WorldWideScience

Sample records for thermal control coatings

  1. Laboratory electron exposure of TSS-1 thermal control coating

    Science.gov (United States)

    Vaughn, J. A.; Mccollum, M.; Carruth, M. R., Jr.

    1995-01-01

    RM400, a conductive thermal control coating, was developed for use on the exterior shell of the tethered satellite. Testing was performed by the Engineering Physics Division to quantify effects of the space environment on this coating and its conductive and optical properties. Included in this testing was exposure of RM400 to electrons with energies ranging from 0.1 to 1 keV, to simulate electrons accelerated from the ambient space plasma when the tethered satellite is fully deployed. During this testing, the coating was found to luminesce, and a prolonged exposure of the coating to high-energy electrons caused the coating to darken. This report describes the tests done to quantify the degradation of the thermal control properties caused by electron exposure and to measure the luminescence as a function of electron energy and current density to the satellite.

  2. Studies on black anodic coatings for spacecraft thermal control applications

    Energy Technology Data Exchange (ETDEWEB)

    Uma Rani, R.; Subba Rao, Y.; Sharma, A.K. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group

    2011-10-15

    An inorganic black colouring process using nickel sulphate and sodium sulphide was investigated on anodized aluminium alloy 6061 to provide a flat absorber black coating for spacecraft thermal control applications. Influence of colouring process parameters (concentration, pH) on the physico-optical properties of black anodic film was investigated. The nature of black anodic film was evaluated by the measurement of film thickness, micro hardness and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy studies confirmed the presence of nickel and sulphur in the black anodic coating. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion resistance of the coating. The environmental tests, namely, humidity, corrosion resistance, thermal cycling and thermo vacuum performance tests were used to evaluate the space worthiness of the coating. Optical properties of the film were measured before and after each environmental test to ascertain its stability in harsh space environment. The black anodic films provide higher thermal emittance ({proportional_to} 0.90) and solar absorptance ({proportional_to} 0.96) and their high stability during the environmental tests indicated their suitability for space and allied applications. (orig.)

  3. Quality control of thermal spray coatings in diesel engines; Qualitaetskontrolle an thermisch gespritzten Beschichtungen in Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Carstensen, Jesper Vejloe [MAN Diesel and Turbo, Copenhagen (Denmark). Material Technology and Research Dept.; Lindegren, Maria [Struers A/S, Ballerup (Denmark). Application Dept.

    2013-06-01

    Thermal spraying is a method, which is suitable for coating of large components. The coatings can e.g. improve the wear, friction and/or corrosion properties of components so that they can withstand the increased loads. The quality of the coatings is essential to ensure reliable operation of the components. However, quality control of thermally sprayed coatings is indeed nontrivial and sample preparation is a key issue. This paper shows examples of thermal spray coated components in large diesel engines and provides insight into the methods used in preparing samples for quality control. (orig.)

  4. Electrically conductive, black thermal control coatings for spacecraft applications. III - Plasma-deposited ceramic matrix

    Science.gov (United States)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1987-01-01

    Five black, electrically-conductive thermal control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consist of both organic and inorganic systems applied on titanium, aluminum, and glass/epoxy composite surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation, convective and combustive heating, and cryogenic conditions over a temperature range between -196 C and 538 C. Mechanical, physical, thermal, electrical, and thermooptical properties are presented for one of these coatings. This paper describes the preparation, characteristics, and spraying of iron titanate on titanium and aluminum, and presents performance results.

  5. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  6. Plasma effects on the passive external thermal control coating of Space Station Freedom

    Science.gov (United States)

    Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.

    1992-01-01

    The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.

  7. The performance of thermal control coatings on LDEF and implications to future spacecraft

    Science.gov (United States)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  8. High temperature glass thermal control structure and coating. [for application to spacecraft reusable heat shielding

    Science.gov (United States)

    Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)

    1983-01-01

    A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.

  9. Investigation of phase-change coatings for variable thermal control of spacecraft

    Science.gov (United States)

    Kelliher, W. C.; Young, P. R.

    1972-01-01

    An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.

  10. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    Science.gov (United States)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  11. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    Science.gov (United States)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  12. Thermally joining and/or coating or thermally separating the workpieces having heat-sensitive coating, comprises restoring coating by thermally coating the coating material after thermally joining and/or coating or thermally separating

    OpenAIRE

    Riedel, Frank; Winkelmann, Ralf; Puschmann, Markus

    2011-01-01

    The method for thermally joining and/or coating or thermally separating the workpieces (1), which have a heat-sensitive coating (2), comprises restoring the coating by thermally coating a coating material (3) after thermally joining and/or coating or thermally separating the workpieces. A part of the thermal energy introduced in the workpiece for joining and/or coating or separating or in the workpieces is used for thermally coating the coating material. Two workpieces are welded or soldered ...

  13. Refractory porcelain enamel passive-thermal-control coating for high-temperature superalloys

    Science.gov (United States)

    Levin, H.; Auker, B. H.; Gardos, M. N.

    1973-01-01

    Study was conducted to match thermal expansion coefficients thereby preventing enamels from cracking. Report discusses various enamel coatings that are applied to two different high-temperature superalloys. Study may be of interest to manufacturers of chemical equipment, furnaces, and metal components intended for high-temperature applications.

  14. Advanced Durable Flexible Ultra Low Outgassing Thermal Control Coatings for NASA Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I program proposes to synthesize novel nanoengineered ultra low out gassing elastomers and formulate high temperature capable flexible thermal control...

  15. Thermal performance of a double pane window with a solar control coating for warm climate of Mexico

    International Nuclear Information System (INIS)

    Xamán, J.; Jiménez-Xamán, C.; Álvarez, G.; Zavala-Guillén, I.; Hernández-Pérez, I.; Aguilar, J.O.

    2016-01-01

    Highlights: • Pseudo-transient thermal performance of a double pane window (DPW) was determined. • The DPW was analyzed each 5 s by a period from 8:00 to 18:00 h. • 57,600 computational runs were necessary and the additive correction multigrid was implemented. • Solar control coating (SCC) in a DPW reduces 1073.79 W/m 2 with respect to the DPW without SCC. • SCC is highly recommended in a DPW because it reduces a 53.88% of the amount of energy gained. - Abstract: The pseudo-transient thermal performance (each 5 s) of a double pane window without and with a solar control coating was determined numerically. The study considers warm climatic conditions (Mexico) and a period from 8:00 to 18:00 h. The effect of varying the indoor air temperature (15–30 °C); and the incident solar radiation and the outdoor air temperature as functions of time is analyzed. The simulations were done with a self-developed ForTran program and it was verified with results from the literature. To obtain the results, 57,600 computational runs were necessary. From the results, the double pane window with a solar control coating allows a smaller heat flux to enter into a room than the corresponding without a solar control coating. The solar control coating in double glass window reduces the amount of 1073.79 W h/m 2 with respect to the case without a solar control coating, which represents a reduction of 53.88% of the heat gain.

  16. Modeling of Thermal Barrier Coatings

    Science.gov (United States)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  17. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  18. Controlled protein adsorption on PMOXA/PAA based coatings by thermally induced immobilization

    Science.gov (United States)

    Mumtaz, Fatima; Chen, Chaoshi; Zhu, Haikun; Pan, Chao; Wang, Yanmei

    2018-05-01

    In this work, poly(2-methyl-2-oxazoline-random-glycidyl methacrylate) (PMOXA-r-GMA) and poly(acrylic acid)-block-poly(glycidyl methacrylate) (PAA-b-PGMA) copolymers were synthesized via cationic ring-opening polymerization (CROP) of 2-methyl-2-oxazoline (MOXA) and reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylic acid (AA) followed by their random and block copolymerization with glycidyl methacrylate (GMA), respectively, and then characterized carefully. PMOXA/PAA based coatings were then prepared by simply spin coating the mixture of PMOXA-r-GMA and PAA-b-PGMA copolymer solutions onto silicon/glass substrates followed by annealing at 110 °C. The coatings were rigorously characterized by using X-ray photoelectron spectroscopy (XPS), the static water contact angle (WCA) test, ellipsometry and atomic force microscopy (AFM). The results demonstrated that the coating based mixed PMOXA/PAA brushes with desired surface composition could be attained by simply maintaining their percentage in the mixture of PMOXA-r-GMA and PAA-b-PGMA copolymer solutions. Finally, the switchable behavior of PMOXA/PAA based coatings toward bovine serum albumin (BSA) adsorption was investigated by fluorescein isothiocyanate-labelled BSA (FITC-BSA) assay and quartz crystal microbalance with dissipation monitoring (QCM-D), which indicated that the coating based mixed PMOXA/PAA brushes could control BSA adsorption/desorption from very low to high amount (>90% desorption) through adjusting the composition of PMOXA-r-GMA and PAA-b-PGMA solution used in preparing PMOXA/PAA based coatings upon pH and ionic strength change. Furthermore, PMOXA/PAA based coatings displayed efficient repeatability of reversible BSA adsorption/desorption cycles.

  19. Thermal input control and enhancement for laser based residual stress measurements using liquid temperature indicating coatings

    Science.gov (United States)

    Pechersky, Martin J.

    1999-01-01

    An improved method for measuring residual stress in a material comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress.

  20. Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Akoshima, Megumi; Takahashi, Satoru

    2017-09-01

    Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.

  1. Multilayer four-flux model for the optical degradation of thermal control coatings in space

    Science.gov (United States)

    Tonon, C.; Rozé, C.; Girasole, T.; Duvignacq, Carole

    2017-11-01

    The aim of this paper is to generalize the four-flux radiative transfer model to the case of a multilayer medium. An application is presented with the study of the optical degradation of a white paint in simulated space environment. This paint is constituted of a mixing a zinc oxide and a silicone resin. A sample was irradiated with 45 keV protons and reflectance measurements were achieved in situ after each step of irradiation in order to see the evolution of the thermo-optical properties of the coating. These tests were completed after irradiation by Scanning Electron Microscopy (SEM) in order to characterize the structure of the material and to detect possible structural changes due to the irradiation. This experimental investigation allowed us to define hypothesis to be introduced in the model. In particular, we assume that the optical degradation centered on 410 nm is due to a variation a-/+ of the imaginary part of the refractive index of zinc oxide in the damaged layer. The generalized four-flux model was validated by comparing numerical calculation with experiment.

  2. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  3. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    Science.gov (United States)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  4. High speed PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. High speed PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Beele, W.; Eschendorff, G.

    2006-01-01

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. Micro-thermal analysis of polyester coatings

    NARCIS (Netherlands)

    Fischer, H.R.

    2010-01-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure

  7. Improved Metallography Of Thermal-Barrier Coatings

    Science.gov (United States)

    Brindley, William J.; Leonhardt, Todd A.

    1991-01-01

    New technique for preparation of metallographic samples makes interpretation of images of pores and microcracks more reliable. Involves use of vacuum epoxy infiltration and interference-film coating to reduce uncertainty. Developed for inspection of plasma-sprayed ceramic thermal-barrier coatings on metals but applicable to other porous, translucent materials, including many important ceramics.

  8. Thermally sprayed coatings: Aluminum on lead

    International Nuclear Information System (INIS)

    Usmani, S.; Czajkowski, C.J.; Zatorski, R.

    1999-01-01

    An experimental program to determine the feasibility of thermally spraying aluminum on a lead substrate was initiated in support of the accelerator production of tritium (APT) Project for the US Department of Energy. The program consisted of two distinct parts: (1) the characterization of the thermally sprayed coatings, including microhardness testing, effects of heating, and microstructure and porosity determinations, and (2) effects of mercury doping and heat treatments on the thermally sprayed composite. The project determined that aluminum could successfully be thermally sprayed onto the lead. The coatings had a dense microstructure, with a Vicker's Pyramid Hardness (VPH) of about 60, and a maximum porosity (found in strips on the samples) of 12%

  9. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  10. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  11. Low Earth orbit thermal control coatings exposure flight tests: A comparison of U.S. and Russian results. Report, 8 November-12 August 1993

    International Nuclear Information System (INIS)

    Tribble, A.C.; Lukins, R.; Watts, E.; Naumov, S.F.; Sergeev, V.K.

    1995-03-01

    Both the United States (US) and Russia have conducted a variety of space environment effects on materials (SEEM) flight experiments in recent years. A prime US example was the Long Duration Exposure Facility (LDEF), which spent 5 years and 9 months in low Earth orbit (LEO) from April 1984 to January 1990. A key Russian experiment was the Removable Cassette Container experiment, (RCC-1), flown on the Mir Orbital Station from 11 January 1990 to 26 April 1991. This paper evaluates the thermal control coating materials data generated by these two missions by comparing: environmental exposure conditions, functionality and chemistry of thermal control coating materials, and pre- and post-flight analysis of absorptance, emittance, and mass loss due to atomic oxygen erosion. It will be seen that there are noticeable differences in the US and Russian space environment measurements and models, which complicates comparisons of environments. The results of both flight experiments confirm that zinc oxide and zinc oxide orthotitanate white thermal control paints in metasilicate binders (Z93, YB71, TP-co-2, TP-co-11, and TP-co-12), are the most stable upon exposure to the space environment. It is also seen that Russian flight materials experience broadens to the use of silicone and acrylic resin binders while the US relies more heavily on polyurethane

  12. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  13. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  14. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  15. Investigation of thermal fatigue behavior of thermal barrier coating systems

    International Nuclear Information System (INIS)

    Zhu Dongming; Miller, R.A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure under thermal loads that simulate those in diesel engines are investigated. Surface cracks initiate early and grow continuously under thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N* HCF which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 μm/LCF cycle for a pure LCF test to 2.8 μm/LCF cycle for a combined LCF and HCF test at N* HCF about 20 000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that the HCF damage effect increases with heat flux and thus with increasing surface temperature swing, thermal expansion coefficient and elastic modulus of the ceramic coating, as well as with the HCF interacting depth. Good correlation has been found between the analysis and experimental evidence. (orig.)

  16. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Meid, Carla; Wischek, Janine; Bartsch, Marion [German Aerospace Center (DLR), Institute of Materials Research, 51147 Cologne (Germany); Okasinski, John; Almer, Jonathan [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Karlsson, Anette M. [Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (United States)

    2013-08-15

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  17. Thermal Barrier Coatings Resistant to Glassy Deposits

    Science.gov (United States)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  18. Examining Thermally Sprayed Coats By Fluorescence Microscopy

    Science.gov (United States)

    Street, Kenneth W., Jr.; Leonhardt, Todd A.

    1994-01-01

    True flaws distinquished from those induced by preparation of specimens. Fluorescence microscopy reveals debonding, porosity, cracks, and other flaws in specimens of thermally sprayed coating materials. Specimen illuminated, and dye it contains fluoresces, emitting light at different wavelength. Filters emphasize contrast between excitation light and emission light. Specimen viewed directly or photographed on color film.

  19. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  20. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  1. The use of electrochemical measurement techniques towards quality control and optimisation of corrosion properties of thermal spray coatings

    NARCIS (Netherlands)

    Vreijling, M.P.W.; Hofman, R.; Westing, E.P.M. van; Ferrari, G.M.; Wit, J.H.W. de

    1998-01-01

    Metal spray coatings are ever more recognised as a possible superior means of corrosion protection in many environments. Extended service life combined with little or no maintenance provides interesting opportunities for both environmentalists and corrosion engineers. Although many successful

  2. A chromia forming thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.P.; Evans, H.E. [Metallurgy and Materials, The University of Birmingham, Birmingham, B15 2TT (United Kingdom); Gray, S.; Nicholls, J.R. [Surface Science and Engineering Centre, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2011-07-15

    Conventional thermal barrier coating (TBC) systems consist of an insulating ceramic topcoat, a bond coat for oxidation protection and the underlying superalloy designed to combat the oxidising conditions in aero- and land-based gas turbines. Under high-temperature oxidation, the use of an alumina forming bond coat is warranted, thus all current TBC systems are optimised for the early formation of a dense, protective thermally grown oxide (TGO) of alumina. This also offers protection against Type I hot corrosion but a chromia layer gives better protection against Type II corrosion and intermediate temperatures, the conditions found in land-based gas turbines. In this paper the authors present the first known results for a chromia forming TBC system. Tests have been performed under oxidising conditions, up to 1000 h, at temperatures between 750 C and 900 C, and under Type I (900 C) and Type II (700 C) hot corrosion conditions up to 500 h. Under all these conditions no cracking, spallation or degradation was observed. Examination showed the formation of an adherent, dense chromia TGO at the bond coat / topcoat interface. These initial results are very encouraging and the TGO thicknesses agree well with comparable results reported in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Thermal conductivity issues of EB-PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, U.; Raetzer-Scheibe, H.J.; Saruhan, B. [DLR - German Aerospace Center, Institute of Materials Research, 51170 Cologne (Germany); Renteria, A.F. [BTU, Physical Metallurgy and Materials Technology, Cottbus (Germany)

    2007-09-15

    The thermal conductivity of electron-beam physical vapor deposited (EB-PVD) thermal barrier coatings (TBCs) was investigated by the Laser Flash technique. Sample type and methodology of data analyses as well as atmosphere during the measurement have some influence on the data. A large variation of the thermal conductivity was found by changes in TBC microstructure. Exposure at high temperature caused sintering of the porous microstructure that finally increased thermal conductivity up to 30 %. EB-PVD TBCs show a distinct thickness dependence of the thermal conductivity due to the anisotropic microstructure in thickness direction. Thin TBCs had a 20 % lower thermal conductivity than thick coatings. New compositions of the ceramic top layer offer the largest potential to lower thermal conductivity. Values down to 0.8W/(mK) have been already demonstrated with virgin coatings of pyrochlore compositions. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Die Waermeleitfaehigkeit von elektronenstrahl-aufgedampften (EB-PVD) Waermedaemmschichten (TBCs) wurde mittels Laser-Flash untersucht. Probentyp, Messmethodik und die Atmosphaere waehrend der Messung haben einen Einfluss auf die Ergebnisse. Aenderungen in der Mikrostruktur der TBC fuehrten zu grossen Unterschieden der Waermeleitfaehigkeit. Eine Hochtemperaturbelastung verursachte Sintervorgaenge in der poroesen Mikrostruktur, was die Waermeleitfaehigkeit um bis zu 30 % ansteigen liess. EB-PVD TBCs zeigen eine deutliche Dickenabhaengigkeit der Waermeleitfaehigkeit durch die Anisotropie der Mikrostruktur in dieser Richtung. Duenne TBCs haben eine um 20 % geringere Waermeleitfaehigkeit als dicke Schichten. Neue Zusammensetzungen der keramischen Deckschicht bieten die groessten Moeglichkeiten fuer eine Reduktion der Waermeleitfaehigkeit. Werte bis zu 0,8 W/(mK) wurden damit bereits erreicht. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  4. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  5. Demonstration of Thermally Sprayed Metal and Polymer Coatings for Steel Structures at Fort Bragg, NC

    Science.gov (United States)

    2017-09-01

    ER D C/ CE RL T R- 17 -3 0 DoD Corrosion Prevention and Control Program Demonstration of Thermally Sprayed Metal and Polymer Coatings...and Polymer Coatings for Steel Structures at Fort Bragg, NC Final Report on Project F07-AR10 Larry D. Stephenson, Alfred D. Beitelman, Richard G...5 2.1.2 Thermoplastic polymer coating (flame spray

  6. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness

    International Nuclear Information System (INIS)

    Dai Hui; Zhong Xinghua; Li Jiayan; Zhang Yanfei; Meng Jian; Cao Xueqiang

    2006-01-01

    Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y 2 O 3 + ZrO 2 ) and lanthanum zirconate (LZ, La 2 Zr 2 O 7 ) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 deg. C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 μm have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 μm, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 μm, the failure mainly occurs at the interface of the YSZ layer and the bond coat

  7. Micro-thermal analysis of polyester coatings

    Science.gov (United States)

    Fischer, Hartmut R.

    2010-04-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure like chain scission and cross-linking are manifested by a shift of the LTA detectable Tg and by a change of the slope of the part of the LTA graph responsible for the penetration of the hot sensor into the material after passing the glass transition temperature. As such LTA is a valuable tool to have a quick look into coating surfaces and especially their ageing. The photo-degradation of polyester in air leads to the formation of a cross-linked network at a surface layer of about 3-4 μm coupled with an increase in hardness and of the glass transition temperature by ˜90 K, the effect is less drastic for a photo-degradation in a nitrogen environment. Moreover, the presence of a non-equilibrium dense surface layer with a higher Tg formed during the drying of the coating formulation and the film solidification can be shown.

  8. Thermal spray coatings replace hard chrome

    International Nuclear Information System (INIS)

    Schroeder, M.; Unger, R.

    1997-01-01

    Hard chrome plating provides good wear and erosion resistance, as well as good corrosion protection and fine surface finishes. Until a few years ago, it could also be applied at a reasonable cost. However, because of the many environmental and financial sanctions that have been imposed on the process over the past several years, cost has been on a consistent upward trend, and is projected to continue to escalate. Therefore, it is very important to find a coating or a process that offers the same characteristics as hard chrome plating, but without the consequent risks. This article lists the benefits and limitations of hard chrome plating, and describes the performance of two thermal spray coatings (tungsten carbide and chromium carbide) that compared favorably with hard chrome plating in a series of tests. It also lists three criteria to determine whether plasma spray or hard chrome plating should be selected

  9. Oxide growth and damage evolution in thermal barrier coatings

    NARCIS (Netherlands)

    Hille, T.S.; Turteltaub, S.R.; Suiker, A.S.J.

    2011-01-01

    Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the

  10. Thermal Coatings Seminar Series Training Part 2: Environmental Effects

    Science.gov (United States)

    Triolo, Jack

    2015-01-01

    This course will present an overview of a variety of thermal coatings-related topics, including: coating types and availability, thermal properties measurements, environmental testing (lab and in-flight), environmental impacts, contamination impacts, contamination liabilities, determination of BOLEOL values, and what does specularity mean to the thermal engineer.

  11. Model-based analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    Thermal insulation properties of coatings based on selected functional filler materials are investigated. The underlying physics, thermal conductivity of a heterogeneous two-component coating, and porosity and thermal conductivity of hollow spheres (HS) are quantified and a mathematical model for...

  12. Metallographic techniques for evaluation of thermal barrier coatings

    Science.gov (United States)

    Brindley, William J.; Leonhardt, Todd A.

    1990-01-01

    The performance of ceramic thermal barrier coatings is strongly dependent on the amount and shape of the porosity in the coating. Current metallographic techniques do not provide polished surfaces that are adequate for a repeatable interpretation of the coating structures. A technique recently developed at NASA-Lewis for preparation of thermal barrier coating sections combines epoxy impregnation, careful sectioning and polishing, and interference layering to provide previously unobtainable information on processing-induced porosity. In fact, increased contrast and less ambiguous structure developed by the method make automatic quantitative metallography a viable option for characterizing thermal barrier coating structures.

  13. Inductive thermal plasma generation applied for the materials coating

    International Nuclear Information System (INIS)

    Pacheco, J.; Pena, R.; Cota, G.; Segovia, A.; Cruz, A.

    1996-01-01

    The coatings by thermal plasma are carried out introducing particles into a plasma system where they are accelerated and melted (total or partially) before striking the substrate to which they adhere and are suddenly cooled down. The nature of consolidation and solidification of the particles allows to have control upon the microstructure of the deposit. This technique is able to deposit any kind of material that is suitable to be merged (metal, alloy, ceramic, glass) upon any type of substrate (metal, graphite, ceramic, wood) with an adjustable thickness ranging from a few microns up to several millimeters. The applications are particularly focused to the coating of materials in order to improve their properties of resistance to corrosion, thermal and mechanical efforts as well as to preserve the properties of the so formed compound. In this work the electromagnetic induction phenomenon in an ionized medium by means of electric conductivity, is described. Emphasis is made on the devices and control systems employed in order to generate the thermal plasma and in carrying out the coatings of surfaces by the projection of particles based on plasma

  14. Influence of creep and cyclic oxidation in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Philipp; Baeker, Martin; Roesler, Joachim [Technische Univ. Braunschweig (Germany). Inst. fuer Werkstoffe

    2012-01-15

    The lifetime of thermal barrier coating systems is limited by cracks close to the interfaces, causing delamination. To study the failure mechanisms, a simplified model system is analysed which consists of a bond-coat bulk material, a thermally grown oxide, and an yttria-stabilised zirconia topcoat. The stresses in the model system are calculated using a finite element model which covers the simulation of full thermal cycles, creep in all layers, and the anisotropic oxidation during dwelling. Creep in the oxide and the thermal barrier coating is varied with the use of different creep parameter sets. The influence of creep in the bondcoat is analysed by using two different bond-coat materials: fast creeping Fecralloy and slow creeping oxide dispersion strengthened MA956. It is shown that creep in the bondcoat influences the lifetime of the coatings. Furthermore, a fast creeping thermally grown oxide benefits the lifetime of the coating system. (orig.)

  15. ANALISIS STRUKTUR MIKRO LAPISAN BOND COAT NIAL THERMAL BARRIER COATING (TBC PADA PADUAN LOGAM BERBASIS CO

    Directory of Open Access Journals (Sweden)

    Toto Sudiro

    2012-11-01

    Full Text Available Kehandalan dan umur pakai sistem Thermal Barrier Coating (TBC ditentukan oleh kestabilan lapisan bond coat dan thermal grown oxide (TGO. Sehingga sangatlah penting untuk memahami mekanisme pembentukan dan degradasi lapisan ini. Pada makalah ini akan dibahas analisis struktur mikro lapisan bond coat NiAl yang dideposisikan pada substrat CoCrNi dengan menggunakan gabungan metoda electroplating dan pack-cementation. Pada makalah ini juga dibahas mekanisme pembentukan void disepanjang interface bond coat¬-substrat setelah tes oksidasi.

  16. Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings

    Science.gov (United States)

    Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay

    2015-07-01

    Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.

  17. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  18. Transient thermal camouflage and heat signature control

    Science.gov (United States)

    Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong

    2016-09-01

    Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.

  19. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  20. Microstructure and durability of zirconia thermal barrier coatings

    International Nuclear Information System (INIS)

    Suhr, D.S.; Mitchell, T.E.; Keller, R.J.

    1983-01-01

    Various combinations of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 0 C and cyclic thermal exposure to 1000 0 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO 2 -Y 2 O 3 compositions, of which the optimum was found to be ZrO 2 -8.9 wt% Y 2 O 3 . Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes

  1. Gas-thermal coating of powdered materials. Communication 2

    International Nuclear Information System (INIS)

    Ermakov, S.S.

    1986-01-01

    This paper investigates the microstructure, microhardness, chemical composition of the transition zone, and also the strength characteristics of gas-thermal coatings including their adhesive power to the substrate (iron brand NC 100.24) and the residual stresses in the coatings. The microstructure of the transition zone was investigated; it was established that on the side of the substrate its density is greater than the mean density of both types of coating. It is shown that the porosity of the substrate has a competing effect on the thermal interaction of materials. Discovered regularities lead to the conclusion that the process of gas-thermal coating of powdered materials is more effective than when compact materials are coated; most effective is the combination of gas-thermal coating with processes of heat treatment of powder-metallurgy products

  2. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry

    Science.gov (United States)

    Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch

    2011-01-01

    The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.

  3. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  4. Thermal insulation coating based on water-based polymer dispersion

    Directory of Open Access Journals (Sweden)

    Panchenko Iuliia

    2018-01-01

    Full Text Available For Russia, due to its long winter period, improvement of thermal insulation properties of envelope structures by applying thermal insulation paint and varnish coating to its inner surface is considered perspective. Thermal insulation properties of such coatings are provided by adding aluminosilicate microspheres and aluminum pigment to their composition. This study was focused on defining the effect of hollow aluminosilicate microspheres and aluminum pigment on the paint thermal insulation coating based on water-based polymer dispersion and on its optimum filling ratio. The optimum filling ratio was determined using the method of critical pigment volume concentration (CPVC. The optimum filling ratio was found equal to 55%.

  5. An electrothermal chemical technology for thermal spray coatings

    International Nuclear Information System (INIS)

    Wald, S.; Appelbaum, G.; Alimi, R.; Rabani, L.; Zoler, D.; Zhitomirsky, V.; Factor, M.; Roman, I.

    1998-01-01

    A new spray technology for producing hard-coatings, has been developed at the SOREQ Nuclear Research Center. The concept is based on the extensive experience accumulated at SOREQ in the course of the development of Electrothermal (ET), Electrothermal-Chemical (ETC) and Solid-Propellant Electrothermal-Chemical (SPETC) guns(r). High quality coatings may be obtained by thermal spraying powder particles onto a variety of substrates. Mature state-of-the-art technologies such as plasma spray, high velocity oxy fuel (HVOF) and detonation gun (D-Gun) are widely used for many applications. As each method has its own drawbacks there is a need for a combination of several parameters which cannot be achieved by any existing individual commercial technology. The method presented is oriented toward a high-quality, multi-step, high-throughput, easily programmable continuous coating process and relatively inexpensive technology. The combustion products of a solid or liquid propellant accelerate the powder particles of the coating material. A pulsed-plasma jet, provided by a confined capillary discharge, ignites the propellant and controls the combustion process. The powder particles are accelerated to velocities over 1000 m/s. Due to the very high carrier gas density, high velocity, high throughput and high powder consumption efficiency are obtained. The plasma jet enables control of the gas temperature and consequently influences the powder temperature

  6. TECHNOLOGICAL PECULIARITIES OF THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2016-01-01

    Full Text Available A technology for formation of thermal barrier coatings (TBC based on zirconium dioxide has been developed in the paper. The paper investigates structures of phase composition and thermal stability of such developed coatings. Investigation results pertaining to formation of an oxide system ZrO2 – Y2O3, while using plasma spraying and subsequent high-energy processing, which allows to increase resistance of a thermal barrier coating to thermal cycling heat resistance of the coating at temperature of 1100 °C. This leads to longer protection of bottom layer against high-temperature exposure. The methodology is based on complex metallographic, X-ray diffraction and electron microscopy investigations of structural elements in composite plasma coatings of the ZrO2 – Y2O system. Resistance of plasma coatings (Мe – Cr – Al – Y/ZrO2 – Y2O3-type, used as TBC to protect gas turbine engine blades under conditions of frequent thermal cyclings is limited by cleavage of an outer ceramic layer. Structural and electron microprobe investigations have shown that as a result of thermal cycling an outer atmosphere due to porous structure of the ceramic coating layer, migrates to the surface of lower metal coating, causing its oxidation. As a result, the metal-ceramic Al2O3 layer is formed at a metal-ceramic interface and it changes a stress state of the coating that causes a reduction of protective properties. Thus, a high heat resistance of thermal barrier coatings depends on processes occurring at the interface between metal and ceramic coating layers. A laser impact on samples with TBC leads to changes in the structure of the oxide layer of ZrO2 – Y2O3. In this case its initial surface characterized by considerable relief is significantly flattened due to processing and the coating is fractured and it is separated in fragments. As the oxide coating has low thermal conductivity, and the time of laser exposure is about 10–3 sec, a heat flux

  7. Thermal repellent properties of surface coating using silica

    Science.gov (United States)

    Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.

    2017-11-01

    Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.

  8. Thermal behavior variations in coating thickness using pulse phase thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Chung, Yoonjae; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2016-08-15

    This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was used to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

  9. Thermal stress mitigation by Active Thermal Control

    DEFF Research Database (Denmark)

    Soldati, Alessandro; Dossena, Fabrizio; Pietrini, Giorgio

    2017-01-01

    This work proposes an Active Thermal Control (ATC) of power switches. Leveraging on the fact that thermal stress has wide impact on the system reliability, controlling thermal transients is supposed to lengthen the lifetime of electronic conversion systems. Indeed in some environments...... results of control schemes are presented, together with evaluation of the proposed loss models. Experimental proof of the ability of the proposed control to reduce thermal swing and related stress on the device is presented, too....

  10. Thermal Diffusivity Measurement for Thermal Spray Coating Attached to Substrate Using Laser Flash Method

    Science.gov (United States)

    Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio

    2011-11-01

    Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.

  11. Optical Diagnostics of Thermal Barrier Coatings

    Science.gov (United States)

    Majewski, Mark Steven

    The high temperature properties of ceramic materials make them suitable for the extreme environments of gas combustion powered turbines. They are instrumental in providing thermal insulation for the metallic turbine components from the combustion products. Also, the addition of specific rare earth elements to ceramics creates materials with temperature diagnostic applications. Laser based methods have been applied to these ceramic coatings to predict their remaining thermal insulation service life and to explore their high temperature diagnostic capabilities. A method for cleaning thermal barrier coatings (TBCs) contaminated during engine operation has been developed using laser ablation. Surface contamination on the turbine blades hinders nondestructive remaining life prediction using photo luminescence piezospectroscopy (PLPS). Real time monitoring of the removed material is employed to prevent damage to the underlying coating. This method relies on laser induced breakdown spectroscopy (LIBS) to compute the cross correlation coefficient between the spectral emissions of a sample TBC that is contaminated and a reference clean TBC. It is possible to remove targeted contaminants and cease ablation when the top surface of the TBC has been reached. In collaboration with this work, Kelley's thesis [1] presents microscopy images and PLPS measurements indicating the integrity of the TBC has been maintained during the removal of surface contaminants. Thermographic phosphors (TGP) have optical emission properties when excited by a laser that are temperature dependent. These spectral and temporal properties have been investigated and utilized for temperature measurement schemes by many previous researchers. The compounds presented in this dissertation consist of various rare earth (Lanthanide) elements doped into a host crystal lattice. As the temperature of the lattice changes, both the time scale for vibrational quenching and the distribution of energy among atomic energy

  12. Space thermal control development

    Science.gov (United States)

    Hoover, M. J.; Grodzka, P. G.; Oneill, M. J.

    1971-01-01

    The results of experimental investigations on a number of various phase change materials (PCMs) and PCMs in combination with metals and other materials are reported. The evaluations include the following PCM system performance characteristics: PCM and PCM/filler thermal diffusivities, the effects of long-term thermal cycling, PCM-container compatibility, and catalyst effectiveness and stability. Three PCMs demonstrated performance acceptable enough to be considered for use in prototype aluminum thermal control devices. These three PCMs are lithium nitrate trihydrate with zinc hydroxy nitrate catalyst, acetamide, and myristic acid. Of the fillers tested, aluminum honeycomb filler was found to offer the most increase in system thermal diffusivity.

  13. Performances and reliability of WC based thermal spray coatings

    International Nuclear Information System (INIS)

    Scrivani, A.; Rosso, M.; Salvarani, L.

    2001-01-01

    Thermal spray processes are used for a lot of traditional and innovative applications and their importance is becoming higher and higher. WC/CoCr based thermal spray coatings represent one of the most important class of coatings that find application in a wide range of industrial sectors. This paper will address a review of current applications and characteristics of this kind of coating. The most important spraying processes, namely HVOF (high velocity oxygen fuel) are examined, the characterization of the coatings from the point of view of corrosion and wear resistance is considered. (author)

  14. Thermal spray deposition and evaluation of low-Z coatings

    International Nuclear Information System (INIS)

    Seals, R.D.; Swindeman, C.J.; White, R.L.

    1996-01-01

    Thermally sprayed low-Z coatings of B 4 C on Al substrates were investigated as candidate materials for first-wall reactor protective surfaces. Comparisons were made to thermally sprayed coatings of B, MgAl 2 O 4 , Al 2 O 3 , and composites. Graded bond layers were applied to mitigate coefficient of thermal expansion mismatch. Microstructures, thermal diffusivity before and after thermal shock loading, steel ball impact resistance, CO 2 pellet cleaning and erosion tolerance, phase content, stoichiometry by Rutherford backscattering spectroscopy, and relative tensile strengths were measured

  15. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  16. Evaluation of properties and thermal stress field for thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    王良; 齐红宇; 杨晓光; 李旭

    2008-01-01

    In order to get thermal stress field of the hot section with thermal barrier coating (TBCs), the thermal conductivity and elastic modulus of top-coat are the physical key properties. The porosity of top-coat was tested and evaluated under different high temperatures. The relationship between the microstructure (porosity of top-coat) and properties of TBCs were analyzed to predict the thermal properties of ceramic top-coat, such as thermal conductivity and elastic modulus. The temperature and stress field of the vane with TBCs were simulated using two sets of thermal conductivity data and elastic modulus, which are from literatures and this work, respectively. The results show that the temperature and stress distributions change with thermal conductivity and elastic modulus. The differences of maximum temperatures and stress are 6.5% and 8.0%, respectively.

  17. Coatings influencing thermal stress in photonic crystal fiber laser

    Science.gov (United States)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  18. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Science.gov (United States)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  19. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  20. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  1. Computational homogenisation for thermoviscoplasticity: application to thermally sprayed coatings

    Science.gov (United States)

    Berthelsen, Rolf; Denzer, Ralf; Oppermann, Philip; Menzel, Andreas

    2017-11-01

    Metal forming processes require wear-resistant tool surfaces in order to ensure a long life cycle of the expensive tools together with a constant high quality of the produced components. Thermal spraying is a relatively widely applied coating technique for the deposit of wear protection coatings. During these coating processes, heterogeneous coatings are deployed at high temperatures followed by quenching where residual stresses occur which strongly influence the performance of the coated tools. The objective of this article is to discuss and apply a thermo-mechanically coupled simulation framework which captures the heterogeneity of the deposited coating material. Therefore, a two-scale finite element framework for the solution of nonlinear thermo-mechanically coupled problems is elaborated and applied to the simulation of thermoviscoplastic material behaviour including nonlinear thermal softening in a geometrically linearised setting. The finite element framework and material model is demonstrated by means of numerical examples.

  2. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    International Nuclear Information System (INIS)

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases

  3. Crack propagation studies and bond coat properties in thermal ...

    Indian Academy of Sciences (India)

    Unknown

    sion of Al from Co base coatings on Ni base superalloy at high temperatures with ... stabilized with 8 wt% yttria thermal barrier coating was applied over the bond ... and machined to the size shown in table 1, where h is the height, b the width ...

  4. Comparative study on effect of blending, thermal barrier coating ...

    African Journals Online (AJOL)

    The brake thermal efficiency, specific fuel consumption, carbon monoxide, unburned hydrocarbon and oxides of nitrogen emissions of both diesel and UOME and its blends were measured before and after coating and the results are compared. B20 fuelled biodiesel and PSZ coated engine provides almost comparable ...

  5. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    Science.gov (United States)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the

  6. Erosion and foreign object damage of thermal barrier coatings

    International Nuclear Information System (INIS)

    Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S.

    1997-01-01

    Thermal barrier coating technology is used in the hot sections of gas turbines to extend component life. To maximise these benefits, the thermal barrier coating has to remain intact throughout the life of the turbine. High velocity ballistic damage can lead to total thermal barrier removal, while erosion may lead to progressive loss of thickness during operation. This paper particularly addresses the erosion resistance and resistance to foreign object damage of thermal barrier coatings. It was found that EB-PVD thermal barriers are significantly more erosion resistant when impacted with alumina or silica, than the equivalent plasma spray coating, both at room temperature and 910 C. Examination of tested hardware, reveals that cracking occurs within the near surface region of the columns for EB-PVD ceramic and that erosion occurs by removal of these small blocks of material. In stark contrast, removal of material for plasma sprayed ceramic occurs through poorly bonded splat boundaries. Large particle impact results in severe damage to the EB-PVD thermal barrier, with cracks penetrating through the ceramic coating to the ceramic/bond coat interface. Material removal, per particle impact, increases with increased particle size. (orig.)

  7. Effect of the top coat on the phase transformation of thermally grown oxide in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Hashimoto, T. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom)]. E-mail: ping.xiao@manchester.ac.uk

    2006-12-15

    The phase transformation of the thermally grown oxide (TGO) formed on a Pt enriched {gamma} + {gamma}' bond coat in electron beam physical vapour deposited thermal barrier coatings (TBCs) was studied by photo-stimulaluminescence spectroscopy. The presence of the TBC retards the {theta} to {alpha} transformation of the TGO and leads to a higher oxidation rate. The reasons for these phenomena are discussed.

  8. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  9. Characterization of thermally sprayed coatings for high-temperature wear-protection applications

    International Nuclear Information System (INIS)

    Li, C.C.

    1980-03-01

    Under normal high-temperature gas-cooled reactor (HTGR) operating conditions, faying surfaces of metallic components under high contact pressure are prone to friction, wear, and self-welding damage. Component design calls for coatings for the protection of the mating surfaces. Anticipated operating temperatures up to 850 to 950 0 C (1562 to 1742 0 F) and a 40-y design life require coatings with excellent thermal stability and adequate wear and spallation resistance, and they must be compatible with the HTGR coolant helium environment. Plasma and detonation-gun (D-gun) deposited chromium carbide-base and stabilized zirconia coatings are under consideration for wear protection of reactor components such as the thermal barrier, heat exchangers, control rods, and turbomachinery. Programs are under way to address the structural integrity, helium compatibility, and tribological behavior of relevant sprayed coatings. In this paper, the need for protection of critical metallic components and the criteria for selection of coatings are discussed. The technical background to coating development and the experience with the steam cycle HTGR (HTGR-SC) are commented upon. Coating characterization techniques employed at General Atomic Company (GA) are presented, and the progress of the experimental programs is briefly reviewed. In characterizing the coatings for HTGR applications, it is concluded that a systems approach to establish correlation between coating process parameters and coating microstructural and tribological properties for design consideration is required

  10. Thermal conductive epoxy enhanced by nanodiamond-coated carbon nanotubes

    Science.gov (United States)

    Zhao, Bo; Jiang, Guohua

    2017-11-01

    Nanodiamond (ND) particles were coated on the surface of carbon nanotubes (CNTs) by chemical reactions. Reliable bonding was formed by the combination of acyl chloride on NDs and amine group on CNTs. ND coated CNTs (CNT-ND) were dispersed into epoxy to fabricate thermal conductive resins. The results show that the surface energy of CNTs is decreased by the coated NDs, which is contributed to the excellent dispersion of CNT-NDs in the epoxy matrix. The heat-transfer channels were built by the venous CNTs cooperating with the coated NDs, which not only plays an effective role of heat conduction for CNTs and NDs, but also avoids the electrical leakage by the protection of NDs surrounding outside of CNTs. Electrical and thermal conductance measurements demonstrate that the influence of the CNT-ND incorporation on the electrical conductance is minor, however, the thermal conductivity is improved significantly for the epoxy filled with CNT-ND.[Figure not available: see fulltext.

  11. Assessment of thermal spray coatings for wear and abrasion resistance applications

    Science.gov (United States)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  12. Simulation of thermo-Elastics Properties of Thermal Barrier Coatings ...

    African Journals Online (AJOL)

    Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray ...

  13. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  14. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    Science.gov (United States)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  15. Thermal stability of phosphate coatings on steel

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Szelag, P.; Novák, M.; Mastný, L.; Brožek, Vlastimil

    2015-01-01

    Roč. 54, č. 3 (2015), s. 489-492 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : Steel * phosphates * coatings * structure Subject RIV: CA - Inorganic Chemistry Impact factor: 0.959, year: 2014

  16. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  17. Simulation to coating weight control for galvanizing

    Science.gov (United States)

    Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei

    2013-05-01

    Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.

  18. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Science.gov (United States)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  19. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot

  20. On the interfacial degradation mechanisms of thermal barrier coating systems: Effects of bond coat composition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.T., E-mail: WU.Rudder@nims.go.jp [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba City, Ibaraki (Japan); Wang, X.; Atkinson, A. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2010-10-15

    Thermal barrier coating (TBC) systems based on an electron beam physical vapour deposited, yttria-stabilized zirconia (YSZ) top coat and a substrate material of CMSX-4 superalloy were identically prepared to systematically study the behaviour of different bond coats. The three bond coat systems investigated included two {beta}-structured Pt-Al types and a {gamma}-{gamma}' type produced by Pt diffusion without aluminizing. Progressive evolution of stress in the thermally grown aluminium oxide (TGO) upon thermal cycling, and its relief by plastic deformation and fracture, were studied using luminescence spectroscopy. The TBCs with the LT Pt-Al bond coat failed by a rumpling mechanism that generated isolated cracks at the interface between the TGO and the YSZ. This reduced adhesion at this interface and the TBC delaminated when it could no longer resist the release of the stored elastic energy of the YSZ, which stiffened with time due to sintering. In contrast, the TBCs with Pt diffusion bond coats did not rumple, and the adhesion of interfaces in the coating did not obviously degrade. It is shown that the different failure mechanisms are strongly associated with differences in the high-temperature mechanical properties of the bond coats.

  1. Ultraviolet and visible BRDF data on spacecraft thermal control and optical baffle materials

    Science.gov (United States)

    Viehmann, W.; Predmore, R. E.

    1987-01-01

    Bidirectional scattering functions of numerous optical baffle materials and of spacecraft thermal control coatings and surfaces are presented. Measurements were made at 254 nm and at 633 nm. The coatings and surfaces include high-reflectance white paints, low-reflectance optical blacks, thermal control blankets, and various conversion coatings on aluminum.

  2. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  3. Underwater Coatings for Contamination Control

    International Nuclear Information System (INIS)

    Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included (1) Test Area North (TAN-607) with epoxy painted concrete walls; (2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; (3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and (4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55 F to 80 F dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: (1) Be easy to apply; (2) Adhere well to the four surfaces of interest; (3) Not change or have a negative impact on water chemistry or clarity; (4) Not be hazardous in final applied form; and (5) Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates

  4. Research into Thermal Sprayed Coatings with Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    Justinas Gargasas

    2012-01-01

    Full Text Available Research on thermal sprayed coatings with ultrasonic methods is the main object of this thesis. Metal surface coating was applied to modify its mechanical and physical-chemical properties and resistance to external impact and improve aesthetics. Spraying was carried out by scanning the rotating sample of 30 cm/s speed. Surface microstructure, ultrasonic thickness, porosity, micro hardness and surface modulus tests performed. Conclusions were formulated.Article in Lithuanian

  5. BEHAVIOR OF THERMAL SPRAY COATINGS AGAINST HYDROGEN ATTACK

    OpenAIRE

    Vargas, Fabio; Latorre, Guillermo; Uribe, Iván

    2003-01-01

    The behavior of nickel and chrome alloys applied as thermal spray coatings to be used as protection against embrittlement by hydrogen is studied. Coatings were applied on a carbon steel substrate, under conditions that allow obtain different crystalline structures and porosity levels, in order to determine the effect of these variables on the hydrogen permeation kinetics and as a protection means against embrittlement caused this element. In order to establish behaviors as barriers and protec...

  6. Thermal failure of nanostructured thermal barrier coatings with cold sprayed nanostructured NiCrAlY bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X.; Li, C.J. [Xi' an Jiaotong Univ., Xi' an (China)

    2008-07-01

    Nanostructured YSZ is expected to exhibit a high strain tolerability due to its low Young's modulus and consequently high durability. In this study, a porous YSZ as the thermal barrier coating was deposited by plasma spraying using an agglomerated nanostructured YSZ powder on a Ni-based superalloy Inconel 738 substrate with a cold-sprayed nanostructured NiCrAlY as the bond coat. The heat treatment in Ar atmosphere was applied to the cold-sprayed bond coat before deposition of YSZ. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured YSZ. The results showed that YSZ coating was deposited by partially melted YSZ particles. The nonmelted fraction of spray particles retains the porous nanostructure of the starting powder into the deposit. YSZ coating exhibits a bimodal microstructure consisting of nanosized particles retained from the powder and micro-columnar grains formed through the solidification of the melted fraction in spray particles. The oxidation of the bond coat occurs during the heat treatment in Ar atmosphere. The uniform oxide at the interface between the bond coat and YSZ can be formed during isothermal test. The cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of TBCs mainly occurred through spalling of YSZ within YSZ coating. The failure characteristics of plasma-sprayed nanostructured YSZ are discussed based on the coating microstructure and formation of TGO on the bond coat surface. (orig.)

  7. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  8. Crack growth in thermally sprayed ceramic coatings

    Czech Academy of Sciences Publication Activity Database

    Kroupa, František; Náhlík, Luboš; Knésl, Zdeněk

    2004-01-01

    Roč. 49, č. 2 (2004), s. 149-168 ISSN 0001-7043 R&D Projects: GA ČR GP106/04/P084; GA ČR GA101/03/0331 Institutional research plan: CEZ:AV0Z2043910 Keywords : ceramic coatings, fracture mechanics, crack extension Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  9. TGO growth and crack propagation in a thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.R.; Archer, R.; Huang, X. [National Research Council of Canada, Ottawa, ON (Canada); Marple, B.R. [National Research Council of Canada, Boucherville, PQ (Canada)

    2008-07-01

    In thermal barrier coating (TBC) systems, a continuous alumina layer developed at the ceramic topcoat/bond coat interface helps to protect the metallic bond coat from further oxidation and improve the durability of the TBC system under service conditions. However, other oxides such as spinel and nickel oxide, formed in the oxidizing environment, are believed to be detrimental to TBC durability during service at high temperatures. It was shown that in an air-plasma-sprayed (APS) TBC system, post-spraying heat treatments in low-pressure oxygen environments could suppress the formation of the detrimental oxides by promoting the formation of an alumina layer at the ceramic topcoat/bond coat interface, leading to an improved TBC durability. This work presents the influence of post-spraying heat treatments in low-pressure oxygen environments on the oxidation behaviour and durability of a thermally sprayed TBC system with high-velocity oxy-fuel (HVOF)-produced Co-32Ni-21Cr-8Al-0.5Y (wt.%) bond coat. Oxidation behaviour of the TBCs is evaluated by examining their microstructural evolution, growth kinetics of the thermally grown oxide (TGO) layers, as well as crack propagation during low frequency thermal cycling at 1050 C. The relationship between the TGO growth and crack propagation will also be discussed. (orig.)

  10. A modelling approach to designing microstructures in thermal barrier coatings

    International Nuclear Information System (INIS)

    Gupta, M.; Nylen, P.; Wigren, J.

    2013-01-01

    Thermomechanical properties of Thermal Barrier Coatings (TBCs) are strongly influenced by coating defects, such as delaminations and pores, thus making it essential to have a fundamental understanding of microstructure-property relationships in TBCs to produce a desired coating. Object-Oriented Finite element analysis (OOF) has been shown previously as an effective tool for evaluating thermal and mechanical material behaviour, as this method is capable of incorporating the inherent material microstructure as input to the model. In this work, OOF was used to predict the thermal conductivity and effective Young's modulus of TBC topcoats. A Design of Experiments (DoE) was conducted by varying selected parameters for spraying Yttria-Stabilised Zirconia (YSZ) topcoat. The microstructure was assessed with SEM, and image analysis was used to characterize the porosity content. The relationships between microstructural features and properties predicted by modelling are discussed. The microstructural features having the most beneficial effect on properties were sprayed with a different spray gun so as to verify the results obtained from modelling. Characterisation of the coatings included microstructure evaluation, thermal conductivity and lifetime measurements. The modelling approach in combination with experiments undertaken in this study was shown to be an effective way to achieve coatings with optimised thermo-mechanical properties.

  11. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  12. Thermal Spray Coating of Tungsten for Tokamak Device

    International Nuclear Information System (INIS)

    Jiang Xianliang; Gitzhofer, F; Boulos, M I

    2006-01-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ∼ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm

  13. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Zhong, Xinghua; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-01-01

    Highlights: • Gd 2 Zr 2 O 7 /YSZ DCL thermal barrier coating was designed and fabricated. • The Gd 2 Zr 2 O 7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd 2 Zr 2 O 7 , GZ) as the top ceramic layer and 4.5 mol% Y 2 O 3 partially-stabilized ZrO 2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y 2 O 3 partially-stabilized ZrO 2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  14. Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2014-08-01

    Full Text Available Suspension plasma spraying (SPS has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS or electron beam physical vapor deposition (EB-PVD coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM.

  15. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating

  16. Electrochemical behaviour of a stainless steel coating after thermal fatigue and thermal shocks

    International Nuclear Information System (INIS)

    Boudebane, A.; Darsouni, A.; Chadli, H.; Boudebane, S.

    2012-01-01

    This work aims to study of the influence of thermal fatigue and thermal shock on the corrosion behaviour of coated steel AISI 304L. The coating was welded by TIG welding on specimens in ferritic-pearlitic steel grade AISI 4140. The study concerns three different states of deposit: sensitized, sensitized and strain hardened in surface and no sensitized. We realized electrochemical corrosion in an aqueous solution of NaCl 34 g/l. The corrosion of the specimens were evaluated by comparing the potentiodynamic curves for different states of the coating. Firstly, electrochemical characterization of deposits has shown a localized intergranular corrosion. Furthermore, the increase in the number of cycles of thermal fatigue accelerates the dissolution of deposit. Thermal shocks tend to improve resistance to corrosion. Against, the mechanical treatment of surfaces by burnishing decreases the dissolution rate of deposit cycles in thermal fatigue. (authors)

  17. Thermal expansion of quaternary nitride coatings

    Science.gov (United States)

    Tasnádi, Ferenc; Wang, Fei; Odén, Magnus; Abrikosov, Igor A.

    2018-04-01

    The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X  =  Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for y≳ 0.5 .

  18. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    containing intact hollow glass or polymer spheres showed that silica aerogel particles are more efficient in an insulation coating than hollow spheres. In a practical (non-ideal) comparison, the ranking most likely cannot be generalized. A parameter study demonstrates how the model can be used, qualitatively......A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using...... a so-called core–shell structure representation. Data from several previous experimental investigations with silica aerogels in various binder matrices were used for model validation. For some relevant cases with binder intrusion, it was possible to obtain a very good agreement between simulations...

  19. Standard guide for metallographic preparation of thermal sprayed coatings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers recommendations for sectioning, cleaning, mounting, grinding, and polishing to reveal the microstructural features of thermal sprayed coatings (TSCs) and the substrates to which they are applied when examined microscopically. Because of the diversity of available equipment, the wide variety of coating and substrate combinations, and the sensitivity of these specimens to preparation technique, the existence of a series of recommended methods for metallographic preparation of thermal sprayed coating specimens is helpful. Adherence to this guide will provide practitioners with consistent and reproducible results. Additional information concerning standard practices for metallographic preparation can be found in Practice E 3. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitatio...

  20. THERMAL COMPOSITE COATINGS IMPROVING QUALITY OF TECHNICAL MEANS OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Andrzej POSMYK

    2015-06-01

    Full Text Available The paper presents the thermal properties of composite insulating material designed for producing of technical means of transport. This material can be coated on most of engineering materials. The matrix of this material is an acrylic resin ant non porous ceramic microspheres made of alumina are the reinforcing phase. Thanks to that into the spheres almost vacuum (0,13 Pa dominants and a big amount of spheres pro thickness unit is it possible to achieve low thermal conductivity. Usage of these coatings for producing of cooling cabins on vehicles let us to reduce of fuel for maintain of given temperature. Usage of these coatings in planes flying on high altitudes (temperature up to -60 allows to reduce of fuel consumption for heating. It has an important influence on transport quality and quality costs.

  1. Recycling light metals : Optimal thermal de-coating

    NARCIS (Netherlands)

    Kvithyld, A.; Meskers, C.E.M.; Gaal, S.; Reuter, M.

    2008-01-01

    Thermal de-coating of painted and lacquered scrap is one of the new innovations developed for aluminum recycling. If implemented in all recycling and optimized as suggested in this article, recovery would be improved with considerable economic impact. Generally, contaminated scrap is difficult to

  2. Solar Thermal AIR Collector Based on New Type Selective Coating

    Directory of Open Access Journals (Sweden)

    Musiy, R.Y.

    2014-01-01

    Full Text Available Based on the best for optical performance and selective coating solar thermal air collector, which operates by solar power on the principle of simultaneous ventilation and heating facilities, is designed. It can be used for vacation homes, museums, wooden churches, warehouses, garages, houses, greenhouses etc.

  3. Controllable size reduction of CdSe nanowires through the intermediate formation of Se-coated CdSe nanowires using acid and thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N S [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Wong, K W [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Li, Q [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Zheng, Z [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Lau, W M [Surface Science Western, University of Western Ontario, London, ON, N6A 5B7 (Canada)

    2007-10-17

    Thinning of CdSe nanowires (NWs) with controllable size was achieved by a simple acid treatment and subsequent annealing on thick CdSe NWs synthesized from vapour phase growth. During acid treatment, not only the undesired impurities such as native oxides of Cd and Se could be etched, but surface reactions of CdSe NWs were also observed, resulting in the formation of a layer of elemental Se around a thinner CdSe core. As a result, a heterostructure of Se - CdSe nanostructure formed after acid treatment of CdSe NWs. Upon thermal annealing, the Se shell was effectively removed and thinned stoichiometric single-crystalline CdSe NWs could be obtained. It was observed that NWs could be thinned by up to {approx}60% in diameter by acid treatment and subsequent Se thermal desorption. The degree of thinning was controllable by adjusting the duration of acid treatment. The success of the thinning of CdSe NWs by simple acid treatment and the annealing process reported here opens a new processing route for obtaining stoichiometric CdSe NWs with controllable size reduction and improved aspect ratio. This can undoubtedly broadly improve the range of applications of 1D CdSe nanostructures and allow more exploration of their uni-directional properties. A correction was made to the last paragraph of section 3 on 18 September 2007. The corrected electronic version is identical to the print version.

  4. Controllable size reduction of CdSe nanowires through the intermediate formation of Se-coated CdSe nanowires using acid and thermal treatment

    International Nuclear Information System (INIS)

    Lam, N S; Wong, K W; Li, Q; Zheng, Z; Lau, W M

    2007-01-01

    Thinning of CdSe nanowires (NWs) with controllable size was achieved by a simple acid treatment and subsequent annealing on thick CdSe NWs synthesized from vapour phase growth. During acid treatment, not only the undesired impurities such as native oxides of Cd and Se could be etched, but surface reactions of CdSe NWs were also observed, resulting in the formation of a layer of elemental Se around a thinner CdSe core. As a result, a heterostructure of Se - CdSe nanostructure formed after acid treatment of CdSe NWs. Upon thermal annealing, the Se shell was effectively removed and thinned stoichiometric single-crystalline CdSe NWs could be obtained. It was observed that NWs could be thinned by up to ∼60% in diameter by acid treatment and subsequent Se thermal desorption. The degree of thinning was controllable by adjusting the duration of acid treatment. The success of the thinning of CdSe NWs by simple acid treatment and the annealing process reported here opens a new processing route for obtaining stoichiometric CdSe NWs with controllable size reduction and improved aspect ratio. This can undoubtedly broadly improve the range of applications of 1D CdSe nanostructures and allow more exploration of their uni-directional properties. A correction was made to the last paragraph of section 3 on 18 September 2007. The corrected electronic version is identical to the print version

  5. Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Youn Ho; Lee, Joon Hyun [Pusan National University, Busan (Korea, Republic of); Oh, Jeong Seok; Lee, Koo Hyun [KIMM, Daejeon (Korea, Republic of)

    2009-10-15

    Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and ZrO{sub 2}-8wt%Y{sub 2}O{sub 3} ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until 1000 .deg. C and cool until 20 .deg. C. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of is Al{sub 2}O{sub 3} formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating

  6. Mechanical and Thermal Analysis of Classical Functionally Graded Coated Beam

    Directory of Open Access Journals (Sweden)

    Toudehdehghan Abdolreza

    2018-01-01

    Full Text Available The governing equation of a classical rectangular coated beam made of two layers subjected to thermal and uniformly distributed mechanical loads are derived by using the principle of virtual displacements and based on Euler-Bernoulli deformation beam theory (EBT. The aim of this paper was to analyze the static behavior of clamped-clamped thin coated beam under thermo-mechanical load using MATLAB. Two models were considered for composite coated. The first model was consisting of ceramic layer as a coated and substrate which was metal (HC model. The second model was consisting of Functionally Graded Material (FGM as a coated layer and metal substrate (FGC model. From the result it was apparent that the superiority of the FGC composite against conventional coated composite has been demonstrated. From the analysis, the stress level throughout the thickness at the interface of the coated beam for the FGC was reduced. Yet, the deflection in return was observed to increase. Therefore, this could cater to various new engineering applications where warrant the utilization of material that has properties that are well-beyond the capabilities of the conventional or yesteryears materials.

  7. Thermal noise from optical coatings in gravitational wave detectors.

    Science.gov (United States)

    Harry, Gregory M; Armandula, Helena; Black, Eric; Crooks, D R M; Cagnoli, Gianpietro; Hough, Jim; Murray, Peter; Reid, Stuart; Rowan, Sheila; Sneddon, Peter; Fejer, Martin M; Route, Roger; Penn, Steven D

    2006-03-01

    Gravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now.

  8. Thermal analysis of the effect of thick thermal barrier coatings on diesel engine performance

    International Nuclear Information System (INIS)

    Hoag, K.L.; Frisch, S.R.; Yonushonis, T.M.

    1986-01-01

    The reduction of heat rejection from the diesel engine combustion chamber has been the subject of a great deal of focus in recent years. In the pursuit of this goal, Cummins Engine Company has received a contract from the Department of Energy for the development of thick thermal barrier coatings for combustion chamber surfaces. This contract involves the analysis of the impact of coatings on diesel engine performance, bench test evaluation of various coating designs, and single cylinder engine tests. The efforts reported in this paper center on the analysis of the effects of coatings on engine performance and heat rejection. For this analysis the conventional water cooled engine was compared with an engine having limited oil cooling, and utilizing zirocnia coated cylinder had firedecks and piston crowns. The analysis showed little or no benefits of similarly coating the valves or cylinder liner

  9. Aspects of fatigue life in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, H.

    2001-08-01

    Thermal barrier coatings (TBC) are applied on hot components in airborne and land based gas turbines when higher turbine inlet temperature, meaning better thermal efficiency, is desired. The TBC is mainly applied to protect underlying material from high temperatures, but also serves as a protection from the aggressive corrosive environment. Plasma sprayed coatings are often duplex TBC's with an outer ceramic top coat (TC) made from partially stabilised zirconia - ZrO{sub 2} + 6-8% Y{sub 2}O{sub 3}. Below the top coat there is a metallic bond coat (BC). The BC is normally a MCrAlX coating (M=Ni, Co, Fe... and X=Y, Hf, Si ... ). In gas turbine components exposed to elevated temperatures nickel-based superalloys are commonly adopted as load carrying components. In the investigations performed here a commercial wrought Ni-base alloy Haynes 230 has been used as substrate for the TBC. As BC a NiCoCrAlY serves as a reference material and in all cases 7% Yttria PS zirconia has been used. Phase development and failure mechanisms in APS TBC during service-like conditions, have been evaluated in the present study. This is done by combinations of thermal cycling and low cycle fatigue tests. The aim is to achieve better knowledge regarding how, when and why thermal barrier coatings fail. As a final outcome of the project a model capable of predicting fatigue life of a given component will help engineers and designers of land based gas turbines for power generation to better optimise TBC's. In the investigations it is seen that TBC life is strongly influenced by oxidation of the BC and interdiffusion between BC and the substrate. The bond coat is known to oxidise with time at high temperature. The initial oxide found during testing is alumina. With increased time at high temperature Al is depleted from the bond coat due to inter-diffusion and oxidation. Oxides others than alumina start to form when the Al content is reduced below a critical limit. It is here believed

  10. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  11. Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.

    2000-01-01

    The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.

  12. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  13. Microtexture of the thermally grown alumina in commercial thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Karadge, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Zhao, X. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Preuss, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Xiao, P. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom)]. E-mail: Ping.Xiao@manchester.ac.uk

    2006-02-15

    otextures of the thermally grown {alpha}-alumina (TGO) in isothermally treated and thermal cycled electron beam physical vapor deposited thermal barrier coatings (EB-PVD-TBC) and isothermally treated air plasma sprayed (APS-TBC) specimens were studied by high resolution electron back-scattered diffraction. The TGO in EB-PVD specimens exhibited a basal microtexture. The TGO in APS specimens, however, did not show any significant microtexture development.

  14. Thermal physics of gas-thermal coatings formation processes. State of investigations

    International Nuclear Information System (INIS)

    Fialko, N.M.; Prokopov, V.G.; Meranova, N.O.; Borisov, Yu.S.; Korzhik, V.N.; Sherenkovskaya, G.P.; AN Ukrainskoj SSR, Kiev

    1993-01-01

    The analysis of state of investigations of gas-thermal coatings formation processes in presented. Classification of approaches to mathematical simulation of thermal phenomena studies is offered. The general characteristics of three main approaches to the analysis of heat transport processes is given. Some problems of mathematical simulation of single particle thermal interaction with solid surface are considered in details. The main physical assumptions are analysed

  15. Thermally stable silica-coated hydrophobic gold nanoparticles.

    Science.gov (United States)

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  16. Study of Thermal Fatigue Resistance of a Composite Coating Made by a Vacuum Fusion Sintering Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Thermal fatigue behavior of a Ni-base alloy chromium carbide composite coating made by a vacuum fusion sintering method are discussed. Results show that thermal fatigue behavior is associated with cyclic upper temperature and coating thickness. As the thickness of the coating decreases, the thermal fatigue resistance increases. The thermal fatigue resistance cuts down with the thermal cyclic upper temperature rising. The crack growth rate decreases with the increase in cyclic number until crack arrests. Thermal fatigue failure was not found along the interface of the coating/matrix. The tract of thermal fatigue crack cracks along the interfaces of phases.

  17. Thermal Conductivity and Thermal Gradient Cyclic Behavior of Refractory Silicate Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Plasma-sprayed mullite and BSAS coatings have been developed to protect SiC/SiC ceramic matrix composites from high temperature environmental attack. In this study, thermal conductivity and thermal barrier functions of these coating systems are evaluated using a laser high-heat-flux test rig. The effects of water vapor on coating thermal conductivity and durability are studied by using alternating furnace and laser thermal gradient cyclic tests. The influence of laser high thermal-gradient cycling on coating failure modes is also investigated.

  18. YBCO coated conductors by reactive thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Schmatz, U.; Hoffmann, Ch.; Bauer, M.; Metzger, R.; Berberich, P.; Kinder, H. [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2001-12-01

    Coated tape conductors of YBCO require a deposition process allowing to obtain a high volume growth rate in order to produce long lengths of tape in a reasonable amount of time. We present our tape coating system where 15 parallel loops of travelling tape of 1 cm width can be coated simultaneously by reactive thermal co-evaporation. For high critical current densities, in-plane alignment of the YBCO film is necessary. Inclined substrate deposition (ISD) is a technique that allows to deposit in-plane oriented buffer layers suitable for YBCO growth at high deposition rates. We present results obtained for YBCO films grown on MgO-ISD buffer layers deposited by e-gun evaporation onto metallic tape substrates. (orig.)

  19. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  20. Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-05-01

    Full Text Available The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.

  1. Effects of Thermal Exposure on Structures of DD6 Single Crystal Superalloy with Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    DONG Jianmin

    2016-10-01

    Full Text Available In order to investigate the effect of water grit-blasting and high temperature thermal exposure on the microstructures of DD6 alloy with TBCs, DD6 single crystal superalloy specimens were water grit-blasted with 0.3 MPa pressure, then the specimens were coated with thermal barrier coatings by electron beam physical vapor deposition (EB-PVD. Specimens with TBCs were exposed at 1100℃ for 50 and 100 hours in the air respectively, and then these specimens were subjected to stress-rupture tests under the condition of 1100℃/130 MPa. The results show that grit-blasting doesn't lead into the recrystallization, thermal exposure can induce element interdiffusion between the bond coat and alloy substrate, the residual stress and element diffusion lead into the changes of γ' phase coarsing direction. After stress rupture tests, the secondary reaction zone emerges into a local area.

  2. Fatigue Crack Growth in Bodies with Thermally Sprayed Coating

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Medřický, Jan; Tomek, L.; Siegl, J.; Mušálek, Radek; Curry, N.; Björklund, S.

    2016-01-01

    Roč. 25, 1-2 (2016), s. 311-320 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Thermal barrier coating * fatigue * crack growth * digital image correlation * digital image correlation Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0329-9

  3. Direct Iron Coating onto Nd-Fe-B Powder by Thermal Decomposition of Iron Pentacarbonyl

    International Nuclear Information System (INIS)

    Yamamuro, S; Okano, M; Tanaka, T; Sumiyama, K; Nozawa, N; Nishiuchi, T; Hirosawa, S; Ohkubo, T

    2011-01-01

    Iron-coated Nd-Fe-B composite powder was prepared by thermal decomposition of iron pentacarbonyl in an inert organic solvent in the presence of alkylamine. Though this method is based on a modified solution-phase process to synthesize highly size-controlled iron nanoparticles, it is in turn featured by a suppressed formation of iron nanoparticles to achieve an efficient iron coating solely onto the surfaces of rare-earth magnet powder. The Nd-Fe-B magnetic powder was successfully coated by iron shells whose thicknesses were of the order of submicrometer to micrometer, being tuneable by the amount of initially loaded iron pentacarbonyl in a reaction flask. The amount of the coated iron reached to more than 10 wt.% of the initial Nd-Fe-B magnetic powder, which is practically sufficient to fabricate Nd-Fe-B/α-Fe nanocomposite permanent magnets.

  4. High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hongbo; Sun Lidong; Li Hefei [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China); Gong Shengkai [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China)], E-mail: gongsk@buaa.edu.cn

    2008-06-30

    NiAl coatings doped with 0.5 at.% and 1.5 at.% Hf were produced by co-evaporation of NiAl and Hf ingots by electron beam physical vapor deposition (EB-PVD), respectively. The addition of 0.5 at.% Hf significantly improved the cyclic oxidation resistance of the NiAl coating. The TGO layer in the 1.5 at.% Hf doped NiAl coating is straight; while that in the 0.5 at.% Hf doped coating became undulated after thermal cycling. The doped NiAl thermal barrier coatings (TBCs) revealed improved thermal cycling lifetimes at 1423 K, compared to the undoped TBC. Failure of the 0.5 at.% Hf doped TBC occurred by cracking at the interface between YSZ topcoat and bond coat, while the 1.5 at.% Hf doped TBC cracked at the interface between bond coat and substrate.

  5. High-field thermal transports properties of REBCO coated conductors

    CERN Document Server

    Bonura, M

    2015-01-01

    The use of REBCO coated conductors is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (k) of REBCO coated conductors in magnetic fields up to 19 T applied both parallelly and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field k of coated conductors can be calculated with an accuracy of ‡ 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field k in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the ...

  6. Thermal spray coating for corrosion under insulation (CUI) prevention

    Science.gov (United States)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  7. Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing and properties

    International Nuclear Information System (INIS)

    Gruenling, H.W.; Mannsmann, W.

    1993-01-01

    Thermal barrier coatings out of fully or partially stabilized zirconia offer a unique chance in gas turbines to increase the gas inlet temperature significantly while keeping the temperature of the structural material of the component within conventional limits. The protection of combustor parts and transition pieces as well as of some stationary gas turbine parts however is state of the art. As a consequence of still insufficient reliability, the application for hot rotating parts is very limited. The introduction as a design element requires safe life within defined time intervals. These depend on the overhaul and repair intervals of the engines. For large land based industrial or utility gas turbines, for example, coating life between 25.000 and 30.000 hrs. is a minimum requirement. Premature failure of a coating by e.g. local spalling causes local overheating of the component with the consequence of its total destruction or even more expensive secondary damages. Life limiting is the corrosion rate at the ceramic-metal interface and the behavior of the coated system under transient operating conditions, where multiaxial strain and stress distributions are generated. Sufficient strain tolerance of the coating both under tensile as well as compressive conditions is required. The properties of thermal barrier coating systems depend strongly on the structure and phase composition of the coating layers and the morphology of and the adhesion at the ceramic-metal interface. They have to be controlled by the process itself, the process parameters and the characteristics of the applied materials (e.g. chemical composition, processing, morphology, particle size and size distribution). It will be reviewed, how properties and structures of coating systems correlate and how structures can be modified by careful control of the process parameters. (orig.)

  8. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States); Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2016-11-04

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials for corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray

  11. Optimal control in thermal engineering

    CERN Document Server

    Badescu, Viorel

    2017-01-01

    This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.

  12. Thermal stress prediction in mirror and multilayer coatings.

    Science.gov (United States)

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

  13. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  14. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  15. Thermal Protective Coating for High Temperature Polymer Composites

    Science.gov (United States)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  16. Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies

    Science.gov (United States)

    Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.

    2007-01-01

    Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.

  17. Research on Debonding Defects in Thermal Barrier Coatings Structure by Thermal-Wave Radar Imaging (TWRI)

    Science.gov (United States)

    Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang

    2018-06-01

    In this paper, thermal-wave radar imaging (TWRI) is introduced to detect debonding defects in SiC-coated Ni-based superalloy plates. Linear frequency modulation signal (chirp) is used as the excitation signal which has a large time-bandwidth product. Artificial debonding defects in SiC coating are excited by the laser beam with the light intensity modulated by a chirp signal. Cross-correlation algorithm and chirp lock-in algorithm are introduced to extract the thermal-wave signal characteristic. The comparative experiment between TWRI reflection mode and transmission mode was carried out. Experiments are conducted to investigate the influence of laser power density, chirp period, and excitation frequency. Experimental results illustrate that chirp lock-in phase has a better detection capability than other characteristic parameters. TWRI can effectively detect simulated debonding defects of SiC-coated Ni-based superalloy plates.

  18. Residual stress evolution regularity in thermal barrier coatings under thermal shock loading

    Directory of Open Access Journals (Sweden)

    Ximin Chen

    2014-01-01

    Full Text Available Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs under different cycles of thermal shock loading of 1100°C was investigated by the microscopic digital image correlation (DIC and micro-Raman spectroscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress undergoes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1100°C, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.

  19. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  20. Contamination Control for Thermal Engineers

    Science.gov (United States)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  1. Thermal barrier coatings of rare earth materials deposited by electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin, E-mail: he_limin@yahoo.co [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Chen Xiaolong; Zhao Yu [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Cao Xueqiang, E-mail: xcao@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-10-15

    Thermal barrier coatings (TBCs) have very important applications in gas turbines for higher thermal efficiency and protection of components at high temperature. TBCs of rare earth materials such as lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}, LZ), lanthanum cerate (La{sub 2}Ce{sub 2}O{sub 7}, LC), lanthanum cerium zirconate (La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}, LZ7C3) were prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, cross-sectional morphology and cyclic oxidation behavior of these coatings were studied. These coatings have partially deviated from their original compositions due to the different evaporation rates of oxides, and the deviation could be reduced by properly controlling the deposition condition. A double ceramic layer-thermal barrier coatings (DCL-TBCs) of LZ7C3 and LC could also be deposited with a single LZ7C3 ingot by properly controlling the deposition energy. LaAlO{sub 3} is formed due to the chemical reaction between LC and Al{sub 2}O{sub 3} in the thermally grown oxide (TGO) layer. The failure of DCL-TBCs is a result of the sintering-induced of LZ7C3 coating and the chemical incompatibility of LC and TGO. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL-TBCs are an important development direction of TBCs.

  2. Sintering and microstructure evolution in columnar thermal barrier coatings

    International Nuclear Information System (INIS)

    Krishnamurthy, Ramanathan; Srolovitz, David J.

    2009-01-01

    Sintering of thermal barrier coatings changes their key properties, such as thermal conductivity and thermal shock resistance, thus adversely impacting their reliability. We present a novel modeling approach to study the evolution of coating structure during sintering. We model the sintering of individual columns using a thermodynamic principle, and incorporate the center-to-center approach rates for the columns calculated using this principle in a larger scale discrete dynamics model for the evolution of a large number of columns. Surface energies, grain boundary energies and strain energies associated with the deformation of the columns are all included in this framework, while sintering is assumed to occur by the concerted action of surface and grain boundary diffusion. Two sets of initial conditions corresponding to different extents of pre-sintering among neighboring columns are considered. When the extent of pre-sintering is small, we observe that small clusters containing 5-20 columns are formed. In contrast, where a larger amount of pre-sintering exists, we observe, especially at large column densities, that clusters containing 50-100 columns separated by large inter-cluster pores/channels that appear to organize themselves into a network are formed. These observations are in good agreement with recently published experimental observations. We also explain how these results can explain the development of a 'mud-crack'-like pattern

  3. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  4. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis

    OpenAIRE

    Li, Biao; Fan, Xueling; Li, Dingjun; Jiang, Peng

    2017-01-01

    Thermal barrier coatings (TBCs) are deposited on the turbine blade to reduce the temperature of underlying substrate, as well as providing protection against the oxidation and hot corrosion from high temperature gas. Optimal ceramic top-coat thickness distribution on the blade can improve the performance and efficiency of the coatings. Design of the coatings thickness is a multiobjective optimization problem due to the conflicts among objectives of high thermal insulation performance, long op...

  5. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  6. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  7. Thermal margin control

    International Nuclear Information System (INIS)

    Musick, C.R.

    1976-01-01

    A monitoring system is described for providing warning and/or trip signals indicative of the approach of the operating conditions of a nuclear steam supply system to a departure from nucleate boiling or coolant temperature saturation. The invention is characterized by calculation of the thermal limit locus in response to signals which accurately represent reactor cold leg temperature and core power, the core power signal being adjusted to compensate for the effects of both radial and axial peaking factor. 37 claims, 3 figures

  8. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available Porous silicon (PSi layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm2 fixed current density for different etching times. The samples were coated with a 50–60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM. Photoacoustic spectroscopy (PAS measurements were carried out to measure the thermal diffusivity (TD of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.

  9. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  10. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  11. Shear strength of a thermal barrier coating parallel to the bond coat

    International Nuclear Information System (INIS)

    Cruse, T.A.; Dommarco, R.C.; Bastias, P.C.

    1998-01-01

    The static and low cycle fatigue strength of an air plasma sprayed (APS) partially stabilized zirconia thermal barrier coating (TBC) is experimentally evaluated. The shear testing utilized the Iosipescu shear test arrangement. Testing was performed parallel to the TBC-substrate interface. The TBC testing required an innovative use of steel extensions with the TBC bonded between the steel extensions to form the standard Iosipescu specimen shape. The test method appears to have been successful. Fracture of the TBC was initiated in shear, although unconstrained specimen fractures propagated at the TBC-bond coat interface. The use of side grooves on the TBC was successful in keeping the failure in the gage section and did not appear to affect the shear strength values that were measured. Low cycle fatigue failures were obtained at high stress levels approaching the ultimate strength of the TBC. The static and fatigue strengths do not appear to be markedly different from tensile properties for comparable TBC material

  12. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  13. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    Science.gov (United States)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  14. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    Science.gov (United States)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  15. 49 CFR 192.461 - External corrosion control: Protective coating.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...

  16. Thermal cycling behaviour of lanthanum zirconate as EB-PVD thermal barrier coating

    International Nuclear Information System (INIS)

    Bobzin, K.; Lugscheider, E.; Bagcivan, N.

    2006-01-01

    Thermal cycling tests with two different EB-PVD thermal barrier coatings (TBC) were performed in a furnace cycle test. The results of these tests showed an increase of endurable cycle number when pyrochloric La 2 Zr 2 O 7 was used as TBC. 1865 cycles were reached with La 2 Zr 2 O 7 and 1380 cycles with 7 weigth-% yttria stabilised zirconia (YSZ) EB-PVD TBC. Additional investigation was made with scanning electron microscope (SEM) to investigate morphology and to determine chemical composition by electron dispersive x-ray spectroscopy (EDS) analysis. X-Ray diffraction was performed to analyze structural constitution of deposited coatings. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  17. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2003-01-01

    ...%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic...

  18. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  19. Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.

  20. Thermal Performance Study of Composite Phase Change Material with Polyacrylicand Conformal Coating.

    Science.gov (United States)

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Cornelis Metselaar, Hendrik Simon; Chee, Swee Yong; Lai, Koon Chun

    2017-07-28

    The composite PCM was prepared by blending polymethyl methacrylate (PMMA) and myristic acid (MA) in different weight percentages. The MA and PMMA were selected as PCM and supporting material, respectively. As liquid MA may leak out during the phase transition, this study proposes the use of two coatings, namely a polyacrylic coating and a conformal coating to overcome the leakage problem. Both coatings were studied in terms of the leakage test, chemical compatibility, thermal stability, morphology, and reliability. No leakage was found in the PCMs with coatings compared to those without under the same proportions of MA/PMMA, thus justifying the use of coatings in the present study. The chemically compatibility was confirmed by FTIR spectra: the functional groups of PCMs were in accordance with those of coatings. DSC showed that the coatings did not significantly change the melting and freezing temperatures, however, they improved the thermal stability of composite PCMs as seen in TGA analysis. Furthermore, the composite PCMs demonstrated good thermal reliability after 1000 times thermal cycling. The latent heat of melting reduced by only 0.16% and 1.02% for the PCMs coated with conformal coating and polyacrylic coating, respectively. Therefore, the proposed coatings can be considered in preparing fatty acid/PMMA blends attributed to the good stability, compatibility and leakage prevention.

  1. Structure Analysis Of Corrosion Resistant Thermal Sprayed Coatings On Low Alloy Steels

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pistofidis, N.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Metallic coatings have been proved to reduce the rate of corrosion of steel in various atmospheres. In this work the structure of Al, Cu-Al and Zn thermal sprayed coatings is examined. The as formed coatings are extremely rough, and they are composed of several phases which increase corrosion resistance as it was determined Salt Spray Chamber tests.

  2. Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application

    Science.gov (United States)

    Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2014-12-01

    Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.

  3. Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jae Mean; Seok, Chang Sung; Kang, Min Sung; Kim, Dae Jin [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Dong Hoon [HYUNDAI STEEL CO., Incheon (Korea, Republic of); Kim, Mun Young [KPS Gas Turbine Technology Service Center, Seongnam (Korea, Republic of)

    2010-04-15

    The thermal barrier coating of a gas turbine blade was degraded by isothermal heating in a furnace and by varying the exposure time and temperature. Then, a micro-Vickers hardness test was conducted on the cross section of the bond coat and Ni-based superalloy substrate. Further, the thickness of TGO(Thermally Grown Oxide) was measured by using an image analyzer, and the changes in the microstructure and element contents in the coating were analyzed by using an optical microscope and by performing SEM-EDX analysis. No significant change was observed in the Vickers hardness of the bond coat when the coated specimen was degraded at a high temperature: delamination was observed between the top coat and the bond coat when the coating was degraded for 50 h at a temperature 1,151 .deg. C.

  4. Evaluation of a Degradation of Thermal Barrier Coating for Gas Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jin; Lee, Dong Hoon; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kim, Mun Young; Yang, Sung Ho; Park, Sang Yoel [Korea Power Engineering Company, Inc., Yongin (Korea, Republic of)

    2007-07-01

    Thermal barrier coating system for gas turbine blade were thermally aged by isothermal heating in the furnace varing aging time and temperature. Then, micro Vickers hardness test was done for the cross section of bond coat and Ni-based superalloy substrate. Also, the thickness of TGO was measured by image analyzer and the changes in the microstructure and element distributions in the coating were analyzed by optical microscope and SEM-EDX analysis. No significant changes in the Vickers hardness of the bond coat were observed as the coated specimen was aged at high temperature and delaminations near between top coat and bond coat occurred when the coatings were aged for 50 hr at over 1,151 .deg. C.

  5. Instrumental color control for metallic coatings

    Science.gov (United States)

    Chou, W.; Han, Bing; Cui, Guihua; Rigg, Bryan; Luo, Ming R.

    2002-06-01

    This paper describes work investigating a suitable color quality control method for metallic coatings. A set of psychological experiments was carried out based upon 50 pairs of samples. The results were used to test the performance of various color difference formulae. Different techniques were developed by optimising the weights and/or the lightness parametric factors of colour differences calculated from the four measuring angles. The results show that the new techniques give a significant improvement compared to conventional techniques.

  6. Role of high-temperature creep stress in thermally grown oxide growth of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Nakao, Y.; Seo, D.; Miura, H.; Shoji, T. [Tohoku Univ., Sendai (Japan)

    2008-07-01

    Thermally grown oxide (TGO) grows at the top / bond coating interface of the thermal barrier coating (TBC) in service. It is supposed that the failures of the TBC occur due to thermal stress and the decrease of adhesive strength caused by the TGO growth. Recently, large local stress has been found to change both the diffusion constant of oxygen through an existing oxide and the rate of chemical reaction at the oxide / oxidized material interface. Since high thermal stress occurs in the TBC, the volume expansion of the newly grown oxide, and centrifugal force, the growth rate of the TGO may change depending on not only temperature but also the stress. The aim of this study is to make clear the influence of stress on the growth rate of the TGO quantitatively. As a result, the thickness of the TGO clearly increases with increase of the amplitude of the applied stress and temperature. The increase rate of the TGO thickness is approximately 23% when the applied stress is increased from 0 to 205 MPa at 900 C, and approximately 29% when the stress is increased from 0 to 150 MPa at 950 C. (orig.)

  7. Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Nitin Padture

    2011-12-31

    Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.

  8. Microstructure Analysis of Laser Remelting for Thermal Barrier Coatings on the Surface of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Lu Bin

    2016-01-01

    Full Text Available In this paper, the preparation and organization performance of thermal barrier coatings (TCBs on the surface of titanium were studied experimentally. Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. The microstructure of nanostructured and the conventional coating was studied after laser remelting. It has shown that formed a network of micro-cracks and pits after laser remelting on nanostructured coatings. With the decrease of the laser scanning speed, mesh distribution of micro cracks was gradually thinning on nanostructured coatings. Compared with conventional ceramic layers, the mesh cracks of nanostructured coating is dense and the crack width is small.

  9. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J

    2007-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  10. Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars

    Science.gov (United States)

    Johnson, J. R.; Christensen, P.R.; Lucey, P.G.

    2002-01-01

    Thin coatings of atmospherically deposited dust can mask the spectral characteristics of underlying surfaces on Mars from the visible to thermal infrared wavelengths, making identification of substrate and coating mineralogy difficult from lander and orbiter spectrometer data. To study the spectral effects of dust coatings, we acquired thermal emission and hemispherical reflectance spectra (5-25 μm; 2000-400 cm-1) of basaltic andesite coated with different thicknesses of air fall-deposited palagonitic soils, fine-grained ceramic clay powders, and terrestrial loess. The results show that thin coatings (10-20 μm) reduce the spectral contrast of the rock substrate substantially, consistent with previous work. This contrast reduction continues linearly with increasing coating thickness until a "saturation thickness" is reached, after which little further change is observed. The saturation thickness of the spectrally flat palagonite coatings is ~100-120 μm, whereas that for coatings with higher spectral contrast is only ~50-75 μm. Spectral differences among coated and uncoated samples correlate with measured coating thicknesses in a quadratic manner, whereas correlations with estimated surface area coverage are better fit by linear functions. Linear mixture modeling of coated samples using the rock substrate and coating materials as end-members is also consistent with their measured coating thicknesses and areal coverage. A comparison of ratios of Thermal Emission Spectrometer (TES) spectra of dark and bright intracrater and windstreak deposits associated with Radau crater suggests that the dark windstreak material may be coated with as much as 90% areal coverage of palagonitic dust. The data presented here also will help improve interpretations of upcoming mini-TES and Thermal Emission Imaging System (THEMIS) observations of coated Mars surface materials.

  11. Monitoring thermally grown oxides under thermal barrier coatings using photoluminescence piezospectroscopy (PLPS)

    Energy Technology Data Exchange (ETDEWEB)

    Del Corno, A.; De Maria, L.; Rinaldi, C. [ERSE, Milan (Italy); Nalin, L.; Simms, N.J. [Cranfield Univ., Bedford (United Kingdom). Energy Technology Centre

    2010-07-01

    The use of thermal barrier coatings (TBCs) on cooled components in industrial gas turbine has enabled higher inlet gas temperatures to be used and hence higher efficiencies to be achieved, without increasing component metal temperatures. However TBCs have a complex coating structure that during high temperature exposure and thermal cycling modifies until TBC spalling which can result in dangerous over-heating of components. This paper reports the results of a TBC exposure programme planned to monitor TGOs development in an example TBC system in terms of both stress evolution within the TGOs and TGO growth. The COST538 reference TBC system was used: an yttria stabilised zirconia TBC applied to an Amdry 995 bond coat on an CMSX-4 substrate. Samples were in the form of 10 mm diameter bars, with the TBC applied to their curved surface. Coated samples were exposed in simulated combustion gases at temperatures 850, 900 and 950 C for periods of up to 10,000 hours. Every 1000 hours samples were cooled and weighed to monitor the progression of the oxidation: selected samples NDT inspected using PLPS and/or destructive examination. Cross-sections were prepared and examined in a scanning electron microscope (SEM) at multiple locations to determine TGO thickness distributions. PLPS spectra were measured and elaborated with a system self developed in ERSE, able to calculate and map the TGO residual stress values under columnar TBCs. So the positions could be evidenced where the damage of the TBC /TGO/BC interface is higher on the exposed bars. The data of TGO thickness distributions and PLPS stress measurement distributions were compared to the exposures carried out on samples to identify and quantify trends in their development. Metallography confirmed that the PLPs technique can reliably detect interface cracking before visible EB-PVD TBC spalling. (orig.)

  12. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  13. Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures

    International Nuclear Information System (INIS)

    Ochterbeck, J.M.; Peterson, G.P.; Fletcher, L.S.

    1992-01-01

    The effects of vapor deposited coatings on the thermal contact conductance of cold pressed, normal state BiCaSrCuO superconductor/oxygen-free copper interfaces were experimentally investigated over a pressure range of 200 to 2,000 kPa. Using traditional vapor deposition processes, thin coatings of indium or lead were applied to the superconductor material to determine the effect on the heat transfer occurring at the interface. The test data indicate that the contact conductance can be enhanced using these coatings, with indium providing the greater enhancement. The experimental program revealed the need for a better understanding and control of the vapor deposition process when using soft metallic coatings. Also, the temperature-dependent microhardness of copper was experimentally determined and found to increase by approximately 35 percent as the temperature decreased from 300 to 85 K. An empirical model was developed to predict the effect of soft coatings on the thermal contact conductance of the superconductor/copper interfaces. When applied, the model agreed well with the data obtained in this investigation at low coating thicknesses but overpredicted the data as the thickness increased. In addition, the model agreed very well with data obtained in a previous investigation for silvercoated nickel substrates at all coating thicknesses

  14. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  15. Thermal Conductivity and Wear Behavior of HVOF-Sprayed Fe-Based Amorphous Coatings

    Directory of Open Access Journals (Sweden)

    Haihua Yao

    2017-10-01

    Full Text Available To protect aluminum parts in vehicle engines, metal-based thermal barrier coatings in the form of Fe59Cr12Nb5B20Si4 amorphous coatings were prepared by high velocity oxygen fuel (HVOF spraying under two different conditions. The microstructure, thermal transport behavior, and wear behavior of the coatings were characterized simultaneously. As a result, this alloy shows high process robustness during spraying. Both Fe-based coatings present dense, layered structure with porosities below 0.9%. Due to higher amorphous phase content, the coating H-1 exhibits a relatively low thermal conductivity, reaching 2.66 W/(m·K, two times lower than the reference stainless steel coating (5.85 W/(m·K, indicating a good thermal barrier property. Meanwhile, the thermal diffusivity of amorphous coatings display a limited increase with temperature up to 500 °C, which guarantees a steady and wide usage on aluminum alloy. Furthermore, the amorphous coating shows better wear resistance compared to high carbon martensitic GCr15 steel at different temperatures. The increased temperature accelerating the tribological reaction, leads to the friction coefficient and wear rate of coating increasing at 200 °C and decreasing at 400 °C.

  16. Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings

    Science.gov (United States)

    Lovelace, Geoffrey; Demos, Nicholas; Khan, Haroon

    2018-01-01

    Thermal noise is expected to be one of the noise sources limiting the astrophysical reach of Advanced LIGO (once commissioning is complete) and third-generation detectors. Adopting crystalline materials for thin, reflecting mirror coatings, rather than the amorphous coatings used in current-generation detectors, could potentially reduce thermal noise. Understanding and reducing thermal noise requires accurate theoretical models, but modeling thermal noise analytically is especially challenging with crystalline materials. Thermal noise models typically rely on the fluctuation-dissipation theorem, which relates the power spectral density of the thermal noise to an auxiliary elastic problem. In this paper, we present results from a new, open-source tool that numerically solves the auxiliary elastic problem to compute the Brownian thermal noise for both amorphous and crystalline coatings. We employ the open-source deal.ii and PETSc frameworks to solve the auxiliary elastic problem using a finite-element method, adaptive mesh refinement, and parallel processing that enables us to use high resolutions capable of resolving the thin reflective coating. We verify numerical convergence, and by running on up to hundreds of compute cores, we resolve the coating elastic energy in the auxiliary problem to approximately 0.1%. We compare with approximate analytic solutions for amorphous materials, and we verify that our solutions scale as expected with changing beam size, mirror dimensions, and coating thickness. Finally, we model the crystalline coating thermal noise in an experiment reported by Cole et al (2013 Nat. Photon. 7 644–50), comparing our results to a simpler numerical calculation that treats the coating as an ‘effectively amorphous’ material. We find that treating the coating as a cubic crystal instead of as an effectively amorphous material increases the thermal noise by about 3%. Our results are a step toward better understanding and reducing thermal noise to

  17. FAILURE MECHANISMS OF THERMAL BARRIER COATINGS INTERNAL COMBUSTION ENGINES AND llMPROVEMENTS

    Directory of Open Access Journals (Sweden)

    ADNAN PARLAK

    2003-04-01

    Full Text Available MechanicaJ properties of high performance ceramics have been improved to the point where their use in heat engines is possible. The high temperature strength and low thermal expansion properties of bigh performance ceramics offer an advantage over metals in the development of non-water cooling engine. However, because bard environment in diesel engine combustion chamber, solving the problem of durabiUty of TBC is important. DurabiUty of thermal barrier coatings(TBC is liınited by two main failure mechanisms: Therınal expansion nlİsmatch betwcen bond coat and top coat and bond coat oxidation. Both of these can cause failure of the ceramic top coat. Developments of recent years sholv that bond coats \\Vith higher oxidation resistance tend to have better coating system cyclic lives

  18. New Bond Coat Materials for Thermal Barrier Coating Systems Processed Via Different Routes

    Science.gov (United States)

    Soare, A.; Csaki, I.; Sohaciu, M.; Oprea, C.; Soare, S.; Costina, I.; Petrescu, M. I.

    2017-06-01

    This paper aims at describing the development of new Ru-based Bond Coats (BC) as part of Thermal Barrier Coatings. The challenge of this research was to obtain an adherent and uniform layer of alumina protective layer after high temperature exposure. We have prepared a RuAl 50/50 at% alloy in an induction furnace which was subsequently subjected to oxidation in an electric furnace, in air, at 1100C, for 10h and 100h. Mechanical alloying of Ru and Al powders was another processing route used in an attempt to obtain a stoichiometric RuAl. The alloy was sintered by Spark Plasma Sintering (SPS) and then oxidized at 1100C for 1 and10h. The alloys obtained as such were analysed before and after oxidation using advanced microscopy techniques (SEM and TEM). The encouraging results in case of RuAl alloys prepared by induction melting reveal that we obtained an adherent and uniform layer of alumina, free of delta-Ru. The results for the samples processed by powder metallurgy were positive but need to be further investigated. We should note here the novelty of this method for this particular type of application - as a BC part of a TBC system.

  19. Evaluation of bond strength of isothermally aged plasma sprayed thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jin; Lee, Dong Hoon; Koo, Jae Mean; Song, Sung Jin; Seok, Chang Sung [Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Mun Young [Korea Plant Service and Engineering Co., Ltd., Seongnam (Korea, Republic of)

    2008-07-15

    In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

  20. Design of durability and lifetime assessment method under thermomechanical stress for thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Gyoo; Choi, Young Kue; Jeon, Seol; Lee, Hee Soo [Pusan National University, Busan (Korea, Republic of); Jeon, Min Seok [Korea Testing Laboratory, Seoul (Korea, Republic of)

    2014-01-15

    A durability testing method under thermo-mechanical stress for thermal barrier coatings (TBC) specimens was designed by a combination of an electric furnace and a tensile testing machine, which was done on TBCs on NIMONIC 263 substrates by an atmospheric plasma spraying (APS) deposition method. The testing conditions were chosen according to a preliminary experiment that identified the elastic deformation region of the top coating and the substrate during mechanical loading. Surface cracking and a decrease in the thickness of the top coating, which are typical degradation behaviors under conventional thermal shock testing, were observed after the designed thermal fatigue test, and delamination at the top coating-bond coating interface occurred by the mechanical load. Lifetime assessment was conducted by statistical software using life cycle data which were obtained after the thermal fatigue test.

  1. A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components

    Science.gov (United States)

    Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun

    2017-10-01

    This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.

  2. Positioning system of a torch used in thermal spray coatings applications

    Directory of Open Access Journals (Sweden)

    Edgar Absalón Torres-Barahona

    2016-07-01

    Full Text Available This paper presents the design, construction and performance evaluation of a positioning system used for the deposition of coatings with molten particles, by using a torch CastoDyn Ds 8000 thermal spray with oxyacetylene combustion. The design has been done with parameters obtained in the laboratory of materials of the Universidad Pedagógica y Tecnológica de Colombia, and the information determined from the evaluation of the device, allows to control the main process variables as the projection distance, flow powder, torch speed and rotation speed of the sample holder; this has been seen in coatings made in application tests zirconia / nickel on a carbon steel substrate and analyzed with Scanning Electron Microscopy - SEM.

  3. Quantitative model of the effects of contamination and space environment on in-flight aging of thermal coatings

    Science.gov (United States)

    Vanhove, Emilie; Roussel, Jean-François; Remaury, Stéphanie; Faye, Delphine; Guigue, Pascale

    2014-09-01

    The in-orbit aging of thermo-optical properties of thermal coatings critically impacts both spacecraft thermal balance and heating power consumption. Nevertheless, in-flight thermal coating aging is generally larger than the one measured on ground and the current knowledge does not allow making reliable predictions1. As a result, a large oversizing of thermal control systems is required. To address this issue, the Centre National d'Etudes Spatiales has developed a low-cost experiment, called THERME, which enables to monitor the in-flight time-evolution of the solar absorptivity of a large variety of coatings, including commonly used coatings and new materials by measuring their temperature. This experiment has been carried out on sunsynchronous spacecrafts for more than 27 years, allowing thus the generation of a very large set of telemetry measurements. The aim of this work was to develop a model able to semi-quantitatively reproduce these data with a restraint number of parameters. The underlying objectives were to better understand the contribution of the different involved phenomena and, later on, to predict the thermal coating aging at end of life. The physical processes modeled include contamination deposition, UV aging of both contamination layers and intrinsic material and atomic oxygen erosion. Efforts were particularly focused on the satellite leading wall as this face is exposed to the highest variations in environmental conditions during the solar cycle. The non-monotonous time-evolution of the solar absorptivity of thermal coatings is shown to be due to a succession of contamination and contaminant erosion by atomic oxygen phased with the solar cycle.

  4. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    Science.gov (United States)

    Paxson, Daniel E. (Inventor)

    2014-01-01

    An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  5. Preparation of high critical temperature YBa2Cu3O7 superconducting coatings by thermal spray

    International Nuclear Information System (INIS)

    Lacombe, Jacques

    1991-01-01

    The objective of this research thesis is the elaboration of YBa 2 Cu 3 O 7 superconducting coatings by thermal spray. These coatings must have a high adherence, a high cohesion, and the best possible electrical characteristics. The author first briefly presents physical-chemical characteristics of this ceramic, and proposes a bibliographical synthesis on thick coatings prepared by thermal spray. In the next parts, he studies and describes conditions of elaboration of poly-granular coatings of YBa 2 Cu 3 O 7 , and their structural and electric characteristics [fr

  6. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2012-12-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  7. Research on the Properties of Thermal Sprayed Ni-Cr-Si-Fe-B Coatings

    Directory of Open Access Journals (Sweden)

    Raimonda Lukauskaitė

    2013-02-01

    Full Text Available The article deals with the flame sprayed Ni-Cr-Si-Fe-B coating on aluminum alloy substrates. Before the thermal spraying process, aluminum samples were modified applying chemical, mechanical and thermal processing pre-treatment methods. The main aluminum surface treatment was removing an oxide layer from the surface and improving the exploitation properties of nickel-based coatings. The work involved coating microstructure, porosity, adhesion and microhardness tests. The dependence of the estimated exploitation properties of flame spray coatings on aluminum surface preparation methods and technological parameters of spraying has been established.Article in Lithuanian

  8. Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders

    Science.gov (United States)

    Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang

    2018-02-01

    In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.

  9. Design and optimization of coating structure for the thermal barrier coatings fabricated by atmospheric plasma spraying via finite element method

    Directory of Open Access Journals (Sweden)

    L. Wang

    2014-06-01

    Full Text Available The first prerequisite for fabricating the thermal barrier coatings (TBCs with excellent performance is to find an optimized coating structure with high thermal insulation effect and low residual stress. This paper discusses the design and optimization of a suitable coating structure for the TBCs prepared by atmospheric plasma spraying (APS using the finite element method. The design and optimization processes comply with the rules step by step, as the structure develops from a simple to a complex one. The research results indicate that the suitable thicknesses of the bond-coating and top-coating are 60–120 μm and 300–420 μm, respectively, for the single ceramic layer YSZ/NiCoCrAlY APS-TBC. The embedded interlayer (50 wt.%YSZ + 50 wt.%NiCoCrAlY will further reduce the residual stress without sacrificing the thermal insulation effect. The double ceramic layer was further considered which was based on the single ceramic layer TBC. The embedded interlayer and the upper additional ceramic layer will have a best match between the low residual stress and high thermal insulation effect. Finally, the optimized coating structure was obtained, i.e., the La2Ce2O7(LC/YSZ/Interlayer/NiCoCrAlY coating structure with appropriate layer thickness is the best choice. The effective thermal conductivity of this optimized LC/YSZ/IL/BL TBC is 13.2% lower than that of the typical single ceramic layer YSZ/BL TBC.

  10. Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock

    International Nuclear Information System (INIS)

    Lima, R.S.; Marple, B.R.

    2005-01-01

    Nanostructured and conventional titania (TiO 2 ) feedstock powders were thermally sprayed via high velocity oxy-fuel (HVOF). The microstructure, porosity, Vickers hardness, crack propagation resistance, bond strength (ASTM C633), abrasion behavior (ASTM G65) and the wear scar characteristics of these two types of coatings were analyzed and compared. The coating made from the nanostructured feedstock exhibited a bimodal microstructure, with regions containing particles that were fully molten (conventional matrix) and regions with embedded particles that were semi-molten (nanostructured zones) during the thermal spraying process. The bimodal coating also exhibited higher bond strength and higher wear resistance when compared to the conventional coating. By comparing the wear scars of both coatings (via scanning electron microscopy and roughness measurements) it was observed that when the coatings were subjected to the same abrasive conditions the wear scar of the bimodal coating was smoother, with more plastically deformed regions than the conventional coating. It was concluded that this enhanced ductility of the bimodal coating was caused by its higher toughness. The results suggest that nanostructured zones randomly distributed in the microstructure of the bimodal coating act as crack arresters, thereby enhancing toughness and promoting higher critical depth of cut, which provides a broader plastic deformation range than that exhibited by the conventional coating. This work provides evidence that the enhanced ductility of the bimodal coating is a nanostructured-related property, not caused by any other microstructural artifact

  11. Corrosion characteristics of several thermal spray cermet-coating/alloy systems

    International Nuclear Information System (INIS)

    Ashary, A.A.; Tucker, R.C. Jr.

    1991-01-01

    The corrosion characteristics of a thermal spray multiphase cermet coating can be quite complex. Factors such as porosity and galvanic effects between different phases in the coating and the substrate, as well as the inherent general and localized corrosion resistance of each phase, can play an important role. The present paper describes the corrosion of several cermet-coating/alloy systems as studied by a potentiodynamic cyclic polarization technique. The corrosion of these coating systems was found to be most often dominated by corrosion of the metallic phases in the coating or of the substrate alloy. (orig.)

  12. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, Sanjay [Stony Brook Univ., NY (United States)

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness

  13. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    OpenAIRE

    Shibe, Vineet; Chawla, Vikas

    2016-01-01

    Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 ste...

  14. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    Science.gov (United States)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  15. Crack propagation studies and bond coat properties in thermal

    Indian Academy of Sciences (India)

    High threshold load at the interface between the ceramic layer and the bond coat was required to propagate the crack further into the bond coat. Once the threshold load was surpassed the crack propagated into the brittle bond coat without an appreciable increase in the load. At temperatures of 800°C the crack propagated ...

  16. A new method for thermal spraying of Zn-Al coatings

    International Nuclear Information System (INIS)

    Gorlach, I.A.

    2009-01-01

    This paper presents the development of the thermal spraying system built on the principles of the high velocity air flame (HVAF) process. HVAF sprayed coatings showed considerably higher bond strength than coatings obtained by the conventional methods, indicating the advantage of this method in areas where the adhesion strength is critically important. The highly dense structure of the coating obtained with HVAF eliminates a need for a top paint coat, which is typically applied on metal sprayed coatings to extend service life. The thermal sprayed coatings were characterized by the standard techniques, such as light microscopy, scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, salt spray and bond strength tests. The results show that thermal sprayed coatings have a dense structure, low presence of oxides and high resistance to corrosion. High spray rate and good coating quality make the HVAF thermal spray method a viable alternative to the conventional thermal spraying technologies, such as Wire Flame and Twin-Wire Arc.

  17. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    Directory of Open Access Journals (Sweden)

    Vineet Shibe

    2016-01-01

    Full Text Available Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.

  18. The Calipso Thermal Control Subsystem

    Science.gov (United States)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth s cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system s operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system s survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  19. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; Barmak, K.; Chan, H.M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  20. Thermal interaction between WC-Co coating and steel substrate in process of HVOF spraying

    International Nuclear Information System (INIS)

    Guilemany, J.M.; Sobolev, V.V.; Nutting, J.; Dong, Z.; Calero, J.A.

    1994-01-01

    The WC-Co powders can be used to produce good adhesive and wear resistant HVOF thermal spray coatings on steel and light alloys substrates. In order to understand the properties of this kind of coating, the phases which are present in the coatings and structure changes during post heat treatments have been investigated. Although the coating properties depend very much on the structure developed in the substrate-coating interfacial region it has not been yet investigated in detail. The present study is devoted to the experimental and theoretical analysis of this interfacial region. The structure characterization has been performed mainly through the use of transmission electron microscopy. To provide a theoretical investigation a realistic prediction model of the process has been developed and on its base the mathematical simulation of the substrate-coating thermal interaction has been undertaken

  1. The Effect of Particle Size of Wollastonite Filler on Thermal Performance of Intumescent Fire Retardant Coating

    Directory of Open Access Journals (Sweden)

    Zia-ul-Mustafa M.

    2014-07-01

    Full Text Available Intumescent Fire retardant coatings (IFRC’s are one of the simplest ways to protect substrates exposed to fire. In this study, Wollastonite (W filler of two different particle sizes were used to determine the fire performance of intumescent fire retardant coating. The basic ingredients of the coating were ammonium poly-phosphate (APP as acid source, expandable graphite (EG as carbon source, melamine (MEL as blowing agent in epoxy binder, boric acid as additive and hardener as curing agent. A series of coating formulations were developed by using different weight percentages of both sized Wollastonite fillers. The coated steel substrate samples were tested for fire performance using Bunsen burner and char expansion was measured using furnace fire test. A Comparison of the coatings thermal performance was determined. Wollastonite containing filler particle size 10 μm showed better thermal performance than formulations containing filler’s particle size 44 μm.

  2. Phase evolution and thermal properties of yttria-stabilized hafnia nano-coatings deposited on alumina

    Science.gov (United States)

    Rubio, Ernesto Javier

    High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results

  3. Mechanical and thermal properties of water glass coated sisal fibre-reinforced polypropylene composite

    CSIR Research Space (South Africa)

    Phiri, G

    2012-10-01

    Full Text Available ?C). Figure 1 shows the processing steps followed to produce composite samples. Up to 15% fibre loading could be achieved and the sisal fibres were coated with water glass to improve fire resistance. In order to improve the adhesion between sisal... preparation process: (A) WG coated fibre, (B) High speed granulator, (C) Composite granules, (D) Single screw extruder, (E) Injection moulder and (F) Composite samples (dumbbells) Mechanical and thermal properties of water glass coated sisal fi bre...

  4. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne

    2005-01-01

    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) and plasma thermal spray coatings as a replacement for hard chrome plating on gas turbine engine components...

  5. Measurement of interfacial shear mechanical properties in thermal barrier coating systems by a barb pullout method

    International Nuclear Information System (INIS)

    Guo, S.Q.; Mumm, D.R.; Karlsson, A.M.; Kagawa, Y.

    2005-01-01

    A test technique has been developed to facilitate evaluation of the fracture characteristics of coatings and interfaces in thermal barrier coating (TBC) systems. The methodology has particular application in analyzing delamination crack growth, where crack propagation occurs under predominantly mode II loading. The technique has been demonstrated by quantitatively measuring the effective delamination fracture resistance of an electron-beam physical vapor deposition TBC

  6. The oxidation behavior of classical thermal barrier coatings exposed to extreme temperature

    Directory of Open Access Journals (Sweden)

    Alina DRAGOMIRESCU

    2017-03-01

    Full Text Available Thermal barrier coatings (TBC are designed to protect metal surfaces from extreme temperatures and improve their resistance to oxidation during service. Currently, the most commonly used systems are those that have the TBC structure bond coat (BC / top coat (TC layers. The top coat layer is a ceramic layer. Oxidation tests are designed to identify the dynamics of the thermally oxide layer (TGO growth at the interface of bond coat / top coat layers, delamination mechanism and the TBC structural changes induced by thermal conditions. This paper is a short study on the evolution of aluminum oxide protective layer along with prolonged exposure to the testing temperature. There have been tested rectangular specimens of metal super alloy with four surfaces coated with a duplex thermal barrier coating system. The specimens were microscopically and EDAX analyzed before and after the tests. In order to determine the oxide type, the samples were analyzed using X-ray diffraction. The results of the investigation are encouraging for future studies. The results show a direct relationship between the development of the oxide layer and long exposure to the test temperature. Future research will focus on changing the testing temperature to compare the results.

  7. Sol–gel derived solar selective coatings on SS 321 substrates for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Subasri, R., E-mail: subasri@arci.res.in; Soma Raju, K.R.C.; Reddy, D.S.; Hebalkar, Neha Y.; Padmanabham, G.

    2016-01-01

    Sol–gel derived multilayered solar selective coatings were generated on AISI SS 321 substrates using Ag-TiO{sub 2} as the cermet layer, titania and silica as the dielectric layers with high and low refractive indices respectively. The phase compositions of the individual layers were independently confirmed using grazing angle incidence X-ray diffraction, which was corroborated by X-ray photoelectron spectroscopic analysis. Thickness of the layers was measured using variable angle spectroscopic ellipsometry. The solar absorbance was measured over the UV–Vis-NIR wavelength range. Thermal emissivity was determined using FTIR spectroscopic analysis. The durability of the coatings was ascertained using accelerated corrosion testing methods as well as by measuring the optical properties after thermal cycling experiments. The promising nature of hexavalent chrome-free, environmental friendly, multilayered solar selective coating was ascertained with respect to amenability to scale-up. - Highlights: • Sol–gel derived multilayered solar selective coatings developed on SS321 • Solar absorptance and thermal emittance at par with toxic chrome coatingThermal stability and corrosion resistance of coatings studied • Coating performance found to be promising for large scale applications • Scale-up amenability investigated by coating generation on 1 m tubes.

  8. Sol–gel derived solar selective coatings on SS 321 substrates for solar thermal applications

    International Nuclear Information System (INIS)

    Subasri, R.; Soma Raju, K.R.C.; Reddy, D.S.; Hebalkar, Neha Y.; Padmanabham, G.

    2016-01-01

    Sol–gel derived multilayered solar selective coatings were generated on AISI SS 321 substrates using Ag-TiO_2 as the cermet layer, titania and silica as the dielectric layers with high and low refractive indices respectively. The phase compositions of the individual layers were independently confirmed using grazing angle incidence X-ray diffraction, which was corroborated by X-ray photoelectron spectroscopic analysis. Thickness of the layers was measured using variable angle spectroscopic ellipsometry. The solar absorbance was measured over the UV–Vis-NIR wavelength range. Thermal emissivity was determined using FTIR spectroscopic analysis. The durability of the coatings was ascertained using accelerated corrosion testing methods as well as by measuring the optical properties after thermal cycling experiments. The promising nature of hexavalent chrome-free, environmental friendly, multilayered solar selective coating was ascertained with respect to amenability to scale-up. - Highlights: • Sol–gel derived multilayered solar selective coatings developed on SS321 • Solar absorptance and thermal emittance at par with toxic chrome coatingThermal stability and corrosion resistance of coatings studied • Coating performance found to be promising for large scale applications • Scale-up amenability investigated by coating generation on 1 m tubes

  9. Tribological Properties of Ti(Al,O)/Al2O3 Composite Coating by Thermal Spraying

    Science.gov (United States)

    Salman, Asma; Gabbitas, Brian; Cao, Peng; Zhang, Deliang

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity air fuel (HVAF) thermally sprayed wear resistant Ti(Al,O)/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting and dummy blocks aluminium extrusion. A feedstock of Ti(Al,O)/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity air-fuel (HVAF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The wear resistance of the coating was investigated by a tribometer using a spherical ended alumina pin as a counter body under dry and lubricating conditions. The results showed that composite coating has lower wear rate at high temperature than at room temperature without using lubricant. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  10. Characterisation of WC-12Co thermal spray powders and HPHVOF wear resistant coatings

    CSIR Research Space (South Africa)

    Lovelock, HDL

    1998-01-01

    Full Text Available were selected for the deposition of thermal spray coatings using the JP 5000 high pressure high velocity oxyfuel (HPHVOF) system. Dry sand rubber wheel abrasion tests were performed on the coatings in order to determine the effect of powder...

  11. Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes.

    Science.gov (United States)

    Silvestri, Cinzia; Riccio, Michele; Poelma, René H; Jovic, Aleksandar; Morana, Bruno; Vollebregt, Sten; Irace, Andrea; Zhang, Guo Qi; Sarro, Pasqualina M

    2018-04-17

    The high aspect ratio and the porous nature of spatially oriented forest-like carbon nanotube (CNT) structures represent a unique opportunity to engineer a novel class of nanoscale assemblies. By combining CNTs and conformal coatings, a 3D lightweight scaffold with tailored behavior can be achieved. The effect of nanoscale coatings, aluminum oxide (Al 2 O 3 ) and nonstoichiometric amorphous silicon carbide (a-SiC), on the thermal transport efficiency of high aspect ratio vertically aligned CNTs, is reported herein. The thermal performance of the CNT-based nanostructure strongly depends on the achieved porosity, the coating material and its infiltration within the nanotube network. An unprecedented enhancement in terms of effective thermal conductivity in a-SiC coated CNTs has been obtained: 181% compared to the as-grown CNTs and Al 2 O 3 coated CNTs. Furthermore, the integration of coated high aspect ratio CNTs in an epoxy molding compound demonstrates that, next to the required thermal conductivity, the mechanical compliance for thermal interface applications can also be achieved through coating infiltration into foam-like CNT forests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Thermal shock testing of TiC-coated molybdenum with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1985-07-01

    Thermal shock testing of molybdenum samples, on which TiC is coated by TP-CVD and CVD methods, has been made by using a pulsed hydrogen beam. The power density applied was 2 kw/cm 2 . The test results showed that TiC coatings did not exfoliate until the melting of the substrate and showed good adhesion under the thermal shock condition. (author)

  13. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  14. Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.

  15. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    Science.gov (United States)

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  16. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    Science.gov (United States)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  17. Microstructural development in physical vapour-deposited partially stabilized zirconia thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y. H. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States)); Biederman, R.R. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States)); Sisson, R.D. Jr. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States))

    1994-10-01

    The effects of processing parameters of physical vapour deposition on the microstructure of partially stabilized zirconia (PSZ) thermal barrier coatings have been experimentally investigated. Emphasis has been placed on the crystallographic texture of the PSZ coatings and the microstructure of the top surface of the PSZ coatings as well as the metal-ceramic interface. The variations in the deposition chamber temperature, substrate thickness, substrate rotation and vapour incidence angle resulted in the observation of significant differences in the crystallographic texture and microstructure of the PSZ coatings. ((orig.))

  18. Crack propagation behavior of TiN coatings by laser thermal shock experiments

    International Nuclear Information System (INIS)

    Choi, Youngkue; Jeon, Seol; Jeon, Min-seok; Shin, Hyun-Gyoo; Chun, Ho Hwan; Lee, Youn-seoung; Lee, Heesoo

    2012-01-01

    Highlights: ► The crack propagation behavior of TiN coating after laser thermal shock experiment was observed by using FIB and TEM. ► Intercolumnar cracks between TiN columnar grains were predominant cracking mode after laser thermal shock. ► Cracks were propagated from the coating surface to the substrate at low laser pulse energy and cracks were originated at coating-substrate interface at high laser pulse energy. ► The cracks from the interface spread out transversely through the weak region of the columnar grains by repetitive laser shock. - Abstract: The crack propagation behavior of TiN coatings, deposited onto 304 stainless steel substrates by arc ion plating technique, related to a laser thermal shock experiment has been investigated using focused ion beam (FIB) and transmission electron microscopy (TEM). The ablated regions of TiN coatings by laser ablation system have been investigated under various conditions of pulse energies and number of laser pulses. The intercolumnar cracks were predominant cracking mode following laser thermal shock tests and the cracks initiated at coating surface and propagated in a direction perpendicular to the substrate under low loads conditions. Over and above those cracks, the cracks originated from coating-substrate interface began to appear with increasing laser pulse energy. The cracks from the interface also spread out transversely through the weak region of the columnar grains by repetitive laser shock.

  19. Thermal barrier coatings with a double-layer bond coat on Ni{sub 3}Al based single-crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Xu, Zhenhua; Mu, Rende [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He, Limin, E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Huang, Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, Xueqiang, E-mail: xcao@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-04-05

    Highlights: • Thermal barrier coatings with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi. • Good adherence at all interfaces within TBC system. • The underlying (Ni,Pt)Al layer can supply abundant Al content for the upper NiCrAlYSi layer. • Crack nucleation, propagation and coalescence lead to the failure of coating. -- Abstract: Electron-beam physical vapor deposited thermal barrier coatings (TBCs) with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi were prepared on a Ni{sub 3}Al based single-crystal superalloy. Phase and cross-sectional microstructure of the developed coatings were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The experimental results show good adherence at all interfaces within this system. Furthermore, oxidation resistance and elements interdiffusion behavior of the double-layer bond coat were also investigated. The double-layer bond coat system exhibits a better scale adherence than the single layer bond coat systems since the underlying (Ni,Pt)Al layer can supply abundant Al for the upper NiCrAlYSi layer. Finally, thermal cycling behavior of the double-layer bond coat TBC was evaluated and the failure mechanism was discussed. Crack nucleation, propagation and coalescence caused by TGO growth stress and the thermal expansion mismatch stress between TGO and bond coat can be mainly responsible for the spallation of this coating.

  20. Selectively coated high efficiency glazing for solar-thermal flat-plate collectors

    International Nuclear Information System (INIS)

    Ehrmann, N.; Reineke-Koch, R.

    2012-01-01

    In order to increase the efficiency of solar-thermal flat-plate collectors at temperatures above 100 °C or with low solar irradiation, we implement a double glazing with a low-emitting (low-e) coating on the inner pane to improve the insulation of the transparent cover. Since commercially available low-e glazing provides only insufficient solar transmittance for the application in thermal flat-plate collectors we are developing a sputter-deposited low e-coating system based on transparent conductive oxides which provides a high solar transmittance of 85% due to additional antireflective coatings and the use of low-iron glass substrates. Durability tests of the developed coating system show that our low e-coating system is well suitable even at high temperatures, humidity and condensation.

  1. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Biao Li

    2017-01-01

    Full Text Available Thermal barrier coatings (TBCs are deposited on the turbine blade to reduce the temperature of underlying substrate, as well as providing protection against the oxidation and hot corrosion from high temperature gas. Optimal ceramic top-coat thickness distribution on the blade can improve the performance and efficiency of the coatings. Design of the coatings thickness is a multiobjective optimization problem due to the conflicts among objectives of high thermal insulation performance, long operation durability, and low fabrication cost. This work developed a procedure for designing the TBCs thickness distribution for the gas turbine blade. Three-dimensional finite element models were built and analyzed, and weighted-sum approach was employed to solve the multiobjective optimization problem herein. Suitable multiregion top-coat thickness distribution scheme was designed with the considerations of manufacturing accuracy, productivity, and fabrication cost.

  2. High temperature oxidation interfacial growth kinetics in YSZ thermal barrier coatings with bond coatings of NiCoCrAlY with 0.25% Hf

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Mensah, P., E-mail: mensah@engr.subr.edu [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States); Diwan, R. [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States); Crowe, J. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Akwaboa, S. [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States)

    2011-03-15

    Research highlights: {yields} Isothermal oxidation of standard (STD) and vertically cracked (VC) TBCs has been investigated. {yields} The temporal TGO growth kinetics is parabolic in the temperature range between 900 and 1100 deg. C. {yields} Activation energies correspond to growth kinetics controlled by the diffusion of O{sub 2} in Al{sub 2}O{sub 3}. {yields} Variation in oxidation of TBCs is attributed to its microstructure and in-situ oxygen ingression. {yields} Doping TBC bond coat with Hf appears to have potential for enhancing the development of robust TBCs. - Abstract: The results of an experimental study of the high-temperature isothermal oxidation behavior and microstructural evolution in two variations of air plasma sprayed ceramic thermal barrier coatings (TBCs) are discussed in the paper. Two types of TBC specimens were produced for testing. These include a standard and vertically cracked APS. High temperature oxidation was carried out at 900, 1000, 1100 and 1200 deg. C. The experiments were performed in air under isothermal conditions. At each temperature, the specimens were exposed for 25, 50, 75 and 100 h. The corresponding microstructures and microchemistries of the TBC layers were examined using scanning electron microscopy and energy dispersive X-ray spectroscopy. Changes in the dimensions of the thermally grown oxide layer were determined as functions of time and temperature. The evolution of bond coat microstructures/interdiffusion zones and thermally grown oxide layers were compared in the TBC specimens with standard and vertically cracked microstructures.

  3. Preparation of rutile TiO(2) coating by thermal chemical vapor deposition for anticoking applications.

    Science.gov (United States)

    Tang, Shiyun; Wang, Jianli; Zhu, Quan; Chen, Yaoqiang; Li, Xiangyuan

    2014-10-08

    To inhibit the metal catalytic coking and improve the oxidation resistance of TiN coating, rutile TiO2 coating has been directly designed as an efficient anticoking coating for n-hexane pyrolysis. TiO2 coatings were prepared on the inner surface of SS304 tubes by a thermal CVD method under varied temperatures from 650 to 900 °C. The rutile TiO2 coating was obtained by annealing the as-deposited TiO2 coating, which is an alternative route for the deposition of rutile TiO2 coating. The morphology, elemental and phase composition of TiO2 coatings were characterized by SEM, EDX and XRD, respectively. The results show that deposition temperature of TiO2 coatings has a strong effect on the morphology and thickness of as-deposited TiO2 coatings. Fe, Cr and Ni at.% of the substrate gradually changes to 0 when the temperature is increased to 800 °C. The thickness of TiO2 coating is more than 6 μm and uniform by metalloscopy, and the films have a nonstoichiometric composition of Ti3O8 when the deposition temperature is above 800 °C. The anticoking tests show that the TiO2 coating at a deposition temperature of 800 °C is sufficiently thick to cover the cracks and gaps on the surface of blank substrate and cut off the catalytic coke growth effect of the metal substrate. The anticoking ratio of TiO2 coating corresponding to each 5 cm segments is above 65% and the average anticoking ratio of TiO2 coating is up to 76%. Thus, the TiO2 coating can provide a very good protective layer to prevent the substrate from severe coking efficiently.

  4. Measurement of thermal conductivity of the oxide coating on autoclaved monel-400

    International Nuclear Information System (INIS)

    Dua, A.K.; George, V.C.; Agarwala, R.P.

    1982-01-01

    Thermal conductivity of the oxide coating on monel-400 has been measured by a direct method. The oxide coating is applied on an electrically conducting wire having stable characteristics. The wire is placed in a constant temperature bath and a constant direct current is passed through it. The wire gets heated and loses heat to the surrounding. Temperature is measured by considering it as a resistance thermometer. A convection heat transfer coefficient, which is difficult to measure experimentally but is involved in the analytical expression for thermal conductivity, is eliminated by connecting a second uncoated wire of a noble metal having similar surface finish as that of the coated wire in series with it. The accuracy of the method is nearly six percent. However, the method is not easily applicable for very thin (thickness <= 1μ), highly porous coatings and materials having relatively large thermal conductivity. (M.G.B.)

  5. Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings

    Science.gov (United States)

    Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay

    2018-02-01

    Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.

  6. Design of a Nickel-Based Bond-Coat Alloy for Thermal Barrier Coatings on Copper Substrates

    Directory of Open Access Journals (Sweden)

    Torben Fiedler

    2014-11-01

    Full Text Available To increase the lifetime of rocket combustion chambers, thermal barrier coatings (TBC may be applied on the copper chamber wall. Since standard TBC systems used in gas turbines are not suitable for rocket-engine application and fail at the interface between the substrate and bond coat, a new bond-coat material has to be designed. This bond-coat material has to be chemically compatible to the copper substrate to improve the adhesion and needs a coefficient of thermal expansion close to that of copper to reduce thermal stresses. One approach to achieve this is to modify the standard NiCrAlY alloy used in gas turbines by adding copper. In this work, the influence of copper on the microstructure of NiCrAlY-alloys is investigated with thermodynamical calculations, optical microscopy, SEM, EDX and calorimetry. Adding copper leads to the formation of a significant amount of \\(\\beta\\ and \\(\\alpha\\ Reducing the aluminum and chromium content leads furthermore to a two-phase fcc microstructure.

  7. Fluidization control in the wurster coating process

    Directory of Open Access Journals (Sweden)

    el Mafadi Samira

    2003-01-01

    Full Text Available Paniculate coating process in a fluidized bed involves different sub processes including particle wetting, spreading and also consolidation or drying of the coating applied. These sub processes are done simultaneously to particle fluidization and motion. All the parameters of fluidization are known to affect the coating quality. That is why the motion of particles in the Wurster coating process has been observed and described step by step. These observations have achieved a general understanding of phenomena which take place inside the bed during fluidization and have allowed the development of an easy method for optimizing all the parameters affecting this operation.

  8. DURABILITY AND TRIBOLOGICAL PROPERTIES OF THERMALLY SPRAYED WC CERMET COATING IN LUBRICATED ROLLING WITH SLIDING CONTACT

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2010-09-01

    Full Text Available Durability and tribological properties of thermally sprayed WC-Cr-Ni cermet coating were investigated experimentally in lubricated rolling with sliding contact conditions. By means of the high energy type flame spraying (Hi-HVOF method, the coating was formed onto the axially ground and circumferentially ground roller specimens made of a thermally refined carbon steel. In the experiments, the WC cermet coated steel roller was mated with the carburized hardened steel roller without coating in line contact condition. The coated roller was mated with the smooth non-coated roller under a contact pressure of 1.0 or 1.2 GPa, and it was mated with the rough non-coated roller under a contact pressure of 0.6 or 0.8 GPa. As a result, it was found that in general, the coating on the circumferentially ground substrate shows a lower durability compared with that on the axially ground substrate and this difference appears more distinctly for the higher contact pressure for both smooth mating surface and rough mating surface. It was also found that there are significant differences in the tribological properties of WC cermet coating depending on the contact pressure. In addition, depending on the smooth or rough mating surface, remarkable differences in the tribological properties were found.

  9. Thermal oxidation of tungsten-based sputtered coatings

    International Nuclear Information System (INIS)

    Louro, C.; Cavaleiro, A.

    1997-01-01

    The effect of the addition of nickel, titanium, and nitrogen on the air oxidation behavior of W-based sputtered coatings in the temperature range 600 to 800 C was studied. In some cases these additions significantly improved the oxidation resistance of the tungsten coatings. As reported for bulk tungsten, all the coatings studied were oxidized by layers following a parabolic law. Besides WO 3 and WO x phases detected in all the oxidized coatings, TiO 2 and NiWO 4 were also detected for W-Ti and W-Ni films, respectively. WO x was present as an inner protective compact layer covered by the porous WO 3 oxide. The best oxidation resistance was found for W-Ti and W-N-Ni coatings which also presented the highest activation energies (E a = 234 and 218 kJ/mol, respectively, as opposed to E a ∼ 188 kJ/mol for the other coatings). These lower oxidation weight gains were attributed to the greater difficulty of the inward diffusion of oxygen ions for W-Ti films, owing to the formation of fine particles of TiO 2 , and the formation of the external, more protective layer of NiWO 4 for W-N-Ni coatings

  10. Deposition and characterization of plasma sprayed Ni-5A1/ magnesia stabilized zirconia based functionally graded thermal barrier coating

    International Nuclear Information System (INIS)

    Baig, M N; Khalid, F A

    2014-01-01

    Thermal barrier coatings (TBCs) are employed to protect hot section components in industrial and aerospace gas turbine engines. Conventional TBCs frequently fail due to high residual stresses and difference between coefficient of thermal expansion (CTE) of the substrate and coatings. Functionally graded thermal barrier coatings (FG-TBCs) with gradual variation in composition have been proposed to minimize the problem. In this work, a five layered functionally graded thermal barrier coating system was deposited by atmospheric plasma spray (APS) technique on Nimonic 90 substrates using Ni-5Al as bond coat (BC) and magnesia stabilized zirconia as top coat (TC). The coatings were characterized by SEM, EDS, XRD and optical profilometer. Microhardness and coefficient of thermal expansion of the five layers deposited as individual coatings were also measured. The deposited coating system was oxidized at 800°C. SEM analysis showed that five layers were successfully deposited by APS to produce a FG-TBC. The results also showed that roughness (Ra) of the individual layers decreased with an increase in TC content in the coatings. It was found that microhardness and CTE values gradually changed from bond coat to cermet layers to top coat. The oxidized coated sample revealed parabolic behavior and changes in the surface morphology and composition of coating

  11. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    Science.gov (United States)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  12. Dielectric Coating Thermal Stabilization During GaAs-Based Laser Fabrication for Improved Device Yield

    Science.gov (United States)

    2015-11-25

    forced outgassing of LT-PECVD SiO2 has been employed to reduce contact-metal blister formation in the fabrication of SiO2/Pt/ PZT /Pt capacitors. 10...modest thermal-stress-induced swing and minimal permanent change in coating stress. Differences in thermal-expansion coefficient between the

  13. Comparison of performance coatings thermally sprayed subject to testing adhesive wear

    International Nuclear Information System (INIS)

    Marangoni, G.F.; Arnt, A.B.C.; Rocha, M.R. da

    2014-01-01

    In this work, the microstructural changes and wear resistance adhesive coatings obtained from powders thermally sprayed by high velocity oxy-fuel (HVOF) were evaluated. Based coatings chrome-nickel and tungsten-cobalt are applied in conditions subject to intense wear especially abrasive. With the aim of evaluate the performance of these coatings under conditions of adhesive wear, these coatings samples were tested by the standard ASTM G99. As test parameters were used: Tungsten carbide pin (SAE 52100) with 6 mm diameter, normal load of 50N and a tangential velocity of 0.5 m / s. The worn surfaces of the coatings were characterized by optical and scanning electron microscopy and X-ray diffraction. Results indicate that the performance front wear is related to the conditions of adhesion and uniformity of the coating applied. (author)

  14. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  15. Tribological and wear behavior of yttria stabilized zirconia thermal barrier coatings on mild steel

    International Nuclear Information System (INIS)

    Farooq, M.; Pervez, A.

    2012-01-01

    The perfection of the temperature confrontation of the engine essentials can be obtained by claim of a single ceramic thermal barrier coating (TBC) or several composite layers. Engine elements protected by TBC can work safely in elevated temperature range above 1000 degree C. Continuous endeavor to increase thermal resistance of engine the elements requires, apart from laboratory investigations, also numerical study of the different engine parts. The high temperatures and stress concentrations can act as the local sources of damage initiation and defects propagation in the form of cracks. The current study focuses the development of Yttria stabilized zirconia thermal barrier coating by Thermal spray technique. Mild steel was used as a substrate and the coating was then characterized for tribological analysis followed by the optical analysis of wear tracks and found the TBC behavior more promising then steel. (author)

  16. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  17. High quality aluminide and thermal barrier coatings deposition for new and service exposed parts by CVD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza, F.; Tuohy, C.; Whelan, L.; Kennedy, A.D. [SIFCO Turbine Components, Carrigtwohill, Cork (Ireland)

    2004-07-01

    In this work, the performance of CVD aluminide coatings is compared to that of coatings deposited by the classical pack cementation technique using standard SIFCO procedures. The CVD coatings always seem to behave better upon exposure to isothermal and cyclic oxidation conditions. This is explained by a longer term stability of CVD coatings, with higher Al amounts in the diffusion zone and less refractory element precipitation in the additive layer. The qualities of Pt/Al coatings by out-of-pack and CVD are also compared as a previous step for further thermal barrier coating deposition. As an example, YSZ thermal barrier coatings are deposited by MO-CVD on Pt/Al CVD bond coats rendering adherent and thick coatings around the surface of turbine blades. This process under development does not require complex manipulation of the component to be coated. (orig.)

  18. Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering

    International Nuclear Information System (INIS)

    Chen, J.T.; Wang, J.; Zhang, F.; Zhang, G.A.; Fan, X.Y.; Wu, Z.G.; Yan, P.X.

    2009-01-01

    Titanium aluminum nitride (TiAlN) ternary coating is a potential material which is expected to be applied on satellite for thermal controlling. In order to investigate thermal controlling property, TiAlN coatings were deposited on Si wafers with different N 2 and Ar flux ratio by reactive magnetron co-sputtering. The structure, morphology, chemical composition and optical reflectance are investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and spectrophotometer, respectively. The orientation of the coatings depends on the N 2 /Ar flux ratio. The coatings deposited with N 2 /Ar ratio of 10, 30 and 60% show the cubic-TiN [2 2 0] preferred orientation and the coating deposited with N 2 /Ar ratio of 100% exhibits the phase of hexagonal-AlN and cubic-TiN. The surface of the coatings becomes more compact and smoother with the N 2 /Ar ratios increase. XPS spectrum indicates that the oxides (TiO 2 and Al 2 O 3 ), oxynitride (TiN x O y ) and nitrides (TiN and AlN x ) appear at the surface of the coatings. Ignoring internal power, the optimum equilibrium temperature of TiAlN coatings is 18 deg. C and the equilibrium temperature after heat-treated has slight change, which provides the prospective application on thermal controlling

  19. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  20. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.; German Aerospace Center

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  1. Reflective coatings for interior and exterior of buildings and improving thermal performance

    International Nuclear Information System (INIS)

    Joudi, Ali; Svedung, Harald; Cehlin, Mathias; Rönnelid, Mats

    2013-01-01

    Highlights: ► Increase building energy efficiency by optimizing surface optical properties. ► Study different scenarios with both interior and exterior reflective coatings. ► Combined thermal effect of both interior and exterior reflective coatings. -- Abstract: The importance of reducing building energy usage and thriving for more energy efficient architectures, has nurtured creative solutions and smart choices of materials in the last few decades. Among those are optimizing surface optical properties for both interior and exterior claddings of the building. Development in the coil-coating steel industries has now made it possible to allocate correct optical properties for steel clad buildings with improved thermal performance. Although the importance of the exterior coating and solar gain are thoroughly studied in many literatures, the effect of interior cladding are less tackled, especially when considering a combination of both interior and exterior reflective coatings. This paper contemplates the thermal behavior of small cabins with reflective coatings on both interior and exterior cladding, under different conditions and climates with the aim to clarify and point out to the potential energy saving by smart choices of clad coatings.

  2. Study of organic ablative thermal-protection coating for solid rocket motor

    Science.gov (United States)

    Hua, Zenggong

    1992-06-01

    A study is conducted to find a new interior thermal-protection material that possesses good thermal-protection performance and simple manufacturing possibilities. Quartz powder and Cr2O3 are investigated using epoxy resin as a binder and Al2O3 as the burning inhibitor. Results indicate that the developed thermal-protection coating is suitable as ablative insulation material for solid rocket motors.

  3. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  4. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    Science.gov (United States)

    Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.

    2009-08-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  5. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    International Nuclear Information System (INIS)

    Salman, A; Gabbitas, B; Zhang, D; Li, J

    2009-01-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al 2 O 3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al 2 O 3 composite powder was produced from a mixture of Al and TiO 2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700 deg. C). The results showed that the composite coating has lower wear rate at high temperature (700deg. C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  6. Tensile toughness test and high temperature fracture analysis of thermal barrier coatings

    International Nuclear Information System (INIS)

    Qian, G.; Nakamura, T.; Berndt, C.C.; Leigh, S.H.

    1997-01-01

    In this paper, an effective fracture toughness test which uses interface fracture mechanics theory is introduced. This method is ideally suited for determining fracture resistance of multilayered thermal barrier coatings (TBCs) consisting of ceramic and bond layers and, unlike other fracture experiments, requires minimal set-up over a simple tensile adhesion test. Furthermore, while other test methods usually use edge cracked specimens, the present test models a crack embedded within the coatings, which is more consistent with actual TBCs where failure initiates from internal voids or defects. The results of combined computational and experimental analysis show that any defects located within the ceramic coating can significantly weaken a TBC, whereas the debonding resistances of the bond coating and its interfaces are found to be much higher. In a separate analysis, the authors have studied fracture behavior of TBCs subjected to thermal loading in a high temperature environment. The computed fracture parameters reveal that when the embedded crack size is on order of the coating thickness, the fracture driving force is comparable to the fracture resistance of the coating found in the toughness test. In addition, the major driving force for fracture derives from the thermal insulating effect across the crack faces rather than the mismatch in the coefficients of thermal expansion. The authors have also investigated the effects of functionally graded material (FGM) within TBCs and found its influences on the fracture parameters to be small. This result implies that the FGM may not contribute toward enhancing the fracture toughness of the TBCs considered here

  7. Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Donegan, Sean; Rolett, Anthony

    2013-12-31

    Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) eld distributions as well as the grain scale eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

  8. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Science.gov (United States)

    Seyfi, Javad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Sadeghi, Gity Mir Mohamad; Zohuri, Gholamhossein; Hejazi, Iman; Simon, Frank

    2015-08-01

    In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  9. Sealing of thermally-sprayed stainless steel coatings against corrosion using nickel electroplating technique

    Directory of Open Access Journals (Sweden)

    Hathaipat Koiprasert

    2007-07-01

    Full Text Available Electric arc spraying (EAS is one of the thermal spray techniques used for restoration and to providecorrosion resistance. It can be utilized to build up coatings to thicknesses of several millimeters, It is easy to use on-site. Most importantly, the cost of this technique is lower than other thermal spraying techniques thatmay be suitable for part restoration. A major disadvantage associated with the electric arc sprayed coating is its high porosity, which can be as high as 3-8% making it not appropriate for use in immersion condition. This work was carried out around the idea of using electroplating to seal off the pore of the EAS coating, with an aim to improve the corrosion resistance of the coating in immersion condition. This research compared the corrosion behavior of a stainless steel 316 electric arc sprayed coating in 2M NaOH solution at 25oC. It was found that the Ni plating used as sealant can improve the corrosion resistance of the EAS coating. Furthermore, the smoothened and plated stainless steel 316 coating has a better corrosion resistance than the plated EAS coating that was not ground to smoothen the surface before plating.

  10. Influence of PEG coating on optical and thermal response of gold nanoshperes and nanorods

    Science.gov (United States)

    Chen, Qin; Ren, Yatao; Qi, Hong; Ruan, Liming

    2018-06-01

    PEGylation is widely applied as a surface modification method for nanoparticles in biomedical applications to improve their biological properties, including biocompatibility and immunogenicity. In most of its biomedical applications, nanoparticles are served as optical or thermal contrast agents. Therefore, the impact of poly (ethylene glycol) (PEG) coating thickness on the optical and thermal properties of nanoparticles needs to be further investigated. In the present work, we studied two kinds of commonly used nanoparticles, including nanosphere and nanorod. The temperature and electric fields are obtained for nanoparticles with different PEG coating thicknesses. It is found that the change of PEG coating thickness on gold nanospheres only has impact on the absolute value of maximum absorption and scattering efficiencies, which barely influences the LSPR wavelength λmax and other optical and thermal characteristics. In contrast, for nanorod, the maximum efficiencies are barely influenced by the variation of PEG coating thickness. On the other hand, the localized surface plasmon resonance wavelength has an evident red shift with the increasing of PEG coating thickness. The maximum absorption efficiency is a way to evaluate the energy dissipation rate, which decides the scale of the heat source induced by nanoparticles. These findings are crucial for the accurate prediction of optical and thermal properties of nanoparticles in biomedical application. The present work also presents a possible way to manipulate the optical and thermal behaviors of nanoparticles in the application of biomedicine without changing the morphology of nanoparticles.

  11. Quality control of fireproof coatings for reinforced concrete structures

    Science.gov (United States)

    Gravit, Marina; Dmitriev, Ivan; Ishkov, Alexander

    2017-10-01

    The article analyzes methods of quality inspection of fireproof coatings (work flow, measuring, laboratory, etc.). In modern construction there is a problem of lack of distinct monitoring for the fire protection testing. There is a description of this testing for reinforced concrete structures. The article shows the results of calculation quality control of hatches as an example of fireproof coating for reinforced concrete structures.

  12. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  13. Metallographic techniques for evaluation of Thermal Barrier Coatings produced by Electron Beam Physical Vapor Deposition

    International Nuclear Information System (INIS)

    Kelly, Matthew; Singh, Jogender; Todd, Judith; Copley, Steven; Wolfe, Douglas

    2008-01-01

    Thermal Barrier Coatings (TBC) produced by Electron Beam Physical Vapor Deposition (EB-PVD) are primarily applied to critical hot section turbine components. EB-PVD TBC for turbine applications exhibit a complicated structure of porous ceramic columns separated by voids that offers mechanical compliance. Currently there are no standard evaluation methods for evaluating EB-PVD TBC structure quantitatively. This paper proposes a metallographic method for preparing samples and evaluating techniques to quantitatively measure structure. TBC samples were produced and evaluated with the proposed metallographic technique and digital image analysis for columnar grain size and relative intercolumnar porosity. Incorporation of the proposed evaluation technique will increase knowledge of the relation between processing parameters and material properties by incorporating a structural link. Application of this evaluation method will directly benefit areas of quality control, microstructural model development, and reduced development time for process scaling

  14. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    International Nuclear Information System (INIS)

    Song, In Gyu; Shin, Hyun Myung; Choi, Hae Woon; Lee, Young Min

    2011-01-01

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al 2 O 3 +40TiO 2 powder with a particle size of 20 μm and Al 2 O 3 (98%+)powder with a particle size of 45 μm. The metal filters were filter-grade 20 μm, 30 μm, and 50 μm sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 μm sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters

  15. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  16. Study of thermal and electrical parameters of workpieces during spray coating by electrolytic plasma jet

    International Nuclear Information System (INIS)

    Khafizov, A A; Shakirov, Yu I; Valiev, R A; Valiev, R I; Khafizova, G M

    2016-01-01

    In this paper the results are presented of thermal and electrical parameters of products in the system bottom layer - intermediate layer when applying protective coatings of ferromagnetic powder by plasma spray produced in an electric discharge with a liquid cathode, on steel samples. Temperature distribution and gradients in coating and intermediate coating were examined. Detailed descriptions of spray coating with ferromagnetic powder by plasma jet obtained in electrical discharge with liquid cathode and the apparatus for obtaining thereof is provided. Problem has been solved by using of Fourier analysis. Initial data for calculations is provided. Results of numerical analysis are provided as temporal functions of temperature in contiguity between coating and intermediate coating as well as temporal function of the value Q=q-φ; where q is density of heat current directed to the free surface of intermediate coating, φ is density of heat current in contiguity between coating and intermediate coating. The analysis of data given shows that in the systems of contact heat exchange bottom layer-intermediate layer with close values of the thermophysical characteristics of constituting materials is observed a slow increase of the temperature of the contact as a function of time. (paper)

  17. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    OpenAIRE

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resis...

  18. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Czech Academy of Sciences Publication Activity Database

    Medřický, J.; Curry, N.; Pala, Zdeněk; Vilémová, Monika; Chráska, Tomáš; Johansson, J.; Markocsan, N.

    2015-01-01

    Roč. 24, č. 4 (2015), s. 622-628 ISSN 1059-9630 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : gas turbine s * high temperature application * porosity of coatings * stabilized zirconia * thermal barrier coatings (TBCs) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.568, year: 2015

  19. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  20. Development of silver coating process and facilities for ITER thermal shield

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D.K. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, R.G. [COTEC Corp., Changwon 641-846 (Korea, Republic of); Nam, K., E-mail: kwnam@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Noh, C.H.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Yoon, D.C. [COTEC Corp., Changwon 641-846 (Korea, Republic of); Lim, K.; Baek, J.P. [SFA Engineering Corp., Asan 336-873 (Korea, Republic of)

    2016-11-01

    This paper describes both the test results of the bath type silver coating and the design of the bath to construct the silver coating plant for ITER thermal shield. The tests of small specimens made of SS304L and SS304LN were carried out to investigate the effect of the nitrogen content in SS304LN on the silver coating quality. The effect of different degreasing agents was also investigated to improve silver coating process. Small mock-up was tested to find a proper dipping direction during the electroplating process. Finally, noble bath design was conceived and structurally validated. Overall layout of silver coating plant is also shown in this paper.

  1. Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Weiyi [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren' ai Road, Suzhou, Jiangsu 215123 (China); Jie, Ganxin [State Key Laboratory of Environmental Adaptability for Industrial Products, China National Electric Apparatus Research Institute, Guangzhou 510300 (China); Song, Lei; Hu, Shuang; Lv, Xiaoqi; Wang, Xin [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren' ai Road, Suzhou, Jiangsu 215123 (China)

    2011-01-20

    The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process.

  2. Optimization of Heat Transfer on Thermal Barrier Coated Gas Turbine Blade

    Science.gov (United States)

    Aabid, Abdul; Khan, S. A.

    2018-05-01

    In the field of Aerospace Propulsion technology, material required to resist the maximum temperature. In this paper, using thermal barrier coatings (TBCs) method in gas turbine blade is used to protect hot section component from high-temperature effect to extend the service life and reduce the maintenance costs. The TBCs which include three layers of coating corresponding initial coat is super alloy-INCONEL 718 with 1 mm thickness, bond coat is Nano-structured ceramic-metallic composite-NiCoCrAIY with 0.15 mm thickness and top coat is ceramic composite-La2Ce2O7 with 0.09 mm thickness on the nickel alloy turbine blade which in turn increases the strength, efficiency and life span of the blades. Modeling a gas turbine blade using CATIA software and determining the amount of heat transfer on thermal barrier coated blade using ANSYS software has been performed. Thermal stresses and effects of different TBCs blade base alloys are considered using CATIA and ANSYS.

  3. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)

    Science.gov (United States)

    Igumenov, I. K.; Aksenov, A. N.

    2017-12-01

    Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.

  4. Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle; Choudhuri, Ahsan

    2013-01-31

    Thermal barrier coatings (TBCs) are critical technologies for future gas turbine engines of advanced coal based power generation systems. TBCs protect engine components and allow further increase in engine temperatures for higher efficiency. In this work, nanostructured HfO{sub 2}-based coatings, namely Y{sub 2}O{sub 3}-stabilized HfO{sub 2} (YSH), Gd{sub 2}O{sub 3}-stabilized HfO{sub 2} (GSH) and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}-HfO{sub 2} (YSZH) were investigated for potential TBC applications in hydrogen turbines. Experimental efforts are aimed at creating a fundamental understanding of these TBC materials. Nanostructured ceramic coatings of YSH, GSH and YSZH were grown by physical vapor deposition methods. The effects of processing parameters and ceramic composition on the microstructural evolution of YSH, GSH and YSZH nanostructured coatings was studied using combined X-ray diffraction (XRD) and Electron microscopy analyses. Efforts were directed to derive a detailed understanding of crystal-structure, morphology, and stability of the coatings. In addition, thermal conductivity as a function of composition in YSH, YSZH and GSH coatings was determined. Laboratory experiments using accelerated test environments were used to investigate the relative importance of various thermo-mechanical and thermo-chemical failure modes of TBCs. Effects of thermal cycling, oxidation and their complex interactions were evaluated using a syngas combustor rig.

  5. Titanium oxynitrate (TiNxOy) coating for use in thermal solar energy converters

    International Nuclear Information System (INIS)

    Lasorsa, C; Dilalla, N; Perillo, P; Morando, P.J; Versaci, R; Lucio, R

    2008-01-01

    This work deals with the production of titanium oxynitrate (TiN x O y ) coatings on metallic substrates. Because of its high resistance to high temperatures, titanium oxynitrate (TiN xO y) is a good material for the production of thermal solar energy converters. The surfaces should possess such qualities as high absorbance (α) of solar radiation (range 0.3 μm ≤λ≤2 μm) and low thermal emittance (ε) in the range of λ≥ 2 μm. The coatings should retain optical qualities temperatures greater than 300 o C. These coatings were made using the PECVD (Plasma Enhanced Chemical Vapor Deposition) technique in a single layer coating, with a gaseous mixture using titanium isopropoxide with an air contribution of reactive gas. The process is developed in one stage, with the substrate thermalized at 750 o C and without y BIAS potential. The coatings were carried out on AISI 410 stainless steel and AISI M2 steel substrates. This work presents the preliminary results of the coating's chemical composition, structure and optical and mechanical properties. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS/ESCA) and scanning electron microscopy were used in these studies

  6. The role of nano-particles in the field of thermal spray coating technology

    Science.gov (United States)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  7. Enhanced Thermal Transport of Surfaces with Superhydrophobic Coatings

    Science.gov (United States)

    2015-07-01

    resistance conferred by superhydrophobic fluorinated polyacrylate-silica composite coatings on cold-rolled steel. Journal of Applied Polymer Science... thiolates on metals as a form of nanotechnology. ChemInform. 2005:36. doi: 10.1002/chin.200532281. 9. Chen C-H, Cai Q, Tsai C, Chen C-L, Xiong G

  8. High level waste forms: glass marbles and thermal spray coatings

    International Nuclear Information System (INIS)

    Treat, R.L.; Oma, K.H.; Slate, S.C.

    1982-01-01

    A process that converts high-level waste to glass marbles and then coats the marbles has been developed at Pacific Northwest Laboratory (PNL) under sponsorship of the US Department of Energy. The process consists of a joule-heated glass melter, a marble-making device based on a patent issued to Corning Glass Works, and a coating system that includes a plasma spray coater and a marble tumbler. The process was developed under the Alternative Waste Forms Program which strived to improve upon monolithic glass for immobilizing high-level wastes. Coated glass marbles were found to be more leach-resistant, and the marbles, before coating were found to be very homogeneous, highly impact resistant, and conductive to encapsulation in a metal matric for improved heat transfer and containment. Marbles are also ideally suited for quality assurance and recycling. However, the marble process is more complex, and marbles require a larger number of canisters for waste containment and have a higher surface area than do glass monoliths

  9. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  10. Development of a Nondestructive Evaluation Technique for Degraded Thermal Barrier Coatings Using Microwave

    Science.gov (United States)

    Sayar, M.; Ogawa, K.; Shoji, T.

    2008-02-01

    Thermal barrier coatings have been widely used in gas turbine engines in order to protect substrate metal alloy against high temperature and to enhance turbine efficiency. Currently, there are no reliable nondestructive techniques available to monitor TBC integrity over lifetime of the coating. Hence, to detect top coating (TC) and TGO thicknesses, a microwave nondestructive technique that utilizes a rectangular waveguide was developed. The phase of the reflection coefficient at the interface of TC and waveguide varies for different TGO and TC thicknesses. Therefore, measuring the phase of the reflection coefficient enables us to accurately calculate these thicknesses. Finally, a theoretical analysis was used to evaluate the reliability of the experimental results.

  11. Ion irradiation and thermal cycling tests of TiC coatings

    International Nuclear Information System (INIS)

    Yamanaka, S.; Ohara, H.; Son, P.; Miyake, M.

    1984-01-01

    Ion irradiation of TiC coatings prepared by diffusion annealing was performed with 20-40 keV He + ions for different doses at room temperature. The polished TiCsub(0.99) coatings irradiated with 40 keV He + ions showed the surface damage and erosion due to blistering and exfoliation above a dose of 1.8x10 17 ions/cm 2 , whereas no change in the surface morphology could be detected for the as-prepared coatings up to a dose of 1.4x10 18 ions/cm 2 . The results suggested that surface erosion due to blistering can be effectively reduced on the rough surface of the as-prepared TiC coating. The average blister diameter in the polished TiCsub(0.99) coating increased with increasing projectile energy. For the 40 keV He + ion irradiation of the polished TiCsub(0.5) coatings, general features in blisters were similar to those observed for the TiCsub(0.99) coatings, but the critical dose for blistering shifted to a higher value in comparison with the polished TiCsub(0.99) coating. Thermal cycling between 500 and 1200 0 C caused serious surface damage for the TiCsub(0.99) coating irradiated with 40 keV He + ions below the critical dose for blistering, while the coating with surface damage due to blistering showed no significant change in the surface topography after thermal cycling. (orig.)

  12. Microstructural characterization of thermal barrier coating on Inconel 617 after high temperature oxidation

    Directory of Open Access Journals (Sweden)

    Mohammadreza Daroonparvar

    2013-06-01

    Full Text Available A turbine blade was protected against high temperature corrosion and oxidation by thermal barrier coatings (TBCsusing atmospheric plasma spraying technique (APS on a Ni-based superalloy (Inconel 617. The coatings (NiCr6AlY/ YSZ and NiCr10AlY/YSZ consist of laminar structure with substantial interconnected porosity transferred oxygen from Yittria stabilized Zirconia (YSZ layer toward the bond coat (NiCrAlY. Hence, a thermally grown oxide layer (TGO was formed on the metallic bond coat and internal oxidation of the bond coat occurred during oxidation. The TBC systems were oxidized in a normal electrically heated furnace at 1150 °C for 18, 22, 26, 32 and 40h.Microstructural characterization of coatings demonstrated that the growth of the TGO layer on the nickel alloy with 6wt. % Al is more rapid than TGO with 10wt. % Al. In addition, many micro-cracks were observed at the interface of NiCr6AlY/YSZ. X-ray diffraction analysis (XRD showed the existence of detrimental oxides such as NiCr2O4, NiCrO3 and NiCrO4 in the bond coat containing 6wt. % Al, accompanied by rapid volume expansion causing the destruction of TBC. In contrast, in the bond coat with 10wt. % Al, NiO, Al2O3and Cr2O3 oxides were formed while very low volume expansion occurred. The oxygen could not penetrate into the TGO layer of bond coat with 10 wt. % Al during high temperature oxidation and the detrimental oxides were not extensively formed within the bond coat as more oxygen was needed. The YSZ with higher Al content showed higher oxidation resistance.

  13. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    Science.gov (United States)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  14. The influence of creep properties on crack propagation in thermal barrier coatings

    International Nuclear Information System (INIS)

    Baeker, Martin

    2010-01-01

    Thermal barrier coatings are used to protect turbine blades from the high temperature of the process gas inside a turbine. They consist of a metallic bond coat and of a ceramic top coat with low thermal conductivity. During service, an additional oxide layer forms between bond coat and top coat that eventually causes failure. Finite element simulations show that the roughness of the interface between top and bond coat is crucial for determining the stress state. Lifetime models have been inferred that assume that cracks form in the peak positions at small oxide thickness and propagate when the oxide layer grows and the stress field shifts. A two-dimensional finite element model of crack propagation in the TBC layer is presented. Since the cracks propagate near a material interface and since plasticity may occur in the bond coat, standard tools of fracture mechanics for predicting the crack propagation direction are difficult to apply. This problem is circumvented in a very simple way by propagating short 'test cracks' in different directions and optimising to find the crack direction with the maximum energy release rate. It is shown that the energy release rate and the crack propagation direction are sensitive to the details of the stress state and especially to the creep properties of the materials. Implications for failure models are discussed.

  15. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    Science.gov (United States)

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  16. An assessment of thermal spray coating technologies for high temperature corrosion protection

    International Nuclear Information System (INIS)

    Heath, G.R.; Heimgartner, P.; Gustafsson, S.; Irons, G.; Miller, R.

    1997-01-01

    The use of thermally sprayed coatings in combating high temperature corrosion continues to grow in the major industries of chemical, waste incineration, power generation and pulp and paper. This has been driven partially by the development of corrosion resistant alloys, improved knowledge and quality in the thermal spray industry and continued innovation in thermal spray equipment. There exists today an extensive range of thermal spray process options, often with the same alloy solution. In demanding corrosion applications it is not sufficient to just specify alloy and coating method. For the production of reliable coatings the whole coating production envelope needs to be considered, including alloy selection, spray parameters, surface preparation, base metal properties, heat input etc. Combustion, arc-wire, plasma, HVOF and spray+fuse techniques are reviewed and compared in terms of their strengths and limitations to provide cost-effective solutions for high temperature corrosion protection. Arc wire spraying, HP/HVOF and spray+fuse are emerging as the most promising techniques to optimise both coating properties and economic/practical aspects. (orig.)

  17. Tribological study of novel metal-doped carbon-based coatings with enhanced thermal stability

    Science.gov (United States)

    Mandal, Paranjayee

    Low friction and high temperature wear resistant PVD coatings are in high demand for use on engine components, which operate in extreme environment. Diamond-like-carbon (DLC) coatings are extensively used for this purpose due to their excellent tribological properties. However, DLC degrades at high temperature and pressure conditions leading to significant increase in friction and wear rate even in the presence of lubricant. To withstand high working temperature and simultaneously maintain improved tribological properties in lubricated condition at ambient and at high temperature, both the transitional metals Mo and W are simultaneously introduced in a carbon-based coating (Mo-W-C) for the first time utilising the benefits of smart material combination and High Power Impulse Magnetron Sputtering (HIPIMS).This research includes development of Mo-W-C coating and investigation of thermal stability and tribological properties at ambient and high temperatures. The as-deposited Mo-W-C coating contains nanocrystalline almost X-ray amorphous structure and show dense microstructure, good adhesion with substrate (Lc -80 N) and high hardness (-17 GPa). During boundary lubricated sliding (commercially available engine oil without friction modifier used as lubricant) at ambient temperature, Mo-W-C coating outperforms commercially available state-of-the-art DLC coatings by providing significantly low friction (u- 0.03 - 0.05) and excellent wear resistance (no measurable wear). When lubricated sliding tests are carried out at 200°C, Mo-W-C coating provides low friction similar to ambient temperature, whereas degradation of DLC coating properties fails to maintain low friction coefficient.A range of surface analyses techniques reveal "in-situ" formation of solid lubricants (WS2 and M0S2) at the tribo-contacts due to tribochemically reactive wear mechanism at ambient and high temperature. Mo-W-C coating reacts with EP additives present in the engine oil during sliding to form WS2

  18. Development and Application of Coating Weight Control Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hyoung [Dongbu Steel, Incheon (Korea, Republic of)

    2010-08-15

    Precise coating weight control is very important issue on quality and minimizing operating costs on continuous galvanizing line. These days, many steel making companies are having a new understanding of cost importance by rise raw material prices and customers requirement for cost reduction. Dongbu steel also meets these situations and decided to develop the technologies. Dongbu Steel developed Integrated coating weight control system jointly with Objective Control Ltd. and installed 2CGL and 4CGL. Several technological functions were developed and realized to achieve true hands-off operation and maximum cost benefit by combining model-based preset and dynamic prediction models. We also installed it on 1 CGL on April, 2008. This paper will present the interface, functions and application result of the integrated coating weight control system including Zn saving and coating weight uniformity.

  19. Thermal barrier coatings issues in advanced land-based gas turbines

    Science.gov (United States)

    Parks, W. P.; Lee, W. Y.; Wright, I. G.

    1995-01-01

    The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.

  20. Characterization and evaluation of EB-PVD thermal barrier coatings by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunxia; Liu Fushun; Gong Shengkai; Xu Huibin [School of Materials Science and Engineering, Beihang Univ., Beijing, BJ (China)

    2005-07-01

    Two layer thermal barrier coatings (TBCs) were prepared by EB-PVD (electron beam-physical vapor deposition) at different substrate temperatures in the range of 823 to 1123 K, and their microstructure was investigated with SEM and AC impedance as a function of substrate temperature and thermal cycling time. YSZ layer of all TBCs samples is in column structure, but the grain size and growth orientation are different with substrate. In this research, impedance spectra (IS) was measured as a function of thermal cycling between 1323 K and 298 K for these thermal barrier coatings. Grain boundary and bulk can be distinguished from analysis of AC impedance spectroa to provide information about the relation between microstructure and electric properties. The change in IS until failure was found to be related with the thickness, microcracks and macrocracks of TGO and the change in the interfacial of TGO/YSZ. (orig.)

  1. Investigation on the Interface Characteristics of the Thermal Barrier Coating System through Flat Cylindrical Indenters

    Directory of Open Access Journals (Sweden)

    Shifeng Wen

    2014-01-01

    Full Text Available Thermal barrier coating (TBC systems are highly advanced material systems and usually applied to insulate components from large and prolonged heat loads by utilizing thermally insulating materials. In this study, the characteristics of the interface of thermal barrier coating systems have been simulated by the finite-element method (FEM. The emphasis was put on the stress distribution at the interface which is beneath the indenter. The effect of the interface roughness, the thermally grown oxide (TGO layer's thickness, and the modulus ratio (η of the thin film with the substrate has been considered. Finite-element results showed that the influences of the interface roughness and the TGO layer's thickness on stress distribution were important. At the same time, the residual stress distribution has been investigated in detail.

  2. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets

    Science.gov (United States)

    Tagliaferri, Vincenzo; Ucciardello, Nadia

    2017-01-01

    Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper) obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix. PMID:29068424

  3. Emerging Nanotechnology-based Corrosion Control Coatings

    Science.gov (United States)

    2009-02-01

    Carbon black Calcium carbonate Carbon nanotubes Cerium oxide Dendrimers, hyperbranched and supramolecules Indium... Microcapsule with Bisphenol A epoxy Microcapsule with Ketimine O O O O O O O H O n Selected SEM images of various microcapsules SEM and optical...microscopy images of cross-section of self-healing coating Microcapsule rupture and healing agent release is triggered by: T> Tm

  4. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  5. Thermal barrier coating by electron beam-physical vapor deposition of zirconia co-doped with yttria and niobia

    Directory of Open Access Journals (Sweden)

    Daniel Soares de Almeida

    2010-08-01

    Full Text Available The most usual ceramic material for coating turbine blades is yttria doped zirconia. Addition of niobia, as a co-dopant in the Y2O3-ZrO2 system, can reduce the thermal conductivity and improve mechanical properties of the coating. The purpose of this work was to evaluate the influence of the addition of niobia on the microstructure and thermal properties of the ceramic coatings. SEM on coatings fractured cross-section shows a columnar structure and the results of XRD show only zirconia tetragonal phase in the ceramic coating for the chemical composition range studied. As the difference NbO2,5-YO1,5 mol percent increases, the tetragonality increases. A significant reduction of the thermal conductivity, measured by laser flash technique in the zirconia coating co-doped with yttria and niobia when compared with zirconia-yttria coating was observed.

  6. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  7. Thermal electric effects and heat generation in polypyrrole coated PET fabrics

    OpenAIRE

    Avloni, J.; Florio, L.; Henn, A. R.; Sparavigna, A.

    2007-01-01

    Polypyrrole chemically synthesized on PET gives rise to textiles with a high electric conductivity, suitable for several applications from antistatics to electromagnetic interference shielding devices. Here, we discuss investigations on thermal electric performances of the polypyrrole coated PET in a wide range of temperatures above room temperature. The Seebeck coefficient turns out to be comparable with that of metal thermocouple materials. Since polypyrrole shows extremely low thermal diff...

  8. On the compatibility of single crystal superalloys with a thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.T. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Reed, R.C. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)], E-mail: r.reed@birmingham.ac.uk

    2008-02-15

    The compatibility of three Co-containing prototype single crystal nickel-based superalloys with a thermal barrier coating (TBC) system is examined. These contain 2.1, 8.4 and 12.6 at.% Co; the concentrations of Al, Cr, Ta, W, Re, Hf are identical and chosen to be representative of advanced grades of these alloys. The TBC consists of an yttria-stabilized zirconia (YSZ) layer formed by electron beam physical vapour deposition (EB-PVD) and a bond coat made by electrodeposited platinum with a subsequent interdiffusion heat treatment - a so-called 'platinum-diffused' bond coat. The resistance to spallation of the TBC system is degraded as the Co content of the substrate increases. Wavelength-dispersive X-ray analysis and secondary ion mass spectrometry indicate that quantities of Co are present in the thermally grown oxide (TGO) by the time that failure occurs, this effect being most pronounced when the Co content of the substrate is high; the TGO is then more wavy and convoluted. The bond coat consists exclusively of the {gamma} and {gamma}' phases, with the balance shifting towards {gamma} with increasing thermal exposure; the loss of Al from the bond coat due to TGO formation means that the TGO is eventually in contact with the {gamma} phase solely, which is enriched in Co.

  9. Study on modernization processes in the coating metal surfaces (plain bearings by thermal spraying

    Directory of Open Access Journals (Sweden)

    Elena IRIMIE

    2011-09-01

    Full Text Available Knowledge accumulated within the metal coating through thermal spraying allows the understanding of aspects related to the coat structure phenomena, in this case of the routs that need to be followed in order to create strong and stabile connections between the coats subsided through thermal spraying, between the particles that compose those coats, respectively. However, all this knowledge does not ensure the understanding of some practical situations that are apparently paradoxes, as for instance the absence of tin bronze adherence to ignobly steel holders, the perfect adherence of bronze to the aluminum on the same types of holders, in the context in which both elements, tin and aluminum, respectively are found in equal quantity in the two type of bonze that maintain them in solid solutions (below 10%.The parallel study in the sinter antifriction domain has offered information regarding the optimal correlation between the composition of antifriction material and the required type of application, the optimal pinches level and the way that this morphological characteristic may be influenced. By experimental research it is necessary to determine the conditions under which such coverage can be obtained by thermal spraying of the metal coatings.

  10. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  11. Evaluating the Thermal Damage Resistance of Reduced Graphene Oxide/Carbon Nanotube Hybrid Coatings

    Science.gov (United States)

    David, Lamuel; Feldman, Ari; Mansfield, Elisabeth; Lehman, John; Singh, Gurpreet; National Institute of Standards and Technology Collaboration

    2014-03-01

    Carbon nanotubes and graphene are known to exhibit some exceptional thermal (K ~ 2000 to 4400 W.m-1K-1 at 300K) and optical properties. Here, we demonstrate preparation and testing of multiwalled carbon nanotubes and chemically modified graphene-composite spray coatings for use on thermal detectors for high-power lasers. The synthesized nanocomposite material was tested by preparing spray coatings on aluminum test coupons used as a representation of the thermal detector's surface. These coatings were then exposed to increasing laser powers and extended exposure times to quantify their damage threshold and optical absorbance. The graphene/carbon nanotube (prepared at varying mass% of graphene in CNTs) coatings demonstrated significantly higher damage threshold values at 2.5 kW laser power (10.6 μm wavelength) than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens showed that the composite coating endured high laser-power densities (up to 2 kW.cm-2) without significant visual damage. This research is based on work supported by the National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems Division), under grant no. 1335862 to G. Singh.

  12. Thermal properties and flame retardancy of an ether-type UV-cured polyurethane coating

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available A new UV-reactive monomer piperazine-N,N′-bis(acryloxyethylaryl-phosphoramidate (N-PBAAP containing phosphorus and nitrogen was synthesized and used as flame retardant for an ether-type UV-cured polyurethane acrylate (PUA coating. The thermal properties of the PUA films were investigated by thermogravimetric analysis (TGA in air and nitrogen atmosphere. The TGA results showed that the incorporation of N-PBAAP can obviously enhance the char residue of the PUA coatings. From the TGA and real time Fourier transformed infrared spectroscopy (RT-FTIR results, different degradation behaviors were observed in the PUA coatings with different N-PBAAP content. The combustibility of the PUA coatings was evaluated by microscale combustion calorimeter (MCC. The MCC results revealed that the addition of NPBAAP in the coatings can significantly reduce the peak Heat Release Rate (pHRR, Heat Release Capacity (HRC and the Total Heat Release (THR of the samples. Furthermore, dynamical mechanical thermal analysis (DMA was employed to examine the viscoelastic properties of the PUA films. It was found that the incorporation of N-PBAAP in the formulation can bring in more functional groups to the coatings, which results in an increase of the glass transition temperature (Tg and cross linking density (XLD of the films.

  13. Design and simulation of thermal residual stresses of coatings on WC-Co cemented carbide cutting tool substrate

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Zang, Jian; Zheng, Wei

    2016-01-01

    Large thermal residual stresses in coatings during the coating deposition process may easily lead to coating delamination of coated carbide tools in machining. In order to reduce the possibility of coating delamination during the tool failure process, a theoretical method was proposed and a numerical method was constructed for the coating design of WC-Co cemented carbide cutting tools. The thermal residual stresses of multi-layered coatings were analytically modeled based on equivalent parameters of coating properties, and the stress distribution of coatings are simulated by Finite element method (FEM). The theoretically calculated results and the FEM simulated results were verified and in good agreement with the experimental test results. The effects of coating thickness, tool substrate, coating type and interlayer were investigated by the proposed geometric and FEM model. Based on the evaluations of matchability of tool substrate and tool coatings, the basic principles of tool coating design were proposed. This provides theoretical basis for the selection and design of coatings of cutting tools in high-speed machining

  14. In situ SANS study of pore microstructure in YSZ thermal barrier coatings

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Schumacher, G.; Vassen, R.; Wiedenmann, A.

    2004-01-01

    Roč. 52, č. 11 (2004), s. 3305-3312 ISSN 1359-6454 R&D Projects: GA ČR GA202/03/0891 Institutional research plan: CEZ:AV0Z1048901 Keywords : plasma spraying * thermal barrier coatings * ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.490, year: 2004

  15. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  16. Influence of coating on nanocrystalline magnetic properties during high temperature thermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Lekdim, Atef, E-mail: atef.lekdim@univ-lyon1.fr; Morel, Laurent; Raulet, Marie-Ange

    2017-05-15

    Since their birth or mergence the late 1980s, the nanocrystalline ultrasoft magnetic materials are taking a great importance in power electronic systems conception. One of the main advantages that make them more attractive nowadays is their ability to be packaged since the reduction of the magnetostrictive constant to almost zero. In aircraft applications, due to the high component compactness and to their location (for example near the jet engine), the operating temperature increases and may reach easily 200 °C and more. Consequently, the magnetic thermal ageing may occur but is, unfortunately, weakly studied. This paper focuses on the influence of the coating (packaging type) on the magnetic nanocrystalline performances during a thermal ageing. This study is based on monitoring the magnetic characteristics of two types of nanocrystalline cores (naked and coated) during a thermal activated ageing (100, 150 and 200 °C). Based on a dedicated monitoring protocol, a large magnetic characterization has been done and analyzed. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena. - Highlights: • The coating impacts drastically the magnetic properties during thermal ageing. • Irreversible ageing phenomena after the total coating breakage. • The deteriorations are related to the storage of the magnetoelastic anisotropy.

  17. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    Science.gov (United States)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  18. Self-healing thermal barrier coatings; with application to gas turbine engines

    NARCIS (Netherlands)

    Ponnusami, S.A.

    2013-01-01

    Thermal Barrier Coating (TBC) systems have been applied in turbine engines for aerospace and power plants since the beginning of the 1980s to increase the energy efficiency of the engine, by allowing for higher operation temperatures. TBC systems on average need to be replaced about four times

  19. Use of emanation thermal analysis in the microstructure diagnostics of aluminia coatings

    Czech Academy of Sciences Publication Activity Database

    Balek, V.; Beneš, M.; Šubrt, Jan

    2008-01-01

    Roč. 52, č. 2 (2008), s. 85-89 ISSN 0862-5468 Institutional research plan: CEZ:AV0Z40320502 Keywords : aluminia coatings * emanation thermal analysis * SEM Subject RIV: CA - Inorganic Chemistry Impact factor: 0.644, year: 2008

  20. Microstructure of oxides in thermal barrier coatings grown under dry/humid atmosphere

    International Nuclear Information System (INIS)

    Zhou Zhaohui; Guo Hongbo; Wang Juan; Abbas, Musharaf; Gong Shengkai

    2011-01-01

    Graphical abstract: The presence of water vapor promoted the formation of spinels in the TBC. Highlights: → Thermal barrier coatings are produced by electron beam physical vapour deposition. → Oxidation behaviour of the coatings at 1100 deg. C has been investigated in dry/humid O 2 . → Thermally grown oxides formed in the coatings are characterized. → The presence of water vapour promotes the formation of spinel in the TBCs. - Abstract: The microstructure of thermally grown oxide (TGO) in thermal barrier coatings (TBCs) oxidized under dry/humid atmosphere at 1100 deg. C has been characterized by transmission electron microscopy. A thin and continuous oxide layer is formed in the as-deposited TBCs produced by electron beam physical vapor deposition. The TGO formed in dry atmosphere consists of an outer layer of fine α-alumina, zirconia grains and an inner layer of columnar α-alumina grains. However, a small amount of spinel is observed in the TGO under humid atmosphere. The presence of water vapour promotes the formation of spinel.

  1. Evolution of pore microstructure in thermal barrier coatings studied by SANS

    Czech Academy of Sciences Publication Activity Database

    Haug, J.; Wiedenmann, A.; Flores, A.; Saruhan-Brings, B.; Strunz, Pavel

    2006-01-01

    Roč. 385, č. 1 (2006), s. 617-619 ISSN 0921-4526 R&D Projects: GA ČR GA202/06/0601 Institutional research plan: CEZ:AV0Z10480505 Keywords : thermal barrier coatings * electron beam physical vapor deposition * SANS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.872, year: 2006

  2. Loadings in thermal barrier coatings of jet engine turbine blades an experimental research and numerical modeling

    CERN Document Server

    Sadowski, Tomasz

    2016-01-01

    This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.

  3. Constrained sintering of an air-plasma-sprayed thermal barrier coating

    International Nuclear Information System (INIS)

    Cocks, A.C.F.; Fleck, N.A.

    2010-01-01

    A micromechanical model is presented for the constrained sintering of an air-plasma-sprayed, thermal barrier coating upon a thick superalloy substrate. The coating comprises random splats with intervening penny-shaped cracks. The crack faces make contact at asperities, which progressively sinter in-service by interfacial diffusion, accommodated by bulk creep. Diffusion is driven by the reduction in interfacial energy at the developing contacts and by the local asperity contact stress. At elevated operating temperature, both sintering and creep strains accumulate within the plane of the coating. The sensitivities of sintering rate and microstructure evolution rate to the kinetic parameters and thermodynamic driving forces are explored. It is demonstrated that the sintering response is governed by three independent timescales, as dictated by the material and geometric properties of the coating. Finally, the role of substrate constraint is assessed by comparing the rate of constrained sintering with that for free sintering.

  4. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  5. Novel Functionally Graded Thermal Barrier Coatings in Coal-Fired Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [Indiana Univ., Indianapolis, IN (United States)

    2016-11-01

    This project presents a detailed investigation of a novel functionally graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) in gas turbines used in coal-fired power plants. Thermal barrier coatings are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The ultimate goal of this research is to develop a manufacturing process to produce the novel low thermal conductivity and high thermal stability pyrochlore oxide based coatings with improved high-temperature durability. The current standard TBC, yttria stabilized zirconia (YSZ), has service temperatures limited to <1200°C, due to sintering and phase transition at higher temperatures. In contrast, pyrochlore oxide, e.g., lanthanum zirconate (La2Zr2O7, LZ), has demonstrated lower thermal conductivity and better thermal stability, which are crucial to high temperature applications, such as gas turbines used in coal-fired power plants. Indiana University – Purdue University Indianapolis (IUPUI) has collaborated with Praxair Surface Technologies (PST), and Changwon National University in South Korea to perform the proposed research. The research findings are critical to the extension of current TBCs to a broader range of high-temperature materials and applications. Several tasks were originally proposed and accomplished, with additional new opportunities identified during the course of the project. In this report, a description of the project tasks, the main findings and conclusions are given. A list of publications and presentations resulted from this research is listed in the Appendix at the end of the report.

  6. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration.

    Science.gov (United States)

    Pehlivaner Kara, Meryem O; Ekenseair, Adam K

    2016-10-01

    In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.

  7. Sedimentary controls on modern sand grain coat formation

    Science.gov (United States)

    Dowey, Patrick J.; Worden, Richard H.; Utley, James; Hodgson, David M.

    2017-05-01

    Coated sand grains can influence reservoir quality evolution during sandstone diagenesis. Porosity can be reduced and fluid flow restricted where grain coats encroach into pore space. Conversely pore-lining grain coats can restrict the growth of pore-filling quartz cement in deeply buried sandstones, and thus can result in unusually high porosity in deeply buried sandstones. Being able to predict the distribution of coated sand grains within petroleum reservoirs is thus important to help find good reservoir quality. Here we report a modern analogue study of 12 sediment cores from the Anllóns Estuary, Galicia, NW Spain, collected from a range of sub-environments, to help develop an understanding of the occurrence and distribution of coated grains. The cores were described for grain size, bioturbation and sedimentary structures, and then sub-sampled for electron and light microscopy, laser granulometry, and X-ray diffraction analysis. The Anllóns Estuary is sand-dominated with intertidal sand flats and saltmarsh environments at the margins; there is a shallowing/fining-upwards trend in the estuary-fill succession. Grain coats are present in nearly every sample analysed; they are between 1 μm and 100 μm thick and typically lack internal organisation. The extent of grain coat coverage can exceed 25% in some samples with coverage highest in the top 20 cm of cores. Samples from muddy intertidal flat and the muddy saltmarsh environments, close to the margins of the estuary, have the highest coat coverage (mean coat coverage of 20.2% and 21.3%, respectively). The lowest mean coat coverage occurs in the sandy saltmarsh (10.4%), beyond the upper tidal limit and sandy intertidal flat environments (8.4%), close to the main estuary channel. Mean coat coverage correlates with the concentration of clay fraction. The primary controls on the distribution of fine-grained sediment, and therefore grain coat distribution, are primary sediment transport and deposition processes that

  8. Study of different biocomposite coatings on Ti alloy by a subsonic thermal spraying technique

    Energy Technology Data Exchange (ETDEWEB)

    Li Muqin [Provincial Key Laboratory of Biomaterials, Jiamusi University, Heilongjiang Province, 154007 (China); Zhang Rui [College of Stomatology, Jiamusi University, Heilongjiang Province, 154003 (China); Wang Jianping [College of Stomatology, Jiamusi University, Heilongjiang Province, 154003 (China); Yang Shiqin [State Key Laboratory Advanced Welding Production Technology, Harbin Institute of Technology, 150001 (China)

    2007-03-01

    A subsonic thermal spraying technique (STS) was used to make different biocomposite coatings on titanium alloys for preparing three kinds of implants: 8Ti2G, HA and 8H2B, respectively. The implants were embedded in a region of jaw of dogs whose teeth were pulled out three months previously. The dogs, in two groups, were killed 30 days and 90 days, respectively, after they were operated on. Osteointegration between the implants and host bone was investigated by x-ray, histology and the SEM technique. The results showed that the three kinds of coatings all exhibited good biocompatibility and synostosis, but their osteointegration capability showed a difference and decreased in the sequence of 8H2B, HA and 8Ti2G. The activity of coating, which promoted the reactions between implants and bone tissue, was further increased by the addition of bioglass in the 8H2B coating. Subsequently, chemical bonding was formed, and the osteointegration strength was increased. The study provided a new approach to prepare biocomposite coatings. The 8H2B implants, which formed an integral functional biocomposite coating on Ti alloys, showed a better osteointegration capability with bioactivity and pore gradient variation. A theoretical base was provided for the biocomposite coating application.

  9. Application of thermal barrier coating for improving the suitability of Annona biodiesel in a diesel engine

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available The Annona biodiesel was produced from Annona oil through transesterification process. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using a annona methyl ester as a fuel. They are blended together with the Neat diesel fuel such as 20%, 40%, 60%, 80%, and Neat biodiesel. The performance, emission and combustion characteristics are evaluated by operating the engine at different loads. The performance parameters such as brake thermal efficiency, brake specific fuel consumption. The emission constituents such as carbon monoxide, unburned hydrocarbons, oxides of nitrogen, and smoke were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with 100 µm of NiCrAl as lining layer. Later the same parts were coated with 400 µm material of coating that was the mixture of 88% of ZrO2, 4% of MgO, and 8% of Al2O3. After the engine coating process, the same fuels is tested in the engine at the same engine operation. The same performance and emission parameters were evaluated. Finally, these parameters are compared with uncoated engine in order to find out the changes in the performance and emission parameters of the coated engine. It is concluded that the coating engine resulting in better performance, especially in considerably lower brake specific fuel consumption values. The engine emissions are lowered both through coating and annona methyl ester biodiesel expect the nitrogen oxides emission.

  10. Microstructure Evolution and Impedance Spectroscopy Characterization of Thermal Barrier Coating Exposed to Gas Thermal-shock Environment

    Directory of Open Access Journals (Sweden)

    CHEN Wen-long

    2017-10-01

    Full Text Available Gas thermal-shock experiment of thermal barrier coatings (TBCs was carried out in air up to 1250℃ in order to simulate the thermal cycling process of the engine blades during the start heating and shut down cooling. The growth of thermal growth oxide (TGO layer and microstructure evolution of YSZ layer during thermal cycling process were investigated systematically by electrochemical impedance spectroscopy testing and SEM. The results show that the thickness of TGO layer increases when increasing the frequency of thermal cycling, and the impedance response of middle frequencies is more and more remarkable. Meanwhile, initiation and growth of micro-cracks occur in YSZ layer during the gas thermal-shock experiment. The corresponding impedance characterization of YSZ layer after 100 cycles is similar to the as-sprayed sample, indicating that micro-cracks in short time could heal since the YSZ micro-cracks sinter at high temperature. But after 300 cycles, the impedance spectroscopy of YSZ layer is quite different to the as-sprayed sample, with the corresponding impedance of particle-gap of YSZ more and more remarkable with the increase of the thermal-shock times, indicating that non-healing micro-cracks form in the YSZ layer, which may be the main reason to induce the failure of YSZ layer.

  11. Thermal cycling behavior of EB-PVD TBCs on CVD platinum modified aluminide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxubiam@aliyun.com; Wang, Zhankao; Huang, Guanghong; Mu, Rende; He, Limin

    2015-07-15

    Highlights: • The removed ridges at the grain boundaries with grit blasting. • The ridge, oxidation and cracking are features of damage initiation in TBCs. • Spalled location either at TGO/bond coat interface or inside of TGO layer. • The lower strain energy release rate within TGO layer can prolong of TBCs life. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, cyclic oxidation behaviors and residual stresses of the TBCs were studied in detail. It was found that the fracture path traverses through the ceramic coating to TGO interface, as well as at the TGO to bond coat interface is obviously detected. The change in fracture plane occurs at grain boundaries. The ridge top spallation leads to separate of sufficient size to result in unstable fracture driven by the strain energy stored in the TGO. The bond coat can undergo a volume increase upon oxidation, so that a cavity, enlarged strictly by oxidation would be full to overflowing with TGO layer. The spalled location of the TBCs probably occurs either at the interface of TGO layer and bond coat or inside of TGO layer. The lower strain energy release rate within TGO layer during thermal cycling is beneficial to prolong of TBCs life. The lower is the compressive stress within TGO layer, the longer is the lifetime of TBCs.

  12. WC-Co coatings deposited by the electro-thermal chemical spray method

    Energy Technology Data Exchange (ETDEWEB)

    Zhitomirsky, V.N. [Tel Aviv Univ. (Israel). Faculty of Engineering; Wald, S.; Rabani, L.; Zoler, D. [Propulsion Physics Division, SOREQ NRC, 81800, Yavne (Israel); Factor, M.; Roman, I. [School of Applied Sciences, The Hebrew University, 91904, Jerusalem (Israel); Cuperman, S.; Bruma, C. [School of Physics and Astronomy, Tel-Aviv University, 69978, Tel-Aviv (Israel)

    2000-10-02

    A novel thermal spray technology - an electro-thermal chemical spray (ETCS) for producing hard coatings is presented. The experimental coating apparatus consists of a machine gun barrel, a cartridge containing the coating material in powder form, a solid propellant, and a plasma ignition system. The plasma ignition system produces plasma in pulsed mode to ignite the solid propellant. On ignition, the drag force exerted by the combustion gases accelerates the powder particles towards the substrate. Using the ETCS technique, the process of single-shot WC-Co coating deposition on stainless steel substrate was studied. The influence of process parameters (plasma energy, mass of the solid propellant and the coated powder, distance between the gun muzzle and the substrate) on the coating structure and some of its properties were investigated. It was shown that ECTS technique effectively deposited the WC-Co coating with deposition thicknesses of 100-200 {mu}m per shot, while deposition yield of {proportional_to}70% was attained. The WC-Co coatings consisted of carbide particles distributed in amorphous matrix. The powder particle velocity was found to depend on the solid propellant mass and was weakly dependent on the plasma energy, while the particle processing temperature was strongly dependent on the plasma energy and almost independent of the solid propellant mass. Whilst increasing the solid propellant mass from 5 to 7 g, the deposition rate and yield correspondingly increased. When increasing the plasma energy, the temperature of the powder particles increased, the average carbide particle size decreased and their shape became more rounded. The deposition yield and microhardness at first increased and then achieved saturation by increasing the plasma energy. (orig.)

  13. Low temperature thermal radiative properties of gold coated metals

    Czech Academy of Sciences Publication Activity Database

    Frolec, Jiří; Králík, Tomáš; Srnka, Aleš

    2017-01-01

    Roč. 82, OCT (2017), s. 51-55 ISSN 0140-7007 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : gold films * heat transfer * thermal radiation * cryogenics Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.779, year: 2016

  14. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  15. Artificial chameleon skin that controls spectral radiation: Development of Chameleon Cool Coating (C3).

    Science.gov (United States)

    Gonome, Hiroki; Nakamura, Masashi; Okajima, Junnosuke; Maruyama, Shigenao

    2018-01-19

    Chameleons have a diagnostic thermal protection that enables them to live under various conditions. Our developed special radiative control therefore is inspired by the chameleon thermal protection ability by imitating its two superposed layers as two pigment particles in one coating layer. One particle imitates a chameleon superficial surface for color control (visible light), and another particle imitates a deep surface to reflect solar irradiation, especially in the near-infrared region. Optical modeling allows us to optimally design the particle size and volume fraction. Experimental evaluation shows that the desired spectral reflectance, i.e., low in the VIS region and high in NIR region, can be achieved. Comparison between the measured and calculated reflectances shows that control of the particle size and dispersion/aggregation of particle cloud is important in improving the thermal-protection performance of the coating. Using our developed coating, the interior temperature decreases and the cooling load is reduced while keeping the dark tone of the object.

  16. Controlling Thermal Conduction by Graded Materials

    Science.gov (United States)

    Ji, Qin; Huang, Ji-Ping

    2018-04-01

    Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity is equal to that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace’s equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles. The two methods agree with each other for both external and internal heat sources, as confirmed by simulation and experiment. This work provides different methods for designing new thermal metamaterials (including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat. Support by the National Natural Science Foundation of China under Grant No. 11725521, by the Science and Technology Commission of Shanghai Municipality under Grant No. 16ZR1445100

  17. Use of thermal cycling to reduce adhesion of OTS coated coated MEMS cantilevers

    Science.gov (United States)

    Ali, Shaikh M.; Phinney, Leslie M.

    2003-01-01

    °Microelectromechanical systems (MEMS) have enormous potential to contribute in diverse fields such as automotive, health care, aerospace, consumer products, and biotechnology, but successful commercial applications of MEMS are still small in number. Reliability of MEMS is a major impediment to the commercialization of laboratory prototypes. Due to the multitude of MEMS applications and the numerous processing and packaging steps, MEMS are exposed to a variety of environmental conditions, making the prediction of operational reliability difficult. In this paper, we investigate the effects of operating temperature on the in-use adhesive failure of electrostatically actuated MEMS microcantilevers coated with octadecyltrichlorosilane (OTS) films. The cantilevers are subjected to repeated temperature cycles and electrostatically actuated at temperatures between 25°C and 300°C in ambient air. The experimental results indicate that temperature cycling of the OTS coated cantilevers in air reduces the sticking probability of the microcantilevers. The sticking probability of OTS coated cantilevers was highest during heating, which decreased during cooling, and was lowest during reheating. Modifications to the OTS release method to increase its yield are also discussed.

  18. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  19. Product Control of Waste Products with New Coating Materials

    International Nuclear Information System (INIS)

    Krumbach, H.; Steinmetz, H.J.; Odoj, R.; Wartenberg, W.; Grunau, H.

    2009-01-01

    In Germany, with the shaft KONRAD a repository for low radioactive waste will be available at the earliest in the year 2013. The previously conditioned radioactive waste has to be suitable for a longer-term interim storage. They have to be treated in a way that they are chemically stable and that their integrity is guaranteed for a long time. That is why the waste product or the container is covered/ coated for special waste such as hygroscopic waste or waste that includes aluminium. The Product Control Group for radioactive waste (PKS) has to proof the suitability of the so-treated waste for the repository KONRAD on behalf of the Federal Office for Radiation Protection (BfS). This has to be done before the delivering. In this context the PKS also assesses the suitability of new coating materials for low radioactive waste products or containers and their correct technical application. The characteristics and the technical application of polyurethane coatings as well as the control of the so-coated waste for the disposal in the shaft KONRAD are described in this poster. The Poster shows the development stages of the coating and the filling. There are also shown the boundary conditions and the investigations of the Product Control Group for the use of the new coating material for radioactive waste. (authors)

  20. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    Science.gov (United States)

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  1. The evaluation of integrity and elasticity of thermally sprayed ceramic coatings by ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, P. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1997-12-31

    Thermally sprayed ceramic coatings are widely used in industrial applications where the coated component is subject to, e.g. high thermal loads or mechanical wear. The mechanical properties of the coating are finally created in the coating process and the chemical composition of the powder used as raw material can only give some hints about the properties of the final coating. Several non-destructive testing techniques are available for the detection of defects in ceramic materials or for the evaluation of density and density variations. In addition to this, ultrasonic techniques can be used for quantitative evaluation of elastic properties of materials. This evaluation is based on the measurement of sound velocities of different wave modes in the material and is normally applied only to relatively simple-shaped specimens having parallel surfaces. Acoustic microscopy operating at very high (> 100 MHz) frequencies has been used to measure the sound velocities in homogeneous and thin coatings. With this type of equipment, reliable and accurate results have been achieved in laboratory measurements. A lot of development work has been carried out world-wide to develop the measurement techniques and acoustic lenses (transducers) used in acoustic microscopy. However, less attention has been paid on the development of techniques for industrial applications on-site. The present work was focused on the development of measurement techniques for industrial applications. A new type of large-aperture low-frequency transducer was designed and constructed for the measurement of sound velocities in thermally sprayed ceramic coatings. The major difference to the lenses used in acoustic microscopy is that in the new transducer no separate lens is needed for focusing the sound beam. The piezoelectric element in the new transducer is a plastic (PVDF)-film that can be shaped to create the required focus. The practical measurement of the sound velocity is based on a modification of the V

  2. Interfacial Characteristics of TiN Coatings on SUS304 and Silicon Wafer Substrates with Pulsed Laser Thermal Shock

    International Nuclear Information System (INIS)

    Seo, Nokun; Jeon, Seol; Choi, Youngkue; Shin, Hyun-Gyoo; Lee, Heesoo; Jeon, Min-Seok

    2014-01-01

    TiN coatings prepared on different substrates that had different coefficients of thermal expansion were subjected to pulsed laser thermal shock and observed by using FIB milling to compare the deterioration behaviors. TiN coating on SUS304, which had a larger CTE (⁓17.3 × 10 - 6 /℃) than the coating was degraded with pores and cracks on the surface and showed significant spalling of the coating layer over a certain laser pulses. TiN coating on silicon wafer with a smaller CTE value, ⁓4.2 × 10‒6 /℃, than the coating exhibited less degradation of the coating layer at the same ablation condition. Cracks propagated at the interface were observed in the coating on the silicon wafer, which induced a compressive stress to the coating. The coating on the SUS304 showed less interface cracks while the tensile stress was applied to the coating. Delamination of the coating layer related to the intercolumnar cracks at the interface was observed in both coatings through bright-field TEM analysis.

  3. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    /thermo-chemical attack mechanisms; (iv) developing a mechanics-based analysis of the driving forces for crack growth and delamination, based on molten phase infiltration, misfit upon cooling, and loss of compliance; (v) understanding changes in TGO growth mechanisms associated with these emerging combustion product streams; and (vi) identifying degradation resistant alternative materials (including new compositions or bi-layer concepts) for use in mitigating the observed degradation modes. To address the materials stability concerns, this program integrated research thrusts aimed at: (1) Conducting tests in simulated syngas and HHC environments to evaluate materials evolution and degradation mechanisms; assessing thermally grown oxide development unique to HHC environmental exposures; carrying out high-resolution imaging and microanalysis to elucidate the evolution of surface deposits (molten phase formation and infiltration); exploring thermo-chemical instabilities; assessing thermo-mechanical drivers and thermal gradient effects on degradation; and quantitatively measuring stress evolution due to enhanced sintering and thermo-chemical instabilities induced in the coating. (2) Executing experiments to study the melting and infiltration of simulated ash deposits, and identifying reaction products and evolving phases associated with molten phase corrosion mechanisms; utilizing thermal spray techniques to fabricate test coupons with controlled microstructures to study mechanisms of instability and degradation; facilitating thermal gradient testing; and developing new materials systems for laboratory testing; (3) Correlating information on the resulting combustion environments to properly assess materials exposure conditions and guide the development of lab-scale simulations of material exposures; specification of representative syngas and high-hydrogen fuels with realistic levels of impurities and contaminants, to explore differences in heat transfer, surface degradation, and deposit

  4. Thermally-treated Pt-coated silicon AFM tips for wear resistance in ferroelectric data storage

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Palacio, Manuel; Kwak, Kwang Joo

    2008-01-01

    In ferroelectric data storage, a conductive atomic force microscopy (AFM) probe with a noble metal coating is placed in contact with a lead zirconate titanate (PZT) film. The understanding and improvement of probe tip wear, particularly at high velocities, is needed for high data rate recording. A commercial Pt-coated silicon AFM probe was thermally treated in order to form platinum silicide at the near-surface. Nanoindentation, nanoscratch and wear experiments were performed to evaluate the mechanical properties and wear performance at high velocities. The thermally treated tip exhibited lower wear than the untreated tip. The tip wear mechanism is adhesive and abrasive wear with some evidence of impact wear. The enhancement in mechanical properties and wear resistance in the thermally treated film is attributed to silicide formation in the near-surface. Auger electron spectroscopy and electrical resistivity measurements confirm the formation of platinum silicide. This study advances the understanding of thin film nanoscale surface interactions

  5. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  6. "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System.

    Science.gov (United States)

    McInnes, Steven J P; Michl, Thomas D; Delalat, Bahman; Al-Bataineh, Sameer A; Coad, Bryan R; Vasilev, Krasimir; Griesser, Hans J; Voelcker, Nicolas H

    2016-02-01

    Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck". The overcoating resulted in a markedly slower release of the cytotoxic drug, and this effect correlated positively with the plasma polymer coating times, ranging from 2-fold up to more than 100-fold. Ultimately, upon characterizing and verifying pSi MP production, loading, and coating with analytical methods such as time-of-flight secondary ion mass spectrometry, scanning electron microscopy, thermal gravimetry, water contact angle measurements, and fluorescence microscopy, human neuroblastoma cells were challenged with pSi MPs in an in vitro assay, revealing a significant time delay in cell death onset.

  7. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Youyun, E-mail: lianyy@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Liu, Xiang; Wang, Jianbao; Feng, Fan [Southwestern Institute of Physics, Chengdu (China); Lv, Yanwei; Song, Jiupeng [China National R& D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd, 361026 Xiamen (China); Chen, Jiming [Southwestern Institute of Physics, Chengdu (China)

    2016-12-30

    Highlights: • Thick CVD-W coatingswere deposited at a rapid growth rate. • The polished CVD-W coatings have highly textured structure and exhibited a very strong preferred orientation. • The polished CVD tungsten coatings show superior thermal shock resistance as compared with that of the as-deposited coatings. • The crack formation of the polished CVD-W was almost suppressed at an elevated temperature. - Abstract: Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m{sup 2}. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  8. Thermal equilibrium, stability and burn control

    International Nuclear Information System (INIS)

    Cohn, D.

    1982-01-01

    A number of aspects of the thermal stability and equilibrium control of ignited tokamak plasma have been investigated. Examined approaches were passive control (the effect of radial motion, the effect of radial motion and small additional transport loss), active control (the compression and decompression of plasma, subignited operation with small amount of variable external heating, and density control), and thermal equilibrium control (additional power loss from impurity radiation and enhanced transport from increased ripple). One-D calculation has been made on thermal instability eigen-modes. It was found that for electron thermal induction loss given by Alcator scaling and for neoclassical ion transport, there was at most one unstable mode with a temperature profile which maintains the temperature profile at thermal equilibrium. The effect of the coupling of temperature fluctuation and the fluctuation in major radius was investigated. Temperature driven radial motion combined with a small amount of ripple transport loss was found to be a very effective mechanism for passive thermal stability control. (Kato, T.)

  9. Application techniques of coatings by thermal projection; Tecnicas de aplicacion de recubrimientos por proyeccion termica

    Energy Technology Data Exchange (ETDEWEB)

    Porcayo Calderon, Jesus [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    The coatings applied by thermal projection have an important number of applications in different industries (chemical, oil, electric, nuclear, etc.). The main purpose of the protection by means of coatings is to alter the surface characteristics of a component so as to resist corrosive environments, abrasion and erosion, among others. The coatings can be applied by different methods, but due to the fact that its characteristics appreciably differ from the base metal, it is important the knowledge of its properties when a coating is selected for a specific use. In this article the characteristics of the applied coatings by thermal projection, the factors that affect its performance and the principal application techniques, are described. [Espanol] Los recubrimientos aplicados por proyeccion termica tienen un numero importante de aplicaciones en diferentes industrias (quimica, petrolera, electrica, nuclear, etc.). El proposito principal de la proteccion por medio de recubrimientos es alterar las caracteristicas de la superficie de un componente de manera que resista ambientes corrosivos, abrasion y erosion, entre otros. Los recubrimientos pueden aplicarse por diferentes metodos, pero debido a que sus propiedades difieren apreciablemente de las del metal base, es importante el conocimiento de sus propiedades cuando se selecciona un recubrimiento para un uso especifico. En este articulo se describen las caracteristicas de los recubrimientos aplicados por proyeccion termica, los factores que afectan su desempeno y las principales tecnicas de aplicacion.

  10. Application techniques of coatings by thermal projection; Tecnicas de aplicacion de recubrimientos por proyeccion termica

    Energy Technology Data Exchange (ETDEWEB)

    Porcayo Calderon, Jesus [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The coatings applied by thermal projection have an important number of applications in different industries (chemical, oil, electric, nuclear, etc.). The main purpose of the protection by means of coatings is to alter the surface characteristics of a component so as to resist corrosive environments, abrasion and erosion, among others. The coatings can be applied by different methods, but due to the fact that its characteristics appreciably differ from the base metal, it is important the knowledge of its properties when a coating is selected for a specific use. In this article the characteristics of the applied coatings by thermal projection, the factors that affect its performance and the principal application techniques, are described. [Espanol] Los recubrimientos aplicados por proyeccion termica tienen un numero importante de aplicaciones en diferentes industrias (quimica, petrolera, electrica, nuclear, etc.). El proposito principal de la proteccion por medio de recubrimientos es alterar las caracteristicas de la superficie de un componente de manera que resista ambientes corrosivos, abrasion y erosion, entre otros. Los recubrimientos pueden aplicarse por diferentes metodos, pero debido a que sus propiedades difieren apreciablemente de las del metal base, es importante el conocimiento de sus propiedades cuando se selecciona un recubrimiento para un uso especifico. En este articulo se describen las caracteristicas de los recubrimientos aplicados por proyeccion termica, los factores que afectan su desempeno y las principales tecnicas de aplicacion.

  11. A Multifunctional Smart Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  12. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    spinel oxides. Based on the detailed investigation on degradation of the APS YSZ and CoNiCrAlY by various corrosive deposits, an experimental attempt was carried out to mitigate the melt-induced deposit attack. Experimental results from this study demonstrate, for the first time, that an oxide overlay produced by electrophoretic deposition (EPD) can effectively perform as an environmental barrier overlay for APS TBCs. The EPD protective overlay has a uniform and easily-controllable thickness, uniformly distributed closed pores and tailored chemistry. The EPD Al2O3 and MgO overlays were successful in protecting the APS YSZ TBCs against CMAS attack and hot corrosion attack (e.g., sulfate and vanadate), respectively. Furnace thermal cyclic oxidation testing of overlay-modified TBCs on bond-coated superalloy also demonstrated the good adhesive durability of the EPD Al2O3 overlay.

  13. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  14. Effect of lithium PFC coatings on NSTX density control

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Bell, R.; Bush, C.; Gates, D.; Gray, T.; Kaita, R.; Leblanc, B.; Maingi, R.; Majeski, R.; Mansfield, D.; Mueller, D.; Paul, S.; Raman, R.; Roquemore, A.L.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Stevenson, T.; Zakharov, L.

    2007-01-01

    Lithium coatings on the graphite plasma facing components (PFCs) in NSTX are being investigated as a tool for density profile control and reducing the recycling of hydrogen isotopes. Repeated lithium pellet injection into Center Stack Limited and Lower Single Null ohmic helium discharges were used to coat graphite surfaces that had been pre-conditioned with ohmic helium discharges of the same shape to reduce their contribution to hydrogen isotope recycling. The following deuterium NBI reference discharges exhibited a reduction in density by a factor of about 3 for limited and 2 for diverted plasmas, respectively, and peaked density profiles. Recently, a lithium evaporator has been used to apply thin coatings on conditioned and unconditioned PFCs. Effects on the plasma density and the impurities were obtained by pre-conditioning the PFCs with ohmic helium discharges, and performing the first deuterium NBI discharge as soon as possible after applying the lithium coating

  15. Thin film coatings for new generation infrared thermal picture synthesising devices

    International Nuclear Information System (INIS)

    Rodriguez, J.V.A.

    2001-01-01

    The usefulness of infrared imaging devices has been proved by the continuous marketing of such products for more than 10 years. The need to produce thermal images with high apparent temperature values (600-800 deg. C) in the 3-5 micron waveband, mean that the operating temperature of the device pixels must be high. Such high temperature operation compromises the lifetime and switching speed of the pixels. It is hence desired that the real temperature of the pixels is kept as low as possible to achieve the desired apparent temperature. This requires coating the pixels with a high emissivity coating in the infrared. Current devices have multi-layer double resonating cavity interference structures built on their top surface. These structures enhance the emissivity of the pixels to a value around 50%. However, the manufacturing of such structures on top of the delicate pixels is time intensive and involves many delicate processes, which increase the probability of device failure during manufacture. The work presented in this thesis aims at achieving a simple and quick process that will provide the pixels with a single high emissivity coating. The process is carried out using standard cleanroom equipment with the coating aimed at being than one micron thick, and being able to withstand the operating temperatures of the pixel under ambient atmospheres. The work concludes with an optimised sputter-deposition process of two coatings with a combined thickness of 7000A, followed by annealing at 700 deg. C. This process achieves a coating with an emissivity of 84%. The work also describes the deposition of a thermally stable SiC coating which is highly transparent in the infrared. (author)

  16. About properties of ZrO2 thermal protective coatings obtained from spherical powder mixtures

    Science.gov (United States)

    Berdnik, O. B.; Tsareva, I. N.; Tarasenko, Yu P.

    2017-05-01

    It is developed the technology of high-energy plasma spraying of the zirconium dioxide (ZrO2) thermal protective coating on the basis of ZrO2 tetragonal and cubic phases with the spheroidal grain shape and the columnar substructure, with the total porosity P = 4 %, the hardness HV = 12 GPa, the roughness parameter R a ˜ 6 μm, the thickness 0.3-3 mm. As a sublayer it is used the heat-resistant coating of “Ni-Co-Cr-Al-Y” system with an intermetallic phase composition and the layered microstructure of the grains.

  17. Thermal shock testing of low-Z coatings with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1982-03-01

    Thermal shock testing of candidate low-Z surface coatings for JT-60 application has been made by using a pulsed hydrogen beam apparatus which is operated at a power density of 2KW/cm 2 . The materials tested are PVD (Physical Vapor Deposited) TiC and PVD and CVD (Chemical Vapor Deposited) TiN on molybdenum and Inconel 625. The result shows that CVD TiC on Mo and CVD TiN on Inconel are the most interesting choices for the coating-substrate combinations. (author)

  18. Role of oxides and porosity on high temperature oxidation of liquid fuelled HVOF thermal sprayed Ni50Cr coatings

    OpenAIRE

    Song, B.; Bai, M.; Voisey, K.T.; Hussain, Tanvir

    2017-01-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid fuelled high velocity oxy-fuel (HVOF) thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using...

  19. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  20. Mitigating Localized Corrosion Using Thermally Sprayed Aluminum (TSA) Coatings on Welded 25% Cr Superduplex Stainless Steel

    Science.gov (United States)

    Paul, S.; Lu, Q.; Harvey, M. D. F.

    2015-04-01

    Thermally sprayed aluminum (TSA) coating has been increasingly used for the protection of carbon steel offshore structures, topside equipment, and flowlines/pipelines exposed to both marine atmospheres and seawater immersion conditions. In this paper, the effectiveness of TSA coatings in preventing localized corrosion, such as pitting and crevice corrosion of 25% Cr superduplex stainless steel (SDSS) in subsea applications, has been investigated. Welded 25% Cr SDSS (coated and uncoated) with and without defects, and surfaces coated with epoxy paint were also examined. Pitting and crevice corrosion tests, on welded 25% Cr SDSS specimens with and without TSA/epoxy coatings, were conducted in recirculated, aerated, and synthetic seawater at 90 °C for 90 days. The tests were carried out at both the free corrosion potentials and an applied cathodic potential of -1100 mV saturated calomel electrode. The acidity (pH) of the test solution was monitored daily and adjusted to between pH 7.5 and 8.1, using dilute HCl solution or dilute NaOH, depending on the pH of the solution measured during the test. The test results demonstrated that TSA prevented pitting and crevice corrosion of 25% Cr SDSS in artificial seawater at 90 °C, even when 10-mm-diameter coating defect exposing the underlying steel was present.

  1. Review of hot corrosion of thermal barrier coatings of gas turbine

    Directory of Open Access Journals (Sweden)

    LIU Yongbao

    2017-03-01

    Full Text Available The review was done in order to make clear the problem of the hot corrosion of the Thermal Barrier Coatings(TBCsduring gas turbine serving. This paper summarizes the factors resulting from the hot corrosion of TBCs during turbine service and classifies methods for enhancing the corrosive resistance of TBCs. A prospective methodology for improving corrosion resistance is also formulated. The main types of corrosion coating include phase reaction, oxidizing of the bond coating, salt-fog corrosion, CMAS corrosion and fuel impurity corrosion. So far, methods for improving the corrosion resistance of TBCs include developing new coating materials, anticorrosive treatment on the surface of TBCs, modifying the stacking configuration and improving the cleansing functions of the gas turbines. In the future, developing new materials with excellent performance will still be the main direction for boosting the improvement of the hot corrosion resistance of TBCs. Simultaneously, improving the tacking configuration and nanotechnology of TBC coatings are potential approaches for improving corrosion resistance. With the development of a Ceramic Matrix Composite (CMC, the focus of the hot corrosion of TBCs may turn to that of Environmental Barrier Coatings (EBCs.

  2. The corrosion resistance of 140MXC, 530AS and 560AS coatings produced by thermal spraying

    Directory of Open Access Journals (Sweden)

    Edwin Alexis López Covaleda

    2013-01-01

    Full Text Available Three commercial materials were deposited using electric arc thermal spraying: 140MXC (with Fe, W, Cr, Nb, 530AS (AISI 1015 steel and 560AS (AISI 420 steel on AISI 4340 steel. The aim of this paper was to evaluate the best strategy for improving a coating-substrate system’s corrosion resistance, using the following combinations: homogeneous single coatings, bilayers consisting of 530AS or 560AS under 140MXC and 140MXC + 530AS and 140MXC + 560AS coatings deposited simultaneously. The coatings were characterised using optical microscopy, scanning electron microscopy and X-ray diffraction. Corrosion resistance was evaluated through potentiodynamic polarisation and hardness by using the Vickers test. Corrosion resistance depends on the amount of microstructure defects, the deposition strategy and the alloy elements. However, corrosion resistance was similar in single coatings of 140MXC and bilayers, having -630 V corrosion potential and 708 nA corrosion current. The details and corrosion mechanism of the coatings so produced are described in this paper.

  3. Nondegradative Dielectric Coating of Graphene using Thermal Evaporation of SiO

    Science.gov (United States)

    Suzuki, Seiya; Lee, Chien-Chung; Nagamori, Takashi; Schibli, Thomas; Yoshimura, Masamichi

    2013-03-01

    Deposition of dielectrics onto graphene is a challenging technique due to the difficulties of fabricating high quality oxide on pristine graphene without introducing atomic defects. Here we report on a novel method to fabricate silicon oxide layer on graphene by vacuum thermal evaporation of silicon monoxide (SiO). Raman spectroscopy and mapping showed the present method did not degrade graphene, in contrast to the e-beam evaporated SiO2 coating method previously reported. We fabricated graphene field effect transistor devices with four metal electrodes to measure gate voltage dependence of sheet resistance of the graphene, and deposited a top coating of SiO on the graphene channel. The electrical measurements before and after the top-coating revealed that the top coating suppressed chemical shift of the graphene from strong p-dope to nearly undoped. Since SiO is transparent for visible and infrared light, the coating can be available as a protection layer for optical devices of graphene such as photodetectors and electro-optic modulators. Since the SiO top coating is a simple vacuum evaporation, it is much easier than atomic-layer-deposition which requires additional functionalization of graphene, and compatible with industrial use. This research was supported in part by Toyoaki Scholarship Foundation

  4. Micro-Scalable Thermal Control Device

    Science.gov (United States)

    Moran, Matthew E. (Inventor)

    2002-01-01

    A microscalable thermal control module consists of a Stirling cycle cooler that can be manipulated to operate at a selected temperature within the heating and cooling range of the module. The microscalable thermal control module is particularly suited for controlling the temperature of devices that must be maintained at precise temperatures. It is particularly suited for controlling the temperature of devices that need to be alternately heated or cooled. The module contains upper and lower opposing diaphragms, with a regenerator region containing a plurality of regenerators interposed between the diaphragms. Gaps exist on each side of each diaphragm to permit it to oscillate freely. The gap on the interior side one diaphragm is in fluid connection with the gap on the interior side of the other diaphragm through regenerators. As the diaphragms oscillate working gas is forced through the regenerators. The surface area of each regenerator is sufficiently large to effectively transfer thermal energy to and from the working gas as it is passed through them. The phase and amplitude of the oscillations can be manipulated electronically to control the steady state temperature of the active thermal control surface, and to switch the operation of the module from cooling to heating, or vice versa. The ability of the microscalable thermal control module to heat and cool may be enhanced by operating a plurality of modules in series, in parallel, or in connection through a shared bottom layer.

  5. ZrO2 coatings on stainless steel by aerosol thermal spraying

    International Nuclear Information System (INIS)

    Di Giampaolo, A.R.; Reveron, H.; Ruiz, H.; Poirier, T.; Lira, J.

    1998-01-01

    Zirconia coatings, with a wide range of thickness (1 to 80 μ) have been obtained by spraying a ZrO 2 sol with an oxyacetylenic flame, on stainless steel substrates. The sol was prepared by mixing Zr-n-propoxide and acetic acid in order to obtain a zirconium oxyacetate precipitate, which was filtrated, washed with 1-propanol, dryed and subjected to an hydrothermal treatment. A new sol-gel based ceramic deposition process , aerosol thermal spraying was developed based on previous thermal spray work. A compressed air spray gun was used to produce a fine aerosol flow which was injected in the flame of the thermal spray torch and deposited on polished and sand blasted substrates. This original technique allows simultaneous spraying, drying and partial sintering of the zirconia nanometric particles. The maximum working temperature necessary to yield a resistant coating is 1000 deg C. This method produced crack-free homogeneous layers of monoclinic ZrO 2 with good adhesion to the substrate and low porosity, as shown by X-ray diffraction and scanning electron microscopy. Oxidation test, carried out by heat treatments in air atmosphere at 800 deg C indicated good protection, mainly for low thickness coatings deposited in polished substrates. This original deposition technique offers several advantages when compared with classical thermal spraying techniques, such as plasma spraying. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  6. Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel

    OpenAIRE

    Jin, Lei; Li, Peizhong; Zhou, Haibin; Zhang, Wei; Zhou, Guodong; Wang, Chun

    2015-01-01

    In this paper, air plasmas spray (APS) was used to prepare YSZ and Sc2O3–YSZ (ScYSZ) coating in order to improve the thermal insulation ability of TC4 alloy. SiO2 aerogel was also synthesized and affixed on TC4 titanium alloy to inhabit thermal flow. The microstructures, phase compositions and thermal insulation performance of three coatings were analyzed in detail. The results of thermal diffusivity test by a laser flash method showed that the thermal diffusivities of YSZ, Sc2O3–YSZ and SiO2...

  7. Mechanical integrity of thin inorganic coatings on polymer substrates under quasi-static, thermal and fatigue loadings

    International Nuclear Information System (INIS)

    Leterrier, Y.; Mottet, A.; Bouquet, N.; Gillieron, D.; Dumont, P.; Pinyol, A.; Lalande, L.; Waller, J.H.; Manson, J.-A.E.

    2010-01-01

    The interplay between residual stress state, cohesive and adhesive properties of coatings on substrates is reviewed in this article. Attention is paid to thin inorganic coatings on polymers, characterized by a very high hygro-thermo-mechanical contrast between the brittle and stiff coating and the compliant and soft substrate. An approach to determine the intrinsic, thermal and hygroscopic contributions to the coating residual stress is detailed. The critical strain for coating failure, coating toughness and coating/substrate interface shear strength are derived from the analysis of progressive coating cracking under strain. Electro-fragmentation and electro-fatigue tests in situ in a microscope are described. These methods enable reproducing the thermo-mechanical loads present during processing and service life, hence identifying and modeling the critical conditions for failure. Several case studies relevant to food and pharmaceutical packaging, flexible electronics and thin film photovoltaic devices are discussed to illustrate the benefits and limits of the present methods and models.

  8. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    Science.gov (United States)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  9. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  10. Thermal oxidation for air toxics control

    International Nuclear Information System (INIS)

    Pennington, R.L.

    1991-01-01

    The Administration projects annual expenditures of $1.1 billion by 1995, increasing to $6.7 billion by 2005, in order to comply with the new Clean Air Act Title III hazardous air pollutant requirements. The Title III requirements include 189 hazardous air pollutants which must be reduced or eliminated by 2003. Twenty of the 189 listed pollutants account for approximately 75 percent of all hazardous air pollutant emissions. Ninety percent of these 20 pollutants can be effectively controlled through one or mote of the thermal oxidation technologies. This paper reports that the advantages and disadvantages of each thermal oxidation technology vary substantially and must be reviewed for each application in order to establish the most effective thermal oxidation solution. Effective thermal oxidation will meet MACT (maximum achievable control technology) emission standards

  11. Stress analysis of thermal sprayed coatings using a semi-destructive hole-drilling strain gauge method

    International Nuclear Information System (INIS)

    Dolhof, V.; Musil, J.; Cepera, M.; Zeman, J.

    1995-01-01

    Residual stress is an important parameter in coating technology since it often relates to the maximum coating thickness which can be deposited without spallation, and this applies to coatings produced by different thermal spray and thin film technologies. Indeed, the mechanisms by which residual stress is built up or locked into a coating depends markedly on the deposition process and coating structure (growth structure, phase composition) in the same way too. Methods for determining residual stresses in materials include both destructive and non-destructive methods. This contribution describes semi-destructive hole-drilling strain gauge method modified for measurement of residual stresses in thermal sprayed coatings. This method of stress analysis was used for determination of stress levels in thermal sprayed WC-17% Co coatings onto 13% Cr steel substrates. Results show that deposition conditions and final coating structure influence directly the residual stress level in the coatings. It is proved that semi-destructive hole-tube drilling measurement is effective reproducible method of coating stress analysis and good solution for optimization of deposition process

  12. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2015-11-01

    Full Text Available Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE. This paper investigates the effects of using argon (Ar gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied.

  13. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  14. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling

    Directory of Open Access Journals (Sweden)

    Liya Ye

    2018-02-01

    Full Text Available Platinum aluminide coatings with different Hf contents were fabricated by using HfCl4. The oxidation kinetics and the rumpling behavior of oxide scale were investigated. After thermal cycling, the coating with 0.46 wt% Hf showed least weight gain. With the increase of Hf content, rumpling extent of the scale decreased. Meanwhile, HfO2 preferentially formed in the scale resulting in the increase of scale thickness. The oxidation of excessive Hf even caused the spallation of the scale. The results in the present study indicate that although Hf plays an important role in decreasing rumpling extent of TGO, the oxidation of Hf decreases the adhesion of the scale. Keywords: Pt-Al coating, Hf, Oxidation, Rumpling

  15. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Zdeněk; Lukáč, František

    2018-01-01

    Roč. 44, č. 3 (2018), s. 3161-3172 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Columnar Thermal Barrier Coatings * Axial Suspension Plasma spraying * Thermal Cyclic Fatigue * High Velocity Air Fuel Spraying Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.986, year: 2016 https://www.sciencedirect.com/science/article/pii/S0272884217325403

  16. Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.T. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, J. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); National Key Laboratory of Surface Engineering, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, F.; Zhang, G.A.; Fan, X.Y.; Wu, Z.G. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Yan, P.X. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute Chemical and Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: pxyan@lzu.edu.cn

    2009-03-20

    Titanium aluminum nitride (TiAlN) ternary coating is a potential material which is expected to be applied on satellite for thermal controlling. In order to investigate thermal controlling property, TiAlN coatings were deposited on Si wafers with different N{sub 2} and Ar flux ratio by reactive magnetron co-sputtering. The structure, morphology, chemical composition and optical reflectance are investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and spectrophotometer, respectively. The orientation of the coatings depends on the N{sub 2}/Ar flux ratio. The coatings deposited with N{sub 2}/Ar ratio of 10, 30 and 60% show the cubic-TiN [2 2 0] preferred orientation and the coating deposited with N{sub 2}/Ar ratio of 100% exhibits the phase of hexagonal-AlN and cubic-TiN. The surface of the coatings becomes more compact and smoother with the N{sub 2}/Ar ratios increase. XPS spectrum indicates that the oxides (TiO{sub 2} and Al{sub 2}O{sub 3}), oxynitride (TiN{sub x}O{sub y}) and nitrides (TiN and AlN{sub x}) appear at the surface of the coatings. Ignoring internal power, the optimum equilibrium temperature of TiAlN coatings is 18 deg. C and the equilibrium temperature after heat-treated has slight change, which provides the prospective application on thermal controlling.

  17. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Curry, N.; Markocsan, N.; Nylen, P.; Joshi, S.; Vilémová, Monika; Pala, Zdeněk

    2016-01-01

    Roč. 25, 1-2 (2016), s. 202-212 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] Institutional support: RVO:61389021 Keywords : axial injection * column ar microstructure * porosity * suspension plasma spraying * thermal conductivity * thermal diffusivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0355-7

  18. Study on Stress Development in the Phase Transition Layer of Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Yijun Chai

    2016-09-01

    Full Text Available Stress development is one of the significant factors leading to the failure of thermal barrier coating (TBC systems. In this work, stress development in the two phase mixed zone named phase transition layer (PTL, which grows between the thermally grown oxide (TGO and the bond coat (BC, is investigated by using two different homogenization models. A constitutive equation of the PTL based on the Reuss model is proposed to study the stresses in the PTL. The stresses computed with the proposed constitutive equation are compared with those obtained with Voigt model-based equation in detail. The stresses based on the Voigt model are slightly higher than those based on the Reuss model. Finally, a further study is carried out to explore the influence of phase transition proportions on the stress difference caused by homogenization models. Results show that the stress difference becomes more evident with the increase of the PTL thickness ratio in the TGO.

  19. Ionoluminscence of partially-stabilized zirconia for thermal barrier coatings

    International Nuclear Information System (INIS)

    Rebollo, N.R.; Ruvalcaba-Sil, J.L.; Miranda, J.

    2007-01-01

    Ionoluminescence is explored as an alternative technique to study the high temperature phase stability of zirconia-based oxides. The evolution of an initially metastable single tetragonal phase towards de-stabilization is investigated for three single-doped zirconia compositions with Y, Yb and Gd. The differences in de-stabilization paths are identified using X-ray diffraction and ionoluminescence; elemental analysis is also performed using particle-induced X-ray emission. X-ray diffraction studies reveal a different scenario for each of the compositions selected; the differences are strongly influenced by the thermodynamic driving forces associated to the fluorite-to-tetragonal displacive transformation. Ionoluminescence studies indicate a significant increment on the signal intensity for de-stabilized samples, relative to previous annealing stages. There are also more subtle differences in the luminescent response from the samples at intermediate annealing stages also related to phase changes. This study provides a basis to characterize phase evolution in single-doped zirconia compositions for thermal insulation applications using luminescence

  20. Experimental analysis on thermally coated diesel engine with neem oil methyl ester and its blends

    Science.gov (United States)

    Karthickeyan, V.

    2018-01-01

    Depletion of fossil fuel has created a threat to the nation's energy policy, which in turn led to the development of new source renewable of energy. Biodiesel was considered as the most promising alternative to the traditional fossil fuel. In the present study, raw neem oil was considered as a principle source for the production of biodiesel and converted into Neem Oil Methyl Ester (NOME) using two stage transesterification process. The chemical compositions of NOME was analysed using Fourier Transform Infra-Red Spectroscopy (FTIR) and Gas Chromatography- Mass Spectrometry (GC-MS). Baseline readings were recorded with diesel, 25NOME (25% NOME with 75% diesel) and 50NOME (50% NOME with 50% diesel) in a direct injection, four stroke, water cooled diesel engine. Thermal Barrier Coating (TBC) was considered as a better technique for emission reduction in direct injection diesel engine. In the present study, Partially Stabilized Zirconia (PSZ) was used as a TBC material to coat the combustion chamber components like cylinder head, piston head and intake and exhaust valves. In coated engine, 25NOME showed better brake thermal efficiency and declined brake specific fuel consumption than 50NOME. Decreased exhaust emissions like CO, HC and smoke were observed with 25NOME in coated engine except NOx. [Figure not available: see fulltext.

  1. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Ullah, Sami; Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Omar, Nor Sharifah [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750 Perak (Malaysia)

    2015-07-22

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  2. Load rate dependence of the mechanical properties of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Zotov, Nikolay; Eggeler, Gunther [Institut fuer Werkstoffe, Ruhr Universitaet Bochum, 44780 Bochum (Germany); Bartsch, Marion [Institut fuer Werkstoff-Forschung, DLR Koeln, 51147 Koeln (Germany)

    2009-07-01

    Thermal barrier coatings (TBC), composed of yttrium-stabilized zirconia (YSZ) ceramic top coat (TC) and intermetallic NiCoCrAlY bond coat (BC) are commonly used as protective coatings of Ni-based high temperature gas engine components. Nanoindentation techniques are increasingly applied for determining the TBC mechanical properties on a nanometre scale. However, little is known about the load-rate dependence of the mechanical properties, which is important for better understanding of cyclic thermal fatigue experiments. Nanoindentations with different load rates omega were performed on polished cross-sections of TBC, deposited by EB-PVD on IN625 substrates (S), using a XP Nanoindenter (MTS) equipped with Berkovich diamond tip. The Young's modulus (E) of the TC is independent of omega, while E for the BC and the S decreases with omega. The hardness (H) of the TC and the BC increases, while H for the S decreases with omega. From the dependence of H on omega, creep power-law exponents c = 0.24(11) and c = 0.023(6) for the TC and the BC were determined. For all TBC components, a decrease with omega of the power-law exponents n and m, describing the loading and unloading nanoindentation curves, is observed.

  3. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Gyu; Shin, Hyun Myung; Choi, Hae Woon [Keimyung University, Daegu (Korea, Republic of); Lee, Young Min [Korea Polytechincs VI, Daegu (Korea, Republic of)

    2011-09-15

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al{sub 2}O{sub 3}+40TiO{sub 2} powder with a particle size of 20 {mu}m and Al{sub 2}O{sub 3} (98%+)powder with a particle size of 45 {mu}m. The metal filters were filter-grade 20 {mu}m, 30 {mu}m, and 50 {mu}m sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 {mu}m sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters.

  4. Thermally driven refrigeration by methanol adsorption on coatings of HKUST-1 and MIL-101(Cr)

    International Nuclear Information System (INIS)

    Kummer, Harry; Baumgartner, Max; Hügenell, Philipp; Fröhlich, Dominik; Henninger, Stefan K.; Gläser, Roger

    2017-01-01

    Highlights: • A novel approach of shaping MOFs as coatings on Al-substrates used as HX materials. • The efficiency of HKUST-1 and MIL-101(Cr) for refrigeration via Methanol sorption. • The thermal stability of the MOF coatings under application relevant conditions. • Focus on early implementation by use of commercially and pre-industrially MOFs. • Modelling of sorption uptakes under application conditions for apparatus design. - Abstract: A new and versatile binder-based metal organic framework-(MOF-) coating enables efficient use in fast-cycle adsorption chillers for cooling and refrigeration applications. Two different adsorbents were presented, HKUST-1 and Mil-101(Cr), with promising methanol adsorption characteristics and high loading capacities up to 1.22 g g"−"1. Polysiloxane-based coatings containing 65 and 80 wt% of the MOF adsorbents were produced and the adsorption characteristics were studied before and after extensive thermal treatment over 1000 cycles between 20 °C and 130 °C under methanol atmosphere by thermogravimetric analysis and X-ray diffractometry. Using the Dubinin-Astakhov approach, possible methanol loading lifts in a refrigeration process under different application conditions were quantified.

  5. Effect of an intermediate tungsten layer on thermal properties of TiC coatings ion plated onto molybdenum

    International Nuclear Information System (INIS)

    Fukutomi, M.; Fujitsuka, M.; Shikama, T.; Okada, M.

    1985-01-01

    Among the various low-Z coating-substrate systems proposed for fusion reactor first-wall applications, molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. The thermal stabilities of TiC layers ion plated onto the molybdenum substrate are discussed with particular reference to the interfacial reaction between the TiC coating and molybdenum. The deposition of an intermediate tungsten layer was found to be very effective in suppressing the formation of reaction layers, resulting in a marked improvement in thermal stabilities of TiC--Mo systems. Thermal shock test using a pulsed electron beam showed that the TiC coatings remained adherent to the molybdenum substrates during energy depositions high enough to melt the substrates within the area of beam deposition. The melt area of the TiC coatings apparently decreased when a tungsten intermediate layer was applied

  6. Evaluation of thermal sprayed metallic coatings for use on the structures at Launch Complex 39

    Science.gov (United States)

    Welch, Peter J.

    1990-01-01

    The current status of the evaluation program is presented. The objective was to evaluate the applicability of Thermal Sprayed Coatings (TSC) to protect the structures in the high temperature acid environment produced by exhaust of the Solid Rocket Boosters during the launches of the Shuttle Transportation System. Only the relatively low cost aluminum TSC which provides some cathodic protection for steel appears to be a practical candidate for further investigation.

  7. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    Science.gov (United States)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  8. Diamond coating deposition by synergy of thermal and laser methods-A problem revisited

    International Nuclear Information System (INIS)

    Ristic, Gordana S.; Trtica, Milan S.; Bogdanov, Zarko D.; Romcevic, Nebojsa Z.; Miljanic, Scepan S.

    2007-01-01

    Diamond coatings were deposited by synergy of the hot filament CVD method and the pulse TEA CO 2 laser, in spectroactive and spectroinactive diamond precursor atmospheres. Resulting diamond coatings are interpreted relying on evidence of scanning electron microscopy as well as microRaman spectroscopy. Thermal synergy component (hot filament) possesses an activating agent for diamond deposition, and contributes significantly to quality and extent of diamond deposition. Laser synergy component comprises a solid surface modification as well as the spectroactive gaseous atmosphere modification. Surface modification consists in changes of the diamond coating being deposited and, at the same time, in changes of the substrate surface structure. Laser modification of the spectroactive diamond precursor atmosphere means specific consumption of the precursor, which enables to skip the deposition on a defined substrate location. The resulting process of diamond coating elimination from certain, desired locations using the CO 2 laser might contribute to tailoring diamond coatings for particular applications. Additionally, the substrate laser modification could be optimized by choice of a proper spectroactive precursor concentration, or by a laser radiation multiple pass through an absorbing medium

  9. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  10. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  11. Validation of HVOF WC/Co Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Aircraft Landing Gear

    National Research Council Canada - National Science Library

    Sartwell, Bruce

    2004-01-01

    .... This document constitutes the final report on a project to quality high-velocity oxygen-fuel (HVOF) thermal spray WC/Co coatings as a replacement for hard chrome plating on landing gear components...

  12. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    Science.gov (United States)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  13. Thermally and magnetically controlled superconducting rectifiers

    International Nuclear Information System (INIS)

    Mulder, G.B.J.; TenKate, H.H.J.; Krooshoop, H.J.G.; Van de Klundert, L.J.M.

    1989-01-01

    The switches of a superconducting rectifier can be controlled either magnetically or thermally. The main purpose of this paper is to point out the differences between both methods of switching and discuss the consequences for the operation of the rectifier. The discussion is illustrated by the experimental results of a rectifier which was tested with magnetically as well as thermally controlled switches. It has an input current of 30 A, an output current of more than 1 kA and an operating frequency of a few Hertz. A superconducting magnet connected to this rectifier can be energized at a rate exceeding 1 MJ/hour and an efficiency of about 97%

  14. Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition

    International Nuclear Information System (INIS)

    Chen, Li; Yang, Bing; Xu, Yuxiang; Pei, Fei; Zhou, Liangcai; Du, Yong

    2014-01-01

    Addition of Si is very effective in upgrading the machining performance and thermal properties of Al–Ti–N coating. Here, we concentrate on the thermal stability and oxidation resistance of Al–Ti–Si–N coating. Alloying with Si favors the growth of wurtzite phase, and thereby causes a drop in hardness from ∼ 34.5 to 28.7 GPa. However, Si-containing coating retards the formation of w-AlN during thermal annealing, and thereby behaves a high hardness value of ∼ 31.3 GPa after annealing at T a = 1100 °C. After 10 h exposure in air at 850 °C, Al–Ti–N coating is fully oxidized. Incorporation of Si significantly improves the oxidation resistance of Al–Ti–N due to the combined effects with the promoted formation of Al-oxide rich top-scale and retarded transformation of anatase (a-) TiO 2 into rutile (r-) TiO 2 , where only ∼ 1.43 μm oxide scale is shown after oxidation at 1100 °C for 15 h. Noticeable is that the worst oxidation resistance of Al–Ti–Si–N coating in the temperature range from 800 to 1100 °C is obtained at 950 °C with oxide scale of ∼ 1.76 μm due to the fast formation of r-TiO 2 . Additionally, a pre-oxidation at 1000 °C has a positive effect on the oxidation resistance of Al–Ti–Si–N coating, which is attributed to the formation of Al-oxide rich top-scale, and thus inhibits the outward diffusion of metal atoms and inward diffusion of O. - Highlights: • Si as a substitutional solid solution and via the formation of a-Si 3 N 4 coexists. • Si addition favors the growth of wurtzite phase and causes a decreased hardness. • Alloying with Si improves the oxidation resistance of AlTiN. • AlTiSiN behaves the worst oxidation resistance at 950 °C from 800 to 1100 °C. • A pre-oxidation at 1000 °C improves the oxidation resistance of AlTiSiN coating

  15. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    Science.gov (United States)

    Karthickeyan, V.; Balamurugan, P.

    2017-10-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  16. Development of Reliability Based Life Prediction Methods for Thermal and Environmental Barrier Coatings in Ceramic Matrix Composites

    Science.gov (United States)

    Shah, Ashwin

    2001-01-01

    Literature survey related to the EBC/TBC (environmental barrier coating/thermal barrier coating) fife models, failure mechanisms in EBC/TBC and the initial work plan for the proposed EBC/TBC life prediction methods development was developed as well as the finite element model for the thermal/stress analysis of the GRC-developed EBC system was prepared. Technical report for these activities is given in the subsequent sections.

  17. Preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeon-Hye [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Han, Woong [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Lee, Hae-seong [Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Min, Byung-Gak [Department of Polymer Science & Engineering, Korea National University of Transportation, Chungju 380-702 (Korea, Republic of); Kim, Byung-Joo, E-mail: ap2-kbj@hanmail.net [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of)

    2015-10-15

    Graphical abstract: We report preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites. Thermally composites showed enhanced thermal conductivity increasing from up to 59% by the thermal network. - Highlights: • A new method of Si−N coating on carbon fibers was reported. • Silane layer were successfully converted to Si−N layer on carbon fiber surface. • Si−N formation was confirmed by FT-IR, XPS, and EDX. • Thermal conductivity of Si−N coated CF composites were enhanced to 0.59 W/mK. - Abstract: This study investigates the effect of silicon nitride (Si−N)-coated carbon fibers on the thermal conductivity of carbon-fiber-reinforced epoxy composite. The surface properties of the Si−N-coated carbon fibers (SiNCFs) were observe using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, and the thermal stability was analyzed using thermogravimetric analysis. SiNCFs were fabricated through the wet thermal treatment of carbon fibers (Step 1: silane finishing of the carbon fibers; Step 2: high-temperature thermal treatment in a N{sub 2}/NH{sub 3} environment). As a result, the Si−N belt was exhibited by SEM. The average thickness of the belt were 450–500 nm. The composition of Si−N was the mixture of Si−N, Si−O, and C−Si−N as confirmed by XPS. Thermal residue of the SiNCFs in air was enhanced from 3% to 50%. Thermal conductivity of the composites increased from 0.35 to 0.59 W/mK after Si−N coating on carbon surfaces.

  18. Fabrication of Gold-coated 3-D Woodpile Structures for Mid-IR Thermal Emitters

    Science.gov (United States)

    Li, Shengkai; Moridani, Amir; Kothari, Rohit; Lee, Jae-Hwang; Watkins, James

    3-D metallic woodpile nanostructures possess enhancements in thermal radiation that are both wavelength and polarization specific and are promising for thermal-optical devices for various applications including thermal photovoltaics, self-cooling devices, and chemical and bio-sensors. However, current fabrication techniques for such structures are limited by slow speed, small area capability, the need for expensive facilities and, in general, are not suitable for high-throughput mass production. Here we demonstrate a new strategy for the fabrication of 3D metallic woodpile structures. Well-defined TiO2 woodpile structures were fabricated using a layer-by-layer nanoimprint method using TiO2 nanoparticle ink dispersions. The TiO2 woodpile was then coated with a high purity, conformal gold film via reactive deposition in supercritical carbon dioxide. The final gold-coated woodpile structures exhibit strong spectral and polarization specific thermal emission enhancements. The fabrication method demonstrated here is promising for high-throughput, low-cost preparation of 3D metallic woodpile structures and other 3D nanostructures. Center for Hierarchical Manufacturing, NSF.

  19. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  20. Designing a highly sensitive Eddy current sensor for evaluating damage on thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Min; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Seong; Lee, Yeong Ze [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Seul Gi [LG Electronics, Seoul (Korea, Republic of)

    2016-06-15

    A thermal barrier coating (TBC) has been widely applied to machine components working under high temperature as a thermal insulator owing to its critical financial and safety benefits to the industry. However, the nondestructive evaluation of TBC damage is not easy since sensing of the microscopic change that occurs on the TBC is required during an evaluation. We designed an eddy current probe for evaluating damage on a TBC based on the finite element method (FEM) and validated its performance through an experiment. An FEM analysis predicted the sensitivity of the probe, showing that impedance change increases as the TBC thermally degrades. In addition, the effect of the magnetic shield concentrating magnetic flux density was also observed. Finally, experimental validation showed good agreement with the simulation result.

  1. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    Science.gov (United States)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  2. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    Science.gov (United States)

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  3. Evaluation of Thermal Barrier and PS-200 Self-Lubricating Coatings in an Air-Cooled Rotary Engine

    Science.gov (United States)

    Moller, Paul S.

    1995-01-01

    This project provides an evaluation of the feasibility and desirability of applying a thermal barrier coating overlaid with a wear coating on the internal surfaces of the combustion area of rotary engines. Many experiments were conducted with different combinations of coatings applied to engine components of aluminum, iron and titanium, and the engines were run on a well-instrumented test stand. Significant improvements in specific fuel consumption were achieved and the wear coating, PS-200, which was invented at NASA's Lewis Research Center, held up well under severe test conditions.

  4. Thermal Stability of Silver Paste Sintering on Coated Copper and Aluminum Substrates

    Science.gov (United States)

    Pei, Chun; Chen, Chuantong; Suganuma, Katsuaki; Fu, Guicui

    2018-01-01

    The thermal stability of silver (Ag) paste sintering on coated copper (Cu) and aluminum (Al) substrates has been investigated. Instead of conventional zincating or nickel plating, magnetron sputtering was used to achieve coating with titanium (Ti) and Ag. Silicon (Si) chips were bonded to coated Cu and Al substrates using a mixture of submicron Ag flakes and particles under 250°C and 0.4 MPa for 30 min. The joints were then subject to aging testing at 250°C for duration of 200 h, 500 h, and 1000 h. Two types of joints exhibited satisfactory initial shear strength above 45 MPa. However, the shear strength of the joints on Al substrate decreased to 28 MPa after 1000 h of aging, while no shear strength decline was detected for the joints on Cu substrate. Fracture surface analysis revealed that the vulnerable points of the two types of joints were (1) the Ag layer and (2) the interface between the Ti layer and Cu substrate. Based on the results of scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and simulations, cracks in the Ag layer were identified as the cause of the shear strength degradation in the joints on Al substrate. The interface evolution of the joints on Cu substrate was ascribed to Cu migration and discontinuity points that initialized in the Ti layer. This study reveals that Al exhibited superior thermal stability with sintered Ag paste.

  5. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  6. Synergistic effects of mica and wollastonite fillers on thermal performance of intumescent fire retardant coating

    Energy Technology Data Exchange (ETDEWEB)

    Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad [Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.

  7. Hydrogen removal from LWR containments by catalytic-coated thermal insulation elements (THINCAT)

    International Nuclear Information System (INIS)

    Fischer, K.; Broeckerhoff, P.; Ahlers, G.; Gustavsson, V.; Herranz, L.; Polo, J.; Dominguez, T.; Royl, P.

    2003-01-01

    In the THINCAT project, an alternative concept for hydrogen mitigation in a light water reactor (LWR) containment is being developed. Based on catalytic coated thermal insulation elements of the main coolant loop components, it could be considered either as an alternative to backfitting passive autocatalytic recombiner devices, or as a reinforcement of their preventive effect. The present paper summarises the results achieved at about project mid-term. Potential advantages of catalytic thermal insulation studied in the project are:-reduced risk of unintended ignition,;-no work space obstruction in the containment,;-no need for seismic qualification of additional equipment,;-improved start-up behaviour of recombination reaction. Efforts to develop a suitable catalytic layer resulted in the identification of a coating procedure that ensures high chemical reactivity and mechanical stability. Test samples for use in forthcoming experiments with this coating were produced. Models to predict the catalytic rates were developed, validated and applied in a safety analysis study. Results show that an overall hydrogen concentration reduction can be achieved which is comparable to the reduction obtained using conventional recombiners. Existing experimental information supports the argument of a reduced ignition risk

  8. The effect of thermal history on microstructure of Er_2O_3 coating layer prepared by MOCVD process

    International Nuclear Information System (INIS)

    Tanaka, Masaki; Takezawa, Makoto; Hishinuma, Yoshimitsu; Tanaka, Teruya; Muroga, Takeo; Ikeno, Susumu; Lee, Seungwon; Matsuda, Kenji

    2016-01-01

    Er_2O_3 is a high potential candidate material for tritium permeation barrier and electrical insulator coating for advanced breeding blanket systems with liquid metal or molten-salt types. Recently, Hishinuma et al. reported to form homogeneous Er_2O_3 coating layer on the inner surface of metal pipe using Metal Organic Chemical Vapor Deposition (MOCVD) process. In this study, the influence of thermal history on microstructure of Er_2O_3 coating layer on stainless steel 316 (SUS 316) substrate by MOCVD process was investigated using SEM, TEM and XRD. The ring and net shape selected-area electron diffraction (SAED) patterns of Er_2O_3 coating were obtained each SUS substrates, revealed that homogeneous Er_2O_3 coating had been formed on SUS substrate diffraction patterns. Close inspection of SEM images of the surface on the Er_2O_3 coating before and after thermal cycling up to 700degC in argon atmosphere, it is confirmed that the Er_2O_3 particles were refined by thermal history. The column-like Er_2O_3 grains were promoted to change to granular structure by thermal history. >From the cross-sectional plane of TEM observations, the formation of interlayer between Er_2O_3 coating and SUS substrate was also confirmed. (author)

  9. Effect of H2O and Y(O on Oxidation Behavior of NiCoCrAl Coating Within Thermal Barrier Coating

    Directory of Open Access Journals (Sweden)

    WANG Yi-qun

    2017-04-01

    Full Text Available NiCoCrAl coatings containing Y and Y oxide were made using vacuum plasma deposition and high-velocity oxygen fuel respectively, high temperature oxidation dynamics and cross-section microstructures of NiCoCrAl+Y and NiCoCrAl+Y(O coatings in Ar-16.7%O2, Ar-3.3%H2O and Ar-0.2%H2-0.9%H2O at 1100℃ were investigated by differential thermal analysis (DTA and optical and electron microscope. The influencing mechanism of Y oxide on the oxidation of coatings at different atmosphere was compared by computation using First-Principles. The results show that Al2O3 layer on NiCoCrAl+Y coatings has more holes for internal oxidation on account of the element Y diffusion and enrichment on the interface. In addition, steam can promote the internal oxidation. While a thinner and uniform alumina form on NiCoCrAl+Y(O coatings because element Y is pinned by oxygen atoms during the preparation of coatings. Water vapor has less influence on protective alumina formation on the NiCoCrAl+Y(O coating. Therefore, oxidation behavior of NiCoCrAl coatings vary in composition and structure in different oxidizing atmosphere. Besides, Y and Y-enrichment oxides have key influences on the microstructure and the growth rate.

  10. Isothermal oxidation behaviour of thermal barrier coatings with CoCrAlY bond coat irradiated by high-current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jie [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng, E-mail: guanqf@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Hou, Xiuli [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Zhiping; Su, Jingxin; Han, Zhiyong [College of Science, Civil Aviation University of China, Tianjin 300300 (China)

    2014-10-30

    Highlights: • The original coarse surface was re-melted by pulsed electron beam irradiation. • Very fine grains were homogeneously dispersed on the irradiated coat surface. • A compact Al{sub 2}O{sub 3} scale was formed in irradiated TBCs at the onset of oxidation. • The selective oxidation of Al element avoided the formation of other oxides. • The irradiated coating has a much higher oxidation resistance. - Abstract: Thermal sprayed CoCrAlY bond coat irradiated by high-current pulsed electron beam (HCPEB) and thermal barrier coatings (TBCs) prepared with the irradiated bond coat and the ceramic top coat were investigated. The high temperature oxidation resistance of these specimens was tested at 1050 °C in air. Microstructure observations revealed that the original coarse surface of the as-sprayed bond coat was significantly changed as the interconnected bulged nodules with a compact appearance after HCPEB irradiation. Abundant Y-rich alumina particulates and very fine grains were dispersed on the irradiated surface. After high temperature oxidation test, the thermally grown oxide (TGO) in the initial TBCs grew rapidly and was comprised of two distinct layers: a large percentage of mixed oxides in the outer layer and a relatively small portion of Al{sub 2}O{sub 3} in the inner layer. Severe local internal oxidation and extensive cracks in the TGO layer were discovered as well. Comparatively, the irradiated TBCs exhibited thinner TGO layer, slower TGO growth rate, and homogeneous TGO composition (primarily consisting of Al{sub 2}O{sub 3}). The results indicate that TBCs with the irradiated bond coat have a much higher oxidation resistance.

  11. Thermal stability analysis of YBCO-coated conductors subject to over-currents

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, E; Angurel, L A; Pelegrin, J [Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, C/Maria de Luna 3, E-50018 Zaragoza (Spain); Xie, Y Y; Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States)

    2010-02-15

    The thermal stability of superconducting YBCO-coated conductors subject to over-currents are analysed. We have studied the effect of DC and AC over-current pulses in Cu-stabilized and non-stabilized coated conductors by measuring the electric field and temperature profiles of these conductors immersed in liquid nitrogen. Current pulses of short duration of about 90 ms and long duration of a few seconds were applied to the samples. Three different cooling regimes of liquid nitrogen-convection, nucleate boiling and film boiling-were observed and their influence on the recovery time of superconductivity in the coated conductors after the over-current pulses has been analysed. We have studied the recovery behaviour under two different conditions, in which the current was set to zero and to the operating current after the current pulses. These experiments simulated the conditions during an over-current situation in different electric power applications with special attention given to the behaviour of these coated conductors acting as in-fault current limiters.

  12. Thermal stability analysis of YBCO-coated conductors subject to over-currents

    International Nuclear Information System (INIS)

    MartInez, E; Angurel, L A; Pelegrin, J; Xie, Y Y; Selvamanickam, V

    2010-01-01

    The thermal stability of superconducting YBCO-coated conductors subject to over-currents are analysed. We have studied the effect of DC and AC over-current pulses in Cu-stabilized and non-stabilized coated conductors by measuring the electric field and temperature profiles of these conductors immersed in liquid nitrogen. Current pulses of short duration of about 90 ms and long duration of a few seconds were applied to the samples. Three different cooling regimes of liquid nitrogen-convection, nucleate boiling and film boiling-were observed and their influence on the recovery time of superconductivity in the coated conductors after the over-current pulses has been analysed. We have studied the recovery behaviour under two different conditions, in which the current was set to zero and to the operating current after the current pulses. These experiments simulated the conditions during an over-current situation in different electric power applications with special attention given to the behaviour of these coated conductors acting as in-fault current limiters.

  13. Thermal response of plasma sprayed tungsten coating to high heat flux

    International Nuclear Information System (INIS)

    Liu, X.; Yang, L.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Xu, Z.

    2004-01-01

    In order to investigate the thermal response of tungsten coating on carbon and copper substrates by vacuum plasma spray (VPS) or inert gas plasma spray (IPS), annealing and cyclic heat load experiments of these coatings were conducted. It is indicated that the multi-layered tungsten and rhenium interface of VPS-W/CFC failed to act as a diffusion barrier at elevated temperature and tungsten carbides were developed after 1 h incubation time when annealing temperature was higher than 1600 deg. C. IPS-W/Cu and W/C without an intermediate bonding layer were failed by the detachment of the tungsten coating at 900 and 1200 deg. C annealing for several hours, respectively. Cyclic heat load of electron beam with 35 MW/m 2 and 3-s pulse duration indicated that IPS-W/Cu samples failed with local detachment of the tungsten coating within 200 cycles and IPS-W/C showed local cracks by 300 cycles, but VPS-W/CFC withstood 1000 cycles without visible damages. However, crack creation and propagation in VPS-W/CFC were also observed under higher heat load

  14. Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings

    Science.gov (United States)

    David, L.; Feldman, A.; Mansfield, E.; Lehman, J.; Singh, G.

    2014-03-01

    We study laser irradiation behavior of multiwalled carbon nanotubes (MWCNT) and chemically modified graphene (rGO)-composite spray coatings for use as a thermal absorber material for high-power laser calorimeters. Spray coatings on aluminum test coupon were exposed to increasing laser irradiance for extended exposure times to quantify their damage threshold and optical absorbance. The coatings, prepared at varying mass % of MWCNTs in rGO, demonstrated significantly higher damage threshold values at 2.5 kW laser power at 10.6 μm wavelength than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens show that the coating prepared at 50% CNT loading endure at least 2 kW.cm-2 for 10 seconds without significant damage. The improved damage resistance is attributed to the unique structure of the composite in which the MWCNTs act as an efficient absorber of laser light while the much larger rGO sheets surrounding them, dissipate the heat over a wider area.

  15. Advanced thermal management of a solar cell by a nano-coated heat pipe plate: A thermal assessment

    International Nuclear Information System (INIS)

    Du, Yanping

    2017-01-01

    Highlights: • The nano-coated heat pipe plate provides sufficient cooling energy to the solar cell. • The induced solar cell temperature is below 40 °C in normal range of solar irradiance. • The evaporative heat flux is tuneable and varies with the change of operating conditions. • Additional cooling at the condenser is helpful to improve the heat removal of the device. - Abstract: The significant temperature effect on solar cells results in loss of photovoltaic (PV) efficiency by up to 20–25%, which may over-negate the efforts in technology development for promoting PV efficiency. This motivates studies in thermal management for solar cells. This study concerns the thermal assessment of an advanced system composed by a solar cell and a nano-coated heat pipe plate for thermal management. Solar cell temperature and the corresponding evaporative heat flux are evaluated based on a conjugated heat transfer model. It indicates that the solar cell can be cooled down to be below 40 °C and suffers no temperature effect due to the use of the heat pipe plate. The heat pipe plate can provide sufficient cooling to the solar cell under different solar irradiance. The analytical and experimental results show that the maximum evaporative heat flux of the current heat pipe plate is around 450 W/m"2. However, the practical heat removal flux at the condenser is 390 W/m"2. The loss of cooling energy is due to the gathered vapour at the condenser section, which prevents the liquid-vapour circulation inside the vacuum chamber of the device. By using additional cooling strategies (i.e. heat sink, PCMs, water jacket) at the condenser section, the heat removal ability can be further improved.

  16. Comparison of different models for the determination of the absorption and scattering coefficients of thermal barrier coatings

    International Nuclear Information System (INIS)

    Wang, Li; Eldridge, Jeffrey I.; Guo, S.M.

    2014-01-01

    The thermal radiative properties of thermal barrier coatings (TBCs) are becoming more important as the inlet temperatures of advanced gas-turbine engines are continuously being pushed higher in order to improve efficiency. To determine the absorption and scattering coefficients of TBCs, four-flux, two-flux and Kubelka–Munk models were introduced and used to characterize the thermal radiative properties of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings. The results show that the absorption coefficient of YSZ is extremely low for wavelengths 200 μm suggests that when the coating thickness is larger than around twice the average scattering distance, the collimated flux can be simply treated as a diffuse flux inside the coating, and thus the two-flux model can be used to determine the absorption and scattering coefficients as a simplification of the four-flux model

  17. Modelling and Control of Thermal System

    Directory of Open Access Journals (Sweden)

    Vratislav Hladky

    2014-01-01

    Full Text Available Work presented here deals with the modelling of thermal processes in a thermal system consisting of direct and indirect heat exchangers. The overal thermal properties of the medium and the system itself such as liquid mixing or heat capacity are shortly analysed and their features required for modelling are reasoned and therefore simplified or neglected. Special attention is given to modelling heat losses radiated into the surroundings through the walls as they are the main issue of the effective work with the heat systems. Final part of the paper proposes several ways of controlling the individual parts’ temperatures as well as the temperature of the system considering heating elements or flowage rate as actuators.

  18. Applications of sand control technology in thermal recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Rensvold, R F

    1982-01-01

    The ever-increasing application of thermal methods to recover low gravity crude oil has warranted the review of existing sand control techniques relative to their compatibility with high temperature environments. The advantages and limitations of a large number of materials are considered. Carrying fluids, granular pack solids, clay stabilizers, and resin-coated pack sands are discussed. Resins used for in situ sand consolidation processes also are reviewed, and their suitability for application in a high temperature steam environment is evaluated. The effects of highly deviated boreholes on the placement of pressure packs also are considered. Full scale gravel pack model studies have provided valuable clues to the procedures and materials that help to create optimum pressure packs. 58 references.

  19. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    Science.gov (United States)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  20. Thermally Sprayed Aluminum Coatings for the Protection of Subsea Risers and Pipelines Carrying Hot Fluids

    Directory of Open Access Journals (Sweden)

    Nataly Ce

    2016-11-01

    Full Text Available This paper reports the effect of boiling synthetic seawater on the performance of damaged Thermally Sprayed Aluminum (TSA on carbon steel. Small defects (4% of the sample’s geometric surface area were drilled, exposing the steel, and the performance of the coating was analyzed for corrosion potential for different exposure times (2 h, 335 h, and 5000 h. The samples were monitored using linear polarization resistance (LPR in order to obtain their corrosion rate. Scanning electron microscopy (SEM/energy dispersive X-ray spectroscopy (EDX and X-ray diffraction (XRD were used for post-test characterization. The results showed that a protective layer of Mg(OH2 formed in the damaged area, which protected the underlying steel. Additionally, no coating detachment from the steel near the defect region was observed. The corrosion rate was found to be 0.010–0.015 mm/year after 5000 h in boiling synthetic seawater.

  1. Wettability control by DLC coated nanowire topography

    Science.gov (United States)

    Li, Zihui; Meng, Fanhao; Liu, Xuanyong

    2011-04-01

    Here we have developed a convenient method to fabricate wettability controllable surfaces that can be applied to various nanostructured surfaces with complex shapes for different industrial needs. Diamond-like carbon (DLC) films were synthesized on titanium substrate with a nanowire structured surface using plasma immersion ion implantation and deposition (PIII&D). The nanostructure of the DLC films was characterized by field emission scanning electron microscopy and found to grow in a rippling layer-by-layer manner. Raman spectroscopy was used to investigate the different bonding presented in the DLC films. To determine the wettability of the samples, water contact angles were measured and found to vary in the range of 50°-141°. The results indicated that it was critical to construct a proper surface topography for high hydrophobicity, while suitable ID/IG and sp2/sp3 ratios of the DLC films had a minor contribution. Superhydrophobicity could be achieved by further CF4 implantation on suitably structured DLC films and was attributed to the existence of fluorine. In order to maintain the nanostructure during CF4 implantation, it was favorable to pre-deposit an appropriate carbon content on the nanostructure, as a nanostructure with low carbon content would be deformed during CF4 implantation due to local accumulation of surface charge and the following discharge resulting from the low conductivity.

  2. Gadolinium oxide coated fully depleted silicon-on-insulator transistors for thermal neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, Steven A., E-mail: steven.vitale@ll.mit.edu; Gouker, Pascale M.

    2013-09-01

    Fully depleted silicon-on-insulator transistors coated with gadolinium oxide are shown to be effective thermal neutron dosimeters. The theoretical neutron detection efficiency is calculated to be higher for Gd{sub 2}O{sub 3} than for other practical converter materials. Proof-of-concept dosimeter devices were fabricated and tested during thermal neutron irradiation. The transistor current changes linearly with neutron dose, consistent with increasing positive charge in the SOI buried oxide layer generated by ionization from high energy {sup 157}Gd(n,γ){sup 158}Gd conversion electrons. The measured neutron sensitivity is approximately 1/6 the maximum theoretical value, possibly due to electron–hole recombination or conversion electron loss in interconnect wiring above the transistors. -- Highlights: • A novel Gd{sub 2}O{sub 3} coated FDSOI MOSFET thermal neutron dosimeter is presented. • Dosimeter can detect charges generated from {sup 157}Gd(n,γ){sup 158}Gd conversion electrons. • Measured neutron sensitivity is comparable to that calculated theoretically. • Dosimeter requires zero power during operation, enabling new application areas.

  3. Mechanical properties of EB-PVD ZrO2 thermal barrier coatings

    International Nuclear Information System (INIS)

    Held, Carolin

    2014-01-01

    In this work, the elastic properties of thermal barrier coatings which were produced by electron-beam enhanced physical vapour deposition were investigated, as well as the dependency of the properties on the sample microstructure, the thermal treatment and the test method. For this purpose, not only commercial coatings were characterized, but also special sample material was used which consists of a 1 mm thick layer of EB-PVD TBC. This material was isothermally heat treated for different times at 950 C, 1100 C and 1200 C and then tested in a specially developed miniaturized bend test and by dynamic mechanical analysis. The sample material was tested by nanoindentation in order to measure the Young's modulus on a local scale, and the porosity of the samples was determined by microstructure analysis and porosimetry. The decrease of porosity could be connected with sintering and subsequent stiffening of the material. The test results are dependent on the tested volume. A small test volume leads to larger measured Young's moduli, while a large test volume yields lower values. The test volume also has an influence on the increase of stiffness during thermal exposure. With a small tested volume, a quicker increase of the Young's modulus was registered, which could be associated to the sintering of local structures.

  4. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  5. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Sebright, J. [Caterpillar Corp.

    2007-12-15

    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates, with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and provide for

  6. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  7. Evaluation of tribological wear and corrosion in coatings of diamalloy 4060NS deposited by thermal spray

    Science.gov (United States)

    Acuña R, S. M.; Moreno T, C. M.; Espinosa C, E. J.

    2017-12-01

    Surface engineering seeks the development of new techniques to improve the performance and life of components of machines or industrial facilities, always looking for low costs and the least possible environmental damage. Thermal projection is one of the techniques that is based on the projection of particles of compounds and alloys on properly prepared and heated substrates, these particles are driven by a stream of air passing through an oxyacetylene flame which gives the energy to the process; These coatings give the possibility to improve the properties of the materials or the maintenance of components to maximize the availability of service. In order to reduce the damage caused by wear and corrosion of a low carbon AISI 1020 steel, they were coated with a metal based alloy, studying the effect of the cobalt-chromium-silicon-tungsten carbide alloy coating (DIAMALLLOY 4060 NS). The coating was deposited with two different pressures in the gases supplied to the torch, obtaining two flames and working three thicknesses of coating that oscillate between 100-500μm, according to the number of deposited layers, making use of a projection gun Castolin Eutectic. Powder and substrate characterization was performed using X-Ray Diffraction (XRD) techniques, X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), spark emission spectroscopy and metallographic analysis. The results confirm the chemical nature and structure of the powder of the alloy and the substrate to be used, in addition, the thermal stability of the system was verified. The evaluation of the adhesion of the deposited layers was carried out by the implementation of pull-off tests according to ASTM D4541, in order to determine the type of failure that is presented. Mechanical wear was determined using a MT/60/NI microtest tribometer while electrochemical tests were performed using a suitable experimental unit for this purpose, confirming that the substrate exhibits lower wear levels when coated with

  8. The effect of Al intermediate layer on thermal resistance of EB-PVD yttria-stabilized zirconia coatings on titanium substrate

    Science.gov (United States)

    Panin, Alexey; Panin, Victor; Kazachenok, Marina; Shugurov, Artur; Sinyakova, Elena; Martynov, Sergey; Rusyaev, Andrey; Kasterov, Artur

    2017-12-01

    The yttria-stabilized zirconia coatings sprayed on titanium substrates by the electron beam physical vapor deposition were subjected to thermal annealing in air at 1000°C for 1, 30 and 60 min. The delamination and fracture of the coatings are studied by the scanning electron microscopy and X-ray diffraction. It is shown that a magnetron sputtered Al interlayer between the coating and the substrate considerably improves the thermal resistance of ceramic coatings.

  9. Role of thermal spray processing method on the microstructure, residual stress and properties of coatings:an integrated study for Ni-5wt.% Al bond coats

    Czech Academy of Sciences Publication Activity Database

    Sampath, S.; Jiang, X.; Matějíček, Jiří; Prchlík, L.; Kulkarni, A.; Vaidya, A.

    2004-01-01

    Roč. 364, 1-2 (2004), s. 216-231 ISSN 0921-5093 Grant - others:NSF(US) DMR9632570 Institutional research plan: CEZ:AV0Z2043910 Keywords : bond coats, thermal spraying, microstructure Subject RIV: JG - Metallurgy Impact factor: 1.445, year: 2004

  10. Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating

    Science.gov (United States)

    Smialek, James L.; Zhu, Dongming; Cuy, Michael D.

    2008-01-01

    PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200 to 300 1-hr cycles with only moderate weight gains (0.5 mg/sq cm). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in a video clip which can be viewed by clicking on figure 2 of this report. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.

  11. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Weiyi [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Zhang, Ping [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010 (China); Song, Lei; Wang, Xin [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China)

    2014-01-01

    Graphical abstract: - Highlights: • A transparent intumescent fire protective coating was obtained by UV-cured technology. • OZrP could enhance the thermal stability and anti-oxidation of the coating. • OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char.

  12. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    International Nuclear Information System (INIS)

    Xing, Weiyi; Zhang, Ping; Song, Lei; Wang, Xin; Hu, Yuan

    2014-01-01

    Graphical abstract: - Highlights: • A transparent intumescent fire protective coating was obtained by UV-cured technology. • OZrP could enhance the thermal stability and anti-oxidation of the coating. • OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char

  13. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  14. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  15. Improved methods for testing bond and intrinsic strength and fatigue of thermally sprayed metallic and ceramic coatings

    International Nuclear Information System (INIS)

    Schweitzer, K.K.; Ziehl, M.H.; Schwaminger, C.

    1991-01-01

    Conventional bond strength tests for thermally sprayed coatings represent only a rough means of obtaining overall strength values, with no differentiation between adhesion at the interface and intrinsic coating properties. In order to obtain information about the influence of substrate surface preparation on the adhesion of a Tribaloy T700 coating, tensile bond strength and modified crack-opening displacement (COD) specimens were tested by deliberate crack initiation at the interface. Crack initiation was achieved by weakening of the interface at the outer diameter in the case of bond strength specimens or at the notch root in the case of COD specimens. This made it possible to look at the influence of surface roughness and grit contamination on the coating adhesion separately. Modified COD specimens with the notch in the centre of the coating were used to determine crack-opening energies and critical stress intensity factors of atmospheric plasma-sprayed NiAl and low pressure plasma-sprayed CoNiCrAlY bond coatings and a ZrO 2 7Y 2 O 3 thermal barrier coating (TBC). Additionally, bond strength specimens were stressed dynamically, and it could be demonstrated that Woehler (S/N) diagrams can be established for a metallic NiAl bond coating and even for a ceramic ZrO 2 7Y 2 O 3 TBC. (orig.)

  16. Sensitive coating for water vapors detection based on thermally sputtered calcein thin films.

    Science.gov (United States)

    Kruglenko, I; Shirshov, Yu; Burlachenko, J; Savchenko, A; Kravchenko, S; Manera, M G; Rella, R

    2010-09-15

    In this paper the adsorption properties of thermally sputtered calcein thin films towards water and other polar molecules vapors are studied by different characterization techniques: quartz crystal microbalance, surface plasmon resonance and visible spectroscopy. Sensitivity of calcein thin films to water vapors resulted much higher as compared with those of a number of dyes whose structure was close to that of calcein. All types of sensors with calcein coatings have demonstrated linear concentration dependences in the wide range of water vapor pressure from low concentrations up to 27,000 ppm (close to saturation). At higher concentrations of water vapor all sensors demonstrate the abrupt increase of the response (up to two orders). A theoretical model is advanced explaining the adsorption properties of calcein thin films taking into account their chemical structure and peculiarities of molecular packing. The possibility of application of thermally sputtered calcein films in sensing technique is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Nuclear thermal rocket engine operation and control

    International Nuclear Information System (INIS)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs

  18. Development of control system of coating of rod hydraulic cylinders

    Science.gov (United States)

    Aizhambaeva, S. Zh; Maximova, A. V.

    2018-01-01

    In this article, requirements to materials of hydraulic cylinders and methods of eliminating the main factors affecting the quality of the applied coatings rod hydraulic cylinders. The chromium plating process - one of ways of increase of anti-friction properties of coatings rods, stability to the wear and corrosion. The article gives description of differences of the stand-speed chromium plating process from other types of chromium plating that determines a conclusion about cutting time of chromium plating process. Conducting the analysis of technological equipment suggested addressing the modernization of high-speed chromium plating processes by automation and mechanization. Control system developed by design of schematic block diagram of a modernized and stand-speed chromium plating process.

  19. Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying

    International Nuclear Information System (INIS)

    Wang, Chaohui; Wang, You; Fan, Shan; You, Yuan; Wang, Liang; Yang, Changlong; Sun, Xiaoguang; Li, Xuewei

    2015-01-01

    In this paper, an optimized functionally graded coating (OFGC) was successfully fabricated by suspension plasma spraying (SPS) with feedstocks of the suspension of nanoparticles. La 2 Zr 2 O 7 /8YSZ OFGC with gradual compositional variation along the through-thickness direction is proposed to mitigate spallation and crack formation owing to the high residual stresses caused by frequent thermal cycling for TBCs. The single ceramic layer coatings (SCLC) of LZ and double ceramic layer coatings (DCLC) of LZ/8YSZ were fabricated by SPS as comparison. The phase composition and microstructure of the SCLC, OFGC and DCLC were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS). Moreover, the thermal cycling tests were carried out to evaluate their thermal shock behavior. Changes in weight and morphology of specimens were analyzed during thermal cycling tests. The results showed that OFGC has extended lifetime compared with SCLC and DCLC. The failure of DCLC with clear interface between different ceramic layers occurred via delamination mode, as a result of crack initiation and propagation generated by thermal mismatch between LZ and 8YSZ. While the failure of OFGC occurred in thermally grown oxide (TGO) layers, indicating that the gradual compositional variation avoided thermal stress concentration in the top ceramic layers. - Highlights: • Optimized functionally graded coatings and double ceramic layer coatings were deposited by suspension plasma spray. • The graded area of OFGC is continuously changed from inner 8YSZ to outer La 2 Zr 2 O 7 (LZ). • The OFGC shows a more extended thermal cycling life than the LZ SCLC and LZ/8YSZ DCLC. • Various failure mechanisms were proposed to explain thermal cycling behavior

  20. Thickness and microstructure characterization of TGO in thermal barrier coatings by 3D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xuemei; Meng, Fangli [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); Kong, Mingguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Yongzhe [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); Huang, Liping; Zheng, Xuebin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zeng, Yi, E-mail: zengyi@mail.sic.ac.cn [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050 (China)

    2016-10-15

    Yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are prepared by plasma spraying. Thermally grown oxide (TGO) would be formed between YSZ topcoat and bond coat after 50 h thermal service for YSZ TBCs. The electron back scattered diffraction (EBSD) results reveal that the TGO layer is composed of α-Al{sub 2}O{sub 3} and cubic Al{sub 2}NiO{sub 4} layers. Measured values of TGO thickness from the 2D-SEM image are greater than or equal to its real thickness due to the fact that the TGO layer is much rolling so that up and down surfaces of the TGO can't be completely perpendicular to the cross-section direction confirmed by 3D-SEM. Furthermore, 3D-SEM results reveal that the real thickness of TGO layer is 3.10 μm instead of 7.1 μm. In addition, 3D-EBSD confirmed that α-Al{sub 2}O{sub 3} layer in TGO is composed of single layer of grains and Al{sub 2}NiO{sub 4} layer consist of multilayer of grains while α-Al{sub 2}O{sub 3} layer is mixed with single layer and multilayer of α-Al{sub 2}O{sub 3} grains from observation of the 2D-EBSD image. It provides a new method to characterize real thickness and microstructure of TGO, which is also applied to other film materials. - Highlights: •This work provides a new method to measure the real thickness of TGO. •YSZ TBCs were prepared by plasma spraying. •TGO is formed in TBCs by simulating thermal service at 1100 °C for 50 h. •Real thickness and microstructure of TGO were investigated by 3D reconstruction.

  1. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  2. Multilayer stacks obtained by ion assisted EB PVD aimed at thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Lyutovich, A. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA)

    2010-07-01

    Thermal Barrier Coating (TBC) using Electron Beam Physical Vapour Deposition (EB PVD) is widely implemented, especially for aero-engine turbine blades. Generally, multilayer stacks are used for these aims. For the additional improvement of intermediate layers with graded transitions to the initial Ni-based alloy, the use of accelerated ions in the EBPVD-process is advantageous. The effect of the substrate bias potential, ion current density and deposition temperature on the structure and properties of Ti and Zr intermediate layers are investigated. The morphology of the films is studied using optical microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). It is found that the surface morphology becomes smoother with rising bias potential and decreasing ion current density. Measurements of Vicker's micro-hardness performed on these coatings have shown its increase with higher values of the bias and its reduction with the growing temperature. This effect is caused by the observed decrease in grain size and higher porosity of the films. A multilayer coating system Ni (based substrate)-Si-Si{sub x}Al{sub y}-Al with graded transitions between the layers is obtained using ion assisted EBPVD. Architecture of a multilayer stack for TBC with graded transitions is proposed. (orig.)

  3. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm

    2016-06-01

    Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. EB-PVD process management for highly productive zirconia thermal barrier coating of turbine blades

    International Nuclear Information System (INIS)

    Reinhold, E.; Botzler, P.; Deus, C.

    1999-01-01

    Zirconia thermal barrier coatings are well used in the turbine manufacturing industry because they ensure extended lifetimes of turbine blades. Compared with other techniques, EB-PVD processes are best suited for the deposition on turbine blades with regard to the layer properties. Therefore EB-PVD coaters for turbine blades are becoming increasingly interesting. The coating costs per component are mainly dependent on a highly productive solution for the deposition task. Thus the EB-PVD process management has to be optimized in order to meet the productivity requirements of the manufacturers. This includes the requirement of high deposition rates, large deposition areas, long time stable production cycles as well as a matched duration of preheating, deposition and cooling down per charge. Modern EB-PVD solutions to be introduced allow deposition rates on blades up to 7 μm/min. The consequences for the technological process management and plant design concerning long time stable coating cycles with high productivity will be discussed. (orig.)

  5. Plasma thermal performance of a dual-process PVD/PS tungsten coating on carbon-based panels for nuclear fusion application

    International Nuclear Information System (INIS)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan; Jang, Changheui

    2016-01-01

    Highlights: • Plasma thermal performance of a dual-process PVD/PS W coating was evaluated. • Steady-state heat fluxes of 1–3 MW/m 2 were applied to the W coated specimens. • Less micro-pores and grain growth were observed for the dual-process coating. • Loss of coating thickness was observed for the simple PS W coating. • Dual-process PVD/PS W coating was resistant to erosion due to the surface PVD layer. - Abstract: Various tungsten (W) coating techniques have been used for the application of plasma facing material in nuclear fusion devices, which resulted in limited success. In this study, a dual-process W coating structure was developed on a graphite substrate to improve the thermal performance of the coating structure. The dual-process coating structure consisted of a thin (∼7 μm) multilayer W/Mo physical vapor deposition (PVD) coating layer deposited on top of the relatively thick (∼160 μm) plasma spray (PS) W coating on a graphite substrate panel. Then the coated sample was exposed to plasma heat flux of 1–3 MW/m 2 for 300 s. With addition of a thin surface PVD coating layer, the microstructure change in underlying PS W coating was substantially reduced compared to the simple PS W coating structure. The thickness of overall coating structure was maintained for the dual-process PVD/PS coated samples after the thermal loading tests, while a significant reduction in thickness due to surface erosion was observed for the simple PS W coated samples. The improvement in surface erosion resistance in the dual-process coating structure was discussed in view of the characteristics of PVD and PS coating layers.

  6. Plasma thermal performance of a dual-process PVD/PS tungsten coating on carbon-based panels for nuclear fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan; Jang, Changheui, E-mail: chjang@kaist.ac.kr

    2016-11-01

    Highlights: • Plasma thermal performance of a dual-process PVD/PS W coating was evaluated. • Steady-state heat fluxes of 1–3 MW/m{sup 2} were applied to the W coated specimens. • Less micro-pores and grain growth were observed for the dual-process coating. • Loss of coating thickness was observed for the simple PS W coating. • Dual-process PVD/PS W coating was resistant to erosion due to the surface PVD layer. - Abstract: Various tungsten (W) coating techniques have been used for the application of plasma facing material in nuclear fusion devices, which resulted in limited success. In this study, a dual-process W coating structure was developed on a graphite substrate to improve the thermal performance of the coating structure. The dual-process coating structure consisted of a thin (∼7 μm) multilayer W/Mo physical vapor deposition (PVD) coating layer deposited on top of the relatively thick (∼160 μm) plasma spray (PS) W coating on a graphite substrate panel. Then the coated sample was exposed to plasma heat flux of 1–3 MW/m{sup 2} for 300 s. With addition of a thin surface PVD coating layer, the microstructure change in underlying PS W coating was substantially reduced compared to the simple PS W coating structure. The thickness of overall coating structure was maintained for the dual-process PVD/PS coated samples after the thermal loading tests, while a significant reduction in thickness due to surface erosion was observed for the simple PS W coated samples. The improvement in surface erosion resistance in the dual-process coating structure was discussed in view of the characteristics of PVD and PS coating layers.

  7. Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel

    Directory of Open Access Journals (Sweden)

    Lei Jin

    2015-04-01

    Full Text Available In this paper, air plasmas spray (APS was used to prepare YSZ and Sc2O3–YSZ (ScYSZ coating in order to improve the thermal insulation ability of TC4 alloy. SiO2 aerogel was also synthesized and affixed on TC4 titanium alloy to inhabit thermal flow. The microstructures, phase compositions and thermal insulation performance of three coatings were analyzed in detail. The results of thermal diffusivity test by a laser flash method showed that the thermal diffusivities of YSZ, Sc2O3–YSZ and SiO2 aerogel are 0.553, 0.539 and 0.2097×10−6 m2/s, respectively. Then, the thermal insulation performances of three kinds of coating were investigated from 20 °C to 400 °C using high infrared radiation heat flux technology. The experimental results indicated that the corresponding temperature difference between the top TC4 alloy (400 °C and the bottom surface of YSZ is 41.5 °C for 0.6 mm thickness coating. For 1 mm thickness coating, the corresponding temperature difference between the top TC4 alloys (400 °C and the bottom surface of YSZ, ScYSZ, SiO2 aerogel three specimens is 54, 54.6 and 208 °C, respectively. The coating thickness and species were found to influence the heat insulation ability. In these materials, YSZ and ScYSZ exhibited a little difference for heat insulation behavior. However, SiO2 aerogel was the best one among them and it can be taken as protection material on TC4 alloys. In outer space, SiO2 aerogel can meet the need of thermal insulation of TC4 of high-speed aircraft.

  8. Controllable laser thermal cleavage of sapphire wafers

    Science.gov (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  9. The CALIPSO Integrated Thermal Control Subsystem

    Science.gov (United States)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth's cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system's operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system's survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  10. Deconsolidation and combustion performance of thermally consolidated propellants deterred by multi-layers coating

    Directory of Open Access Journals (Sweden)

    Zheng-gang Xiao

    2014-06-01

    Full Text Available Both heating and solvent-spray methods are used to consolidate the standard grains of double-base oblate sphere propellants plasticized with triethyleneglycol dinitrate (TEGDN (TEGDN propellants to high density propellants. The obtained consolidated propellants are deterred and coated with the slow burning multi-layer coating. The maximum compaction density of deterred and coated consolidated propellants can reach up to 1.39 g/cm3. Their mechanic, deconsolidation and combustion performances are tested by the materials test machine, interrupted burning set-up and closed vessel, respectively. The static compression strength of consolidated propellants deterred by multi-layer coating increases significantly to 18 MPa, indicating that they can be applied in most circumstances of charge service. And the samples are easy to deconsolidate in the interrupted burning test. Furthermore, the closed bomb burning curves of the samples indicate a two-stage combustion phenomenon under the condition of certain thickness of coated multi-layers. After the outer deterred multi-layer coating of consolidated samples is finished burning, the inner consolidated propellants continue to burn and breakup into aggregates and grains. The high burning progressivity can be carefully obtained by the smart control of deconsolidation process and duration of consolidated propellants. The preliminary results of consolidated propellants show that a rapid deconsolidation process at higher deconsolidation pressure is presented in the dynamic vivacity curves of closed bomb test. Higher density and higher macro progressivity of consolidated propellants can be obtained by the techniques in this paper.

  11. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    Science.gov (United States)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  12. Review of Thermal Spray Coating Applications in the Steel Industry: Part 2—Zinc Pot Hardware in the Continuous Galvanizing Line

    Science.gov (United States)

    Matthews, S.; James, B.

    2010-12-01

    This two-part article series reviews the application of thermal spray coating technology in the production of steel and steel sheet products. Part 2 of this article series is dedicated to coating solutions in the continuous galvanizing line. The corrosion mechanisms of Fe- and Co-based bulk materials are briefly reviewed as a basis for the development of thermal spray coating solutions. WC-Co thermal spray coatings are commonly applied to low Al-content galvanizing hardware due to their superior corrosion resistance compared to Fe and Co alloys. The effect of phase degradation, carbon content, and WC grain size are discussed. At high Al concentrations, the properties of WC-Co coatings degrade significantly, leading to the application of oxide-based coatings and corrosion-resistant boride containing coatings. The latest results of testing are summarized, highlighting the critical coating parameters.

  13. Characterization for Ceramic-coated magnets using E-beam and thermal annealing methods

    International Nuclear Information System (INIS)

    Kim, Hyug Jong; Kim, Hee Gyu; Kang, In Gu; Kim, Min Wan; Yang, Ki Ho; Lee, Byung Cheol; Choi, Byung Ho

    2009-01-01

    Hard magnet was usually used by coating SiO 2 ceramic thick films followed by the thermal annealing process. In this work, the alternative annealing process for NdFeB magnets using e-beam sources(1∼2 MeV, 50∼400 kGy) was investigated. NdFeB magnets was coated with ceramic thick films using the spray method. The optimal annealing parameter for e-beam source reveals to be 1 MeV and 300 kGy. The sample prepared at 1 MeV and 300 kGy was characterized by the analysis of the surface morphology, film hardness, adhesion and chemical stability. The mechanical property of thick film, especially film hardness, is better than that of thermal annealed samples at 180 .deg. C. As a result, e-beam annealing process will be one of candidate and attractive heat treatment process. In future, manufacturing process will be carried out in cooperation with the magnet company

  14. Study of 'liquid gold' coatings: Thermal decomposition and formation of metallic thin films

    International Nuclear Information System (INIS)

    Deram, V.; Turrell, S.; Darque-Ceretti, E.; Aucouturier, M.

    2006-01-01

    Organo-metallic solutions called liquid gold are largely used to obtain thin gilded films which are employed for decorative, technological and functional uses. However, these films often prove to be fragile with respect to use, resulting in loss of brilliance or even eventual film removal. An understanding of the behaviour of the layers requires good knowledge of the materials themselves. The present work was undertaken to better understand the evolution of the structural properties of liquid gold as it undergoes heat-processing. Accordingly, we followed the thermal decomposition processes of liquid gold coatings and the formation of the gilded metal layer using a combination of experimental techniques. First, thermal analyses coupled with mass spectrometry and infrared spectroscopy gave information concerning the decomposition of the organic medium. It has been found that the process of film formation can be decomposed into three steps, the second of which is an abrupt transition between 300 and 350 deg. C. Details on this transition have been obtained using real-time X-ray Diffraction and Rutherford Backscattering Spectrometry. Above 350 deg. C, the microstructure of the coating is reorganized to obtain a final layer which contains particles, of the size of a few hundreds nanometers, as shown by Transmission Electron Microscopy

  15. Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Naumenko, D.; Pillai, R.; Chyrkin, A.; Quadakkers, W. J.

    2017-12-01

    The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic-kinetic modeling, the vast potential of which has been demonstrated in recent years.

  16. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  17. Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit

    Science.gov (United States)

    Ku, Jentung; Robinson, Franklin; Patel, Deepak; Ottenstein, Laura

    2013-01-01

    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more

  18. Failure Analysis of Multilayered Suspension Plasma-Sprayed Thermal Barrier Coatings for Gas Turbine Applications

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Rocchio-Heller, R.; Liu, J.; Li, X.-H.; Östergren, L.

    2018-02-01

    Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria-yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.

  19. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  20. High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring.

    Science.gov (United States)

    Tsai, Wei-Yu; Huang, Guan-Rong; Wang, Kuang-Kuo; Chen, Chin-Fu; Huang, J C

    2017-04-26

    Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.

  1. A Comparison of Afghanistan, Yuma, Az, and Manufactured Sands Melted on EB-PVD Thermal Barrier Coatings

    Science.gov (United States)

    2014-09-18

    mentoring me through the field of geology . His vast knowledge in this field and close “First Cousins” motivate me to broaden my knowledge within the...Blade sand sample BC – Bond Coat Button A – TBC Button made by Manufacturer A Button B – TBC Button made by Manufacturer B Ca – Calcium CMAS... Calcium , Magnesium, Aluminum, Silicate CTIO – Coating Technology Integration Office Cr – Chromium CTE – Coefficient of Thermal Expansion DoD

  2. Finite element simulation of stress evolution in thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Bednarz, P.

    2007-07-01

    Gas turbine materials exposed to extreme high temperature require protective coatings. To design reliable components, a better understanding of the coating failure mechanisms is required. Damage in Thermal Barrier Coating Systems (TBCs) is related to oxidation of the Bond Coat, sintering of the ceramic, thermal mismatch of the material constituents, complex shape of the BC/TGO/TBC interface, redistribution of stresses via creep and plastic deformation and crack resistance. In this work, experimental data of thermo-mechanical properties of CMSX-4, MCrAlY (Bond Coat) and APS-TBC (partially stabilized zirconia), were implemented into an FE-model in order to simulate the stress development at the metal/ceramic interface. The FE model reproduced the specimen geometry used in corresponding experiments. It comprises a periodic unit cell representing a slice of the cylindrical specimen, whereas the periodic length of the unit cell equals an idealized wavelength of the rough metal/ceramic interface. Experimental loading conditions in form of thermal cycling with a dwelltime at high temperature and consideration of continuous oxidation were simulated. By a stepwise consideration of various material properties and processes, a reference model was achieved which most realistically simulated the materials behavior. The influences of systematic parameter variations on the stress development and critical sites with respect to possible crack paths were shown. Additionally, crack initiation and propagation at the peak of asperity at BC/TGO interface was calculated. It can be concluded that a realistic modeling of stress development in TBCs requires at least reliable data of i) BC and TGO plasticity, ii) BC and TBC creep, iii) continuous oxidation including in particular lateral oxidation, and iv) critical energy release rate for interfaces (BC/TGO, TGO/TBC) and for each layer. The main results from the performed parametric studies of material property variations suggest that

  3. Determination of the thermal conductivity of metallic coatings; Determinacion de la conductividad termica de recubrimientos metalicos

    Energy Technology Data Exchange (ETDEWEB)

    Uc Way, Manuel Eugenio

    1998-02-01

    Due to the corrosion by high temperature there is a serious problem of unavailability and efficiency of the steam generators in the thermoelectric power stations. One of the parts that is more affected by this phenomenon is the superheater tube banks. In order to diminish this problem it is intended to apply to these tubes a metallic coating nickel and chromium based (80Ni20Cr), the deposition of the coating is made by the method of thermal spraying of powders by flame. The coating thickness once it has been deposited is of the order of 500mm, it is doubtless that the thermal flow between gases of combustion and the fluid conducted in the tubes is affected. That is why it is important to know the thermal conductivity of the coating in order to evaluate the impact that it has in the operation of the steam generator. This necessity is the one that gives rise to the present thesis project, in which a technique that allows to measure the thermal conductivity of the coating is designed. The experimentation is carried out taking as departure point the ASTM norm E1225-87 and is adapted to the characteristics of the material to prove. A test piece of stainless steel 316 was designed to measure the thermal flow that traverses the coating. First the experimental installation was characterized in order to determine its reliability. Later the experimentation was made finding an average thermal conductivity of 2.09{+-}0.72 W/m K in the temperature interval of 110-180 Celsius degrees. This value is 12.3% inferior to the corresponding one of a solid metal of the same composition. If we consider that in the high temperature banks of the steam generators the thermal flow is in the interval from 15.000 to 100.000 W/m{sup 2} and a coating thickness of the order of 500mm it would cause that this material would introduce a temperature difference of 0.6 to 4 Celsius degrees, respectively. Please note that for the highest thermal flow a maximum affectation of 4 Celsuis degrees is

  4. Effect of thermal spray processing techniques on the microstructure and properties of Ni-based amorphous coatings

    International Nuclear Information System (INIS)

    Lee, S.M.; Moon, B.M.; Fleury, E.; Ahn, H.S.; Kim, D.H.; Kim, W.T.; Sordelet, D.J.

    2005-01-01

    Metallic amorphous materials have been widely developed thanks to the outstanding properties including high chemical stability, mechanical strength, and magnetic properties. However, with the exception of a few compositions, the limiting factor is the critical cooling rate for the formation of the amorphous phase. For many applications, it is only the contact surface properties that are important, thus the use, of coating techniques such as thermal sprayings has several attractive features. In this paper, we present the microstructure of Ni-based amorphous coatings prepared by laser cladding and vacuum plasma spraying. The utilization of plasma spraying to deposit atomized powder enabled the formation of fully amorphous coating, laser cladding resulted in mostly crystallized structures. Glass forming ability and wear properties of the coatings were discussed as a function of the coating microstructure. (orig.)

  5. Thermal Annealing Effect on Optical Properties of Binary TiO2-SiO2 Sol-Gel Coatings

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2012-12-01

    Full Text Available TiO2-SiO2 binary coatings were deposited by a sol-gel dip-coating method using tetrabutyl titanate and tetraethyl orthosilicate as precursors. The structure and chemical composition of the coatings annealed at different temperatures were analyzed by Raman spectroscopy and Fourier Transform Infrared (FTIR spectroscopy. The refractive indices of the coatings were calculated from the measured transmittance and reflectance spectra. An increase in refractive index with the high temperature thermal annealing process was observed. The Raman and FTIR results indicate that the refractive index variation is due to changes in the removal of the organic component, phase separation and the crystal structure of the binary coatings.

  6. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  7. Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Dodi, Gianina; Iordache, Mirabela L.; Draganescu, Dan; Sava, Elena; Popa, Marcel I.

    2016-11-30

    Highlights: • Magnetite-grafted chitosan composite nanoparticles were synthesized. • The particles are able to assemble under the influence of a silane derivative. • Thin films containing composites, chitosan and hydrolyzed silane were optimized. • The novel hybrid coatings show hierarchical roughness and high wetting angle. - Abstract: The aim of this study is to evaluate novel hybrid materials as potential candidates for producing coatings with hierarchical roughness and controlled wetting behaviour. Magnetite (Fe{sub 3}O{sub 4}) nanoparticles obtained by co-precipitation were embedded in matrices synthesized by radical graft co-polymerization of butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA) or styrene (ST) with ethylene glycol di-methacrylate (EGDMA) onto previously modified chitosan bearing surface vinyl groups. The resulting composite particles were characterized regarding their average size, composition and magnetic properties. Hybrid thin films containing suspension of composite particles in ethanol and pre-hydrolysed hexadecyltrimethoxysilane (HDTS) as a coupling/crosslinking agent were deposited by spin coating or spraying. The films were cured by heating and subsequently characterized regarding their morphology (scanning electron microscopy), contact angle with water and adhesion to substrate (scratch test). The structure-property relationship is discussed.

  8. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  9. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  10. CubeSat Form Factor Thermal Control Louvers

    Science.gov (United States)

    Evans, Allison L. (Inventor)

    2018-01-01

    Thermal control louvers for CubeSats or small spacecraft may include a plurality of springs attached to a back panel of the thermal control louvers. The thermal control louvers may also include a front panel, which includes at least two end panels interlocked with one or more middle panels. The front panel may secure the springs, shafts, and flaps to the back panel.

  11. INFLUENCE ОF MODIFIER THERMAL TREATMENT ОN CHARACTERISTICS ОF COMPOSITE MATERIALS FOR PROTECTIVE COATINGS

    Directory of Open Access Journals (Sweden)

    V. Ivashko

    2012-01-01

    Full Text Available This paper presents results that reveal influence of modifiers characterized by different nature and composition and subjected to heat treatment on operational characteristics of single and binary compositions. Interaction between dispersed clay particles and dependence of  coating properties on  their mass content in oligomeric and polymeric matrices have been justified in the paper. The paper contains data that prove an increase of coating hardness by 15–20 %. The coating composition includes thermally-treated dispersed clay particles.

  12. Controlled reactions between chromia and coating on alloy surface

    DEFF Research Database (Denmark)

    Linderoth, Søren

    1996-01-01

    An electrically conducting Sr-doped lanthanum chromite (LSC) coating has been produced by reacting a coating of fine particles of La oxide and Sr oxide with chromia formed as an external scale on a metallic alloy. In addition to the formation of LSC the coating also resulted in much reduced...... buckling of the underlying chromia layer compared with a non-coated alloy....

  13. Electrochemical corrosion behaviour of Mg-Al alloys with thermal spray Al/SiCp composite coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Feliu Jr, S.; Merino, M. C.; Mohedano, M.; Casajus, P.; Arrabal, R.

    2010-01-01

    The corrosion protection of Mg-Al alloys by flame thermal spraying of Al/SiCp composite coatings was evaluated by electrochemical impedance spectroscopy in 3.5 wt.% NaCl solution. The volume fraction of SiC particles (SiCp) varied between 5 and 30%. The as-sprayed Al/SiCp composite coatings revealed a high number of micro-channels, largely in the vicinity of the SiC particles, that facilitated the penetration of the electrolyte and the subsequent galvanic corrosion of the magnesium substrates. The application of a cold-pressing post-treatment reduced the degree of porosity of the coatings and improved the bonding at the coating/substrate and Al/SiC interfaces. This resulted in improved corrosion resistance of the coated specimens. The effectiveness of the coatings slightly decreased with the addition of 5-30 vol.% SiCp compared with the un reinforced thermal spray aluminium coatings. (Author) 31 refs.

  14. Control of Flux Pinning in MOD YBCO Coated Conductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [American Superconductor Corporation, Westborough, MA; Huang, Y. [American Superconductor Corporation, Westborough, MA; Li, X. [American Superconductor Corporation, Westborough, MA; Kodenkandath, Thomas [American Superconductor Corporation, Westborough, MA; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Schoop, U. [American Superconductor Corporation, Westborough, MA; Verebelyi, D. T. [American Superconductor Corporation, Westborough, MA; Thieme, C. L. H. [American Superconductor Corporation, Westborough, MA; Siegal, E. E. [American Superconductor Corporation, Westborough, MA; Holesinger, T. G. [Los Alamos National Laboratory (LANL); Maiorov, B. [Los Alamos National Laboratory (LANL); Miller, D. J. [Argonne National Laboratory (ANL); Maroni, V. A. [Argonne National Laboratory (ANL); Goyal, Amit [ORNL; Specht, Eliot D [ORNL; Paranthaman, Mariappan Parans [ORNL

    2007-01-01

    Two different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  15. Control of flux pinning in MOD YBCO coated conductor.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Huang, Y.; Li, X.; Kodenkandath, T.; Rupich, M. W.; Schoop, U.; Verebelyi, D. T.; Thieme, C. L. H.; Siegal, E.; Holesinger, T. G.; Maiorov, B.; Civale, L.; Miller, D. J.; Maroni, V. A.; Li, J.; Martin, P. M.; Specht, E. D.; Goyal, A.; Paranthaman, M. P.; American Superconductor Corp.; LANL; ORNL

    2007-06-01

    NTwo different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  16. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    Science.gov (United States)

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  17. Thermal battery for portable climate control

    International Nuclear Information System (INIS)

    Narayanan, Shankar; Li, Xiansen; Yang, Sungwoo; Kim, Hyunho; Umans, Ari; McKay, Ian S.; Wang, Evelyn N.

    2015-01-01

    Highlights: • ATB is adsorptive thermal battery delivering both heating and cooling via storage. • The novel design promotes transport and maximizes ATB performance. • A general theoretical framework is developed to analyze ATB performance. • NaX–water is used as the adsorbent–refrigerant pair as a specific case study. • The effect of key geometric parameters and operating conditions are presented. - Abstract: Current technologies that provide climate control in the transportation sector are quite inefficient. In gasoline-powered vehicles, the use of air-conditioning is known to result in higher emissions of greenhouse gases and pollutants apart from decreasing the gas-mileage. On the other hand, for electric vehicles (EVs), a drain in the onboard electric battery due to the operation of heating and cooling system results in a substantial decrease in the driving range. As an alternative to the conventional climate control system, we are developing an adsorption-based thermal battery (ATB), which is capable of storing thermal energy, and delivering both heating and cooling on demand, while requiring minimal electric power supply. Analogous to an electrical battery, the ATB can be charged for reuse. Furthermore, it promises to be compact, lightweight, and deliver high performance, which is desirable for mobile applications. In this study, we describe the design and operation of the ATB-based climate control system. We present a general theoretical framework to determine the maximum achievable heating and cooling performance using the ATB. The framework is then applied to study the feasibility of ATB integration in EVs, wherein we analyze the use of NaX zeolite–water as the adsorbent–refrigerant pair. In order to deliver the necessary heating and cooling performance, exceeding 2.5 kW h thermal capacity for EVs, the analysis determines the optimal design and operating conditions. While the use of the ATB in EVs can potentially enhance its driving

  18. Development of a thermal fatigue test method for thermal barrier coatings by laser excitation using a laser thermal shock facility; Entwicklung eines Pruefverfahrens zur laserinduzierten thermischen Ermuedung thermischer Schutzschichten mittels einer Laser-Thermoschockpruefeinrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Nies, Daniel

    2012-07-13

    The finite nature of fossil fuel supply and the growing environmental awareness become increasingly stronger motivations for the development of efficient gas turbines and jet engines for power generation or as engines for land-, sea- and water-based vehicles. One concept developed for this purpose are thermal barrier coatings, where the thermal load of components is reduced by applying a ceramic coating onto the components. In this work the possibility to use a laser thermal shock facility for thermo-cyclic testing of thermal barrier coatings is examined. A focused laser beam is used for heating the sample and a homogeneous temperature distribution on the sample surface is achieved by the used trajectory and radial adjusted laser power. The required improvements of the existing testing facility are explained, including the development of a new sample holder and of the testing and evaluation routines for the experiments. For the assessment of the initiation and evolution of damages, acoustic emission and thermographic methods are used. The possibilities and limits of these methods are assessed during the experiments. The work also includes an extensive temperature dependent characterisation of the ceramic material used for the thermal barrier coating. In this part, the measurement of the Young's modulus by a dynamic method is to be highlighted, as this is a rarely used technique. The characterisations show the expected values, except for a lower porosity as expected by the manufacturer and no significant phase changes during isothermal heat treatments. To reach sample surface temperatures above 1000 C, it is necessary to increase the absorption by an additional coating of magnetite. The temperature distribution on the surface is measured by an infrared camera, which is calibrated for this purpose. With the incorporated active air cooling of the sample backside, the temperature gradient can be controlled, but still leaves room for improvements. Already without

  19. Light controlled friction at a liquid crystal polymer coating with switchable patterning

    NARCIS (Netherlands)

    Liu, D.; Broer, D.J.

    2014-01-01

    We describe a new methodology that enables dynamically control of motion through modulating friction at coating surfaces by exposing with UV light. The principle is based on reversibly switching the surface topographies of the coating by light. The coating surface transfers from flat in the dark to

  20. Thermal transitions in Fe-Ti-Cr-C quaternary system used as precursor during laser in situ carbide coating

    International Nuclear Information System (INIS)

    Singh, Anshul; Porter, Wallace D.; Dahotre, Narendra B.

    2005-01-01

    The temperature range of thermal transitions within the quaternary system (Fe, Ti, Cr, and C) and the thermal stability of the evolved phases were studied with the help of differential scanning calorimetry (DSC). DSC studies indicated that the major exothermic reactions (formation of carbides) take place within 850-1150 deg. C. The evolved phases (TiC, M 7 C 3 , Fe-Cr, and Fe 3 C) were characterized using X-ray diffraction (XRD). This multicomponent powder mixture was used as a precursor for synthesizing a composite coating on the surface of steel via laser surface engineering (LSE). The intended wear applications of the coating made thermal stability investigations vital. Experimental evaluation of thermal stability of the phases formed was done

  1. Influence of coated particle structure in thermal neutron spectrum energy range

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U; Teuchert, E

    1971-02-15

    The heterogenity due to lumping the fuel in coated particles affects the thermal neutron spectrum. A calculation model is discussed which, apart from some simplifying assumptions about the statistical distribution, allows a rigorous computation of effective cross sections for all nuclides of the heterogeneous medium. It is based on an exact computation of the neutron penetration probability through coating and kernel. The model is incorporated in a THERMOS-code providing a double heterogeneous cell calculation, which can be repeated automatically at different time steps in the depletion code system MAFIA-V.S.O.P.. A discussion of the effects of the coated particle structure is given by a comparison of calculations for heterogeneous and homogeneous fuel zones in pebble bed reactor elements. This is performed for enriched UO{sub 2} fuel and for a ThO{sub 2}-PuO{sub 2} mixture in the grains. Depending on the energy dependent total sigmas in the kernels the changes of the cross sections are ranging from 0.1% up to 45%. The influence on the spectrum averaged sigmas of the nuclides in the fresh UO{sub 2} fuel is lower than 1%. For the emerging {sup 240}Pu it increases up to 3.3% during irradiation. For the ThO{sub 2}-PuO{sub 2} fuel the averaged sigmas of the isotopes vary from 0.5% to 5.7% depending on the state of irradiation. Correspondingly there is an influence on the plutonium isotopic composition, on breeding ratios, and on the tilt of k{sub eff} during burnup which will be discussed in detail.

  2. Negative thermal expansion materials: technological key for control of thermal expansion

    OpenAIRE

    Koshi Takenaka

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  3. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M. [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750, Perak (Malaysia)

    2015-07-22

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC’s were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  4. Interlamellar cracking of thermal barrier coatings with TGOs by non-standard four-point bending tests

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P.F. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, X.D. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Aircraft Strength Research Institute of China, Xi' an, 710065 (China); Shang, F.L., E-mail: shangfl@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, C.J. [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an (China)

    2011-09-25

    Highlights: {yields} A non-standard modified four-point bending specimen is adopted for delamination test. {yields} Typical failure mode of the TBC system with TGO layer is demonstrated. {yields} Fracture toughness of 8YSZ on a cold-sprayed MCrAlY coating is evaluated theoretically. - Abstract: This work concerns the failure mode and fracture toughness of plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) deposited on a cold-sprayed MCrAlY bond coat (BC) after thermal oxidation. Upon high-temperature exposure, a thermally grown oxide (TGO) layer was formed along the interface between the BC layer and YSZ ceramic coating layer through oxidation of the bond coat. By utilizing a non-standard modified four-point bending specimen, in conjunction with fractured surface examinations by scanning electron microscope and energy disperse spectroscope, the failure mode of this thermal barrier coating (TBC) system has been checked experimentally. It is shown that delamination cracks firstly initiate at the YSZ/BC interface edge, and then propagate along a wavy path near the interface, not only through the TBC but also within the TGO and along the interlamellar interfaces. Through a theoretical analysis of the bending specimen, the fracture toughness of this TBC system, in terms of strain energy release rate, has been determined from the load-displacement curves which were recorded during the tests.

  5. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    International Nuclear Information System (INIS)

    Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Hussain, M.S.

    2013-01-01

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al 2 O 3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al 2 O 3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  6. Thermocyclic behaviour of microstructurally modified EB-PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Schulz, U.; Fritscher, K.; Raetzer-Scheibe, H.-J.; Kaysser, W.A.; Peters, M.

    1997-01-01

    This paper focuses on the combined effects of substrate temperature and rotation during electron-beam physical vapor deposition (EB-PVD) on the columnar microstructure of yttria partially stabilized zirconia (YPSZ) thermal barrier coatings. Diameter and degree of ordering of the columns and the density of the coatings are sensitive to the processing parameters. Results are discussed in the frame of common structural zone models for PVD processes. The models are extended to consider the rotational effect. EB-PVD YPSZ TBCs of different column diameters were deposited on top of an EB-PVD NiCoCrAlY bondcoat on IN 100 superalloy test bars. The performance of the TBCs was investigated in a cyclic oxidation furnace test rig between 1100 C and 130 C and in a burner rig under hot gas corrosion conditions at a maximum temperature of 900 C. Results showed a correlation between cyclic lifetime and the various microstructures of the TBCs. Samples having a non-regular arrangement of columns performed best in both tests. (orig.)

  7. Low-temperature densification and excellent thermal properties of W–Cu thermal-management composites prepared from copper-coated tungsten powders

    International Nuclear Information System (INIS)

    Zhang, Lianmeng; Chen, Wenshu; Luo, Guoqiang; Chen, Pingan; Shen, Qiang; Wang, Chuanbin

    2014-01-01

    Highlights: • High-density (98.4%) W–20 wt.%Cu composites were low-temperature fabricated. • A