WorldWideScience

Sample records for thermal conductivity measurements

  1. Simultaneous measurements of thermal conductivity and diffusivity ...

    Indian Academy of Sciences (India)

    Abstract. Measurements of thermal conductivity and thermal diffusivity of twin pellets of Se80Te20–xInx. (x = 2, 4, 6 and 10) glasses, prepared under a load of 5 tons were carried out at room temperature using transient plane source (TPS) technique. The measured values of both thermal conductivity and diffusivity were used ...

  2. Thermistor-based thermal conductivity measurement system

    National Research Council Canada - National Science Library

    Atkins, R.T; Wright, E.A

    1990-01-01

    This report describes a patented method for using commercially available thermistors to make in-situ thermal conductivity measurements with commonly available electronic equipment such as digital voltmeters...

  3. Thermal conductivity measurements of Summit polycrystalline silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  4. Measuring nanowire thermal conductivity at high temperatures

    Science.gov (United States)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan

    2018-02-01

    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m‑1 K‑1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.

  5. Local measurement of thermal conductivity and diffusivity

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, David H.; Schley, Robert S. [Materials Science and Engineering Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-2209 (United States); Khafizov, Marat [Mechanical and Aerospace Engineering Department, The Ohio State University, 201 W. 19th Ave., Columbus, Ohio 43210 (United States); Wendt, Brycen L. [Nuclear Science and Engineering, Idaho State University, 921 S. 8th Ave., Pocatello, Idaho 83209-8060 (United States)

    2015-12-15

    Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness for extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representatives of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agreed closely with the literature values. A distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.

  6. Simultaneous measurements of thermal conductivity and diffusivity ...

    Indian Academy of Sciences (India)

    80Te20–In ( = 2, 4, 6 and 10) glasses, prepared under a load of 5 tons were carried out at room temperature using transient plane source (TPS) technique. The measured values of both thermal conductivity and diffusivity were used to ...

  7. Thermal conductance measurement on vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Ng, N.; Collins, R.E.; So, L. [School of Physics, University of Sydney, A28, NSW 2006 (Australia)

    2006-12-15

    A method is described for measuring the thermal conductance of vacuum glazing that is well-suited for integration into the manufacturing process of such devices. The sample of vacuum glazing to be measured, initially at elevated temperature, is placed in contact with a second sample of vacuum glazing with a known thermal conductance. The external surfaces of the glazings are then cooled by forced flow of air at room temperature, and a measurement is made of the rate of decrease of the temperature of the contacting glass sheets of the two samples. The method is simple to implement, and can be automated. The results obtained with the method are quite reproducible. The measurement can be made as the production samples of vacuum glazing cool at the completion of the manufacturing process, resulting in significant savings in time and labour compared with other methods. (author)

  8. Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials

    OpenAIRE

    Zhao, Dongliang; Qian, Xin; Gu, Xiaokun; Jajja, Saad Ayub; Yang, Ronggui

    2016-01-01

    Thermal conductivity and interfacial thermal conductance play crucial roles in the design of engineering systems where temperature and thermal stress are of concerns. To date, a variety of measurement techniques are available for both bulk and thin film solid-state materials with a broad temperature range. For thermal characterization of bulk material, the steady-state absolute method, laser flash diffusivity method, and transient plane source method are most used. For thin film measurement, ...

  9. Analytical estimation of skeleton thermal conductivity of a geopolymer foam from thermal conductivity measurements

    Science.gov (United States)

    Henon, J.; Alzina, A.; Absi, J.; Smith, D. S.; Rossignol, S.

    2015-07-01

    The geopolymers are alumino-silicate binders. The addition of a high pores volume fraction, gives them a thermal insulation character desired in the building industry. In this work, potassium geopolymer foams were prepared at room temperature (< 70 ∘C) by a process of in situ gas release. The porosity distribution shows a multiscale character. However, the thermal conductivity measurements gave values from 0.35 to 0.12 Wm-1.K-1 for a pore volume fraction values between 65 and 85%. In the aim to predict the thermal properties of these foams and focus on the relationship "thermal-conductivity/microstructure", knowledge of the thermal conductivity of their solid skeleton (λ s ) is paramount. However, there is rare work on the determination of this value depending on the initial composition. By the formulation used, the foaming agent contributes to the final network, and it is not possible to obtain a dense material designate to make a direct measurement of λ s . The objective of this work is to use inverse analytical methods to identify the value of λ s . Measurements of thermal conductivity by the fluxmetre technique were performed. The obtained value of the solid skeleton thermal conductivity by the inverse numerical technique is situated in a framework between 0.95 and 1.35 Wm-1.K-1 and is in agreement with one issue from the literature.

  10. Thermal Conductivity Measurement of Anisotropic Biological Tissue In Vitro

    Science.gov (United States)

    Yue, Kai; Cheng, Liang; Yang, Lina; Jin, Bitao; Zhang, Xinxin

    2017-06-01

    The accurate determination of the thermal conductivity of biological tissues has implications on the success of cryosurgical/hyperthermia treatments. In light of the evident anisotropy in some biological tissues, a new modified stepwise transient method was proposed to simultaneously measure the transverse and longitudinal thermal conductivities of anisotropic biological tissues. The physical and mathematical models were established, and the analytical solution was derived. Sensitivity analysis and experimental simulation were performed to determine the feasibility and measurement accuracy of simultaneously measuring the transverse and longitudinal thermal conductivities. The experimental system was set up, and its measurement accuracy was verified by measuring the thermal conductivity of a reference standard material. The thermal conductivities of the pork tenderloin and bovine muscles were measured using the traditional 1D and proposed methods, respectively, at different temperatures. Results indicate that the thermal conductivities of the bovine muscle are lower than those of the pork tenderloin muscle, whereas the bovine muscle was determined to exhibit stronger anisotropy than the pork tenderloin muscle. Moreover, the longitudinal thermal conductivity is larger than the transverse thermal conductivity for the two tissues and all thermal conductivities increase with the increase in temperature. Compared with the traditional 1D method, results obtained by the proposed method are slightly higher although the relative deviation is below 5 %.

  11. Nanofluids Thermal Conductivity Measurement in a Bénard Cell

    Directory of Open Access Journals (Sweden)

    Mohamed Mojahed

    2013-01-01

    Full Text Available Thermal conductivity measurements of nanofluids were the subject of a considerable amount of published research works. Up to now, the experimental results reported in the current literature are still scarce and show many discrepancies. In this paper we propose measurements of this parameter using another experimental set-up. Because of very good thermal controls and big aspect ratio, the Bénard set-up is particularly well suited to determine the thermal conductivity. The aim of this paper is to detail the experimental measurement protocol. The investigated liquid is composed of single walled carbon nanotubes dispersed in water. The effect of liquid temperature on thermal conductivity was investigated. Obtained results confirm the potential of nanofluids in enhancing thermal conductivity and also show that the thermal conductivity temperature dependence is nonlinear, which is different from the results for metal/metal oxide nanofluids.

  12. Thermal conductivity of halide solid solutions: measurement and prediction.

    Science.gov (United States)

    Gheribi, Aïmen E; Poncsák, Sándor; St-Pierre, Rémi; Kiss, László I; Chartrand, Patrice

    2014-09-14

    The composition dependence of the lattice thermal conductivity in NaCl-KCl solid solutions has been measured as a function of composition and temperature. Samples with systematically varied compositions were prepared and the laser flash technique was used to determine the thermal diffusivity from 373 K to 823 K. A theoretical model, based on the Debye approximation of phonon density of state (which contains no adjustable parameters) was used to predict the thermal conductivity of both stoichiometric compounds and fully disordered solid solutions. The predictions obtained with the model agree very well with our measurement. A general method for predicting the thermal conductivity of different halide systems is discussed.

  13. Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria a.

    2009-01-01

    This paper describes the development of a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air. As with other approaches, care is taken to ensure that the heat flow through the test sample is essentially one-dimensional. However, unlike other approaches, no attempt is made to use heated guards to block the flow of heat from the hot plate to the surroundings. It is argued that since large correction factors must be applied to account for guard imperfections when sample dimensions are small, it may be preferable to simply measure and correct for the heat that flows from the heater disc to directions other than into the sample. Experimental measurements taken in a prototype apparatus, combined with extensive computational modeling of the heat transfer in the apparatus, show that sufficiently accurate measurements can be obtained to allow determination of the thermal conductivity of low thermal conductivity materials. Suggestions are made for further improvements in the method based on results from regression analyses of the generated data.

  14. Measurement of in-plane thermal conductivity in polymer films

    Directory of Open Access Journals (Sweden)

    Qingshuo Wei

    2016-04-01

    Full Text Available Measuring the in-plane thermal conductivity of organic thermoelectric materials is challenging but is critically important. Here, a method to study the in-plane thermal conductivity of free-standing films (via the use of commercial equipment based on temperature wave analysis is explored in depth. This subject method required a free-standing thin film with a thickness larger than 10 μm and an area larger than 1 cm2, which are not difficult to obtain for most solution-processable organic thermoelectric materials. We evaluated thermal conductivities and anisotropic ratios for various types of samples including insulating polymers, undoped semiconducting polymers, doped conducting polymers, and one-dimensional carbon fiber bulky papers. This approach facilitated a rapid screening of in-plane thermal conductivities for various organic thermoelectric materials.

  15. Thermal Conductivity Measurement of Liquids by Using a Suspended Microheater

    Science.gov (United States)

    Oh, Dong-Wook

    2017-10-01

    In this paper, the traditional 3ω method is modified in order to measure the thermal conductivity of a droplet of liquid. The 3ω sensor is microfabricated using bulk silicon etching on a silicon wafer to form a microheater on a suspended bridge structure. The Si substrate of over 400 μ m thickness beneath the microheater is etched away so that the sample liquid can fill the gap created between the heater and the bottom boundary of the sensor. The frequency of the sinusoidal heating pulses that are generated from the heater is controlled such that the thermal penetration depth is much smaller than the thickness of the liquid layer. The temperature oscillation of the sample fluid is measured at the thin-film heater to calculate the thermal conductivity of the surrounding fluid. The thermal conductivity and measured values of the de-ionized water and ethanol show a good agreement with the theoretical values at room temperature.

  16. Thermal conductivity measurements of particulate materials under Martian conditions

    Science.gov (United States)

    Presley, M. A.; Christensen, P. R.

    1993-01-01

    The mean particle diameter of surficial units on Mars has been approximated by applying thermal inertia determinations from the Mariner 9 Infrared Radiometer and the Viking Infrared Thermal Mapper data together with thermal conductivity measurement. Several studies have used this approximation to characterize surficial units and infer their nature and possible origin. Such interpretations are possible because previous measurements of the thermal conductivity of particulate materials have shown that particle size significantly affects thermal conductivity under martian atmospheric pressures. The transfer of thermal energy due to collisions of gas molecules is the predominant mechanism of thermal conductivity in porous systems for gas pressures above about 0.01 torr. At martian atmospheric pressures the mean free path of the gas molecules becomes greater than the effective distance over which conduction takes place between the particles. Gas particles are then more likely to collide with the solid particles than they are with each other. The average heat transfer distance between particles, which is related to particle size, shape and packing, thus determines how fast heat will flow through a particulate material.The derived one-to-one correspondence of thermal inertia to mean particle diameter implies a certain homogeneity in the materials analyzed. Yet the samples used were often characterized by fairly wide ranges of particle sizes with little information about the possible distribution of sizes within those ranges. Interpretation of thermal inertia data is further limited by the lack of data on other effects on the interparticle spacing relative to particle size, such as particle shape, bimodal or polymodal mixtures of grain sizes and formation of salt cements between grains. To address these limitations and to provide a more comprehensive set of thermal conductivities vs. particle size a linear heat source apparatus, similar to that of Cremers, was assembled to

  17. System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics

    Science.gov (United States)

    Kim, Hyun-Jung; Skuza, Jonathan R.; Park, Yeonjoon; King, Glen C.; Choi, Sang H.; Nagavalli, Anita

    2012-01-01

    The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at elevated temperatures. This has led to the implementation of nonstandardized practices that have further complicated the confirmation of reported high ZT materials. The major objective of the procedure described is for the simultaneous measurement of the Seebeck coefficient and thermal diffusivity within a given temperature range. These thermoelectric measurements must be precise, accurate, and reproducible to ensure meaningful interlaboratory comparison of data. The custom-built thermal characterization system described in this NASA-TM is specifically designed to measure the inplane thermal diffusivity, and the Seebeck coefficient for materials in the ranging from 73 K through 373 K.

  18. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    Science.gov (United States)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  19. Cryogenic thermal conductivity measurements on candidate materials for space missions

    Science.gov (United States)

    Tuttle, James; Canavan, Edgar; Jahromi, Amir

    2017-12-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. It is common for NASA engineers to propose new candidate materials which have not been totally characterized at cryogenic temperatures. In many cases a material's cryogenic thermal conductivity must be known before selecting it for a specific space-flight application. We developed a test facility in 2004 at NASA's Goddard Space Flight Center to measure the longitudinal thermal conductivity of materials at temperatures between 4 and 300 K, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for ten engineered materials, including alloys, polymers, composites, and a ceramic.

  20. Repeatability Measurements of Apparent Thermal Conductivity of Multilayer Insulation (MLI)

    Science.gov (United States)

    Vanderlaan, M.; Stubbs, D.; Ledeboer, K.; Ross, J.; Van Sciver, S.; Guo, W.

    2017-12-01

    This report presents and discusses the results of repeatability experiments gathered from the multi-layer insulation thermal conductivity experiment (MIKE) for the measurement of the apparent thermal conductivity of multi-layer insulation (MLI) at variable boundary temperatures. Our apparatus uses a calibrated thermal link between the lower temperature shield of a concentric cylinder insulation assembly and the cold head of a cryocooler to measure the heat leak. In addition, thermocouple readings are taken in-between the MLI layers. These measurements are part of a multi-phase NASA-Yetispace-FSU collaboration to better understand the repeatability of thermal conductivity measurements of MLI. NASA provided five 25 layer coupons and requested boundary temperatures of 20 K and 300 K. Yetispace provided ten 12-layer coupons and requested boundary temperatures of 77 K and 293 K. Test conditions must be met for a duration of four hours at a steady state variance of less than 0.1 K/hr on both cylinders. Temperatures from three Cernox® temperature sensors on each of the two cylinders are averaged to determine the boundary temperatures. A high vacuum, less than 10-5 torr, is maintained for the duration of testing. Layer density varied from 17.98 – 26.36 layers/cm for Yetispace coupons and 13.05 – 17.45 layers/cm for the NASA coupons. The average measured heat load for the Yetispace coupons was 2.40 W for phase-one and 2.92 W for phase-two. The average measured heat load for the NASA coupons was 1.10 W. This suggests there is still unknown variance of MLI performance. It has been concluded, variations in the insulation installation heavy effect the apparent thermal conductivity and are not solely dependent on layer density.

  1. Contribution of thermal radiation in measurements of thermal conductivity of sandstone

    Science.gov (United States)

    Zarichnyak, Yu. P.; Ramazanova, A. E.; Emirov, S. N.

    2013-12-01

    The effective thermal conductivity of sandstone at high pressures of up to 400 MPa and temperatures of 273-523 K has been studied. It has been shown that the degree of crystallization of rock-forming minerals substantially influences the temperature and pressure dependences of the thermal conductivity. The contribution of the radiation heat transfer in measurements of the thermal conductivity of sandstone at various temperatures has been analyzed taking into account the reflection and attenuation of the thermal radiation. The results of measuring the reflection and absorption spectra of the thermal radiation have been presented.

  2. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor.

    Science.gov (United States)

    Shrestha, R; Lee, K M; Chang, W S; Kim, D S; Rhee, G H; Choi, T Y

    2013-03-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m(-1) K(-1) at room temperature.

  3. Measurement of thermal conductivity of polymeric nanocomposite materials

    OpenAIRE

    Gannoum, Misel

    2016-01-01

    A measuring device of the thermal conductivity of Polymeric nanocomposite materials is presented. This project is a continuation of a previous master student work. The goal of this project is to build a miniaturized version of the previous device in order to overturn certain limitations and improve its overall performance. The new device uses much smaller size samples, which ensures sample integrity/rigidity and saves material which in the case of nanoadditives may be expensive or scarce. In ...

  4. A transient divided-bar method for simultaneous measurements of thermal conductivity and thermal diffusivity

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Nielsen, Søren Bom; Balling, Niels

    2016-01-01

    Accurate information on thermal conductivity and thermal diffusivity of materials is of central importance in relation to geoscience and engineering problems involving the transfer of heat. Within the geosciences, this applies to all aspects regarding the determination of terrestrial heat flow...... and subsurface temperature modelling. Several methods, including the classical divided-bar technique, are available for laboratory measurements of thermal conductivity, and much fewer for thermal diffusivity. We have generalized the divided-bar technique to the transient case, in which thermal conductivity...... and volumetric heat capacity, and thereby also thermal diffusivity, are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity may also be determined. Finite element formulation provides a flexible forward solution for heat transfer across the bar...

  5. Uncertainty assessment for measurements performed in the determination of thermal conductivity by scanning thermal microscopy

    Science.gov (United States)

    Ramiandrisoa, Liana; Allard, Alexandre; Hay, Bruno; Gomés, Séverine

    2017-11-01

    Although its use has been restricted to relative studies, scanning thermal microscopy (SThM) is presented today as a candidate technique for performing quantitative measurement of thermal properties at the nanoscale, thanks to the development of relevant calibration protocols. Based on the principle behind near-field microscopes, SThM uses a miniaturized probe to quantify heat transfers versus samples of various thermal conductivities: since the thermal conductivity of a sample cannot be directly estimated, a direct measurand related to the heat transfer must be defined and measured for each sample. That is the reason why the SThM technique applied to thermal conductivity determination belongs to the family of inverse methods. In this work we aim to qualify the technique from a metrological point of view. For the first time, assessment of uncertainty associated with the direct measurand Δ R is performed, yielding a result of less than 2%.

  6. Measurement of thermal conductivity and thermal diffusivity using a thermoelectric module

    Science.gov (United States)

    Beltrán-Pitarch, Braulio; Márquez-García, Lourdes; Min, Gao; García-Cañadas, Jorge

    2017-04-01

    A proof of concept of using a thermoelectric module to measure both thermal conductivity and thermal diffusivity of bulk disc samples at room temperature is demonstrated. The method involves the calculation of the integral area from an impedance spectrum, which empirically correlates with the thermal properties of the sample through an exponential relationship. This relationship was obtained employing different reference materials. The impedance spectroscopy measurements are performed in a very simple setup, comprising a thermoelectric module, which is soldered at its bottom side to a Cu block (heat sink) and thermally connected with the sample at its top side employing thermal grease. Random and systematic errors of the method were calculated for the thermal conductivity (18.6% and 10.9%, respectively) and thermal diffusivity (14.2% and 14.7%, respectively) employing a BCR724 standard reference material. Although errors are somewhat high, the technique could be useful for screening purposes or high-throughput measurements at its current state. This new method establishes a new application for thermoelectric modules as thermal properties sensors. It involves the use of a very simple setup in conjunction with a frequency response analyzer, which provides a low cost alternative to most of currently available apparatus in the market. In addition, impedance analyzers are reliable and widely spread equipment, which facilities the sometimes difficult access to thermal conductivity facilities.

  7. Design and Construction of a Thermal Contact Resistance and Thermal Conductivity Measurement System

    Science.gov (United States)

    2015-09-01

    been applied successfully in research such as for measurement of fiberglass insulation by Sathe et al. [33] and is comprehensively discussed in Pratt...thermal conductivity [33], it cannot specifically measure thermal contact resistance at the interfaces, normally not necessary for fiberglass insulation...YVO(4), and Y(3)Al(5)O(12) measured by quasi-one-dimensional flash method,” Optics Express, vol. 14, no. 22, pp. 10528-10536, Oct. 2006. [29] Y

  8. Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids

    Science.gov (United States)

    Cieśliński, Janusz T.; Ronewicz, Katarzyna; Smoleń, Sławomir

    2015-12-01

    In this study the results of simultaneous measurements of dynamic viscosity, thermal conductivity, electrical conductivity and pH of two nanofluids, i.e., thermal oil/Al2O3 and thermal oil/TiO2 are presented. Thermal oil is selected as a base liquid because of possible application in ORC systems as an intermediate heating agent. Nanoparticles were tested at the concentration of 0.1%, 1%, and 5% by weight within temperature range from 20 °C to 60 °C. Measurement devices were carefully calibrated by comparison obtained results for pure base liquid (thermal oil) with manufacturer's data. The results obtained for tested nanofluids were compared with predictions made by use of existing models for liquid/solid particles mixtures.

  9. Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2015-12-01

    Full Text Available In this study the results of simultaneous measurements of dynamic viscosity, thermal conductivity, electrical conductivity and pH of two nanofluids, i.e., thermal oil/Al2O3 and thermal oil/TiO2 are presented. Thermal oil is selected as a base liquid because of possible application in ORC systems as an intermediate heating agent. Nanoparticles were tested at the concentration of 0.1%, 1%, and 5% by weight within temperature range from 20 °C to 60 °C. Measurement devices were carefully calibrated by comparison obtained results for pure base liquid (thermal oil with manufacturer’s data. The results obtained for tested nanofluids were compared with predictions made by use of existing models for liquid/solid particles mixtures.

  10. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  11. Room temperature screening of thermal conductivity by means of thermal transient measurements

    Science.gov (United States)

    García-Cañadas, Jorge; Cheng, Shudan; Márquez-García, Lourdes; Prest, Martin J.; Akbari-Rahimabadi, Ahmad; Min, Gao

    2016-10-01

    A proof of concept of the possibility to estimate thermal conductivity of bulk disc samples at room temperature by means of thermal decays is demonstrated. An experimental set-up was designed and fabricated, which is able to perform thermal transient measurements by using a specially designed multifunctional probe that has the ability to measure temperature at its tip. Initially, the probe is heated by a heater coil located in its interior until the tip temperature reaches a steady state. Then, the probe is contacted with a disc sample which produces a temperature decay until a new state is reached. The difference between the initial and final states temperatures shows a correlation with the thermal conductivity of the sample. Employing a calibration equation, obtained using reference materials, the thermal conductivity can be calculated. Reasonably good random and systematic errors (<13% and ~9% respectively) are obtained. Theoretical simulations performed using COMSOL show a good qualitative agreement with experimental results. This new method involves an inexpensive and simple set-up which can be especially useful for thermal conductivity screening and high-throughput measurements.

  12. A method of measuring the thermal conductivity of liquids

    NARCIS (Netherlands)

    Held, E.F.M. van der; Drunen, F.G. van

    1949-01-01

    We described the development of an apparatus for the determination of the thermal conductivity of liquids. The apparatus is suitable for all kinds of liquids, including the strongest acids. From a given time we pass an electric current through a thin straight wire, placed in a homogeneous material

  13. Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures

    Science.gov (United States)

    Fesmire, James; Sass, Jared; Johnson, Wesley

    2010-01-01

    With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).

  14. Measurements of thermal diffusivity, specific heat capacity and thermal conductivity with LFA 447 apparatus

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    The LFA 447 can be successfully used for measurements of thermal diffusivity, specific heat and thermal conductivity of various samples. It is especially useful when determining the properties of materials on a very small scale. The matrix measurement mode allows for determining the local...... properties with a fine resolution, down to 1 millimeter. Special attention needs to be taken when determining the specific heat capacity in the comparative method. First of all, the test and reference sample should be of nearly identical thickness. Secondly, their heat diffusion time should be comparable, so...... that the heat losses from both samples during the measurement are similar. Finally, the leveling of the samples is very important. Very small discrepancies can cause a massive error in the derivation of specific heat capacity and, as a result, thermal conductivity....

  15. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    Science.gov (United States)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  16. Simultaneous measurement of thermal conductivity and heat capacity by flash thermal imaging methods

    Science.gov (United States)

    Tao, N.; Li, X. L.; Sun, J. G.

    2017-06-01

    Thermal properties are important for material applications involved with temperature. Although many measurement methods are available, they may not be convenient to use or have not been demonstrated suitable for testing of a wide range of materials. To address this issue, we developed a new method for the nondestructive measurement of the thermal effusivity of bulk materials with uniform property. This method is based on the pulsed thermal imaging-multilayer analysis (PTI-MLA) method that has been commonly used for testing of coating materials. Because the test sample for PTI-MLA has to be in a two-layer configuration, we have found a commonly used commercial tape to construct such test samples with the tape as the first-layer material and the bulk material as the substrate. This method was evaluated for testing of six selected solid materials with a wide range of thermal properties covering most engineering materials. To determine both thermal conductivity and heat capacity, we also measured the thermal diffusivity of these six materials by the well-established flash method using the same experimental instruments with a different system setup. This paper provides a description of these methods, presents detailed experimental tests and data analyses, and discusses measurement results and their comparison with literature values.

  17. Thermal conduction in a composite circular cylinder: A new technique for thermal conductivity measurements of lunar core samples

    Science.gov (United States)

    Horai, K.; Winkler, J. L., Jr.; Keihm, S. J.; Langseth, M. G.; Fountain, J. A.; West, E. A.

    1980-01-01

    The core sample is heated from the outside at a known rate and the rise in temperature at the surface of the core tube is measured. Because the temperature at the surface, increasing with time, is a function of the thermal properties of both the core tube and the sample, the thermal properties of the sample can be estimated by comparing the measured temperature with the theory, provided that the thermal properties of the core tube are known. Thus it is not necessary to extract the sample from the core tube to make the measurements. Neither is it necessary to insert a heater, or temperature sensor, into the sample within the core tube, as would be required if another method were applied. The sample remains intact after the measurements. The temperature change in the sample can be kept to a minimum as long as the thermal conductivity determination is possible with a reasonable precision. If the radiative method of heat transfer is chosen, the core tube will only be in mechanical contact with the sample holder and a sensor attached to the core tube to measure the surface temperature, thereby greatly reducing the possibility of disturbing the sample.

  18. Simultaneous Measurement of Thermal Diffusivity and Thermal Conductivity by Means of Inverse Solution for One-Dimensional Heat Conduction (Anisotropic Thermal Properties of CFRP for FCEV)

    Science.gov (United States)

    Kosaka, Masataka; Monde, Masanori

    2015-11-01

    For safe and fast fueling of hydrogen in a fuel cell electric vehicle at hydrogen fueling stations, an understanding of the heat transferred from the gas into the tank wall (carbon fiber reinforced plastic (CFRP) material) during hydrogen fueling is necessary. Its thermal properties are needed in estimating heat loss accurately during hydrogen fueling. The CFRP has anisotropic thermal properties, because it consists of an adhesive agent and layers of the CFRP which is wound with a carbon fiber. In this paper, the thermal diffusivity and thermal conductivity of the tank wall material were measured by an inverse solution for one-dimensional unsteady heat conduction. As a result, the thermal diffusivity and thermal conductivity were 2.09 × 10^{-6}{ m}2{\\cdot }{s}^{-1} and 3.06{ W}{\\cdot }{m}{\\cdot }^{-1}{K}^{-1} for the axial direction, while they were 6.03 × 10^{-7} {m}2{\\cdot }{s}^{-1} and 0.93 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} for the radial direction. The thermal conductivity for the axial direction was about three times higher than that for the radial direction. The thermal diffusivity shows the same trend in both directions because the thermal capacity, ρ c, is independent of direction, where ρ is the density and c is the heat capacity.

  19. Evaluation of different measurements for effective thermal conductivity of fibrous materials

    Directory of Open Access Journals (Sweden)

    Tian Ming-Wei

    2014-01-01

    Full Text Available Effective thermal conductivity is generally recognized as the intrinsic factor to reveal the thermal responses of fibrous materials. Here, two typical measurements, the step-wise transient method and the guarded hot plate method, were utilized to identify their feasibility for the effective thermal conductivity of fibrous materials (non-woven fabric and twill fabric with different stacking layers.

  20. A review on measurement techniques of apparent thermal conductivity of nanofluids

    Science.gov (United States)

    Tsz Loong, Tang; Salleh, Hamidon

    2017-08-01

    Thermal conductivity of nanofluids has been extensively studied for a number of years because it is a very first evaluation of the heat transfer performance of nanofluids. However, not the single theoretical model predicts thermal conductivity of nanofluids accurately. Hence, different measurement techniques have been used to measure thermal conductivity of nanofluids. This paper focuses on different measurement techniques of thermal conductivity of nanofluids. The working principle, limitation and advantages of different measurement techniques have been discussed. The measurement techniques discussed in this paper included transient hot wire, transient plane source, 3-omega technique, steady-state parallel method, thermal comparator and laser flash method. Eventually, some suggestions have been made for improving the reliability of the measurement of thermal conductivity.

  1. Thermal conductivity of snow measured by three independent methods and anisotropy considerations

    Directory of Open Access Journals (Sweden)

    F. Riche

    2013-02-01

    Full Text Available The thermal conductivity of snow determines the temperature gradient, and by this, it has a direct effect on the rate of snow metamorphism. It is therefore a key property of snow. However, thermal conductivities measured with the transient needle probe and the steady-state, heat flux plate differ. In addition, the anisotropy of thermal conductivity plays an important role in the accuracy of thermal conductivity measurements. In this study, we investigated three independent methods to measure snow thermal conductivity and its anisotropy: a needle probe with a long heating time, a guarded heat flux plate, and direct numerical simulation at the microstructural level of the pore and ice structure. The three methods were applied to identical snow samples. We analyzed the consistency and the difference between these methods. As already shown in former studies, we observed a distinct difference between the anisotropy of thermal conductivity in small rounded grains and in depth hoar. Indeed, the anisotropy between vertical and horizontal thermal conductivity components ranges between 0.5–2. This can cause a difference in thermal conductivity measurements carried out with needle probes of up to –25 % to +25 % if the thermal conductivity is calculated only from a horizontally inserted needle probe. Based on our measurements and the comparison of the three methods studied here, the direct numerical simulation is the most reliable method, as the tensorial components of the thermal conductivity can be calculated and the corresponding microstructure is precisely known.

  2. Application of Hot-wire Method for Measuring Thermal Conductivity of Fine Ceramics

    Directory of Open Access Journals (Sweden)

    Shangxi WANG

    2016-11-01

    Full Text Available Ceramic substrate is preferred in high density packaging due to its high electrical resistivity and moderate expansion coefficient. The thermal conductivity is a key parameter for packaging substrates. There are two common methods to measure the thermal conductivity, which are the hot-wire method and the laser-flash method. Usually, the thermal conductivities of porcelain is low and meet the measurement range of hot-wire method, and the measured value by hot-wire method has little difference with that by laser-flash method. In recent years, with the requirement of high-powered LED lighting, some kinds of ceramic substrates with good thermal conductivity have been developed and their thermal conductivity always measured by the means of laser flash method, which needs expensive instrument. In this paper, in order to detect the thermal conductivity of fine ceramic with convenience and low cost, the feasibility of replacing the laser flash method with hot wire method to measure thermal conductivity of ceramic composites was studied. The experiment results showed that the thermal conductivity value of fine ceramics measured by the hot-wire method is severely lower than that by the laser-flash method. However, there is a positive relationship between them. It is possible to measure the thermal conductivity of fine ceramic workpiece instantly by hot-wire method via a correction formula.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12543

  3. An apparatus to measure the thermal conductivity of insulation panels at sub-ambient temperature

    NARCIS (Netherlands)

    Vanapalli, Srinivas; Klünder, T.; Hegeman, I.; Tolboom, A.H.; ter Brake, Hermanus J.M.

    2017-01-01

    A single-sided guarded-plate apparatus has been developed to measure the thermal conductivity of insulation panels of sub-meter size at sub-ambient temperatures ranging from 250 to 300 K. This apparatus allows thermal conductivity measurements to be performed at large temperature differences

  4. Correction on the influence of thermal contact resistance in thermal conductivity measurements using the guarded hot plate method

    Directory of Open Access Journals (Sweden)

    Stepanić Nenad

    2009-01-01

    Full Text Available This work considers the influence of finite thermal contact resistances which exist in thermal conductivity measurements of homogeneous and poor thermal conductive materials using the guarded hot plate method. As an example of correction method proposed in this work, different experimental results obtained from a standard reference material sample (with the conductivity of about 1 W/mK have been presented.

  5. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kukkonen, I.; Suppala, I. [Geological Survey of Finland, Espoo (Finland)

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into `active` drill hole methods, and `passive` indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial `leak` of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm{sup -1}, temperature recording with 5-7 sensors placed along the probe, and

  6. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods

    Directory of Open Access Journals (Sweden)

    Insun Jo

    2015-05-01

    Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  7. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.

    Science.gov (United States)

    Liang, Xin M; Ding, Weiping; Chen, Hsiu-hung; Shu, Zhiquan; Zhao, Gang; Zhang, Hai-feng; Gao, Dayong

    2011-10-01

    Obtaining accurate thermal properties of biomaterials plays an important role in the field of cryobiology. Currently, thermal needle, which is constructed by enclosing a manually winded thin metal wire with an insulation coating in a metallic sheath, is the only available device that is capable of measuring thermal conductivity of biomaterials. Major drawbacks, such as macroscale sensor size, lack of versatile format to accommodate samples with various shapes and sizes, neglected effects of heat transfer inside the probe and thermal contact resistance between the sensing element and the probe body, difficult to mass produce, poor data repeatability and reliability and labor-intense sensor calibration, have significantly reduced their potential to be an essential measurement tool to provide key thermal property information of biological specimens. In this study, we describe the development of an approach to measure thermal conductivity of liquids and soft bio-tissues using a proof-of-concept MEMS based thermal probe. By employing a microfabricated closely-packed gold wire to function as the heater and the thermistor, the presented thermal sensor can be used to measure thermal conductivities of fluids and natural soft biomaterials (particularly, the sensor may be directly inserted into soft tissues in living animal/plant bodies or into tissues isolated from the animal/plant bodies), where other more standard approaches cannot be used. Thermal standard materials have been used to calibrate two randomly selected thermal probes at room temperature. Variation between the obtained system calibration constants is less than 10%. By incorporating the previously obtained system calibration constant, three randomly selected thermal probes have been successfully utilized to measure the thermal conductivities of various solutions and tissue samples under different temperatures. Overall, the measurements are in agreement with the recommended values (percentage error less than 5

  8. Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Krichler, M., E-mail: Martin.Krichler@tu-dresden.de [Chair of Magnetofluiddynamics, Technische Universitaet Dresden, 01062 Dresden (Germany); Odenbach, S. [Chair of Magnetofluiddynamics, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2013-01-15

    Material properties like viscosity and sound propagation in colloidal suspensions of magnetic nanoparticles, so-called ferrofluids, are known to depend on external magnetic fields due to structure formation of the magnetic particles. In this experimental study we investigate the effect of magnetically driven structure formation on heat flux in ferrofluids on the basis of thermal conductivity measurements in variation of an external magnetic field. Therefore an improved measuring device based on the plane heat source instead of the standard hot wire method is used to enable both parallel and perpendicular orientation of magnetic field and heat flux. Thermal conductivity measurements are carried out in variation of strength and direction of an external magnetic field relative to heat flux. Unlike former experimental investigations for the first time the results show qualitative consistency with theoretical predictions for both orientations. - Highlights: Black-Right-Pointing-Pointer We study the effect of a magnetic field on thermal conductivity in ferrofluids. Black-Right-Pointing-Pointer To investigate potential anisotropy, a plane heat source is mandatory. Black-Right-Pointing-Pointer For the first time experimental results fit qualitatively with theoretical predictions.

  9. Note: Development of a microfabricated sensor to measure thermal conductivity of picoliter scale liquid samples.

    Science.gov (United States)

    Park, Byoung Kyoo; Yi, Namwoo; Park, Jaesung; Kim, Dongsik

    2012-10-01

    This paper presents a thermal analysis device, which can measure thermal conductivity of picoliter scale liquid sample. We employ the three omega method with a microfabricated AC thermal sensor with nanometer width heater. The liquid sample is confined by a micro-well structure fabricated on the sensor surface. The performance of the instrument was verified by measuring the thermal conductivity of 27-picoliter samples of de-ionized (DI) water, ethanol, methanol, and DI water-ethanol mixtures with accuracies better than 3%. Furthermore, another analytical scheme allows real-time thermal conductivity measurement with 5% accuracy. To the best of our knowledge, this technique requires the smallest volume of sample to measure thermal property ever.

  10. A direct differential method for measuring thermal conductivity of thin films.

    Science.gov (United States)

    Zeng, Yuqiang; Marconnet, Amy

    2017-04-01

    Over the past two decades, significant progress in the thermal metrology for thin films and wires has enabled new understanding of the thermal conductivity of nanostructures. However, a large variation in the measured thermal conductivity of similar nanostructured samples has been observed. In addition to potential differences from sample-to-sample, measurement uncertainty contributes to the observed variation in measured properties. Many now standard micro/nanoscale thermal measurement techniques require extensive calibration of the properties of the substrate and support structures and this calibration contributes to uncertainty. Within this work, we develop a simple, direct differential electrothermal measurement of thermal conductivity of micro/nanoscale sample films by extending conventional steady state electrothermal approaches. Specifically, we leverage a cross-beam measurement structure consisting of a suspended, composite heater beam (metal on silicon) with the sample structure (silicon) extending at a right angle from the center of the heater beam, in a configuration similar to the T-type measurements used for fibers and nanotubes. To accurately resolve the thermal conductivity of the sample, the steady-state Joule heating response of the cross-beam structure is measured. Then, the sample is detached from the heater beam with a Focused Ion Beam (FIB) tool enabling direct characterization of the composite heater beam thermal properties. The differential measurement of the structure before and after FIB cut enables direct extraction of the sample thermal conductivity. The effectiveness of this differential measurement technique is demonstrated by measuring thermal conductivity of a 200 nm silicon layer. Additionally, this new method enables investigation of the accuracy of conventional approaches for extracting sample thermal conductivity with the composite beam structure and conventional comparative approaches. The results highlight the benefits of the

  11. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor.

    Science.gov (United States)

    Liang, Xin M; Sekar, Praveen K; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-20

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  12. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    Science.gov (United States)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-01-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037

  13. Measuring Thermal Conductivity of a Small Insulation Sample

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria A.

    2009-01-01

    A multiple-throat venturi system has been invented for measuring laminar flow of air or other gas at low speed (1 to 30 cm/s) in a duct while preserving the laminar nature of the flow and keeping the velocity profile across the duct as nearly flat as possible. While means for measuring flows at higher speeds are well established, heretofore, there have been no reliable means for making consistent, accurate measurements in this speed range. In the original application for which this system was invented, the duct leads into the test section of a low-speed wind tunnel wherein uniform, low-speed, laminar flow is required for scientific experiments. The system could also be used to monitor a slow flow of gas in an industrial process like chemical vapor deposition. In the original application, the multiple- throat venturi system is mounted at the inlet end of the duct having a rectangular cross section of 19 by 14 cm, just upstream of an assembly of inlet screens and flow straighteners that help to suppress undesired flow fluctuations (see Figure 1). The basic venturi measurement principle is well established: One measures the difference in pressure between (1) a point just outside the inlet, where the pressure is highest and the kinetic energy lowest; and (2) the narrowest part (the throat) of the venturi passage, where the kinetic energy is highest and the pressure is lowest. Then by use of Bernoulli s equation for the relationship between pressure and kinetic energy, the volumetric flow speed in the duct can be calculated from the pressure difference and the inlet and throat widths. The design of this system represents a compromise among length, pressure recovery, uniformity of flow, and complexity of assembly. Traditionally, venturis are used to measure faster flows in narrower cross sections, with longer upstream and downstream passages to maintain accuracy. The dimensions of the passages of the present venturi system are sized to provide a readily measurable

  14. Development of a direct push based in-situ thermal conductivity measurement system

    Science.gov (United States)

    Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct

  15. Thermal Conductivity of Papua New Guinea Balsa Wood Measured using the Needle Probe Procedure

    OpenAIRE

    Nathan James Kotlarewski; Barbara Ozarska; Benson K. Gusamo

    2014-01-01

    A study was undertaken with the aim to determine thermal properties of balsa wood grown in plantations in Papua New Guinea. Thermal conductivity values were measured using the needle probe procedure according to ASTM D5334 (2008). The mean thermal conductivity results of balsa were in the range of 0.0381 W/mK to 0.0665 W/mK, similar to other materials currently used as insulators in the construction industry. A balsa sample with a density of 113 kg m3 had the lowest thermal conductivity value...

  16. Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy.

    Science.gov (United States)

    Hwang, Gwangseok; Kwon, Ohmyoung

    2016-03-07

    Using null-point scanning thermal microscopy (NP SThM), we have measured and analyzed the size dependence of the thermal conductivity of graphene. To do so, we rigorously re-derived the principal equation of NP SThM in terms of thermal property measurements so as to explain how this technique can be effectively used to quantitatively measure the local thermal resistance with nanoscale spatial resolution. This technique has already been proven to resolve the major problems of conventional SThM, and to quantitatively measure the temperature profile. Using NP SThM, we measured the variation in the thermal resistance of suspended chemical vapor deposition (CVD)-grown graphene disks with radii of 50-3680 nm from the center to the edge with respect to the size. By thoroughly analyzing the size dependence of the thermal resistance, we show that, with increasing graphene size, the ballistic resistance becomes more dominant in the thermal resistance experienced by a heat source of finite size and that the thermal conductivity experienced by such a heat source can even decrease. The results of this study reveal that the thermal conductivity of graphene detected by a heat source depends on the size of the heat source relative to that of the suspended graphene and on how the heat source and graphene are connected. As demonstrated in this study, NP SThM will be very useful for quantitative thermal characterization of not only CVD-grown graphene but also various other nanomaterials and nanodevices.

  17. Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3ω mode and novel calibration strategies.

    Science.gov (United States)

    Wilson, Adam A; Muñoz Rojo, Miguel; Abad, Begoña; Perez, Jaime Andrés; Maiz, Jon; Schomacker, Jason; Martín-Gonzalez, Marisol; Borca-Tasciuc, Diana-Andra; Borca-Tasciuc, Theodorian

    2015-10-07

    This work discusses measurement of thermal conductivity (k) of films using a scanning hot probe method in the 3ω mode and investigates the calibration of thermal contact parameters, specifically the thermal contact resistance (R(th)C) and thermal exchange radius (b) using reference samples with different thermal conductivities. R(th)C and b were found to have constant values (with b = 2.8 ± 0.3 μm and R(th)C = 44,927 ± 7820 K W(-1)) for samples with thermal conductivity values ranging from 0.36 W K(-1) m(-1) to 1.1 W K(-1) m(-1). An independent strategy for the calibration of contact parameters was developed and validated for samples in this range of thermal conductivity, using a reference sample with a previously measured Seebeck coefficient and thermal conductivity. The results were found to agree with the calibration performed using multiple samples of known thermal conductivity between 0.36 and 1.1 W K(-1) m(-1). However, for samples in the range between 16.2 W K(-1) m(-1) and 53.7 W K(-1) m(-1), calibration experiments showed the contact parameters to have considerably different values: R(th)C = 40,191 ± 1532 K W(-1) and b = 428 ± 24 nm. Finally, this work demonstrates that using these calibration procedures, measurements of both highly conductive and thermally insulating films on substrates can be performed, as the measured values obtained were within 1-20% (for low k) and 5-31% (for high k) of independent measurements and/or literature reports. Thermal conductivity results are presented for a SiGe film on a glass substrate, Te film on a glass substrate, polymer films (doped with Fe nano-particles and undoped) on a glass substrate, and Au film on a Si substrate.

  18. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge.

    Science.gov (United States)

    Wingert, Matthew C; Chen, Zack C Y; Kwon, Shooshin; Xiang, Jie; Chen, Renkun

    2012-02-01

    Thermal conductivity of one-dimensional nanostructures, such as nanowires, nanotubes, and polymer chains, is of significant interest for understanding nanoscale thermal transport phenomena as well as for practical applications in nanoelectronics, energy conversion, and thermal management. Various techniques have been developed during the past decade for measuring this fundamental quantity at the individual nanostructure level. However, the sensitivity of these techniques is generally limited to 1 × 10(-9) W∕K, which is inadequate for small diameter nanostructures that potentially possess thermal conductance ranging between 10(-11) and 10(-10) W∕K. In this paper, we demonstrate an experimental technique which is capable of measuring thermal conductance of ∼10(-11) W∕K. The improved sensitivity is achieved by using an on-chip Wheatstone bridge circuit that overcomes several instrumentation issues. It provides a more effective method of characterizing the thermal properties of smaller and less conductive one-dimensional nanostructures. The best sensitivity experimentally achieved experienced a noise equivalent temperature below 0.5 mK and a minimum conductance measurement of 1 × 10(-11) W∕K. Measuring the temperature fluctuation of both the four-point and bridge measurements over a 4 h time period shows a reduction in measured temperature fluctuation from 100 mK to 0.6 mK. Measurement of a 15 nm Ge nanowire and background conductance signal with no wire present demonstrates the increased sensitivity of the bridge method over the traditional four-point I-V measurement. This ultra-sensitive measurement platform allows for thermal measurements of materials at new size scales and will improve our understanding of thermal transport in nanoscale structures.

  19. Construction of a Novel Method of Measuring Thermal Conductivity for Nanostructures

    Directory of Open Access Journals (Sweden)

    Hiroya Ikeda

    2015-04-01

    Full Text Available With the aim of characterizing the thermal conduction in a nanometer-scaled materials, we have constructed a novel method on the basis of an ac calorimetric method. In this method, periodic sample heating is performed by light irradiation and the corresponding periodic temperature is detected by infrared irradiative thermometer. This makes us measure the thermal diffusivity out of contact with the objective sample. In the present study, we confirm to measure the thermal diffusivity of bulk Si and Cu by this non-contact method with halogen-lamp irradiation. In determining the thermal diffusivity from the relationship between distance deviation and delay time, the simplest wave equation is used, and the obtained values of thermal diffusivity for Si and Cu are close to those reported. Therefore, this non-contact method is useful for evaluating the thermal conduction and applicable for nanometer-scaled materials by improving local heating and local detecting systems.

  20. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  1. Multigap Superconductivity in the Ferromagnetic Superconductor UCoGe Revealed by Thermal Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    Ludovic Howald

    2014-01-01

    Full Text Available We performed thermal conductivity measurements on a single crystal of the ferromagnetic superconductor UCoGe under magnetic field. Two different temperature dependencies of the thermal conductivity are observed, for H→∥b→: linear at low magnetic field and quadratic for magnetic field larger than 1 Tesla. At the same field value, a plateau appears in the field dependency of the residual term of thermal conductivity. Such observations suggest a multigap superconductivity with a line of nodes in the superconducting gap.

  2. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    Science.gov (United States)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2017-08-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  3. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    Science.gov (United States)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2018-02-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  4. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand

    Science.gov (United States)

    Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.

    2002-01-01

    Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.

  5. The design of high-temperature thermal conductivity measurements apparatus for thin sample size

    Directory of Open Access Journals (Sweden)

    Hadi Syamsul

    2017-01-01

    Full Text Available This study presents the designing, constructing and validating processes of thermal conductivity apparatus using steady-state heat-transfer techniques with the capability of testing a material at high temperatures. This design is an improvement from ASTM D5470 standard where meter-bars with the equal cross-sectional area were used to extrapolate surface temperature and measure heat transfer across a sample. There were two meter-bars in apparatus where each was placed three thermocouples. This Apparatus using a heater with a power of 1,000 watts, and cooling water to stable condition. The pressure applied was 3.4 MPa at the cross-sectional area of 113.09 mm2 meter-bar and thermal grease to minimized interfacial thermal contact resistance. To determine the performance, the validating process proceeded by comparing the results with thermal conductivity obtained by THB 500 made by LINSEIS. The tests showed the thermal conductivity of the stainless steel and bronze are 15.28 Wm-1K-1 and 38.01 Wm-1K-1 with a difference of test apparatus THB 500 are −2.55% and 2.49%. Furthermore, this apparatus has the capability to measure the thermal conductivity of the material to a temperature of 400°C where the results for the thermal conductivity of stainless steel is 19.21 Wm-1K-1 and the difference was 7.93%.

  6. Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure

    Science.gov (United States)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C

  7. New portable instrument for the measurement of thermal conductivity in gas process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Queirós, C. S. G. P.; Lourenço, M. J. V., E-mail: mjlourenco@fc.ul.pt; Vieira, S. I.; Nieto de Castro, C. A. [Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Serra, J. M. [Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal)

    2016-06-15

    The development of high temperature gas sensors for the monitoring and determination of thermophysical properties of complex process mixtures at high temperatures faces several problems, related with the materials compatibility, active sensing parts sensitivity, and lifetime. Ceramic/thin metal films based sensors, previously developed for the determination of thermal conductivity of molten materials up to 1200 °C, were redesigned, constructed, and applied for thermal conductivity measuring sensors. Platinum resistance thermometers were also developed using the same technology, to be used in the temperature measurement, which were also constructed and tested. A new data acquisition system for the thermal conductivity sensors, based on a linearization of the transient hot-strip model, including a portable electronic bridge for the measurement of the thermal conductivity in gas process conditions was also developed. The equipment is capable of measuring the thermal conductivity of gaseous phases with an accuracy of 2%-5% up to 840 °C (95% confidence level). The development of sensors up to 1200 °C, present at the core of the combustion chambers, will be done in a near future.

  8. Thermal conductivity of particulate materials: A summary of measurements taken at the Marshall Space Flight Center

    Science.gov (United States)

    Fountain, J. A.

    1973-01-01

    Thermal conductivity measurements of particulate materials in vacuum are presented in summary. Particulate basalt and soda lime glass beads of various size ranges were used as samples. The differentiated line heat source method was used for the measurements. A comprehensive table is shown giving all pertinent experimental conditions. Least-squares curve fits to the data are presented.

  9. Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene

    Science.gov (United States)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Ago, Hiroki; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Takata, Yasuyuki

    2016-06-01

    We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω-1 m-1 and 2100 W m-1 K-1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.

  10. Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi, E-mail: takamatsu@mech.kyushu-u.ac.jp, E-mail: x-zhang@tsinghua.edu.cn [Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Ago, Hiroki [Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580 (Japan); Zhang, Xing, E-mail: takamatsu@mech.kyushu-u.ac.jp, E-mail: x-zhang@tsinghua.edu.cn [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi [Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395 (Japan); Takata, Yasuyuki [International Institute for Carbon-Neutral Energy Research, Kyushu University, Fukuoka 819-0395 (Japan)

    2016-06-28

    We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω{sup −1} m{sup −1} and 2100 W m{sup −1} K{sup −1} for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.

  11. Parallel measurement of conductive and convective thermal transport of micro/nanowires based on Raman mapping

    Science.gov (United States)

    Li, Man; Li, Changzheng; Wang, Jianmei; Xiao, Xiangheng; Yue, Yanan

    2015-06-01

    Heat conduction and convection are coupled effects in thermal transport of low-dimensional materials especially at micro/nanoscale. However, the parallel measurement is a challenge due to the limitation of characterization pathways. In this work, we report a method to study conductive and convective thermal transport of micro/nanowires simultaneously by using steady-state Joule-heating and Raman mapping. To examine this method, the carbon nanotubes (CNTs) fiber (36 μm in diameter) is characterized and its temperature dependence of thermal properties including thermal conductivity and convection coefficient in ambient air is studied. Preliminary results show that thermal conductivity of the CNTs fiber increases from 26 W/m K to 34 W/m K and convection coefficient decreases from 1143 W/m2 K to 1039 W/m2 K with temperature ranging from 312 to 444 K. The convective heat dissipation to the air could be as high as 60% of the total Joule heating power. Uncertainty analysis is performed to reveal that fitting errors can be further reduced by increasing sampling points along the fiber. This method features a fast/convenient way for parallel measurement of both heat conduction and convection of micro/nanowires which is beneficial to comprehensively understanding the coupled effect of micro/nanoscale heat conduction and convection.

  12. Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory

    Science.gov (United States)

    Cheaito, Ramez; Gaskins, John T.; Caplan, Matthew E.; Donovan, Brian F.; Foley, Brian M.; Giri, Ashutosh; Duda, John C.; Szwejkowski, Chester J.; Constantin, Costel; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.; Hopkins, Patrick E.

    2015-01-01

    The advances in phonon spectroscopy in homogeneous solids have unveiled extremely useful physics regarding the contribution of phonon energies and mean-free paths to the thermal transport in solids. However, as material systems decrease to length scales less than the phonon mean-free paths, thermal transport can become much more impacted by scattering and transmission across interfaces between two materials than the intrinsic relaxation in the homogeneous solid. To elucidate the fundamental interactions driving this thermally limiting interfacial phonon scattering process, we analytically derive and experimentally measure a thermal boundary conductance accumulation function. We develop a semiclassical theory to calculate the thermal boundary conductance accumulation function across interfaces using the diffuse mismatch model, and validate this derivation by measuring the interface conductance between eight different metals on native oxide/silicon substrates and four different metals on sapphire substrates. Measurements were performed at room temperature using time-domain thermoreflectance and represent the first-reported values for interface conductance across several metal/native oxide/silicon and metal/sapphire interfaces. The various metal films provide a variable bandwidth of phonons incident on the metal/substrate interface. This method of varying phonons' cutoff frequency in the film while keeping the same substrate allows us to mimic the accumulation of thermal boundary conductance and thus provides a direct method to experimentally validate our theory. We show that the accumulation function can be written as the product of a weighted average of the interfacial phonon transmission function and the accumulation of the temperature derivative of the phonon flux incident on the interface; this provides the framework to extract an average, spectrally dependent phonon transmissivity from a series of thermal boundary conductance measurements. Our approach provides

  13. Water-Based Fe2O3 Nanofluid Characterization: Thermal Conductivity and Viscosity Measurements and Correlation

    Directory of Open Access Journals (Sweden)

    L. Colla

    2012-01-01

    Full Text Available An experimental investigation on water-based nanofluids containing iron oxide (Fe2O3 in concentrations ranging between 5 and 20% in mass is presented. The purpose of this study is to measure thermal conductivity and dynamic viscosity of these fluids, as a starting point to study the heat transfer capability. The stability of the nanofluids was verified by pH and Zeta potential measurements. A dynamic light scattering (DLS technique was used to obtain the mean nanoparticle diameters. It was found that thermal conductivity of these nanofluids improved with temperature and particles concentration. The temperature and nanoparticle concentration effects on viscosity were analyzed, obtaining a significant increase with respect to water. All the fluids exhibited a Newtonian behaviour. The experimental values were compared with some theoretical models for both thermal conductivity and dynamic viscosity.

  14. Simultaneous Measurement of Thermal Conductivity and Specific Heat in a Single TDTR Experiment

    Science.gov (United States)

    Sun, Fangyuan; Wang, Xinwei; Yang, Ming; Chen, Zhe; Zhang, Hang; Tang, Dawei

    2018-01-01

    Time-domain thermoreflectance (TDTR) technique is a powerful thermal property measurement method, especially for nano-structures and material interfaces. Thermal properties can be obtained by fitting TDTR experimental data with a proper thermal transport model. In a single TDTR experiment, thermal properties with different sensitivity trends can be extracted simultaneously. However, thermal conductivity and volumetric heat capacity usually have similar trends in sensitivity for most materials; it is difficult to measure them simultaneously. In this work, we present a two-step data fitting method to measure the thermal conductivity and volumetric heat capacity simultaneously from a set of TDTR experimental data at single modulation frequency. This method takes full advantage of the information carried by both amplitude and phase signals; it is a more convenient and effective solution compared with the frequency-domain thermoreflectance method. The relative error is lower than 5 % for most cases. A silicon wafer sample was measured by TDTR method to verify the two-step fitting method.

  15. Experimental study on manufacturing of insulation vacuum glazing and measurement of the thermal conductance

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Ho; Yoon, Il Seob [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kwak, Ho Sang [Kumoh National Institute of Technology, Gumi (Korea, Republic of); Lee, Bo Hwa [Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2006-08-15

    Window is a critical component in the design of energy-efficient buildings. To minimize the heat loss, insulation performance of the glazing has to be improved. Manufacturing of vacuum glazing has been motivated by the possibility of making windows of very good thermal insulation properties for such applications. It is made by maintaining vacuum in the gap between two glass panes. Pillars are placed between them to withstand the atmospheric pressure. Edge covers are applied to reduce conduction through the edge. Accurate measurements have been made of the radiative heat transfer, the pillar conduction and the gas conduction using a guarded hot plate apparatus. Vacuum glazing is found to have low thermal conductance roughly below 1W/m{sup 2}K. Among the heat transfer modes of residual gas conduction, conduction through support pillar and the radiative heat transfer between the glass panes, the last one is the most dominant to the overall thermal conductance. Vacuum glazing using very low emittance Al-coated glass has an overall thermal conductance of about 0.7W/m{sup 2}K.

  16. Measurements of thermal conductivity and thermal diffusivity of hen egg-white lysozyme crystals using a short hot wire method

    Science.gov (United States)

    Fujiwara, Seiji; Maki, Syou; Tanaka, Seiichi; Maekawa, Ryunosuke; Masuda, Tomoki; Hagiwara, Masayuki

    2017-07-01

    Thermal conductivity and thermal diffusivity of hen egg-white lysozyme (HEWL) crystals were examined by using the transient short hot wire method. This method is based on the conventional hot wire method, but improved by using a wire that is much shorter than conventional ones. The magneto-Archimedes levitation technique was utilized to attach the HEWL crystals onto the wire. Owing to the upward magnetic force, the HEWL crystals were deposited at the air-liquid interface of the protein buffer solution where the short hot wire was preliminarily fixed. In situ observation clarified that the wire was completely buried into the HEWL crystals. By means of these techniques, the measurement of thermal conductivity and thermal diffusivity of HEWL crystals was realized for the first time. Gadolinium chloride (a paramagnetic subject) was used as a precipitant agent of crystallization. Crystal growth was carried out over 20 h at 17.2 °C. The applied magnetic field was 4 T. Measurements were conducted during the crystal growth at two different times. The thermal conductivity and diffusivity of the HEWL crystals were determined to be 0.410 W/(m.K) and 3.77×10-8 m2/s at 14 h after, and 0.438 W/(m.K) and 5.18×10-8 m2/s at 20 h after, respectively. We emphasize that this method is versatile and applicable for other protein crystals.

  17. On the measurement of the thermal conductivity of liouids by a non-stationary method

    NARCIS (Netherlands)

    Held, E.F.M. van der; Hardebol, J.; Kalshoven, J.

    1953-01-01

    In 1949 in this journal 1) a paper appeared dealing with a non-stationary method for measuring the thermal conductivity of liquids. This method, indicated first by Stålhane and Pyk 2), was based upon the temperature rise at a certain distance from an electrically heated wire, producing a constant

  18. Thermal conductivity of low temperature grown vertical carbon nanotube bundles measured using the three-? method

    NARCIS (Netherlands)

    Vollebregt, S.; Banerjee, S.; Beenakker, K.; Ishihara, R.

    2013-01-01

    The thermal conductivity of as-grown vertical multi-walled carbon nanotubes (CNT) bundles fabricated at low temperature (500?°C) was measured using a vertical 3?-method. For this, CNT were selectively grown inside an oxide opening and sandwiched between two metal electrodes. The validity of the

  19. A Hot-Wire Method Based Thermal Conductivity Measurement Apparatus for Teaching Purposes

    Science.gov (United States)

    Alvarado, S.; Marin, E.; Juarez, A. G.; Calderon, A.; Ivanov, R.

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer…

  20. Measurement of the thermal conductivity of thin insulating anisotropic material with a stationary hot strip method

    Science.gov (United States)

    Jannot, Yves; Degiovanni, Alain; Félix, Vincent; Bal, Harouna

    2011-03-01

    This paper presents a method dedicated to the thermal conductivity measurement of thin insulating anisotropic materials. The method is based on three hot-strip-type experiments in which the stationary temperature is measured at the center of the hot strip. A 3D model of the heat transfer in the system is established and simulated to determine the validity of a 2D transfer hypothesis at the center of the hot strip. A simplified 2D model is then developed leading to the definition of a geometrical factor calculable from a polynomial expression. A very simple calculation method enabling the estimation of the directional thermal conductivities from the three stationary temperature measurements and from the geometrical factor is presented. The uncertainties on each conductivity are estimated. The method is then validated by measurements on polyethylene foam and Ayous (anistropic low-density tropical wood); the estimated values of the thermal conductivities are in good agreement with the values estimated using the hot plate and the flash method. The method is finally applied on a thin super-insulating fibrous material for which no other method is able to measure the in-plane conductivity.

  1. A hot-wire method based thermal conductivity measurement apparatus for teaching purposes

    Science.gov (United States)

    Alvarado, S.; Marín, E.; Juárez, A. G.; Calderón, A.; Ivanov, R.

    2012-07-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer and a high purity platinum wire). The wire, which is immersed in the investigated sample, is heated by passing a constant electrical current through it, and its temperature evolution, ΔT, is measured as a function of time, t, for several values of the current. A straightforward methodology is then used for data processing in order to obtain the liquid thermal conductivity. The start point is the well known linear relationship between ΔT and ln(t) predicted for long heating times by a model based on a solution of the heat conduction equation for an infinite lineal heat source embedded in an infinite medium into which heat is conducted without convective and radiative heat losses. A criterion is used to verify that the selected linear region is the one that matches the conditions imposed by the theoretical model. As a consequence the method involves least-squares fits in linear, semi-logarithmic (semi-log) and log-log graphs, so that it becomes attractive not only to teach about heat transfer and thermal properties measurement techniques, but also as a good exercise for students of undergraduate courses of physics and engineering learning about these kinds of mathematical functional relationships between variables. The functionality of the experiment was demonstrated by measuring the thermal conductivity in samples of liquids with well known thermal properties.

  2. Thermal Conductivity of Straw Bales: Full Size Measurements Considering the Direction of the Heat Flow

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Costes

    2017-02-01

    Full Text Available The thermal conductivity of straw bales is an intensively discussed topic in the international straw bale community. Straw bales are, by nature, highly heterogeneous and porous. They can have a relatively large range of density and the baling process can influence the way the fibres are organised within the bale. In addition, straw bales have a larger thickness than most of the insulating materials that can be found in the building industry. Measurement apparatus is usually not designed for such thicknesses, and most of the thermal conductivity values that can be found in the literature are defined based on samples in which the straw bales are resized. During this operation, the orientation of the fibres and the density may not be preserved. This paper starts with a literature review of straw bale thermal conductivity measurements and presents a measuring campaign performed with a specific Guarded Hot Plate, designed to measure samples up to 50 cm thick. The influence of the density is discussed thoroughly. Representative values are proposed for a large range of straw bales to support straw-bale development in the building industry.

  3. Experimental measurement of hermetic edge seal's thermal conductivity for the thermal transmittance prediction of triple vacuum glazing

    Directory of Open Access Journals (Sweden)

    Saim Memon

    2017-09-01

    Full Text Available Thermal conductivity of hermetic edge-sealing materials plays an important part in the thermal transmittance (U-value of the triple vacuum glazing. Thermal conductivity of Cerasolzer CS186 alloy and J-B Weld epoxy-steel resin were measured and validated with the mild-steel and indium using transient plane source method with a sensor element of double spiral and resistance thermometer in a hot disk thermal constants analyser TPS2500s are reported. The thermal conductivity data of Cerasolzer CS186 alloy and J-B Weld epoxy steel resin were measured to be 46.49 W m−1 K−1 and 7.47 W m−1 K−1, with the deviations (using analytical method of ±4% and ±7% respectively. These values were utilised to predict the thermal transmittance value of triple vacuum glazing using 3D finite element model. The simulated results show the centre-of-glass and total U-value of 300 mm × 300 mm triple vacuum glazing to be 0.33 W m−2 K−1 and 1.05 W m−2 K−1, respectively. The influence of such a wide edge seal on the temperature loss spreading from the edge to the central glazing area is analysed, in which the predictions show wider edge seal has affected the centre-of-glass U-value to 0.043 W m−2 K−1 due to the temperature gradient loss spread to 54 mm and 84 mm on the cold and warm side respectively.

  4. Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    The specific heat C(p) and the thermal conductivity lambda of a series of base-catalyzed silica aerogels have been measured at temperatures between 0.05 and 20 K. The results confirm that the different length-scale regions observed in the aerogel structure are reflected in the dynamic behavior of...... SiO2 are most likely not due to fractal behavior.......The specific heat C(p) and the thermal conductivity lambda of a series of base-catalyzed silica aerogels have been measured at temperatures between 0.05 and 20 K. The results confirm that the different length-scale regions observed in the aerogel structure are reflected in the dynamic behavior...

  5. USING HOT WIRE TECHNIQUE FOR MEASURING THERMAL CONDUCTIVITY OF INFUSIONS OF ORGANIC AND CONVENTIONAL COFFEE

    Directory of Open Access Journals (Sweden)

    Fernando Gordillo-Delgado

    2016-07-01

    Full Text Available The technique of hot wire, a versatile method of low cost and high accuracy for measuring the thermal conductivity of fluids through the increasing temperature of a wire that is immersed into the liquid and between its ends a potential difference is abruptly applied. Using well-known conductivity liquids: water, ethylene glycol and glycerine, the system was tested and calibrated. In this work, this procedure was used to measure the thermal conductivity of the infusion samples of organic and conventional coffee. The same roast degree of the beans was verified with a colorimeter and the preparation was made by pressing 22g of coffee powder in 110mL of water. The obtained data were subjected to Analysis of Variance (ANOVA and this confirmed that the differences in the thermophysical parameter in the two samples are significant with a confidence level of 95\\%. On this way, it was proved that the thermal conductivity value of the coffee infusion allows differentiate between organic and conventional coffee.

  6. Thermal Properties Capability Development Workshop Summary to Support the Implementation Plan for PIE Thermal Conductivity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hurley, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Department of Energy (DOE)-Office of Nuclear Energy (NE), Idaho National Laboratory (INL), and associated nuclear fuels programs have invested heavily over the years in infrastructure and capability development. With the current domestic and international need to develop Accident Tolerant Fuels (ATF), increasing importance is being placed on understanding fuel performance in irradiated conditions and on the need to model and validate that performance to reduce uncertainty and licensing timeframes. INL’s Thermal Properties Capability Development Workshop was organized to identify the capability needed by the various nuclear programs and list the opportunities to meet those needs. In addition, by the end of fiscal year 2015, the decision will be made on the initial thermal properties instruments to populate the shielded cell in the Irradiated Materials Characterization Laboratory (IMCL).

  7. Measurement of the Electronic Thermal Conductance Channels and Heat Capacity of Graphene at Low Temperature

    Directory of Open Access Journals (Sweden)

    Kin Chung Fong

    2013-10-01

    Full Text Available The ability to transport energy is a fundamental property of the two-dimensional Dirac fermions in graphene. Electronic thermal transport in this system is relatively unexplored and is expected to show unique fundamental properties and to play an important role in future applications of graphene, including optoelectronics, plasmonics, and ultrasensitive bolometry. Here, we present measurements of bipolar thermal conductances due to electron diffusion and electron-phonon coupling and infer the electronic specific heat, with a minimum value of 10k_{B} (10^{-22}  J/K per square micron. We test the validity of the Wiedemann-Franz law and find that the Lorenz number equals 1.32×(π^{2}/3(k_{B}/e^{2}. The electron-phonon thermal conductance has a temperature power law T^{2} at high doping levels, and the coupling parameter is consistent with recent theory, indicating its enhancement by impurity scattering. We demonstrate control of the thermal conductance by electrical gating and by suppressing the diffusion channel using NbTiN superconducting electrodes, which sets the stage for future graphene-based single-microwave photon detection.

  8. Experimental measurement of the plasma conductivity of Z93 and Z93P thermal control paint

    Science.gov (United States)

    Hillard, G. Barry

    1993-01-01

    Two samples each of Z93 and Z93P thermal control paint were exposed to a simulated space environment in a plasma chamber. The samples were biased through a series of voltages ranging from -200 volts to +300 volts and electron and ion currents measured. By comparing the currents to those of pure metal samples of the same size and shape, the conductivity of the samples was calculated. Measured conductivity was dependent on the bias potential in all cases. For Z93P, conductivity was approximately constant over much of the bias range and we find a value of 0.5 micro-mhos per square meter for both electron and ion current. For Z93, the dependence on bias was much more pronounced but conductivity can be said to be approximately one order of magnitude larger. In addition to presenting these results, this report documents all of the experimental data as well as the statistical analyses performed.

  9. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.

    Science.gov (United States)

    Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos

    2009-10-07

    This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.

  10. Experimental measurements of thermal conductivity of alumina nanofluid synthesized in salt melt

    Science.gov (United States)

    Ma, Binjian; Banerjee, Debjyoti

    2017-11-01

    Nanoparticles were synthesized in-situ using a simple one-step synthesis protocol from a cheap additive, mixed apriori in a high temperature salt melt (solar salt, NaNO3-KNO3). The thermal conductivity of the nanofluid was measured using a standardized concentric cylinder (annulus) test apparatus under steady-state conditions. The thermal conductivity of the salt melt was enhanced by 20˜ 25% due to generation of nanoparticles in-situ from the additive. The level of enhancement was found to be insensitive to temperature but significantly exceeded the predictions from models in the literature. Materials characterization (using electron microscopy) showed the formation of percolation networks by secondary nanostructures in the molten salt nanofluid samples (that were induced by the nanoparticles generated in-situ). The enhancement in the thermos-physical properties of the salt-melt nanofluids can be attributed to the formation of these secondary nanostructures (which form a third phase).

  11. Experimental measurements of thermal conductivity of alumina nanofluid synthesized in salt melt

    Directory of Open Access Journals (Sweden)

    Binjian Ma

    2017-11-01

    Full Text Available Nanoparticles were synthesized in-situ using a simple one-step synthesis protocol from a cheap additive, mixed apriori in a high temperature salt melt (solar salt, NaNO3-KNO3. The thermal conductivity of the nanofluid was measured using a standardized concentric cylinder (annulus test apparatus under steady-state conditions. The thermal conductivity of the salt melt was enhanced by 20∼ 25% due to generation of nanoparticles in-situ from the additive. The level of enhancement was found to be insensitive to temperature but significantly exceeded the predictions from models in the literature. Materials characterization (using electron microscopy showed the formation of percolation networks by secondary nanostructures in the molten salt nanofluid samples (that were induced by the nanoparticles generated in-situ. The enhancement in the thermos-physical properties of the salt-melt nanofluids can be attributed to the formation of these secondary nanostructures (which form a third phase.

  12. The difference in the thermal conductivity of nanofluids measured by different methods and its rationalization

    Directory of Open Access Journals (Sweden)

    Aparna Zagabathuni

    2016-12-01

    Full Text Available A suspension of particles below 100 nm in size, usually termed as nanofluid, often shows a notable enhancement in thermal conductivity, when measured by the transient hot-wire method. In contrast, when the conductivity of the same nanofluid is measured by the laser flash method, the enhancement reported is about one order of magnitude lower. This difference has been quantitatively resolved for the first time on the basis of the collision-mediated heat transfer model for nanofluids proposed earlier by our research group. Based on the continuum simulation coupled with stochastic analysis, the present theoretical prediction agrees well with the experimental observations from different measuring methods reported in the literature, and fully accounts for the different results from the two measuring methods mentioned above. This analysis also gives an indication that the nanofluids are unlikely to be effective for heat transfer in microchannels.

  13. Extension of the T-bridge method for measuring the thermal conductivity of two-dimensional materials

    Science.gov (United States)

    Kim, Jungwon; Seo, Dong-Jea; Park, Hwanjoo; Kim, Hoon; Choi, Heon-Jin; Kim, Woochul

    2017-05-01

    In this paper, the T-bridge method is extended to measure the thermal properties of two-dimensional nanomaterials. We present an analysis of the measureable positions, width, and thermal resistance of two-dimensional materials. For verification purposes, the thermal conductivity of a SiO2 nanoribbon was measured. To enhance the thermal contact between the nanoribbon and the heater in the setup, the nanoribbon was dipped into either isopropanol or water in order to promote a sticking force. Also, focused ion beam deposition was used to deposit the nanoribbon onto the contact. The thermal conductivities of all three cases were identical, showing that water dipping could be used to enhance the thermal contact. Due to the simple structure of this method and the analysis provided herein, the T-bridge method can be widely used for measuring the thermal conductivity of two-dimensional materials.

  14. Experimental measurements of the thermal conductivity of ash deposits: Part 2. Effects of sintering and deposit microstructure

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

    2000-04-01

    The authors report results from an experimental study that examines the influence of sintering and microstructure on ash deposit thermal conductivity. The measurements are made using a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. The technique is designed to minimize the disturbance of the natural deposit microstructure. The initial stages of sintering and densification are accompanied by an increase in deposit thermal conductivity. Subsequent sintering continues to densify the deposit, but has little effect on deposit thermal conductivity. SEM analyses indicates that sintering creates a layered deposit structure with a relatively unsintered innermost layer. They hypothesize that this unsintered layer largely determines the overall deposit thermal conductivity. A theoretical model that treats a deposit as a two-layered material predicts the observed trends in thermal conductivity.

  15. An optical pump-probe technique for measuring the thermal conductivity of liquids.

    Science.gov (United States)

    Schmidt, Aaron; Chiesa, Matteo; Chen, Xiaoyuan; Chen, Gang

    2008-06-01

    We present a pump-probe optical technique for measuring the thermal conductivity of liquids. The technique uses a reflective geometry which does not depend on the optical properties of the liquid and requires as little as a single droplet to produce a result. An analytical solution is given for bidirectional heat flow in layered media, including the effects of radial heat flow from coaxial Gaussian laser spots, thermal interface resistances, and the accumulation of multiple laser pulses. In addition, several experimental improvements over previous pump-probe configurations are described, resulting in an improved signal to noise ratio and smaller errors at long stage delay times. The technique is applied to a range of liquids and solids. Results are in good agreement with literature values.

  16. Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating

    NARCIS (Netherlands)

    Overduin, P.; Kane, D.L.; Loon, van W.K.P.

    2006-01-01

    The thermal conductivity of the thin seasonally freezing and thawing soil layer in permafrost landscapes exerts considerable control over the sensitivity of the permafrost to energy and mass exchanges at the surface. At the same time, the thermal conductivity is sensitive to the state of the soil,

  17. Measurement of the thermal conductivity from construction materials; Medicion de conductividad termica de materiales de construccion

    Energy Technology Data Exchange (ETDEWEB)

    Lira Cortes, Leonel; Xaman Villasenor, Jesus P; Chavez Chena, Yvonne [CENIDET: Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico)

    2000-07-01

    In order to improve the calculation of thermal loads that allows to model the thermal behavior of constructions with aims of energy saving, it is necessary to count on the thermophysical properties of the materials used in the construction industry. Nevertheless at present in Mexico do not exist reported data of the materials that are made and used in our country, reason why it is chosen to take the results reported in the literature, whose values in their majority do not correspond to Mexican materials. In order to cover this necessity, at the CENIDET an instrument was developed to determine the thermal conductivity of insulating and construction materials. To date they have come with studies of different materials, which are provided by the manufacturers, with the intention of obtaining real data of thermal conductivity and to apply them with whole confidence in simulations of calculations of thermal loads. In this paper the results of measurement of the apparent thermal conductivity of two different materials from construction are presented, pumice stone block and block of tezontle (a porous volcanic rock).The measurement was made with an absolute and primary instrument according to norm ANSI/ASTM C-177-97. The operation principle of the apparatus is based on the technique of heat transference by conduction in permanent state between two plates, the experiment is carried out using an apparatus of hot plate with guard (APCG). Given the geographic zone where the studied materials are to be used, it is concluded that the obtained results show better properties for both with respect to reported values of similar materials, by virtue that these materials are intended to be applied in a humid climate as it is in the state of Puebla, Mexico. [Spanish] Para mejorar el calculo de cargas termicas que permita modelar el comportamiento termico de edificaciones con fines de ahorro de energia, es necesario contar con las propiedades termofisicas de los materiales utilizados

  18. Measurements of thermal conductivity and the coefficient of thermal expansion for polysilicon thin films by using double-clamped beams

    Science.gov (United States)

    Liu, Haiyun; Wang, Lei

    2018-01-01

    In this paper, a test structure for simultaneously determining thermal conductivity and the coefficient of thermal expansion (CTE) of polysilicon thin film is proposed. The test structure consists of two double-clamped beams with different lengths. A theoretical model for extracting thermal conductivity and CTE based on electrothermal analysis and resonance frequency approach is developed. Both flat and buckled beams are considered in the theoretical model. The model is confirmed by finite element software ANSYS. The test structures are fabricated by surface micromachined fabrication process. Experiments are carried out in our atmosphere. Thermal conductivity and CTE of polysilicon thin film are obtained to be (29.96  ±  0.92) W · m · K‑1 and (2.65  ±  0.03)  ×  10‑6 K‑1, respectively, with temperature ranging from 300–400 K.

  19. Highly Thermal Conductive Nanocomposites

    Science.gov (United States)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2017-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  20. Electrical and Thermal Conductivity

    Science.gov (United States)

    Ventura, Guglielmo; Perfetti, Mauro

    After a Sect. 1.1 devoted to electrical conductivity and a section that deals with magnetic and dielectric losses ( 1.2 ), this chapter explores the theory of thermal conduction in solids. The examined categories of solids are: metals Sect. 1.3.2 , Dielectrics Sects. 1.3.3 and 1.3.4 and Nanocomposites Sect. 1.3.5 . In Sect. 1.3.6 the problem of thermal and electrical contact between materials is considered because contact resistance occurring at conductor joints in magnets or other high power applications can lead to undesirable electrical losses. At low temperature, thermal contact is also critical in the mounting of temperature sensors, where bad contacts can lead to erroneous results, in particular when superconductivity phenomena are involved.

  1. Measurement of effective thermal conductivity of compacted granular media by the transient plane source technique

    Science.gov (United States)

    Dai, Weijing; Gan, Yixiang

    2017-06-01

    To successfully realise industrial applications handling granular media, especially those involving heating and cooling processes, the temperature fields must be properly evaluated according to the accurate thermal properties of the media. The knowledge the effective thermal conductivity is regarded as one of the fundamental aspects. However, due to the complicated relations between the effective thermal conductivity and the heterogeneity and complexity in the structures and composition of the granular media, the quantitative prediction of the conductivity is challenging. Therefore, experimental investigation of the effective thermal conductivity becomes desired and this can provide first-hand data for industrial reference and serve as the benchmark for the theoretical analysis. In this study, the transient plane source technique is employed to investigate the effective thermal conductivity of compacted granular beds by the application of the commercially available Hot Disk system. The granular beds of different particle size ranges are characterised under different mechanical loading conditions by different sensors. Experimental results are discussed and suggestion to achieve reliable experimental designs is provided.

  2. Design, Construction, and Performance Analysis of a Wood Thermal Conductivity Measurement Device using Flat Plate Heat Pipes

    Directory of Open Access Journals (Sweden)

    Rasouli Moien

    2011-12-01

    Full Text Available In this paper, the design, construction, and performance analysis of a wood thermal conductivity measurement device using flat plate heat pipes has been experimentally studied. The device was designed to measure the thermal conductivity of wood in various ranges of temperature. Thermal conductivity of hornbeam (Carpinus betulus has been measured at various temperatures between 40-80 ºC and a relationship has been recommended for the sample. The results show that the thermal conductivity of this species increases linearly with temperature. Also, it has been concluded that flat plate heat pipes distribute heat flux on the surface of the wood uniformly leading to a faster steady state condition, which can reduce time of the test and result in energy saving and more accurate results.

  3. Thermal conductivity of US coals

    Energy Technology Data Exchange (ETDEWEB)

    Herrin, J.M.; Deming, D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    1996-11-10

    Coal samples in the form of randomly oriented aggregates were obtained from the Pennsylvania State University Coal Bank for the purpose of thermal conductivity measurements. Samples represented 55 locations from throughout the United States and included 6 lignites, 10 subbituminous coals, 36 bituminous coals, and 3 anthracite samples. Matrix thermal conductivities measured at 22{degree}C in the laboratory ranged from 0.22 to 0.55 W/m degree K, with an arithmetic mean of 0.33 W/m degrees K and a standard deviation of 0.07 W/m degrees K. The thermal conductivity of lignites, subbituminous, and bituminous coals is controlled by composition and can be predicted by a three-component (Moisture, ash, and carbon + volatiles) geometric mean model with a rns residual of 6.1%. The thermal conductivity of bituminous and anthracite samples was found to be positively correlated with matrix density. With the exception of three anthracite samples, rank was not correlated with thermal conductivity nor was the ratio of carbon to volatiles. The relatively high thermal conductivity of three anthracite samples (mean of 0.49 W/m degrees K) may have been related to graphitization.

  4. Thermally conductive polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  5. Simplified Transient Hot-Wire Method for Effective Thermal Conductivity Measurement in Geo Materials: Microstructure and Saturation Effect

    Directory of Open Access Journals (Sweden)

    B. Merckx

    2012-01-01

    Full Text Available The thermal conductivity measurement by a simplified transient hot-wire technique is applied to geomaterials in order to show the relationships which can exist between effective thermal conductivity, texture, and moisture of the materials. After a validation of the used “one hot-wire” technique in water, toluene, and glass-bead assemblages, the investigations were performed (1 in glass-bead assemblages of different diameters in dried, water, and acetone-saturated states in order to observe the role of grain sizes and saturation on the effective thermal conductivity, (2 in a compacted earth brick at different moisture states, and (3 in a lime-hemp concrete during 110 days following its manufacture. The lime-hemp concrete allows the measurements during the setting, desiccation and carbonation steps. The recorded Δ/ln( diagrams allow the calculation of one effective thermal conductivity in the continuous and homogeneous fluids and two effective thermal conductivities in the heterogeneous solids. The first one measured in the short time acquisitions (<1 s mainly depends on the contact between the wire and grains and thus microtexture and hydrated state of the material. The second one, measured for longer time acquisitions, characterizes the mean effective thermal conductivity of the material.

  6. Measurements of scattering, transmittance/reflectance, IR-transmittance and thermal conductivity of small aerogel samples

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Sv Aa Højgaard

    1997-01-01

    By providing at the same time thermal insulation and transparency the silica aerogel is a very attractive material for the purpose of improving the thermal performance of windows. Nevertheless a lot of problems have to be solved on the way from concept to the developed product. The B1 Aerogels...... project deals with some of these problems.This report summarizes the work that has been carried out on the subject of characterizing the optical and thermal performance of different types of aerogels and aerogel-like materials for the purpose of using aerogel in clear glazings.All measurements presented...

  7. Measurement of the thermal conductivity and heat transfer coefficient of a binary bed of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Donne, M.D.; Piazza, G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Goraieb, A.; Sordon, G.

    1998-01-01

    The four ITER partners propose to use binary beryllium pebble bed as neutron multiplier. Recently this solution has been adopted for the ITER blanket as well. In order to study the heat transfer in the blanket the effective thermal conductivity and the wall heat transfer coefficient of the bed have to be known. Therefore at Forschungszentrum Karlsruhe heat transfer experiments have been performed with a binary bed of beryllium pebbles and the results have been correlated expressing thermal conductivity and wall heat transfer coefficients as a function of temperature in the bed and of the difference between the thermal expansion of the bed and of that of the confinement walls. The comparison of the obtained correlations with the data available from the literature show a quite good agreement. (author)

  8. Improved instrument for the measurement of the thermal conductivity of non-electrolyte liquids. Progress report No. 1, May 1, 1979-January 15, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, E.D.; Graboski, M.S.

    1980-01-01

    An improved instrument for the measurement of the thermal conductivity of non-electrolyte liquids was designed and constructed. Eventually the apparatus will be tested and the thermal conductivity of two coal-derived synthetic oils will be measured. (FS)

  9. Thermal conductivity of graphene laminate.

    Science.gov (United States)

    Malekpour, H; Chang, K-H; Chen, J-C; Lu, C-Y; Nika, D L; Novoselov, K S; Balandin, A A

    2014-09-10

    We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied, as deposited and compressed, in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 μm. The thermal conductivity of graphene laminate was found to be in the range from 40 to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. Coating plastic materials with thin graphene laminate films that have up to 600× higher thermal conductivity than plastics may have important practical implications.

  10. Thermal contact conductance

    CERN Document Server

    Madhusudana, Chakravarti V

    2013-01-01

    The work covers both theoretical and practical aspects of thermal contact conductance. The theoretical discussion focuses on heat transfer through spots, joints, and surfaces, as well as the role of interstitial materials (both planned and inadvertent). The practical discussion includes formulae and data that can be used in designing heat-transfer equipment for a variety of joints, including special geometries and configurations. All of the material has been updated to reflect the latest advances in the field.

  11. Device for measuring thermal conductivity of composites based on biomass waste

    Directory of Open Access Journals (Sweden)

    Luis Velasco Roldán

    2016-06-01

    Full Text Available A standardized test bench has been designed, built and calibrated to determine the thermal conductivity of insulating building materials. The device, simple in design and economical, aims to become a replicable and useful tool for the development of multiple research on innovative materials based on waste or unvalued resources for the production of non-industrial and locally produced cheap thermal insulating materials which lead to the improvement of buildings energy efficiency. The main contribution of the test bench is the possibility of analyzing insulation compounds with more thickness and different formats thanks to the press design, which allows the setting and the pressure of the plates on the samples, holding these in the air and preventing any transmission by unwanted conduction.

  12. Thermal Conductivity Measurement of the Silicon Sensor Support Frames of the CMS Tracker

    CERN Document Server

    Clerbaux, Barbara; Van der Velde, C; Vancaldenhoven, M; Van Lancker, Luc

    2005-01-01

    The silicon sensor support elements of the CMS tracker detector are made of carbon fiber, epoxy resin and/or graphite material. A function of the supports is to remove heat generated in the sensors and in the frontend electronics. In this note we present the results of studies we have performed of the thermal conductivity of these support elements. Results are presented for various production batches.

  13. Thermal conductivity measurement below 40 K of the CFRP tubes for the Mid-Intrared Instrument mounting struts

    DEFF Research Database (Denmark)

    Shaughnessy, B. M.; Eccleston, P.; Fereday, K. J.

    2007-01-01

    The Mid-Infrared Instrument (MIRI) is one of four instruments on the James Webb Space Telescope observatory, scheduled for launch in 2013. It must be cooled to about 7 K and is supported within the telescope’s 40 K instrument module by a hexapod of carbon fibre reinforced plastic (CFRP) tubing. T....... This article describes the measurement of cryogenic thermal conductivity of the candidate CFRP. Measured thermal conductivities were about 0.05 W/m K at a mean temperature of 10 K increasing to about 0.20 W/m K at a mean temperature of 40 K....

  14. Direct measurements of the thermal conductivity of various pyrolytic graphite samples (PG,TPG) used as thermal dissipation agents in detector applications

    CERN Document Server

    Heusch, C A; Kholodenko, A

    2002-01-01

    We performed model measurements on heat conduction in graphite-based structures, using several configurations. We describe our method for the direct measurement of thermal conductivity both in-plane and out-of-plane, for TPG and PG samples. Our results for the in-plane thermal conductivity coefficient, K sub a sub b were obtained with two different sets of boundary conditions; they are in good mutual agreement. Those for the transverse coefficient, K sub c , differ by a significant factor from the values published by the producers of the material.

  15. Measurement and analysis of thermal conductivity of isotopically controlled silicon layers by time-resolved X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Eon, S.; Frieling, R.; Bracht, H. [Institute for Materials Physics, University of Muenster, 48149 Muenster (Germany); Plech, A. [Institute for Photon Science and Synchrotron Radiation (IPS), 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-15

    Nanostructuring is considered to be an efficient way to tailor phonon scattering and to reduce the thermal conductivity while keeping good electronic properties. This can be ideally realized by mass modulation of chemical identical elements. In this work, we report measurements of the crossplane thermal conductivity of isotopically modulated {sup 28}Si/{sup 30}Si multilayer structures and of isotopically pure {sup 28}Si layers by means of time-resolved X-ray scattering. Compared to earlier investigations, an improved measurement technique has been applied to determine the cooling behavior of a top gold metal layer after laser excitation with picosecond time resolution until thermal equilibration is established. Detailed analysis of the cooling behavior not only confirms a reduced thermal conductivity of {sup 28}Si/{sup 30}Si multilayer structures compared to natural and isotopically enriched {sup 28}Si layers but also provides evidence of direct laser heating of the Si layer. This and extrinsic effects affecting the cooling behavior of the gold layer are taken into account to determine the thermal conductivity by means of the pump-and-probe measurement technique. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Thermal conductivity measurement of amorphous dielectric multilayers for phase-change memory power reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fong, S. W., E-mail: swfong@stanford.edu; Wong, H.-S. P. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Sood, A. [Department of Material Science and Engineering, Stanford University, Stanford, California 94305 (United States); Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Chen, L. [School of Energy and Power Engineering, Xi' an Jiatong University, Xi' an, Shaanxi 710049 (China); Kumari, N.; Gibson, G. A. [Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, California 94304 (United States); Asheghi, M.; Goodson, K. E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-07-07

    In this work, we investigate the temperature-dependent thermal conductivities of few nanometer thick alternating stacks of amorphous dielectrics, specifically SiO{sub 2}/Al{sub 2}O{sub 3} and SiO{sub 2}/Si{sub 3}N{sub 4}. Experiments using steady-state Joule-heating and electrical thermometry, while using a micro-miniature refrigerator over a wide temperature range (100–500 K), show that amorphous thin-film multilayer SiO{sub 2}/Si{sub 3}N{sub 4} and SiO{sub 2}/Al{sub 2}O{sub 3} exhibit through-plane room temperature effective thermal conductivities of about 1.14 and 0.48 W/(m × K), respectively. In the case of SiO{sub 2}/Al{sub 2}O{sub 3}, the reduced conductivity is attributed to lowered film density (7.03 → 5.44 × 10{sup 28 }m{sup –3} for SiO{sub 2} and 10.2 → 8.27 × 10{sup 28 }m{sup –3} for Al{sub 2}O{sub 3}) caused by atomic layer deposition of thin-films as well as a small, finite, and repeating thermal boundary resistance (TBR) of 1.5 m{sup 2} K/GW between dielectric layers. Molecular dynamics simulations reveal that vibrational mismatch between amorphous oxide layers is small, and that the TBR between layers is largely due to imperfect interfaces. Finally, the impact of using this multilayer dielectric in a dash-type phase-change memory device is studied using finite-element simulations.

  17. High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe-Si-Ge thin film alloy library

    Science.gov (United States)

    d'Acremont, Quentin; Pernot, Gilles; Rampnoux, Jean-Michel; Furlan, Andrej; Lacroix, David; Ludwig, Alfred; Dilhaire, Stefan

    2017-07-01

    A High-Throughput Time-Domain ThermoReflectance (HT-TDTR) technique was developed to perform fast thermal conductivity measurements with minimum user actions required. This new setup is based on a heterodyne picosecond thermoreflectance system. The use of two different laser oscillators has been proven to reduce the acquisition time by two orders of magnitude and avoid the experimental artefacts usually induced by moving the elements present in TDTR systems. An amplitude modulation associated to a lock-in detection scheme is included to maintain a high sensitivity to thermal properties. We demonstrate the capabilities of the HT-TDTR setup to perform high-throughput thermal analysis by mapping thermal conductivity and interface resistances of a ternary thin film silicide library FexSiyGe100-x-y (20 analysis areas of different ternary alloy compositions.

  18. Thermal conductivity of porous structures

    Science.gov (United States)

    Braginsky, L.; Shklover, V.; Witz, G.; Bossmann, H.-P.

    2007-03-01

    Thermal conductivity of porous media is considered. The model permits regular power-series expansion of the expression for thermal conductivity as a function of porosity. The coefficients of the expansion depend on two-site correlation function of local thermal conductivities, which can be calculated from the microscopy image of the structure. Thermal conductivities of some model two-dimensional structures as well as a real porous yttria-stabilized zirconia film are calculated and discussed.

  19. Thermal Conductivity Measurement of Molten Cu-Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field

    Science.gov (United States)

    Nakamura, Yuki; Takahashi, Ryuji; Shoji, Eita; Kubo, Masaki; Tsukada, Takao; Uchikoshi, Masahito; Fukuyama, Hiroyuki

    2017-12-01

    The thermal conductivity of molten Cu-Co alloy with different compositions around the liquidus line temperature was measured by the periodic laser-heating method using an electromagnetic levitator superimposed with a static magnetic field to suppress convection in a levitated droplet sample. During the measurement, a static magnetic field of 10 T was applied to the levitated droplet. To confirm that the strength of the static magnetic field was sufficient to suppress convection in the droplet, numerical simulations were performed for the flow and thermal fields in an electromagnetically levitated droplet under a static magnetic field, and moreover, for the periodic laser-heating method to determine the thermal conductivity. It was found that the thermal conductivity of molten Cu-Co alloy increased gradually with increasing Cu composition up to 80 at. pct, beyond which it increased markedly and reached that of pure Cu. In addition, it was found that the composition dependence of the thermal conductivity can be explainable by the Wiedemann-Franz law.

  20. Thermal conductivity of carbon foams. Measurements and interpretation; Conductivite thermique de mousses de carbone. Mesures et interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Bourret, F.; Fort, C.; Duffa, G. [CEA CESTA, 33 - Le Barp (France)

    1996-12-31

    This paper describes thermal diffusivity measurements performed with the flash method on carbon foams with open porosity at ambient and higher temperatures. The influence of gas inclusions in the pores has been studied too. In this type of highly insulating material, radiant heat transfer plays a major role. The experiments carried out are interpreted in terms of equivalent thermal conductivity and show the difficulties encountered, in particular the dependence with sample thickness. An interpretation based on a direct simulation with an equivalent periodical material is given with an estimation of the gaseous conductivity based on the kinetics theory of gases. This study demonstrates that the notion of equivalent thermal conductivity is not applicable to all experiments. (J.S.) 10 refs.

  1. Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method.

    Science.gov (United States)

    Li, Qin-Yi; Xia, Kailun; Zhang, Ji; Zhang, Yingying; Li, Qunyang; Takahashi, Koji; Zhang, Xing

    2017-08-03

    The last decade has seen the rapid growth of research on two-dimensional (2D) materials, represented by graphene, but research on their thermophysical properties is still far from sufficient owing to the experimental challenges. Herein, we report the first measurement of the specific heat of multilayer and monolayer graphene in both supported and suspended geometries. Their thermal conductivities were also simultaneously measured using a comprehensive Raman optothermal method without needing to know the laser absorption. Both continuous-wave (CW) and pulsed lasers were used to heat the samples, based on consideration of the variable laser spot radius and pulse duration as well as the heat conduction within the substrate. The error from the laser absorption was eliminated by comparing the Raman-measured temperature rises for different spot radii and pulse durations. The thermal conductivity and specific heat were extracted by analytically fitting the temperature rise ratios as a function of spot size and pulse duration, respectively. The measured specific heat was about 700 J (kg K)(-1) at room temperature, which is in accordance with theoretical predictions, and the measured thermal conductivities were in the range of 0.84-1.5 × 10(3) W (m K)(-1). The measurement method demonstrated here can be used to investigate in situ and comprehensively the thermophysical properties of many other emerging 2D materials.

  2. Measured versus calculated thermal conductivity of high-grade metamorphic rocks – inferences on the thermal properties of the lower crust at ambient and in-situ conditions

    DEFF Research Database (Denmark)

    Ray, Labani; Förster, Hans-Jürgen; Förster, Andrea

    The bulk thermal conductivity (TC) of 26 rock samples representing felsic, intermediate and mafic granulites, from the Southern Granulite Province, India, is measured at dry and saturated conditions with the optical-scanning method. Thermal conductivity is also calculated from modal mineralogy...... in the literature are applied. Thus, if appropriate samples (in terms of sample size or physical-chemical-mechanical condition) for laboratory measurement are not available, bulk TC of high-grade metamorphic rocks with low anisotropy and porosity could be satisfactorily good assessed from modal mineralogy, using...

  3. Shape memory thermal conduction switch

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  4. Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression - Part II: Thermal conductivity

    Science.gov (United States)

    Roy Chowdhury, Prabudhya; Vikram, Ajit; Phillips, Ryan K.; Hoorfar, Mina

    2016-07-01

    The gas diffusion layer (GDL) is a thin porous layer sandwiched between a bipolar plate (BPP) and a catalyst coated membrane in a fuel cell. Besides providing passage for water and gas transport from and to the catalyst layer, it is responsible for electron and heat transfer from and to the BPP. In this paper, a method has been developed to measure the GDL bulk thermal conductivity and the contact resistance at the GDL/BPP interface under inhomogeneous compression occurring in an actual fuel cell assembly. Toray carbon paper GDL TGP-H-060 was tested under a range of compression pressure of 0.34 to 1.71 MPa. The results showed that the thermal contact resistance decreases non-linearly (from 3.8 × 10-4 to 1.17 × 10-4 Km2 W-1) with increasing pressure due to increase in microscopic contact area between the GDL and BPP; while the effective bulk thermal conductivity increases (from 0.56 to 1.42 Wm-1 K-1) with increasing the compression pressure. The thermal contact resistance was found to be greater (by a factor of 1.6-2.8) than the effective bulk thermal resistance for all compression pressure ranges applied here. This measurement technique can be used to identify optimum GDL based on minimum bulk and contact resistances measured under inhomogeneous compression.

  5. Measurements of Thermal Conductivity and Thermal Diffusivity of Hen Egg-White Lysozyme Crystals and Its Solution Using the Transient Short Hot Wire Method

    Science.gov (United States)

    Fujiwara, Seiji; Maki, Syou; Maekawa, Ryunosuke; Tanaka, Seiichi; Hagiwara, Masayuki

    2017-08-01

    Protein crystals are an essentially important biological sample to advance the analysis of X-ray structure, but their thermophysical properties, especially thermal conductivity and thermal diffusivity, have not been studied sufficiently. This current situation can be attributed to various kinds of technical problems; e.g., the fragility of protein crystals and the difficulty of nucleation control. Ideally speaking, protein crystallization should be carried out under a " containerless condition" to eliminate any mechanical distortion of the crystals from the walls. To realize the condition, we have developed an original crystallization method by means of the magneto-Archimedes effect. In this paper, a transient short hot wire method was combined with the technique of magneto-Archimedes effect to realize simultaneous measurement of thermal conductivity and thermal diffusivity of hen egg-white lysozyme (HEWL) crystals. As the results, thermal conductivity and thermal diffusivity of HEWL crystals were found to be 0.410-0.438 \\hbox {W}\\cdot \\hbox {m}^{-1}\\cdot \\hbox {K}^{-1} and 3.77-5.18× 10^{-8} \\hbox {m}2\\cdot \\hbox {s}^{-1}, respectively. We clarified by the crystallizing process of HEWL that the crystals were magnetically levitated at the air-liquid interface and the short hot wire was completely buried into them as the crystals grew. We also measured the HEWL solution by the same methods. The thermal conductivity of the solution had almost the same value as that of water and had little dependency on the concentration of HEWL, but the thermal diffusivity was unclear.

  6. ASSESSMENT OF THE TOTAL SOLIDS AND FAT CONTENTS IN WHOLE LIQUID EGG PRODUCTS BY ELECTRICAL AND THERMAL CONDUCTIVITY MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    Annachiara Berardinelli

    2012-06-01

    Full Text Available The total solids and fat contents of nine whole liquid egg products were assessed by means of electrical and thermal conductivity measurements. Linear correlations between conductivity values and total solids and fat contents were obtained with R2 values up to 0.995 and 0.990 and maximum errors of predic- 46 TABLE 6 - Linear regression models for the total solids (TS, % and fat (FC, % contents estimation from electrical (Ec, mS/cm and thermal (Tc, W/mK conductivity measurements. SE: Standard Error. Linear regression equation R2 p-level SE (% TS=-6.857*Ec+65.373 0.995 0.000 0.27 FC=-4.993*Ec+40.070 0.985 0.000 0.33 TS=-172.967*Tc+109.605 0.992 0.000 0.33 FC=-126.449*Tc+72.521 0.990 0.000 0.27 tion up to 0.41% and 0.42%, respectively. The electrical conductivity of the albumen, yolk and egg mixtures linearly increased with temperature; at 20°C, temperature coefficients of 2.1%/°C, 2.1%/°C and 1.9 %/°C were respectively calculated. On the contrary, the thermal conductivity of the analysed products did not appear to be substantially influenced by the temperature of the liquid.

  7. Measurement of thermal conductivity of materials down to 4.5 K for development of cryosorption pumps

    Science.gov (United States)

    Verma, Ravi; Behera, Upendra; Kasthurirengan, S.; Shivaprakash, N. C.; Udgata, S. S.; Gangradey, R.

    2017-02-01

    Cryosorption pumps belong to the class of entrapment or capture vacuum pumps and they retain the gas molecules by sorption and / or by condensation on its internal surfaces. An important aspect in their development is the proper adhesion of the activated carbon granules onto the metallic panel and their cooling to the lowest possible temperature by using high thermal conductivity adhesives for adhering the activated carbons. Hence, the thermal conductivity data of the select adhesives and activated carbons down to 4.5 K are quite essential, but they are not available in open literature. Towards this, an experimental setup has been developed to measure the thermal conductivities of samples with high or low thermal conductivities from 300 K to 4.5 K, with liquid helium using a Janis SuperVariTemp cryostat. This paper presents the details of the experimental setup and the results of our studies on (i) standard samples and (ii) epoxy based adhesives samples. The above studies will enable to make the right choice of adhesives for the development of cryosorption pumps.

  8. Design and Development of Embedded System for the Measurement of Thermal Conductivity of Liquids by Transient Hot Wire Method

    Directory of Open Access Journals (Sweden)

    Nagamani GOSALA

    2011-06-01

    Full Text Available Thermal conductivity of polymers is an important property for both polymer applications and processing industry. The successful application of thermal insulating fluids in the last several years has demonstrated that such fluids can effectively control the heat loss. Understanding and controlling the thermal environment for oilfield operations has been a concern and research topic. As a consequence of this trend, there is huge demand for new methods of instrumentation to evaluate the performance of material properties and characterization. The main aim of the present study is the development of hardware and software for measuring the thermal conductivity of liquids using transient hot wire method. Because of the relatively short experimental times and large amounts of parametric data involved in the measurement process, embedded control of the measurement is essential. The experimental implementation requires a suitable temperature sensing, automatic control, data acquisition, and data analysis systems accomplished using an embedded system that has been built around the ARM LPC 2103 mixed signal controller.

  9. Lunar magnetic field measurements, electrical conductivity calculations and thermal profile inferences

    Science.gov (United States)

    Colburn, D. S.

    1971-01-01

    Steady magnetic field measurements of magnitude 30 to 100 gamma on the lunar surface impose problems of interpretation when coupled with the nondetectability of a lunar field at 0.4 lunar radius altitude and the limb induced perturbations of the solar wind at the Explorer orbit. The lunar time-varying magnetic field clearly indicates the presence of eddy currents in the lunar interior and permits calculation of an electrical conductivity profile. The problem is complicated by the day-night asymmetry of the moon's electromagnetic environment, the possible presence of the transverse magnetic mode, and the variable wave directions of the driving function. The electrical conductivity is calculated to be low near the surface, rising to a peak of .006/ohm meter at 250 km, dropping steeply inwards to a value of about .00005/ohm meter, and then rising toward the interior. A transition at 250 km depth from a high conductivity to a low conductivity material is inferred, suggesting an olivine-like core at approximately 800 C, although other models are possible.

  10. Thermal conductivity of niobium diselenide

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, F. Jr.

    1976-10-01

    Thermal conductivity measurements have been used to study the temperature dependence of the various scattering mechanisms present in single crystals of NbSe in a temperature range from 1 to 10/sup 0/K. Phonons are found to contribute a substantial fraction of the conduction in this temperature range and, in general, the results agree well with standard theoretical models for three-dimensional metals. The presence of van der Waals boundaries beween the layers introduces no significant boundary scattering for phonons. In addition to the usual electron and point defect scattering terms which are present in the phonon conductivity, a term which has a linear temperature dependence was found. This linear term may be caused by stacking fault scattering centers. A linear field dependence of the electrical magnetoresistance is reported and it is suggested this term may arise from magnetic breakdown at energy gaps in the Fermi surface induced by charge-density waves as suggested by Overhauser. It is noted that the ratio of the superconducting to normal state thermal conductivity is consistent with a BCS-like superconducting energy gap.

  11. Apollo 15 measurement of lunar surface brightness temperatures - Thermal conductivity of the upper 1.5 meters of regolith.

    Science.gov (United States)

    Keihm, S. J.; Peters, K.; Langseth, M. G.; Chute, J. L., Jr.

    1973-01-01

    In situ measurements of lunar surface brightness temperatures made as a part of the Apollo Lunar Surface Experiments Package at the Apollo 15 Hadley Rille landing site are reported. Data derived from five thermocouples of the Heat Flow Experiment, which are lying on or just above the surface, are used to examine the thermal properties of the upper 15 cm of the lunar regolith using eclipse and nighttime cool-down temperatures. Application of finite-difference techniques in modeling the lunar soil shows that the thermocouple data are best fit by a model consisting of a low-density and low-thermal conductivity surface layer approximately 2 cm thick overlying a region increasing in conductivity and density with depth. Conductivities on the order of 0.00001 W per cm per deg K are postulated for the upper layer, with conductivity increasing to the order of 0.0001 W per cm per deg K at depths exceeding 20 cm. An increase in mean temperature with depth indicates that the ratio of radiative to conductive transfer at 350 K is 2.7 for at least the upper few centimeters of lunar soil; this value is nearly twice that measured for returned lunar fines.

  12. Design and construction of a new steady-state apparatus for medium thermal conductivity measurement at high temperature.

    Science.gov (United States)

    Wang, Yong; Xiao, Peng; Dai, Jingmin

    2017-10-01

    A new steady-state apparatus is designed and constructed for the measurement of thermal conductivity (up to 25 W/mK) on a square specimen (300 mm side) with a heating temperature range from 30 °C to 900 °C. A vacuum container, of which the pressure can reach to 1 Pa, is also built for materials which can be easily oxidized. The structure of the facility is different from that of traditional steady-state devices, especially for the design of heating plate and heat sink. To verify the temperature uniformity of the heating plate, a simulation analysis is carried out in this paper. Besides, the heating system, the heat sink, the measuring system, and the vacuum system are presented in detail. In addition, the thermal conductivities of a heat insulation tile, 304L stainless steel, n-docosane, and erythritol are measured by this apparatus. Finally, an uncertainty analysis is discussed depending on different temperatures and materials.

  13. Design and construction of a new steady-state apparatus for medium thermal conductivity measurement at high temperature

    Science.gov (United States)

    Wang, Yong; Xiao, Peng; Dai, Jingmin

    2017-10-01

    A new steady-state apparatus is designed and constructed for the measurement of thermal conductivity (up to 25 W/mK) on a square specimen (300 mm side) with a heating temperature range from 30 °C to 900 °C. A vacuum container, of which the pressure can reach to 1 Pa, is also built for materials which can be easily oxidized. The structure of the facility is different from that of traditional steady-state devices, especially for the design of heating plate and heat sink. To verify the temperature uniformity of the heating plate, a simulation analysis is carried out in this paper. Besides, the heating system, the heat sink, the measuring system, and the vacuum system are presented in detail. In addition, the thermal conductivities of a heat insulation tile, 304L stainless steel, n-docosane, and erythritol are measured by this apparatus. Finally, an uncertainty analysis is discussed depending on different temperatures and materials.

  14. Measuring Thermal Conductivity and Moisture Absorption of Cryo-Insulation Materials

    Science.gov (United States)

    Lambert, Michael A.

    1998-01-01

    NASA is seeking to develop thermal insulation material systems suitable for withstanding both extremely high temperatures encountered during atmospheric re-entry heating and aero- braking maneuvers, as well as extremely low temperatures existing in liquid fuel storage tanks. Currently, materials used for the high temperature insulation or Thermal Protection System (TPS) are different from the low temperature, or cryogenic insulation. Dual purpose materials are necessary to the development of reusable launch vehicles (RLV). The present Space Shuttle (or Space Transportation System, STS) employs TPS materials on the orbiter and cryo-insulation materials on the large fuel tank slung under the orbiter. The expensive fuel tank is jettisoned just before orbit is achieved and it burns up while re-entering over the Indian Ocean. A truly completely reusable launch vehicle must store aR cryogenic fuel internally. The fuel tanks will be located close to the outer surface. In fact the outer skin of the craft will probably also serve as the fuel tank enclosure, as in jet airliners. During a normal launch the combined TPS/cryo-insulation system will serve only as a low temperature insulator, since aerodynamic heating is relatively minimal during ascent to orbit. During re-entry, the combined TPS/cryo-insulation system will serve only as a high temperature insulator, since all the cryogenic fuel will have been expended in orbit. However, in the event of an.aborted launch or a forced/emergency early re-entry, the tanks will still contain fuel, and the TPS/cryo-insulation will have to serve as both low and high temperature insulation. Also, on long duration missions, such as to Mars, very effective cryo-insulation materials are needed to reduce bod off of liquid propellants, thereby reducing necessary tankage volume, weight, and cost. The conventional approach to obtaining both low and high temperature insulation, such as is employed for the X-33 and X-34 spacecraft, is to use

  15. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  16. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  17. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues.

    Science.gov (United States)

    Lubner, Sean D; Choi, Jeunghwan; Wehmeyer, Geoff; Waag, Bastian; Mishra, Vivek; Natesan, Harishankar; Bischof, John C; Dames, Chris

    2015-01-01

    Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method-widely used for rigid, inorganic solids-as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies. The bi-directional 3ω measurement device is validated using control experiments to within ±2% (liquid water, standard deviation) and ±5% (ice). Measurements of mouse liver cover a temperature ranging from -69 °C to +33 °C. The liver results are independent of sample thicknesses from 3 mm down to 100 μm and agree with available literature for non-mouse liver to within the measurement scatter.

  18. Thermal Conductivity of Diamond Composites

    OpenAIRE

    Fedor M. Shakhov; Kidalov, Sergey V.

    2009-01-01

    A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K) and 400 W/(m·K), respectively. Significantly, the thermal expansion coefficient of metals differ...

  19. Thermal Conductivity of Diamond Composites

    Science.gov (United States)

    Kidalov, Sergey V.; Shakhov, Fedor M.

    2009-01-01

    A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K) and 400 W/(m·K), respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon); one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K). Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  20. Thermal Conductivity of Diamond Composites

    Directory of Open Access Journals (Sweden)

    Fedor M. Shakhov

    2009-12-01

    Full Text Available A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K and 400 W/(m·K, respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon; one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K. Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  1. Thermal conductivity measurement of sintered Vibro-packed fuel. 1. Study on sample preparation method

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Mineo; Kosaka, Yuji; Ogawa, Shinta [Nuclear Development Corp., Tokai, Ibaraki (Japan)

    2002-02-01

    An experimental study was carried out in order to grasp the sintering condition of the Vibro-packed fuel bed. A disc shaped bed of UO{sub 2} particles manufactured by the tumbling granulation method was sintered in constant load and temperature using a creep examination machine. The following results were obtained. 1) Sintering for about 2 hours and 30 minutes under the temperature of 1700degC and the compression load condition of 7 MPa generated 4.5 - 4.7% strain of the bed and about 40% neck ratio between particles. 2) Larger neck ratio was observed in larger sintering strain bed. This result implies the aimed neck ratio can be prepared by the adjustment of the sintering strain. 3) Sintering strain of the bed was depend on the particle size. In case of the large size particle, sintering strain became large. It was considered that it was based on the increase of local stress caused by the reduction of contact points according to particle diameter increase. 4) When the particle diameter becomes small, the particle neck ratio perpendicular to the load direction became small in comparison with the load direction, and the tendency that a particle becomes easy to separate was recognized. 5) >From the grain size measurement result of particle before and after a sintering experiment, no significant change of the crystal grain size was recognized. (author)

  2. Conductive thermal modeling of Wyoming geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, H.P.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01

    A summary of techniques used by the Wyoming Geothermal Resource Assessment Group in defining low-temperature hydrothermal resource areas is presented. Emphasis is placed on thermal modeling techniques appropriate to Wyoming's geologic setting. Thermal parameters discussed include oil-well bottom hole temperatures, heat flow, thermal conductivity, and measured temperature-depth profiles. Examples of the use of these techniques are from the regional study of the Bighorn Basin and two site specific studies within the Basin.

  3. Thermal conductivity of some common forest fuels

    Science.gov (United States)

    G.M. Byram; W.L. Fons

    1952-01-01

    This study was designed to obtain thermal conductivity of som common forest fuels which hitherto had defied such efforts because of their shape, size, or structure. Dry leaves and decayed. wood (punk) were modified so that conductivity measurements could be made by a thin plate uni-directional heat flow calibration stand, Resultss of these measurements are compatible...

  4. Thermal conductivity of iron at high pressures

    Science.gov (United States)

    Suehiro, S.; Ohta, K.; Yagi, T.; Hirose, K.

    2016-12-01

    Earth generates and preserves a dipole magnetic field by self-sustained dynamo action in its liquid outer core for geologic timescale. Secular cooling of the core induces growth of the solid inner core that contributes additional buoyant source for the core convection. The electrical and thermal conductivities of core are fundamental physical parameters for knowing the dynamics inside the Earth. Direct measurements of the electrical and thermal conductivities of iron (Fe) at the Earth's core conditions have been recently reported (Konôpková et al., 2016; Ohta et al., 2016). Measurements of Fe thermal conductivity at the core conditions suggested thermal conductivity of the outer core was 18-32 W/m/K (Konôpková et al., 2016). On the other hand, Ohta et al. (2016) experimentally determined electrical conductivity of Fe at the core conditions, and estimated the core conductivity to be 75-117 W/m/K from obtained electrical conductivity and Wiedemann-Franz relation (κ = σLT; κ: thermal conductivity, σ: electrical conductivity, L: Lorenz number, T: absolute temperature) with ideal Lorenz number. Such large discrepancy in the estimated core thermal conductivity throw doubt on the validity of the Wiedemann-Franz relation at extremely high P-T conditions. In this study, we performed thermal conductivity measurements on Fe up to 130 GPa at room temperature in a diamond anvil cell using the pulsed light heating thermoreflectance technique (Ohta et al., 2012). The obtained thermal conductivity of Fe is in good agreement with calculated thermal conductivity via high-P/room-T Fe electrical conductivity and the Wiedemann-Franz law with constant Lorenz number up to around 50 GPa. However, the obtained thermal conductivity deviated downward from the calculated thermal conductivity profile above 50 GPa. Our results suggest pressure-dependent Lorenz number of Fe,which could be due to pressure- induced electronic topological transition in hcp Fe (Glazyrin et al., 2013). Kon

  5. Thermal conductivity of unsaturated clay-rocks

    Directory of Open Access Journals (Sweden)

    D. Jougnot

    2010-01-01

    Full Text Available The parameters used to describe the electrical conductivity of a porous material can be used to describe also its thermal conductivity. A new relationship is developed to connect the thermal conductivity of an unsaturated porous material to the thermal conductivity of the different phases of the composite, and two electrical parameters called the first and second Archie's exponents. A good agreement is obtained between the new model and thermal conductivity measurements performed using packs of glass beads and core samples of the Callovo-Oxfordian clay-rocks at different saturations of the water phase. We showed that the three model parameters optimised to fit the new model against experimental data (namely the thermal conductivity of the solid phase and the two Archie's exponents are consistent with independent estimates. We also observed that the anisotropy of the effective thermal conductivity of the Callovo-Oxfordian clay-rock was mainly due to the anisotropy of the thermal conductivity of the solid phase.

  6. Self consistently calibrated photopyroelectric calorimeter for the high resolution simultaneous absolute measurement of the specific heat and of the thermal conductivity

    Directory of Open Access Journals (Sweden)

    U. Zammit

    2012-03-01

    Full Text Available High temperature resolution study of the specific heat and of the thermal conductivity over the smecticA-nematic and nematic-isotropic phase transitions in octylcynobephenyl liquid crystal using a new photopyroelectric calorimetry configuration are reported, where, unlike previously adopted ones, no calibration is required other than the procedure used during the actual measurement. This makes photopyroelectric calorimetry suitable for “absolute” measurements of the thermal parameters like most other existing conventional calorimetric techniques where, however, the thermal conductivity cannot be measured.

  7. Discussion on the thermal conductivity enhancement of nanofluids

    National Research Council Canada - National Science Library

    Xie, Huaqing; Yu, Wei; Li, Yang; Chen, Lifei

    2011-01-01

    .... We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids...

  8. Thermal conductivity of U.S. coals

    Science.gov (United States)

    Herrin, James M.; Deming, David

    1996-11-01

    Coal samples in the form of randomly oriented aggregates were obtained from the Pennsylvania State University Coal Bank for the purpose of thermal conductivity measurements. Samples represented 55 locations from throughout the United States and included 6 lignites, 10 subbituminous coals, 36 bituminous coals, and 3 anthracite samples. Matrix thermal conductivities measured at 22°C in the laboratory ranged from 0.22 to 0.55 W/m°K, with an arithmetic mean of 0.33 W/m°K and a standard deviation of 0.07 W/m°K. The thermal conductivity of lignites, subbituminous, and bituminous coals is controlled by composition and can be predicted by a three-component (moisture, ash, and carbon + volatiles) geometric mean model with an rms residual of 6.1%. The thermal conductivity of bituminous and anthracite samples was found to be positively correlated with matrix density. With the exception of three anthracite samples, rank was not correlated with thermal conductivity, nor was the ratio of carbon to volatiles. The relatively high thermal conductivity of three anthracite samples (mean of 0.49 W/m°K) may have been related to graphitization.

  9. High-Thermal-Conductivity Fabrics

    Science.gov (United States)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  10. Thermal Properties Measurement Report

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hurley, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gofryk, Krzysztof [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fielding, Randy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Knight, Collin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meyer, Mitch [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  11. Thermal conductivity of twisted bilayer graphene.

    Science.gov (United States)

    Li, Hongyang; Ying, Hao; Chen, Xiangping; Nika, Denis L; Cocemasov, Alexandr I; Cai, Weiwei; Balandin, Alexander A; Chen, Shanshan

    2014-11-21

    We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (∼300-700 K). This finding indicates that the heat carriers - phonons - in twisted bilayer graphene do not behave in the same manner as that observed in individual graphene layers. The decrease in the thermal conductivity found in twisted bilayer graphene was explained by the modification of the Brillouin zone due to plane rotation and the emergence of numerous folded phonon branches that enhance the phonon Umklapp and normal scattering. The results obtained are important for understanding thermal transport in two-dimensional systems.

  12. Length-dependent thermal transport and ballistic thermal conduction

    Directory of Open Access Journals (Sweden)

    Bor-Woei Huang

    2015-05-01

    Full Text Available Probing length-dependent thermal conductivity of a given material has been considered as an important experimental method to determine the length of ballistic thermal conduction, or equivalently, the averaged phonon mean free path (l. However, many previous thermal transport measurements have focused on varying the lateral dimensions of samples, rendering the experimental interpretation indirect. Moreover, deducing l is model-dependent in many optical measurement techniques. In addition, finite contact thermal resistances and variations of sample qualities are very likely to obscure the effect in practice, leading to an overestimation of l. We point out that directly investigating one-dimensional length-dependent (normalized thermal resistance is a better experimental method to determine l. In this regard, we find that no clear experimental data strongly support ballistic thermal conduction of Si or Ge at room temperature. On the other hand, data of both homogeneously-alloyed SiGe nanowires and heterogeneously-interfaced Si-Ge core-shell nanowires provide undisputed evidence for ballistic thermal conduction over several micrometers at room temperature.

  13. Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method.

    Science.gov (United States)

    Sikora, A; Ftouni, H; Richard, J; Hébert, C; Eon, D; Omnès, F; Bourgeois, O

    2012-05-01

    A suspended system for measuring the thermal properties of membranes is presented. The sensitive thermal measurement is based on the 3ω dynamic method coupled to a Völklein geometry. The device obtained using micro-machining processes allows the measurement of the in-plane thermal conductivity of a membrane with a sensitivity of less than 10 nW/K (+∕-5 × 10(-3) Wm(-1) K(-1) at room temperature) and a very high resolution (ΔK/K = 10(-3)). A transducer (heater/thermometer) centered on the membrane is used to create an oscillation of the heat flux and to measure the temperature oscillation at the third harmonic using a Wheatstone bridge set-up. Power as low as 0.1 nW has been measured at room temperature. The method has been applied to measure thermal properties of low stress silicon nitride and polycrystalline diamond membranes with thickness ranging from 100 nm to 400 nm. The thermal conductivity measured on the polycrystalline diamond membrane support a significant grain size effect on the thermal transport.

  14. Measurement of Thermal Conductivity of Porcine Liver in the Temperature Range of Cryotherapy and Hyperthermia (250~315k) by A Thermal Sensor Made of A Micron-Scale Enameled Copper Wire.

    Science.gov (United States)

    Jiang, Z D; Zhao, G; Lu, G R

      BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca2Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.

  15. Isochoric thermal conductivity of solid furan

    Science.gov (United States)

    Konstantinov, V. A.; Sagan, V. V.; Revyakin, V. P.; Zvonaryova, A. V.; Pursky, O. I.

    2013-05-01

    The thermal conductivity of solid furan samples with different densities has been measured under isochoric conditions in the high-temperature orientationally-disordered phase I. Our isochoric data show a gradual increase of ΛV with temperature, while the isobaric thermal conductivity decreases over this temperature range. This effect shows up more clearly in furan, where the atoms in the ring plane are not equivalent, than in the previously studied C6H6 and C6H12. The increase of ΛV with temperature can be attributed to weakening of the translational-orientational interaction, which in turn leads to reduced phonon scattering on rotational excitations. The experimental data are described in terms of a modified Debye model of thermal conductivity with heat transfer by both low-frequency phonons and "diffuse" modes.

  16. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  17. The freestanding sensor-based 3ω technique for measuring thermal conductivity of solids: principle and examination.

    Science.gov (United States)

    Qiu, L; Tang, D W; Zheng, X H; Su, G P

    2011-04-01

    In recent two decades, the 3ω technique has been proven to be valuable for characterizing thermophysical properties of materials from nanoscale to bulk, but some inherent deficiencies in this technique such as laborious and repeated four-pad micro strip heater/sensor deposition process and flimsiness of the micro heater/sensor limit its practical applications. Here, the authors report a novel 3ω technique, based on a freestanding sensor replacing the conventional 3ω heater/sensor adjacent to the specimen surface. A zigzag temperature response curve of the new sensor instead of the classical straight line was observed and used to extract the specimen thermal conductivity. Experimental results which excellently agree with calculation values show that the new technique is of great application value to thermal properties characterization of amorphous bulks and hundreds of microns thick wafers. © 2011 American Institute of Physics

  18. Thermal conductivity measurement of Ge-Si{sub x}Ge{sub 1-x} core-shell nanowires using suspended microdevices

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Joon; Seol Jae Hun [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Nah, Jung Hyo [Chonnam National University, Gwangju (Korea, Republic of); Tutuc, Emanuel [The University of Texas at Austin, Austin (Korea, Republic of)

    2015-10-15

    Theoretical calculations suggest that the thermoelectric figure of merit (ZT) can be improved by introducing a core-shell heterostructure to a semiconductor nanowire because of the reduced thermal conductivity of the nanowire. To experimentally verify the decrease in thermal conductivity in core-shell nanowires, the thermal conductivity of Ge-SixGe1-x core-shell nanowires grown by chemical vapor deposition (CVD) was measured using suspended microdevices. The silicon composition (Xsi) in the shells was measured to be about 0.65, and the remainder of the germanium in the shells was shown to play a role in decreasing defects originating from the lattice mismatch between the cores and shells. In addition to the standard four-point current- voltage (I-V) measurement, the measurement configuration based on the Wheatstone bridge was attempted to enhance the measurement sensitivity. The measured thermal conductivity values are in the range of 9-13 W/mK at room temperature and are lower by approximately 30 than that of a germanium nanowire with a comparable diameter.

  19. The electronic thermal conductivity of graphene

    OpenAIRE

    Kim, Tae Yun; Park, Cheol-Hwan; Marzari, Nicola

    2016-01-01

    Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of d...

  20. Investigations Regarding the Thermal Conductivity of Straw

    Directory of Open Access Journals (Sweden)

    Marian Pruteanu

    2010-01-01

    Full Text Available The reduction of buildings heat losses and pollutants emissions is a worldwide priority. It’s intending to reduce the specific final energy consumption under limit of 120...150 kWh/m2.yr and even under 15...45 kWh/m2.yr, foreseen in 2020 for the passive houses, which is necessary for a sustainable development and for allowing to became profitable the use of unconventional energies [1]. These values can be achieved through the use of thermal insulations, for protecting the constructions fund and through making envelope elements, as much as possible, from materials with a high thermal resistance, for new buildings. With intention to substitute the conventional thermal insulations: mineral wool, expanded polystyrene, which are both great energy consumers, it’s proposed, among others unconventional technologies and materials, the use of vegetable wastes both as a thermal insulation material and as a material used for building load-bearing and in-fill straw-bale construction. In speciality literature there are presented experimental determinations of this material’s thermal conductivity. The paper proposes a simple method, adequate for the measurement of thermal conductivity for bulk’s materials as straw bales.

  1. Extremely High Thermal Conductivity of Graphene: Experimental Study

    OpenAIRE

    Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N.

    2008-01-01

    We report on the first measurement of the thermal conductivity of a suspended single layer graphene. The measurements were performed using a non-contact optical technique. The near room-temperature values of the thermal conductivity in the range ~ 4840 to 5300 W/mK were extracted for a single-layer graphene. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction.

  2. Microfabricated suspended island platform for the measurement of in-plane thermal conductivity of thin films and nanostructured materials with consideration of contact resistance.

    Science.gov (United States)

    Alaie, Seyedhamidreza; Goettler, Drew F; Abbas, Khawar; Su, Mehmet F; Reinke, Charles M; El-Kady, Ihab; Leseman, Zayd C

    2013-10-01

    A technique based on suspended islands is described to measure the in-plane thermal conductivity of thin films and nano-structured materials, and is also employed for measurements of several samples with a single measurement platform. Using systematic steps for measurements, the characterization of the thermal resistances of a sample and its contacts are studied. The calibration of the contacts in this method is independent of the geometry, size, materials, and uniformity of contacts. To verify the technique, two different Si samples with different thicknesses and two samples of the same SiN(x) wafer are characterized on a single device. One of the Si samples is also characterized by another technique, which verifies the current results. Characterization of the two SiN(x) samples taken from the same wafer showed less than 1% difference in the measured thermal conductivities, indicating the precision of the method. Additionally, one of the SiN(x) samples is characterized and then demounted, remounted, and characterized for a second time. The comparison showed the change in the thermal resistance of the contact in multiple measurements could be as small as 0.2 K/μW, if a similar sample is used.

  3. Thermal conductivity of different colored compomers.

    Science.gov (United States)

    Guler, Cigdem; Keles, Ali; Guler, Mehmet S; Karagoz, Sendogan; Cora, Ömer N; Keskin, Gul

    2017-11-10

    Compomers are mostly used in primary dentition. The thermal conductivity properties of traditional or colored compomers have not been investigated in detail so far. The aim of this in vitro study was to assess and compare the thermal conductivities of traditional and colored compomers. Two sets of compomers - namely, Twinky Star (available in berry, lemon, green, silver, blue, pink, gold and orange shades) and Dyract Extra (available in B1, A3 and A2 shades) - were included in this study. All of the traditional and colored compomers were applied to standard molds and polymerized according to the manufacturers' instructions. Three samples were prepared from each compomer. Measurements were conducted using a heat conduction test setup, and the coefficient of heat conductivity was calculated for each material. The heat conductivity coefficients were statistically analyzed using Kruskal-Wallis and Duncan tests. Uncertainty analysis was also performed on the calculated coefficients of heat conductivity. Statistically significant differences were found (pconductivity properties of the traditional and colored compomers examined. Among all of the tested compomers, the silver shade compomer exhibited the highest coefficient of heat conductivity (p<0.05), while the berry shade exhibited the lowest coefficient (p<0.05). Uncertainty analyses revealed that 6 out of 11 samples showed significant differences. The silver shade compomer should be avoided in deep cavities. The material properties could be improved for colored compomers.

  4. Anisotropic thermal conductivity of graphene wrinkles.

    Science.gov (United States)

    Wang, C; Liu, Y; Li, L; Tan, H

    2014-06-07

    In this paper, the anisotropic thermal conductivity characteristics of graphene wrinkles are observed for the first time using a non-equilibrium molecular dynamics method. Our results reveal that the wrinkling level has little effect on the thermal conductivity along the wrinkling direction. However, the wrinkling level plays an important role in the reduction of thermal conductivity along the texture direction, which results from the contributions of increased bond length, von Mises stress, broadening of phonon modes and G-band redshift. These results indicate that graphene wrinkles can be a promising candidate to modulate thermal conductivity properties in nanoscale thermal managements and thermoelectric devices.

  5. Thermal expansion, thermal conductivity, and heat capacity measurements for boreholes UE25 NRG-4, UE25 NRG-5, USW NRG-6, and USW NRG-7/7A

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, N.S.; Riggins, M. [Sandia National Labs., Albuquerque, NM (United States); Connolly, J. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology and Inst. of Meteoritics; Ricci, P. [Holometrix, Inc., Bedford, MA (United States)

    1997-09-01

    Specimens were tested from four thermal-mechanical units, namely Tiva Canyon (TCw), Paintbrush Tuff (PTn), and two Topopah Spring units (TSw1 and TSw2), and from two lithologies, i.e., welded devitrified (TCw, TSw1, TSw2) and nonwelded vitric tuff (PTn). Thermal conductivities in W(mk){sup {minus}1} averaged over all boreholes, ranged (depending upon temperature and saturation state) from 1.2 to 1.9 for TCw, from 0.4 to 0.9 for PTn, from 1.0 to 1.7 for TSw1, and from 1.5 to 2.3 for TSw2. Mean coefficients of thermal expansion were highly temperature dependent and values, averaged over all boreholes, ranged (depending upon temperature and saturation state) from 6.6 {times} 10{sup {minus}6} to 49 {times} 10{sup {minus}6} C{sup {minus}1} for TCw, from the negative range to 16 {times} 10{sup {minus}6} {center_dot} {degree}C{sup {minus}1} for PTn, from 6.3 {times} 10{sup {minus}6} to 44 {times} 10{sup {minus}6} C{sup {minus}1} for TSw1, and from 6.7 {times} 10{sup {minus}6} to 37 {times} 10{sup {minus}6} {center_dot} {degree}C{sup {minus}1} for TSw2. Mean values of thermal capacitance in J/cm{sup 3}K (averaged overall specimens) ranged from 1.6 J to 2.1 for TSw1 and from 1.8 to 2.5 for TSw2. In general, the lithostratigraphic classifications of rock assigned by the USGS are consistent with the mineralogical data presented in this report.

  6. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    Science.gov (United States)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It

  7. Improved Data Reduction Algorithm for the Needle Probe Method Applied to In-Situ Thermal Conductivity Measurements of Lunar and Planetary Regoliths

    Science.gov (United States)

    Nagihara, S.; Hedlund, M.; Zacny, K.; Taylor, P. T.

    2013-01-01

    The needle probe method (also known as the' hot wire' or 'line heat source' method) is widely used for in-situ thermal conductivity measurements on soils and marine sediments on the earth. Variants of this method have also been used (or planned) for measuring regolith on the surfaces of extra-terrestrial bodies (e.g., the Moon, Mars, and comets). In the near-vacuum condition on the lunar and planetary surfaces, the measurement method used on the earth cannot be simply duplicated, because thermal conductivity of the regolith can be approximately 2 orders of magnitude lower. In addition, the planetary probes have much greater diameters, due to engineering requirements associated with the robotic deployment on extra-terrestrial bodies. All of these factors contribute to the planetary probes requiring much longer time of measurement, several tens of (if not over a hundred) hours, while a conventional terrestrial needle probe needs only 1 to 2 minutes. The long measurement time complicates the surface operation logistics of the lander. It also negatively affects accuracy of the thermal conductivity measurement, because the cumulative heat loss along the probe is no longer negligible. The present study improves the data reduction algorithm of the needle probe method by shortening the measurement time on planetary surfaces by an order of magnitude. The main difference between the new scheme and the conventional one is that the former uses the exact mathematical solution to the thermal model on which the needle probe measurement theory is based, while the latter uses an approximate solution that is valid only for large times. The present study demonstrates the benefit of the new data reduction technique by applying it to data from a series of needle probe experiments carried out in a vacuum chamber on JSC-1A lunar regolith stimulant. The use of the exact solution has some disadvantage, however, in requiring three additional parameters, but two of them (the diameter and the

  8. Conductivity, Thermal Measurements, and Phase Diagram of the Na2S2O7-NaHSO4 System

    DEFF Research Database (Denmark)

    Hatem, G.; Gaune-Escard, M.; Rasmussen, Søren Birk

    1999-01-01

    The conductivity of the Na2S2O7-NaHSO4 binary system has been measured for 15 different compositions in the full composition range, and in the temperature range 400-700 K.Phase transition temperatures were obtained, and the phase diagram constructed. It is of thesimple eutectic type, where......, as found earlier for theK2S2O7-KHSO4 system. For each composition measured of the Na2S2O7-NaHSO4 system inthe molten state, the conductivity has been expressed by equations of the form = A(X) +B(X)(T - Tm) + C(X)(T-Tm)^2, where Tm is the intermediate temperature of the measuredtemperature range....... the eutectic is found to have the composition X(CsHSO4) = 0.97, ascalculated from the measured thermodynamic properties, and to melt at 179°C. The partialenthalpy and entropy of mixing have been obtained, and the negative entropy points to astructural order of the melt, presumably due to hydrogen bonding...

  9. Determination of the thermal conductivity of sediment rock from measurements on cuttings; Ermittlung der Gesteinswaermeleitfaehigkeit von Sedimentgesteinen aus Messungen am Bohrklein

    Energy Technology Data Exchange (ETDEWEB)

    Troschke, B.; Burkhardt, H. [Technische Univ. Berlin (Germany). Fachgebiet Angewandte Goephysik

    1997-12-01

    Due to high costs core recovery in many wells is strongly restricted. To determine thermal conductivity in these cases measurements on cuttings are necessary, since in situ measurements are expensive and protracted, too. Therefore cores from three hydrogeothermal wells of the north-east part of the German sedimentary basin were grinded to compare the results of measurements on cuttings with known values of thermal conductivity from the original cores. By a suitable model of the two-phase-system cuttings-water it is possible to calculate the thermal conductivity of the rock-matrix. On the basis of this value and a suitable rock-model an average thermal conductivity for the water saturated rock can be estimated. Certainly all influences of the texture (anisotropy, grain bond) and of the characteristics of the porespace (porosity, internal surface, saturation, permeability) are lost with measurements on cuttings. Therefore for the different systems cuttings-water and rock-porefluid as well as for different rock types different models are necessary. (orig.) [Deutsch] In vielen Bohrungen werden aus Kostengruenden keine Kerne gezogen. Fuer die Ermittlung der Waermeleitfaehigkeit koennen deshalb nur in-situ-Messungen, die ebenfalls zeit- und kostenintensiv sind, oder Messungen am Bohrklein herangezogen werden. Es wurden daher Kerne aus drei Hydrogeothermalbohrungen des nordostdeutschen Beckens aufgemahlen, um so vergleichende Messungen am `Bohrklein` aus Kernen mit bekannter Waermeleitfaehigkeit durzhzufuehren. Durch eine geeignete Modellvorstellung des Zwei-Phasen-Systems Bohrklein/Wasser laesst sich die Waermeleitfaehigkeit der Gesteinsmatrix bestimmen und aus dieser durch ein Gesteinsmodell auch eine mittlere Waermeleitfaehigkeit des wassergesaettigten Festgesteins berechnen. Klar ist, dass bei Messungen am Bohrklein Einfluesse, die durch Gefuege (Anisotropie, Kornbindung) und Porenraumeigenschaften (Porositaet, Saettigung, Permeabilitaet) hervorgerufen werden

  10. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  11. Reduced thermal conductivity of isotopically modulated silicon multilayer structures

    DEFF Research Database (Denmark)

    Bracht, H.; Wehmeier, N.; Eon, S.

    2012-01-01

    -resolved x-ray scattering. Comparison of the experimental results to numerical solutions of the corresponding heat diffusion equations reveals a factor of three lower thermal conductivity of the isotope structure compared to natural Si. Our results demonstrate that the thermal conductivity of silicon can......We report measurements of the thermal conductivity of isotopically modulated silicon that consists of alternating layers of highly enriched silicon-28 and silicon-29. A reduced thermal conductivity of the isotopically modulated silicon compared to natural silicon was measured by means of time...

  12. Thermal conductivity measurements of impregnated Nb3Sn coil samples in the temperature range of 3.5 K to 100 K

    Science.gov (United States)

    Koettig, T.; Maciocha, W.; Bermudez, S.; Rysti, J.; Tavares, S.; Cacherat, F.; Bremer, J.

    2017-02-01

    In the framework of the luminosity upgrade of the LHC, high-field magnets are under development. Magnetic flux densities of up to 13 T require the use of Nb3Sn superconducting coils. Quench protection becomes challenging due to the high stored energy density and the low stabilizer fraction. The thermal conductivity and diffusivity of the combination of insulating layers and Nb3Sn based cables are an important thermodynamic input parameter for quench protection systems and superfluid helium cooling studies. A two-stage cryocooler based test stand is used to measure the thermal conductance of the coil sample in two different heat flow directions with respect to the coil package geometry. Variable base temperatures of the experimental platform at the cryocooler allow for a steady-state heat flux method up to 100 K. The heat is applied at wedges style copper interfaces of the Rutherford cables. The respective temperature difference represents the absolute value of thermal conductance of the sample arrangement. We report about the measurement methodology applied to this kind of non-uniform sample composition and the evaluation of the used resin composite materials.

  13. Apparent Thermal Conductivity Of Multilayer Insulation

    Science.gov (United States)

    Mcintosh, Glen E.

    1995-01-01

    Mathematical model of apparent or effective thermal conductivity between two successive layers of multilayer thermal insulation (MLI) offers potential for optimizing performance of insulation. One gains understanding of how each physical mechanism contributes to overall flow of heat through MLI blanket. Model helps analyze engineering tradeoffs among such parameters as number of layers, thicknesses of gaps between layers, types of spacers placed in gaps, weight, overall thickness, and effects of foregoing on apparent thermal conductivity through blanket.

  14. Effective thermal conductivity of condensed polymeric nanofluids ...

    Indian Academy of Sciences (India)

    ... scattering at matrix–particle boundaries. These two mechanisms are combined to arrive at an expression for their effective thermal conductivity. Analysis of the results reveals the possibility to tune the thermal conductivity of such nanosolids over a wide range using the right types of nanoparticles and right concentration.

  15. Variable Thermal Conductivity on Compressible Boundary Layer ...

    African Journals Online (AJOL)

    In this paper, variable thermal conductivity on heat transfer over a circular cylinder is presented. The concept of assuming constant thermal conductivity on materials is however not efficient. Hence, the governing partial differential equation is reduced using non-dimensionless variables into a system of coupled non-linear ...

  16. The Electronic Thermal Conductivity of Graphene.

    Science.gov (United States)

    Kim, Tae Yun; Park, Cheol-Hwan; Marzari, Nicola

    2016-04-13

    Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of doping using electronic and phonon dispersions and electron-phonon couplings calculated from first-principles at the level of density-functional theory and many-body perturbation theory (GW). Then, we include extrinsic electron-impurity scattering using low-temperature experimental estimates. Under these conditions, we find that the in-plane electronic thermal conductivity κe of doped graphene is ∼300 W/mK at room temperature, independently of doping. This result is much larger than expected and comparable to the total thermal conductivity of typical metals, contributing ∼10% to the total thermal conductivity of bulk graphene. Notably, in samples whose physical or domain sizes are of the order of few micrometers or smaller, the relative contribution coming from the electronic thermal conductivity is more important than in the bulk limit, because lattice thermal conductivity is much more sensitive to sample or grain size at these scales. Last, when electron-impurity scattering effects are included we find that the electronic thermal conductivity is reduced by 30 to 70%. We also find that the Wiedemann-Franz law is broadly satisfied at low and high temperatures but with the largest deviations of 20-50% around room temperature.

  17. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  18. Tailoring thermal conductivity via three-dimensional porous alumina.

    Science.gov (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-12-09

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m-1·K-1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.

  19. Tailoring thermal conductivity via three-dimensional porous alumina

    Science.gov (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-01-01

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m−1·K−1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties. PMID:27934930

  20. Dependence of thermal conductivity in micro to nano silica

    Indian Academy of Sciences (India)

    This work presents the measurement of thermal conductivity of nano-silica particles using needle probe method. The validation test of thermal probe was conducted on ice and THF hydrates using our experimental set up and the results are satisfactory when compared with the literature data. The nano silica used in this ...

  1. Thermal conductivity of Cu–4⋅ 5 Ti alloy

    Indian Academy of Sciences (India)

    The thermal conductivity (TC) of peak aged Cu–4.5 wt% Ti alloy was measured at different temperatures and studied its variation with temperature. It was found that TC increased with increasing temperature. Phonon and electronic components of thermal conductivity were computed from the results. The alloy exhibits an ...

  2. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  3. Determination of the Thermal Diffusivity of Electrically Non-Conductive Solids in the Temperature Range from 80 K to 300 K by Laser-Flash Measurement

    Science.gov (United States)

    Hemberger, F.; Göbel, A.; Ebert, H.-P.

    2010-12-01

    The adoption of the popular laser-flash method at temperatures far below 300 K is restricted by the weak signal-to-noise ratio and the limited spectral bandwidth of the commonly used mercury cadmium tellurite (MCT) infrared (IR) detector used as a non-contacting temperature probe. In this work, a different approach to measure the temperature rise in pulse heating experiments is described and evaluated. This method utilizes the change of the temperature-dependent electrical resistance of a thin strip of sputtered gold for the detection of a temperature rise as it was proposed by Kogure et al. The main advantage of this method at lower temperatures is the significantly higher signal-to-noise ratio compared to the commonly used IR detectors. A newly developed laser-flash apparatus using this detection method for the determination of the thermal diffusivity in the temperature range from 80 K to 300 K is presented. To test the accuracy of the new detection method, the thermal diffusivity of a borosilicate crown glass (BK7) specimen at 300 K was determined and compared to results derived with a MCT detector. Good agreement of the derived thermal diffusivity values within 3 % was found. The thermal diffusivity of BK7 and polycrystalline aluminum nitride (AlN) was measured at temperatures between 80 K and 300 K by a laser-flash method to test the functionality of the apparatus. Finally, the thermal conductivity was calculated using values for the specific heat capacity determined by temperature modulated differential scanning calorimetry (MDSC). Comparisons with literature data confirm the reliability of the experimental setup.

  4. In-Situ Spatial Variability Of Thermal Conductivity And Volumetric ...

    African Journals Online (AJOL)

    Studies of spatial variability of thermal conductivity and volumetric water content of silty topsoil were conduct-ed on a 0.6 ha site at Abeokuta, South-Western Nigeria. The thermal conductivity (k) was measured at depths of up to 0.06 m along four parallel profiles of 200 m long and at an average temperature of 25 C, using ...

  5. Thermal conductivity of microporous layers: Analytical modeling and experimental validation

    Science.gov (United States)

    Andisheh-Tadbir, Mehdi; Kjeang, Erik; Bahrami, Majid

    2015-11-01

    A new compact relationship is developed for the thermal conductivity of the microporous layer (MPL) used in polymer electrolyte fuel cells as a function of pore size distribution, porosity, and compression pressure. The proposed model is successfully validated against experimental data obtained from a transient plane source thermal constants analyzer. The thermal conductivities of carbon paper samples with and without MPL were measured as a function of load (1-6 bars) and the MPL thermal conductivity was found between 0.13 and 0.17 W m-1 K-1. The proposed analytical model predicts the experimental thermal conductivities within 5%. A correlation generated from the analytical model was used in a multi objective genetic algorithm to predict the pore size distribution and porosity for an MPL with optimized thermal conductivity and mass diffusivity. The results suggest that an optimized MPL, in terms of heat and mass transfer coefficients, has an average pore size of 122 nm and 63% porosity.

  6. A study on the thermal conductivity of compacted bentonites

    CERN Document Server

    Tang, Anh-Minh; Le, Trung Tinh; 10.1016/j.clay.2007.11.001

    2008-01-01

    Thermal conductivity of compacted bentonite is one of the most important properties in the design of high-level radioactive waste repositories where this material is proposed for use as a buffer. In the work described here, a thermal probe based on the hot wire method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results were analyzed to observe the effects of various factors (i.e. dry density, water content, hysteresis, degree of saturation and volumetric fraction of soil constituents) on the thermal conductivity. A linear correlation was proposed to predict the thermal conductivity of compacted bentonite based on experimentally observed relationship between the volumetric fraction of air and the thermal conductivity. The relevance of this correlation was finally analyzed together with others existing methods using experimental data on several compacted bentonites.

  7. Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy

    Science.gov (United States)

    Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro

    2017-11-01

    Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.

  8. Engineering thermal conductivity in polymer blends

    Science.gov (United States)

    Rashidi, Vahid; Coyle, Eleanor; Kieffer, John; Pipe, Kevin

    Weak inter-chain bonding in polymers is believed to be a bottleneck for both thermal conductivity and mechanical strength. Most polymers have low thermal conductivity (~0.1 W/mK), hindering their performance in applications for which thermal management is critical (e.g., electronics packaging). In this work, we use computational methods to study how hydrogen bonding between polymer chains as well as water content can be used to engineer thermal transport in bulk polymers. We examine how changes in the number of hydrogen bonds, chain elongation, density, and vibrational density of states correlate with changes in thermal conductivity for polymer blends composed of different relative constituent fractions. We also consider the effects of bond strength, tacticity, and polymer chain mass. For certain blend fractions, we observe large increases in thermal conductivity, and we analyze these increases in terms of modifications to chain chemistry (e.g., inter-chain bonding) and chain morphology (e.g., chain alignment and radius of gyration). We observe that increasing the number of hydrogen bonds in the system results in better packing as well as better chain alignment and elongation that contribute to enhanced thermal conductivity. The Air Force Office of Scientific Research, Grant No. FA9550-14-1-0010.

  9. Thermal conductivity at different humidity conditions

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Rode, Carsten

    1999-01-01

    The thermal conductivity (the l-value) of several alternative insulation products and a traditional product is determined under different humidity conditions in a specially constructed hot plate apparatus.The hot plate apparatus is constructed with an air gap on each side of the test specimen where...... of the thermal conductivity is 3-8% because of the hygroscopic uptake of humidity from the ambient air....

  10. Thermal conductivity and other properties of cementitious grouts

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.

    1998-08-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  11. THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS

    Energy Technology Data Exchange (ETDEWEB)

    ALLAN,M.

    1998-05-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  12. An inverse heat conduction problem of estimating thermal conductivity

    CERN Document Server

    Shidfar, S

    2002-01-01

    In this paper we consider an inverse heat conduction problem. We define the inverse and direct problem and solve the direct problem by method of Lines. We estimated the thermal conductivity k(u) which is assumed k(u)=k sub o +k sub 1 u+...+k sub N u sup N and contiguously in the direction normal to the surface of a sample plate.

  13. A new low-cost hydrogen sensor build with a thermopile IR detector adapted to measure thermal conductivity

    National Research Council Canada - National Science Library

    M Liess

    2015-01-01

    .... It is exposed to the measured gas environment in its housing. It is shown that, by using a simple driving circuitry, a mass-produced low-cost IR sensor can be used for hydrogen detection in applications such as hydrogen safety and smart gas metering...

  14. Temperature dependence of thermal conductivity of biological tissues.

    Science.gov (United States)

    Bhattacharya, A; Mahajan, R L

    2003-08-01

    In this paper, we present our experimental results on the determination of the thermal conductivity of biological tissues using a transient technique based on the principles of the cylindrical hot-wire method. A novel, 1.45 mm diameter, 50 mm long hot-wire probe was deployed. Initial measurements were made on sponge, gelatin and Styrofoam insulation to test the accuracy of the probe. Subsequent experiments conducted on sheep collagen in the range of 25 degrees C thermal conductivity to be a linear function of temperature. Further, these changes in the thermal conductivity were found to be reversible. However, when the tissue was heated beyond 55 degrees C, irreversible changes in thermal conductivity were observed. Similar experiments were also conducted for determining the thermal conductivity of cow liver. In this case, the irreversible effects were found to set in much later at around 90 degrees C. Below this temperature, in the range of 25 degrees C thermal conductivity, as for sheep collagen, varied linearly with temperature. In the second part of our study, in vivo measurements were taken on the different organs of a living pig. Comparison with reported values for dead tissues shows the thermal conductivities of living organs to be higher, indicating thereby the dominant role played by blood perfusion in enhancing the net heat transfer in living tissues. The degree of enhancement is different in different organs and shows a direct dependence on the blood flow rate.

  15. Influence of anisotropy on thermal boundary conductance at solid interfaces

    Science.gov (United States)

    Hopkins, Patrick E.; Beechem, Thomas; Duda, John C.; Hattar, Khalid; Ihlefeld, Jon F.; Rodriguez, Mark A.; Piekos, Edward S.

    2011-09-01

    We investigate the role of anisotropy on interfacial transport across solid interfaces by measuring the thermal boundary conductance from 100 to 500 K across Al/Si and Al/sapphire interfaces with different substrate orientations. The measured thermal boundary conductances show a dependency on substrate crystallographic orientation in the sapphire samples (trigonal conventional cell) but not in the silicon samples (diamond cubic conventional cell). The change in interface conductance in the sapphire samples is ascribed to anisotropy in the Brillouin zone along the principal directions defining the conventional cell. This leads to resultant phonon velocities in the direction of thermal transport that vary nearly 40% based on crystallographic direction.

  16. Measurement of Thermal Conductivities of Two Cryoprotective Agent Solutions for Vitreous Cryopreservation of Organs at the Temperature Range of 77 K-300 K Using a Thermal Sensor Made of Microscale Enamel Copper Wire.

    Science.gov (United States)

    Li, Yufang; Zhao, Gang; Hossain, S M Chapal; Panhwar, Fazil; Sun, Wenyu; Kong, Fei; Zang, Chuanbao; Jiang, Zhendong

    2017-06-01

    Biobanking of organs by cryopreservation is an enabling technology for organ transplantation. Compared with the conventional slow freezing method, vitreous cryopreservation has been regarded to be a more promising approach for long-term storage of organs. The major challenges to vitrification are devitrification and recrystallization during the warming process, and high concentrations of cryoprotective agents (CPAs) induced metabolic and osmotic injuries. For a theoretical model based optimization of vitrification, thermal properties of CPA solutions are indispensable. In this study, the thermal conductivities of M22 and vitrification solution containing ethylene glycol and dimethyl sulfoxide (two commonly used vitrification solutions) were measured using a self-made microscaled hot probe with enameled copper wire at the temperature range of 77 K-300 K. The data obtained by this study will further enrich knowledge of the thermal properties for CPA solutions at low temperatures, as is of primary importance for optimization of vitrification.

  17. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    Energy Technology Data Exchange (ETDEWEB)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David; Turchi, Craig S.; Cath, Tzahi Y.

    2018-02-01

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.

  18. Thermal conductivity of Cu–4⋅5 Ti alloy

    Indian Academy of Sciences (India)

    Unknown

    next paragraph. Therefore, Cu–4⋅5 Ti alloy exhibits a pho- non thermal conductivity of 17⋅6 W/m⋅K and electronic conductivity of 0 W/m⋅K at 0 K. The Widemann–Franz–Lorenz Law (2) has been used to decompose the total thermal conductivity of Cu–4⋅5 Ti alloy measured at room temperature (298 K), into electronic.

  19. Thermal Conduction in Graphene and Graphene Multilayers

    OpenAIRE

    Ghosh, Suchismita

    2009-01-01

    There has been increasing interest in thermal conductivity of materials motivated by the heat removal issues in electronics and by the need of fundamental science to understand heat conduction at nanoscale. This dissertation reports the results of the experimental investigation of heat conduction in graphene and graphene multilayers. Graphene is a planar single sheet of sp2–bonded carbon atoms arranged in honeycomb lattice. It reveals many unique properties, including the extraordinaril...

  20. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  1. Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method

    Science.gov (United States)

    Potenza, M.; Cataldo, A.; Bovesecchi, G.; Corasaniti, S.; Coppa, P.; Bellucci, S.

    2017-07-01

    The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity), and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs) was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg.m-3) the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.

  2. Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method

    Directory of Open Access Journals (Sweden)

    M. Potenza

    2017-07-01

    Full Text Available The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity, and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg·m-3 the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.

  3. Thermal conductivity of electron-irradiated graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  4. Accurate Thermal Conductivities from First Principles

    Science.gov (United States)

    Carbogno, Christian

    2015-03-01

    In spite of significant research efforts, a first-principles determination of the thermal conductivity at high temperatures has remained elusive. On the one hand, Boltzmann transport techniques that include anharmonic effects in the nuclear dynamics only perturbatively become inaccurate or inapplicable under such conditions. On the other hand, non-equilibrium molecular dynamics (MD) methods suffer from enormous finite-size artifacts in the computationally feasible supercells, which prevent an accurate extrapolation to the bulk limit of the thermal conductivity. In this work, we overcome this limitation by performing ab initio MD simulations in thermodynamic equilibrium that account for all orders of anharmonicity. The thermal conductivity is then assessed from the auto-correlation function of the heat flux using the Green-Kubo formalism. Foremost, we discuss the fundamental theory underlying a first-principles definition of the heat flux using the virial theorem. We validate our approach and in particular the techniques developed to overcome finite time and size effects, e.g., by inspecting silicon, the thermal conductivity of which is particularly challenging to converge. Furthermore, we use this framework to investigate the thermal conductivity of ZrO2, which is known for its high degree of anharmonicity. Our calculations shed light on the heat resistance mechanism active in this material, which eventually allows us to discuss how the thermal conductivity can be controlled by doping and co-doping. This work has been performed in collaboration with R. Ramprasad (University of Connecticut), C. G. Levi and C. G. Van de Walle (University of California Santa Barbara).

  5. Thermal Testing Measurements Report

    Energy Technology Data Exchange (ETDEWEB)

    R. Wagner

    2002-09-26

    The purpose of the Thermal Testing Measurements Report (Scientific Analysis Report) is to document, in one report, the comprehensive set of measurements taken within the Yucca Mountain Project Thermal Testing Program since its inception in 1996. Currently, the testing performed and measurements collected are either scattered in many level 3 and level 4 milestone reports or, in the case of the ongoing Drift Scale Test, mostly documented in eight informal progress reports. Documentation in existing reports is uneven in level of detail and quality. Furthermore, while all the data collected within the Yucca Mountain Site Characterization Project (YMP) Thermal Testing Program have been submitted periodically to the Technical Data Management System (TDMS), the data structure--several incremental submittals, and documentation formats--are such that the data are often not user-friendly except to those who acquired and processed the data. The documentation in this report is intended to make data collected within the YMP Thermal Testing Program readily usable to end users, such as those representing the Performance Assessment Project, Repository Design Project, and Engineered Systems Sub-Project. Since either detailed level 3 and level 4 reports exist or the measurements are straightforward, only brief discussions are provided for each data set. These brief discussions for different data sets are intended to impart a clear sense of applicability of data, so that they will be used properly within the context of measurement uncertainty. This approach also keeps this report to a manageable size, an important consideration because the report encompasses nearly all measurements for three long-term thermal tests. As appropriate, thermal testing data currently residing in the TDMS have been reorganized and reformatted from cumbersome, user-unfriendly Input-Data Tracking Numbers (DTNs) into a new set of Output-DTNs. These Output-DTNs provide a readily usable data structure

  6. Measuring skin conductance over clothes.

    Science.gov (United States)

    Hong, Ki Hwan; Lee, Seung Min; Lim, Yong Gyu; Park, Kwang Suk

    2012-11-01

    We propose a new method that measures skin conductance over clothes to nonintrusively monitor the changes in physiological conditions affecting skin conductance during daily activities. We selected the thigh-to-thigh current path and used an indirectly coupled 5-kHz AC current for the measurement. While varying the skin conductance by the Valsalva maneuver method, the results were compared with the traditional galvanic skin response (GSR) measured directly from the fingers. Skin conductance measured using a 5-kHz current displayed a highly negative correlation with the traditional GSR and the current measured over clothes reflected the rate of change of the conductance of the skin beneath.

  7. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data

    Science.gov (United States)

    Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.

    2006-01-01

    Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.

  8. Heat Capacity and Thermal Conductance Measurements of a Superconducting-Normal Mixed State by Detection of Single 3 eV Photons in a Magnetic Penetration Thermometer

    Science.gov (United States)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S.-J.; Nagler, P. C.; Smith, S. J.

    2015-01-01

    We report on measurements of the detected signal pulses in a molybdenum-gold Magnetic Penetration Thermometer (MPT) in response to absorption of one or more 3 eV photons. We designed and used this MPT sensor for x-ray microcalorimetry. In this device, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons, and responsivity is enhanced by a Meissner transition in which the magnetic flux penetrating the sensor changes rapidly to minimize free energy in a mixed superconducting normal state. We have previously reported on use of our MPT to study a thermal phonon energy loss to the substrate when absorbing x-rays. We now describe results of extracting heat capacity C and thermal conductance G values from pulse height and decay time of MPT pulses generated by 3 eV photons. The variation in C and G at temperatures near the Meissner transition temperature (set by an internal magnetic bias field) allow us to probe the behavior in superconducting normal mixed state of the condensation energy and the electron cooling power resulting from quasi-particle recombination and phonon emission. The information gained on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.

  9. Electrothermal efficiency, temperature and thermal conductivity of ...

    Indian Academy of Sciences (India)

    A study was made to evaluate the electrothermal efficiency of a DC arc plasma torch and temperature and thermal conductivity of plasma jet in the torch. The torch was operated at power levels from 4 to 20 kW in non-transferred arc mode. The effect of nitrogen in combination with argon as plasma gas on the above ...

  10. Electrothermal efficiency, temperature and thermal conductivity of ...

    Indian Academy of Sciences (India)

    Abstract. A study was made to evaluate the electrothermal efficiency of a DC arc plasma torch and temperature and thermal conductivity of plasma jet in the torch. The torch was operated at power levels from 4 to 20 kW in non-transferred arc mode. The effect of nitrogen in combination with argon as plasma gas on the above ...

  11. Thermally stimulated discharge conductivity in polymer composite ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. This paper describes the results of thermally stimulated discharge conductivity study of activated charcoal–polyvinyl chloride (PVC) thin film thermoelectrets. TSDC has been carried out in the temperature range 308–400°K and at four different polarizing fields. Results are discussed on the basis of mobility of acti-.

  12. Temperature dependence of thermal conductivity of vanadium ...

    Indian Academy of Sciences (India)

    Unknown

    . Cryogenic Engineering .... Thermal conductivity of vanadium substituted BPSCCO system. 441 trical resistivity as well as the small decrease ..... G, Marre D, Putti M and Siri A S 1997 Physica C273 314. Chawlek J M, Uher C, Whitaker J F and ...

  13. Thermally stimulated discharge conductivity in polymer composite ...

    Indian Academy of Sciences (India)

    This paper describes the results of thermally stimulated discharge conductivity study of activated charcoal–polyvinyl chloride (PVC) thin film thermoelectrets. TSDC has been carried out in the temperature range 308–400°K and at four different polarizing fields. Results are discussed on the basis of mobility of activated ...

  14. Electrically Conductive White Thermal-Control Paint

    Science.gov (United States)

    Hsieh, Cheng-Hsien; Forsberg, Gustaf A.; O'Donnell, Timothy P.

    1995-01-01

    Report describes development of white thermal-control paint intended for use on spacecraft. Paint required to exhibit combination of high emittance (equal to or greater than 0.90), low absorptance (equal to or less than 0.20), and electrical conductivity sufficient to prevent charging with static electricity to potentials beyond range of plus or minus 10 V.

  15. Indium Foil Serves As Thermally Conductive Gasket

    Science.gov (United States)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  16. Polymer nanoparticles to decrease thermal conductivity of phase change materials

    OpenAIRE

    Salaün, Fabien; Eric, Devaux; Bourbigot, Serge; Rumeau, Pascal; Chapuis, Pierre-Olivier; Saha, Sourabh Kumar; Volz, Sebastian

    2008-01-01

    Microparticles including paraffin are currently used for textiles coating in order to deaden thermal shocks. We will show that polymer nanoparticles embedded in those microsized capsules allow for decreasing the thermal conductivity of the coating and enhance the protection in the stationary regime. A reasonable volume fraction of polymer nanoparticles reduces the conductivity more than predicted by Maxwell mixing rules. Besides, measurements prove that the polymer nanoparticles do not affect...

  17. Polymer nanoparticles to decrease thermal conductivity of phase change materials

    OpenAIRE

    Chapuis, Po; Saha, Sourabh Kumar; Volz, S.

    2007-01-01

    Microparticles including paraffin are currently used for textiles coating in order to deaden thermal shocks. We will show that polymer nanoparticles embedded in those microsized capsules allow for decreasing the thermal conductivity of the coating and enhance the protection in the stationary regime. A reasonable volume fraction of polymer nanoparticles reduces the conductivity more than predicted by Maxwell mixing rules. Besides, measurements prove that the polymer nanoparticles do not affect...

  18. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites

    National Research Council Canada - National Science Library

    Lukasz Jarosinski; Andrzej Rybak; Karolina Gaska; Grzegorz Kmita; Renata Porebska; Czeslaw Kapusta

    2017-01-01

    .... The thermal conductivity of pure polymers is relatively low and addition of thermally conductive particles into polymer matrix is the method to enhance the overall thermal conductivity of the composite...

  19. Ultrahigh Thermal Conductive yet Superflexible Graphene Films.

    Science.gov (United States)

    Peng, Li; Xu, Zhen; Liu, Zheng; Guo, Yan; Li, Peng; Gao, Chao

    2017-07-01

    Electrical devices generate heat at work. The heat should be transferred away immediately by a thermal manager to keep proper functions, especially for high-frequency apparatuses. Besides high thermal conductivity (K), the thermal manager material requires good foldability for the next generation flexible electronics. Unfortunately, metals have satisfactory ductility but inferior K (≤429 W m(-1) K(-1) ), and highly thermal-conductive nonmetallic materials are generally brittle. Therefore, fabricating a foldable macroscopic material with a prominent K is still under challenge. This study solves the problem by folding atomic thin graphene into microfolds. The debris-free giant graphene sheets endow graphene film (GF) with a high K of 1940 ± 113 W m(-1) K(-1) . Simultaneously, the microfolds render GF superflexible with a high fracture elongation up to 16%, enabling it more than 6000 cycles of ultimate folding. The large-area multifunctional GFs can be easily integrated into high-power flexible devices for highly efficient thermal management. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  1. An ultrahigh thermal conductive graphene flexible paper.

    Science.gov (United States)

    Ding, Jiheng; Zhao, Hongran; Wang, Qiaolei; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-11-09

    Graphene nanosheets (GNSs) possess outstanding conductivity, good thermal and chemical stabilities and desirable mechanical strengths. However, the unfunctionalized GNSs are hydrophobic and insoluble in water, which limits their application in many technological areas. Herein, we report a design strategy to exfoliate few-layered aqueous dispersible graphene by a simple ball-milling technique. The modifier of sodium lignosulfonate (LS) enables to synthesize LS-decorated GNSs from natural graphite based on the strong π-π interaction, greatly improving GNSs dispersion in water. The resultant GNSs exhibit a high production yield (∼100%), high dispersion concentration and excellent film formation ability. The electrical and thermal conductivities of the as-prepared graphene paper were up to 2385 S cm(-1) and 1324 W m(-1) K(-1), respectively, superior to those of most previously reported graphene materials. This graphene paper with the superb electrical and thermal conduction properties also exhibits excellent mechanical flexibility and structure intensity during bending, which has potential usages in electronic packaging and high power thermal management.

  2. Calibration of non-ideal thermal conductivity sensors

    Directory of Open Access Journals (Sweden)

    N. I. Kömle

    2013-04-01

    Full Text Available A popular method for measuring the thermal conductivity of solid materials is the transient hot needle method. It allows the thermal conductivity of a solid or granular material to be evaluated simply by combining a temperature measurement with a well-defined electrical current flowing through a resistance wire enclosed in a long and thin needle. Standard laboratory sensors that are typically used in laboratory work consist of very thin steel needles with a large length-to-diameter ratio. This type of needle is convenient since it is mathematically easy to derive the thermal conductivity of a soft granular material from a simple temperature measurement. However, such a geometry often results in a mechanically weak sensor, which can bend or fail when inserted into a material that is harder than expected. For deploying such a sensor on a planetary surface, with often unknown soil properties, it is necessary to construct more rugged sensors. These requirements can lead to a design which differs substantially from the ideal geometry, and additional care must be taken in the calibration and data analysis. In this paper we present the performance of a prototype thermal conductivity sensor designed for planetary missions. The thermal conductivity of a suite of solid and granular materials was measured both by a standard needle sensor and by several customized sensors with non-ideal geometry. We thus obtained a calibration curve for the non-ideal sensors. The theory describing the temperature response of a sensor with such unfavorable length-to-diameter ratio is complicated and highly nonlinear. However, our measurements reveal that over a wide range of thermal conductivities there is an almost linear relationship between the result obtained by the standard sensor and the result derived from the customized, non-ideal sensors. This allows for the measurement of thermal conductivity values for harder soils, which are not easily accessible when using

  3. Thermal effects in microfluidics with thermal conductivity spatially modulated

    Science.gov (United States)

    Vargas Toro, Agustín.

    2014-05-01

    A heat transfer model on a microfluidic is resolved analytically. The model describes a fluid at rest between two parallel plates where each plate is maintained at a differentially specified temperature and the thermal conductivity of the microfluidic is spatially modulated. The heat transfer model in such micro-hydrostatic configuration is analytically resolved using the technique of the Laplace transform applying the Bromwich Integral and the Residue theorem. The temperature outline in the microfluidic is presented as an infinite series of Bessel functions. It is shown that the result for the thermal conductivity spatially modulated has as a particular case the solution when the thermal conductivity is spatially constant. All computations were performed using the computer algebra software Maple. It is claimed that the analytical obtained results are important for the design of nanoscale devices with applications in biotechnology. Furthermore, it is suggested some future research lines such as the study of the heat transfer model in a microfluidic resting between coaxial cylinders with radially modulated thermal conductivity in order to achieve future developments in this area.

  4. Effects of coherent ferroelastic domain walls on the thermal conductivity and Kapitza conductance in bismuth ferrite

    Science.gov (United States)

    Hopkins, Patrick E.; Adamo, Carolina; Ye, Linghan; Huey, Bryan D.; Lee, Stephen R.; Schlom, Darrell G.; Ihlefeld, Jon F.

    2013-03-01

    Ferroelectric and ferroelastic domain structure has a profound effect on the piezoelectric, ferroelectric, and dielectric responses of ferroelectric materials. However, domain walls and strain field effects on thermal properties are unknown. We measured the thermal conductance from 100-400 K of epitaxially grown BiFeO3 thin films with different domain variants, each separated primarily by 71° domain walls. We determined the Kapitza conductance across the domain walls, which is driven by the strain field induced by the domain variants. This domain wall Kapitza conductance is lower than the Kapitza conductance associated with grain boundaries in all previously measured materials.

  5. Multiscale Modeling of UHTC: Thermal Conductivity

    Science.gov (United States)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  6. THERMAL CONDUCTIVITY OF THE POTENTIAL REPOSITORY HORIZON

    Energy Technology Data Exchange (ETDEWEB)

    J.E. BEAN

    2004-09-27

    The primary purpose of this report is to assess the spatial variability and uncertainty of bulk thermal conductivity in the host horizon for the repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). Design plans indicate that approximately 81 percent of the repository will be excavated in the Tptpll, approximately 12 percent in the Tptpmn, and the remainder in the Tptul and Tptpln (BSC 2004 [DIRS 168370]). This report provides three-dimensional geostatistical estimates of the bulk thermal conductivity for the four stratigraphic layers of the repository horizon. The three-dimensional geostatistical estimates of matrix and lithophysal porosity, dry bulk density, and matrix thermal conductivity are also provided. This report provides input to various models and calculations that simulate heat transport through the rock mass. These models include the ''Drift Degradation Analysis, Multiscale Thermohydrologic Model, Ventilation Model and Analysis Report, Igneous Intrusion Impacts on Waste Packages and Waste Forms, Drift-Scale Coupled Processes (DST and TH Seepage) Models'', and ''Drift Scale THM Model''. These models directly or indirectly provide input to the total system performance assessment (TSPA). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large-scale (centimeters-meters) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity.

  7. Thermal conductivity of disperse insulation materials and their mixtures

    Science.gov (United States)

    Geža, V.; Jakovičs, A.; Gendelis, S.; Usiļonoks, I.; Timofejevs, J.

    2017-10-01

    Development of new, more efficient thermal insulation materials is a key to reduction of heat losses and contribution to greenhouse gas emissions. Two innovative materials developed at Thermeko LLC are Izoprok and Izopearl. This research is devoted to experimental study of thermal insulation properties of both materials as well as their mixture. Results show that mixture of 40% Izoprok and 60% of Izopearl has lower thermal conductivity than pure materials. In this work, material thermal conductivity dependence temperature is also measured. Novel modelling approach is used to model spatial distribution of disperse insulation material. Computational fluid dynamics approach is also used to estimate role of different heat transfer phenomena in such porous mixture. Modelling results show that thermal convection plays small role in heat transfer despite large fraction of air within material pores.

  8. Discussion on the thermal conductivity enhancement of nanofluids

    Directory of Open Access Journals (Sweden)

    Xie Huaqing

    2011-01-01

    Full Text Available Abstract Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW, ethylene glycol (EG, glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed.

  9. Discussion on the thermal conductivity enhancement of nanofluids

    Science.gov (United States)

    2011-01-01

    Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed. PMID:21711638

  10. Performance of thermal conductivity probes for planetary applications

    Directory of Open Access Journals (Sweden)

    E. S. Hütter

    2012-05-01

    Full Text Available This work aims to contribute to the development of in situ instruments feasible for space application. Commercial as well as custom-made thermal sensors, based on the transient hot wire technique and suitable for direct measurement of the effective thermal conductivity of granular media, were tested for application under airless conditions. In order to check the ability of custom-made sensors to measure the thermal conductivity of planetary surface layers, detailed numerical simulations predicting the response of the different sensors have been performed. These simulations reveal that for investigations under high vacuum conditions (as they prevail, e.g. on the lunar surface, the derived thermal conductivity values can significantly depend on sensor geometry, axial heat flow, and the thermal contact between probe and surrounding material. Therefore, a careful calibration of each particular sensor is necessary in order to obtain reliable thermal conductivity measurements. The custom-made sensors presented in this work can serve as prototypes for payload to be flown on future planetary lander missions, in particular for airless bodies like the Moon, asteroids and comets, but also for Mars.

  11. Thermal conductive epoxy enhanced by nanodiamond-coated carbon nanotubes

    Science.gov (United States)

    Zhao, Bo; Jiang, Guohua

    2017-11-01

    Nanodiamond (ND) particles were coated on the surface of carbon nanotubes (CNTs) by chemical reactions. Reliable bonding was formed by the combination of acyl chloride on NDs and amine group on CNTs. ND coated CNTs (CNT-ND) were dispersed into epoxy to fabricate thermal conductive resins. The results show that the surface energy of CNTs is decreased by the coated NDs, which is contributed to the excellent dispersion of CNT-NDs in the epoxy matrix. The heat-transfer channels were built by the venous CNTs cooperating with the coated NDs, which not only plays an effective role of heat conduction for CNTs and NDs, but also avoids the electrical leakage by the protection of NDs surrounding outside of CNTs. Electrical and thermal conductance measurements demonstrate that the influence of the CNT-ND incorporation on the electrical conductance is minor, however, the thermal conductivity is improved significantly for the epoxy filled with CNT-ND.[Figure not available: see fulltext.

  12. Treating Fibrous Insulation to Reduce Thermal Conductivity

    Science.gov (United States)

    Zinn, Alfred; Tarkanian, Ryan

    2009-01-01

    A chemical treatment reduces the convective and radiative contributions to the effective thermal conductivity of porous fibrous thermal-insulation tile. The net effect of the treatment is to coat the surfaces of fibers with a mixture of transition-metal oxides (TMOs) without filling the pores. The TMO coats reduce the cross-sectional areas available for convection while absorbing and scattering thermal radiation in the pores, thereby rendering the tile largely opaque to thermal radiation. The treatment involves a sol-gel process: A solution containing a mixture of transition-metal-oxide-precursor salts plus a gelling agent (e.g., tetraethylorthosilicate) is partially cured, then, before it visibly gels, is used to impregnate the tile. The solution in the tile is gelled, then dried, and then the tile is fired to convert the precursor salts to the desired mixed TMO phases. The amounts of the various TMOs ultimately incorporated into the tile can be tailored via the concentrations of salts in the solution, and the impregnation depth can be tailored via the viscosity of the solution and/or the volume of the solution relative to that of the tile. The amounts of the TMOs determine the absorption and scattering spectra.

  13. Thermal contact resistance measurement of conduction cooled binary current lead joint block in cryocooler based self field I-V characterization facility

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Ananya, E-mail: ananya@ipr.res.in; Das, Subrat Kumar; Agarwal, Anees Bano Pooja; Pradhan, Subrata [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2016-05-23

    In the present study thermal resistance of conduction cooled current lead joint block employing two different interfacial material namely AlN sheet and Kapton Film have been studied in the temperature range 5K-35K. In each case, the performance of different interlayer materials e.g. Indium foil for moderately pressurized contacts (contact pressure <1 MPa), and Apiezon N Grease, GE varnish for low pressurized contact (contact pressure <1 MPa) is studied. The performances of AlN joint with Indium foil and with Apeizon N Grease are studied and it is observed that the contact resistance reduces more with indium foil as compared to greased contact. The contact resistance measurements of Kapton film with Apiezon N grease and with GE varnish were also carried out in the same temperature range. A comparative study of AlN joint with Indium foil and Kapton with GE varnish as filler material is carried out to demonstrate better candidate material among Kapton and AlN for a particular filler material in the same temperature range.

  14. Glasses, Stress, Attenuation and Thermal Conductivity

    Science.gov (United States)

    Wu, Jiansheng; Yu, Clare

    2011-03-01

    A wide variety of amorphous materials exhibit similar behavior in their thermal properties. Examples include universal features in the specific heat,thermal conductivity, and ultrasonic attenuation. Recent experiments from the Parpia group at Cornell find that high stress silicon nitride thin film resonators exhibit a remarkably high Q factor, exceeding that of amorphous Si O2 by 2 to 3 orders of magnitude over a broad range of temperatures, and even exceeding that of single crystal silicon at room temperature. We present a model of why the stress reduces the attenuation. The basic assumption is that high stress increases the potential barriers of the excitations of defects that produce the loss, thus reducing the effective density of lossy fluctuators. We predict that high stress could lead to high thermal conductivity and low dielectric loss, making high stress SiN an excellent candidate as a substrate for integrated circuits. This work was supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office.

  15. Accelerating evaluation of converged lattice thermal conductivity

    Science.gov (United States)

    Qin, Guangzhao; Hu, Ming

    2018-01-01

    High-throughput computational materials design is an emerging area in materials science, which is based on the fast evaluation of physical-related properties. The lattice thermal conductivity (κ) is a key property of materials for enormous implications. However, the high-throughput evaluation of κ remains a challenge due to the large resources costs and time-consuming procedures. In this paper, we propose a concise strategy to efficiently accelerate the evaluation process of obtaining accurate and converged κ. The strategy is in the framework of phonon Boltzmann transport equation (BTE) coupled with first-principles calculations. Based on the analysis of harmonic interatomic force constants (IFCs), the large enough cutoff radius (rcutoff), a critical parameter involved in calculating the anharmonic IFCs, can be directly determined to get satisfactory results. Moreover, we find a simple way to largely ( 10 times) accelerate the computations by fast reconstructing the anharmonic IFCs in the convergence test of κ with respect to the rcutof, which finally confirms the chosen rcutoff is appropriate. Two-dimensional graphene and phosphorene along with bulk SnSe are presented to validate our approach, and the long-debate divergence problem of thermal conductivity in low-dimensional systems is studied. The quantitative strategy proposed herein can be a good candidate for fast evaluating the reliable κ and thus provides useful tool for high-throughput materials screening and design with targeted thermal transport properties.

  16. Effective thermal conductivity of a thin composite material

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, P.E. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering; Niemann, R.C. [Argonne National Lab., IL (United States)

    1996-12-31

    The thermal conductivity of a randomly oriented composite material is modeled using a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at small composite thickness. The numerical scheme employs a random number generator to position the filler elements, which have a relatively high thermal conductivity, within a matrix having a relatively low thermal conductivity. Results indicate that, below some threshold thickness, the composite thermal conductivity increases with decreasing thickness, while above the threshold the thermal conductivity is independent of thickness. The threshold thickness increases for increasing filler fraction and increasing k{sub f}/k{sub m}, the ratio between filler and matrix thermal conductivities.

  17. Experimental Investigation of Thermal Conductivity of Meat During Freezing

    Science.gov (United States)

    Shinbayeva, A.; Arkharov, I.; Aldiyarov, A.; Drobyshev, A.; Zhubaniyazova, M.; Kurnosov, V.

    2017-04-01

    The cryogenic technologies of processing and storage of agricultural products are becoming increasingly indispensable in the food industry as an important factor of ensuring food safety. One of such technologies is the shock freezing of meat, which provides a higher degree of preservation of the quality of frozen products in comparison with traditional technologies. The thermal conductivity of meat is an important parameter influencing the energy consumption in the freezing process. This paper presents the results of an experimental investigation of the temperature dependence of the thermal conductivity of beef. The measurements were taken by using a specially designed measurement cell, which allows covering the temperature range from 80 to 300 K.

  18. Significant Reduction of Graphene Thermal Conductivity by Phononic Crystal Structure

    OpenAIRE

    Yang, Lina; CHEN, JIE; Yang, Nuo; Li, Baowen

    2014-01-01

    We studied the thermal conductivity of graphene phononic crystal (GPnC), also named as graphene nanomesh, by molecular dynamics simulations. The dependences of thermal conductivity of GPnCs on both length and temperature are investigated. It is found that the thermal conductivity of GPnCs is significantly lower than that of graphene and can be efficiently tuned by changing the porosity and period length. For example, the ratio of thermal conductivity of GPnC to thermal conductivity of graphen...

  19. Effective Thermal Conductivity of Insulating Material made from Recycled Newspapers

    Science.gov (United States)

    Yamada, Etsuro; Takahashi, Kaneko; Sato, Mitsuo; Ishii, Yukihiro

    In this paper, the experimental results are represented on the effective thermal conductivity of cellulose insulation powder which is made from recycled newspapers. This insulating material is useful for energy and resources saving. The steady state cylindrical absolute method is employed by considering the accuracy of measurement. The experimental results are compared with the ones measured previously by other methods. The main results obtained are as follows (1) The effective thermal conductivity of this insulating material increases with increasing temperature and effective specific density, respectively. But, these increasing rate is not so large. (2) The effective thermal conductivity is about 0.04-0.06[W/mK] at the range of the effective specific density less than 100 [kg/m3]. This value is comparable with other industrial insulating materials.

  20. THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS

    Energy Technology Data Exchange (ETDEWEB)

    R. JONES

    2004-10-22

    from each test specimen to meet three specific conditions: (1) Known value for matrix porosity; (2) Known values for wet and dry thermal conductivity; and (3) The location of the measured specimen in relation to the model stratigraphic unit. The only matrix thermal conductivity values developed are limited to fully saturated and dry conditions. The model does not include the effects of convection and thermal radiation in voids. The model does not include temperature dependence of thermal conductivity, porosity, or bulk density.

  1. Thermal Conductivity of Compacted Bentonite and Bentonite-Sand Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Lee, Jae Owan; Kwon, Sang Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-06-15

    For the Kyungju bentonite which is considered as a candidate material for the buffer and backfill in the high-level waste repository, the thermal conductivities of compacted bentonite and a bentonite-sand mixture were measured. The thermal conductivities of the compacted bentonite with a dry density of 1.2 to 1.8 Mg/m{sup 3}and the bentonite-sand mixture with a dry density of 1.6 and 1.8 Mg/m{sup 3} were measured within the gravimetric water content range of 10wt% to 20wt% and the sand fraction range of 10 to 30wt%. The thermal conductivity of compacted bentonite and a bentonite-sand mixture increases with increasing dry density and sand weight fraction in the case of constant water weight fraction, and increases with increasing water weight fraction and sand weight fraction in the case of constant dry density. The empirical correlations to describe the thermal conductivity of compacted bentonite and a bentonite-sand mixture as a function of water fraction at each dry density were suggested. These correlations can predict the thermal conductivities of bentonite and a bentonite-sand mixture with a difference below 10%.

  2. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  3. Estimation of Thermal Conductivity in the North- Western Niger Delta ...

    African Journals Online (AJOL)

    matrix thermal conductivity in the Niger Delta sedimentary basin. There is a decrease of thermal conductivity with increasing shale fraction. The bulk conductivity also show an increase with increasing sandstone fraction. Increase in porosity results in a decrease in bulk conductivity. Thermal conductivity values and variations ...

  4. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance.

    Science.gov (United States)

    Schmidt, Aaron J; Chen, Xiaoyuan; Chen, Gang

    2008-11-01

    The relationship between pulse accumulation and radial heat conduction in pump-probe transient thermoreflectance (TTR) is explored. The results illustrate how pulse accumulation allows TTR to probe two thermal length scales simultaneously. In addition, the conditions under which radial transport effects are important are described. An analytical solution for anisotropic heat flow in layered structures is given, and a method for measuring both cross-plane and in-plane thermal conductivities of thermally anisotropic thin films is described. As verification, the technique is used to extract the cross-plane and in-plane thermal conductivities of highly ordered pyrolytic graphite. Results are found to be in good agreement with literature values.

  5. Determining in-situ thermal conductivity of coarse textured materials through numerical analysis of thermal

    Science.gov (United States)

    Saito, H.; Hamamoto, S.; Moldrup, P.; Komatsu, T.

    2013-12-01

    Ground source heat pump (GSHP) systems use ground or groundwater as a heat/cooling source, typically by circulating anti-freezing solution inside a vertically installed closed-loop tube known as a U-tube to transfer heat to/from the ground. Since GSHP systems are based on renewable energy and can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems, use of GSHP systems has been rapidly increasing worldwide. However, environmental impacts by GSHP systems including thermal effects on subsurface physical-chemical and microbiological properties have not been fully investigated. To rigorously assess GSHP impact on the subsurface environment, ground thermal properties including thermal conductivity and heat capacity need to be accurately characterized. Ground thermal properties were investigated at two experimental sites at Tokyo University of Agriculture and Technology (TAT) and Saitama University (SA), both located in the Kanto area of Japan. Thermal properties were evaluated both by thermal probe measurements on boring core samples and by performing in-situ Thermal Response Tests (TRT) in 50-80 m deep U-tubes. At both TAT and SU sites, heat-pulse probe measurements gave unrealistic low thermal conductivities for coarse textured materials (dominated by particles > 75 micrometers). Such underestimation can be partly due to poor contact between probe and porous material and partly to markedly decreasing sample water content during drilling, carrying, and storing sandy/gravelly samples. A more reliable approach for estimating in-situ thermal conductivity of coarse textured materials is therefore needed, and may be based on the commonly used TRT test. However, analyses of TRT data is typically based on Kelvin's line source model and provides an average (effective) thermal property for the whole soil profile around the U-tube but not for each geological layer. The main objective of this study was therefore to develop a method

  6. Characterization of Molten CZT Using Thermal Conductivity and Heat Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Nero, Franco [Y-12 National Security Complex, Oak Ridge, TN (United States); Jackson, Maxx [Y-12 National Security Complex, Oak Ridge, TN (United States); Stowe, Ashley [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-10-10

    To compare thermal conductivity of a polycrystalline semiconductor to the single crystal semiconductor using thermo-physical data acquired from Simultaneous Thermal Analysis and Transient Plane Source heating.

  7. 15th International Conference on Thermal Conductivity

    CERN Document Server

    1978-01-01

    Once again, it gives me a great pleasure to pen the Foreword to the Proceedings of the 15th International Conference on Thermal Conductivity. As in the past, these now biannual conferences pro­ vide a broadly based forum for those researchers actively working on this important property of matter to convene on a regular basis to exchange their experiences and report their findings. As it is apparent from the Table of Contents, the 15th Conference represents perhaps the broadest coverage of subject areas to date. This is indicative of the times as the boundaries between disciplines be­ come increasingly diffused. I am sure the time has come when Con­ ference Chairmen in coming years will be soliciting contributions not only in the physical sciences and engineering', but will actively seek contributions from the earth sciences and life sciences as well. Indeed, the thermal conductivity and related properties of geological and biological materials are becoming of increasing im­ portance to our way of life. As...

  8. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  9. A thermal conductivity model for U-­Si compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    U3Si2 is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO2 in commercial light water reactors (LWRs). One of its main benefits compared to UO2 is higher thermal conductivity that increases with temperature. This increase is contrary to UO2, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U3Si2, as compared to the phonon mechanism responsible for thermal transport in UO2. The phonon thermal conductivity in UO2 is unusually low for a fluorite oxide due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U3Si2 as well as other U-­Si compounds has been measured experimentally [1-­4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO2 this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U3Si2 thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO2 (semi-conductor) and U3Si2 (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-­Si compounds with the goal of capturing the effect of damage in U3Si2. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.

  10. Determination of thermal conductivities of some topsoils using block ...

    African Journals Online (AJOL)

    This study focuses on the determination of In situ measurement of the top soil layer, despite non-homogeneity of natural soils caused by changes in their water content, texture and structure. Thermal Conductivities of clay, loam and sand soils were determined using improved Block method with and without the use of ...

  11. Statistical analysis of thermal conductivity of nanofluid containing ...

    Indian Academy of Sciences (India)

    TEM image confirmed that the ends of MWCNTs were opened during their oxidation of them in HNO3 and TiO2 nanoparticles successfully attach to the outer surface of oxidized MWCNTs. Thermal conductivity measurements of nanofluids were analysed via two-factor completely randomized design and comparison of data ...

  12. Prediction of thermal conductivity of sedimentary rocks from well logs

    DEFF Research Database (Denmark)

    Fuchs, Sven; Förster, Andrea

    2014-01-01

    The calculation of heat-flow density in boreholes requires reliable values for the change of temperature and rock thermal conductivity with depth. As rock samples for laboratory measurements of thermal conductivity (TC) are usually rare geophysical well logs are used alternatively to determine TC...... combinations of standard geophysical well-logs. In combination with a feasible mixing-model (i.e. geometric mean model) bulk TC is computed along borehole profiles. The underlying approach was proposed by Fuchs & Förster (2014) and rests upon the detailed analysis of the interrelations between major physical...

  13. Thermal conductivity and thermal boundary resistance of nanostructures

    Directory of Open Access Journals (Sweden)

    Merabia Samy

    2011-01-01

    Full Text Available Abstract We present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results. PACS 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv

  14. Thermal conductivity of wool and wool-hemp insulation

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Wells, C.M.; Carrington, C.G. [University of Otago, Dunedin (New Zealand). Dept. of Physics; Hewitt, N.J. [University of Ulster, Jordanstown (United Kingdom). Centre for Sustainable Technologies

    2006-01-15

    Measurements have been obtained for the thermal resistance of sheep-wool insulation and wool-hemp mixtures, both in the form of bonded insulation batts, using a calibrated guarded hot-box. The density was 9.6-25.9 kg m{sup -3} for the wool and 9.9-18.1 kg m{sup -3} for the wool-hemp mixtures. The measurements were made at a mean sample temperature of 13.3{sup o}C using a calibrated guarded hot-box. The estimated uncertainly in the resistance measurements was of the order of {+-}7%. The thermal conductivity of the samples, derived from the thermal resistance measurements on the basis of the measured thickness, was well correlated with the density, although the variation with density was larger than that obtained in previous studies. The conductivity of the wool-hemp samples was not significantly different from that of the wool samples at the same density. Moisture uptake produced an increase of less than 5% in the conductivity of the bonded wool insulation for an increase in absorbed moisture content of 20%. The thermal resistance was 1.6% lower on average for samples oriented in the horizontal plane rather than the vertical plane, but this difference is not significant. (author)

  15. Thermal Conductivity of Carbon Nanoreinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    C. Kostagiannakopoulou

    2016-01-01

    Full Text Available The present study attempts to investigate the influence of multiwalled carbon nanotubes (MWCNTs and graphite nanoplatelets (GNPs on thermal conductivity (TC of nanoreinforced polymers and nanomodified carbon fiber epoxy composites (CFRPs. Loading levels from 1 to 3% wt. of MWCNTs and from 1 to 15% wt. of GNPs were used. The results indicate that TC of nanofilled epoxy composites increased with the increase of GNP content. Quantitatively, 176% and 48% increase of TC were achieved in nanoreinforced polymers and nanomodified CFRPs, respectively, with the addition of 15% wt. GNPs into the epoxy matrix. Finally, micromechanical models were applied in order to predict analytically the TC of polymers and CFRPs. Lewis-Nielsen model with optimized parameters provides results very close to the experimental ones in the case of polymers. As far as the composites are concerned, the Hashin and Clayton models proved to be sufficiently accurate for the prediction at lower filler contents.

  16. Thermal conductivity of mass-graded graphene flakes

    OpenAIRE

    Cheh, Jigger; Zhao, Hong

    2011-01-01

    In this letter we study thermal conduction in mass-graded graphene flakes by nonequilibrium molecular dynamics simulations. It is found that mass-graded graphene flakes reveal no thermal rectification effect in thermal conduction process. The dependence of thermal conductivity upon the heat flux and the mass gradient are studied to confirm the generality of the result.The mechanism leading to the absence of thermal rectification effect is also discussed.

  17. Plane waves in a thermally conducting viscous liquid

    Indian Academy of Sciences (India)

    The aim of this paper is to investigate plane waves in a thermally conducting viscous liquid half-space with thermal relaxation times. There exist three basic waves, namely; thermal wave, longitudinal wave and transverse wave in a thermally conducting viscous liquid half-space. Reflection of plane waves from the free ...

  18. Thermal conductivity of gas by pulse injection techniques using specific thermal conductivity detector (TCD)

    National Research Council Canada - National Science Library

    Renato Cataluña; Rosângela da Silva; Eliana W. Menezes; Dimitrios Samios

    2004-01-01

    ..., divided by the thermal conductivity. The experimental results obtained with Ar, N2, O2, CH4, CO2, C2H4, C3H6 and i-C4H8 gases are in good agreement with the proposed theoretical model and the linearity correlation confirms the validity...

  19. Dependence of thermal conductivity on structural parameters in porous samples

    Directory of Open Access Journals (Sweden)

    L. Miettinen

    2012-03-01

    Full Text Available The in-plane thermal conductivity of porous sintered bronze plates was studied both experimentally and numerically. We developed and validated an experimental setup, where the sample was placed in vacuum and heated while its time-dependent temperature field was measured with an infrared camera. The porosity and detailed three-dimensional structure of the samples were determined by X-ray microtomography. Lattice-Boltzmann simulations of thermal conductivity in the tomographic reconstructions of the samples were used to correct the contact area between bronze particles as determined by image analysis from the tomographic reconstructions. Small openings in the apparent contacts could not be detected with the imaging resolution used, and they caused an apparent thermal contact resistance between particles. With this correction included, the behavior of the measured thermal conductivity was successfully explained by an analytical expression, originally derived for regular structures, which involves three structural parameters of the porous structures. There was no simple relationship between heat conductivity and porosity.

  20. Thermal probes of nanoparticle interfaces: Thermodiffusion and thermal conductivity of nanoparticle suspensions

    Science.gov (United States)

    Putnam, Shawn Arthur

    This dissertation presents an experimental study of heat transport and mass transport in nanoparticle composites. The 3o-method was used for high precision thermal conductivity measurements of PMMA polymers filled with alumina nanoparticles. A microfluidic beam deflection technique, developed in this thesis, was used to measure both the thermal conductivity (Λ) and the thermodiffusion coefficient (DT) of nanoparticle suspensions. Thermal conductivity studies of polymer nanocomposites used effective medium theory and data for the changes in thermal conductivity to estimate the thermal conductance of PMMA/alumina interfaces in the temperature range of 40 30 nm. Thermal conductivity studies of nanoparticle suspensions measured the thermal diffusivity to a precision better than 1%. Solutions of G60--C 70 fullerenes and alkanethiolate-protected Au nanoparticles were measured to maximum volume fractions of 0.6% and 0.35 vol%, respectively. Anomalous enhancements in Λ were not observed. The largest enhancement in Λ was 1.3 +/- 0.8% for 4 nm diameter Au particles suspended in ethanol. Thermodiffusion studies investigated aqueous suspensions of charged polystyrene nanoparticles, proteins of T4 lysozyme, and mutant variants of T4 lysozyme at small particle concentrations (cp ≈ 1-2 vol%). DT was measured as a function of temperature, particle size, particle charge, ionic strength, and ionic species. At room temperature and high salt concentrations (>100 mM), DT for 26 nm polystyrene nanoparticles varied systematically within the range --0.9x10-7 cm2 K -1 50°C, the thermodiffusion coefficients were positive with a value consistent with the predictions of a theoretical model originally proposed by B. Derjaguin that is based on the enthalpy changes due to polarization of water molecules in the double-layer. At high temperatures, DT was also independent of particle size.

  1. Molecular Dynamics Simulations for Anisotropic Thermal Conductivity of Borophene

    OpenAIRE

    Jia, Yue; Li, Chun; Jiang, Jin-Wu; Wei, Ning; Chen, Yang; Zhang, Yongjie Jessica

    2017-01-01

    The present work carries out molecular dynamics simulations to compute the thermal conductivity of the borophene nanoribbon and the borophene nanotube using the Muller-Plathe approach. We investigate the thermal conductivity of the armchair and zigzag borophenes, and show the strong anisotropic thermal conductivity property of borophene. We compare the results of the borophene nanoribbon and the borophene nanotube, and find the thermal conductivity of the borophene is structure dependent.

  2. Determination of thermal conductivity of rocks samples using fabricated equipment

    Directory of Open Access Journals (Sweden)

    Fasunwon Olusola O.

    2008-01-01

    Full Text Available The aim of the paper is to describe how inexpensive/simple physics equipment was fabricated and used in the determination of thermal conductivity of rock samples. We used the experimental techniques known as transient method of measuring thermal properties of rock samples at ambient temperature. We investigated samples found in five locations/region (Ewekoro, Ile-Ife, Igara, Ago-Iwoye, Abeokuta in South western Nigeria. Those samples are limestone, dolerite, marble, gneiss, and granite. Although the samples are multi-mineral as revealed by photomicrograph, the thermal conductivity results obtained 1.40, 1.50, 1.57, 1.75, and 2.94 W/m°C, respectively, are found to be consistent with the ones in literature where highly expensive and sophisticated (not easily affordable in developing nation equipment are used. .

  3. Thermal conductivity and contact resistance of metal foams

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, E [Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Hsieh, S; Bahrami, M, E-mail: ehsans@uvic.ca [Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC, V3T 0A3 (Canada)

    2011-03-30

    Accurate information on heat transfer and temperature distribution in metal foams is necessary for design and modelling of thermal-hydraulic systems incorporating metal foams. The analysis of heat transfer requires determination of the effective thermal conductivity as well as the thermal contact resistance (TCR) associated with the interface between the metal foam and the adjacent surfaces/layers. In this study, a test bed that allows the separation of effective thermal conductivity and TCR in metal foams is described. Measurements are performed in a vacuum under varying compressive loads using ERG Duocel aluminium foam samples with different porosities and pore densities. Also, a graphical method associated with a computer code is developed to demonstrate the distribution of contact spots and estimate the real contact area at the interface. Our results show that the porosity and the effective thermal conductivity remain unchanged with the variation of compression in the range 0-2 MPa; but TCR decreases significantly with pressure due to an increase in the real contact area at the interface. Moreover, the ratio of real to nominal contact area varies between 0 and 0.013, depending upon the compressive force, porosity, pore density and surface characteristics.

  4. Physical-Statistical Model of Thermal Conductivity of Nanofluids

    Directory of Open Access Journals (Sweden)

    B. Usowicz

    2014-01-01

    Full Text Available A physical-statistical model for predicting the effective thermal conductivity of nanofluids is proposed. The volumetric unit of nanofluids in the model consists of solid, liquid, and gas particles and is treated as a system made up of regular geometric figures, spheres, filling the volumetric unit by layers. The model assumes that connections between layers of the spheres and between neighbouring spheres in the layer are represented by serial and parallel connections of thermal resistors, respectively. This model is expressed in terms of thermal resistance of nanoparticles and fluids and the multinomial distribution of particles in the nanofluids. The results for predicted and measured effective thermal conductivity of several nanofluids (Al2O3/ethylene glycol-based and Al2O3/water-based; CuO/ethylene glycol-based and CuO/water-based; and TiO2/ethylene glycol-based are presented. The physical-statistical model shows a reasonably good agreement with the experimental results and gives more accurate predictions for the effective thermal conductivity of nanofluids compared to existing classical models.

  5. Thermal conductivity of sedimentary rocks - selected methodological, mineralogical and textural studies

    Energy Technology Data Exchange (ETDEWEB)

    Midttoemme, Kirsti

    1997-12-31

    The thermal conductivity of sedimentary rocks is an important parameter in basin modelling as the main parameter controlling the temperature within a sedimentary basin. This thesis presents measured thermal conductivities, mainly on clay- and mudstone. The measured values are compared with values obtained by using thermal conductivity models. Some new thermal conductivity models are developed based on the measured values. The values obtained are less than most previously published values. In a study of unconsolidated sediments a constant deviation was found between thermal conductivities measured with a needle probe and a divided bas apparatus. Accepted thermal conductivity models based on the geometric mean model fail to predict the thermal conductivity of clay- and mudstone. Despite this, models based on the geometric mean model, where the effect of porosity is taken account of by the geometric mean equation, seem to be the best. Existing models underestimate the textural influence on the thermal conductivity of clay- and mudstone. The grain size was found to influence the thermal conductivity of artificial quartz samples. The clay mineral content seems to be a point of uncertainty in both measuring and modelling thermal conductivity. A good universal thermal conductivity model must include many mineralogical and textural factors. Since this is difficult, different models restricted to specific sediment types and textures are suggested to be the best solution to obtain realistic estimates applicable in basin modelling. 243 refs., 64 figs., 31 tabs.

  6. Thermal Effusivity and Thermal Conductivity of Biodiesel/Diesel and Alcohol/Water Mixtures

    Science.gov (United States)

    Guimarães, A. O.; Machado, F. A. L.; da Silva, E. C.; Mansanares, A. M.

    2012-11-01

    The photopyroelectric (PPE) technique was used for the determination of the thermal effusivity and thermal conductivity of biodiesel in diesel and other binary liquid mixtures, precisely, ethanol, and ethylene glycol in water. The front configuration (FPPE) has been explored in the frequency scan approach for obtaining thermal-effusivity values. Measurements show good reproducibility, with uncertainties around 1 % to 2 %, and the results for reference samples, such as ethanol and water, are in good agreement with literature values. The thermal-conductivity values of all samples were determined using the thermal-effusivity data presented here and the thermal-diffusivity data of exactly the same set of samples, reported elsewhere. Based on these results, the different strengths in the molecular interactions related to the several mixtures were evidenced, as proposed by Dadarlat et al. It was shown that, indeed, the thermal effusivity is the property presenting the smallest sensitivity for the molecular association phenomenon, while the thermal conductivity presents an intermediate sensitivity. Nevertheless, the analysis of both properties revealed the existence of weak cohesive interactions among the hydrocarbons of diesel and the esters of biodiesel.

  7. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.

    Science.gov (United States)

    Hu, Jiuning; Ruan, Xiulin; Chen, Yong P

    2009-07-01

    We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.

  8. Thermal conductivity of organic semi-conducting materials using 3omega and photothermal radiometry techniques

    Directory of Open Access Journals (Sweden)

    Reisdorffer Frederic

    2014-01-01

    Full Text Available Organic semiconductors for opto-electronic devices show several defects which can be enhanced while increasing the operating temperature. Their thermal management and especially the reduction of their temperature are of great interest. For the heat transfer study, one has to measure the thermal conductivity of thin film organic materials. However the major difficulty for this measurement is the very low thickness of the films which needs the use of very specific techniques. In our work, the 3-omega and photothermal radiometric methods were used to measure the thermal conductivity of thin film organic semiconducting material (Alq3. The measurements were performed as function of the thin film thickness from 45 to 785 nm and also of its temperature from 80 to 350 K. With the 3 omega method, a thermal conductivity value of 0.066 W.m−1K−1 was obtained for Alq3 thin film of 200 nm at room temperature, in close agreement with the photothermal value. Both techniques appear to be complementary: the 3 omega method is easier to implement for large temperature range and small thicknesses down to a few tens of nanometers whereas the photothermal method is more suitable for thicknesses over 200nm since it provides additional information such as the thin film volumetric heat capacity.

  9. Cu/Zn Thermal Conductivity: Experimental And ANFIS Modelling

    Directory of Open Access Journals (Sweden)

    Zaid S. Kareem

    2018-01-01

    Full Text Available Nanofluids are fluids within which particles of nanometre sizes are suspended. In terms of thermal characteristics, nanofluids have a greater heat transfer coefficient and thermal conductivity than other traditional fluids. Bimetallic core/shell Cu/Zn particles of nanometre sizes are novel invented nanoparticle materials with considerable variations in its applications. The particles of nanometre size were suspended in a base fluid for the preparation of nanofluids for different volume fractions. A coated transitory hot wire device were built and standardized and this was subsequently employed for the determination of heat conductivities of the nanofluids for bimetallic ratios, volume fraction, base fluid temperatures and base fluids thermal conductivity. The Adaptive neuro fuzzy inference system (ANFIS model was subsequently employed for modelling the determined results generated. A random test of 20% from various nanofluids showed a deviation less than 1% between measured and modeled results. It was inferred that heat conductivities increase with increase in the particle volume concentrations, especially when the later one at value of 1, the heat conductivities ratio approach to 1.35. Nevertheless, the shape and the method of preparing the particles of nanometre size reveals anomalous enhancements in heat conductivities of bimetallic compared to monocular metallic nanofluids.

  10. Enhancing The Extremely High Thermal Conduction of Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Xiuqiang eLi

    2013-10-01

    Full Text Available Graphene and Graphene nanoribbons (GNRs are found to have superior high thermal conductivity favorable for high-performance heat dissipation. In this letter, by using molecular dynamics simulations, we show that constructing specific structure can further enhance high thermal conduction of GNRs. By introducing a small gap at the center, the average heat flux (thermal conductivity can be enhanced by up to 23%, the corresponding increase in total heat current is 16%. This unusual thermal conduction enhancement is achieved by an intriguing physical mechanism of suppress phonon-phonon scattering. Our findings uncover new mechanism to increase thermal conduction of GNRs.

  11. Significant Electronic Thermal Transport in the Conducting Polymer Poly(3,4‐ethylenedioxythiophene)

    DEFF Research Database (Denmark)

    Weathers, Annie; Khan, Zia Ullah; Brooke, Robert

    2015-01-01

    Suspended microdevices are employed to measure the in-plane electrical conductivity, thermal conductivity, and Seebeck coefficient of suspended poly(3,4-ethylenedioxythiophene) (PEDOT) thin films. The measured thermal conductivity is higher than previously reported for PEDOT and generally increas...... with the electrical conductivity. The increase exceeds that predicted by the Wiedemann–Franz law for metals and can be explained by significant electronic thermal transport in PEDOT....

  12. Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs

    DEFF Research Database (Denmark)

    Fuchs, Sven; Balling, Niels; Förster, Andrea

    2015-01-01

    In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents...... of each property vary depending on the selected well-log combination. Best prediction is in the range of 2–8 per cent for the specific heat capacity, of 5–10 per cent for the thermal conductivity, and of 8–15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated...... by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is conductivity...

  13. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.

    Science.gov (United States)

    Mortazavi, Bohayra; Pötschke, Markus; Cuniberti, Gianaurelio

    2014-03-21

    We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures.

  14. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    Science.gov (United States)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  15. Experimental thermal conductivity, thermal diffusivity, and specific heat values for mixtures of nitrogen, oxygen, and argon

    Science.gov (United States)

    Perkins, R. A.; Cieszkiewicz, M. T.

    1991-01-01

    Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.

  16. Switch on the high thermal conductivity of graphene paper.

    Science.gov (United States)

    Xie, Yangsu; Yuan, Pengyu; Wang, Tianyu; Hashemi, Nastaran; Wang, Xinwei

    2016-10-14

    This work reports on the discovery of a high thermal conductivity (κ) switch-on phenomenon in high purity graphene paper (GP) when its temperature is reduced from room temperature down to 10 K. The κ after switch-on (1732 to 3013 W m(-1) K(-1)) is 4-8 times that before switch-on. The triggering temperature is 245-260 K. The switch-on behavior is attributed to the thermal expansion mismatch between pure graphene flakes and impurity-embedded flakes. This is confirmed by the switch behavior of the temperature coefficient of resistance. Before switch-on, the interactions between pure graphene flakes and surrounding impurity-embedded flakes efficiently suppress phonon transport in GP. After switch-on, the structure separation frees the pure graphene flakes from the impurity-embedded neighbors, leading to a several-fold κ increase. The measured κ before and after switch-on is consistent with the literature reported κ values of supported and suspended graphene. By conducting comparison studies with pyrolytic graphite, graphene oxide paper and partly reduced graphene paper, the whole physical picture is illustrated clearly. The thermal expansion induced switch-on is feasible only for high purity GP materials. This finding points out a novel way to switch on/off the thermal conductivity of graphene paper based on substrate-phonon scattering.

  17. In-situ thermal conductivity estimates in the Western Niger Delta ...

    African Journals Online (AJOL)

    An estimate of thermal conductivity was carried out in 21 well-spaced petroleum wells in the western Niger Delta using sonic and continuous temperature logs. The temperature logs were measured after the wells had attained thermal equilibrium as a result of drilling activities. Regional thermal conductivity varies from ...

  18. Reduction in thermal boundary conductance due to proton implantation in silicon and sapphire

    Science.gov (United States)

    Hopkins, Patrick E.; Hattar, Khalid; Beechem, Thomas; Ihlefeld, Jon F.; Medlin, Douglas L.; Piekos, Edward S.

    2011-06-01

    We measure the thermal boundary conductance across Al/Si and Al/Al2O3 interfaces that are subjected to varying doses of proton ion implantation with time domain thermoreflectance. The proton irradiation creates a major reduction in the thermal boundary conductance that is much greater than the corresponding decrease in the thermal conductivities of both the Si and Al2O3 substrates into which the ions were implanted. Specifically, the thermal boundary conductances decrease by over an order of magnitude, indicating that proton irradiation presents a unique method to systematically decrease the thermal boundary conductance at solid interfaces.

  19. Heat conductivity of high-temperature thermal insulators

    Science.gov (United States)

    Kharlamov, A. G.

    The book deals essentially with the mechanisms of heat transfer by conduction, convection, and thermal radiation in absorbing and transmitting media. Particular attention is given to materials for gas-cooled reactor systems, the temperature dependent conductivities of high-temperature insulations in vacuum, and the thermal conductivities of MgO, Al2O3, ZrO2, and other powders at temperatures up to 2000 C. The thermal conductivity of pyrolitic graphite and graphite foam are studied.

  20. Evaluation of Electrical and Thermal Conductivity of Polymeric ...

    African Journals Online (AJOL)

    PROF HORSFALL

    for the electrical and thermal conductivities of the doped polymers it was observed that both conductivities .... ceramic insulators when very hot may conduct quite well. The more ... Doping also lead to the formation of polarons and bipolarons ...

  1. Studies on Enhancing Transverse Thermal Conductivity Carbon/Carbon Composites

    National Research Council Canada - National Science Library

    Manocha, Lalit M; Manocha, Satish M; Roy, Ajit

    2007-01-01

    The structure derived potential properties of Graphite such as high stiffness coupled with high thermal conductivity and low coefficient of thermal expansion have been better achieved in Carbon fibers...

  2. How Does Folding Modulate Thermal Conductivity of Graphene

    OpenAIRE

    Yang, Nuo; Ni, Xiaoxi; Jiang, Jin-Wu; Li, Baowen

    2012-01-01

    We study thermal transport in folded graphene nanoribbons using molecular dynamics simulations and the non-equilibrium Green's function method. It is found that the thermal conductivity of flat graphene nanoribbons can be modulated by folding and changing interlayer couplings. The analysis of transmission reveals that the reduction of thermal conductivity is due to scattering of low frequency phonons by the folds. Our results suggest that folding can be utilized in the modulation of thermal t...

  3. Thermal measurements and inverse techniques

    CERN Document Server

    Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M

    2011-01-01

    With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe

  4. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeon-Geun, E-mail: hglee@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Daejong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Seung Jae [KEPCO Nuclear Fuel, 242, Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Park, Ji Yeon; Kim, Weon-Ju [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-01-15

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  5. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites

    Directory of Open Access Journals (Sweden)

    Jarosinski Lukasz

    2017-07-01

    Full Text Available Efficient heat dissipation from modern electronic devices is a key issue for their proper performance. An important role in the assembly of electronic devices is played by polymers, due to their simple application and easiness of processing. The thermal conductivity of pure polymers is relatively low and addition of thermally conductive particles into polymer matrix is the method to enhance the overall thermal conductivity of the composite. The aim of the presented work is to examine a possibility of increasing the thermal conductivity of the filled epoxy resin systems, applicable for electrical insulation, by the use of composites filled with graphene nanoplatelets. It is remarkable that the addition of only 4 wt.% of graphene could lead to 132 % increase in thermal conductivity. In this study, several new aspects of graphene composites such as sedimentation effects or temperature dependence of thermal conductivity have been presented. The thermal conductivity results were also compared with the newest model. The obtained results show potential for application of the graphene nanocomposites for electrical insulation with enhanced thermal conductivity. This paper also presents and discusses the unique temperature dependencies of thermal conductivity in a wide temperature range, significant for full understanding thermal transport mechanisms.

  6. CORRELATIONS OF THERMAL CONDUCTIVITY BETWEEN STRATIGRAPHIC UNITS IN THE BROADER AREA OF ZAGREB

    OpenAIRE

    Miron Kovačić

    2007-01-01

    Thermal conductivity (KTV) of geological formations is one of the parameters responsible for the propagation of the heat under the earth surface. During geothermal investigations in the broader area of the Croatian capital of Zagreb the thermal conductivity was measured on the rock samples from the surface and the boreholes. The results of the measurements are presented in this work and used as a basis for calculations of the thermal conductivity of distinct geological formations within the i...

  7. EXPERIMENTAL MEASUREMENT OF NANOFLUIDS THERMAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Adnan M. Hussein

    2013-07-01

    Full Text Available Solid particles dispersed in a liquid with sizes no larger than 100nm, known as nanofluids, are used to enhance Thermophysical properties compared to the base fluid. Preparations of alumina (Al2O3, titania (TiO2 and silica (SiO2 in water have been experimentally conducted in volume concentrations ranging between 1 and 2.5%. Thermal conductivity is measured by the hot wire method and viscosity with viscometer equipment. The results of thermal conductivity and viscosity showed an enhancement (0.5–20% and 0.5–60% respectively compared with the base fluid. The data measured agreed with experimental data of other researchers with deviation of less than 5%. The study showed that alumina has the highest thermal conductivity, followed silica and titania, on the other hand silica has the highest viscosity followed alumina and titania.

  8. DEVELOPMENT OF HIGH THERMAL CONDUCTIVITY ELECTRICAL EMBEDDING COMPOUNDS.

    Science.gov (United States)

    This report describes the development of high thermal conductivity electrical embedding compounds utilizing a technique wherein the mold is first...Contained herein, are the pertinent results of a previously reported study which led to the development of three high thermal conductivity compounds...and the further development of several additional compounds with still higher conductivities. (Author)

  9. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate

    Science.gov (United States)

    Waite, W.F.; Stern, L.A.; Kirby, S.H.; Winters, W.J.; Mason, D.H.

    2007-01-01

    Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C and 17°C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4°C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment.

  10. Thermal conductivity of isotopically modified graphene.

    Science.gov (United States)

    Chen, Shanshan; Wu, Qingzhi; Mishra, Columbia; Kang, Junyong; Zhang, Hengji; Cho, Kyeongjae; Cai, Weiwei; Balandin, Alexander A; Ruoff, Rodney S

    2012-01-10

    In addition to its exotic electronic properties graphene exhibits unusually high intrinsic thermal conductivity. The physics of phonons--the main heat carriers in graphene--has been shown to be substantially different in two-dimensional (2D) crystals, such as graphene, from in three-dimensional (3D) graphite. Here, we report our experimental study of the isotope effects on the thermal properties of graphene. Isotopically modified graphene containing various percentages of 13C were synthesized by chemical vapour deposition (CVD). The regions of different isotopic compositions were parts of the same graphene sheet to ensure uniformity in material parameters. The thermal conductivity, K, of isotopically pure 12C (0.01% 13C) graphene determined by the optothermal Raman technique, was higher than 4,000 W mK(-1) at the measured temperature T(m)~320 K, and more than a factor of two higher than the value of K in graphene sheets composed of a 50:50 mixture of 12C and 13C. The experimental data agree well with our molecular dynamics (MD) simulations, corrected for the long-wavelength phonon contributions by means of the Klemens model. The experimental results are expected to stimulate further studies aimed at a better understanding of thermal phenomena in 2D crystals.

  11. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites

    OpenAIRE

    Jarosinski Lukasz; Rybak Andrzej; Gaska Karolina; Kmita Grzegorz; Porebska Renata; Kapusta Czeslaw

    2017-01-01

    Efficient heat dissipation from modern electronic devices is a key issue for their proper performance. An important role in the assembly of electronic devices is played by polymers, due to their simple application and easiness of processing. The thermal conductivity of pure polymers is relatively low and addition of thermally conductive particles into polymer matrix is the method to enhance the overall thermal conductivity of the composite. The aim of the presented work is to examine a possib...

  12. Proposal of novel measurement method for thermal diffusivity from infrared thermal movie

    Science.gov (United States)

    Okamoto, Yoichi; Watanabe, Shin; Ogata, Kento; Hiramatsu, Koji; Miyazaki, Hisashi; Morimoto, Jun

    2017-05-01

    A brand new thermal diffusivity measurement method was developed. In this new noncontact and absolute measurement method, thermal diffusivity was measured from infrared movie data. The model of one-dimensional thermal conduction was constructed by taking into account the thermal flow other than one-dimensional thermal conduction in the sample. On the basis of this thermal conduction model, the analytical equation for calculating thermal diffusivity was derived. A single-crystal sapphire plate was used as a test specimen for the new method. The test specimen was arranged to cause one-dimensional heat conduction. Infrared movies were taken by using an infrared camera at room temperature. Then, thermal diffusivity was numerically calculated from the acquired movie data using the analytical equation. It was experimentally demonstrated that thermal diffusivity was measured with an accuracy of around 10% error, from an infrared movie of a single-crystal sapphire sample.

  13. Determination of the Local Thermal Conductivity of Functionally Graded Materials by a Laser Flash Method

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... by scanning them point by point and determining the thermal conductivity as a function of the spatial dimensions. The method proves to be repeatable and of reasonable accuracy and can be used to determine the local thermal properties on a scale of millimeters. In this study, the method was successfully...... applied to create a map of thermal conductivity of a functionally graded material sample....

  14. Thermal conductivity of penta-graphene from molecular dynamics study.

    Science.gov (United States)

    Xu, Wen; Zhang, Gang; Li, Baowen

    2015-10-21

    Using classical equilibrium molecular dynamics simulations and applying the original Tersoff interatomic potential, we study the thermal transport property of the latest two dimensional carbon allotrope, penta-graphene. It is predicted that its room-temperature thermal conductivity is about 167 W/mK, which is much lower than that of graphene. With normal mode decomposition, the accumulated thermal conductivity with respect to phonon frequency and mean free path is analyzed. It is found that the acoustic phonons make a contribution of about 90% to the thermal conductivity, and phonons with mean free paths larger than 100 nm make a contribution over 50%. We demonstrate that the remarkably lower thermal conductivity of penta-graphene compared with graphene results from the lower phonon group velocities and fewer collective phonon excitations. Our study highlights the importance of structure-property relationship and provides better understanding of thermal transport property and valuable insight into thermal management of penta-graphene.

  15. Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory

    Science.gov (United States)

    Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert

    2018-02-01

    Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.

  16. Determination of the Thermal Resistance of Pipe Insulation Material from Thermal Conductivity of Flat Insulation Products

    OpenAIRE

    Koenen, Alain; Marquis, Damien M.

    2015-01-01

    New European product standards now include a mandatory requirement for manufacturers to declare the temperature-dependent thermal conductivity for each insulation used in building equipments and industrial installations. For pipe insulation systems, the measurement is usually performed by a standard pipe test method, in which the value on a large temperature range is integrated to reduce temperature range and improve temperature measurement control. The alternative proposed in this article co...

  17. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  18. Experimental study on thermal conductivity of free-standing fluorinated single-layer graphene

    Science.gov (United States)

    Narasaki, Masahiro; Wang, Haidong; Nishiyama, Takashi; Ikuta, Tatsuya; Takahashi, Koji

    2017-08-01

    We measured the thermal conductivity of free-standing fluorinated single-layer graphene (FSLG) using a precise T-type method. Pristine graphene was fluorinated and suspended above the substrate using xenon difluoride gas. Compared with the thermal conductivity of pristine single-layer graphene (SLG) (˜2000 W/mK) previously measured by the same T-type method for the same original SLG, the FSLG exhibited a much lower thermal conductivity (˜80 W/mK) and a weak dependence of the thermal conductivity on nanohole defects. The experimental results suggest that the fluorine atoms and sp3 bonding in the FSLG strongly contributed to phonon scattering. The phonon scattering by the fluorine atoms and sp3 bonding has a dominant effect on the thermal conductivity decrease over the phonon scattering by nanohole defects. This study lays a foundation for the thermal measurement of 2D fluorinated materials and benefits future applications of fluorinated graphene.

  19. Thermal conductivity of sedimentary rocks as function of Biot’s coefficient

    DEFF Research Database (Denmark)

    Orlander, Tobias; Pasquinelli, Lisa; Asmussen, J.J.

    2017-01-01

    A theoretical model for prediction of effective thermal conductivity with application to sedimentary rocks is presented. Effective thermal conductivity of sedimentary rocks can be estimated from empirical relations or theoretically modelled. Empirical relations are limited to the empirical...... conductivity of solids is typically orders of magnitude larger than that of fluids, grain contacts constituting the solid connectivity governs the heat transfer of sedi-mentary rocks and hence should be the basis for modelling effective thermal con-ductivity. By introducing Biot’s coefficient, α, we propose (1...... – α) as a measure of the solid connectivity and show how effective thermal conductivity of water saturated and dry sandstones can be modelled....

  20. Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems

    Science.gov (United States)

    Ankireddy, Krishnamraju; Menon, Akanksha K.; Iezzi, Brian; Yee, Shannon K.; Losego, Mark D.; Jur, Jesse S.

    2016-11-01

    Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon-nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver-nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (Δ T) of 113°C] due to their low electrical resistance. The voltage generated from the silver-nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization.

  1. Lattice thermal conductivity in layered BiCuSeO

    KAUST Repository

    Kumar, S.

    2016-06-30

    We quantify the low lattice thermal conductivity in layered BiCuSeO (the oxide with the highest known figure of merit). It turns out that the scattering of acoustical into optical phonons is strongly enhanced in the material because of the special structure of the phonon dispersion. For example, at room temperature the optical phonons account for an enormous 42% of the lattice thermal conductivity. We also quantify the anisotropy of the lattice thermal conductivity and determine the distribution of the mean free path of the phonons at different temperatures to provide a guide for tuning the thermal properties. © the Owner Societies 2016.

  2. Hot wire needle probe for thermal conductivity detection

    Science.gov (United States)

    Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban

    2015-11-10

    An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.

  3. Statistical analysis of thermal conductivity of nanofluid containing ...

    Indian Academy of Sciences (India)

    Administrator

    fraction, particle size and shape of nanoparticles also influence the thermal conductivity enhancement of nano- fluids. Zhang et al (2007) investigated the heat transfer per- formance of TiO2/water nanofluid for various volume fractions and temperatures. They observed that the effec- tive thermal conductivities of nanofluids ...

  4. Lattice thermal conductivity of graphene with conventionally isotopic defects

    OpenAIRE

    Adamyan, Vadym; Zavalniuk, Vladimir

    2012-01-01

    The thermal conductivity of doped graphene flake of finite size is investigated with emphasis on the influence of mass of substituting atoms on this property. It is shown that the graphene doping by small concentrations of relatively heavy atoms results in a disproportionately impressive drop of lattice thermal conductivity.

  5. Determination of Coefficients of Thermal Conductivity (CTC) of ...

    African Journals Online (AJOL)

    The results are in good agreement with the experiment. PP has the least coefficient of thermal conductivity and it is recommended for making of utensils handles while PVC recommended for making of ceilings and drain-waste pipes. Keywords: Coefficients of Thermal Conductivity, Plastics, Wurukum and Modern Markets, ...

  6. Effect of normal processes on thermal conductivity of germanium ...

    Indian Academy of Sciences (India)

    The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between different phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and diamond ...

  7. Effect of normal processes on thermal conductivity of germanium ...

    Indian Academy of Sciences (India)

    Abstract. The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between differ- ent phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and ...

  8. Development of high-thermal-conductivity silicon nitride ceramics

    Directory of Open Access Journals (Sweden)

    You Zhou

    2015-09-01

    Full Text Available Silicon nitride (Si3N4 with high thermal conductivity has emerged as one of the most promising substrate materials for the next-generation power devices. This paper gives an overview on recent developments in preparing high-thermal-conductivity Si3N4 by a sintering of reaction-bonded silicon nitride (SRBSN method. Due to the reduction of lattice oxygen content, the SRBSN ceramics could attain substantially higher thermal conductivities than the Si3N4 ceramics prepared by the conventional gas-pressure sintering of silicon nitride (SSN method. Thermal conductivity could further be improved through increasing the β/α phase ratio during nitridation and enhancing grain growth during post-sintering. Studies on fracture resistance behaviors of the SRBSN ceramics revealed that they possessed high fracture toughness and exhibited obvious R-curve behaviors. Using the SRBSN method, a Si3N4 with a record-high thermal conductivity of 177 Wm−1K−1 and a fracture toughness of 11.2 MPa m1/2 was developed. Studies on the influences of two typical metallic impurity elements, Fe and Al, on thermal conductivities of the SRBSN ceramics revealed that the tolerable content limits for the two impurities were different. While 1 wt% of impurity Fe hardly degraded thermal conductivity, only 0.01 wt% of Al caused large decrease in thermal conductivity.

  9. An empirical model for the thermal conductivity of compacted bentonite and a bentonite-sand mixture

    Science.gov (United States)

    Cho, Won-Jin; Lee, Jae-Owan; Kwon, Sangki

    2011-11-01

    The thermal conductivities of compacted bentonite and a bentonite-sand mixture were measured to investigate the effects of dry density, water content and sand fraction on the thermal conductivity. A single expression has been proposed to describe the thermal conductivity of the compacted bentonite and the bentonite-sand mixture once their primary parameters such as dry density, water content and sand fraction are known.

  10. Thermal conductance of graphene/hexagonal boron nitride heterostructures

    Science.gov (United States)

    Lu, Simon; McGaughey, Alan J. H.

    2017-03-01

    The lattice-based scattering boundary method is applied to compute the phonon mode-resolved transmission coefficients and thermal conductances of in-plane heterostructures built from graphene and hexagonal boron nitride (hBN). The thermal conductance of all structures is dominated by acoustic phonon modes near the Brillouin zone center that have high group velocity, population, and transmission coefficient. Out-of-plane modes make their most significant contributions at low frequencies, whereas in-plane modes contribute across the frequency spectrum. Finite-length superlattice junctions between graphene and hBN leads have a lower thermal conductance than comparable junctions between two graphene leads due to lack of transmission in the hBN phonon bandgap. The thermal conductances of bilayer systems differ by less than 10% from their single-layer counterparts on a per area basis, in contrast to the strong thermal conductivity reduction when moving from single- to multi-layer graphene.

  11. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.

    Science.gov (United States)

    Khadem, Masoud H; Wemhoff, Aaron P

    2013-02-28

    Non-equilibrium molecular dynamics (NEMD) simulations are used to investigate the thermal conductivity of herringbone graphite nanofibers (GNFs) at room temperature by breaking down the axial and transverse conductivity values into intralayer and interlayer components. The optimized Tersoff potential is used to account for intralayer carbon-carbon interactions while the Lennard-Jones potential is used to model the interlayer carbon-carbon interactions. The intralayer thermal conductivity of the graphene layers near room temperature is calculated for different crease angles and number of layers using NEMD with a constant applied heat flux. The edge effect on a layer's thermal conductivity is investigated by computing the thermal conductivity values in both zigzag and armchair directions of the heat flow. The interlayer thermal conductivity is also predicted by imposing hot and cold Nosé-Hoover thermostats on two layers. The limiting case of a 90° crease angle is used to compare the results with those of single-layer graphene and few-layer graphene. The axial and transverse thermal conductivities are then calculated using standard trigonometric conversions of the calculated intralayer and interlayer thermal conductivities, along with calculations of few-layer graphene without a crease. The results show a large influence of the crease angle on the intralayer thermal conductivity, and the saturation of thermal conductivity occurs when number of layers is more than three. The axial thermal conductivity, transverse thermal conductivity in the crease direction, and transverse thermal conductivity normal to the crease for the case of a five-layer herringbone GNF with a 45° crease angle are calculated to be 27 W∕m K, 263 W∕m K, and 1500 W∕m K, respectively, where the axial thermal conductivity is in good agreement with experimental measurements.

  12. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids

    Science.gov (United States)

    Hadadian, Mahboobeh; Goharshadi, Elaheh K.; Youssefi, Abbas

    2014-12-01

    Highly stable graphene oxide (GO)-based nanofluids were simply prepared by dispersing graphite oxide with the average crystallite size of 20 nm, in polar base fluids without using any surfactant. Electrical conductivity, thermal conductivity, and rheological properties of the nanofluids were measured at different mass fractions and various temperatures. An enormous enhancement, 25,678 %, in electrical conductivity of distilled water was observed by loading 0.0006 mass fraction of GO at 25 °C. GO-ethylene glycol nanofluids exhibited a non-Newtonian shear-thinning behavior followed by a shear-independent region. This shear-thinning behavior became more pronounced at higher GO concentrations. The maximum ratio of the viscosity of nanofluid to that of the ethylene glycol as a base fluid was 3.4 for the mass fraction of 0.005 of GO at 20 °C under shear rate of 27.5 s-1. Thermal conductivity enhancement of 30 % was obtained for GO-ethylene glycol nanofluid for mass fraction of 0.07. The measurement of the transport properties of this new kind of nanofluid showed that it could provide an ideal fluid for heat transfer and electronic applications.

  13. Effects of basal-plane thermal conductivity and interface thermal conductance on the hot spot temperature in graphene electronic devices

    Science.gov (United States)

    Choi, David; Poudel, Nirakar; Cronin, Stephen B.; Shi, Li

    2017-02-01

    Electrostatic force microscopy and scanning thermal microscopy are employed to investigate the electric transport and localized heating around defects introduced during transfer of graphene grown by chemical vapor deposition to an oxidized Si substrate. Numerical and analytical models are developed to explain the results based on the reported basal-plane thermal conductivity, κ, and interfacial thermal conductance, G, of graphene and to investigate their effects on the peak temperature. Irrespective of the κ values, increasing G beyond 4 × 107 W m-2 K-1 can reduce the peak temperature effectively for graphene devices made on sub-10 nm thick gate dielectric, but not for the measured device made on 300-nm-thick oxide dielectric, which yields a cross-plane thermal conductance (Gox) much smaller than the typical G of graphene. In contrast, for typical G values reported for graphene, increasing κ from 300 W m-1 K-1 toward 3000 W m-1 K-1 is effective in reducing the hot spot temperature for the 300-nm-thick oxide devices but not for the sub-10 nm gate dielectric case, because the heat spreading length (l) can be appreciably increased relative to the micron-scale localized heat generation spot size (r0) only when the oxide layer is sufficiently thick. As such, enhancement of κ increases the vertical heat transfer area above the gate dielectric only for the thick oxide case. In all cases considered, the hot spot temperature is sensitive to varying G and κ only when the G/Gox ratio and r0/l ratio are below about 5, respectively.

  14. Molecular Dynamics Simulations of the Thermal Conductivity of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Osman, M.; Srivastava, Deepak; Govindan,T. R. (Technical Monitor)

    2000-01-01

    Carbon nanotubes (CNT) have very attractive electronic, mechanical. and thermal properties. Recently, measurements of thermal conductivity in single wall CNT mats showed estimated thermal conductivity magnitudes ranging from 17.5 to 58 W/cm-K at room temperature. which are better than bulk graphite. The cylinderical symmetry of CNT leads to large thermal conductivity along the tube axis, additionally, unlike graphite. CNTs can be made into ropes that can be used as heat conducting pipes for nanoscale applications. The thermal conductivity of several single wall carbon nanotubes has been calculated over temperature range from l00 K to 600 K using non-equilibrium molecular dynamics using Tersoff-Brenner potential for C-C interactions. Thermal conductivity of single wall CNTs shows a peaking behavior as a function of temperature. Dependence of the peak position on the chirality and radius of the tube will be discussed and explained in this presentation.

  15. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite.

    Science.gov (United States)

    Jang, Wanyoung; Chen, Zhen; Bao, Wenzhong; Lau, Chun Ning; Dames, Chris

    2010-10-13

    The thermal conductivity of graphene and ultrathin graphite (thickness from 1 to ∼20 layers) encased within silicon dioxide was measured using a heat spreader method. The thermal conductivity increases with the number of graphene layers, approaching the in-plane thermal conductivity of bulk graphite for the thickest samples, while showing suppression below 160 W/m-K at room temperature for single-layer graphene. These results show the strong effect of the encasing oxide in disrupting the thermal conductivity of adjacent graphene layers, an effect that penetrates a characteristic distance of approximately 2.5 nm (∼7 layers) into the core layers at room temperature.

  16. THERMAL CONDUCTIVITY OF THE REGENERATION WASTE TEXTILES USED TO THERMAL INSULATION

    OpenAIRE

    Gheorghe Horga; Mihaela Horga; Ioan Hossu; Dorin Avram; Florin Breaban

    2013-01-01

    This paper presents theoretical and experimental studies on the behavior thermal conductivity of textiles made from regeneration fiber used to make the shells for insulation of pipelines. Was investigated the behavior of textile fibers regeneration at densities, temperatures and different layer thickness, in two structures: material in the form of fibers in the form of flock, named blanket and textile material in the form of fiber layer consolidated named, no woven material.Measurements were ...

  17. Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials

    Science.gov (United States)

    Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T. L.; Qiu, Cheng-Wei

    2015-05-01

    The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond.

  18. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Żyła, Gaweł, E-mail: gzyla@prz.edu.pl [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Fal, Jacek; Traciak, Julian [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Gizowska, Magdalena; Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Warsaw, 02-676 (Poland)

    2016-09-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  19. Thermal conductivity of a h-BCN monolayer.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Liu, Hong-Yuan; Wei, Ning

    2017-10-18

    A hexagonal graphene-like boron-carbon-nitrogen (h-BCN) monolayer, a new two-dimensional (2D) material, has been synthesized recently. Herein we investigate for the first time the thermal conductivity of this novel 2D material. Using molecular dynamics simulations based on the optimized Tersoff potential, we found that the h-BCN monolayers are isotropic in the basal plane with close thermal conductivity magnitudes. Though h-BCN has the same hexagonal lattice as graphene and hexagonal boron nitride (h-BN), it exhibits a much lower thermal conductivity than the latter two materials. In addition, the thermal conductivity of h-BCN monolayers is found to be size-dependent but less temperature-dependent. Modulation of the thermal conductivity of h-BCN monolayers can also be realized by strain engineering. Compressive strain leads to a monotonic decrease in the thermal conductivity while the tensile strain induces an up-then-down trend in the thermal conductivity. Surprisingly, the small tensile strain can facilitate the heat transport of the h-BCN monolayers.

  20. Gd crystals by using conductivity measurements

    Indian Academy of Sciences (India)

    Unknown

    is very little data available on trivalent cations doped in alkali halides (Prizbram 1975; Beniere and Rokbani 1977). The nature of lattice defects can be studied by using vari- ous techniques like ionic conductivity, thermally stimu- lated depolarization currents, dielectric relaxation etc. Among these, ionic conductivity provides ...

  1. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1 - Experimental study

    Science.gov (United States)

    Ahadi, Mohammad; Tam, Mickey; Saha, Madhu S.; Stumper, Jürgen; Bahrami, Majid

    2017-06-01

    In this work, a new methodology is proposed for measuring the through-plane thermal conductivity of catalyst layers (CLs) in polymer electrolyte membrane fuel cells. The proposed methodology is based on deconvolution of bulk thermal conductivity of a CL from measurements of two thicknesses of the CL, where the CLs are sandwiched in a stack made of two catalyst-coated substrates. Effects of hot-pressing, compression, measurement method, and substrate on the through-plane thermal conductivity of the CL are studied. For this purpose, different thicknesses of catalyst are coated on ethylene tetrafluoroethylene (ETFE) and aluminum (Al) substrates by a conventional Mayer bar coater and measured by scanning electron microscopy (SEM). The through-plane thermal conductivity of the CLs is measured by the well-known guarded heat flow (GHF) method as well as a recently developed transient plane source (TPS) method for thin films which modifies the original TPS thin film method. Measurements show that none of the studied factors has any effect on the through-plane thermal conductivity of the CL. GHF measurements of a non-hot-pressed CL on Al yield thermal conductivity of 0.214 ± 0.005 Wṡm-1ṡK-1, and TPS measurements of a hot-pressed CL on ETFE yield thermal conductivity of 0.218 ± 0.005 Wṡm-1ṡK-1.

  2. Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites

    Science.gov (United States)

    Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja

    2016-09-01

    Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.

  3. Positive dependence of thermal conductivity on temperature in GeTe/Bi2Te3 superlattices: the contribution of electronic and particle wave lattice thermal conductivity

    Science.gov (United States)

    Tong, H.; Lan, F.; Liu, Y. J.; Zhou, L. J.; Wang, X. J.; He, Q.; Wang, K. Z.; Miao, X. S.

    2017-09-01

    Temperature-dependent thermal conductivity of phase-change material, GeTe/Bi2Te3 superlattices, has been investigated in the temperature range of 40-300 K. We have found that thermal conductivity increases with increasing temperature, which is contrary to the common results indicated by other works. In this paper, two possible mechanisms are suggested for this result. One is that the thermal conductivity is affected by the thermal boundary resistance at the interfaces between layers, and the other considers the factor of electronic thermal conductivity in the partially coherent regime which is based on the very wave-particle duality of phonons. Finally, the periodic thickness dependence of the thermal conductivity in GeTe/Bi2Te3 superlattices have been measured at room temperature, and the results indicate the main contribution of electron in the total thermal conductivity and the partially coherent regime of phonon. Thus we believe that the second explanation is more reasonable. The work here deepens the understanding of basic mechanisms of thermal transport in phase-change superlattices, and is instructive in modeling and simulation of phase change memories.

  4. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures.

    Science.gov (United States)

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100 °C during heating to ~800 °C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m(-1) K(-1). The surrogate aggregates effectively reduce the conductivity to ~1.25 W m(-1) K(-1) at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  5. Effect of Surrogate Aggregates on the Thermal Conductivity of Concrete at Ambient and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Tae Sup Yun

    2014-01-01

    Full Text Available The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100°C during heating to ~800°C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m−1 K−1. The surrogate aggregates effectively reduce the conductivity to ~1.25 W m−1 K−1 at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  6. Composites with increased thermal conductivity: FEM analysis

    Science.gov (United States)

    Gutkowska, Karolina

    Composites are potential substitutes for metals as the materials used for heat spreaders in specified devises. They have a lot of advantages comparing to conductors, but it is not trivial to manufacture product meeting all of expectations. Main task is to choose the filler and the matrix properly and make them work efficiently. Lately, hope is reposed in carbonbased nanoparticles due to their great features. They are good heat conductors and rather easy to manufacture. There is wide range of materials which can be used as matrix according to their cheap processing, light weight, durability and good chemical affinity to some substances. Polymers are among them. There are being conducted some researches on different compounds. Expected characteristics depend on the application. FEM simulations has been carried out to confirm these theories and results are presented in this paper.

  7. A numerical study of transient, thermally-conductive solar wind

    Science.gov (United States)

    Han, S. M.; Wu, S. T.; Dryer, M.

    1987-01-01

    A numerical analysis of transient solar wind starting at the solar surface and arriving at 1 AU is performed by an implicit numerical method. The model hydrodynamic equations include thermal conduction terms for both steady and unsteady simulations. Simulation results show significant influence of thermal conduction on both steady and time-dependent solar wind. Higher thermal conduction results in higher solar wind speed, higher temperature, but lower plasma density at 1 AU. Higher base temperature at the solar surface gives lower plasma speed, lower temperature, but higher density at 1 AU. Higher base density, on the other hand, gives lower velocity, lower temperature, but higher density at 1 AU.

  8. Influence of thermalization on thermal conduction through molecular junctions: Computational study of PEG oligomers

    Science.gov (United States)

    Pandey, Hari Datt; Leitner, David M.

    2017-08-01

    Thermalization in molecular junctions and the extent to which it mediates thermal transport through the junction are explored and illustrated with computational modeling of polyethylene glycol (PEG) oligomer junctions. We calculate rates of thermalization in the PEG oligomers from 100 K to 600 K and thermal conduction through PEG oligomer interfaces between gold and other materials, including water, motivated in part by photothermal applications of gold nanoparticles capped by PEG oligomers in aqueous and cellular environments. Variation of thermalization rates over a range of oligomer lengths and temperatures reveals striking effects of thermalization on thermal conduction through the junction. The calculated thermalization rates help clarify the scope of applicability of approaches that can be used to predict thermal conduction, e.g., where Fourier's law breaks down and where a Landauer approach is suitable. The rates and nature of vibrational energy transport computed for PEG oligomers are compared with available experimental results.

  9. Thermal conductivity of rare earth-uranium ternary oxides of the type RE 6UO 12

    Science.gov (United States)

    Krishnaiah, M. V.; Seenivasan, G.; Srirama Murti, P.; Mathews, C. K.

    2002-11-01

    The knowledge of thermophysical properties of the rare earth uranium ternary oxides of the type RE 6UO 12 (RE=La, Gd and Dy) is essential to understand the fuel performance during reactor operation and for modeling fuel behavior. Literature on the high temperature properties of this compound is not available and there is no report at all on the thermal conductivity of these compounds. Hence a study of thermal conductivity of this compound has been taken up. The compounds were synthesized by a solution combustion method using metal nitrates and urea. Thermal diffusivity of these compounds was measured by the laser flash method in the temperature range 673-1373 K. The specific heat data was computed using Neumann-Kopp's law. Thermal conductivity was calculated using the measured thermal diffusivity value, density and specific heat data for different temperatures. The temperature dependence of thermal conductivity and the implication of structural aspects of these compounds on the data are discussed here.

  10. Thermal conductivity of microPCMs-filled epoxy matrix composites

    NARCIS (Netherlands)

    Su, J.F.; Wang, X.Y; Huang, Z.; Zhao, Y.H.; Yuan, X.Y.

    2011-01-01

    Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The thermal conductivity of these microPCMs/matrix composites is an important property need to be considered. In this study, a series of

  11. Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA in a photovoltaic thermal collector

    Directory of Open Access Journals (Sweden)

    J. Allan

    2016-03-01

    Full Text Available Samples of Ethylene-Vinyl Acetate (EVA were doped with particles of Boron Nitride (BN in concentrations ranging from 0-60% w/w. Thermal conductivity was measured using a Differential Scanning Calorimetery (DSC technique. The thermal conductivity of parent EVA was increased from 0.24W/m ⋅ K to 0.80W/m ⋅ K for the 60% w/w sample. Two PV laminates were made; one using the parent EVA the other using EVA doped with 50% BN. When exposed to a one directional heat flux the doped laminate was, on average, 6% cooler than the standard laminate. A finite difference model had good agreement with experimental results and showed that the use of 60% BN composite achieved a PV performance increase of 0.3% compared to the standard laminate.

  12. Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA) in a photovoltaic thermal collector

    Energy Technology Data Exchange (ETDEWEB)

    Allan, J., E-mail: james.p.allan14@gmail.com [School of Engineering and Design, Brunel University, London, UB8 3PH (United Kingdom); ChapmanBDSP, Saffron House, 6-10 Kirby Street, London, EC1N 8EQ (United Kingdom); Pinder, H.; Dehouche, Z. [School of Engineering and Design, Brunel University, London, UB8 3PH (United Kingdom)

    2016-03-15

    Samples of Ethylene-Vinyl Acetate (EVA) were doped with particles of Boron Nitride (BN) in concentrations ranging from 0-60% w/w. Thermal conductivity was measured using a Differential Scanning Calorimetery (DSC) technique. The thermal conductivity of parent EVA was increased from 0.24 W/m ⋅ K to 0.80 W/m ⋅ K for the 60% w/w sample. Two PV laminates were made; one using the parent EVA the other using EVA doped with 50% BN. When exposed to a one directional heat flux the doped laminate was, on average, 6% cooler than the standard laminate. A finite difference model had good agreement with experimental results and showed that the use of 60% BN composite achieved a PV performance increase of 0.3% compared to the standard laminate.

  13. Thermal Conductivity in Suspension Sprayed Thermal Barrier Coatings: Modeling and Experiments

    Science.gov (United States)

    Ganvir, Ashish; Kumara, Chamara; Gupta, Mohit; Nylen, Per

    2017-01-01

    Axial suspension plasma spraying (ASPS) can generate microstructures with higher porosity and pores in the size range from submicron to nanometer. ASPS thermal barrier coatings (TBC) have already shown a great potential to produce low thermal conductivity coatings for gas turbine applications. It is important to understand the fundamental relationships between microstructural defects in ASPS coatings such as crystallite boundaries, porosity etc. and thermal conductivity. Object-oriented finite element (OOF) analysis has been shown as an effective tool for evaluating thermal conductivity of conventional TBCs as this method is capable of incorporating the inherent microstructure in the model. The objective of this work was to analyze the thermal conductivity of ASPS TBCs using experimental techniques and also to evaluate a procedure where OOF can be used to predict and analyze the thermal conductivity for these coatings. Verification of the model was done by comparing modeling results with the experimental thermal conductivity. The results showed that the varied scaled porosity has a significant influence on the thermal conductivity. Smaller crystallites and higher overall porosity content resulted in lower thermal conductivity. It was shown that OOF could be a powerful tool to predict and rank thermal conductivity of ASPS TBCs.

  14. Conductive ink containing thermally exfoliated graphite oxide and method a conductive circuit using the same

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A conductive ink containing a conductive polymer, wherein the conductive polymer contains at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, and it use in a method for making a conductive circuit.

  15. MHD simulations of coronal dark downflows considering thermal conduction

    Science.gov (United States)

    Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.

    2017-10-01

    While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.

  16. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites

    National Research Council Canada - National Science Library

    Lukasz Jarosinski; Andrzej Rybak; Karolina Gaska; Grzegorz Kmita; Renata Porebska; Czeslaw Kapusta

    2017-01-01

    .... The aim of the presented work is to examine a possibility of increasing the thermal conductivity of the filled epoxy resin systems, applicable for electrical insulation, by the use of composites...

  17. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-12-01

    This factsheet describes a project that developed a new, continuous manufacturing process to make high molecular weight, high thermal conductivity polyethylene fibers and sheets to replace metals and ceramics in heat transfer applications.

  18. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Soon-Ching; Low, Kaw-Sai [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Wilayah Persekutuan (Malaysia)

    2010-12-15

    Investigation on the thermal conductivity of newspaper sandwiched aerated lightweight concrete (ALC) panels is the main purpose of this study. Various densities of ALC panels ranging from 1700, 1400 and 1100 kg/m{sup 3} with three different aerial intensities of newspaper sandwiched were produced. Investigation was limited to the effect of aerial intensity of newspaper sandwiched and the effect of density of ALC on thermal conductivity. It is found that the thermal conductivity of newspaper sandwiched ALC panels reduced remarkably compared to control ALC panels. The reduction was recorded at 18.0%, 21.8% and 20.7% correspond to densities of 1700, 1400 and 1100 kg/m{sup 3} with just a mere 0.05 g/cm{sup 2} aerial intensity of newspaper sandwiched. Newspaper sandwiched has a significant impact on the performance of thermal conductivity of ALC panels based on regression analysis. (author)

  19. Investigation of the Effective Thermal Conductivity in Containment Wall of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Kunsan National University, Gunsan (Korea, Republic of)

    2016-05-15

    Many computational codes used for analyzing pressure of containment was developed such as CAP (Containment Analysis Package). These computational codes consider concrete conductivity instead of thermal conductivity of containment wall which have special geometry as heat sink. For precise analysis, effective thermal conductivity of containment wall has to be measured in individual NPPs. Thermal properties of concrete such as thermal conductivity have been investigated as function of chemical composition and temperature. Generally, containment of OPR1000 is constructed by Prestressed (PS) concrete-a composite material. Containment wall of OPR1000 is made up of steel liner, tendon, rebar and concrete as shown in Figure 1. Role of steel liner protects release of radioactive materials so called leak tightness. The effective thermal conductivity of containment wall in OPR1000 is analyzed by numerical tool (CFD) and compared with thermal conductivity models in composite solids. The effective thermal conductivity of containment wall of OPR1000 is investigated by numerical analysis (CFD). The thermal conductivity of reinforced concrete is 18.6% higher than that of concrete only. Several models were compared with CFD results. Rayleigh-Parallel liner model agrees well with CFD results. Experiment results will be compared with CFD result and models. CFD result was calculated in low steel volume fraction (0.0809) than that of OPR1000 (0.1043). The effective thermal conductivity in OPR1000 has slightly higher than CFD result because of different volume fraction.

  20. Calibration-free electrical conductivity measurements for highly conductive slags

    Energy Technology Data Exchange (ETDEWEB)

    MACDONALD,CHRISTOPHER J.; GAO,HUANG; PAL,UDAY B.; VAN DEN AVYLE,JAMES A.; MELGAARD,DAVID K.

    2000-05-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF{sub 2} - 20 wt.% CaO - 20 wt.% Al{sub 2}O{sub 3}) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments.

  1. A laboratory study of the correlation between the thermal conductivity and electrical resistivity of soil

    Science.gov (United States)

    Wang, Jie; Zhang, Xiaopei; Du, Lizhi

    2017-10-01

    Thermal conductivity k (Wm- 1 K- 1) and electrical resistivity ρ (Ω·m) depend on common parameters such as grain size, dry density and saturation, allowing the finding of a relationship between both parameters. In this paper, we found a linear quantitative formula between thermal conductivity and electrical resistivity of soil. To accomplish this, we measured the thermal conductivity and electrical resistivity of 57 soil samples in the laboratory; samples included 8 reconstructed soils from the Changchun area (clay, silt, and sand) with approximately 7 different saturation levels. A linear relationship between thermal conductivity and electrical resistivity was found excluding the parameter of soil saturation, and the linear model was validated with undisturbed soils in Changchun area. To fully use this relationship (e.g., by imaging the thermal conductivity of soils with electrical resistivity tomography), further measurements with different soils are needed.

  2. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    Science.gov (United States)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  3. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-05-31

    Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.

  4. Voltage tunability of thermal conductivity in ferroelectric materials

    Science.gov (United States)

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  5. Anomalous size dependence of the thermal conductivity of graphene ribbons.

    Science.gov (United States)

    Nika, Denis L; Askerov, Artur S; Balandin, Alexander A

    2012-06-13

    We investigated the thermal conductivity K of graphene ribbons and graphite slabs as the function of their lateral dimensions. Our theoretical model considered the anharmonic three-phonon processes to the second-order and included the angle-dependent phonon scattering from the ribbon edges. It was found that the long mean free path of the long-wavelength acoustic phonons in graphene can lead to an unusual nonmonotonic dependence of the thermal conductivity on the length L of a ribbon. The effect is pronounced for the ribbons with the smooth edges (specularity parameter p > 0.5). Our results also suggest that, contrary to what was previously thought, the bulk-like three-dimensional phonons in graphite make a rather substantial contribution to its in-plane thermal conductivity. The Umklapp-limited thermal conductivity of graphite slabs scales, for L below ∼30 μm, as log(L), while for larger L, the thermal conductivity approaches a finite value following the dependence K(0) - A × L(-1/2), where K(0) and A are parameters independent of the length. Our theoretical results clarify the scaling of the phonon thermal conductivity with the lateral sizes in graphene and graphite. The revealed anomalous dependence K(L) for the micrometer-size graphene ribbons can account for some of the discrepancy in reported experimental data for graphene.

  6. FEM (finite element method) thermal modeling and thermal hydraulic performance of an enhanced thermal conductivity UO2/BeO composite fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenzhong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Purdue Univ., West Lafayette, IN (United States)

    2011-03-24

    An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (Finite Element Method) thermal models of enhanced thermal conductivity oxide nuclear fuels was developed. The results showed significant increase in the fuel thermal conductivities and have good agreement with the measured ones. The reactor performance analysis showed that the decrease in centerline temperature was 250-350K for the UO2-BeO composite fuel, and thus we can improve nuclear reactors' performance and safety, and high-level radioactive waste generation.

  7. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    Science.gov (United States)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  8. CORRELATIONS OF THERMAL CONDUCTIVITY BETWEEN STRATIGRAPHIC UNITS IN THE BROADER AREA OF ZAGREB

    Directory of Open Access Journals (Sweden)

    Miron Kovačić

    2007-12-01

    Full Text Available Thermal conductivity (KTV of geological formations is one of the parameters responsible for the propagation of the heat under the earth surface. During geothermal investigations in the broader area of the Croatian capital of Zagreb the thermal conductivity was measured on the rock samples from the surface and the boreholes. The results of the measurements are presented in this work and used as a basis for calculations of the thermal conductivity of distinct geological formations within the investigated area. It was found out that the values of the thermal conductivity of the rocks in the investigated area vary greatly. The measurements are within the well known scope for certain rock types. The thermal conductivity of the rocks from the Tertiary units corresponds with the average values being typical for such kind of rocks, while the basement carbonate rocks are characterized by the values being by 1 W/K-1m-1 higher than the average. After comparing the thermal conductivity of the stratigraphic units in the broader area of Zagreb it has been established that the values of the thermal conductivity of geological formations in the investigated area are also very different, and that they generally rise with their age. The relative relationships show that the Quaternary, Pliocene and Tertiary sedimentary rocks act as thermal insulators, while Triassic rocks behave as the heat conductor (the paper is published in Croatian.

  9. Theory of the dynamical thermal conductivity of metals

    Science.gov (United States)

    Bhalla, Pankaj; Kumar, Pradeep; Das, Nabyendu; Singh, Navinder

    2016-09-01

    The Mori's projection method, known as the memory function method, is an important theoretical formalism to study various transport coefficients. In the present work, we calculate the dynamical thermal conductivity in the case of metals using the memory function formalism. We introduce thermal memory functions for the first time and discuss the behavior of thermal conductivity in both the zero frequency limit and in the case of nonzero frequencies. We compare our results for the zero frequency case with the results obtained by the Bloch-Boltzmann kinetic approach and find that both approaches agree with each other. Motivated by some recent experimental advancements, we obtain several new results for the ac or the dynamical thermal conductivity.

  10. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding.

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-02-25

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers.

  11. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859

  12. Electrical and Thermal Conductivity and Radiation Power of Air Measured at 1-30 ATM and 6500-11500 deg. K

    Science.gov (United States)

    1977-06-01

    a t u s , m e a s u r e m e n t s and a n a l y s i s t e c h n i q u e s a t G e o r g i a Tech, and t h e n to g e n e r a t e new r e s...is transparent. U and P are used for heuristic purposes only since self-absorptlon and medea absorption have not been treated rigorously. 41 AEOC...laboratories, The experimental data at 6 and 30 arm, is new , The electrical conductivity compares favorably with theory at 1 and 6 arm., as does the

  13. Experimental Preparation and Numerical Simulation of High Thermal Conductive Cu/CNTs Nanocomposites

    Directory of Open Access Journals (Sweden)

    Muhsan Ali Samer

    2014-07-01

    Full Text Available Due to the rapid growth of high performance electronics devices accompanied by overheating problem, heat dissipater nanocomposites material having ultra-high thermal conductivity and low coefficient of thermal expansion was proposed. In this work, a nanocomposite material made of copper (Cu reinforced by multi-walled carbon nanotubes (CNTs up to 10 vol. % was prepared and their thermal behaviour was measured experimentally and evaluated using numerical simulation. In order to numerically predict the thermal behaviour of Cu/CNTs composites, three different prediction methods were performed. The results showed that rules of mixture method records the highest thermal conductivity for all predicted composites. In contrast, the prediction model which takes into account the influence of the interface thermal resistance between CNTs and copper particles, has shown the lowest thermal conductivity which considered as the closest results to the experimental measurement. The experimentally measured thermal conductivities showed remarkable increase after adding 5 vol.% CNTs and higher than the thermal conductivities predicted via Nan models, indicating that the improved fabrication technique of powder injection molding that has been used to produced Cu/CNTs nanocomposites has overcome the challenges assumed in the mathematical models.

  14. The effect of surfactant on stability and thermal conductivity of carbon nanotube based nanofluids

    Directory of Open Access Journals (Sweden)

    Leong Kin Yuen

    2016-01-01

    Full Text Available The addition of highly conductive substance such as carbon nanotubes into a traditional heat transfer fluid will enhance the fluids’ thermal conductivity. However, dispersion process of carbon nanotubes into base fluids is not an easy task due to hydrophobic characteristic of its surface. This study attempts to investigate the stability and thermal conductivity of carbon nanotube based ethylene glycol/water nanofluids with and without surfactants. Stability investigation was conducted through observation and zeta potential measurement methods. As for the thermal conductivity, the samples were measured based on transient line heat source. The results showed that 0.01 wt.% of carbon nanotube based nanofluid, containing 0.01wt.% hexadecyltrimethylammonium bromide possess highest zeta potential value compared to the other tested samples. 0.5 wt. % of carbon nanotube based nanofluids with gum arabic exhibit 25.7% thermal conductivity enhancement.

  15. Evaluation of Electrical and Thermal Conductivity of Polymeric ...

    African Journals Online (AJOL)

    PROF HORSFALL

    application was compressed in a wooden mold to form tablets of the doped polymers. On testing for the electrical and thermal conductivities of the doped polymers it was observed that both conductivities were greatly enhanced as the concentrations of the dopants increased. Hence it is evident that those polymeric materials ...

  16. Evaluation of electrical and thermal conductivity of polymeric wastes ...

    African Journals Online (AJOL)

    The mixture on melting with heat application was compressed in a wooden mold to form tablets of the doped polymers. On testing for the electrical and thermal conductivities of the doped polymers it was observed that both conductivities were greatly enhanced as the concentrations of the dopants increased. Hence it is ...

  17. Design and Fabrication of a Soil Moisture Meter Using Thermal Conductivity Properties of Soil

    National Research Council Canada - National Science Library

    Subir Das; Biplab Bag; T S Sarkar; Nisher Ahmed; B Chakrabrty

    2011-01-01

    ... of soil moisture modeling. In this present work design of a soil moisture measurement meter using thermal conductivity properties of soil has been proposed and experimental results are reported...

  18. A practical dimensionless equation for the thermal conductivity of carbon nanotubes and CNT arrays

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2014-05-01

    Full Text Available Experimental results reported in the last decade on the thermal conductivity of carbon nanotubes (CNTs have shown a fairly divergent behavior. An underlying intrinsic consistency was believed to exist in spite of the divergence in the thermal conductivity data of various CNTs. A dimenisonless equation that describes the temperature dependence of thermal conductivity was derived by introducing reduced forms relative to a chosen reference point. This equation can serve as a practical approximation to characterize the conductivity of individual CNT with different structural parameters as well as bulk CNT arrays with different bundle configurations. Comparison of predictions by the equation and historical measurements showed good agreements within their uncertainties.

  19. Estimation of thermal conductivity of short pastry biscuit at different baking stages

    Directory of Open Access Journals (Sweden)

    Chiara Cevoli

    2014-10-01

    Full Text Available Thermal conductivity of a food material is an essential physical property in mathematical modelling and computer simulation of thermal processing. Effective thermal conductivity of non-homogeneous materials, such as food matrices, can be determined experimentally or mathematically. The aim of the following research was to compare the thermal conductivity of short pastry biscuits, at different baking stages (60-160 min, measured by a line heat source thermal conductivity probe and estimated through the use of thermo-physical models. The measures were carried out on whole biscuits and on powdered biscuits compressed into cylindrical cases. Thermal conductivity of the compacted material, at different baking times (and, consequently at different moisture content, was then used to feed parallel, series, Krischer and Maxwell-Eucken models. The results showed that the application of the hot wire method for the determination of thermal conductivity is not fully feasible if applied directly to whole materials due to mechanical changes applied to the structure and the high presence of fats. The method works best if applied to the biscuit component phases separately. The best model is the Krischer one for its adaptability. In this case the value of biscuit thermal conductivity, for high baking time, varies from 0.15 to 0.19 Wm–1 K–1, while the minimum, for low baking time, varies from 0.11 to 0.12 Wm–1 K–1. These values are close to that reported in literature for similar products.

  20. Assessment of effective thermal conductivity in U–Mo metallic fuels with distributed gas bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang; Casella, Andrew M.; Lavender, Curt A.; Senor, David J.; Burkes, Douglas E.

    2015-07-15

    This work presents a numerical method to assess the relative impact of various microstructural features including grain sizes, nanometer scale intragranular gas bubbles, and larger intergranular gas bubbles in irradiated U–Mo metallic fuels on the effective thermal conductivity. A phase-field model was employed to construct a three-dimensional polycrystalline U–Mo fuel alloy with a given crystal morphology and gas bubble microstructures. An effective thermal conductivity “concept” was taken to capture the effect of polycrystalline structures and gas bubble microstructures with significant size differences on the thermal conductivity. The thermal conductivity of inhomogeneous materials was calculated by solving the heat transport equation. The obtained results are in reasonably good agreement with experimental measurements made on irradiated U–Mo fuel samples containing similar microstructural features. The developed method can be used to predict the thermal conductivity degradation in operating nuclear fuels if the evolution of microstructures is known during operation of the fuel.

  1. On the Effective Thermal Conductivity of Frost Considering Mass Diffusion and Eddy Convection

    Science.gov (United States)

    Kandula, Max

    2010-01-01

    A physical model for the effective thermal conductivity of water frost is proposed for application to the full range of frost density. The proposed model builds on the Zehner-Schlunder one-dimensional formulation for porous media appropriate for solid-to-fluid thermal conductivity ratios less than about 1000. By superposing the effects of mass diffusion and eddy convection on stagnant conduction in the fluid, the total effective thermal conductivity of frost is shown to be satisfactorily described. It is shown that the effects of vapor diffusion and eddy convection on the frost conductivity are of the same order. The results also point out that idealization of the frost structure by cylindrical inclusions offers a better representation of the effective conductivity of frost as compared to spherical inclusions. Satisfactory agreement between the theory and the measurements for the effective thermal conductivity of frost is demonstrated for a wide range of frost density and frost temperature.

  2. A Model of Thermal Conductivity for Planetary Soils: 1. Theory for Unconsolidated Soils

    Science.gov (United States)

    Piqueux, S.; Christensen, P. R.

    2009-01-01

    We present a model of heat conduction for mono-sized spherical particulate media under stagnant gases based on the kinetic theory of gases, numerical modeling of Fourier s law of heat conduction, theoretical constraints on the gas thermal conductivity at various Knudsen regimes, and laboratory measurements. Incorporating the effect of the temperature allows for the derivation of the pore-filling gas conductivity and bulk thermal conductivity of samples using additional parameters (pressure, gas composition, grain size, and porosity). The radiative and solid-to-solid conductivities are also accounted for. Our thermal model reproduces the well-established bulk thermal conductivity dependency of a sample with the grain size and pressure and also confirms laboratory measurements finding that higher porosities generally lead to lower conductivities. It predicts the existence of the plateau conductivity at high pressure, where the bulk conductivity does not depend on the grain size. The good agreement between the model predictions and published laboratory measurements under a variety of pressures, temperatures, gas compositions, and grain sizes provides additional confidence in our results. On Venus, Earth, and Titan, the pressure and temperature combinations are too high to observe a soil thermal conductivity dependency on the grain size, but each planet has a unique thermal inertia due to their different surface temperatures. On Mars, the temperature and pressure combination is ideal to observe the soil thermal conductivity dependency on the average grain size. Thermal conductivity models that do not take the temperature and the pore-filling gas composition into account may yield significant errors.

  3. Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids

    Science.gov (United States)

    Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro

    2015-03-01

    A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.

  4. Thermally Induced Chain Orientation for Improved Thermal Conductivity of P(VDF-TrFE) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Junnan [University of Michigan; Tan, Aaron C. [University of Michigan

    2017-09-29

    The potential for polymer thin films to be used as coatings or dielectrics is limited by their low thermal conductivity, ..kappa... However, there have been very limited studies on ..kappa.. enhancement for polymer thin films. In this work, we show that the out-of-plane ..kappa.. of a poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) thin film can be enhanced when it undergoes the appropriate thermal annealing conditions. When the film is annealed above its melting temperature, we achieve a 300-400% increase in ..kappa.. across the measured temperature range, compared to the as-cast film. We attribute this enhancement to the extensive ordering of polymer backbone chains perpendicular to the substrate during the melt-recrystallization process.

  5. Experimental and theoretical investigation of thermal conductivity of ethylene glycol containing functionalized single walled carbon nanotubes

    Science.gov (United States)

    Hemmat Esfe, Mohammad; Firouzi, Masoumeh; Afrand, Masoud

    2018-01-01

    In this paper, functionalized single walled carbon nanotubes (FSWCNTs) were suspended in Ethylene Glycol (EG) at different volume fractions. A KD2 pro thermal conductivity meter was used to measure the thermal conductivity in the temperature range from 30 to 50 °C. Nanofluids were prepared in solid volume fraction of 0.02, 0.05, 0.075, 0.1, 0.25, 0.5 and, 0.75%. Experimental results revealed that the thermal conductivity of the nanofluid is a non-linear function of temperature and SWCNTs volume fraction in the range of this investigation. Thermal conductivity increases with temperature and nanoparticles volume fraction as usual for this type of nanofluid. Maximum increment in thermal conductivity of the nanofluids was found to be about 45% at 0.75 vol fractions loading at 50 °C. Finally, a new correlation based on artificial neural network (ANN) approach has been proposed for SWCNT-EG thermal conductivity in terms of nanoparticles volume fraction and temperature using the experimental data. Used ANN approach has estimated the experimental values of thermal conductivity with the absolute average relative deviation lower than 0.9%, mean square error of 3.67 × 10-5 and regression coefficient of 0.9989. Comparison between the suggested techniques with various used correlation in the literatures established that the ANN approach is better to other presented methods and therefore can be proposed as a useful means for predicting of the nanofluids thermal conductivity.

  6. Hydrodynamic interaction of SNR shocks with thermally conducting, radiative clouds .

    Science.gov (United States)

    Orlando, S.; Peres, G.; Reale, F.; Bocchino, F.; Plewa, T.; Rosner, R.

    Supernova remnants (SNRs) are privileged laboratories to investigate the physical and chemical evolution of the galactic interstellar medium (ISM) and the mass distribution of the plasma in the Galaxy. Here, we study the interaction of an evolved SNR shock front with on a small interstellar gas cloud. Our model takes into account the hydrodynamics and the effects of the radiative losses and of the thermal conduction. We study the interplay between the radiative cooling and the thermal conduction during the cloud evolution and their effect on the mass and energy exchange between the cloud and the surrounding medium. We find that in cases dominated by the radiative losses the cloud fragments into cold, dense, and compact filaments surrounded by a hot corona which is ablated by the thermal conduction; instead, in cases dominated by the thermal conduction, the shocked cloud evaporates into the ISM in a few dynamical time-scales. In all the cases analyzed we find that the thermal conduction suppresses the hydrodynamic instabilities at the cloud boundaries.

  7. Reduction of thermal conductivity in phononic nanomesh structures

    KAUST Repository

    Yu, Jen-Kan

    2010-07-25

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. © 2010 Macmillan Publishers Limited. All rights reserved.

  8. Determination of thermal conductivity in foundry mould mixtures

    Directory of Open Access Journals (Sweden)

    G. Solenički

    2010-01-01

    Full Text Available For a thorough understanding of the behaviour of foundry mould mixtures, a good knowledge of thermal properties of mould materials is needed. Laboratory determination of thermal conductivity of mould mixtures enables a better control over scabbing defects which are a major problem in green sand mould mixtures. A special instrument has been designed for that purpose and it is described in this work.

  9. Reduction of thermal conductivity by low energy multi-Einstein optic modes

    Directory of Open Access Journals (Sweden)

    Huili Liu

    2016-06-01

    Full Text Available The lattice dynamics and thermal transport in Cu2-δSe compounds were investigated via theoretical calculations, neutron measurement, and characterization of thermal properties. The results show that binary ordered Cu2-δSe has an extremely low lattice thermal conductivity at low temperatures. The low energy multi-Einstein optic modes are the dominant approach obtaining such an extremely low lattice thermal conductivity. It is indicated that the damped vibrations of copper ions could contribute to the low energy multi-Einstein optic modes, especially for those low energy branches at 2–4 meV.

  10. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  11. Numerical Investigation of the Thermal Conductivity of Graphite Nanofibers

    Science.gov (United States)

    Hakak Khadem, Masoud

    The thermal conductivity of graphite nano-fibers (GNFs) with different styles is predicted computationally. GNFs are formed as basal planes of graphene stacked based on the catalytic configuration. The large GNF thermal conductivity relative to a base phase change material (PCM) may lead to improved PCM performance when embedded with GNFs. Three different types of GNFs are modeled: platelet, ribbon, and herringbone. Molecular dynamics (MD) simulations are used in this study as a means to predict the thermal conductivity tensor based on atomic behavior. The in-house MD code, Molecular Dynamics in Arbitrary Geometries (MDAG), was updated with the features required to create the predictions. To model both interlayer van-der Waals and intralayer covalent bonding of carbon atoms in GNFs, a combination of the optimized Tersoff potential function for atoms within the layers and a pairwise Lennard-Jones (LJ) potential function to model the interactions between the layers was used. Tests of energy conservation in the NVE ensemble have been performed to validate the employed potential model. Nose-Hoover, Andersen, and Berendsen thermostats were also incorporated into MDAG to enable MD simulations in NVT ensembles, where the volume, number of atoms, and temperature of the system are conserved. Equilibrium MD with Green-Kubo (GK) relations was then employed to extract the thermal conductivity tensor for symmetric GNFs (platelet and ribbon). The thermal conductivity of solid argon at different temperatures was calculated and compared to other studies to validate the GK implementation. Different heat current formulations, as a result of using the three-body Tersoff potential, were considered and the discrepancy in the calculated thermal conductivity values of graphene using each formula was resolved by employing a novel comparative technique that identifies the most accurate formulation. The effect of stacking configuration on the thermal conductivity of platelet and ribbon GNFs

  12. Measurements of thermal accommodation coefficients.

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

    2005-10-01

    A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

  13. Thermal conductivity of bulk and monolayer MoS2

    KAUST Repository

    Gandi, Appala

    2016-02-26

    © Copyright EPLA, 2016. We show that the lattice contribution to the thermal conductivity of MoS2 strongly dominates the carrier contribution in a broad temperature range from 300 to 800 K. Since theoretical insight into the lattice contribution is largely missing, though it would be essential for materials design, we solve the Boltzmann transport equation for the phonons self-consistently in order to evaluate the phonon lifetimes. In addition, the length scale for transition between diffusive and ballistic transport is determined. The low out-of-plane thermal conductivity of bulk MoS2 (2.3 Wm-1K-1 at 300 K) is useful for thermoelectric applications. On the other hand, the thermal conductivity of monolayer MoS2 (131 Wm-1K-1 at 300 K) is comparable to that of Si.

  14. Aqueous Solution Thermal Conductivity of Beryllium-Subgroup Metal Chlorides

    Directory of Open Access Journals (Sweden)

    K. Abdullayev

    2013-01-01

    Full Text Available The paper presents experimental data on thermal conductivity of BeCl2 and SrCl2 salt aqueous solutions in the temperature range from 20 to 300 °С  and at various electrolyte concentrations  in mass percent. For the first time thermal conductivity of the system Н2О + BeCl2 has been investigated at high temperatures.The experimental results are described with the help of an empirical equation in the form of: λs = λo (1+ Am + Bm3/2 + Cm2,where λs  and λo – thermal conductivity coefficients of solution and water; A, B and C – coefficients depending on electrolyte nature; m – molality in units mol/kg.The formula error is less than  ±1 %.

  15. Thermally conductive cementitious grout for geothermal heat pump systems

    Science.gov (United States)

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  16. Comparative study of thermal conductivity in crystalline and amorphous nanocomposite

    Science.gov (United States)

    Juangsa, Firman Bagja; Muroya, Yoshiki; Ryu, Meguya; Morikawa, Junko; Nozaki, Tomohiro

    2017-06-01

    Silicon nanocrystals (SiNCs)/polystyrene (PS) nanocomposite has been observed to have a significant decrease in thermal conductivity in terms of the SiNC fraction with unspecified factors remained unclear. In this paper, amorphous silicon nanoparticles (a-SiNPs) with a mean diameter of 6 nm and PS nanocomposites were synthesized, and their thermal conductivity, including the density and specific heat, was compared with our previous work which investigated well-crystalized SiNPs (6 nm) and PS nanocomposite. The difference between amorphous and crystalline structure is insignificant, but phonon scattering at SiNPs and PS boundary is the key influencing factor of thermal conductivity reduction. The effective thermal conductivity models for nanocomposite revealed that the thermal boundary resistance, explained by Kapitza principle, is estimated to be 4 × 10-7 m2K/W, showing the significant effect of nanostructured heterogenic surface resistance on overall heat transfer behavior. Preservation of unique properties nanoscale materials and low-cost fabrication by silicon inks process at room temperature give the promising potential of SiNPs based heat transfer management.

  17. Study of thermal conductivity enhancement of aqueous suspensions containing silver nanoparticles

    Science.gov (United States)

    Iyahraja, S.; Rajadurai, J. Selwin

    2015-05-01

    Nanofluids are prepared by dispersing polyvinylpyrrolidone coated silver nanoparticles in distilled water. The thermal conductivity of nanofluids is measured by KD2 Pro thermal analyzer which is based on transient hot wire method. The influence of size and concentration of nanoparticles, surfactant and temperature of suspensions on the enhancement of the thermal conductivity is analyzed. The experimental results show that the thermal conductivity of nanofluids increases with the decrease in the size and increase in the concentration of the nanoparticles. Even with low volume fraction of 0.1 % and 20 nm size of silver nanoparticles, a high thermal conductivity enhancement of 54 % has been achieved. The surfactant and the temperature have a significant effect on the thermal conductivity enhancement of the nanofluids. The increase in temperature of the nanofluid from 30oC to 60oC increases its thermal conductivity up to 69 % whereas the addition of surfactant lessens the thermal conductivity enhancement to 34.2% with polyvinylpyrrolidone and 31.5 % with sodium dodecyl sulfate. The experimental results are compared with the existing theoretical models.

  18. Periodic composites: quasi-uniform heat conduction, Janus thermal illusion, and illusion thermal diodes

    Science.gov (United States)

    Xu, Liujun; Jiang, Chaoran; Shang, Jin; Wang, Ruizhe; Huang, Jiping

    2017-11-01

    Manipulating thermal conductivities at will plays a crucial role in controlling heat flow. By developing an effective medium theory including periodicity, here we experimentally show that nonuniform media can exhibit quasi-uniform heat conduction. This provides capabilities in proposing Janus thermal illusion and illusion thermal rectification. For the former, we study, via experiment and theory, a big periodic composite containing a small periodic composite with circular or elliptic particles. As a result, we reveal the Janus thermal illusion that describes the whole periodic system with both invisibility illusion along one direction and visibility illusion along the perpendicular direction, which is fundamentally different from the existing thermal illusions for misleading thermal detection. Further, the Janus illusion helps to design two different periodic systems that both work as thermal diodes but with nearly the same temperature distribution, heat fluxes and rectification ratios, thus being called illusion thermal diodes. Such thermal diodes differ from those extensively studied in the literature, and are useful for the areas that require both thermal rectification and thermal camouflage. This work not only opens a door for designing novel periodic composites in thermal camouflage and heat rectification, but also holds for achieving similar composites in other disciplines like electrostatics, magnetostatics, and particle dynamics.

  19. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  20. Length-dependent thermal conductivity in suspended single-layer graphene.

    Science.gov (United States)

    Xu, Xiangfan; Pereira, Luiz F C; Wang, Yu; Wu, Jing; Zhang, Kaiwen; Zhao, Xiangming; Bae, Sukang; Tinh Bui, Cong; Xie, Rongguo; Thong, John T L; Hong, Byung Hee; Loh, Kian Ping; Donadio, Davide; Li, Baowen; Özyilmaz, Barbaros

    2014-04-16

    Graphene exhibits extraordinary electronic and mechanical properties, and extremely high thermal conductivity. Being a very stable atomically thick membrane that can be suspended between two leads, graphene provides a perfect test platform for studying thermal conductivity in two-dimensional systems, which is of primary importance for phonon transport in low-dimensional materials. Here we report experimental measurements and non-equilibrium molecular dynamics simulations of thermal conduction in suspended single-layer graphene as a function of both temperature and sample length. Interestingly and in contrast to bulk materials, at 300 K, thermal conductivity keeps increasing and remains logarithmically divergent with sample length even for sample lengths much larger than the average phonon mean free path. This result is a consequence of the two-dimensional nature of phonons in graphene, and provides fundamental understanding of thermal transport in two-dimensional materials.

  1. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites

    Energy Technology Data Exchange (ETDEWEB)

    Jakubinek, Michael B.; Kim, Keun Su; Simard, Benoit [Security and Disruptive Technologies, Division of Emerging Technologies, National Research Council Canada, Ottawa, ON (Canada); Niven, John F. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Johnson, Michel B. [Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Ashrafi, Behnam [Aerospace, Division of Engineering, National Research Council Canada, Montreal, QC (Canada); White, Mary Anne [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Department of Chemistry, Dalhousie University, Halifax, NS (Canada)

    2016-08-15

    The thermal conductivity of bulk, self-supporting boron nitride nanotube (BNNT) sheets composed of nominally 100% BNNTs oriented randomly in-plane was measured by a steady-state, parallel thermal conductance method. The sheets were either collected directly during synthesis or produced by dispersion and filtration. Differences between the effective thermal conductivities of filtration-produced BNNT buckypaper (∝1.5 W m{sup -1} K{sup -1}) and lower-density as-synthesized sheets (∝0.75 W m{sup -1} K{sup -1}), which are both porous materials, were primarily due to their density. The measured results indicate similar thermal conductivity, in the range of 7-12 W m{sup -1} K{sup -1}, for the BNNT network in these sheets. High BNNT-content composites (∝30 wt.% BNNTs) produced by epoxy impregnation of the porous BNNT network gave 2-3 W m{sup -1} K{sup -1}, more than 10 x the baseline epoxy. The combination of manufacturability, thermal conductivity, and electrical insulation offers exciting potential for electrically insulating, thermally conductive coatings and packaging. Thermal conductivity of free-standing BNNT buckypaper, buckypaper composites, and related materials at room temperature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  3. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Liwu; Khodadadi, J.M. [Department of Mechanical Engineering, Auburn University, 270 Ross Hall, Auburn, AL 36849-5341 (United States)

    2011-01-15

    A review of experimental/computational studies to enhance the thermal conductivity of phase change materials (PCM) that were conducted over many decades is presented. Thermal management of electronics for aeronautics and space exploration appears to be the original intended application, with later extension to storage of thermal energy for solar thermal applications. The present review will focus on studies that concern with positioning of fixed, stationary high conductivity inserts/structures. Copper, aluminum, nickel, stainless steel and carbon fiber in various forms (fins, honeycomb, wool, brush, etc.) were generally utilized as the materials of the thermal conductivity promoters. The reviewed research studies covered a variety of PCM, operating conditions, heat exchange and thermal energy storage arrangements. The energy storage vessels included isolated thermal storage units (rectangular boxes, cylindrical and annular tubes and spheres) and containers that transferred heat to a moving fluid medium passing through it. A few studies have focused on the marked role of flow regimes that are formed due to the presence of thermally unstable fluid layers that in turn give rise to greater convective mixing and thus expedited melting of PCM. In general, it can be stated that due to utilization of fixed high conductivity inserts/structures, the conducting pathways linking the hot and cold ends must be minimized. (author)

  4. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  5. Reduction in thermal conductivity of BiSbTe lump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Kaleem [King Saud University, Sustainable Energy Technologies Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia); Wan, C. [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Beijing (China); Al-Eshaikh, M.A.; Kadachi, A.N. [King Saud University, Research Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia)

    2017-03-15

    In this work, systematic investigations on the thermal conductivities of BiSbTe lump, microstructured pristine BiSbTe bulk and single wall carbon nanotubes (SWCNTs)/BiSbTe bulk nanocomposites were performed. BiSbTe lumps were crushed to form a coarse powder (200 μm) and effect of particle size reduction on the effective thermal conductivity of BiSbTe (200 μm) bulk were analyzed. For further reduction in the conductivity, a two pronged strategy has been employed. First, additional refinement of BiSbTe (200 μm) were performed through ball milling in an inert environment. Second, SWCNTs in 0.75, and 1.0 vol% were distributed uniformly in the fine BiSbTe ball milled powder. The results showed that the effective thermal conductivities decrease with the reduction in the particle size from lump to BiSbTe (200 μm) bulk as well as with the addition of SWCNTs accompanied by further refinement of BiSbTe particles. The significant reduction in thermal conductivities of the lump was achieved for pure BiSbTe (200 μm) bulk and 0.75 vol% of SWCNTs/BiSbTe composite. This can be ascribed to the enhanced phonon scattering by the grain boundaries between the nanostructured BiSbTe particles as well as the interfaces between BiSbTe and the low dimensional carbon nanotubes. (orig.)

  6. Heat pipes with variable thermal conductance property for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kravets, V.; Alekseik, Ye.; Alekseik, O.; Khairnasov, S. [National Technical University of Ukraine, Kyiv (Ukraine); Baturkin, V.; Ho, T. [Explorationssysteme RY-ES, Bremen (Germany); Celotti, L. [Active Space Technologies GmbH, Berlin (Germany)

    2017-06-15

    The activities presented in this paper demonstrate a new approach to provide passive thermal control using heat pipes, as demonstrated on the electronic unit of DLR’s MASCOT lander, which embarked on the NEA sample return mission Hayabusa 2 (JAXA). The focus is on the development and testing of heat pipes with variable thermal conductance in a predetermined temperature range. These heat pipes act as thermal switches. Unlike standard gasloaded heat pipes and thermal-diode heat pipes construction of presented heat pipes does not include any additional elements. Copper heat pipes with metal fibrous wicks were chosen as baseline design. We obtained positive results by choosing the heat carrier and structural parameters of the wick (i.e., pore diameter, porosity, and permeability). The increase in the thermal conductivity of the heat pipes from 0.04 W/K to 2.1 W/K was observed in the temperature range between −20 °C and +55 °C. Moreover, the heat pipes transferred the predetermined power of not less than 10 W within the same temperature range. The heat pipes have been in flight since December 2014, and the supporting telemetry data were obtained in September 2015. The data showed the nominal operation of the thermal control system.

  7. Effects of rim structure formation on the thermal conductivity of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, Masaki; Hirai, Mutsumi [Global Nuclear Fuel - Japan Co., Ltd., Oarai, Ibaraki (Japan); Kaino, Masaru; Hattori, Toshiitsu [Tokyo Electric Power Company, Yokohama, Kanagawa (Japan)

    2002-11-01

    Thermal diffusivities of UO{sub 2} pellets irradiated in a test reactor were measured by using a laser flash method. The maximum burnups of the samples were about 85 GWd/t and some of the samples contained rim structures. Thermal diffusivities of irradiated decreased compared with those of unirradiated and simulated soluble fission products-doped UO{sub 2} pellets. Hysteresis phenomena in the thermal diffusivity of irradiated fuel, which had been reported before, were not clearly observed in UO{sub 2} pellets in which the rim structures had formed. The thermal conductivities for irradiated UO{sub 2} pellets were evaluated from measured thermal diffusivities, specific heat capacities of unirradiated UO{sub 2} pellets and measured sample densities. The thermal conductivities of irradiated UO{sub 2} were compared to those of unirradiated UO{sub 2} pellets. The relative thermal conductivities were normalized to those of 96.5% TD (Theoretical Density). These normalized thermal conductivities of irradiated UO{sub 2} pellets in which significant rim structures had formed tended to be slightly higher than those of irradiated UO{sub 2} pellets in which no rim structure had formed. This may be caused by an effect of recrystallization in rim structures. (author)

  8. Thermal Conductivity of Industrial Nb3Sn Wires Fabricated by Various Techniques

    CERN Document Server

    Bonura, Marco

    2012-01-01

    We have developed a new experimental setup specifically designed for measuring thermal conductivity on technical superconductors in the range of temperatures from 3 to 330 K in magnetic fields up to 21 T. Three Nb3Sn wires, produced by the powder in tube technique, the bronze route and the internal tin restacked rod process, respectively, have been investigated. We show that, due to the complexity of the architecture of these wires, direct measurement of thermal conductivity is required for a correct estimation of thermal stability in superconducting magnets.

  9. Fractional Heat Conduction Models and Thermal Diffusivity Determination

    Directory of Open Access Journals (Sweden)

    Monika Žecová

    2015-01-01

    Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.

  10. Interflake thermal conductance of edge-passivated graphene

    Science.gov (United States)

    Shin, Seungha; Kaviany, Massoud

    2011-12-01

    Based on the quantum-junction transmission/Green's function formalism and the dynamical matrix/DFT, we find the phonon wave features result in bimodal resonant transmission in the interflake conductance of H or O edge-passivated graphene. The low-frequency resonant transport mode is due to the weak interaction between the flakes, while the high-frequency resonant transport mode depends on the passivated species and brings the temperature dependence. The phonon transport polarized in the transport directions is dominant because of the asymmetric charge distribution of ...C-O-H-C... and this contributes to the conductance. Thermal conductance decreases due to the passivation junctions, and the electronic thermal conductance becomes negligible except for the O-H junction at high temperatures.

  11. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.

    Science.gov (United States)

    Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y

    2015-02-24

    Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.

  12. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    Science.gov (United States)

    Cheaito, Ramez; Hattar, Khalid; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; Hopkins, Patrick E.

    2015-03-01

    We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.

  13. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheaito, Ramez; Gaskins, John T.; Duda, John C.; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Hattar, Khalid; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yadav, Ajay K. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Baldwin, Jon K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Misra, Amit [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-03-02

    We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.

  14. Thermal design studies in superconducting rf cavities: Phonon peak and Kapitza conductance

    Directory of Open Access Journals (Sweden)

    A. Aizaz

    2010-09-01

    Full Text Available Thermal design studies of superconducting radio frequency (SRF cavities involve two thermal parameters, namely the temperature dependent thermal conductivity of Nb at low temperatures and the heat transfer coefficient at the Nb-He II interface, commonly known as the Kapitza conductance. During the fabrication process of the SRF cavities, Nb sheet is plastically deformed through a deep drawing process to obtain the desired shape. The effect of plastic deformation on low temperature thermal conductivity as well as Kapitza conductance has been studied experimentally. Strain induced during the plastic deformation process reduces the thermal conductivity in its phonon transmission regime (disappearance of phonon peak by 80%, which may explain the performance limitations of the defect-free SRF cavities during their high field operations. Low temperature annealing of the deformed Nb sample could not recover the phonon peak. However, moderate temperature annealing during the titanification process recovered the phonon peak in the thermal conductivity curve. Kapitza conductance measurements for the Nb-He II interface for various surface topologies have also been carried out before and after the annealing. These measurements reveal consistently increased Kapitza conductance after the annealing process was carried out in the two temperature regimes.

  15. Thermally Conductive Metal-Tube/Carbon-Composite Joints

    Science.gov (United States)

    Copeland, Robert J.

    2004-01-01

    An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.

  16. Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization

    Science.gov (United States)

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-01-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

  17. Thermal characterization of screen printed conductive pastes for RFID antennas

    Energy Technology Data Exchange (ETDEWEB)

    Janeczek, Kamil, E-mail: kamil.janeczek@itr.org.pl [Tele and Radio Research Institute, 11 Ratuszowa Street, 03-450 Warsaw (Poland); Jakubowska, Malgorzata [Institute of Electronic Materials Technology, 133 Wolczynska Street, 01-919 Warsaw (Poland); Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, 8 Sankt Andrzej Bobola Street, 02-525 Warsaw (Poland); Mlozniak, Anna [Institute of Electronic Materials Technology, 133 Wolczynska Street, 01-919 Warsaw (Poland); Koziol, Grazyna [Tele and Radio Research Institute, 11 Ratuszowa Street, 03-450 Warsaw (Poland)

    2012-09-01

    Thermal resistance is an essential aspect of electronic circuits designing. It leads to unexpected changes in electronic components during their work. In this study, new materials for screen printed RFID tag's antennas were characterized in terms of their resistance to thermal exposure. Polymer materials containing silver flakes, silver nanopowder, carbon nanotubes or conductive polymer PEDOT:PSS were elaborated and used for antenna printing on flexible materials. In order to verify their long term susceptibility to damages caused by the changing environmental conditions, the temperature cycling test was used in three different temperature ranges: +65 Degree-Sign C, -12 Degree-Sign C, -40 Degree-Sign C/+85 Degree-Sign C (3 h in each temp., dwell time 1 h). The highest durability to thermal exposure exhibited the paste with carbon nanotubes dispersed in poly(methyl methacrylate) PMMA and the lowest one - the paste with conductive polymer PEDOT:PSS.

  18. Evaluation of Structure Influence on Thermal Conductivity of Thermal Insulating Materials from Renewable Resources

    Directory of Open Access Journals (Sweden)

    Jolanta VĖJELIENĖ

    2011-07-01

    Full Text Available The development of new thermal insulation materials needs to evaluate properties and structure of raw material, technological factors that make influence on the thermal conductivity of material. One of the most promising raw materials for production of insulation material is straw. The use of natural fibres in insulation is closely linked to the ecological building sector, where selection of materials is based on factors including recyclable, renewable raw materials and low resource production techniques In current work results of research on structure and thermal conductivity of renewable resources for production thermal insulating materials are presented. Due to the high abundance of renewable resources and a good its structure as raw material for thermal insulation materials barley straw, reeds, cattails and bent grass stalks are used. Macro- and micro structure analysis of these substances is performed. Straw bales of these materials are used for determining thermal conductivity. It was found that the macrostructure has the greatest effect on thermal conductivity of materials. Thermal conductivity of material is determined by the formation of a bale due to the large amount of pores among the stalks of the plant, inside the stalk and inside the stalk wall.http://dx.doi.org/10.5755/j01.ms.17.2.494

  19. Minimum Electrical and Thermal Conductivity of Graphene: A Quasiclassical Approach

    OpenAIRE

    Trushin, Maxim; Schliemann, John

    2007-01-01

    We investigate the minimum conductivity of graphene within a quasiclassical approach taking into account electron-hole coherence effects which stem from the chiral nature of low energy excitations. Relying on an analytical solution of the kinetic equation in the electron-hole coherent and incoherent cases we study both the electrical and thermal conductivity whose relation fullfills Wiedemann-Franz law. We found that the most of the previous findings based on the Boltzmann equation are restri...

  20. Thermal Conductivity of High Performance Concrete in Wide Temperature and Moisture Ranges

    Directory of Open Access Journals (Sweden)

    J. Toman

    2001-01-01

    Full Text Available The thermal conductivity of two types of high performance concrete was measured in the temperature range from 100 °C to 800 °C and in the moisture range from dry material to saturation water content. A transient measuring method based on analysis of the measured temperature fields was chosen for the high temperature measurements, and a commercial hot wire device was employed in room temperature measurements of the effect of moisture on thermal conductivity. The measured results reveal that both temperature and moisture exhibit significant effects on the values of thermal conductivity, and these effects are quite comparable from the point of view of the magnitude of the observed variations.

  1. Determinação experimental da viscosidade e condutividade térmica de óleos vegetais Experimental measurements of viscosity and thermal conductivity of vegetable oils

    Directory of Open Access Journals (Sweden)

    Josiane Brock

    2008-09-01

    Full Text Available O presente trabalho tem por objetivo reportar valores experimentais de condutividade térmica e viscosidade dinâmica dos óleos vegetais refinados de soja, milho, girassol, algodão, canola, oliva e de farelo de arroz. As medidas de condutividade térmica foram realizadas em célula acoplada a um banho termostático no intervalo de temperatura de 20 a 70 °C, utilizando uma sonda de fio quente. Os resultados obtidos demonstram que para todos os óleos vegetais investigados a condutividade térmica possui fraca dependência com a temperatura, apresentando ligeiro decréscimo com o aumento desta variável. O método gravimétrico foi empregado para a medida da densidade dos óleos vegetais estudados à temperatura ambiente, não tendo sido verificada diferença significativa entre os valores encontrados. Para as medidas de viscosidade dos óleos vegetais foi utilizado um viscosímetro do tipo Brookfield, acoplado a um banho termostatizado com controle de temperatura. A partir dos resultados obtidos verificou-se que a viscosidade decresce acentuadamente com o aumento da temperatura para todos os óleos vegetais.This work reports experimental data of thermal conductivity and dynamic viscosity of the following refined vegetable oils: rice, soybean, corn oil, sunflower, cottonseed, and olive oil. Measurements of thermal properties were carried out in a cell coupled to a thermostatic bath in the temperature range of 20-70 °C, using a single-needle stainless steel sensor. It was experimentally observed that the thermal conductivity decreased slightly with increasing temperature for all samples investigated. The gravimetric method was employed for density data acquisition, and revealed no significant difference among the values obtained. The Brookfield apparatus was employed in measuring the dynamic viscosity and it was verified that a raise in temperature led to a sharp decrease for this property for all samples investigated.

  2. Thermal conductivity of food materials at elevated temperatures

    NARCIS (Netherlands)

    Spiess, W.E.L.; Walz, E.; Nesvadba, P.; Morley, M.; Haneghem, van I.A.; Salmon, D.R.

    2001-01-01

    In order to expand the available information on thermal conductivity of foods, within the framework of COST Action 93, a collaborative study was organised. In the first step, typical food components (apple pulp, meat, olive oil, sodium caseinate, starch, tomato paste) were used as standards for

  3. Effective thermal conductivity of real two-phase systems using ...

    Indian Academy of Sciences (India)

    An effort is made to correlate it in terms of the ratio of thermal conductivities of the constituents and the physical porosity. Theoretical expression so obtained has been tested on a large number of samples cited in the literature and found that the values predicted are quite close to the experimental results. Comparison of our ...

  4. Effective thermal conductivity of real two-phase systems using ...

    Indian Academy of Sciences (India)

    Unknown

    non-uniform shape of the particles and non-linear flow of heat flux lines in real systems, incorporating an empirical correction factor in place of physical porosity modifies an expression for ETC. An effort is made to correlate it in terms of the ratio of thermal conductivities of the constituents and the physical porosity. Theo-.

  5. Thermal conductivity reduction in oxygen-deficient strontium titanates

    NARCIS (Netherlands)

    Yu, Choongho; Scullin, Matthew L.; Huijben, Mark; Ramesh, Ramamoorthy; Majumdar, Arun

    2008-01-01

    We report significant thermal conductivity reduction in oxygen-deficient lanthanum-doped strontium titanate (Sr1−xLaxTiO3−δ) films as compared to unreduced strontium titanates. Our experimental results suggest that the oxygen vacancies could have played an important role in the reduction. This could

  6. Dependence of thermal conductivity in micro to nano silica

    Indian Academy of Sciences (India)

    The validation test of thermal probe was conducted on ice and THF hydrates using our experimental set up and the results are satisfactory when compared with the literature data. ... power supply leads were sol- dered to them. The probe normally consisted of an electri- cal heater, a temperature sensor and a thermocouple.

  7. A micro-convection model for thermal conductivity of nanofluids

    Indian Academy of Sciences (India)

    Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of ...

  8. On the effect of temperature dependent thermal conductivity on ...

    African Journals Online (AJOL)

    We consider the effect of temperature dependent thermal conductivity on temperature rise in biologic tissues during microwave heating. The method of asymptotic expansion is used for finding solution. An appropriate matching procedure was used in our method. Our result reveals the possibility of multiple solutions and it ...

  9. Simulation insights into thermally conductive graphene-based nanocomposites

    Science.gov (United States)

    Konatham, D.; Bui, K. N. D.; Papavassiliou, D. V.; Striolo, A.

    2011-01-01

    Dispersing nanoparticles in a polymer can enhance both mechanical and transport properties. Nanocomposites with high thermal conductivity could be obtained by using thermally conductive nanoparticles. Carbon-based nanoparticles are extremely promising, although high resistances to heat transfer from the nanoparticles to the polymer matrix could cause significant limitations. This work focuses on graphene sheets (GS) dispersed within n-octane. Although pristine GS agglomerate, equilibrium molecular dynamic simulations suggest that when the GS are functionalized with short branched hydrocarbons along the GS edges, they remain well dispersed. Results are reported from equilibrium and non-equilibrium molecular dynamics simulations to assess the effective interactions between dispersed GS, the self-assembly of GS, and the heat transfer through the GS-octane nanocomposite. Tools are designed to understand the effect of GS size, solvent molecular weight and molecular architecture on GS dispersability and GS-octane thermal conductivity. Evidence is provided for the formation of nematic phases when the GS volume fraction increases within octane. The atomic-level results are input for a coarse-grained Monte Carlo simulation that predicts anisotropic thermal conductivity for GS-based composites when the GS show nematic phases.

  10. Morphology and thermal conductivity of yttria-stabilized zirconia coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hengbei [Materials Science Department, University of Virginia, Charlottesville, VA 22904 (United States)]. E-mail: hz5e@virginia.edu; Yu Fengling [Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106 (United States); Bennett, Ted D. [Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106 (United States); Wadley, Haydn N.G. [Materials Science Department, University of Virginia, Charlottesville, VA 22904 (United States)

    2006-11-15

    An electron beam directed vapor deposition method was used to grow 7 wt.% Y{sub 2}O{sub 3}-ZrO{sub 2} (7YSZ) coatings and the effects of substrate rotation upon the coating porosity, morphology, texture, and thermal conductivity were explored. As the rotation rate was increased, the texture changed from <1 1 1> to <1 0 0>. Under stationary deposition, the coatings were composed of straight columns, while low-frequency rotation resulted in wavy columns. Increases in rotation rate resulted in a gradual straightening and narrowing of the growth columns. The pore fraction slowly decreased as the rotation rate increased. The thermal conductivity was found to be inversely related to the pore fraction. The structural and thermal conductivity alterations are a result of changes to flux shadowing associated with specimen rotation in a gas jet-entrained vapor plume. The minimum thermal conductivity at a low rotation rate is 0.8 W/(m K), well below that of conventionally deposited coatings.

  11. Entropy generation by nanofluid with variable thermal conductivity ...

    African Journals Online (AJOL)

    The entropy generation by nanofluid with variable thermal conductivity and viscosity of assisted convective flow across a riser pipe of a horizontal flat plate solar collector is investigated numerically. The water based nanofluid with copper nanoparticles is used as the working fluid inside the fluid passing riser pipe.

  12. The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites.

    Science.gov (United States)

    Firkowska, Izabela; Boden, André; Boerner, Benji; Reich, Stephanie

    2015-07-08

    We developed a nanocomposite with highly aligned graphite platelets in a copper matrix. Spark plasma sintering ensured an excellent copper-graphite interface for transmitting heat and stress. The resulting composite has superior thermal conductivity (500 W m(-1) K(-1), 140% of copper), which is in excellent agreement with modeling based on the effective medium approximation. The thermal expansion perpendicular to the graphite platelets drops dramatically from ∼20 ppm K(-1) for graphite and copper separately to 2 ppm K(-1) for the combined structure. We show that this originates from the layered, highly anisotropic structure of graphite combined with residual stress under ambient conditions, that is, strain-engineering of the thermal expansion. Combining excellent thermal conductivity with ultralow thermal expansion results in ideal materials for heat sinks and other devices for thermal management.

  13. The influence of the solid thermal conductivity on active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt

    2012-01-01

    The influence of the thermal conductivity of the regenerator solid on the performance of a flat plate active magnetic regenerator (AMR) is investigated using an established numerical AMR model. The cooling power at different (fixed) temperature spans is used as a measure of the performance...... for a range of thermal conductivities, operating frequencies, a long and short regenerator, and finally a regenerator with a low and a high number of transfer units (NTU) regenerator. In this way the performance is mapped out and the impact of the thermal conductivity of the solid is probed. Modeling shows...... that under certain operating conditions, the AMR cycle is sensitive to the solid conductivity. It is found that as the operating frequency is increased it is not only sufficient to have a high NTU regenerator but the regenerator performance will also benefit from increased thermal conductivity in the solid...

  14. Enhancing Thermal Conductivity of Hexagonal Boron Nitride Filled Thermoplastics for Thermal Interface Management

    Science.gov (United States)

    Prindl, John

    Hexagonal Boron Nitride has been shown to enhance thermal conductivity in polymer composites more so than conventional ceramic fillers. However, to see a significant increase in thermal conductivity a high loading level of the advanced ceramic is often needed which can have an adverse effect on the mechanical behavior of the composite part. Applications for thermal management using thermal interface materials (TIM) continue to grow with thermoplastic injection molded parts emerging as an area for market growth. There is a growing need for published technical data in this particular area of application. In the current study, the thermal conductivity and mechanical behavior of hexagonal Boron Nitride (hBN) loaded thermoplastic composites is investigated. The main objectives of this work is produce a novel data package which illustrates the effects of hBN, loaded at high concentrations, across several different thermoplastic resins with the ultimate goal being to find a desirable formulation for specific thermal management applications. The desired properties for such applications being high thermal conductivity and high electrical resistivity with a minimal decrease in mechanical properties. Hexagonal BN cooling filler agglomerates were compounded into polypropylene (PP), nylon-6 (PA-6), and thermoplastic elastomer (TPE) via twin-screw extruder at 3 different loading levels. Injection molded samples were produced and characterized to show varying degrees of thermal conductivity and mechanical strength. Results from this research showed that in all cases, the thermal conductivity increased with increasing levels of hBN addition. The largest increases in thermal conductivity were seen in the PA-6 and TPE systems with the possible indication of exceeding the percolation threshold in the TPE system. This is hypothesized to occur due to the preferential migration of hBN to form conduction pathways around the elastomeric domains in the TPE matrix. Though TPE produced

  15. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets.

    Science.gov (United States)

    Kim, Hyun Su; Bae, Hyun Sung; Yu, Jaesang; Kim, Seong Yun

    2016-05-25

    One of the most important physical factors related to the thermal conductivity of composites filled with graphene nanoplatelets (GNPs) is the dimensions of the GNPs, that is, their lateral size and thickness. In this study, we reveal the relationship between the thermal conductivity of polymer composites and the realistic size of GNP fillers within the polymer composites (measured using three-dimensional (3D) non-destructive micro X-ray CT analysis) while minimizing the effects of the physical parameters other than size. A larger lateral size and thickness of the GNPs increased the likelihood of the matrix-bonded interface being reduced, resulting in an effective improvement in the thermal conductivity and in the heat dissipation ability of the composites. The thermal conductivity was improved by up to 121% according to the filler size; the highest bulk and in-plane thermal conductivity values of the composites filled with 20 wt% GNPs were 1.8 and 7.3 W/m·K, respectively. The bulk and in-plane thermal conductivity values increased by 650 and 2,942%, respectively, when compared to the thermal conductivity values of the polymer matrix employed (0.24 W/m·K).

  16. Parameter dependent thermal conductivity model for titanium and graphite powder mixture compact

    Energy Technology Data Exchange (ETDEWEB)

    Azad, G.M.S.; Cui, T.; Huque, Z. [Prairie View A and M Univ., Prairie View, TX (United States). Dept. of Mechanical Engineering

    1996-12-31

    Self-Propagating High-Temperature Synthesis (SHS) is an energy-efficient combustion method of producing refractory, ceramic, and composite materials from their constituent powders. To accurately model the SHS process it is important to understand the physical and chemical mechanisms involved in the reaction process along with the effects of various microstructural and physical parameters controlling the process. Physical parameters include the initial temperature of the green compact, thermal conductivity of the compact, density, particle size and mixture ratio of the constituents. Of these parameters, effective thermal conductivity is directly dependent on the initial density, mixing ratio and the particle size of the constituents. Here, the effects of initial density, composition mixture ratio, and particle size on thermal conductivity of titanium and graphite powder mixture compact has been experimentally investigated and a thermal conductivity model has been developed. Thermal conductivity values have been measured for compact densities ranging from 45% to 775 of maximum theoretical density and for Ti/C mixture ratio by weight ranging from 0.7 to 1.3. The model predicts that, for an increase in density, thermal conductivity increases but it decreases with an increase of Ti/C mixture ratio. The experimental results also show the dependence trend of thermal conductivity on particle size of the constituents.

  17. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets

    Science.gov (United States)

    Kim, Hyun Su; Bae, Hyun Sung; Yu, Jaesang; Kim, Seong Yun

    2016-01-01

    One of the most important physical factors related to the thermal conductivity of composites filled with graphene nanoplatelets (GNPs) is the dimensions of the GNPs, that is, their lateral size and thickness. In this study, we reveal the relationship between the thermal conductivity of polymer composites and the realistic size of GNP fillers within the polymer composites (measured using three-dimensional (3D) non-destructive micro X-ray CT analysis) while minimizing the effects of the physical parameters other than size. A larger lateral size and thickness of the GNPs increased the likelihood of the matrix-bonded interface being reduced, resulting in an effective improvement in the thermal conductivity and in the heat dissipation ability of the composites. The thermal conductivity was improved by up to 121% according to the filler size; the highest bulk and in-plane thermal conductivity values of the composites filled with 20 wt% GNPs were 1.8 and 7.3 W/m·K, respectively. The bulk and in-plane thermal conductivity values increased by 650 and 2,942%, respectively, when compared to the thermal conductivity values of the polymer matrix employed (0.24 W/m·K). PMID:27220415

  18. Double-Wall Nanotubes and Graphene Nanoplatelets for Hybrid Conductive Adhesives with Enhanced Thermal and Electrical Conductivity.

    Science.gov (United States)

    Messina, Elena; Leone, Nancy; Foti, Antonino; Di Marco, Gaetano; Riccucci, Cristina; Di Carlo, Gabriella; Di Maggio, Francesco; Cassata, Antonio; Gargano, Leonardo; D'Andrea, Cristiano; Fazio, Barbara; Maragò, Onofrio Maria; Robba, Benedetto; Vasi, Cirino; Ingo, Gabriel Maria; Gucciardi, Pietro Giuseppe

    2016-09-07

    Improving the electrical and thermal properties of conductive adhesives is essential for the fabrication of compact microelectronic and optoelectronic power devices. Here we report on the addition of a commercially available conductive resin with double-wall carbon nanotubes and graphene nanoplatelets that yields simultaneously improved thermal and electrical conductivity. Using isopropanol as a common solvent for the debundling of nanotubes, exfoliation of graphene, and dispersion of the carbon nanostructures in the epoxy resin, we obtain a nanostructured conducting adhesive with thermal conductivity of ∼12 W/mK and resistivity down to 30 μΩ cm at very small loadings (1% w/w for nanotubes and 0.01% w/w for graphene). The low filler content allows one to keep almost unchanged the glass-transition temperature, the viscosity, and the curing parameters. Die shear measurements show that the nanostructured resins fulfill the MIL-STD-883 requirements when bonding gold-metalized SMD components, even after repeated thermal cycling. The same procedure has been validated on a high-conductivity resin characterized by a higher viscosity, on which we have doubled the thermal conductivity and quadrupled the electrical conductivity. Graphene yields better performances with respect to nanotubes in terms of conductivity and filler quantity needed to improve the resin. We have finally applied the nanostructured resins to bond GaN-based high-electron-mobility transistors in power-amplifier circuits. We observe a decrease of the GaN peak and average temperatures of, respectively, ∼30 °C and ∼10 °C, with respect to the pristine resin. The obtained results are important for the fabrication of advanced packaging materials in power electronic and microwave applications and fit the technological roadmap for CNTs, graphene, and hybrid systems.

  19. Experimental Investigations on Thermal Conductivity of Fenugreek and Banana Composites

    Science.gov (United States)

    Pujari, Satish; Venkatesh, Talari; Seeli, Hepsiba

    2017-06-01

    The use of composite materials in manufacturing has significantly increased in the past decade. Research is being done to identify natural fibers that can be used as composites. Several natural fibers are already being used in the industry as composites. The appealing advantages of using natural fibers are reflected in lower density when compared to synthetic fibers and also in saving costs. This research paper highlights the experiment that analyses the use of biodegradable fenugreek composite as natural fiber and concludes that fenugreek natural fibers are an excellent substitute to the synthetic fibers in terms of reinforcement properties for the polymers. These fenugreek fibers are naturally sourced, renewable, cost effective and bio-friendly. In thermal energy storage systems as well as in air conditioning systems, thermal insulators are predominantly used to enhance the storage properties. An experiment was created to investigate the thermal properties of fenugreek banana composites for different fiber concentrations. The experimental results showed that the thermal conductivity of the composites decrease with an increase in the fiber content. The experimental results were compared with the theoretical models to describe the variation of thermal conductivity with the volume fraction of the fiber. Good agreement between theoretical and experimental results was observed.

  20. Determination of BWR Spent Nuclear Fuel Assembly Effective Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew D. Hinds

    2001-10-17

    The purpose of this calculation is to provide an effective thermal conductivity for use in predicting peak cladding temperatures in boiling water reactor (BWR) fuel assemblies with 7x7,8x8, and 9x9 rod arrays. The first objective of this calculation is to describe the development and application of a finite element representation that predicts peak spent nuclear fuel temperatures for BWR assemblies. The second objective is to use the discrete representation to develop a basis for determining an effective thermal conductivity (described later) for a BWR assembly with srneared/homogeneous properties and to investigate the thermal behavior of a spent fuel assembly. The scope of this calculation is limited to a steady-state two-dimensional representation of the waste package interior region. This calculation is subject to procedure AP-3.124, Calculations (Ref. 27) and guided by the applicable technical work plan (Ref. 14). While these evaluations were originally developed for the thermal analysis of conceptual waste package designs emplaced in the potential repository at Yucca Mountain, the methodology applies to storage and transportation thermal analyses as well. Note that the waste package sketch in Attachment V depicts a preliminary design, and should not be interpreted otherwise.

  1. Thermal Conductivity on the Nanofluid of Graphene and Silver Nanoparticles Composite Material.

    Science.gov (United States)

    Myekhlai, Munkhshur; Lee, Taejin; Baatar, Battsengel; Chung, Hanshik; Jeong, Hyomin

    2016-02-01

    The composite material consisted of graphene (GN) and silver nanoparticles (AgNPs) has been essential topic in science and industry due to its unique thermal, electrical and antibacterial proper- ties. However, there are scarcity studies based on their thermal properties of nanofluids. Therefore, GN-AgNPs composite material was synthesized using facile and environment friendly method and further nanofluids were prepared by ultrasonication in this study. The morphological and structural investigations were carried out using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) as well as ultra violet (UV)-visible spectroscopy. Furthermore, thermal conductivity measurements were performed for as-prepared nanofluids. As a result of thermal conductivity study, GN-AgNPs composite material was considerably enhanced the thermal conductivity of base fluid (water) by to 6.59% for the nanofluid (0.2 wt% GN and 0.4 wt% AgNPs).

  2. Estimation of the thermal conductivity of hemp based insulation material from 3D tomographic images

    Science.gov (United States)

    El-Sawalhi, R.; Lux, J.; Salagnac, P.

    2016-08-01

    In this work, we are interested in the structural and thermal characterization of natural fiber insulation materials. The thermal performance of these materials depends on the arrangement of fibers, which is the consequence of the manufacturing process. In order to optimize these materials, thermal conductivity models can be used to correlate some relevant structural parameters with the effective thermal conductivity. However, only a few models are able to take into account the anisotropy of such material related to the fibers orientation, and these models still need realistic input data (fiber orientation distribution, porosity, etc.). The structural characteristics are here directly measured on a 3D tomographic image using advanced image analysis techniques. Critical structural parameters like porosity, pore and fiber size distribution as well as local fiber orientation distribution are measured. The results of the tested conductivity models are then compared with the conductivity tensor obtained by numerical simulation on the discretized 3D microstructure, as well as available experimental measurements. We show that 1D analytical models are generally not suitable for assessing the thermal conductivity of such anisotropic media. Yet, a few anisotropic models can still be of interest to relate some structural parameters, like the fiber orientation distribution, to the thermal properties. Finally, our results emphasize that numerical simulations on 3D realistic microstructure is a very interesting alternative to experimental measurements.

  3. Copper-based conductive composites with tailored thermal expansion.

    Science.gov (United States)

    Della Gaspera, Enrico; Tucker, Ryan; Star, Kurt; Lan, Esther H; Ju, Yongho Sungtaek; Dunn, Bruce

    2013-11-13

    We have devised a moderate temperature hot-pressing route for preparing metal-matrix composites which possess tunable thermal expansion coefficients in combination with high electrical and thermal conductivities. The composites are based on incorporating ZrW2O8, a material with a negative coefficient of thermal expansion (CTE), within a continuous copper matrix. The ZrW2O8 enables us to tune the CTE in a predictable manner, while the copper phase is responsible for the electrical and thermal conductivity properties. An important consideration in the processing of these materials is to avoid the decomposition of the ZrW2O8 phase. This is accomplished by using relatively mild hot-pressing conditions of 500 °C for 1 h at 40 MPa. To ensure that these conditions enable sintering of the copper, we developed a synthesis route for the preparation of Cu nanoparticles (NPs) based on the reduction of a common copper salt in aqueous solution in the presence of a size control agent. Upon hot pressing these nanoparticles at 500 °C, we are able to achieve 92-93% of the theoretical density of copper. The resulting materials exhibit a CTE which can be tuned between the value of pure copper (16.5 ppm/°C) and less than 1 ppm/°C. Thus, by adjusting the relative amount of the two components, the properties of the composite can be designed so that a material with high electrical conductivity and a CTE that matches the relatively low CTE values of semiconductor or thermoelectric materials can be achieved. This unique combination of electrical and thermal properties enables these Cu-based metal-matrix composites to be used as electrical contacts to a variety of semiconductor and thermoelectric devices which offer stable operation under thermal cycling conditions.

  4. Crystallite Size Effect on Thermal Conductive Properties of Nonwoven Nanocellulose Sheets.

    Science.gov (United States)

    Uetani, Kojiro; Okada, Takumi; Oyama, Hideko T

    2015-07-13

    The thermal conductive properties, including the thermal diffusivity and resultant thermal conductivity, of nonwoven nanocellulose sheets were investigated by separately measuring the thermal diffusivity of the sheets in the in-plane and thickness directions with a periodic heating method. The cross-sectional area (or width) of the cellulose crystallites was the main determinant of the thermal conductive properties. Thus, the results strongly indicate that there is a crystallite size effect on phonon conduction within the nanocellulose sheets. The results also indicated that there is a large interfacial thermal resistance between the nanocellulose surfaces. The phonon propagation velocity (i.e., the sound velocity) within the nanocellulose sheets was estimated to be ∼800 m/s based on the relationship between the thermal diffusivities and crystallite widths. The resulting in-plane thermal conductivity of the tunicate nanocellulose sheet was calculated to be ∼2.5 W/mK, markedly higher than other plastic films available for flexible electronic devices.

  5. Thermal conductivity model for powdered materials under vacuum based on experimental studies

    Directory of Open Access Journals (Sweden)

    N. Sakatani

    2017-01-01

    Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.

  6. Strength of VGCF/Al Composites for High Thermal Conductivity

    Science.gov (United States)

    Fukuchi, Kohei; Sasaki, Katsuhiko; Imanishi, Terumitsu; Katagiri, Kazuaki; Kakitsuji, Atsushi; Shimizu, Akiyuki

    In this paper, the evaluation of the strength of the VGCF/Aluminum composites which have high thermal conductivity is reported. VGCF (Vapor Growth Carbon Fiber) is a kind of the Carbon nanotube (CNT) which has very high thermal conductivity as well as CNT. The composites are made by spark plasma sintering. The stress-strain curves of the composites are obtained by the tensile tests and show that the composites have brittle behavior. The brittleness of the composites increases with increase in the volume fraction of VGCF. A numerical simulation based on the micromechanics is conducted to estimate nonlinear behavior in the elastic deformation and plastic deformation of the stress-strain relations of the composites. The theories of Eshelby, Mori-Tanaka, Weibull, and Ramberg-Osgood are employed for the numerical simulation. The simulations give some information of the microstructural change in the composite related to the volume fraction of VGCF.

  7. Thermal conductivity of polymer composite pigmented with titanium dioxide

    Science.gov (United States)

    Ghebrid, N.; Guellal, M.; Rouabah, F.

    2017-04-01

    The aim of this work is to provide a numerical modeling of thermal conductivity of a polymer matrix polystyrene composite filled with titanium dioxide spheres, and to compare the obtained results with theoretical prediction models and the experimental data as a function of the quenching temperature. For this purpose, a numerical study was conducted using the finite element method to predict the effective thermal conductivity of the composite. In addition, a comparison with the results from the analytical models showed that the proposed numerical model is in good agreement with the analytical models of Hatta-Taya and Hashin-Shtrikman. Finally, the comparison of the numerical model to experimental results based on the quenching temperature shows that the best quenching temperature that agrees well with the theoretical model Hashin-Shtrikman is 20 °C.

  8. Investigation of thermal conductivity of metal materials on view of influence of ultrasonic waves

    Science.gov (United States)

    Lepeshkin, A. R.; Shcherbakov, P. P.

    2017-11-01

    A devices and methods were developed to determine characteristics of thermal cunductivity in metals materials on view of influence of ultrasonic waves at frequencies of 20 kHz and 2.6 MHz. A thermograph was used for investigation of the nonstationary thermal state of a conical rod and contactless measurements of its surface temperatures. The curves of heating of the tip of the conical rod and the time of heat transfer from the electric heater to the tip of the rod in experiments with an ultrasonic radiator and without it were carried out. According to the results of the research it was obtained that the thermal conductivity of a metal rod is increased by 2 times at a frequency of 20 kHz with an intensity of 50 W. The measure technique and the experimental data on the thermal conductivity of AISI-304 stainless steel in the ultrasonic wave field 2.6 MHz are given. A stationary comparative method for determining the thermal conductivity is used. As a result of the experiments it was established that the thermal conductivity of the rod increases by 2 times in the temperature range 20-100 °C in the field of ultrasonic wave. The obtained results confirm that in the alloys under the influence of ultrasonic waves on electrons and nodes of the crystal structure the contribution of the electron and lattice components of the thermal conductivity increases.

  9. Modelling and Characterization of Effective Thermal Conductivity of Single Hollow Glass Microsphere and Its Powder.

    Science.gov (United States)

    Liu, Bing; Wang, Hui; Qin, Qing-Hua

    2018-01-14

    Tiny hollow glass microsphere (HGM) can be applied for designing new light-weighted and thermal-insulated composites as high strength core, owing to its hollow structure. However, little work has been found for studying its own overall thermal conductivity independent of any matrix, which generally cannot be measured or evaluated directly. In this study, the overall thermal conductivity of HGM is investigated experimentally and numerically. The experimental investigation of thermal conductivity of HGM powder is performed by the transient plane source (TPS) technique to provide a reference to numerical results, which are obtained by a developed three-dimensional two-step hierarchical computational method. In the present method, three heterogeneous HGM stacking elements representing different distributions of HGMs in the powder are assumed. Each stacking element and its equivalent homogeneous solid counterpart are, respectively, embedded into a fictitious matrix material as fillers to form two equivalent composite systems at different levels, and then the overall thermal conductivity of each stacking element can be numerically determined through the equivalence of the two systems. The comparison of experimental and computational results indicates the present computational modeling can be used for effectively predicting the overall thermal conductivity of single HGM and its powder in a flexible way. Besides, it is necessary to note that the influence of thermal interfacial resistance cannot be removed from the experimental results in the TPS measurement.

  10. Phonon and electron mean free path dependent contributions to thermal conductivity in crystalline materials and thermal interface conductance across metal alloy-dielectric interfaces

    Science.gov (United States)

    Freedman, Justin P.

    Electronic and optical devices continue to decrease in size year after year. Today, devices feature length scales that are commensurate to energy carrier mean free paths. As a result, the physical principles that govern their operation and energy transport processes continue to dramatically change. This work aims to understand the nanoscale thermal transport processes in crystalline materials and across metal-dielectric interfaces. Solid-state devices, such as light emitting diodes (LED) and high power electronics, are replacing older technologies, such as incandescent and fluorescent lighting. Nitride-based semiconductors are the primary material candidates to replace these older technologies, in part because of their high thermal conductivity. In Chapter 2, the phonon mean free path dependent contributions to thermal conductivity in LED-based materials are presented. Using high frequency surface temperature modulation that generates nondiffusive phonon transport the phonon mean free path spectra of GaAs, GaN, AlN, and 4H-SiC at temperatures near 80 K, 150 K, 300 K, and 400 K are shown. This work demonstrates that phonons with mean free paths greater than 230 +/- 120 nm, 1000 +/- 200 nm, 2500 +/- 800 nm, and 4200 +/- 850 nm contribute ˜50% of the bulk thermal conductivity of GaAs, GaN, AlN, and 4H-SiC near room temperature. By nondimensionalizing the data based on Umklapp scattering rates of phonons, a universal phonon mean free path spectrum in small unit cell crystalline semiconductors at high temperature is identified. In Chapter 3, a theoretical framework based on the electron-phonon coupled Boltzmann transport equations (BTEs) is presented for the interpretation of nondiffusive thermal conductivity measurements in gold made via frequency domain thermoreflectance (FDTR). The thermal conductivity of a bulk gold crystal was measured over a temperature range of 23 K to 304 K as a function of FDTR's laser spot size. Through comparison of an analytical solution to

  11. Evaluation of thermal conductivity of heat-cured acrylic resin mixed with A1203

    Directory of Open Access Journals (Sweden)

    Ebadian B.

    2002-08-01

    Full Text Available One of the most important characteristics of denture base is thermal conductivity. This property has a major role in secretions of salivary glands and their enzymes, taste of the food and gustatory response. Polymethyl methacrylate used in prosthodontics is relatively an insulator. Different materials such as metal fillers and ceramics have been used to solve this problem. The aim of this study was the evaluation of AI2O3 effect on thermal conductivity of heat-cured acrylic resin. Acrylic resin was mixed with AI2O3 in two different weight rates (15 and 20 % of weight. So, group 1 and 2 were divided on this basis. Samples with pure acrylic resin were considered as control group. 18 cylindrical patterns were made in 9x9 mm dimensions and thermocouple wires embedded in each sample to act as conductor. The specimens were put in water with 70±1°C thermal range for 10 minutes. Then, thermal conductivity was measured. The results were analyzed with variance analysis and Dunken test. There was significant difference between thermal conductivity of all groups in all period times. It the first seconds, thermal conductivity in groups 1 and 2 were more than control group. Therefore, for developing of thermal conductivity of acrylic resin, A1203 can be used. Certainly, other characteristic of new resin should be evaluated.

  12. Thermal conductivity coefficient of cement-based mortars as air relative humidity function

    Science.gov (United States)

    Siwińska, A.; Garbalińska, H.

    2011-09-01

    This paper presents results of tests and research conducted on three cement-based mortars. At first, moisture sorption was measured at 20°C and six relative humidity levels of the air. The tests were completed with a mathematical description of obtained sorption isotherms. Then, thermal conductivity coefficients λ were measured with stationary and non-stationary techniques on samples of various moisture degree. A linear dependence between coefficient λ and material moisture was determined. Component results of these two stages of research helped determine a mathematical dependence of the thermal conductivity coefficient upon the relative humidity of the tested materials.

  13. Numerical modelling of effective thermal conductivity for modified geomaterial using lattice element method

    Science.gov (United States)

    Rizvi, Zarghaam Haider; Shrestha, Dinesh; Sattari, Amir S.; Wuttke, Frank

    2018-02-01

    Macroscopic parameters such as effective thermal conductivity (ETC) is an important parameter which is affected by micro and meso level behaviour of particulate materials, and has been extensively examined in the past decades. In this paper, a new lattice based numerical model is developed to predict the ETC of sand and modified high thermal backfill material for energy transportation used for underground power cables. 2D and 3D simulations are performed to analyse and detect differences resulting from model simplification. The thermal conductivity of the granular mixture is determined numerically considering the volume and the shape of the each constituting portion. The new numerical method is validated with transient needle measurements and the existing theoretical and semi empirical models for thermal conductivity prediction sand and the modified backfill material for dry condition. The numerical prediction and the measured values are in agreement to a large extent.

  14. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets.

    Science.gov (United States)

    Simoncini, Alessandro; Tagliaferri, Vincenzo; Ucciardello, Nadia

    2017-10-25

    Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m -1 ·K -1 (+57% of copper) obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix.

  15. On the linear dependence of a carbon nanofiber thermal conductivity on wall thickness

    Directory of Open Access Journals (Sweden)

    Alexandros Askounis

    2016-11-01

    Full Text Available Thermal transport in carbon nanofibers (CNFs was thoroughly investigated. In particular, individual CNFs were suspended on T-type heat nanosensors and their thermal conductivity was measured over a range of temperatures. Unexpectedly, thermal conductivity was found to be dependent on CNF wall thickness and ranging between ca. 28 and 43 W/(m⋅K. Further investigation of the CNF walls with high resolution electron microscopy allowed us to propose a tentative description of how wall structure affects phonon heat transport inside CNFs. The lower thermal conductivities, compared to other CNTs, was attributed to unique CNF wall structure. Additionally, wall thickness is related to the conducting lattice length of each constituent graphene cone and comparable to the Umklapp length. Hence, as the wall thickness and thus lattice length increases there is a higher probability for phonon scattering to the next layer.

  16. Interface bond relaxation on the thermal conductivity of Si/Ge core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weifeng; He, Yan; Ouyang, Gang, E-mail: gangouy@hunnu.edu.cn [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications(SICQEA), Hunan Normal University, Changsha 410081 (China); Sun, Changqing [School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-01-15

    The thermal conductivity of Si/Ge core-shell nanowires (CSNWs) is investigated on the basis of atomic-bond-relaxation consideration and continuum mechanics. An analytical model is developed to clarify the interface bond relaxation of Si/Ge CSNWs. It is found that the thermal conductivity of Si core can be modulated through covering with Ge epitaxial layers. The change of thermal conductivity in Si/Ge CSNWs should be attributed to the surface relaxation and interface mismatch between inner Si nanowire and outer Ge epitaxial layer. Our results are in well agreement with the experimental measurements and simulations, suggesting that the presented method provides a fundamental insight of the thermal conductivity of CSNWs from the atomistic origin.

  17. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Alessandro Simoncini

    2017-10-01

    Full Text Available Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix.

  18. Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films

    Science.gov (United States)

    Lee, Jaeho; Li, Zijian; Reifenberg, John P.; Lee, Sangchul; Sinclair, Robert; Asheghi, Mehdi; Goodson, Kenneth E.

    2011-04-01

    Although lateral thermal conduction in Ge2Sb2Te5 (GST) films can influence the performance of phase change memory (PCM), there are no data available for the in-plane thermal conductivity. This work measures both the in-plane and the out-of-plane thermal conductivities for the amorphous, face-centered-cubic, and hexagonal-close-packed phases of GST using two independent techniques. For crystalline GST, we report anisotropy favoring out-of-plane conduction by up to 54%, which varies with annealing time. Scaling arguments indicate that the anisotropy may be due to the thermal resistance of amorphous regions near grain boundaries. This explanation is consistent with transmission electron microscopy images showing columnar grains and amorphous phase at grain boundaries.

  19. Interface bond relaxation on the thermal conductivity of Si/Ge core-shell nanowires

    Directory of Open Access Journals (Sweden)

    Weifeng Chen

    2016-01-01

    Full Text Available The thermal conductivity of Si/Ge core-shell nanowires (CSNWs is investigated on the basis of atomic-bond-relaxation consideration and continuum mechanics. An analytical model is developed to clarify the interface bond relaxation of Si/Ge CSNWs. It is found that the thermal conductivity of Si core can be modulated through covering with Ge epitaxial layers. The change of thermal conductivity in Si/Ge CSNWs should be attributed to the surface relaxation and interface mismatch between inner Si nanowire and outer Ge epitaxial layer. Our results are in well agreement with the experimental measurements and simulations, suggesting that the presented method provides a fundamental insight of the thermal conductivity of CSNWs from the atomistic origin.

  20. Low lattice thermal conductivity and good thermoelectric performance of cinnabar

    Science.gov (United States)

    Zhao, Yinchang; Dai, Zhenhong; Lian, Chao; Zeng, Shuming; Li, Geng; Ni, Jun; Meng, Sheng

    2017-11-01

    Based on the combination of first-principles calculations, Boltzmann transport equation, and electron-phonon interaction (EPI), we investigate the thermal and electronic transport properties of crystalline cinnabar (α -HgS ). The calculated lattice thermal conductivity κL is remarkably low, e.g., 0.60 Wm-1K-1 at 300 K , which is about 30 % of the value for the typical thermoelectric material PbTe. Via taking fully into account the k dependence of the electron relaxation time computed from the EPI matrix, the accurate numerical results of thermopower S , electrical conductivity σ , and electronic thermal conductivity κE are obtained. The calculated power factor S2σ is relatively high while the value of κE is negligible, which, together with the fairly low κL, leads to a good thermoelectric performance in the n -type doped α -HgS , with the figure of merit z T even exceeding 1.4. Our analyses reveal that (i) the large weighted phase space and the quite low phonon group velocity result in the low κL, (ii) the presence of flat band around the Fermi level combined with the large band gap causes the high S , and (iii) the small electron linewidths of the conduction band lead to a large relaxation time and thus a relatively high σ . These results support that α -HgS is a potential candidate for thermoelectric applications.

  1. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B.; Abey, A.E.

    1981-11-01

    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523{sup 0}K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473{sup 0}K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313{sup 0}K to 2.15 +- 0.25 W/mK at 473{sup 0}K. Thermal diffusivity at 300{sup 0}K was found to be 1.2 +- 0.4 X 10{sup -6} m{sup 2}/s and shows approximately the same pressure and temperature dependencies as the thermal conductivity.

  2. Thermal conductivity and viscosity of self-assembled alcohol/polyalphaolefin nanoemulsion fluids

    Science.gov (United States)

    Xu, Jiajun; Yang, Bao; Hammouda, Boualem

    2011-12-01

    Very large thermal conductivity enhancement had been reported earlier in colloidal suspensions of solid nanoparticles (i.e., nanofluids) and more recently also in oil-in-water emulsions. In this study, nanoemulsions of alcohol and polyalphaolefin (PAO) are spontaneously generated by self-assembly, and their thermal conductivity and viscosity are investigated experimentally. Alcohol and PAO have similar thermal conductivity values, so that the abnormal effects, such as particle Brownian motion, on thermal transport could be deducted in these alcohol/PAO nanoemulsion fluids. Small angle neutron-scattering measurement shows that the alcohol droplets are spheres of 0.8-nm radius in these nanoemulsion fluids. Both thermal conductivity and dynamic viscosity of the fluids are found to increase with alcohol droplet loading, as expected from classical theories. However, the measured conductivity increase is very moderate, e.g., a 2.3% increase for 9 vol%, in these fluids. This suggests that no anomalous enhancement of thermal conductivity is observed in the alcohol/PAO nanoemulsion fluids tested in this study.

  3. Thermal conductivity and viscosity of self-assembled alcohol/polyalphaolefin nanoemulsion fluids

    Directory of Open Access Journals (Sweden)

    Hammouda Boualem

    2011-01-01

    Full Text Available Abstract Very large thermal conductivity enhancement had been reported earlier in colloidal suspensions of solid nanoparticles (i.e., nanofluids and more recently also in oil-in-water emulsions. In this study, nanoemulsions of alcohol and polyalphaolefin (PAO are spontaneously generated by self-assembly, and their thermal conductivity and viscosity are investigated experimentally. Alcohol and PAO have similar thermal conductivity values, so that the abnormal effects, such as particle Brownian motion, on thermal transport could be deducted in these alcohol/PAO nanoemulsion fluids. Small angle neutron-scattering measurement shows that the alcohol droplets are spheres of 0.8-nm radius in these nanoemulsion fluids. Both thermal conductivity and dynamic viscosity of the fluids are found to increase with alcohol droplet loading, as expected from classical theories. However, the measured conductivity increase is very moderate, e.g., a 2.3% increase for 9 vol%, in these fluids. This suggests that no anomalous enhancement of thermal conductivity is observed in the alcohol/PAO nanoemulsion fluids tested in this study.

  4. Scanning nanoscale multiprobes for conductivity measurements

    DEFF Research Database (Denmark)

    Bøggild, Peter; Hansen, Torben Mikael; Kuhn, Oliver

    2000-01-01

    We report fabrication and measurements with two- and four-point probes with nanoscale dimensions, for high spatial resolution conductivity measurements on surfaces and thin films. By combination of conventional microfabrication and additive three-dimensional nanolithography, we have obtained...... electrode spacings down to 200 nm. At the tips of four silicon oxide microcantilevers, narrow carbon tips are grown in converging directions and subsequently coated with a conducting layer. The probe is placed in contact with a conducting surface, whereby the electrode resistance can be determined...

  5. Lattice thermal conductivity of borophene from first principle calculation

    Science.gov (United States)

    Xiao, Huaping; Cao, Wei; Ouyang, Tao; Guo, Sumei; He, Chaoyu; Zhong, Jianxin

    2017-04-01

    The phonon transport property is a foundation of understanding a material and predicting the potential application in mirco/nano devices. In this paper, the thermal transport property of borophene is investigated by combining first-principle calculations and phonon Boltzmann transport equation. At room temperature, the lattice thermal conductivity of borophene is found to be about 14.34 W/mK (error is about 3%), which is much smaller than that of graphene (about 3500 W/mK). The contributions from different phonon modes are qualified, and some phonon modes with high frequency abnormally play critical role on the thermal transport of borophene. This is quite different from the traditional understanding that thermal transport is usually largely contributed by the low frequency acoustic phonon modes for most of suspended 2D materials. Detailed analysis further reveals that the scattering between the out-of-plane flexural acoustic mode (FA) and other modes likes FA + FA/TA/LA/OP ↔ TA/LA/OP is the predominant phonon process channel. Finally the vibrational characteristic of some typical phonon modes and mean free path distribution of different phonon modes are also presented in this work. Our results shed light on the fundamental phonon transport properties of borophene, and foreshow the potential application for thermal management community.

  6. Prediction of the Effective Thermal Conductivity of Powder Insulation

    Science.gov (United States)

    Jin, Lingxue; Park, Jiho; Lee, Cheonkyu; Jeong, Sangkwon

    The powder insulation method is widely used in structural and cryogenic systems such as transportation and storage tanks of cryogenic fluids. The powder insulation layer is constructed by small particle powder with light weight and some residual gas with high porosity. So far, many experiments have been carried out to test the thermal performance of various kinds of powder, including expanded perlite, glass microspheres, expanded polystyrene (EPS). However, it is still difficult to predict the thermal performance of powder insulation by calculation due to the complicated geometries, including various particle shapes, wide powder diameter distribution, and various pore sizes. In this paper, the effective thermal conductivity of powder insulation has been predicted based on an effective thermal conductivity calculationmodel of porous packed beds. The calculation methodology was applied to the insulation system with expanded perlite, glass microspheres and EPS beads at cryogenic temperature and various vacuum pressures. The calculation results were compared with previous experimental data. Moreover, additional tests were carried out at cryogenic temperature in this research. The fitting equations of the deformation factor of the area-contact model are presented for various powders. The calculation results show agood agreement with the experimental results.

  7. Highly thermally conductive and mechanically strong graphene fibers.

    Science.gov (United States)

    Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie

    2015-09-04

    Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals. Copyright © 2015, American Association for the Advancement of Science.

  8. A computer-controlled transient needle-probe thermal conductivity instrument for liquids

    Science.gov (United States)

    Asher, G. B.; Sloan, E. D.; Graboski, M. S.

    1986-03-01

    A computerized system utilizing the transient needle-probe technique has been developed for thermal conductivity measurements on solids and liquids. Thermal conductivities are determined to an accuracy of better than 5%. The instrument is unique in that it uses “off the shelf” components such as a personal computer and analog-to-digital conversion devices, together with software developed in our laboratory. The initial expense and time required to begin measurements are less than 20% of those for normal transient hot-wire measurements. Typical results are presented for liquid tertiary butyl alcohol, 1-methylnaphthalene, and glycerin.

  9. Thermal Conductivity of the Potential Repository Horizon Model Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Ramsey

    2002-08-29

    The purpose of this report is to assess the spatial variability and uncertainty of thermal conductivity in the host horizon for the proposed repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). The Tptpul is the layer directly above the repository host layers, which consist of the Tptpmn, Tptpll, and the Tptpln. Current design plans indicate that the largest portion of the repository will be excavated in the Tptpll (Board et al. 2002 [157756]). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large scale (cm-m) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity and perhaps repository system performance as well. To assess the spatial variability and uncertainty of thermal conductivity, a model is proposed that is functionally dependent on the volume fraction of lithophysae and the thermal conductivity of the matrix portion of the rock. In this model, void space characterized as lithophysae is assumed to be air-saturated under all conditions, while void space characterized as matrix may be either water- or air-saturated. Lithophysae are assumed to be air-saturated under all conditions since the units being studied are all located above the water table in the region of interest, and the relatively strong capillary forces of the matrix will, under most conditions, preferentially retain any moisture present in the rock.

  10. Reference Correlations of the Thermal Conductivity of Ethene and Propene

    Science.gov (United States)

    Koutian, A.; Huber, M. L.; Perkins, R. A.

    2016-01-01

    New, wide-range reference equations for the thermal conductivity of ethene and propene as a function of temperature and density are presented. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. For ethene, we estimate the uncertainty (at the 95% confidence level) for the thermal conductivity from 110 K to 520 K at pressures up to 200 MPa to be 5% for the compressed liquid and supercritical phases. For the low-pressure gas phase (to 0.1 MPa) over the temperature range 270 K to 680 K, the estimated uncertainty is 4%. The correlation is valid from 110 K to 680 K and up to 200 MPa, but it behaves in a physically reasonable manner down to the triple point and may be used at pressures up to 300 MPa, although the uncertainty will be larger in regions where experimental data were unavailable. In the case of propene, data are much more limited. We estimate the uncertainty for the thermal conductivity of propene from 180 K to 625 K at pressures up to 50 MPa to be 5% for the gas, liquid, and supercritical phases. The correlation is valid from 180 K to 625 K and up to 50 MPa, but it behaves in a physically reasonable manner down to the triple point and may be used at pressures up to 100 MPa, although the uncertainty will be larger in regions where experimental data were unavailable. For both fluids, uncertainties in the critical region are much larger, since the thermal conductivity approaches infinity at the critical point and is very sensitive to small changes in density. PMID:27818536

  11. Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, Manjula I.; Liu, Jian; McGrail, B. Peter; Jenks, Jeromy WJ; Schaef, Herbert T.; Shutthanandan, V.; Nie, Zimin; Martin, Paul F.; Nune, Satish K.

    2016-06-15

    Metal organic heat carriers (MOHCs) are recently developed nanofluids containing metal organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. MOHCs utilize the MOF properties to improve the thermo-physical properties of base fluids. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC containing MIL-101(Cr)/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nano MIL-101(Cr) and the properties depend on the amount of GO added. Powder X-ray diffraction (PXRD) confirmed the preserved crystallinity of MIL-101(Cr) in all nanocomposites with the absence of any unreacted GO. Scanning electron microscopy images confirmed the presence of near spherical MIL-101(Cr) nanoparticles in the range of 40-80 nm in diameter. MOHC nanofluids containing MIL-101(Cr)/GO in methanol exhibited significant enhancement in the thermal conductivity (by approxi-mately 50%) relative to that of the intrinsic nano MIL-101(Cr) in methanol. The thermal conductivity of base fluid (methanol) was enhanced by about 20 %. The enhancement in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to graphene oxide functionalization is explained using a classical Maxwell model.

  12. Tuning the thermal conductance of molecular junctions with interference effects

    Science.gov (United States)

    Klöckner, J. C.; Cuevas, J. C.; Pauly, F.

    2017-12-01

    We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo(phenylene ethynylene) derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and, more generally, in nanostructured metal-organic hybrid systems, which are important to determine how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.

  13. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2014-05-01

    Full Text Available The electrical and thermal conductivities are measured for individual zinc oxide (ZnO nanowires with and without gallium ion (Ga+ implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  14. Thermal conductivities study of new types of compound adsorbents used in solar adsorption refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Huizhong [College of Urban Construction and Environment Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)], E-mail: zhz@usst.edu.cn; Zhang Min [College of Food Science Technology, Shanghai Ocean University, Shanghai 200090 (China); Lv Jing; Yu Guoqing; Zou Zhijun [College of Urban Construction and Environment Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2009-05-15

    In this paper, the thermal probe is firstly introduced and used in adsorption refrigeration to measure the working pair's thermal conductivities. Different types of compound adsorbents were prepared, and the thermal conductivities of all the types were measured with different adsorption capacities. Experimental results demonstrate that: with the same adsorption capacity, the conductivities of the compound adsorbents increase with the quantity of sodium silicate (Na{sub 2}SiO{sub 3}) content. The conductivities of the compound adsorbents increase sharply when the sodium silicate content is between 0% and 7.5% and increase slowly when the content is 7.5-20%. For 13x zeolite and compound adsorbents Z3 and Z4, their thermal conductivities increase as a quadratic polynomial with their adsorption capacities. The conductivities increase more than 158.2% when the adsorption capacities increase from 0% to 25%. The thermal conductivities of compound adsorbent Z3 and Z4 are 0.183 and 0.199 W (m K){sup -1}, respectively, and increase about 65.4% and 80.1%, respectively, compared with the 13x zeolite. With these test results, the compound adsorbent Z4 is used for making an adsorption bed, and the experimental coefficient of performance (COP) of the solar cooling tube is about 0.26.

  15. Thermal conductivity of UNi{sub 0.5}Sb{sub 2} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Mucha, J; Misiorek, H; Troc, R; Bukowski, Z [W Trzebiatowski Institute for Low Temperature and Structure Research, Polish Academy of Science, PO Box 1410, 50-950 Wroclaw 2 (Poland)

    2006-03-22

    The thermal conductivity of a single crystal of UNi{sub 0.5}Sb{sub 2} has been measured in the temperature range between 5 and 300 K. We find a large anisotropy in the thermal conductivity, which may be explained by the very large difference in the a and c lattice parameters. The thermal conductivity {lambda}{sub ab}(T) measured within the ab plane was found to have absolute values considerably higher than that ({lambda}{sub c}) measured along the c axis. The former exhibits at 25 K a pronounced non-symmetric maximum with an absolute value of about 6 W K{sup -1} m{sup -1} and an almost symmetric minimum at T{sub N} = 161 K.The electronic heat transport, {lambda}{sub e}, was also derived from the Wiedemann-Franz law along these two crystallographic directions. Attempts to estimate the bipolar ({lambda}{sub bip}) and magnon ({lambda}{sub mag}) contents to the measured total thermal conductivity have been done. An analysis of the thermal conductivity data has been performed for both magnetically ordered and non-ordered states.

  16. Design rules for interfacial thermal conductance: Building better bridges

    Science.gov (United States)

    Polanco, Carlos A.; Rastgarkafshgarkolaei, Rouzbeh; Zhang, Jingjie; Le, Nam Q.; Norris, Pamela M.; Ghosh, Avik W.

    2017-05-01

    We study the thermal conductance across solid-solid interfaces as the composition of an intermediate matching layer is varied. In the absence of phonon-phonon interactions, an added layer can make the interfacial conductance increase or decrease depending on the interplay between (1) an increase in phonon transmission due to better bridging between the contacts and (2) a decrease in the number of available conduction channels that must conserve their momenta transverse to the interface. When phonon-phonon interactions are included, the added layer is seen to aid conductance when the decrease in resistances at the contact-layer boundaries compensate for the additional layer resistance. For the particular systems explored in this work, the maximum conductance happens when the layer mass is close to the geometric mean of the contact masses. The surprising result, usually associated with coherent antireflection coatings, follows from a monotonic increase in the boundary resistance with the interface mass ratio. This geometric mean condition readily extends to a compositionally graded interfacial layer with an exponentially varying mass that generates the thermal equivalent of a broadband impedance matching network.

  17. Micromachined structures for thermal measurements of fluid and flow parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    In this paper thermal sensor-actuator structures are proposed that can be used to measure various fluid parameters such as thermal conductivity, flow velocity, heat capacity, kinematic viscosity and pressure. All structures are designed in such a way that they can be realized in the same fabrication

  18. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Science.gov (United States)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  19. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weijing [School of Civil Engineering, The University of Sydney, Sydney (Australia); Pupeschi, Simone [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Hanaor, Dorian [School of Civil Engineering, The University of Sydney, Sydney (Australia); Institute for Materials Science and Technologies, Technical University of Berlin (Germany); Gan, Yixiang, E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, The University of Sydney, Sydney (Australia)

    2017-05-15

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  20. Thermal conductivity and internal temperature profiles of Li-ion secondary batteries

    Science.gov (United States)

    Richter, Frank; Kjelstrup, Signe; Vie, Preben J. S.; Burheim, Odne S.

    2017-08-01

    In this paper we report the thermal conductivity for commercial battery components. Materials were obtained from several electrode- and separator manufacturers, and some were extracted from commercial batteries. We measured with and without electrolyte solvent and at different compaction pressures. The experimentally obtained values are used in a thermal model and corresponding internal temperature profiles are shown. The thermal conductivity of dry separator materials was found to range from 0.07 ± 0.01 to 0.18 ± 0.02 WK-1m-1 . Dry electrode (active) materials ranged from 0.13 ± 0.02 to 0.61 ± 0.02 WK-1m-1 . Adding the electrolyte solvent increased the thermal conductivity of electrode (active) materials by at least a factor of 2.

  1. Electrically and Thermally Conducting Nanocomposites for Electronic Applications

    Directory of Open Access Journals (Sweden)

    Daryl Santos

    2010-02-01

    Full Text Available Nanocomposites made up of polymer matrices and carbon nanotubes are a class of advanced materials with great application potential in electronics packaging. Nanocomposites with carbon nanotubes as fillers have been designed with the aim of exploiting the high thermal, electrical and mechanical properties characteristic of carbon nanotubes. Heat dissipation in electronic devices requires interface materials with high thermal conductivity. Here, current developments and challenges in the application of nanotubes as fillers in polymer matrices are explored. The blending together of nanotubes and polymers result in what are known as nanocomposites. Among the most pressing current issues related to nanocomposite fabrication are (i dispersion of carbon nanotubes in the polymer host, (ii carbon nanotube-polymer interaction and the nature of the interface, and (iii alignment of carbon nanotubes in a polymer matrix. These issues are believed to be directly related to the electrical and thermal performance of nanocomposites. The recent progress in the fabrication of nanocomposites with carbon nanotubes as fillers and their potential application in electronics packaging as thermal interface materials is also reported.

  2. Reduction of Thermal Signature Using Fabrics with Conductive Additives

    Directory of Open Access Journals (Sweden)

    Vitalija RUBEŽIENĖ

    2013-12-01

    Full Text Available The most effective way to reduce the thermal signature is to reduce the emissivity. The goal of our research is to create the material, which can reduce the thermal signature, and make it interflow with environment. The materials and material compositions concealing the thermal signature of the object were developed using aluminium coatings and conductive metalized fibres, i. e. yarns with stainless steel staples or coated with silver. The analysis of the prepared samples was carried out with equipment consisting of a stand with integrated heating controller imitating the human body. The concealing properties of the samples in the far infrared (FIR spectral range were evaluated using ThermaCAM Reporter 7.0. The thermal signature analysis of prepared samples demonstrates that respectable results could be obtained using yarns coated with silver and materials coated with aluminium, but the first one is more flexible and preferable for clothing.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.1730

  3. Thermophysical properties of fluids: dynamic viscosity and thermal conductivity

    Science.gov (United States)

    Latini, G.

    2017-11-01

    Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected

  4. Thermal conductivity of rocks associated with energy extraction from hot dry rock geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Sibbitt, W.L.; Dodson, J.G.; Tester, J.W.

    1978-01-01

    Results of thermal conductivity measurements are given for 14 drill core rock samples taken from two exploratory HDR geothermal wellbores (maximum depth of 2929 m (9608 ft) drilled into Precambrian granitic rock in the Jemez Mountains of northern New Mexico. These samples have been petrographically characterized and in general represent fresh competent Precambrian material of deep origin. Thermal conductivities, modal analyses, and densities are given for all core samples studied under dry and water-saturated conditions. Additional measurements are reported for several sedimentary rocks encountered in the upper 760 m (2500 ft) of that same region. A cut-bar thermal conductivity comparator and a transient needle probe were used for the determinations with fused quartz and Pyroceram 9606 as the standards. The maximum temperature range of the measurements was from the ice point to 250/sup 0/C. The measurements on wet, water-saturated rock were limited to the temperature range below room temperature. Conductivity values of the dense core rock samples were generally within the range from 2 to 2.9 W/mK at 200/sup 0/C. Excellent agreement was achieved between these laboratory measurements of thermal conductivity and those obtained by in situ measurements used in the HDR wellbores. By using samples of sufficient thickness to provide a statistically representative heat flow path, no difference between conductivity values and their temperature coefficients for orthogonal directions (heat flow parallel or perpendicular to core axis) was observed. This isotropic behavior was even found for highly foliated gneissic specimens. Estimates of thermal conductivity based on a composite dispersion analysis utilizing pure minerallic phase conductivities and detailed modal analyses usually agreed to within 9 percent of the experimental values.

  5. Utilizing Interfaces for Nano- and Micro-scale Control of Thermal Conductivity

    Science.gov (United States)

    2015-08-17

    which structure is like [B]- graphene sheets sandwiching Al, shows higher thermal conductivity perpendicular to the planes compared to the in-plane...modifying the balance of thermal conductivity and electrical conductivity , since bismuth telluride-type materials are the champion thermoelectric...substantially reduce thermal conductivity by ~30% in crystals examined. (2) A striking contrast with thermal transport in carbon/ graphene materials was

  6. Thermal conductivity of thermally-isolating polymeric and composite structural support materials between 0.3 and 4 K

    OpenAIRE

    Runyan, M. C.; Jones, W. C.

    2008-01-01

    We present measurements of the low-temperature thermal conductivity of a number of polymeric and composite materials from 0.3 to 4 K. The materials measured are Vespel SP-1, Vespel SP-22, unfilled PEEK, 30% carbon fiber-filled PEEK, 30% glass-filled PEEK, carbon fiber Graphlite composite rod, Torlon 4301, G-10/FR-4 fiberglass, pultruded fiberglass composite, Macor ceramic, and graphite rod. These materials have moderate to high elastic moduli making them useful for thermally-isolating structu...

  7. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  8. Thermal conductivity of suspended few-layer graphene by a modified T-bridge method

    Science.gov (United States)

    Jang, W.; Bao, W.; Jing, L.; Lau, C. N.; Dames, C.

    2013-09-01

    We measured the in-plane thermal conductivity of suspended few-layer graphene flakes by a modified T-bridge technique from 300 K to below 100 K. The thermal conductivities at room temperature are 389, 344, 302, and 596 W/m K for 2-, 3-, 4-, and 8-layer graphene, respectively. The thinner (2-, 3-, 4-layer) graphene samples did not show any clear thickness dependence, while the thicker (8-layer) sample clearly has higher thermal conductivity. In situ current annealing was used to remove polymer residues from the central portion of the 3- and 8-layer graphene samples, as confirmed by electrical transport measurements and post-experiment characterization by Raman and scanning electron microscopy, although some residues still remained near both ends (heater and heat sink). Comparing the 2, 3, and 4-layer samples suggests the annealing had little effect near room temperature but leads to increased thermal conductivity at low temperature. These results also show that the thermal conductivities of suspended few-layer graphene are higher than those of encased few-layer graphene of similar thickness measured previously [Jang et al., Nano Lett. 10, 3909 (2010)].

  9. Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films

    Science.gov (United States)

    Cheaito, Ramez; Duda, John C.; Beechem, Thomas E.; Hattar, Khalid; Ihlefeld, Jon F.; Medlin, Douglas L.; Rodriguez, Mark A.; Campion, Michael J.; Piekos, Edward S.; Hopkins, Patrick E.

    2012-11-01

    We experimentally investigate the role of size effects and boundary scattering on the thermal conductivity of silicon-germanium alloys. The thermal conductivities of a series of epitaxially grown Si1-xGex thin films with varying thicknesses and compositions were measured with time-domain thermoreflectance. The resulting conductivities are found to be 3 to 5 times less than bulk values and vary strongly with film thickness. By examining these measured thermal conductivities in the context of a previously established model, it is shown that long wavelength phonons, known to be the dominant heat carriers in alloy films, are strongly scattered by the film boundaries, thereby inducing the observed reductions in heat transport. These results are then generalized to silicon-germanium systems of various thicknesses and compositions; we find that the thermal conductivities of Si1-xGex superlattices are ultimately limited by finite size effects and sample size rather than periodicity or alloying. This demonstrates the strong influence of sample size in alloyed nanosystems. Therefore, if a comparison is to be made between the thermal conductivities of superlattices and alloys, the total sample thicknesses of each must be considered.

  10. Enhancement of thermal contact conductance for electronic systems

    Energy Technology Data Exchange (ETDEWEB)

    Sartre, V.; Lallemand, M. [Centre de Thermique de Lyon, UMR CNRS 5008, INSA, Villeurbanne (France)

    2001-02-01

    Experimental investigations on thermal contact resistance have been performed. The results of this study will be useful in selecting interstitial materials to enhance the thermal conductance of an electronic component/heat sink assembly. The experimental assembly consists of two specimens: a thick copper plate, electrically heated, and an aluminium water-cooled plate. The two specimens are bolted together and the load is applied using a calibrated torque wrench. Various interstitial materials (seven commercial greases and 12 foils) suitable for the thermal enhancement in electronic systems have been investigated. The variables considered are the bolt torque, the heat transfer rate and the grease or foil thickness. Results show that the most influential parameter is the applied torque. The contact resistance decreases as the heat flux or the film thickness decreases. The highest dimensionless contact conductance factors (E) are achieved with greases (3 < E < 6). Phase change material-coated foils exhibit E-values ranging from 2.5 to 3.5. Graphite or metallic foils have E-values lower than 2 and for silicone foils E is significantly reduced (E < 1). Thus, phase change material-coated foils seem to be very promising materials, since they are efficient, easy to implement and do not migrate and vaporise out of the contact area. (author)

  11. Thermal resistance and conductivity of recycled construction and demolition waste (RCDW concrete blocks

    Directory of Open Access Journals (Sweden)

    Ivan Julio Apolonio Callejas

    Full Text Available Abstract In Brazil, studies to reuse construction and demolition waste are a special issue because a large amount of this material has been delivered to the public landfills and in illegal places. Some researchers have suggested reusing this material in building elements, such as bricks or blocks. It is possible to find a lot of researches in physical/mechanical characterization, while little effort has been made to characterize recycled construction and demolition waste blocks (RCDW for their thermal properties. The aim of this work was to characterize the RCDW thermal resistance and conductivity in order to provide subsidies for a building's thermal performance analysis. The hot-box method was adapted, together with measuring techniques with a heat-flow meter to determine the RCDW thermal properties. The results indicated that the RCDW block overall thermal resistance and thermal conductivity in the solid region was within the intervals of 0.33≤RT≤0.41m2KW-1 and 0.60≤l≤0.78Wm-1K-1, respectively. The lower resistance and conductivity values are justified by the presence of aggregate with a lower density and lower thermal conductivity than the natural aggregate.

  12. Technical assistance for development of thermally conductive nitride filler for epoxy molding compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Song, Kee Chan; Jung, In Ha

    2005-07-15

    Technical assistance was carried out to develop nitride filler for thermally conductive epoxy molding compounds. Carbothermal reduction method was used to fabricate silicon nitride powder from mixtures of silica and graphite powders. Microstructure and crystal structure were observed by using scanning electron microscopy and x-ray diffraction technique. Thermal properties of epoxy molding compounds containing silicon nitride were measured by using laser flash method. Fabrication process of silicon nitride nanowire was developed and was applied to a patent.

  13. Summary report on UO2 thermal conductivity model refinement and assessment studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lashley, Jason Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bell, B. D.C. [Imperial College, London (United Kingdom); Grimes, R. W. [Imperial College, London (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-03

    Uranium dioxide (UO2) is the most commonly used fuel in light water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, therefore, governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models were replaced with models that incorporate explicit thermal conductivity degradation mechanisms during fuel burn-up. This approach is able to represent the degradation of thermal conductivity due to each individual defect type, rather than the overall burn-up measure typically used which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham type interatomic potential and a potential that combines the many-body embedded atom method potential with Morse-Buckingham pair potentials. Potential parameters for UO2+x and ZrO2 are developed for the latter potential. Physical insights from the resonant phonon-spin scattering mechanism due to spins on the magnetic uranium ions have been introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high

  14. Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.

    Science.gov (United States)

    Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua

    2017-04-18

    Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg0.9Fe0.1)2SiO4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.

  15. Thermal conductivities of irradiated UO{sub 2} and (U, Gd)O{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, Masaki E-mail: amaya@nfd.co.jp; Hirai, Mutsumi; Sakurai, Hiroshi; Ito, Kenichi; Sasaki, Masana; Nomata, Terumitsu; Kamimura, Katsuichiro; Iwasaki, Ryo

    2002-01-01

    Thermal diffusivities of UO{sub 2} and (U, Gd)O{sub 2} pellets irradiated in a commercial reactor (maximum burnups: 60 GWd/t for UO{sub 2} and 50 GWd/t for (U, Gd)O{sub 2}) were measured up to about 2000 K by using a laser flash method. The thermal diffusivities of irradiated UO{sub 2} and (U, Gd)O{sub 2} pellets showed hysteresis phenomena: the thermal diffusivities of irradiated pellets began to recover above 750 K and almost completely recovered after annealing above 1400 K. The thermal diffusivities after recovery were close to those of simulated soluble fission products (FPs)-doped UO{sub 2} and (U, Gd)O{sub 2} pellets, which corresponded with the recovery behaviors of irradiation defects for UO{sub 2} and (U, Gd)O{sub 2} pellets. The thermal conductivities for irradiated UO{sub 2} and (U, Gd)O{sub 2} pellets were evaluated from measured thermal diffusivities, specific heat capacities of unirradiated UO{sub 2} pellets and measured sample densities. The difference in relative thermal conductivities between irradiated UO{sub 2} and (U, Gd)O{sub 2} pellets tended to become insignificant with increasing burnups of samples.

  16. Effect of interfacial treatment on the thermal properties of thermal conductive plastics

    Directory of Open Access Journals (Sweden)

    2007-09-01

    Full Text Available In this paper, ZnO, which is processed by different surface treatment approaches, is blended together with polypropylene to produce thermal conductive polymer composites. The composites are analyzed by Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM to investigate the surface modification of filler, their distribution in the matrix and the condition of two-phase interface. Optimized content of filler surface modifier is investigated as well. The results showed that using low-molecular coupling agent produces positive effect to improve the interface adhesion between filler and matrix, and the thermal conductivity of the composite as well. Macro-molecular coupling agent can strongly improve two-phase interface, but it is not beneficial at obtaining a high thermal conductivity. The blend of ZnO without modification and polypropylene has many defects in the two-phase interface, and the thermal conductivity of the composite is between those of composites produced by previous two approaches. The surface treatment of the filler also allowed producing the composites with lower coefficient of thermal expansion (CTE. As for the content of low-molecular coupling agent, it obtains the best effect at 1.5 wt%.

  17. Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Amini, S. [School of Materials Science and Engineering. Nanyang Technological University, 50 Nanyang Avenue, Singapore (Singapore); Khosravian, N.; Cheong, J.Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Tay, B.K. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore)

    2013-06-30

    A series of physical vapour deposition titanium aluminum silicon nitride nanocomposite coating with a different (Al + Si)/Ti atomic ratio, with a thickness of around 2.5 μm were deposited on stainless steel substrate by a lateral rotating cathode arc process in a flowing nitrogen atmosphere. The composition and microstructure of the as-deposited coatings were analyzed by energy dispersive X-ray spectroscopy, and X-ray diffraction, and cross-sectional scanning electron microscopy observation. The titanium nitride (TiN) coating shows a clear columnar structure with a predominant (111) preferential orientation. With the incorporation of Al and Si, the crystallite size in the coatings decreased gradually, and the columnar structure and (111) preferred orientation disappeared. Thermal conductivity of the as-deposited coating samples at room temperature was measured by using pulsed photothermal reflectance technique. Thermal conductivity of the pure TiN coating is about 11.9 W/mK. With increasing the (Al + Si)/Ti atomic ratio, the coatings' thermal conductivity decreased monotonously. This reduction of thermal conductivity could be ascribed to the variation of coatings' microstructure, including the decrease of grain size and the resultant increase of grain boundaries, the disruption of columnar structure, and the reduced preferential orientation. - Highlights: • A series of titanium aluminum silicon nitride with different (Al + Si)/Ti atomic ratio were deposited on Fe304. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the samples was measured by pulsed photothermal reflectance. • With increasing the (Al + Si)/Ti atomic ratio, thermal conductivity decreased. • Reduction of thermal conductivity is ascribed to the variation of its microstructure.

  18. Modeling Interfacial Thermal Boundary Conductance of Engineered Interfaces

    Science.gov (United States)

    2014-08-31

    interface between materials 1 & 2 with an impurity mass mint , the energy transmission of all phonon frequencies is maximized when mint = (m1 +m2)/2...properties of the source and sink. Figure 5: Phonon transmission spectra, with curves corresponding to different impurity masses, mint (left plot) or...substrate [2, 34]. The thermal decay of each sample, measured by TDTR, was compared to a multilayer solution of the heat diffusion equation to extract

  19. Laboratory measurements of gravel thermal properties. A methodology proposal

    Science.gov (United States)

    Cultrera, Matteo; Peron, Fabio; Bison, Paolo; Dalla Santa, Giorgia; Bertermann, David; Muller, Johannes; Bernardi, Adriana; Galgaro, Antonio

    2017-04-01

    Gravel thermal properties measurements at laboratory level is quite challenging due to several technical and logistic issues, mainly connected to the sediment sizes and the variability of their mineralogical composition. The direct measurement of gravel thermal properties usually are not able to involve a representative volume of geological material, consequently the thermal measurements performed produce much dispersed results and not consistent due to the large interstitial voids and the poor physical contact with the measuring sensors. With the aim of directly provide the measurement of the gravel thermal properties, a new methodology has been developed and some results are already available on several gravel deposits samples around Europe. Indeed, a single guarded hot plate Taurus Instruments TLP 800 measured the gravel thermal properties. Some instrumental adjustments were necessary to adapt the measuring devices and to finalize the thermal measurements on gravels at the IUAV FISTEC laboratory (Environmental Technical Physics Laboratory of Venice University). This device usually provides thermal measurements according to ISO 8302, ASTM C177, EN 1946-2, EN 12664, EN 12667 and EN 12939 for building materials. A preliminary calibration has been performed comparing the outcomes obtained with the single guarded hot plate with a needle probe of a portable thermal conductivity meter (ISOMET). Standard sand (ISO 67:2009) is used as reference material. This study is provided under the Cheap-GSHPs project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 657982

  20. Reducing Contact Resistance Errors In Measuring Thermal ...

    African Journals Online (AJOL)

    Values of thermal conductivity (k) of glass beads, quartz sand, stone dust and clay were determined using a thermal probe with and without heat sink compounds (arctic silver grease (ASG) and white grease (WG)) at different water contents, bulk densities and particle sizes. The heat sink compounds (HSC) increased k at ...

  1. Magnetic field induced tunability on the thermal conductivity of ferrofluids loaded with carbon nanofibers

    Science.gov (United States)

    Ortiz-Salazar, M.; Pech-May, N. W.; Vales-Pinzon, C.; Medina-Esquivel, R.; Alvarado-Gil, J. J.

    2018-02-01

    In this paper, it is shown that the thermal conductivity of magnetic fluids, formed by a ferrofluid loaded with carbon nanofibers, can be tuned by applying a moderate intensity magnetic field. The tuning is generated by orienting the nanoparticles in the ferrofluid, which in turn partially align the carbon nanofibers, favoring or hindering heat flow along a given direction. Thermal diffusivity at several volume concentrations of nanofibers (0, 0.25, 0.50, 1, 2 and 5%) was measured using the thermal wave resonant cavity technique, located inside a uniform moderate intensity magnetic field. Measurements were performed for random and aligned carbon nanofibers, oriented in the parallel and perpendicular directions with respect to the heat flux. The experimental results show that for 5% volume concentration of carbon nanofibers in the ferrofluid, in random configuration, i.e. without external magnetic field applied, the effective thermal conductivity increased 3 times compared to that of the ferrofluid matrix. Moreover, for parallel alignment of the carbon nanofibers with respect to the heat flux direction, the effective thermal conductivity increased 5 times. However, for perpendicular alignment of the carbon nanofibers with respect to the heat flux direction only a 2 times increment in the effective thermal conductivity is obtained. A 750 G intensity magnetic field is used for both alignment configurations. Additionally, the effect of the concentration of carbon nanofibers on the thermal time-response of the magnetic fluids was studied by switching on/off the magnetic field. The Lewis–Nielsen model was used to interpret the dependence of the thermal conductivity results as a function the concentration and orientation of the carbon nanofibers.

  2. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Science.gov (United States)

    Ma, Zhaoji; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong

    2017-06-01

    Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  3. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  4. Contact-independent electrical conductance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Mentzel, Tamar S.; MacLean, Kenneth; Kastner, Marc A.; Ray, Nirat

    2017-01-24

    Electrical conductance measurement system including a one-dimensional semiconducting channel, with electrical conductance sensitive to electrostatic fluctuations, in a circuit for measuring channel electrical current. An electrically-conductive element is disposed at a location at which the element is capacitively coupled to the channel; a midpoint of the element aligned with about a midpoint of the channel, and connected to first and second electrically-conductive contact pads that are together in a circuit connected to apply a changing voltage across the element. The electrically-conductive contact pads are laterally spaced from the midpoint of the element by a distance of at least about three times a screening length of the element, given in SI units as (K.di-elect cons..sub.0/e.sup.2D(E.sub.F)).sup.1/2, where K is the static dielectric constant, .di-elect cons..sub.0 is the permittivity of free space, e is electron charge, and D(E.sub.F) is the density of states at the Fermi energy for the element.

  5. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide

    Science.gov (United States)

    Ahmadi Nadooshan, Afshin

    2017-03-01

    In this study, the effects of temperature (20 °Cethylene glycol-water nanofluid have been presented. Nanofluid samples were prepared by a two-step method and thermal conductivity measurements were performed by a KD2 pro instrument. Results showed that the thermal conductivity increases uniformly with increasing solid volume fraction and temperature. The results also revealed that the thermal conductivity of nanofluids significantly increases with increasing solid volume fraction at higher temperatures. Moreover, it can be seen that for more concentrated samples, the effect of temperature was more tangible. Experimental thermal conductivity enhancement of the nanofluid in comparison with the Maxwell model indicated that Maxwell model was unable to predict the thermal conductivity of the present nanofluid. Therefore, a new correlation was presented for predicting the thermal conductivity of ZnO/EG-water nanofluid.

  6. Moisture and Thermal Conductivity of Lightweight Block Walls

    Science.gov (United States)

    Joosep, R.

    2015-11-01

    This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.

  7. Thermal conduction across a boron nitride and SiO2 interface

    Science.gov (United States)

    Li, Xinxia; Yan, Yaping; Dong, Lan; Guo, Jie; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2017-03-01

    The need for efficient heat removal and superior thermal conduction in nano/micro devices has triggered tremendous studies in low-dimensional materials with high thermal conductivity. Hexagonal boron nitride (h-BN) is believed to be one of the candidates for thermal management and heat dissipation due to its novel physical properties, i.e. as a thermal conductor and electrical insulator. Here we report the interfacial thermal resistance between few-layer h-BN and its SiO2 substrate using the differential 3ω method. The measured interfacial thermal resistance is around ~1.6  ×  10-8 m2K W-1 for monolayer h-BN and ~3.4  ×  10-8 m2K W-1 for 12.8 nm-thick h-BN in metal/h-BN/SiO2 interfaces. Our results suggest that the voids and gaps between the substrate and thick h-BN flakes limit the interfacial thermal conduction. This work provides a deeper understanding of utilizing h-BN flakes as a lateral heat spreader in electronic and optoelectronic nano/micro devices with further miniaturization and integration.

  8. Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles

    Science.gov (United States)

    Sarkhosh, L.; Mansour, N.

    2015-06-01

    In nanoparticle colloidal systems, the thermal nonlinearity is affected by the thermal parameters of the surrounding solution. Having a low temperature gradient rate solution may be a key factor in producing high thermal nonlinear properties in colloids. In this manuscript, the effect of the thermal conductivity of the surrounding liquid environment on the thermal nonlinear refraction of gold nanoparticles (AuNPs) synthesized by laser ablation of a gold target in different solutions is investigated. Gold nanoparticles colloids have been fabricated by the nanosecond pulsed laser ablation of a pure gold plate in different liquid environments with a thermal conductivity range of 0.14-0.60 W mK-1 including cyclohexanone, castor oil, dimethyl sulfoxide, ethylene glycol, glycerin and water. The AuNPs colloids exhibit a UV-Vis absorption spectrum with a surface plasmon absorption peak at about 540  ±  20 nm. The thermal nonlinear optical responses of the gold colloids are measured using the Z-scan technique under low power CW laser irradiation at 532 nm near the surface plasmon peak of the nanoparticles. Our results show that the nonlinear refractive index of the nanoparticle colloids is considerably affected by the thermal conductivity of liquid medium. The largest nonlinear refractive index of -3.1  ×  10-7 cm2 W-1 is obtained for AuNP in cyclohexanone with the lowest thermal conductivity of 0.14 W mK-1 whereas the lowest one of -0.1  ×  10-7 cm2 W-1 is obtained for AuNP in water with the highest thermal conductivity of 0.60 W mK-1. This study shows that the nonlinear refractive index value of colloids can be controlled by the thermal conductivity of the used liquid’s environment. This allows us to design low threshold optical limiters by choosing a solution with low thermal conductivity for colloidal nanoparticles.

  9. Synergistically improved thermal conductivity of polyamide-6 with low melting temperature metal and graphite

    Directory of Open Access Journals (Sweden)

    Y. C. Jia

    2016-08-01

    Full Text Available Low melting temperature metal (LMTM-tin (Sn was introduced into polyamide-6 (PA6 and PA6/graphite composites respectively to improve the thermal conductivity of PA6 by melt processing (extruding and injection molding. After introducing Sn, the thermal conductivity of PA6/Sn was nearly constant because of the serious agglomeration of Sn. However, when 20 wt% (5.4 vol% of Sn was added into PA6 containing 50 wt% (33.3 vol% of graphite, the thermal conductivity of the composite was dramatically increased to 5.364 versus 1.852 W·(m·K–1 for the PA6/graphite composite, which suggests that the incorporation of graphite and Sn have a significant synergistic effect on the thermal conductivity improvement of PA6. What is more, the electrical conductivity of the composite increased nearly 8 orders of magnitudes after introducing both graphite and Sn. Characterization of microstructure and energy dispersive spectrum analysis (EDS indicates that the dispersion of Sn in PA6/graphite/Sn was much more uniform than that of PA6/Sn composite. According to Differential Scanning Calorimetry measurement and EDS, the uniform dispersion of Sn in PA6/graphite/Sn and the high thermal conductivity of PA6/graphite/Sn are speculated to be related with the electron transfer between graphite and Sn, which makes Sn distribute evenly around the graphite layers.

  10. Improved petrographic-coded model and its evaluation to determine a thermal conductivity log

    Science.gov (United States)

    Gegenhuber, Nina; Kienler, Markus

    2017-03-01

    Thermal conductivity is one of the crucial properties for thermal modelling as well as tunnelling or geological modelling. Available data are mainly from laboratory measurements. Therefore, additional ways, such as correlations with other properties to derive the petrophysical parameter, will be an advantage. The research presented here continues and improves the petrographic-coded model concept with an increased set of data, including a variety of lithologies, and, furthermore, the correlations, including the electrical resistivity. Input parameters are no longer taken from the literature, but are derived directly from measurements. In addition, the results are compared with other published approaches. Results show good correlations with measured data. The comparison with the multi-linear regression method shows acceptable outcome, in contrast to a geometric-mean method, where data scatter. In summary, it can be said that the improved model delivers for both correlation (compressional wave velocity and electrical resistivity with thermal conductivity) positive results.

  11. Thermal Conductivity of Manganin Between 10 mK and 54 mK

    Science.gov (United States)

    Ventura, Guglielmo; Giomi, Silvia

    2017-09-01

    The thermal conductivity of Manganin (Cu 86 %, Ni 2 %, Mn 12 %) in the range 10-50 mK was measured by means of a new method that uses a metal-insulator junction (M-I.J) of known characteristics to read temperatures at one end of the sample. The same power P that crosses the sample to measure its thermal resistance flows through the M-I.J. A suitable choice of the M-I.J allows the temperature T of the upper end of the sample to rise above 20 mK. T was measured by a small size Ruthenium thermometer.

  12. Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials

    OpenAIRE

    Rojo, Miguel Muñoz; Martín, Jaime; Grauby, Stéphane; Borca-Tasciuc, Theodorian; Dilhaire, Stefan; Martin-Gonzalez, Marisol

    2014-01-01

    International audience; To date, there is no experimental characterization of thermal conductivity of semiconductor polymeric individual nanowires embedded in a matrix. This work reports on scanning thermal microscopy measurements in a 3ω configuration to determine how the thermal conductivity of individual nanowires made of a model conjugated polymer (P3HT) is modified when decreasing their diameters. We observe a reduction of thermal conductivity, from λNW = 2.29 ± 0.15 W K−1 m−1 to λNW = 0...

  13. Thermal Conductivity of Epoxy Resin Composites Filled with Combustion Synthesized h-BN Particles.

    Science.gov (United States)

    Chung, Shyan-Lung; Lin, Jeng-Shung

    2016-05-20

    The thermal conductivity of epoxy resin composites filled with combustion-synthesized hexagonal boron nitride (h-BN) particles was investigated. The mixing of the composite constituents was carried out by either a dry method (involving no use of solvent) for low filler loadings or a solvent method (using acetone as solvent) for higher filler loadings. It was found that surface treatment of the h-BN particles using the silane 3-glycidoxypropyltrimethoxysilane (GPTMS) increases the thermal conductivity of the resultant composites in a lesser amount compared to the values reported by other studies. This was explained by the fact that the combustion synthesized h-BN particles contain less -OH or active sites on the surface, thus adsorbing less amounts of GPTMS. However, the thermal conductivity of the composites filled with the combustion synthesized h-BN was found to be comparable to that with commercially available h-BN reported in other studies. The thermal conductivity of the composites was found to be higher when larger h-BN particles were used. The thermal conductivity was also found to increase with increasing filler content to a maximum and then begin to decrease with further increases in this content. In addition to the effect of higher porosity at higher filler contents, more horizontally oriented h-BN particles formed at higher filler loadings (perhaps due to pressing during formation of the composites) were suggested to be a factor causing this decrease of the thermal conductivity. The measured thermal conductivities were compared to theoretical predictions based on the Nielsen and Lewis theory. The theoretical predictions were found to be lower than the experimental values at low filler contents ( 60 vol %).

  14. Effect of composition on thermal conductivity of silica insulation media.

    Science.gov (United States)

    Park, Sung; Kwon, Young-Pil; Kwon, Hyuk-Chon; Lee, Hae-Weon; Lee, Jae Chun

    2008-10-01

    Nano-sized fumed silica-based insulation media were prepared by adding TiO2 powders and ceramic fibers as opacifiers and structural integrity improvers, respectively. The high temperature thermal conductivities of the fumed silica-based insulation media were investigated using different types of TiO2 opacifier and by varying its content. The opacifying effects of nanostructured TiO2 powders produced by homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial TiO2 powder. The nanostructured HPPLT TiO2 powder with a mean particle size of 1.8 microm was more effective to reduce radiative heat transfer than the commercial one with a similar mean particle size. The insulation samples with the HPPLT TiO2 powder showed about 46% lower thermal conductivity at temperatures of about 820 degrees C than those with the commercial one. This interesting result might be due to the more effective radiation scattering efficiency of the nanostructured HPPLT TiO2 powder which has better gap filling and coating capability in nano-sized composite compacts.

  15. Thermal conductivity thermal diffusivity of UO{sub 2}-BeO nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Fábio A.; Camarano, Denise M.; Santos, Ana M. M.; Ferraz, Wilmar B.; Silva, Mayra A.; Ferreira, Ricardo A.N., E-mail: fam@cdtn.br, E-mail: dmc@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: mayra.silva@cdtn.br, E-mail: ricardoanf@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The temperature distribution in nuclear fuel pellets is of vital importance for the performance of the reactor, as it affects the heat transfer, the mechanical behavior and the release of fission gas during irradiation, reducing safety margins in possible accident scenarios. One of the main limitation for the current uranium dioxide nuclear fuel (UO{sub 2}) is its low thermal c