on building facades around Greece. The study leads to a number of conclusions concerning the effect of colour and orientation on the summer surface temperatures of materials, used on vertical city surfaces. These conclusions indicate how surfacing materials should be chosen in order to help mitigate the urban heat island and improve thermal comfort conditions in the outdoor spaces of Greek cities during the overheated summer period. (author)

  17. Thermal-mechanical simulation of high-current pulsed electron beam surface modification process of pure aluminum

    International Nuclear Information System (INIS)

    Zou Jianxin; Qin Ying; Wu Aimin; Hao Shengzhi; Wang Xiaogang; Dong Chuang

    2004-01-01

    A mathematical physics model is established to describe the surface modification process of High Current Pulsed Electron Beams (HCPEB) of pure aluminum alloy. Computer simulation is used to reveal the phenomena of fast heating and cooling, melting, solidification, evaporation, and thermal stress wave associated with the HCPEB bombardment. The calculated melting depth is about 1-10 μm, which is close to the experimental results. The evaporated layer is at nanometer level, which can be omitted in the calculation of temperature field. The thermal stress wave, though as weak as about 0.1 MPa in peak amplitude (proportional to pulsed energy density), has strong impacts on material's structure and properties. (authors)

  18. Experimental Investigation of Thermal Behaviors in Window Systems by Monitoring of Surface Condensation Using Full-Scale Measurements and Simulation Tools

    Directory of Open Access Journals (Sweden)

    Goopyo Hong

    2016-11-01

    Full Text Available The aim of the present study was to investigate the thermal performance of window systems using full-scale measurements and simulation tools. A chamber was installed on the balcony of an apartment to control the temperatures which can create condensation on the interior surfaces of window systems. The condensation process on the window was carefully scrutinized when outdoor and indoor temperature and indoor relative humidity ranged from −15 °C to −20 °C, 23 °C to 24 °C, and 50% to 65%, respectively. The results of these investigations were analyzed to determine how the moisture is influenced by changing temperatures. It appears that the glass-edge was highly susceptible to the temperature variations and the lowest temperature on the glass edge was caused by the heat transfer through the spacer, between the two glass panels of the window. The results from the simulation used in this study confirm that the thermal performance of window systems can be improved the use of super insulated or thermally broken spacers. If the values of the indoor humidity and temperature are given, then the outdoor temperature when condensation forms can be obtained by using Temperature Difference Ratio (TDR. This methodology can be employed to predict the possible occurrence of condensation.

  19. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  20. Experimental Comparison of the Tribological Properties of Selected Surfaces Created by Thermal Spraying Technology

    Directory of Open Access Journals (Sweden)

    František Tóth

    2016-01-01

    Full Text Available The scientific article titled “Experimental comparison of the tribological properties of selected surfaces created by thermal spraying technology” deals with the surface condition of selected pairs working within the mixed friction before and after experimental tests. Based on the chosen methodology, the experimental tests were performed on the Tribotestor M’06 testing machine. The ecological oil MOGUL HEES 46 (manufactured by Paramo was used as a lubricant. The tests were performed on selected material pairs. The first friction element was a shaft of steel 14 220. The second friction element was a steel plate of steel 11 373 with a friction surface created by two materials, i.e. CuSn10 and NP 40. The results are statistically elaborated and illustrated in figures and tables.

  1. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    Science.gov (United States)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  2. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan; Zhang, Xueqian; Yang, Quanlong; Tian, Chunxiu; Xu, Yuehong; Zhang, Jianbing; Zhao, Hongwei; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling

  3. Thermal analysis of the modified Hallum Nuclear Power Facility cask using experimentally obtained thermal boundary conditions corresponding to an engulfing open pool fire

    International Nuclear Information System (INIS)

    Longenbaugh, R.S.; Sanchez, L.C.; Gregory, J.J.

    1987-08-01

    This report presents the two-dimensional heat transfer analysis of an open pool fire surrounding a modified radioactive materials transport cask. The cask is an older cask that was used by the Hallum Nuclear Power Facility (HNPF). The HNPF cask did not have a neutron shielding region but was modified to include one for testing purposes. Analysis of the thermal effects of an engulfing open pool fire was performed with the use of the heat transfer code Q/TRAN, which had previously been used in thermal benchmarking problems for spent nuclear fuel casks. Boundary condition data for the analysis were derived from experimental open pool fire tests of large-scale calorimeter test articles performed at SNL that produced information about cask surface heat flux versus surface temperature relationships. Data analysis was directed toward a determination of the thermal response of the cask, particularly the extent of lead melt since lead is used within the HNPF cask's gamma-shielding region. Parameters, such as surface emissivity and internal heat generation rate, can affect the results of the thermal analysis which control the amount of lead melt. A parameter sensitivity analysis was performed using a one-dimensional model to describe how surface emissivity and internal heat generation rates affect the temperature distribution within the cask. The information from this analysis was used to determine the range of parameters for the two-dimensional thermal analysis. 13 refs., 57 figs., 8 tabs

  4. Deconvolution of Thermal Emissivity Spectra of Mercury to their Endmember Counterparts measured in Simulated Mercury Surface Conditions

    Science.gov (United States)

    Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.

    2017-12-01

    The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA Bepicolombo mission to Mercury will map the thermal emissivity at wavelength range of 7-14 μm and spatial resolution of 500 m/pixel [1]. Mercury was also imaged at the same wavelength range using the Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii with the minimum spatial coverage of 400-600km/spectra which blends all rocks, minerals, and soil types [2]. Therefore, the study [2] used quantitative deconvolution algorithm developed by [3] for spectral unmixing of this composite thermal emissivity spectrum from telescope to their respective areal fractions of endmember spectra; however, the thermal emissivity of endmembers used in [2] is the inverted reflectance measurements (Kirchhoff's law) of various samples measured at room temperature and pressure. Over a decade, the Planetary Spectroscopy Laboratory (PSL) at the Institute of Planetary Research (PF) at the German Aerospace Center (DLR) facilitates the thermal emissivity measurements under controlled and simulated surface conditions of Mercury by taking emissivity measurements at varying temperatures from 100-500°C under vacuum conditions supporting MERTIS payload. The measured thermal emissivity endmember spectral library therefore includes major silicates such as bytownite, anorthoclase, synthetic glass, olivine, enstatite, nepheline basanite, rocks like komatiite, tektite, Johnson Space Center lunar simulant (1A), and synthetic powdered sulfides which includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Using such specialized endmember spectral library created under Mercury's conditions significantly increases the accuracy of the deconvolution model results. In this study, we revisited the available telescope spectra and redeveloped the algorithm by [3] by only choosing the endmember spectral library created at PSL for unbiased model

  5. Effect of ion implantation on thermal shock resistance of magnesia and glass

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Williams, J.S.; Watt, A.J.

    1995-01-01

    Monocrystals of magnesia together with glass samples have been subjected to ion implantation prior to thermal shock testing in an impulse plasma of continuously varied intensity. Measurements of the separation between fragments have been used to estimate the surface temperature. Fracture and deformation characteristics of the surface layer are measured in ion implanted and unimplanted samples using optical and scanning electron microscopy. Implantation-induced near-surface damage is analysed by ion channeling using 2 MeV He + ions. Ion implantation is shown to modify the near-surface structure of magnesia samples by introducing damage, which makes crack initiation easier under thermal stresses. The fracture threshold and maximum crack density are shifted towards the lower temperature range. Ion implanted MgO crystals show a ten fold increase in surface crack density. An increased crack density results in a decreased degree of damage characterised by the depth of crack penetration. The thermal stress resistance parameter of glass samples is increased at relatively small doses and decreased at higher doses. The results suggest that crack density and the degree of fracture damage in brittle ceramics operating under thermal shock conditions can be effectively controlled by ion implantation which provides crack initiating defects in the near-surface region. 23 refs., 7 figs

  6. On the metal-rich surfaces of (16) Psyche and other M-type asteroids from interferometric observations in the thermal infrared

    Science.gov (United States)

    Delbo, Marco; Matter, A.; Gundlach, B.; Blum, J.

    2013-10-01

    Asteroids belonging to the spectroscopic M-type exhibit a quasi featureless and moderately red reflectance spectrum and a geometric visible albedo between 0.1 and 0.3. These asteroids were initially thought to be metallic cores of differentiated asteroids that were exposed to space by a catastrophic disruption by impacts. Later, this view has been challenged by the detection of silicates and hydration spectroscopic bands on these bodies. Unveiling the physical properties of the surfaces of these asteroids, and identifying their meteorite analogs is a challenge from remote-sensing observations. Nevertheless, these are crucial problems, important for estimating the number of asteroids that underwent differentiation in the early phases of the formation of our solar system. The thermal inertia is a sensitive indicator for the presence of metal in the regolith on the surfaces of asteroids. We developed a new thermophysical model that allow us to derive the value of the thermal inertia from interferometric observations in the thermal infrared. We report on our investigation of the thermal inertia of M-type asteroids, including the asteroids (16) Psyche, for which we obtained a thermal inertia value anomalously high compared to the thermal inertia values of other asteroids in the same size range. From the thermal inertia and model of heat conductivity that accounts for different values of the packing fraction (a measure of the degree of compaction of the regolith particles) the regolith grain size is derived.

  7. A Robust Model Predictive Control for efficient thermal management of internal combustion engines

    International Nuclear Information System (INIS)

    Pizzonia, Francesco; Castiglione, Teresa; Bova, Sergio

    2016-01-01

    Highlights: • A Robust Model Predictive Control for ICE thermal management was developed. • The proposed control is effective in decreasing the warm-up time. • The control system reduces coolant flow rate under fully warmed conditions. • The control strategy operates the cooling system around onset of nucleate boiling. • Little on-line computational effort is required. - Abstract: Optimal thermal management of modern internal combustion engines (ICE) is one of the key factors for reducing fuel consumption and CO_2 emissions. These are measured by using standardized driving cycles, like the New European Driving Cycle (NEDC), during which the engine does not reach thermal steady state; engine efficiency and emissions are therefore penalized. Several techniques for improving ICE thermal efficiency were proposed, which range from the use of empirical look-up tables to pulsed pump operation. A systematic approach to the problem is however still missing and this paper aims to bridge this gap. The paper proposes a Robust Model Predictive Control of the coolant flow rate, which makes use of a zero-dimensional model of the cooling system of an ICE. The control methodology incorporates explicitly the model uncertainties and achieves the synthesis of a state-feedback control law that minimizes the “worst case” objective function while taking into account the system constraints, as proposed by Kothare et al. (1996). The proposed control strategy is to adjust the coolant flow rate by means of an electric pump, in order to bring the cooling system to operate around the onset of nucleate boiling: across it during warm-up and above it (nucleate or saturated boiling) under fully warmed conditions. The computationally heavy optimization is carried out off-line, while during the operation of the engine the control parameters are simply picked-up on-line from look-up tables. Owing to the little computational effort required, the resulting control strategy is suitable for

  8. Alternatives for thermal legionella control; Alternatieven thermische legionellabestrijding

    Energy Technology Data Exchange (ETDEWEB)

    Van Lieshout, M.

    2008-03-15

    One supplier considers his system a breakthrough in legionella control. Another claims decisively that his system provides the only affordable and effective solution. It is clear that manufacturers have their own way of finding alternatives in those cases where thermal control for complex existing installations prove not to be effective. (mk) [Dutch] De ene leverancier noemt zijn systeem een doorbraak in de legionellabestrijding. Een ander beweert met grote stelligheid dat zijn systeem de enige betaalbare en effectieve oplossing is. Duidelijk is dat fabrikanten op hun eigen manier een oplossing zoeken naar alternatieven, daar waar het thermisch beheer voor complexe bestaande installaties niet effectief blijk te zijn.

  9. Methods and compositions for rapid thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher

    2018-04-10

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  10. Kinetically controlled fabrication of gold nanorods and investigation of their thermal stability via in-situ TEM heating

    Science.gov (United States)

    Chankhunthod, N.; Aslam, Z.; Critchley, K.; Evans, S. D.; Brydson, R.

    2017-09-01

    Size controlled CTAB-capped AuNRs with various aspect ratios (ARs) ranging from 1.63±0.13 to 4.12±0.25 were synthesized following a modified seed-mediated method. Their thermal stability was examined by in-situ TEM heating. The results revealed a structural change from rods to spheres with increasing temperature. At lower temperatures 600ºC, particles became increasingly spherical. This behaviour occurred at temperatures lower than the melting point of bulk gold supporting a surface diffusion mechanism with material diffusing from the tips and redepositing at the middle of the rods. The rate of change in AR appeared to increase for thinner AuNRs.

  11. Effect of argon implantation on solid-state dewetting: control of size and surface density of silicon nanocrystals.

    Science.gov (United States)

    Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C

    2017-01-27

    Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .

  12. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  13. Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nowicki Piotr

    2015-12-01

    Full Text Available Two series of functionalised carbonaceous adsorbents were prepared by means of oxidation and nitrogenation of commercially available activated carbon and multi-walled carbon nanotubes. The effect of nitrogen and oxygen incorporation on the textural, surface, thermal and sorption properties of the adsorbents prepared was tested. The materials were characterized by elemental analysis, low-temperature nitrogen sorption, thermogravimetric study and determination of the surface oxygen groups content. Sorptive properties of the materials obtained were characterized by the adsorption of methylene and alkali blue 6B as well as copper(II ions. The final products were nitrogen- and oxygen-enriched mesoporous adsorbents of medium-developed surface area, showing highly diverse N and O-heteroatom contents and acidic-basic character of the surface. The results obtained in our study have proved that through a suitable choice of the modification procedure of commercial adsorbents it is possible to produce materials with high sorption capacity towards organic dyes as well as copper(II ions.

  14. Influence of ECR-RF plasma modification on surface and thermal properties of polyester copolymer

    Directory of Open Access Journals (Sweden)

    Fray Miroslawa El

    2015-12-01

    Full Text Available In this paper we report a study on influence of radio-frequency (RF plasma induced with electron cyclotron resonance (ECR on multiblock copolymer containing butylene terephthalate hard segments (PBT and butylene dilinoleate (BDLA soft segments. The changes in thermal properties were studied by DSC. The changes in wettability of PBT-BDLA surfaces were studied by water contact angle (WCA. We found that ECR-RF plasma surface treatment for 60 s led to decrease of WCA, while prolonged exposure of plasma led to increase of WCA after N2 and N2O2 treatment up to 70°–80°. The O2 reduced the WCA to 50°–56°. IR measurements confirmed that the N2O2 plasma led to formation of polar groups. SEM investigations showed that plasma treatment led to minor surfaces changes. Collectively, plasma treatment, especially O2, induced surface hydrophilicity what could be beneficial for increased cell adhesion in future biomedical applications of these materials.

  15. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Li Kai

    2015-10-01

    Full Text Available Silica-based materials are widely employed in the thermal protection system for hypersonic vehicles, and the investigation of their catalytic characteristics is crucially important for accurate aerothermal heating prediction. By analyzing the disadvantages of Norman’s high and low temperature models, this paper combines the two models and proposes an eight-reaction combined surface catalytic model to describe the catalysis between oxygen and silica surface. Given proper evaluation of the parameters according to many references, the recombination coefficient obtained shows good agreement with experimental data. The catalytic mechanisms between oxygen and silica surface are then analyzed. Results show that with the increase of the wall temperature, the dominant reaction contributing to catalytic coefficient varies from Langmuir–Hinshelwood (LH recombination (TW  1350 K. The surface coverage of chemisorption areas varies evidently with the dominant reactions in the high temperature (HT range, while the surface coverage of physisorption areas varies within quite low temperature (LT range (TW < 250 K. Recommended evaluation of partial parameters is also given.

  16. Urban thermal landscape characterization and analysis

    International Nuclear Information System (INIS)

    Xue, Y; Fung, T; Tsou, J

    2014-01-01

    Urban warming is sensitive to the nature (thermal properties, including albedo, water content, heat capacity and thermal conductivity) and the placement (surface geometry or urban topography) of urban surface. In this research, the pattern and variation of urban surface temperature is regarded as one kind of landscape, urban thermal landscape, which is assumed as the presentation of local surface heating process upon urban landscape. The goal of this research is to develop a research framework incorporating geospatial statistics, thermal infrared remote sensing and landscape ecology to study the urban effect on local surface thermal landscape regarding both the pattern and process. This research chose Hong Kong as the case study. Within the study area, urban and rural area coexists upon a hilly topography. In order to probe the possibility of local surface warming mechanism discrepancy between urban and rural area, the sample points are grouped into urban and rural categories in according with the land use map taken into a linear regression model separately to examine the possible difference in local warming mechanism. Global regression analysis confirmed the relationship between environmental factors and surface temperature and the urban-rural distinctive mechanism of dominating diurnal surface warming is uncovered

  17. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.

  18. Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach

    Energy Technology Data Exchange (ETDEWEB)

    Mu Lijun, E-mail: l.j.mu@hotmail.com [School of Material Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Zhao Wenzhen [School of Material Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-05-30

    A thermal-induced surface crosslinking process was employed to perform a hydrophilic surface modification of PES porous membranes. Difunctional poly(ethylene glycol) diacrylate (PEGDA) was used as the main crosslinking modifier. The addition of trifunctional trimethylolpropane trimethylacrylate (TMPTMA) into the reaction solutions accelerated the crosslinking progress of PEGDA on PES membranes. The membrane surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and FTIR-ATR spectroscopy. The mass gains (MG) of the modified membranes could be conveniently modulated by varying the PEGDA concentration and crosslinking time. The measurements of water contact angle showed that the hydrophilicity of PES membranes was remarkably enhanced by the coating of crosslinked PEGDA layer. When a moderate mass gain of about 150 {mu}g/cm{sup 2} was reached, both the permeability and anti-fouling ability of PES membranes could be significantly improved. Excessive mass gain not only contributed little to the anti-fouling ability, but also brought a deteriorated permeability to PES membranes.

  19. Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach

    International Nuclear Information System (INIS)

    Mu Lijun; Zhao Wenzhen

    2009-01-01

    A thermal-induced surface crosslinking process was employed to perform a hydrophilic surface modification of PES porous membranes. Difunctional poly(ethylene glycol) diacrylate (PEGDA) was used as the main crosslinking modifier. The addition of trifunctional trimethylolpropane trimethylacrylate (TMPTMA) into the reaction solutions accelerated the crosslinking progress of PEGDA on PES membranes. The membrane surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and FTIR-ATR spectroscopy. The mass gains (MG) of the modified membranes could be conveniently modulated by varying the PEGDA concentration and crosslinking time. The measurements of water contact angle showed that the hydrophilicity of PES membranes was remarkably enhanced by the coating of crosslinked PEGDA layer. When a moderate mass gain of about 150 μg/cm 2 was reached, both the permeability and anti-fouling ability of PES membranes could be significantly improved. Excessive mass gain not only contributed little to the anti-fouling ability, but also brought a deteriorated permeability to PES membranes.

  20. Measuring the Thermal Conductivity of Sediments for the Estimation of Groundwater Discharge to Surface Waters with Temperature Probes

    Science.gov (United States)

    Duque, C.; Müller, S.; Sebok, E.; Engesgaard, P. K.

    2015-12-01

    Using temperature probes is a common exploratory method for studying groundwater-surface water interaction due to the ease for collecting measurements and the simplicity of the different analytical solutions. This approach requires to define the surface water temperature, the groundwater temperature and a set of parameters (density and specific capacity of water, and thermal conductivity of sediments) that can be easily extracted from tabulated values under the assumption that they are homogeneous in the study area. In the case of the thermal conductivity, it is common to apply a standard value of 1.84 Wm-1 C-1 corresponding to sand. Nevertheless the environments where this method is applied, like streambeds or lake/lagoons shores, are sedimentary depositional systems with high energy and biological activity that often lead to sediments dominated by organic matter or sharp changes in grain size modifying greatly the thermal conductivity values. In this study, the thermal conductivity was measured in situ along transects where vertical temperature profiles were collected in a coastal lagoon bed receiving groundwater discharge (Ringkøbing Fjord, Denmark). A set of 4 transects with 10-20 temperature profiles during 3 different seasons was analyzed together with more than 150 thermal conductivity measurements along the working transects and in experimental parcels of 1 m2 where the cm scale spatial variability of the thermal conductivity was assessed. The application of a literature-based bulk thermal conductivity of 1.84 Wm-1 C-1 instead of field data that ranged from 0.62 to 2.19 Wm-1 C-1, produced a mean flux overestimation of 2.33 cm d-1 that, considering the low fluxes of the study area, represents an increase of 89 % and up to a factor of 3 in the most extreme cases. The changes in thermal conductivity can alter the estimated fluxes hindering the detection of patterns in groundwater discharge and modifying the interpretation of the results.

  1. Vibrational energy on surfaces: Ultrafast flash-thermal conductance of molecular monolayers

    Science.gov (United States)

    Dlott, Dana

    2008-03-01

    Vibrational energy flow through molecules remains a perennial problem in chemical physics. Usually vibrational energy dynamics are viewed through the lens of time-dependent level populations. This is natural because lasers naturally pump and probe vibrational transitions, but it is also useful to think of vibrational energy as being conducted from one location in a molecule to another. We have developed a new technique where energy is driven into a specific part of molecules adsorbed on a metal surface, and ultrafast nonlinear coherent vibrational spectroscopy is used to watch the energy arrive at another part. This technique is the analog of a flash thermal conductance apparatus, except it probes energy flow with angstrom spatial and femtosecond temporal resolution. Specific examples to be presented include energy flow along alkane chains, and energy flow into substituted benzenes. Ref: Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317, 787-790 (2007). This material is based upon work supported by the National Science Foundation under award DMR 0504038 and the Air Force Office of Scientific Research under award FA9550-06-1-0235.

  2. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  3. Measurements of Regolith Simulant Thermal Conductivity Under Asteroid and Mars Surface Conditions

    Science.gov (United States)

    Ryan, A. J.; Christensen, P. R.

    2017-12-01

    Laboratory measurements have been necessary to interpret thermal data of planetary surfaces for decades. We present a novel radiometric laboratory method to determine temperature-dependent thermal conductivity of complex regolith simulants under rough to high vacuum and across a wide range of temperatures. This method relies on radiometric temperature measurements instead of contact measurements, eliminating the need to disturb the sample with thermal probes. We intend to determine the conductivity of grains that are up to 2 cm in diameter and to parameterize the effects of angularity, sorting, layering, composition, and eventually cementation. We present the experimental data and model results for a suite of samples that were selected to isolate and address regolith physical parameters that affect bulk conductivity. Spherical glass beads of various sizes were used to measure the effect of size frequency distribution. Spherical beads of polypropylene and well-rounded quartz sand have respectively lower and higher solid phase thermal conductivities than the glass beads and thus provide the opportunity to test the sensitivity of bulk conductivity to differences in solid phase conductivity. Gas pressure in our asteroid experimental chambers is held at 10^-6 torr, which is sufficient to negate gas thermal conduction in even our coarsest of samples. On Mars, the atmospheric pressure is such that the mean free path of the gas molecules is comparable to the pore size for many regolith particulates. Thus, subtle variations in pore size and/or atmospheric pressure can produce large changes in bulk regolith conductivity. For each sample measured in our martian environmental chamber, we repeat thermal measurement runs at multiple pressures to observe this behavior. Finally, we present conductivity measurements of angular basaltic simulant that is physically analogous to sand and gravel that may be present on Bennu. This simulant was used for OSIRIS-REx TAGSAM Sample Return

  4. Engineering aspects of a thermal control subsystem for the 25 kW power module

    Science.gov (United States)

    Schroeder, P. E.

    1979-01-01

    The paper presents the key trade study results, analysis results, and the recommended thermal control approach for the 25 kW power module defined by NASA. Power conversion inefficiencies and component heat dissipation results in a minimum heat rejection requirement of 9 kW to maintain the power module equipment at desired temperature levels. Additionally, some cooling capacity should be provided for user payloads in the sortie and free-flying modes. The baseline thermal control subsystem includes a dual-loop-pumped Freon-21 coolant with the heat rejected from deployable existing orbiter radiators. Thermal analysis included an assessment of spacecraft orientations, radiator shapes and locations, and comparison of hybrid heat pipe and all liquid panels.

  5. Passive Films for CubeSat Solar Array and Radiator Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Trending towards reduced power and mass budget on satellites with a longer mission life, there is a need for a reliable thermal control system that is more efficient...

  6. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator.

    Science.gov (United States)

    Tattersall, Glenn J; Andrade, Denis V; Abe, Augusto S

    2009-07-24

    The toco toucan (Ramphastos toco), the largest member of the toucan family, possesses the largest beak relative to body size of all birds. This exaggerated feature has received various interpretations, from serving as a sexual ornament to being a refined adaptation for feeding. However, it is also a significant surface area for heat exchange. Here we show the remarkable capacity of the toco toucan to regulate heat distribution by modifying blood flow, using the bill as a transient thermal radiator. Our results indicate that the toucan's bill is, relative to its size, one of the largest thermal windows in the animal kingdom, rivaling elephants' ears in its ability to radiate body heat.

  7. Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit

    Science.gov (United States)

    Ku, Jentung; Robinson, Franklin; Patel, Deepak; Ottenstein, Laura

    2013-01-01

    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more

  8. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics

    International Nuclear Information System (INIS)

    Yang, Chao; Chang, Chao; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-01-01

    Highlights: • A flexible and high-performance heat pipe is fabricated. • Bending effect on thermal performance of flexible heat pipes is evaluated. • Theoretical analysis is carried out to reveal the change of thermal resistance with bending. • Thermal control of foldable electronics with flexible heat pipes is demonstrated. - Abstract: In this work, we report the fabrication and thermal performance evaluation of flexible heat pipes prepared by using a fluororubber tube as the connector in the adiabatic section and using strong base treated hydrophilic copper meshes as the wick structure. Deionized water was chosen as working fluid and three different filling ratios (10%, 20%, and 30%) of working fluid were loaded into the heat pipe to investigate its impact on thermal performance. The fabricated heat pipes can be easily bended from 0"o to 180"o in the horizontal operation mode and demonstrated consistently low thermal resistances after repeated bending. It was found that with optimized amount of working fluid, the thermal resistance of flexible heat pipes increased with larger bending angles. Theoretical analysis reveals that bending disturbs the normal vapor flow from evaporator to condenser in the heat pipe, thus leads to increased liquid–vapor interfacial thermal resistance in the evaporator section. The flexible heat pipes have been successfully applied for thermal control of foldable electronic devices showing superior uniform heat-transfer performance.

  9. Investigation of phase-change coatings for variable thermal control of spacecraft

    Science.gov (United States)

    Kelliher, W. C.; Young, P. R.

    1972-01-01

    An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.

  10. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    Science.gov (United States)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  11. The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Renhua; WANG; Jinfeng; ZHU; Caiying; SUN; Xiaomin

    2004-01-01

    After having analyzed the requirement on the aerodynamic earth's surface roughness in two-dimensional distribution in the research field of interaction between land surface and atmosphere, this paper presents a new way to calculate the aerodynamic roughness using the earth's surface geometric roughness retrieved from SAR (Synthetic Aperture Radar) and TM thermal infrared image data. On the one hand, the SPM (Small Perturbation Model) was used as a theoretical SAR backscattering model to describe the relationship between the SAR backscattering coefficient and the earth's surface geometric roughness and its dielectric constant retrieved from the physical model between the soil thermal inertia and the soil surface moisture with the simultaneous TM thermal infrared image data and the ground microclimate data. On the basis of the SAR image matching with the TM image, the non-volume scattering surface geometric information was obtained from the SPM model at the TM image pixel scale, and the ground pixel surface's equivalent geometric roughness-height standard RMS (Root Mean Square) was achieved from the geometric information by the transformation of the typical topographic factors. The vegetation (wheat, tree) height retrieved from spectrum model was also transferred into its equivalent geometric roughness. A completely two-dimensional distribution map of the equivalent geometric roughness over the experimental area was produced by the data mosaic technique. On the other hand, according to the atmospheric eddy currents theory, the aerodynamic surface roughness was iterated out with the atmosphere stability correction method using the wind and the temperature profiles data measured at several typical fields such as bare soil field and vegetation field. After having analyzed the effect of surface equivalent geometric roughness together with dynamic and thermodynamic factors on the aerodynamic surface roughness within the working area, this paper first establishes a scale

  12. A method for the dynamic and thermal stress analysis of space shuttle surface insulation

    Science.gov (United States)

    Ojalvo, I. U.; Levy, A.; Austin, F.

    1975-01-01

    The thermal protection system of the space shuttle consists of thousands of separate insulation tiles bonded to the orbiter's surface through a soft strain-isolation layer. The individual tiles are relatively thick and possess nonuniform properties. Therefore, each is idealized by finite-element assemblages containing up to 2500 degrees of freedom. Since the tiles affixed to a given structural panel will, in general, interact with one another, application of the standard direct-stiffness method would require equation systems involving excessive numbers of unknowns. This paper presents a method which overcomes this problem through an efficient iterative procedure which requires treatment of only a single tile at any given time. Results of associated static, dynamic, and thermal stress analyses and sufficient conditions for convergence of the iterative solution method are given.

  13. Controlling the surface termination of NdGaO3 (110): the role of the gas atmosphere.

    Science.gov (United States)

    Cavallaro, Andrea; Harrington, George F; Skinner, Stephen J; Kilner, John A

    2014-07-07

    In this work the effect of gas atmosphere on the surface termination reconstruction of single crystal NdGaO3 (110) (NGO) during thermal annealing was analyzed. Using Low Energy Ion Scattering (LEIS) it has been possible to study the chemical composition of the first atomic layer of treated NGO single crystal samples. NGO has been analyzed both as-received and after a specific thermal treatment at 1000 °C under different gas fluxes (argon, nitrogen, static air, synthetic air, nitrogen plus 5% hydrogen and wet synthetic air respectively). Thermal annealing of perovskite single crystals, as already reported in the literature, is used to obtain a fully A-cation surface termination. Nevertheless the effect of the gas-atmosphere on this process has not been previously reported. By the use of sequential low energy Ar(+) sputtering combined with the primary ion LEIS analysis, the reconstruction of the outermost atomic layers has allowed the clarification of the mechanism of NGO neodymium surface enrichment. It is proposed that the gallium at the surface is submitted to a reduction/evaporation mechanism caused by low oxygen partial pressure and/or high water pressure in the vector gas. Below the first surface atomic layers of an as-received NGO single-crystal a gallium-rich phase has also been observed.

  14. Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy

    Science.gov (United States)

    Chandran, Maneesh; Shasha, Michal; Michaelson, Shaul; Hoffman, Alon

    2016-09-01

    In this paper we report the chemical states analysis of activated nitrogen incorporated highly oriented pyrolytic graphite (HOPG) surface under well-controlled conditions. Nitrogen incorporation is carried out by two different processes: an indirect RF nitrogen plasma and low energy (1 keV) N2+ implantation. Bonding configuration, concentration and thermal stability of the incorporated nitrogen species by aforesaid processes are systematically compared by in-situ X-ray photoelectron spectroscopy (XPS). Relatively large concentration of nitrogen is incorporated onto RF nitride HOPG surface (16.2 at.%), compared to N2+ implanted HOPG surface (7.7 at.%). The evolution of N 1s components (N1, N2, N3) with annealing temperature is comprehensively discussed, which indicates that the formation and reorganization of local chemical bonding states are determined by the process of nitridation and not by the prior chemical conditioning (i.e., amorphization or hydrogenation) of the HOPG surface. A combined XPS and Raman spectroscopy studies revealed that N2+ implantation process resulted in a high level of defects to the HOPG surface, which cannot be annealed-out by heat treatment up to 1000 °C. On the other hand, the RF nitrogen plasma process did not produce a high level of surface defects, while incorporating nearly the same amount of stable nitrogen species.

  15. Development of Thermal Bridging Factors for Use in Energy Models

    Science.gov (United States)

    2015-06-20

    assemblies. 5.2.2 Drainage : Drained systems Drained (Figure 5-6) and screened enclosures assume some rainwater will penetrate the outer surface...38 5.2.2 Drainage : Drained systems ...layer (e.g., drainage plane and gap or waterproofing) 2. Airflow control layer (e.g., an air barrier system ) 3. Thermal control layer (e.g., insulation

  16. Microprocessor-controlled surface testing

    Energy Technology Data Exchange (ETDEWEB)

    Droscha, H

    1982-09-01

    For the quality inspection on continuous flow material webs with transverse scanning laser beam, the microprocessor control, realized now for the first time in combination with appropriate units, shows a considerable progress. Thanks to the here used electronics, surface errors can be localized within the web according to their x-y-position, quantitative analysis can be carried out and automatic sorting and registration functions can be used.

  17. Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials

    Science.gov (United States)

    Piqueux, S.; Christensen, P. R.

    2012-12-01

    Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this

  18. Piezoelectric composite morphing control surfaces for unmanned aerial vehicles

    Science.gov (United States)

    Ohanian, Osgar J., III; Karni, Etan D.; Olien, Chris C.; Gustafson, Eric A.; Kochersberger, Kevin B.; Gelhausen, Paul A.; Brown, Bridget L.

    2011-04-01

    The authors have explored the use of morphing control surfaces to replace traditional servo-actuated control surfaces in UAV applications. The morphing actuation is accomplished using Macro Fiber Composite (MFC) piezoelectric actuators in a bimorph configuration to deflect the aft section of a control surface cross section. The resulting camber change produces forces and moments for vehicle control. The flexible piezoelectric actuators are damage tolerant and provide excellent bandwidth. The large amplitude morphing deflections attained in bench-top experiments demonstrate the potential for excellent control authority. Aerodynamic performance calculations using experimentally measured morphed geometries indicate changes in sectional lift coefficients that are superior to a servo-actuated hinged flap airfoil. This morphing flight control actuation technology could eliminate the need for servos and mechanical linkages in small UAVs and thereby increase reliability and reduce drag.

  19. Two-Dimension Sorting and Selection Algorithm featuring Thermal Balancing Control for Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Máthé, Lászlo; Teodorescu, Remus

    2016-01-01

    With the aim to solve the unbalanced thermal behavior in the modular multilevel converter, introduced by mismatch in the submodule parameters, a thermal balancing control strategy is proposed here. The proposed solution ensures a balanced junction temperature for the power devices, while the bala...

  20. CO2 Insulation for Thermal Control of the Mars Science Laboratory

    Science.gov (United States)

    Bhandari, Pradeep; Karlmann, Paul; Anderson, Kevin; Novak, Keith

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is sending a large (>850 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars in 2011. The rover's primary power source is a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) that generates roughly 2000 W of heat, which is converted to approximately 110 W of electrical power for use by the rover electronics, science instruments, and mechanism-actuators. The large rover size and extreme thermal environments (cold and hot) for which the rover is designed for led to a sophisticated thermal control system to keep it within allowable temperature limits. The pre-existing Martian atmosphere of low thermal conductivity CO2 gas (8 Torr) is used to thermally protect the rover and its components from the extremely cold Martian environment (temperatures as low as -130 deg C). Conventional vacuum based insulation like Multi Layer Insulation (MLI) is not effective in a gaseous atmosphere, so engineered gaps between the warm rover internal components and the cold rover external structure were employed to implement this thermal isolation. Large gaps would lead to more thermal isolation, but would also require more of the precious volume available within the rover. Therefore, a balance of the degree of thermal isolation achieved vs. the volume of rover utilized is required to reach an acceptable design. The temperature differences between the controlled components and the rover structure vary from location to location so each gap has to be evaluated on a case-by-case basis to arrive at an optimal thickness. For every configuration and temperature difference, there is a critical thickness below which the heat transfer mechanism is dominated by simple gaseous thermal conduction. For larger gaps, the mechanism is dominated by natural convection. In general, convection leads to a poorer level of thermal isolation as compared to conduction. All these considerations play important roles in the

  1. Investigation of thermal management materials for automotive electronic control units

    International Nuclear Information System (INIS)

    Mallik, Sabuj; Ekere, Ndy; Best, Chris; Bhatti, Raj

    2011-01-01

    Today's electronics packages are smaller and more powerful than ever before. This leads to ever increasing thermal challenges for the systems designer. The automotive electronic control unit (ECU) package faces the same challenge of thermal management as the industry in general. This is coupled with the latest European Union legislation (Euro 6 standard) which forced the ECU manufacturers to completely re-design their ECU platform with improved hardware and software capability. This will result in increased power densities and therefore, the ability to dissipate heat will be a key factor. A higher thermal conductivity (TC) material for the ECU housing (than the currently used Aluminium) could improve heat dissipation from the ECU. This paper critically reviews the state-of-the-art in thermal management materials which may be applicable to an automotive ECU. This review shows that of the different materials currently available, the Al/SiC composites in particular have very good potential for automotive ECU application. In terms of metal composites processing, the liquid metal infiltration process is recommended as it has a lower processing cost and it also has the ability to produce near net-shape materials.

  2. Thermal migration of deuterium implanted in graphite: Influence of free surface proximity and structure

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Moncoffre, N., E-mail: n.moncoffre@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); CEA/DEN – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Ammar, M.R. [CNRS, CEMHTI UPR3079, Université Orléans, CS90055, F-45071 Orléans cedex 2 (France); Rouzaud, J.N.; Deldicque, D. [Laboratoire de Géologie de l’Ecole Normale Supérieure, Paris, UMR CNRS ENS 8538, F-75231 Paris cedex 5 (France)

    2016-03-15

    This paper is a contribution to the study of the behavior of activation products produced in irradiated nuclear graphite, graphite being the moderator of the first French generation of CO{sub 2} cooled nuclear fission reactors. This paper is focused on the thermal release of Tritium, a major contributor to the initial activity, taking into account the role of the free surfaces (open pores and graphite surface). Two kinds of graphite were compared. On one hand, Highly Oriented Pyrolitic Graphite (HOPG), a model well graphitized graphite, and on the other hand, SLA2, a porous less graphitized nuclear graphite. Deuterium ion implantation at three different energies 70, 200 and 390 keV allows simulating the presence of Tritium at three different depths, corresponding respectively to projected ranges R{sub p} of 0.75, 1.7 and 3.2 μm. The D isotopic tracing is performed thanks to the D({sup 3}He,p){sup 4}He nuclear reaction. The graphite structure is studied by Raman microspectrometry. Thermal annealing is performed in the temperature range 200–1200 °C up to 300 h annealing time. As observed in a previous study, the results show that the D release occurs according to three kinetic regimes: a rapid permeation through open pores, a transient regime corresponding to detrapping and diffusion of D located at low energy sites correlated to the edges of crystallites and finally a saturation regime attributed to detrapping of interstitial D located at high energy sites inside the crystallites. Below 600 °C, D release is negligible whatever the implantation depth and the graphite type. The present paper clearly puts forward that above 600 °C, the D release decreases at deeper implantation depths and strongly depends on the graphite structure. In HOPG where high energy sites are more abundant, the D release is less dependent on the surface proximity compared to SLA2. In SLA2, in which the low energy sites prevail, the D release curves are clearly shifted towards lower

  3. Thermal stability analysis and auxiliary power feedback control for the tokamak engineering test breeder (TETB-II)

    International Nuclear Information System (INIS)

    Sheng Guangzhao

    1993-01-01

    The thermal stability of TETB-II is analyzed using different methods, viz., POPCON, linear stability analysis and the time evolution calculation of plasma parameters. A thermal instability of the TETB-II is predicted. Auxiliary power feedback control for thermal stability appears feasible and efficient

  4. Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites

    International Nuclear Information System (INIS)

    Kim, Byungjoo; Bae, Kyongmin; An, Kayhyeok; Park, Soojin

    2012-01-01

    Aluminum oxide (Al 2 O 3 ) nanofibers were treated thermally under an ammonia (NH 3 ) gas stream balanced by nitrogen to form a thin aluminum nitride (AlN) layer on the nanofibers, resulting in the enhancement of thermal conductivity of Al 2 O 3 /epoxy nanocomposites. The micro-structural and morphological properties of the NH 3 -assisted thermally-treated Al 2 O 3 nanofibers were characterized by X-ray diffraction (XRD) and atomic force microscopy (AEM), respectively. The surface characteristics and pore structures were observed by X-ray photoelectron spectroscopy (XPS), Zeta-potential and N 2 /77 K isothermal adsorptions. From the results, the formation of AlN on Al 2 O 3 nanofibers was confirmed by XRD and XPS. The thermal conductivity (TC) of the modified Al 2 O 3 nanofibers/epoxy composites increased with increasing treated temperatures. On the other hand, the severely treated Al 2 O 3 /epoxy composites showed a decrease in TC, resulting from a decrease in the probability of heat-transfer networks between the filler and matrix in this system due to the aggregation of nanofiber fillers

  5. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Science.gov (United States)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  6. SURFACE TEXTURE ANALYSIS FOR FUNCTIONALITY CONTROL

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido

    This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...

  7. Effective use of surface-water management to control saltwater intrusion

    Science.gov (United States)

    Hughes, J. D.; White, J.

    2012-12-01

    The Biscayne aquifer in southeast Florida is susceptible to saltwater intrusion and inundation from rising sea-level as a result of high groundwater withdrawal rates and low topographic relief. Groundwater levels in the Biscayne aquifer are managed by an extensive canal system that is designed to control flooding, supply recharge to municipal well fields, and control saltwater intrusion. We present results from an integrated surface-water/groundwater model of a portion of the Biscayne aquifer to evaluate the ability of the existing managed surface-water control network to control saltwater intrusion. Surface-water stage and flow are simulated using a hydrodynamic model that solves the diffusive-wave approximation of the depth-integrated shallow surface-water equations. Variable-density groundwater flow and fluid density are solved using the Oberbeck--Boussinesq approximation of the three-dimensional variable-density groundwater flow equation and a sharp interface approximation, respectively. The surface-water and variable-density groundwater domains are implicitly coupled during each Picard iteration. The Biscayne aquifer is discretized into a multi-layer model having a 500-m square horizontal grid spacing. All primary and secondary surface-water features in the active model domain are discretized into segments using the 500-m square horizontal grid. A 15-year period of time is simulated and the model includes 66 operable surface-water control structures, 127 municipal production wells, and spatially-distributed daily internal and external hydrologic stresses. Numerical results indicate that the existing surface-water system can be effectively used in many locations to control saltwater intrusion in the Biscayne aquifer resulting from increases in groundwater withdrawals or sea-level rise expected to occur over the next 25 years. In other locations, numerical results indicate surface-water control structures and/or operations may need to be modified to control

  8. Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation.

    Science.gov (United States)

    Gao, Yangyang; Müller-Plathe, Florian

    2016-02-25

    By employing reverse nonequilibrium molecular dynamics simulations in a full atomistic resolution, the effect of surface-grafted chains on the thermal conductivity of graphene-polyamide-6.6 (PA) nanocomposites has been investigated. The interfacial thermal conductivity perpendicular to the graphene plane is proportional to the grafting density, while it first increases and then saturates with the grafting length. Meanwhile, the intrinsic in-plane thermal conductivity of graphene drops sharply as the grafting density increases. The maximum overall thermal conductivity of nanocomposites appears at an intermediate grafting density because of these two competing effects. The thermal conductivity of the composite parallel to the graphene plane increases with the grafting density and grafting length which is attributed to better interfacial coupling between graphene and PA. There exists an optimal balance between grafting density and grafting length to obtain the highest interfacial and parallel thermal conductivity. Two empirical formulas are suggested, which quantitatively account for the effects of grafting length and density on the interfacial and parallel thermal conductivity. Combined with effective medium approximation, for ungrafted graphene in random orientation, the model overestimates the thermal conductivity at low graphene volume fraction (f 10%). For unoriented grafted graphene, the model matches the experimental results well. In short, this work provides some valuable guides to obtain the nanocomposites with high thermal conductivity by grafting chain on the surface of graphene.

  9. Surface heat flow and lithosphere thermal structure of the larger Luxembourg area as a basis for the evaluation of its geothermal potential

    Science.gov (United States)

    Schintgen, Tom; Förster, Andrea

    2014-05-01

    The evaluation of the geothermal potential and the type of geothermal use necessitates knowledge of the subsurface temperature distribution in combination with hydraulic properties (e.g. porosity, permeability and hydraulic conductivity). In the larger Luxembourg area, only a few subsurface temperature data are available restricted to shallow depth. This paucity in data required to assess the thermal regime to drillable depths by modeling. The thermal model was constrained by surface heat flow and the lithosphere-asthenosphere boundary (LAB) characterized by the 1300° C isotherm. A surface heat-flow value of 75 ± 7 (2σ) mW m-2 was determined in central Luxembourg, which corroborates most values known from adjacent areas. The conceptual geological model for thermal modeling has a high resolution in the upper 15 km due to a wealth of geological data, while refraction seismic data and xenoliths provide petrological constraints for the lower part of the model down to the crust/mantle boundary. Thermal rock properties assigned to geological units are based on a large set of laboratory data, complemented by some literature data for the lower parts of the crust. The thermal structure is investigated by calculating 2-D steady-state thermal models along three crustal cross sections developed for the study area assuming a purely conductive lithosphere. The location of the LAB at 100 km depth, as typical for the Ardennes, provides the best fit with the measured surface heat flow of about 75 mW m-2. This LAB model provides temperatures at 5 km of 115-118° C on average and of about 600° C at the Moho. The resulting mantle heat flow in this model is 39-40 mW m-2. A reduced lithosphere thickness of 50 km as typical for the Eifel area to the east results in an increase of surface heat flow to 97 mW m-2 and of the mantle heat flow to 65 mW m-2, respectively. If heating from the Eifel plume had reached the surface yet, temperatures at 5 km would be about 20° C higher (and

  10. Variational reconstruction using subdivision surfaces with continuous sharpness control

    Institute of Scientific and Technical Information of China (English)

    Xiaoqun Wu; Jianmin Zheng; Yiyu Cai; Haisheng Li

    2017-01-01

    We present a variational method for subdivision surface reconstruction from a noisy dense mesh.A new set of subdivision rules with continuous sharpness control is introduced into Loop subdivision for better modeling subdivision surface features such as semi-sharp creases,creases,and corners.The key idea is to assign a sharpness value to each edge of the control mesh to continuously control the surface features.Based on the new subdivision rules,a variational model with L1 norm is formulated to find the control mesh and the corresponding sharpness values of the subdivision surface that best fits the input mesh.An iterative solver based on the augmented Lagrangian method and particle swarm optimization is used to solve the resulting non-linear,non-differentiable optimization problem.Our experimental results show that our method can handle meshes well with sharp/semi-sharp features and noise.

  11. Effect of energy-regenerative braking on electric vehicle battery thermal management and control method based on simulation investigation

    International Nuclear Information System (INIS)

    Huang, Jingying; Qin, Datong; Peng, Zhiyuan

    2015-01-01

    Highlights: • A two-degree-of-freedom lumped thermal model is developed for battery. • The battery thermal model is integrated with vehicle driving model. • Real-time battery thermal responses is obtained. • Active control of current by regenerative braking ratio adjustment is proposed. • More energy is recovered with smaller battery temperature rise. - Abstract: Battery thermal management is important for the safety and reliability of electric vehicle. Based on the parameters obtained from battery hybrid pulse power characterization test, a two-degree-of-freedom lumped thermal model is established. The battery model is then integrated with vehicle driving model to simulate real-time battery thermal responses. An active control method is proposed to reduce heat generation due to regenerative braking. The proposed control method not only subjects to the braking safety regulation, but also adjusts the regenerative braking ratio through a fuzzy controller. By comparing with other regenerative braking scenarios, the effectiveness of the proposed strategy has been validated. According to the results, the proposed control strategy suppresses battery temperature rise by modifying the charge current due to regenerative braking. The overlarge components of current are filtered out whereas the small ones are magnified. Therefore, with smaller battery temperature rise, more energy is recovered. Compared to the traditional passive heat dissipating, the proposed active methodology is feasible and provides a novel solution for electric vehicle battery thermal management.

  12. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  13. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    Science.gov (United States)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  14. Thermal expansion and thermal stress in the moon and terrestrial planets - Clues to early thermal history

    Science.gov (United States)

    Solomon, S. C.; Chaiken, J.

    1976-01-01

    The paper discusses how features of the surface geology of the moon and also Mars and Mercury impose constraints on the volumetric expansion or contraction of a planet and consequently provide a test of thermal history models. The moon has changed very little in volume over the last 3.8 b.y. Thermal models satisfying this constraint involve early heating and perhaps melting of the outer 200 km of the moon and an initially cold interior. Mercury has contracted by about 2 km in radius since emplacement of its present surface, so core formation must predate that surface. A hot initial temperature distribution is implied.

  15. Microkelvin thermal control system for the laser interferometer space antenna mission and beyond

    Science.gov (United States)

    Higuchi, Sei

    2009-10-01

    The Laser Interferometer Space Antenna (LISA) mission aims to detect directly gravitational waves from massive black holes and galactic binaries. Through detecting gravitational waves, we can study blackholes and the origin of the universe, which is inaccessible from the electromagnetic wave spectrum. It will open a new window to the universe. LISA is essentially a Michelson interferometer placed in space with a third spacecraft added. Gravitational waves are time-varying strain in space-time, which is detectable as a fractional change in a proper distance. LISA will monitor fractional changes in the interferometer arms of a nominally 5 million km. The fractional change in the arm length can be as small as 1 x 10-21 m/(m · Hz ) even for powerful sources. LISA makes use of the gravitational reference sensors (GRS) for drag-free control and will achieve the required sensitivity through management of specific acceleration noise. The total acceleration disturbance to each proof mass, which floats at the center of each GRS, is required to be below 3 x 10-15 m/(s2 · Hz ). Thermal variations due to, for example, solar irradiation, or temperature gradients across the proof mass housing, are expected to be significant disturbance source to the LISA sensitivity requirements. Even a small temperature gradient can produce distortions in the housing structure, which results in a mass attraction force. In this thesis, I focus on developing a thermal control system that aims to achieve the temperature stability of 10 muK / Hz over 0.1 mHz to 1 Hz. We have chosen glass-bead thermistors as the temperature sensor for feedback temperature control of the GRS. First, we created a temperature sensor design program in MATLAB that provides an optimal values of resistances in the thermistor bridge circuit for the given application. The spectral stability of the sensor achieves as low as 20 muK/ Hz at 1 mHz with a DC excitation source. The LISA thermal requirement is met by employing AC

  16. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  17. Indirect thermal control for improved reliability of Modular Multilevel Converter by utilizing circulating current

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Ma, Ke; Loh, Poh Chiang

    2015-01-01

    semiconductor devices are comprehensively investigated. Also a novel control strategy by utilizing the circulating current is proposed to enhance the reliability performance of MMC in order to limit the amplitude of thermal cycles. It is concluded that the circulating current may change the losses and thermal...

  18. Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Directory of Open Access Journals (Sweden)

    Mikulandrić Robert

    2012-01-01

    Full Text Available The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca

  19. Two-dimensional servo control of surface motor; Surface motor no nijigen servo control

    Energy Technology Data Exchange (ETDEWEB)

    Ebihara, D; Takahashi, T; Watada, M [Musashi Institute of Technology, Tokyo (Japan)

    1995-08-20

    Two dimensional (2D) drive system is needed in many aspects of factory automation (FA) and office automation (OA) machines, such as pen drivers in X-Y plotters, X-Y stage for machining, 2D moving robots, etc. Conventional 2D drive systems are consisted from two sets of rotational motor drive and several types of rotary-to-linear transform mechanisms. Linear motors, in these days, have become to be effective as the requirement for high speed increases. We have been studying about Surface Motor which enables 2D drive on a surface by single mover, and the characteristics are measured. Main difficulty of the actuator is that it is short of thrust forces. Also the feasibility is limited because of its vocational uncertainty caused by the open loop control. Our interest is to introduce the closed loop digital control, to obtain required thrust force at any point on the stator. Since open loop control is used, that is, stability point where the thrust force is zero is moved one after another, generated thrust force within the range of synchronization is small. We have been studying about the peculiar expression of exciting currents to generate required direction at all the stator. On the basis of results, two dimensional position feedback system is assembled, which detect the two dimensional location of the mover by optical sensors and direct current instructions are generated for all the four phases of the mover. 14 refs., 11 figs., 1 tab.

  20. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki

    2017-07-01

    The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1°C (3σ standard deviation) for the temperature range of 30 to 100°C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 °C (1σ ) for each pixel at a target temperature of 50°C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051°C (328 × 248 pixels). There were spatial distributions with a temperature variation of 3°C at the setting

  1. Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves

    Directory of Open Access Journals (Sweden)

    Leyre Echevarria Icaza

    2016-03-01

    Full Text Available The urban heat island effect is often associated with large metropolises. However, in the Netherlands even small cities will be affected by the phenomenon in the future (Hove et al., 2011, due to the dispersed or mosaic urbanisation patterns in particularly the southern part of the country: the province of North Brabant. This study analyses the average night time land surface temperature (LST of 21 North-Brabant urban areas through 22 satellite images retrieved by Modis 11A1 during the 2006 heat wave and uses Landsat 5 Thematic Mapper to map albedo and normalized difference temperature index (NDVI values. Albedo, NDVI and imperviousness are found to play the most relevant role in the increase of night-time LST. The surface cover cluster analysis of these three parameters reveals that the 12 “urban living environment” categories used in the region of North Brabant can actually be reduced to 7 categories, which simplifies the design guidelines to improve the surface thermal behaviour of the different neighbourhoods thus reducing the Urban Heat Island (UHI effect in existing medium size cities and future developments adjacent to those cities.

  2. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    Science.gov (United States)

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  3. Effects of Heating on Teflon(Registered Trademark) FEP Thermal Control Material from the Hubble Space Telescope

    Science.gov (United States)

    deGroh, Kim; Gaier, James R.; Hall, Rachelle L.; Norris, Mary Jo; Espe, Matthew P.; Cato, Daveen R.

    1999-01-01

    Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene) thermal control material on the Hubble Space Telescope (HST) is degrading in the space environment. Teflon(Registered Trademark) FEP thermal control blankets (space-facing FEP) retrieved during the first servicing mission (SM1) were found to be embrittled on solar facing surfaces and contained microscopic cracks. During the second servicing mission (SM2) astronauts noticed that the FEP outer layer of the multi-layer insulation (MLI) covering the telescope was cracked in many locations around the telescope. Large cracks were observed on the light shield, forward shell and equipment bays. A tightly curled piece of cracked FEP from the light shield was retrieved during SM2 and was severely embrittled, as witnessed by ground testing. A Failure Review Board (FRB) was organized to determine the mechanism causing the MLI degradation. Density, x-ray crystallinity and solid state nuclear magnetic resonance (NMR) analyses of FEP retrieved during SM1 were inconsistent with results of FEP retrieved during SM2. Because the retrieved SM2 material curled while in space, it experienced a higher temperature extreme during thermal cycling, estimated at 200 C, than the SM1 material, estimated at 50 C. An investigation on the effects of heating pristine and FEP exposed on HST was therefore conducted. Samples of pristine. SM1, and SM2 FEP were heated to 200 C and evaluated for changes in density and morphology. Elevated temperature exposure was found to have a major impact on the density of the retrieved materials. Characterization of polymer morphology of as-received and heated FEP samples by NMR provided results that were consistent with the density results. These findings have provided insight to the damage mechanisms of FEP in the space environment.

  4. Propagation of semi-elliptical surface cracks in ferritic and austenitic steel plates under thermal cyclic loading

    International Nuclear Information System (INIS)

    Bethge, K.

    1989-05-01

    Theoretical and experimental investigations of crack growth under thermal and thermomechanical fatigue loading are presented. The experiments were performed with a ferritic reactor pressure vessel steel 20 MnMoNi 5 5 and an austenitic stainless steel X6 CrNi 18 11. A plate containing a semi-elliptical surface crack is heated up to a homogeneous temperature and cyclically cooled down by a jet of cold water. On the basis of linear elastic fracture mechanics stress-intensity factors are calculated with the weight function method. The prediction of crack growth under thermal fatigue loading using data from mechanical fatigue tests is compared with the experimental result. (orig.) [de

  5. A Module For Thermal Pest Control In Stored Raw Materials Used In ...

    African Journals Online (AJOL)

    Pests are heterogeneous both in space and time, creating gradients and patterns depending on the prevailing environmental variables. Pest control efforts have utilized manipulations of these variables. This project is ona module for thermal control of pests using the hitherto waste steam from the indusries. The module is an ...

  6. Evaluations of Silica Aerogel-Based Flexible Blanket as Passive Thermal Control Element for Spacecraft Applications

    Science.gov (United States)

    Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun

    2018-03-01

    The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.

  7. Coupled land surface-subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    Science.gov (United States)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.

    2017-09-01

    Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the

  8. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  9. Process-based quality for thermal spray via feedback control

    Science.gov (United States)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  10. A Novel, Aqueous Surface Treatment To Thermally Stabilize High Resolution Positive Photoresist Images*

    Science.gov (United States)

    Grunwald, John J.; Spencer, Allen C.

    1986-07-01

    The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.

  11. Quality control of thermal spray coatings in diesel engines; Qualitaetskontrolle an thermisch gespritzten Beschichtungen in Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Carstensen, Jesper Vejloe [MAN Diesel and Turbo, Copenhagen (Denmark). Material Technology and Research Dept.; Lindegren, Maria [Struers A/S, Ballerup (Denmark). Application Dept.

    2013-06-01

    Thermal spraying is a method, which is suitable for coating of large components. The coatings can e.g. improve the wear, friction and/or corrosion properties of components so that they can withstand the increased loads. The quality of the coatings is essential to ensure reliable operation of the components. However, quality control of thermally sprayed coatings is indeed nontrivial and sample preparation is a key issue. This paper shows examples of thermal spray coated components in large diesel engines and provides insight into the methods used in preparing samples for quality control. (orig.)

  12. Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles including limited vehicle range and the elevated cost of EDVs as compared to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. In order to minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata PHEV. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces and increased insulation demonstrated significant reductions in energy use from steady-state heating, including a 29% - 59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.

  13. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian

    2015-10-09

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian; Xu, Yuehong; Yue, Weisheng; Tian, Zhen; Gu, Jianqiang; Li, Yanfeng; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  16. System Level Analysis of a Water PCM HX Integrated into Orion's Thermal Control System

    Science.gov (United States)

    Navarro, Moses; Hansen, Scott; Seth, Rubik; Ungar, Eugene

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system in a 100km Lunar orbit. The study verified of the thermal model by using a wax PCM and analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option for any case. Additionally, it was found that the radiator area would have to be increased by at least 40% in order to support a viable water-based PCM HX.

  17. Thermal-Hydraulic Analysis Tasks for ANAV NPPs in Support of Plant Operation and Control

    Directory of Open Access Journals (Sweden)

    L. Batet

    2007-11-01

    Full Text Available Thermal-hydraulic analysis tasks aimed at supporting plant operation and control of nuclear power plants are an important issue for the Asociación Nuclear Ascó-Vandellòs (ANAV. ANAV is the consortium that runs the Ascó power plants (2 units and the Vandellòs-II power plant. The reactors are Westinghouse-design, 3-loop PWRs with an approximate electrical power of 1000 MW. The Technical University of Catalonia (UPC thermal-hydraulic analysis team has jointly worked together with ANAV engineers at different levels in the analysis and improvement of these reactors. This article is an illustration of the usefulness of computational analysis for operational support. The contents presented were operational between 1985 and 2001 and subsequently changed slightly following various organizational adjustments. The paper has two different parts. In the first part, it describes the specific aspects of thermal-hydraulic analysis tasks related to operation and control and, in the second part, it briefly presents the results of three examples of analyses that were performed. All the presented examples are related to actual situations in which the scenarios were studied by analysts using thermal-hydraulic codes and prepared nodalizations. The paper also includes a qualitative evaluation of the benefits obtained by ANAV through thermal-hydraulic analyses aimed at supporting operation and plant control.

  18. Building-Related Symptoms, Energy, and Thermal Control in the Workplace: Personal and Open Plan Offices

    Directory of Open Access Journals (Sweden)

    Sally S. Shahzad

    2016-04-01

    Full Text Available This study compared building-related symptoms in personal and open plan offices, where high and low levels of control over the thermal environment were provided, respectively. The individualized approach in Norway provided every user with a personal office, where they had control over an openable window, door, blinds, and thermostat. In contrast, the open plan case studies in the United Kingdom provided control over openable windows and blinds only for limited occupants seated around the perimeter of the building, with users seated away from the windows having no means of environmental control. Air conditioning was deployed in the Norwegian case study buildings, while displacement ventilation and natural ventilation were utilized in the British examples. Field studies of thermal comfort were applied with questionnaires, environmental measurements, and interviews. Users’ health was better in the Norwegian model (28%, while the British model was much more energy efficient (up to 10 times. The follow-up interviews confirmed the effect of lack of thermal control on users’ health. A balanced appraisal was made of energy performance and users’ health between the two buildings.

  19. [Correlative analysis of the diversity patterns of regional surface water, NDVI and thermal environment].

    Science.gov (United States)

    Duan, Jin-Long; Zhang, Xue-Lei

    2012-10-01

    Taking Zhengzhou City, the capital of Henan Province in Central China, as the study area, and by using the theories and methodologies of diversity, a discreteness evaluation on the regional surface water, normalized difference vegetation index (NDVI), and land surface temperature (LST) distribution was conducted in a 2 km x 2 km grid scale. Both the NDVI and the LST were divided into 4 levels, their spatial distribution diversity indices were calculated, and their connections were explored. The results showed that it was of operability and practical significance to use the theories and methodologies of diversity in the discreteness evaluation of the spatial distribution of regional thermal environment. There was a higher overlap of location between the distributions of surface water and the lowest temperature region, and the high vegetation coverage was often accompanied by low land surface temperature. In 1988-2009, the discreteness of the surface water distribution in the City had an obvious decreasing trend. The discreteness of the surface water distribution had a close correlation with the discreteness of the temperature region distribution, while the discreteness of the NDVI classification distribution had a more complicated correlation with the discreteness of the temperature region distribution. Therefore, more environmental factors were needed to be included for a better evaluation.

  20. Thermal Equilibrium Dynamic Control Based on DPWM Dual-Mode Modulation of High Power NPC Three-Level Inverter

    Directory of Open Access Journals (Sweden)

    Shi-Zhou Xu

    2016-01-01

    Full Text Available In some special applications of NPC three-level inverters, such as mine hoist, there exist special conditions of overloading during the whole hoisting process and large overload in starting stage, during which the power-loss calculation of power devices and thermal control are important factors affecting the thermal stability of inverters. The principles of SVPWM and DPWM were described in this paper firstly, based on which the dynamic power losses of the two modulations of hoist in single period were calculated. Secondly, a thermal equilibrium dynamic control based on DPMW dual-mode modulation was proposed, which can switch the modulation dynamically according to the change of dynamic power loss to realize dynamic control of power loss and thermal equilibrium of inverter. Finally, simulation and experiment prove the effectiveness of the proposed strategy.