Review on mathematical basis for thermal conduction equation
Energy Technology Data Exchange (ETDEWEB)
Park, D. G.; Kim, H. M
2007-10-15
In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation.
Review on mathematical basis for thermal conduction equation
International Nuclear Information System (INIS)
Park, D. G.; Kim, H. M.
2007-10-01
In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation
A practical dimensionless equation for the thermal conductivity of carbon nanotubes and CNT arrays
Directory of Open Access Journals (Sweden)
Qiang Chen
2014-05-01
Full Text Available Experimental results reported in the last decade on the thermal conductivity of carbon nanotubes (CNTs have shown a fairly divergent behavior. An underlying intrinsic consistency was believed to exist in spite of the divergence in the thermal conductivity data of various CNTs. A dimenisonless equation that describes the temperature dependence of thermal conductivity was derived by introducing reduced forms relative to a chosen reference point. This equation can serve as a practical approximation to characterize the conductivity of individual CNT with different structural parameters as well as bulk CNT arrays with different bundle configurations. Comparison of predictions by the equation and historical measurements showed good agreements within their uncertainties.
International Nuclear Information System (INIS)
Lee, Jae-Kon; Kim, Jin-Gon
2011-01-01
A governing differential equation for predicting the effective thermal conductivity of composites with spherical inclusions is shown to be simply derived by using the result of the generalized self-consistent model. By applying the equation to composites including spherical inclusions such as graded spherical inclusions, microballoons, mutiply-coated spheres, and spherical inclusions with an interphase, their effective thermal conductivities are easily predicted. The results are compared with those in the literatures to be consistent. It can be stated from the investigations that the effective thermal conductivity of composites with spherical inclusions can be estimated as long as their conductivities are expressed as a function of their radius. -- Highlights: → We derive equation for predicting the effective thermal conductivity of composites. → The equation is derived using the results of the generalized self-consistent model. → The inclusions are graded sphere, microballoons, and mutiply-coated spheres.
International Nuclear Information System (INIS)
Mehta, Siddharth; Chauhan, K. Prashanth; Kanagaraj, S.
2011-01-01
Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Though many attempts have been made to investigate the abnormal high thermal conductivity of nanofluids, the existing models cannot precisely predict the same. An attempt has been made to develop a model for predicting the thermal conductivity of different types of nanofluids. The model presented here is derived based on the fact that thermal conductivity of nanofluids depends on thermal conductivity of particle and fluid as well as micro-convective heat transfer due to Brownian motion of nanoparticles. Novelty of the article lies in giving a unique equation which predicts thermal conductivity of nanofluids for different concentrations and particle sizes which also correctly predicts the trends observed in experimental data over a wide range of particle sizes, temperatures, and particle concentrations.
Scalabrin, G.; Marchi, P.; Finezzo, F.
2006-11-01
The application of an optimization technique to the available experimental data has led to the development of a new multiparameter equation λ = λ ( T,ρ ) for the representation of the thermal conductivity of 1,1-difluoroethane (R152a). The region of validity of the proposed equation covers the temperature range from 220 to 460 K and pressures up to 55 MPa, including the near-critical region. The average absolute deviation of the equation with respect to the selected 939 primary data points is 1.32%. The proposed equation represents therefore a significant improvement with respect to the literature conventional equation. The density value required by the equation is calculated at the chosen temperature and pressure conditions using a high accuracy equation of state for the fluid.
Thermal conductivity of technetium
International Nuclear Information System (INIS)
Minato, K.; Serizawa, H.; Fukuda, K.
1998-01-01
The thermal diffusivity of technetium was measured on a disk sample of 5 mm in diameter and 1 mm in thickness by the laser flash method from room temperature to 1173 K, and the thermal conductivity was determined by the measured thermal diffusivity and density, and the reported specific heat capacity. The thermal diffusivity of technetium decreases with increasing temperature though it is almost constant above 600 K. The thermal conductivity of technetium shows a minimum around 400 K, above which the thermal conductivity increases with temperature. The electronic and phonon components of the thermal conductivity were evaluated approximately. The increase in the thermal conductivity of technetium with temperature is due to the increase in the electronic component. (orig.)
Thermal conductivity of uranium dioxide
International Nuclear Information System (INIS)
Pillai, C.G.S.; George, A.M.
1993-01-01
The thermal conductivity of uranium dioxide of composition UO 2.015 was measured from 300 to 1400 K. The phonon component of the conductivity is found to be quantitatively accounted for by the theoretical expression of Slack derived by modifying the Leibfried-Schlomann equation. (orig.)
Fuchs, Sven; Schütz, Felina; Förster, Andrea; Förster, Hans-Jürgen
2013-04-01
The thermal conductivity (TC) of a rock is, in collaboration with the temperature gradient, the basic parameter to determine the heat flow from the Earth interior. Moreover, it forms the input into models targeted on temperature prognoses for geothermal reservoirs at those depths not yet reached by boreholes. Thus, rock TC is paramount in geothermal exploration and site selection. Most commonly, TC of a rock is determined in the laboratory on samples that are either dry or water-saturated. Because sample saturation is time-consuming, it is desirable, especially if large numbers of samples need to be assessed, to develop an approach that quickly and reliably converts dry-measured bulk TC into the respective saturated value without applying the saturation procedure. Different petrophysical models can be deployed to calculate the matrix TC of a rock from the bulk TC and vice versa, if the effective porosity is known (e.g., from well logging data) and the TC of the saturation fluid (e.g., gas, oil, water) is considered. We have studied for a large suite of different sedimentary rocks the performance of two-component (rock matrix, porosity) models that are widely used in geothermics (arithmetic mean, geometric mean, harmonic mean, Hashin and Shtrikman mean, and effective medium theory mean). The data set consisted of 1147 TC data from three different sedimentary basins (North German Basin, Molasse Basin, Mesozoic platform sediments of the northern Sinai Microplate in Israel). Four lithotypes (sandstone, mudstone, limestone, dolomite) were studied exhibiting bulk TC in the range between 1.0 and 6.5 W/(mK). The quality of fit between measured (laboratory) and calculated bulk TC values was studied separately for the influence of lithotype, saturation fluid (water and isooctane), and rock anisotropy (parallel and perpendicular to bedding). The geometric mean model displays the best correspondence between calculated and measured bulk TC, however, the relation is not
Measurement of thermal conductance
International Nuclear Information System (INIS)
Kuchnir, M.
1977-01-01
The 6-m long, 45-kG, warm-iron superconducting magnets envisioned for the Energy Doubler stage of the Fermilab accelerator require stiff supports with minimized thermal conductances in order to keep the refrigeration power reasonable. The large number of supports involved in the system required a careful study of their heat conduction from the room temperature wall to the intercepting refrigeration at 20 0 K and to the liquid helium. For this purpose the thermal conductance of this support was measured by comparing it with the thermal conductance of a copper strap of known geometry. An association of steady-state thermal analysis and experimental thermal conductivity techniques forms the basis of this method. An important advantage is the automatic simulation of the 20 0 K refrigeration intercept by the copper strap, which simplifies the apparatus considerably. This relative resistance technique, which uses electrical analogy as a guideline, is applicable with no restrictions for materials with temperature-independent thermal conductivity. For other materials the results obtained are functions of the specific temperature interval involved in the measurements. A comprehensive review of the literature on thermal conductivity indicates that this approach has not been used before. A demonstration of its self-consistency is stressed here rather than results obtained for different supports
High Thermal Conductivity Materials
Shinde, Subhash L
2006-01-01
Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...
Calculating lattice thermal conductivity: a synopsis
Fugallo, Giorgia; Colombo, Luciano
2018-04-01
We provide a tutorial introduction to the modern theoretical and computational schemes available to calculate the lattice thermal conductivity in a crystalline dielectric material. While some important topics in thermal transport will not be covered (including thermal boundary resistance, electronic thermal conduction, and thermal rectification), we aim at: (i) framing the calculation of thermal conductivity within the general non-equilibrium thermodynamics theory of transport coefficients, (ii) presenting the microscopic theory of thermal conduction based on the phonon picture and the Boltzmann transport equation, and (iii) outlining the molecular dynamics schemes to calculate heat transport. A comparative and critical addressing of the merits and drawbacks of each approach will be discussed as well.
Low thermal conductivity skutterudites
Energy Technology Data Exchange (ETDEWEB)
Fleurial, J P; Caillat, T; Borshchevsky, A
1997-07-01
Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.
Madhusudana, Chakravarti V
2013-01-01
The work covers bothÂ theoretical and practical aspects of thermal contact conductance. The theoretical discussionÂ focuses onÂ heat transfer through spots, joints, and surfaces, as well as the role of interstitial materials (both planned and inadvertent). The practical discussion includes formulae and data that can be used in designing heat-transfer equipment for a variety of joints, including special geometries and configurations. All of the material has been updated to reflect the latest advances in the field.
Variable Thermal Conductivity on Compressible Boundary Layer ...
African Journals Online (AJOL)
In this paper, variable thermal conductivity on heat transfer over a circular cylinder is presented. The concept of assuming constant thermal conductivity on materials is however not efficient. Hence, the governing partial differential equation is reduced using non-dimensionless variables into a system of coupled non-linear ...
Thermal conductivity and heat transfer in superlattices
Energy Technology Data Exchange (ETDEWEB)
Chen, G; Neagu, M; Borca-Tasciuc, T
1997-07-01
Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.
Controlling Thermal Conduction by Graded Materials
Ji, Qin; Huang, Ji-Ping
2018-04-01
Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity is equal to that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace’s equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles. The two methods agree with each other for both external and internal heat sources, as confirmed by simulation and experiment. This work provides different methods for designing new thermal metamaterials (including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat. Support by the National Natural Science Foundation of China under Grant No. 11725521, by the Science and Technology Commission of Shanghai Municipality under Grant No. 16ZR1445100
Shape memory thermal conduction switch
Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)
2010-01-01
A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.
Thermal conductivity of supercooled water.
Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A
2013-04-01
The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.
Thermal conductivity and thermal diffusivity of solid UO2
International Nuclear Information System (INIS)
Fink, J.K.; Chasanov, M.G.; Leibowitz, L.
1981-06-01
New equations for the thermal conductivity of solid UO 2 were derived based upon a nonlinear least squares fit of the data available in the literature. In the development of these equations, consideration was given to their thermodynamic consistency with heat capacity and density and theoretical consistency with enthalpy and heat capacity. Consistent with our previous treatment of enthalpy and heat capacity, 2670 K was selected as the temperature of a phase transition. A nonlinear equation, whose terms represent contributions due to phonons and electrons, was selected for the temperature region below 2670 K. Above 2670 K, the data were fit by a linear equation
Radiative thermal conduction fronts
International Nuclear Information System (INIS)
Borkowski, K.J.; Balbus, S.A.; Fristrom, C.C.
1990-01-01
The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence
Thermal conductivity of molten metals
Energy Technology Data Exchange (ETDEWEB)
Peralta-Martinez, Maria Vita
2000-02-01
A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements
Thermal conductivity of hyperstoichiometric SIMFUEL
Energy Technology Data Exchange (ETDEWEB)
Lucuta, P G; Verrall, R A [Chalk River Labs., AECL Research, Chalk River, ON (Canada); Matzke, H [CEC Joint Research Centre, Karlsruhe (Germany)
1997-08-01
At extended burnup, reduction in fuel thermal conductivity occurs as fission-gas bubble, solid fission-product (dissolved and precipitated) build-up, and the oxygen-to-uranium ratio (O/U) possible increases. The effects of solid fission products and the deviation from stoichiometry can be investigated using SIMFUEL (SIMulated high-burnup UO{sub 2} FUEL). The reduction in fuel conductivity due to solid fission products was assessed and reported previously. In this paper, thermal conductivity measurements on hyperstoichiometric SIMFUEL and UO{sub 2+x} investigating the effect of the excess of oxygen on fuel thermal properties, are reported. The thermal diffusivity, specific heat and density of hyperstorichiometric SIMFUEL and UO{sub 2+x}, annealed at the same oxygen potential, were measured to obtain thermal conductivity. The excess of oxygen lowered to the thermal diffusivity, but did not significantly affect the specific heat. The thermal conductivity of UO{sub 2+x} (no fission products present) decreases with an increasing O/U ratio; a reduction of 15%, 37% and 56% at 600 deg. C, and 11%, 23% and 33% at 1500 deg. C, was found for O/U ratios of 2.007, 2.035 and 2.084, respectively. For the SIMFUEL annealed at {Delta}Go{sub 2} = -245 kJ/mol (corresponding to UO{sub 2,007}), the thermal conductivity was practically unchanged, although for the higher oxygen potentials ({Delta}Go{sub 2} {>=} -205 kJ/mol) a reduction in thermal conductivity of the same order as in UO{sub 2+x} W as measured. For SIMFUEL, annealed in reducing conditions, the fission products lowered thermal conductivity significantly. However, for high oxygen potentials ({Delta}Go{sub 2} {>=} -205 kJ/mol), the thermal conductivities of UO{sub 2+x} and SIMFUEL were found to be approximately equal in the temperature range of 600 to 1500 deg. C. Consequently, excess oxygen is the dominant factor contributing to thermal conductivity degradation at high oxygen potentials. (author). 9 figs, 2 tabs.
Thermal conductivity of hyperstoichiometric SIMFUEL
International Nuclear Information System (INIS)
Lucuta, P.G.; Verrall, R.A.; Matzke, H.
1997-01-01
At extended burnup, reduction in fuel thermal conductivity occurs as fission-gas bubble, solid fission-product (dissolved and precipitated) build-up, and the oxygen-to-uranium ratio (O/U) possible increases. The effects of solid fission products and the deviation from stoichiometry can be investigated using SIMFUEL (SIMulated high-burnup UO 2 FUEL). The reduction in fuel conductivity due to solid fission products was assessed and reported previously. In this paper, thermal conductivity measurements on hyperstoichiometric SIMFUEL and UO 2+x investigating the effect of the excess of oxygen on fuel thermal properties, are reported. The thermal diffusivity, specific heat and density of hyperstorichiometric SIMFUEL and UO 2+x , annealed at the same oxygen potential, were measured to obtain thermal conductivity. The excess of oxygen lowered to the thermal diffusivity, but did not significantly affect the specific heat. The thermal conductivity of UO 2+x (no fission products present) decreases with an increasing O/U ratio; a reduction of 15%, 37% and 56% at 600 deg. C, and 11%, 23% and 33% at 1500 deg. C, was found for O/U ratios of 2.007, 2.035 and 2.084, respectively. For the SIMFUEL annealed at ΔGo 2 = -245 kJ/mol (corresponding to UO 2,007 ), the thermal conductivity was practically unchanged, although for the higher oxygen potentials (ΔGo 2 ≥ -205 kJ/mol) a reduction in thermal conductivity of the same order as in UO 2+x W as measured. For SIMFUEL, annealed in reducing conditions, the fission products lowered thermal conductivity significantly. However, for high oxygen potentials (ΔGo 2 ≥ -205 kJ/mol), the thermal conductivities of UO 2+x and SIMFUEL were found to be approximately equal in the temperature range of 600 to 1500 deg. C. Consequently, excess oxygen is the dominant factor contributing to thermal conductivity degradation at high oxygen potentials. (author). 9 figs, 2 tabs
High Thermal Conductivity Composite Structures
National Research Council Canada - National Science Library
Bootle, John
1999-01-01
... applications and space based radiators. The advantage of this material compared to competing materials that it can be used to fabricate high strength, high thermal conductivity, relatively thin structures less than 0.050" thick...
An Innovative High Thermal Conductivity Fuel Design
International Nuclear Information System (INIS)
Khan, Jamil A.
2009-01-01
Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 (97% TD). This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.
An Innovative High Thermal Conductivity Fuel Design
Energy Technology Data Exchange (ETDEWEB)
Jamil A. Khan
2009-11-21
Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.
Thermal conductivity of highly porous mullite material
International Nuclear Information System (INIS)
Barea, Rafael; Osendi, Maria Isabel; Ferreira, Jose M.F.; Miranzo, Pilar
2005-01-01
The thermal diffusivity of highly porous mullite materials (35-60 vol.% porosity) has been measured up to 1000 deg C by the laser flash method. These materials were fabricated by a direct consolidation method based on the swelling properties of starch granules in concentrated aqueous suspensions and showed mainly spherical shaped pores of about 30 μm in diameter. From the point of view of heat conduction, they behave as a bi-phase material of voids dispersed in the continuous mullite matrix. The temperature dependence of thermal conductivity for the different porosities was modeled by a simple equation that considers the contribution to heat conduction of the mullite matrix and the gas inside the pores, as well as the radiation. The thermal conductivity of the matrix was taken from the measurements done in a dense mullite while the conductivity in the voids was assumed to be that of the testing atmosphere
Thermal conductivity of granular materials
Energy Technology Data Exchange (ETDEWEB)
Buyevich, Yu A
1974-01-01
Stationary heat transfer in a granular material consisting of a continuous medium containing spherical granules of other substances is considered under the assumption that the spatial distribution of granules is random. The effective thermal conductivity characterizing macroscopic heat transfer in such a material is expressed as a certain function of the conductivities and volume fractions of the medium and dispersed substances. For reasons of mathematical analogy, all the results obtained for the thermal conductivity are valid while computing the effective diffusivity of some admixture in granular materials as well as for evaluation of the effective electric conductivity or the mean dielectric and magnetic permeabilities of granular conductors and dielectrics. (23 refs.)
Thermal Conductivity of Foam Glass
DEFF Research Database (Denmark)
Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng
Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...
Thermal Conductivity of Metallic Uranium
Energy Technology Data Exchange (ETDEWEB)
Hin, Celine
2018-03-10
This project has developed a modeling and simulation approaches to predict the thermal conductivity of metallic fuels and their alloys. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary. The models incorporated both phonon and electron contributions. Good agreement with experimental data over a wide temperature range were found. The models also provided insight into the different physical factors that govern the thermal conductivity under different temperatures. The models were general enough to incorporate more complex effects like additional alloying species, defects, transmutation products and noble gas bubbles to predict the behavior of complex metallic alloys like U-alloy fuel systems under burnup. 3 Introduction Thermal conductivity is an important thermal physical property affecting the performance and efficiency of metallic fuels [1]. Some experimental measurement of thermal conductivity and its correlation with composition and temperature from empirical fitting are available for U, Zr and their alloys with Pu and other minor actinides. However, as reviewed in by Kim, Cho and Sohn [2], due to the difficulty in doing experiments on actinide materials, thermal conductivities of metallic fuels have only been measured at limited alloy compositions and temperatures, some of them even being negative and unphysical. Furthermore, the correlations developed so far are empirical in nature and may not be accurate when used for prediction at conditions far from those
Thermal Conductivity of Diamond Composites
Directory of Open Access Journals (Sweden)
Fedor M. Shakhov
2009-12-01
Full Text Available A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K and 400 W/(m·K, respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon; one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K. Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.
Thermal conductivity of glass copper-composite
International Nuclear Information System (INIS)
Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki
1980-01-01
Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)
Invert Effective Thermal Conductivity Calculation
International Nuclear Information System (INIS)
M.J. Anderson; H.M. Wade; T.L. Mitchell
2000-01-01
The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m · K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations
Thermal conduction and gravitational collapse
International Nuclear Information System (INIS)
Herrera, L.; Jimenez, J.; Esculpi, M.
1987-01-01
A method used to study the evolution of radiating spheres, reported some years ago by Herrera, Jimenez, and Ruggeri, is extended to the case in which thermal conduction within the sphere is taken into account. By means of an explicit example it is shown that heat flow, if present, may play an important role, affecting the final outcome of collapse
Thermal conduction down steep temperature gradients
International Nuclear Information System (INIS)
Bell, A.R.; Evans, R.G.; Nicholas, D.J.
1980-08-01
The Fokker-Planck equation has been solved numerically in one spatial and two velocity dimensions in order to study thermal conduction in large temperature gradients. An initially cold plasma is heated at one end of the spatial grid producing temperature gradients with scale lengths of a few times the electron mean free path. The heat flow is an order of magnitude smaller than that predicted by the classical theory which is valid in the limit of small temperature gradients. (author)
The contribution of thermal radiation to the thermal conductivity of porous UO2
International Nuclear Information System (INIS)
Bakker, K.; Kwast, H.; Cordfunke, E.H.P.
1994-09-01
The influence of cylindrical, spherical and ellipsoidal inclusions on the overall thermal conductivity was computed with the finite element technique. The results of these calculations were compared with equations that describe the effect of inclusions on the overall thermal conductivity. The analytical equation of Schulz that describes the effect of inclusions on the overall thermal conductivity is in good agreement with the results of the finite element computations. This good agreement shows that among a variety of porosity correction formulas, the equation of Schulz gives the best description of the effect of inclusions on the overall thermal conductivity. This equation and the results of finite element calculations allow us to compute the contribution of radiation to the overall thermal conductivity of UO 2 with oblate ellipsoidal porosity. The present radiation calculations show that Hayes and Peddicord overestimated the contribution of thermal radiation to the thermal conductivity. (orig.)
Electron thermal conduction in LASNEX
International Nuclear Information System (INIS)
Munro, D.; Weber, S.
1994-01-01
This report is a transcription of hand-written notes by DM dated 29 January 1986, transcribed by SW, with some clarifying comments added and details specific to running the LASNEX code deleted. Reference to the esoteric measurement units employed in LASNEX has also been deleted by SW (hopefully, without introducing errors in the numerical constants). The report describes the physics equations only, and only of electron conduction. That is, it does not describe the numerical method, which may be finite difference or finite element treatment in space, and (usually) implicit treatment in time. It does not touch on other electron transport packages which are available, and which include suprathermal electrons, nonlocal conduction, Krook model conduction, and modifications to electron conduction by magnetic fields. Nevertheless, this model is employed for the preponderance of LASNEX simulations
High-Thermal-Conductivity Fabrics
Chibante, L. P. Felipe
2012-01-01
Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be
Theoretical prediction of thermal conductivity for thermal protection systems
International Nuclear Information System (INIS)
Gori, F.; Corasaniti, S.; Worek, W.M.; Minkowycz, W.J.
2012-01-01
The present work is aimed to evaluate the effective thermal conductivity of an ablative composite material in the state of virgin material and in three paths of degradation. The composite material is undergoing ablation with formation of void pores or char and void pores. The one dimensional effective thermal conductivity is evaluated theoretically by the solution of heat conduction under two assumptions, i.e. parallel isotherms and parallel heat fluxes. The paper presents the theoretical model applied to an elementary cubic cell of the composite material which is made of two crossed fibres and a matrix. A numerical simulation is carried out to compare the numerical results with the theoretical ones for different values of the filler volume fraction. - Highlights: ► Theoretical models of the thermal conductivity of an ablative composite. ► Composite material is made of two crossed fibres and a matrix. ► Three mechanisms of degradation are investigated. ► One dimensional thermal conductivity is evaluated by the heat conduction equation. ► Numerical simulations to be compared with the theoretical models.
Model calculation of thermal conductivity in antiferromagnets
Energy Technology Data Exchange (ETDEWEB)
Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.
2015-11-01
A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.
THERMAL CONDUCTIVITY ANALYSIS OF GASES
Clark, W.J.
1949-06-01
This patent describes apparatus for the quantitative analysis of a gaseous mixture at subatmospheric pressure by measurement of its thermal conductivity. A heated wire forms one leg of a bridge circuit, while the gas under test is passed about the wire at a constant rate. The bridge unbalance will be a measure of the change in composition of the gas, if compensation is made for the effect due to gas pressure change. The apparatus provides a voltage varying with fluctuations of pressure in series with the indicating device placed across the bridge, to counterbalance the voltage change caused by fluctuations in the pressure of the gaseous mixture.
Model of thermal conductivity of anisotropic nanodiamond
International Nuclear Information System (INIS)
Dudnik, S.F.; Kalinichenko, A.I.; Strel'nitskij, V.E.
2014-01-01
Dependence of thermal conductivity of nanocrystalline diamond on grain size and shape is theoretically investigated. Nanodiamond is considered as two-phase material composed of diamond grains characterizing by three main dimensions and segregated by thin graphite layers with electron, phonon or hybrid thermal conductivity. Influence of type of thermal conductance and thickness of boundary layer on thermal conductivity of nanodiamond is analyzed. Derived dependences of thermal conductivity on grain dimensions are compared with experimental data
Thermal pressure and isochoric thermal conductivity of solid CO2
International Nuclear Information System (INIS)
Purs'kij, O.Yi.
2005-01-01
The analysis of the correlation between the thermal pressure and the isochoric thermal conductivity of solid CO 2 has been carried out. The temperature dependences of the thermal pressure and isochoric thermal conductivity for samples with various molar volumes have been obtained. The isothermal pressure dependences of the thermal conductivity of solid CO 2 have been calculated. The form of the temperature dependence of the isochoric thermal conductivity taking the thermal pressure into account has been revealed. Behaviour of the isochoric thermal conductivity is explained by phonon-phonon interaction and additional influence of the thermal pressure
Thermal conductivity of crushed salt
International Nuclear Information System (INIS)
Kuehn, K.
Heat transfer through an annular space filled with crushed salt depends primarily on the thermal conductivity, lambda, of the material. This report gives a formula with which lambda can be computed. The formula includes two quantities that can be influenced through screening of the salt smalls: the porosity, psi, and the fraction, alpha, of the more highly resistive heat-flow paths. The report computes and presents graphically the thermal conductivities for various values of psi and alpha. Heat-transfer properties are computed and compared for an annular space filled with crushed salt and for an air gap. The comparison shows that the properties of the annular space are larger only up to a certain temperature, because the properties of the air gap increase exponentially while those f the annular space increase only in an approximately linear way. Experimental results from Project Salt Vault in the U.S. are in good agreement with the calculations performed. Trials in Temperature Experimental Field 2 at the Asse II salt mine will provide an additional check on the calculations. 3 figures, 3 tables
Test design requirements: Thermal conductivity probe testing
International Nuclear Information System (INIS)
Heath, R.E.
1985-01-01
This document establishes the test design requirements for development of a thermal conductivity probe test. The thermal conductivity probe determines in situ thermal conductivity using a line source transient heat conduction analysis. This document presents the rationale for thermal conductivity measurement using a thermal conductivity probe. A general test description is included. Support requirements along with design constraints are detailed to allow simple design of the thermal conductivity probe and test. The schedule and delivery requirements of the responsible test designer are also included. 7 refs., 1 fig
Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation
International Nuclear Information System (INIS)
Dou, Nicholas G.; Minnich, Austin J.
2016-01-01
Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials
High thermal conductivity materials for thermal management applications
Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.
2018-05-29
High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.
Reduced thermal conductivity of isotopically modulated silicon multilayer structures
DEFF Research Database (Denmark)
Bracht, H.; Wehmeier, N.; Eon, S.
2012-01-01
We report measurements of the thermal conductivity of isotopically modulated silicon that consists of alternating layers of highly enriched silicon-28 and silicon-29. A reduced thermal conductivity of the isotopically modulated silicon compared to natural silicon was measured by means of time......-resolved x-ray scattering. Comparison of the experimental results to numerical solutions of the corresponding heat diffusion equations reveals a factor of three lower thermal conductivity of the isotope structure compared to natural Si. Our results demonstrate that the thermal conductivity of silicon can...
Thermal conductivity model for nanofiber networks
Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui
2018-02-01
Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.
Thermal conductivity model for nanofiber networks
Energy Technology Data Exchange (ETDEWEB)
Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
2018-02-28
Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.
Anisotropic in-plane thermal conductivity in multilayer silicene
Zhou, Yang; Guo, Zhi-Xin; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao
2018-06-01
We systematically study thermal conductivity of multilayer silicene by means of Boltzmann Transportation Equation (BTE) method. We find that their thermal conductivity strongly depends on the surface structures. Thermal conductivity of bilayer silicene varies from 3.31 W/mK to 57.9 W/mK with different surface structures. Also, the 2 × 1 surface reconstruction induces unusual large thermal conductivity anisotropy, which reaches 70% in a four-layer silicene. We also find that the anisotropy decreases with silicene thickness increasing, owing to the significant reduction of thermal conductivity in the zigzag direction and its slight increment in the armchair direction. Finally, we find that both the phonon-lifetime anisotropy and the phonon-group-velocity anisotropy contribute to the thermal conductivity anisotropy of multilayer silicene. These findings could be helpful in the field of heat management, thermoelectric applications involving silicene and other multilayer nanomaterials with surface reconstructions in the future.
Ion thermal conductivity for a pure tokamak plasma
International Nuclear Information System (INIS)
Bolton, C.W. III.
1981-06-01
The ion thermal conductivity is calculated for a wide range of aspect ratios and collision frequencies. The calculation is done by solving the drift kinetic equation, with a model collision operator, using a finite element method, and then calculating the energy weighted friction force to determine the heat flux. The thermal conductivity, determined from the heat flux, is then curve fitted to analytic formulas. These formulas allow the conductivity to be calculated at all collision frequencies and aspect ratios down to about 3
Homogenized thermal conduction model for particulate foods
Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel
2002-01-01
International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...
Thermal conductivity of sputtered amorphous Ge films
International Nuclear Information System (INIS)
Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka
2014-01-01
We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids
On the Boltzmann Equation of Thermal Transport for Interacting Phonons and Electrons
Directory of Open Access Journals (Sweden)
Amelia Carolina Sparavigna
2016-05-01
Full Text Available The thermal transport in a solid can be determined by means of the Boltzmann equations regarding its distributions of phonons and electrons, when the solid is subjected to a thermal gradient. After solving the coupled equations, the related thermal conductivities can be obtained. Here we show how to determine the coupled equations for phonons and electrons.
Low temperature thermal conductivities of glassy carbons
International Nuclear Information System (INIS)
Anderson, A.C.
1979-01-01
The thermal conductivity of glassy carbon in the temperature range 0.1 to 100 0 K appears to depend only on the temperature at which the material was pyrolyzed. The thermal conductivity can be related to the microscopic structure of glassy carbon. The reticulated structure is especially useful for thermal isolation at cryogenic temperatures
Thermal conductivity of ZnTe investigated by molecular dynamics
International Nuclear Information System (INIS)
Wang Hanfu; Chu Weiguo
2009-01-01
The thermal conductivity of ZnTe with zinc-blende structure has been computed by equilibrium molecular dynamics method based on Green-Kubo formalism. A Tersoff's potential is adopted in the simulation to model the atomic interactions. The calculations are performed as a function of temperature up to 800 K. The calculated thermal conductivities are in agreement with the experimental values between 150 K and 300 K, while the results above the room temperature are comparable with the Slack's equation.
Ballistic and Diffusive Thermal Conductivity of Graphene
Saito, Riichiro; Masashi, Mizuno; Dresselhaus, Mildred S.
2018-02-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we can design the optimum sample size, which gives the largest thermal conductivity at a given temperature for applying thermal conducting devices.
Thermal conductivity of heterogeneous LWR MOX fuels
Staicu, D.; Barker, M.
2013-11-01
the correlations of Fink [16] for the UO2 matrix, Duriez at low PuO2 contents (coating phase) and of Philipponneau at high PuO2 contents (agglomerates). For the first model, applying a correlation for non-stoichiometric UO2 would be relevant, but such a correlation does not exist for physical reasons in the hypostoichiometric domain. A correlation for homogeneous (U,Pu)O2+x has to be obtained in order to predict the thermal conductivity of heterogeneous MOX fuel, supposing that the effect of Pu can be neglected, i.e. supposing that the thermal conductivities of homogeneous (U,Pu)O2 and UO2 are equal both for stoichiometric and non-stoichiometric fuels. Such a correlation has to be obtained considering reliable data for stoichiometric UO2 and stoichiometry dependence. Different correlations for non-stoichiometric fuels were reviewed [2,8,12,13,15,35,36]. The correlation of Martin [36], available for hyperstoichiometric UO2, was evaluated in the hypostoichiometric domain and the predictions were found to give a stoichiometry dependence very similar to a correlation already proposed [15]. Investigations by Molecular Dynamics [37] have confirmed the almost symmetric effect of the hypo- and hyper-stoichiometry in UO2. We therefore use the correlation of Martin, with however a correction, as for stoichiometric fuels it over predicts the conductivity of stoichiometric UO2 at high temperatures, when compared to the recommendation of Fink [16] (Fig. 4). Analysis has shown that this over-prediction was due to the high temperature term in the correlation of Martin, and that, if this term is removed, the predictions of Martin and Fink were identical for stoichiometric fuels in the temperature range 500-1500 K. The correlation proposed for homogeneous MOX is therefore given by the following equation. k=(0.035 The series and parallel bounds (Eq. (2)) were calculated using the thermal conductivity values given by Eq. (5) for the heterogeneous MOX constituents and the maximum
The contribution of thermal radiation to the thermal conductivity of porous UO2
International Nuclear Information System (INIS)
Bakker, K.; Kwast, H.; Cordfunke, E.H.P.
1995-01-01
The influence of cylindrical, spherical and ellipsoidal inclusions on the overall thermal conductivity was computed with the finite element technique. The results of these calculations were compared with equations that describe the effect of inclusions on the overall thermal conductivity. The analytical equation of Schulz [B. Schulz, KfK-1988 (1974)] that describes the effect of inclusions on the overall thermal conductivity is in good agreement with the results of the finite element computations. This good agreement shows that among a variety of porosity correction formulas, the equation of Schulz gives the best description of the effect of inclusions on the overall thermal conductivity. This equation and the results of finite element calculations allow us to compute the contribution of radiation to the overall thermal conductivity of UO 2 with oblate ellipsoidal porosity. The present radiation calculations show that Hayes and Peddicord [S.L. Hayes and K.L. Peddicord, J. Nucl. Mater. 202 (1993) 87] overestimated the contribution of thermal radiation to the thermal conductivity. ((orig.))
Study of thermal conductivity of multilayer insulation
Energy Technology Data Exchange (ETDEWEB)
Dutta, D; Sundaram, S; Nath, G K; Sethuram, N P; Chandrasekharan, T; Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)
1994-06-01
This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author). 3 refs., 3 figs.
Study of thermal conductivity of multilayer insulation
International Nuclear Information System (INIS)
Dutta, D.; Sundaram, S.; Nath, G.K.; Sethuram, N.P.; Chandrasekharan, T.; Varadarajan, T.G.
1994-01-01
This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author)
The Electronic Thermal Conductivity of Graphene.
Kim, Tae Yun; Park, Cheol-Hwan; Marzari, Nicola
2016-04-13
Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of doping using electronic and phonon dispersions and electron-phonon couplings calculated from first-principles at the level of density-functional theory and many-body perturbation theory (GW). Then, we include extrinsic electron-impurity scattering using low-temperature experimental estimates. Under these conditions, we find that the in-plane electronic thermal conductivity κe of doped graphene is ∼300 W/mK at room temperature, independently of doping. This result is much larger than expected and comparable to the total thermal conductivity of typical metals, contributing ∼10% to the total thermal conductivity of bulk graphene. Notably, in samples whose physical or domain sizes are of the order of few micrometers or smaller, the relative contribution coming from the electronic thermal conductivity is more important than in the bulk limit, because lattice thermal conductivity is much more sensitive to sample or grain size at these scales. Last, when electron-impurity scattering effects are included we find that the electronic thermal conductivity is reduced by 30 to 70%. We also find that the Wiedemann-Franz law is broadly satisfied at low and high temperatures but with the largest deviations of 20-50% around room temperature.
Thermal Conductivity of the Multicomponent Neutral Atmosphere
Pavlov, A. V.
2017-12-01
Approximate expressions for the thermal conductivity coefficient of the multicomponent neutral atmosphere consisting of N2, O2, O, He, and H are analyzed and evaluated for the atmospheric conditions by comparing them with that given by the rigorous hydrodynamic theory. The new approximations of the thermal conductivity coefficients of simple gases N2, O2, O, He, and H are derived and used. It is proved that the modified Mason and Saxena approximation of the atmospheric thermal conductivity coefficient is more accurate in reproducing the atmospheric values of the rigorous hydrodynamic thermal conductivity coefficient in comparison with those that are generally accepted in atmospheric studies. This approximation of the thermal conductivity coefficient is recommended to use in calculations of the neutral temperature of the atmosphere.
Gas thermal conductivity (GASCON, GTHCON, GJUMP)
International Nuclear Information System (INIS)
Hagrman, D.L.
1979-10-01
Revised models are presented for the thermal conductivity of initial and fission gases present in LWR fuel rods. The report will become part of an update to the Materials Properties (MATPRO) Handbook used in the fuel rod behavior modeling task performed at the INEL. The revision to the previous MATPRO gas thermal conductivity model replaces correlations based on smoothed values of thermal conductivity published by Gandhi and Saxena with correlations which incorporate new high temperature helium conductivity data. Also, uncertainty estimates have been provided and a consistent treatment of the effects of long mean free paths is employed
Thermal conductivity of unsaturated clay-rocks
Directory of Open Access Journals (Sweden)
D. Jougnot
2010-01-01
Full Text Available The parameters used to describe the electrical conductivity of a porous material can be used to describe also its thermal conductivity. A new relationship is developed to connect the thermal conductivity of an unsaturated porous material to the thermal conductivity of the different phases of the composite, and two electrical parameters called the first and second Archie's exponents. A good agreement is obtained between the new model and thermal conductivity measurements performed using packs of glass beads and core samples of the Callovo-Oxfordian clay-rocks at different saturations of the water phase. We showed that the three model parameters optimised to fit the new model against experimental data (namely the thermal conductivity of the solid phase and the two Archie's exponents are consistent with independent estimates. We also observed that the anisotropy of the effective thermal conductivity of the Callovo-Oxfordian clay-rock was mainly due to the anisotropy of the thermal conductivity of the solid phase.
Thermal conductivity of nanoscale thin nickel films
Institute of Scientific and Technical Information of China (English)
YUAN Shiping; JIANG Peixue
2005-01-01
The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.
Thermal conductivity of electrospun polyethylene nanofibers.
Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M; Li, Deyu
2015-10-28
We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m(-1) K(-1), over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers.
Conductivity-limiting bipolar thermal conductivity in semiconductors
Wang, Shanyu; Yang, Jiong; Toll, Trevor; Yang, Jihui; Zhang, Wenqing; Tang, Xinfeng
2015-01-01
Intriguing experimental results raised the question about the fundamental mechanisms governing the electron-hole coupling induced bipolar thermal conduction in semiconductors. Our combined theoretical analysis and experimental measurements show that in semiconductors bipolar thermal transport is in general a “conductivity-limiting” phenomenon, and it is thus controlled by the carrier mobility ratio and by the minority carrier partial electrical conductivity for the intrinsic and extrinsic cases, respectively. Our numerical method quantifies the role of electronic band structure and carrier scattering mechanisms. We have successfully demonstrated bipolar thermal conductivity reduction in doped semiconductors via electronic band structure modulation and/or preferential minority carrier scatterings. We expect this study to be beneficial to the current interests in optimizing thermoelectric properties of narrow gap semiconductors. PMID:25970560
On thermal conductivity of gas mixtures containing hydrogen
Zhukov, Victor P.; Pätz, Markus
2017-06-01
A brief review of formulas used for the thermal conductivity of gas mixtures in CFD simulations of rocket combustion chambers is carried out in the present work. In most cases, the transport properties of mixtures are calculated from the properties of individual components using special mixing rules. The analysis of different mixing rules starts from basic equations and ends by very complex semi-empirical expressions. The formulas for the thermal conductivity are taken for the analysis from the works on modelling of rocket combustion chambers. \\hbox {H}_2{-}\\hbox {O}_2 mixtures are chosen for the evaluation of the accuracy of the considered mixing rules. The analysis shows that two of them, of Mathur et al. (Mol Phys 12(6):569-579, 1967), and of Mason and Saxena (Phys Fluids 1(5):361-369, 1958), have better agreement with the experimental data than other equations for the thermal conductivity of multicomponent gas mixtures.
Prediction of thermal conductivity of sedimentary rocks from well logs
DEFF Research Database (Denmark)
Fuchs, Sven; Förster, Andrea
2014-01-01
The calculation of heat-flow density in boreholes requires reliable values for the change of temperature and rock thermal conductivity with depth. As rock samples for laboratory measurements of thermal conductivity (TC) are usually rare geophysical well logs are used alternatively to determine TC...... parameters (i.e. thermal conductivity, density, hydrogen index, sonic interval transit time, gamma-ray response, photoelectric factor) of artificial mineral assemblages consisting 15 rock-forming minerals that are used in different combinations to typify sedimentary rocks. The predictive capacity of the new...... equations is evaluated on subsurface data from four boreholes drilled into the Mesozoic sequence of the North German Basin, including more than 1700 laboratory-measured thermal-conductivity values. Results are compared with those from other approaches published in the past. The new approach predicts TC...
Thermal conductivity of tungsten–copper composites
International Nuclear Information System (INIS)
Lee, Sang Hyun; Kwon, Su Yong; Ham, Hye Jeong
2012-01-01
Highlights: ► We present the temperature dependence of the thermophysical properties for tungsten–copper composite from room temperature to 400 °C. The powders of tungsten–copper were produced by the spray conversion method and the W–Cu alloys were fabricated by the metal injection molding. Thermal conductivity and thermal expansion of tungsten–copper composite was controllable by volume fraction copper. - Abstract: As the speed and degree of integration of semiconductor devices increases, more heat is generated, and the performance and lifetime of semiconductor devices depend on the dissipation of the generated heat. Tungsten–copper alloys have high electrical and thermal conductivities, low contact resistances, and low coefficients of thermal expansion, thus allowing them to be used as a shielding material for microwave packages, and heat sinks for high power integrated circuits (ICs). In this study, the thermal conductivity and thermal expansion of several types of tungsten–copper (W–Cu) composites are investigated, using compositions of 5–30 wt.% copper balanced with tungsten. The tungsten–copper powders were produced using the spray conversion method, and the W–Cu alloys were fabricated via the metal injection molding. The tungsten–copper composite particles were nanosized, and the thermal conductivity of the W–Cu alloys gradually decreases with temperature increases. The thermal conductivity of the W–30 wt.% Cu composite was 238 W/(m K) at room temperature.
Increased thermal conductivity monolithic zeolite structures
Klett, James; Klett, Lynn; Kaufman, Jonathan
2008-11-25
A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.
Electrical and thermal conductivities in dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)
2014-09-15
Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.
Thermal conductivity in high critical temperature superconductors
International Nuclear Information System (INIS)
Castello, D.J.
1990-01-01
A measuring procedure to obtain the electrical resistivity, thermal conductivity and thermoelectric power of samples of low conductivity has been developed. The setup was designed to allow the removal of the sample in clean fashion, so that further heat treatments could be performed, and therefore no adhesives were used in the mounting of the thermocouples or heat sinks, etc. The heat equation has been analyzed with time-dependent boundary conditions, with the purpose of developing a dynamic measuring method which avoids the long delays involved in reaching thermal equilibrium above 30K. Based on this analysis, the developed measuring method allows a precise and reliable measurements, in a continuous fashion, for temperatures above 25K. The same setup is used in a stationary mode at low temperatures, so the sample needs to be mounted only once. κ(T) has been measured in two ceramic samples of La 2 CuO 4 : the first semiconducting, the other superconducting (SC) as a consequence of an oxygen annealing. Both exhibit a strong thermal resistivity due to defects, though lower in the SC, where two maxima are observed and are attributed to an AF ordering: T N ' ≅ 40K and T N '' ≅ 240K. The low temperature dependence is T 1 .6 and T 2 .3 respectively. It was interpreted that the former sample presents a greater dispersion due to localized excitations, characteristic of amorphouus materials, 'tunneling two-level systems' (TS). A third syntherized sample of CuO exhibits a typical behaviour of an insulator, with T 2 .6 at low temperatures, a maximum at 40K and a decrease in T -1 at high temperatures. κ(T) in a SC sample of La 1 .85Sr 1 .15CuO 4 with T c =35.5K has also been measured, observing a small increase below T c because of the diminishing of the phonon dispersion due to the condensating electrons. κ(T) is lower than in the previous samples and thus a greater number of defects was inferred. At low temperatures, its dependence is T 1 .4 in agreement with the
Thermal conductivity of high purity vanadium
International Nuclear Information System (INIS)
Jung, W.D.
1975-01-01
The thermal conductivity, Seebeck coefficient, and electrical resistivity of four high-purity vanadium samples were measured over the temperature range 5 to 300 0 K. The highest purity sample had a resistance ratio (rho 273 /rho 4 . 2 ) of 1524. The highest purity sample had a thermal conductivity maximum of 920 W/mK at 9 0 K and had a thermal conductivity of 35 W/mK at room temperature. At low temperatures, the thermal resistivity was limited by the scattering of electrons by impurities and phonons. The thermal resistivity of vanadium departed from Matthiessen's rule at low temperatures. The electrical resistivity and Seebeck coefficient of high purity vanadium showed no anomalous behavior above 130 0 K. The intrinsic electrical resistivity at low temperatures was due primarily to interband scattering of electrons. The Seebeck coefficient was positive from 10 to 240 0 K and had a maximum which was dependent upon sample purity
Ultrahigh thermal conductivity of isotopically enriched silicon
Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter
2018-03-01
Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.
Thermal conductivity at very low temperature
Energy Technology Data Exchange (ETDEWEB)
Locatelli, M [CEA Centre d' Etudes Nucleaires de Grenoble, 38 (France). Service des Basses Temperatures
1976-06-01
The interest of low and very low temperatures in solid physics and especially that of thermal measurements is briefly mentioned. Some notes on the thermal conductivity of dielectrics, the method and apparatus used to measure this property at very low temperatures (T<1.5K) and some recent results of fundamental and applied research are then presented.
Thermal conductivity of REIn3 compounds
International Nuclear Information System (INIS)
Mucha, J
2006-01-01
The results of measurements of the thermal conductivity of REIn 3 (RE Pr, Nd, Dy, Ho, Tm) compounds as a function of the temperature in the interval 4-300 K in the absence and in the presence of an external magnetic field of 8 T are presented. Except for PRIn 3 all the compounds are antiferromagnetic. YIn 3 was also measured as a reference compound. The results were analysed in the paramagnetic phase, where an influence of the crystalline electric field on the thermal conductivity was found. Drastic changes in the thermal conductivity were observed and analysed in the vicinity of the Neel temperature and in the antiferromagnetic phases of the compounds. Below the Neel temperature an additional magnon contribution to the thermal conductivity was separated out
International Nuclear Information System (INIS)
Fink, J.K.; Chasanov, M.G.; Leibowitz, L.
Equations have been derived for the enthalpy, heat capacity, thermal conductivity, and thermal diffusivity of UO 2 . In selection of these equations, we considered the traditional criterion of lowest relative standard deviation between experimental data and the function chosen to fit these data as well as consistency between the thermophysical properties. In the latter case, we considered consistency in (1) thermodynamic relations among properties, (2) the choice of physical phenomena on which to base the theoretical formulation of the equations, and (3) the existence and temperature of phase transitions
Thermal conductivity of multibarrier waste form components
International Nuclear Information System (INIS)
Lokken, R.O.
1981-01-01
The multiple barrier concept of radioactive waste immobilization under investigation at Pacific Northwest Laboratory (PNL) uses composite waste forms which exhibit enhanced inertness through improvements in thermal stability, mechanical strength, and leachability by the use of coatings and metal matrices. Since excessive heat may be generated by radioactive decay of the waste, the thermal conductivity of the various barriers, and more importantly of the composite, becomes an important parameter in design criteria. This report presents results of thermal conductivity measurements on 21 various glass, ceramic, metal and composite materials used in multibarrier waste forms development
Thermal Conductivity Measurement and Analysis of Fully Ceramic Microencapsulated fuel
International Nuclear Information System (INIS)
Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.
2015-01-01
FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix in comparison with the current commercial UO2 fuel system of LWR. In addition to a safety enhancement of FCM fuel, thermal conductivity of SiC ceramic matrix is better than that of UO2 fuel. Because the centerline temperature of FCM fuel is lower than that of the current UO2 fuel due to the difference of thermal conductivity of fuel, an operational release of fission products from the fuel can be reduced. SiC ceramic has attracted for nuclear fuel application due to its high thermal conductivity properties with good radiation tolerant properties, a low neutron absorption cross-section and a high corrosion resistance. Thermal conductivity of ceramic matrix composite depends on the thermal conductivity of each component and the morphology of reinforcement materials such as fibers and particles. There are many results about thermal conductivity of fiber-reinforced composite like as SiCf/SiC composite. Thermal conductivity of SiC ceramics and FCM pellets with the volume fraction of TRISO particles were measured and analyzed by analytical models. Polycrystalline SiC ceramics and FCM pellets with TRISO particles were fabricated by hot press sintering with sintering additives. Thermal conductivity of the FCM pellets with TRISO particles of 0 vol.%, 10 vol.%, 20 vol.%, 30 vol.% and 40 vol.% show 68.4, 52.3, 46.8, 43.0 and 34.5 W/mK, respectively. As the volume fraction of TRISO particles increased, the measured thermal conductivity values closely followed the prediction of Maxwell's equation
Fuel thermal conductivity (FTHCON). Status report
International Nuclear Information System (INIS)
Hagrman, D.L.
1979-02-01
An improvement of the fuel thermal conductivity subcode is described which is part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The original version was published in the Materials Properties (MATPRO) Handbook, Section A-2 (Fuel Thermal Conductivity). The improved version incorporates data which were not included in the previous work and omits some previously used data which are believed to come from cracked specimens. The models for the effect of porosity on thermal conductivity and for the electronic contribution to thermal coductivity have been completely revised in order to place these models on a more mechanistic basis. As a result of modeling improvements the standard error of the model with respect to its data base has been significantly reduced
Thermal conductivity model for nanoporous thin films
Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui
2018-03-01
Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.
Thermal conductivity of hydrate-bearing sediments
Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.
2009-01-01
A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.
Thermal conductivity and thermal rectification in unzipped carbon nanotubes
International Nuclear Information System (INIS)
Ni Xiaoxi; Li Baowen; Zhang Gang
2011-01-01
We study the thermal transport in completely unzipped carbon nanotubes, which are called graphene nanoribbons, partially unzipped carbon nanotubes, which can be seen as carbon-nanotube-graphene-nanoribbon junctions, and carbon nanotubes by using molecular dynamics simulations. It is found that the thermal conductivity of a graphene nanoribbon is much less than that of its perfect carbon nanotube counterparts because of the localized phonon modes at the boundary. A partially unzipped carbon nanotube has the lowest thermal conductivity due to additional localized modes at the junction region. More strikingly, a significant thermal rectification effect is observed in both partially unzipped armchair and zigzag carbon nanotubes. Our results suggest that carbon-nanotube-graphene-nanoribbon junctions can be used in thermal energy control.
Thermal conductivity of different colored compomers.
Guler, Cigdem; Keles, Ali; Guler, Mehmet S; Karagoz, Sendogan; Cora, Ömer N; Keskin, Gul
2017-11-10
Compomers are mostly used in primary dentition. The thermal conductivity properties of traditional or colored compomers have not been investigated in detail so far. The aim of this in vitro study was to assess and compare the thermal conductivities of traditional and colored compomers. Two sets of compomers - namely, Twinky Star (available in berry, lemon, green, silver, blue, pink, gold and orange shades) and Dyract Extra (available in B1, A3 and A2 shades) - were included in this study. All of the traditional and colored compomers were applied to standard molds and polymerized according to the manufacturers' instructions. Three samples were prepared from each compomer. Measurements were conducted using a heat conduction test setup, and the coefficient of heat conductivity was calculated for each material. The heat conductivity coefficients were statistically analyzed using Kruskal-Wallis and Duncan tests. Uncertainty analysis was also performed on the calculated coefficients of heat conductivity. Statistically significant differences were found (p<0.05) between the thermal conductivity properties of the traditional and colored compomers examined. Among all of the tested compomers, the silver shade compomer exhibited the highest coefficient of heat conductivity (p<0.05), while the berry shade exhibited the lowest coefficient (p<0.05). Uncertainty analyses revealed that 6 out of 11 samples showed significant differences. The silver shade compomer should be avoided in deep cavities. The material properties could be improved for colored compomers.
Gas storage carbon with enhanced thermal conductivity
Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.
2000-01-01
A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.
Thermal conductivity of ytterbia-stabilized zirconia
International Nuclear Information System (INIS)
Feng, Jing; Ren, Xiaorui; Wang, Xiaoyan; Zhou, Rong; Pan, Wei
2012-01-01
The 3–10 mol.% Yb 2 O 3 –ZrO 2 (YbSZ) ceramics were synthesized by solid reaction methods and sintered at 1600 °C. The phases were identified by high-resolution X-ray diffraction with a K α1 monochromator, and it was found that the tetragonal-prime phases exist in 3–6 mol.% YbSZ. The thermal conductivity of the sintered YbSZ ceramics were measured using a laser flash method and it was demonstrated that the values of the thermal conductivities of the 5 and 10 mol.% YbSZ ceramics are the lowest at high and room temperature, respectively, and much lower than that of 7YSZ. The lower thermal conductivity of YbSZ ceramics may be due to the heavier dopant of ytterbium and the tetragonal-prime ZrO 2 phase.
Thermal conductivity of electron-irradiated graphene
Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios
2017-10-01
We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.
Overview of thermal conductivity models of anisotropic thermal insulation materials
Skurikhin, A. V.; Kostanovsky, A. V.
2017-11-01
Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.
Thermal conductivity of bulk and monolayer MoS2
Gandi, Appala
2016-02-26
© Copyright EPLA, 2016. We show that the lattice contribution to the thermal conductivity of MoS2 strongly dominates the carrier contribution in a broad temperature range from 300 to 800 K. Since theoretical insight into the lattice contribution is largely missing, though it would be essential for materials design, we solve the Boltzmann transport equation for the phonons self-consistently in order to evaluate the phonon lifetimes. In addition, the length scale for transition between diffusive and ballistic transport is determined. The low out-of-plane thermal conductivity of bulk MoS2 (2.3 Wm-1K-1 at 300 K) is useful for thermoelectric applications. On the other hand, the thermal conductivity of monolayer MoS2 (131 Wm-1K-1 at 300 K) is comparable to that of Si.
High electron thermal conductivity of chiral carbon nanotubes
International Nuclear Information System (INIS)
Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, George; Mensah, N.G.
2003-11-01
Solving the Boltzmann kinetic equation with energy dispersion relation obtained in the tight binding approximation, the carrier thermal conductivity κ e of a chiral carbon nanotube (CCNT) was determined. The dependence of κ e on temperature T, chiral geometric angle φ h and overlap integrals Δ z and Δ s were obtained. The results were numerically analysed. Unusually high values of κ e were observed suggesting that ne is nontrivial in the calculation of the thermal conductivity κ of CCNT. More interestingly we noted also that at 104 K and for Δ z and Δ s values of 0.020 eV and 0.0150 eV respectively the κ e value is about 41000 W/mK as reported for a 99.9% pure 12 C crystal. We predict that the electron thermal conductivity of CCNT should exceed 200,000 W/mK at ∼ 80 K. (author)
Thermal conductivities and conduction mechanisms of Sb-Te Alloys at high temperatures
International Nuclear Information System (INIS)
Lan, Rui; Endo, Rie; Kobayashi, Yoshinao; Susa, Masahiro; Kuwahara, Masashi
2011-01-01
Sb-Te alloys have drawn much attention due to its application in phase change memory as well as the unique properties as chalcogenide. In this work, the thermal conductivities of Sb-x mol%Te alloys (x = 14, 25, 44, 60, 70, and 90) have been measured by the hot strip method from room temperature up to temperature just below the respective melting points. For the intermetallic compound Sb 2 Te 3 (x = 60), the thermal conductivity decreases up to approximately 600 K and then increases. For other Sb-x mol%Te alloys where x > 60, the thermal conductivities of the alloys decrease with increasing temperature. In contrast, for x < 60, the thermal conductivities of the alloys keep roughly constant up to approximately 600 K and then increase with increasing temperature. It is proposed that free electron dominates the heat transport below 600 K, and ambipolar diffusion also contributes to the increase in the thermal conductivity at higher temperatures. The prediction equation from temperature and chemical composition has been proposed for thermal conductivities of Sb-Te alloys.
Thermal conductivity issues of EB-PVD thermal barrier coatings
Energy Technology Data Exchange (ETDEWEB)
Schulz, U.; Raetzer-Scheibe, H.J.; Saruhan, B. [DLR - German Aerospace Center, Institute of Materials Research, 51170 Cologne (Germany); Renteria, A.F. [BTU, Physical Metallurgy and Materials Technology, Cottbus (Germany)
2007-09-15
The thermal conductivity of electron-beam physical vapor deposited (EB-PVD) thermal barrier coatings (TBCs) was investigated by the Laser Flash technique. Sample type and methodology of data analyses as well as atmosphere during the measurement have some influence on the data. A large variation of the thermal conductivity was found by changes in TBC microstructure. Exposure at high temperature caused sintering of the porous microstructure that finally increased thermal conductivity up to 30 %. EB-PVD TBCs show a distinct thickness dependence of the thermal conductivity due to the anisotropic microstructure in thickness direction. Thin TBCs had a 20 % lower thermal conductivity than thick coatings. New compositions of the ceramic top layer offer the largest potential to lower thermal conductivity. Values down to 0.8W/(mK) have been already demonstrated with virgin coatings of pyrochlore compositions. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Die Waermeleitfaehigkeit von elektronenstrahl-aufgedampften (EB-PVD) Waermedaemmschichten (TBCs) wurde mittels Laser-Flash untersucht. Probentyp, Messmethodik und die Atmosphaere waehrend der Messung haben einen Einfluss auf die Ergebnisse. Aenderungen in der Mikrostruktur der TBC fuehrten zu grossen Unterschieden der Waermeleitfaehigkeit. Eine Hochtemperaturbelastung verursachte Sintervorgaenge in der poroesen Mikrostruktur, was die Waermeleitfaehigkeit um bis zu 30 % ansteigen liess. EB-PVD TBCs zeigen eine deutliche Dickenabhaengigkeit der Waermeleitfaehigkeit durch die Anisotropie der Mikrostruktur in dieser Richtung. Duenne TBCs haben eine um 20 % geringere Waermeleitfaehigkeit als dicke Schichten. Neue Zusammensetzungen der keramischen Deckschicht bieten die groessten Moeglichkeiten fuer eine Reduktion der Waermeleitfaehigkeit. Werte bis zu 0,8 W/(mK) wurden damit bereits erreicht. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Experimental analysis of current conduction through thermally ...
Indian Academy of Sciences (India)
Electrical properties of SiO2 grown on the Si-face of the epitaxial 4H-SiC ... Thermal oxide reliability is one of the most critical concerns in the realization of ... material for high temperature, high power, high frequency, and nonvolatile .... conduction mechanism in MOSiC system with varying oxide thicknesses has been.
Calculation of thermal conductivity of frozen food
International Nuclear Information System (INIS)
Orrego A, Carlos E.
1998-01-01
A simple model is presented for the presage of the thermal conductivities of frozen foods that combines different authors' proposals. For varied materials on those that there is available information of the modification of this property with the temperature in frozen systems, the comparison of the dear and empiric values is made to evaluate these predictions
Thermal conductivity measurements of pacific illite sediment
Hickox, C. E.; McVey, D. F.; Miller, J. B.; Olson, L. O.; Silva, A. J.
1986-07-01
Results are reported for effective thermal conductivity measurements performed in situ and in core samples of illite marine sediment. The measurements were obtained during a recent oceanographic expedition to a study site in the north central region of the Pacific Ocean. This study was undertaken in support of the U.S. Subseabed Disposal Project, the purpose of which is to investigate the scientific feasibility of using the fine-grained sediments of the sea floor as a repository for high-level nuclear waste. In situ measurements were made and 1.5-m-long hydrostatic piston cores were taken, under remote control, from a platform that was lowered to the sea floor, 5844 m below sea level. The in situ measurement of thermal conductivity was made at a nominal depth of 80 cm below the sediment surface using a specially developed, line-source, needle probe. Thermal conductivity measurements in three piston cores and one box core (obtained several kilometers from the study site) were made on shipboard using a miniature needle probe. The in situ thermal conductivity was approximately 0.91 W · m-1 · K-1. Values determined from the cores were within the range 0.81 to 0.89 W · m-1 · K-1.
Thermal conductivity measurements of Pacific illite sediment
International Nuclear Information System (INIS)
Hickox, C.E.; McVey, D.F.; Miller, J.B.; Olson, L.O.; Silva, A.J.
1986-01-01
Results are reported for effective thermal conductivity measurements performed in situ and in core samples of illite marine sediment. The measurements were obtained during a recent oceanographic expedition to a study site in the north central region of the Pacific Ocean. This study was undertaken in support of the US Subseabed Disposal Project, the purpose of which is to investigate the scientific feasibility of using the fine grained sediments of the sea floor as a repository for high level nuclear waste. In situ measurements were made and 1.5-meter long hydrostatic piston cores were taken, under remote control, from a platform that was lowered to the sea floor, 5844 m below sea level. The in situ measurement of thermal conductivity was made at a nominal depth of 80 cm below the sediment surface using a specially developed, line source, needle probe. Thermal conductivity measurements in three piston cores and one box core (obtained several kilometers from the study site) were made on shipboard using a miniature needle probe. The in situ thermal conductivity was approximately 0.91 W/m.K. Values determined from the cores were within the range 0.81 to 0.89 W/m.K
A new thermal conductivity model for nanofluids
Energy Technology Data Exchange (ETDEWEB)
Koo, Junemoo; Kleinstreuer, Clement [Department of Mechanical and Aerospace Engineering (United States)], E-mail: ck@eos.ncsu.edu
2004-12-15
In a quiescent suspension, nanoparticles move randomly and thereby carry relatively large volumes of surrounding liquid with them. This micro-scale interaction may occur between hot and cold regions, resulting in a lower local temperature gradient for a given heat flux compared with the pure liquid case. Thus, as a result of Brownian motion, the effective thermal conductivity, k{sub eff}, which is composed of the particles' conventional static part and the Brownian motion part, increases to result in a lower temperature gradient for a given heat flux. To capture these transport phenomena, a new thermal conductivity model for nanofluids has been developed, which takes the effects of particle size, particle volume fraction and temperature dependence as well as properties of base liquid and particle phase into consideration by considering surrounding liquid traveling with randomly moving nanoparticles.The strong dependence of the effective thermal conductivity on temperature and material properties of both particle and carrier fluid was attributed to the long impact range of the interparticle potential, which influences the particle motion. In the new model, the impact of Brownian motion is more effective at higher temperatures, as also observed experimentally. Specifically, the new model was tested with simple thermal conduction cases, and demonstrated that for a given heat flux, the temperature gradient changes significantly due to a variable thermal conductivity which mainly depends on particle volume fraction, particle size, particle material and temperature. To improve the accuracy and versatility of the k{sub eff}model, more experimental data sets are needed.
OBSERVATIONAL SIGNATURES OF THE CORONAL KINK INSTABILITY WITH THERMAL CONDUCTION
International Nuclear Information System (INIS)
Botha, G. J. J.; Arber, T. D.; Srivastava, Abhishek K.
2012-01-01
It is known from numerical simulations that thermal conduction along magnetic field lines plays an important role in the evolution of the kink instability in coronal loops. This study presents the observational signatures of the kink instability in long coronal loops when parallel thermal conduction is included. The three-dimensional nonlinear magnetohydrodynamic equations are solved numerically to simulate the evolution of a coronal loop that is initially in an unstable equilibrium. The loop has length 80 Mm, width 8 Mm, and an initial maximum twist of Φ = 11.5π, where Φ is a function of the radius. The initial loop parameters are obtained from a highly twisted loop observed in the Transition Region and Coronal Explorer (TRACE) 171 Å wave band. Synthetic observables are generated from the data. These observables include spatial and temporal averaging to account for the resolution and exposure times of TRACE images. Parallel thermal conduction reduces the maximum local temperature by up to an order of magnitude. This means that different spectral lines are formed and different internal loop structures are visible with or without the inclusion of thermal conduction. However, the response functions sample a broad range of temperatures. The result is that the inclusion of parallel thermal conductivity does not have as large an impact on observational signatures as the order of magnitude reduction in the maximum temperature would suggest; the net effect is a blurring of internal features of the loop structure.
Advanced Testing Method for Ground Thermal Conductivity
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)
2017-04-01
A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.
Fractional Heat Conduction Models and Thermal Diffusivity Determination
Directory of Open Access Journals (Sweden)
Monika Žecová
2015-01-01
Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.
THERMAL CONDUCTIVITY OF SIC AND C FIBERS
Energy Technology Data Exchange (ETDEWEB)
Youngblood, Gerald E.; Senor, David J.; Kowbel, W.; Webb, J.; Kohyama, Akira
2000-09-01
Several rod-shaped specimens with uniaxially packed fibers (Hi-Nicalon, Hi-Nicalon Type S, Tyranno SA and Amoco K1100 types) and a pre-ceramic polymer matrix have been fabricated. By using appropriate analytic models, the bare fiber thermal conductivity (Kf) and the interface thermal conductance (h) will be determined as a function of temperature up to 1000?C before and after irradiation for samples cut from these rods. Initial results are: (1) for unirradiated Hi-Nicalon SiC fiber, Kf varied from 4.3 up to 5.9 W/mK for the 27-1000?C range, (2) for unirradiated K1100 graphite fiber, Kf varied from 576 down to 242 W/mK for the 27-1000?C range, and (3) h = 43 W/cm2K at 27?C as a typical fiber/matrix interface conductance.
Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites
International Nuclear Information System (INIS)
Lee, Hyeon-Geun; Kim, Daejong; Lee, Seung Jae; Park, Ji Yeon; Kim, Weon-Ju
2017-01-01
Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al_2O_3 and Y_2O_3 sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.
Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures
Svehla, Roger A.
1962-01-01
Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.
Thermal effects in microfluidics with thermal conductivity spatially modulated
Vargas Toro, Agustín.
2014-05-01
A heat transfer model on a microfluidic is resolved analytically. The model describes a fluid at rest between two parallel plates where each plate is maintained at a differentially specified temperature and the thermal conductivity of the microfluidic is spatially modulated. The heat transfer model in such micro-hydrostatic configuration is analytically resolved using the technique of the Laplace transform applying the Bromwich Integral and the Residue theorem. The temperature outline in the microfluidic is presented as an infinite series of Bessel functions. It is shown that the result for the thermal conductivity spatially modulated has as a particular case the solution when the thermal conductivity is spatially constant. All computations were performed using the computer algebra software Maple. It is claimed that the analytical obtained results are important for the design of nanoscale devices with applications in biotechnology. Furthermore, it is suggested some future research lines such as the study of the heat transfer model in a microfluidic resting between coaxial cylinders with radially modulated thermal conductivity in order to achieve future developments in this area.
Multiscale Modeling of UHTC: Thermal Conductivity
Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Thermal conductivity of fusion solid breeder materials
International Nuclear Information System (INIS)
Liu, Y.Y.; Tam, S.W.
1986-06-01
Several simple and useful formulae for estimating the thermal conductivity of lithium-containing ceramic tritium breeder materials for fusion reactor blankets are given. These formulae account for the effects of irradiation, as well as solid breeder configuration, i.e., monolith or a packed bed. In the latter case, a coated-sphere concept is found more attractive in incorporating beryllia (a neutron multiplier) into the blanket than a random mixture of solid breeder and beryllia spheres
THERMAL CONDUCTIVITY OF THE POTENTIAL REPOSITORY HORIZON
Energy Technology Data Exchange (ETDEWEB)
J.E. BEAN
2004-09-27
The primary purpose of this report is to assess the spatial variability and uncertainty of bulk thermal conductivity in the host horizon for the repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). Design plans indicate that approximately 81 percent of the repository will be excavated in the Tptpll, approximately 12 percent in the Tptpmn, and the remainder in the Tptul and Tptpln (BSC 2004 [DIRS 168370]). This report provides three-dimensional geostatistical estimates of the bulk thermal conductivity for the four stratigraphic layers of the repository horizon. The three-dimensional geostatistical estimates of matrix and lithophysal porosity, dry bulk density, and matrix thermal conductivity are also provided. This report provides input to various models and calculations that simulate heat transport through the rock mass. These models include the ''Drift Degradation Analysis, Multiscale Thermohydrologic Model, Ventilation Model and Analysis Report, Igneous Intrusion Impacts on Waste Packages and Waste Forms, Drift-Scale Coupled Processes (DST and TH Seepage) Models'', and ''Drift Scale THM Model''. These models directly or indirectly provide input to the total system performance assessment (TSPA). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large-scale (centimeters-meters) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity.
Thermally Conductive Structural 2D Composite Materials
2012-08-14
Dimensional Pitch Polyimide Composite Micrographs ........ 27 Figure 23. 4-Ply Silver Polyimide Laminate ...through-thickness thermal conductivity of up to 20 W/m.K. This novel structural prepreg material will be developed through engineering of an optimal fiber...with an EPON 862/Epikure W epoxy resin system to form unidirectional prepreg tapes. Each prepreg was then cut to 6 inch by 6 inch plies and
Kang, Joon Sang; Wu, Huan; Hu, Yongjie
2017-12-13
Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of
Directory of Open Access Journals (Sweden)
Davood Domairry Ganji
2011-01-01
Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.
Nonlinear heat conduction equations with memory: Physical meaning and analytical results
Artale Harris, Pietro; Garra, Roberto
2017-06-01
We study nonlinear heat conduction equations with memory effects within the framework of the fractional calculus approach to the generalized Maxwell-Cattaneo law. Our main aim is to derive the governing equations of heat propagation, considering both the empirical temperature-dependence of the thermal conductivity coefficient (which introduces nonlinearity) and memory effects, according to the general theory of Gurtin and Pipkin of finite velocity thermal propagation with memory. In this framework, we consider in detail two different approaches to the generalized Maxwell-Cattaneo law, based on the application of long-tail Mittag-Leffler memory function and power law relaxation functions, leading to nonlinear time-fractional telegraph and wave-type equations. We also discuss some explicit analytical results to the model equations based on the generalized separating variable method and discuss their meaning in relation to some well-known results of the ordinary case.
Thermal conductivities of thin, sputtered optical films
International Nuclear Information System (INIS)
Henager, C.H. Jr.; Pawlewicz, W.T.
1991-05-01
The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO 2 /Si 3 N 4 ) n and Al(Al 2 O 3 /AIN) n . Sputtered films of more conventional materials like SiO 2 , Al 2 O 3 , Ta 2 O 5 , Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented
Measuring Thermal Conductivity at LH2 Temperatures
Selvidge, Shawn; Watwood, Michael C.
2004-01-01
For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.
Treating Fibrous Insulation to Reduce Thermal Conductivity
Zinn, Alfred; Tarkanian, Ryan
2009-01-01
A chemical treatment reduces the convective and radiative contributions to the effective thermal conductivity of porous fibrous thermal-insulation tile. The net effect of the treatment is to coat the surfaces of fibers with a mixture of transition-metal oxides (TMOs) without filling the pores. The TMO coats reduce the cross-sectional areas available for convection while absorbing and scattering thermal radiation in the pores, thereby rendering the tile largely opaque to thermal radiation. The treatment involves a sol-gel process: A solution containing a mixture of transition-metal-oxide-precursor salts plus a gelling agent (e.g., tetraethylorthosilicate) is partially cured, then, before it visibly gels, is used to impregnate the tile. The solution in the tile is gelled, then dried, and then the tile is fired to convert the precursor salts to the desired mixed TMO phases. The amounts of the various TMOs ultimately incorporated into the tile can be tailored via the concentrations of salts in the solution, and the impregnation depth can be tailored via the viscosity of the solution and/or the volume of the solution relative to that of the tile. The amounts of the TMOs determine the absorption and scattering spectra.
International Nuclear Information System (INIS)
Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith
2005-01-01
In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity
Effect of heat treatment temperature on binder thermal conductivities
International Nuclear Information System (INIS)
Wagner, P.
1975-12-01
The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature
K. S. Reddy; P Karthikeyan
2010-01-01
A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II) to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν) on the structure composition factor (ψ) of the food materials is studied. Th...
Reference Correlations of the Thermal Conductivity of Ethene and Propene.
Assael, M J; Koutian, A; Huber, M L; Perkins, R A
2016-09-01
New, wide-range reference equations for the thermal conductivity of ethene and propene as a function of temperature and density are presented. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. For ethene, we estimate the uncertainty (at the 95% confidence level) for the thermal conductivity from 110 K to 520 K at pressures up to 200 MPa to be 5% for the compressed liquid and supercritical phases. For the low-pressure gas phase (to 0.1 MPa) over the temperature range 270 K to 680 K, the estimated uncertainty is 4%. The correlation is valid from 110 K to 680 K and up to 200 MPa, but it behaves in a physically reasonable manner down to the triple point and may be used at pressures up to 300 MPa, although the uncertainty will be larger in regions where experimental data were unavailable. In the case of propene, data are much more limited. We estimate the uncertainty for the thermal conductivity of propene from 180 K to 625 K at pressures up to 50 MPa to be 5% for the gas, liquid, and supercritical phases. The correlation is valid from 180 K to 625 K and up to 50 MPa, but it behaves in a physically reasonable manner down to the triple point and may be used at pressures up to 100 MPa, although the uncertainty will be larger in regions where experimental data were unavailable. For both fluids, uncertainties in the critical region are much larger, since the thermal conductivity approaches infinity at the critical point and is very sensitive to small changes in density.
Radiative shocks with electron thermal conduction
International Nuclear Information System (INIS)
Borkowski, Kazimierz.
1988-01-01
The authors studies the influence of electron thermal conduction on radiative shock structure for both one- and two-temperature plasmas. The dimensionless ratio of the conductive length to the cooling length determines whether or not conduction is important, and shock jump conditions with conduction are established for a collisionless shock front. He obtains approximate solutions with the assumptions that the ionization state of the gas is constant and the cooling rate is a function of temperature alone. In the absence of magnetic fields, these solutions indicate that conduction noticeably influences normal-abundance interstellar shocks with velocities 50-100 km s -1 and dramatically affects metal-dominated shocks over a wide range of shock velocities. Magnetic fields inhibit conduction, but the conductive energy flux and the corresponding decrease in the post-shock electron temperature may still be appreciable. He calculates detailed steady-state radiative shock models in gas composed entirely of oxygen, with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich supernova remnants (SNRs). The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 kms -1 . All models with conduction have extensive warm photoionization zones, which provides better agreement with observed optical (O I) line strengths. However, the temperatures in these zones could be lowered by (Si II) 34.8 μm and (Ne II) 12.8 μm cooling if Si and Ne are present in appreciable abundance relative to O. Such low temperatures would be inconsistent with the observed (O I) emission in oxygen-rich SNRs
Effective thermal conductivity in thermoelectric materials
Energy Technology Data Exchange (ETDEWEB)
Baranowski, LL; Snyder, GJ; Toberer, ES
2013-05-28
Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.
Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity
Xu, Hang; Liu, Lu; Pasini, Damiano
Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.
15th International Conference on Thermal Conductivity
1978-01-01
Once again, it gives me a great pleasure to pen the Foreword to the Proceedings of the 15th International Conference on Thermal Conductivity. As in the past, these now biannual conferences pro vide a broadly based forum for those researchers actively working on this important property of matter to convene on a regular basis to exchange their experiences and report their findings. As it is apparent from the Table of Contents, the 15th Conference represents perhaps the broadest coverage of subject areas to date. This is indicative of the times as the boundaries between disciplines be come increasingly diffused. I am sure the time has come when Con ference Chairmen in coming years will be soliciting contributions not only in the physical sciences and engineering', but will actively seek contributions from the earth sciences and life sciences as well. Indeed, the thermal conductivity and related properties of geological and biological materials are becoming of increasing im portance to our way of life. As...
Effect of spatial variation of thermal conductivity on non-fourier heat conduction in a finite slab
International Nuclear Information System (INIS)
Goharkhah, Mohammad; Amiri, Shahin; Shokouhmand, Hossein
2009-01-01
The non-Fourier heat conduction problem in a finite slab is studied analytically. Dependence of thermal conductivity on space has been considered. The Laplace transform method is used to remove the time-dependent terms in the governing equation and the boundary conditions. The hyperbolic heat conduction (HHC) equation has been solved by employing trial solution method and collocation optimization criterion. Results show that the space-dependent thermal conductivity strongly affects the temperature distribution. A temperature peak on the insulated wall of the slab has been observed due to linear variation of thermal conductivity. It has been shown that the magnitude of the temperature peak increases with increasing the dimensionless relaxation time. To validate the approach, the results have been compared with the analytical solution obtained for a special case which shows a good agreement
Thermal conductivity at different humidity conditions
DEFF Research Database (Denmark)
Kristiansen, Finn Harken; Rode, Carsten
1999-01-01
by an accumulation of moisture as condensation in the parts of the insulation that lie immediately close to the cold side of the apparatus. The high l-values found are therefore of no practical importance in structures where no condensation occurs. Disregarding these condensation situations, the maximum increase...... humidified air can pass. Thus, it is possible to build up different degrees of moisture on each side of the test specimen.The thermal conductivity is determined for the following types of alternative insulation: sheep's wool, flax, paper insulation, perlite and mineral wool. The insulation products were...... Ekofiber Vind, Herawool (without support fibres), Heraflax, Isodan with and without salts, Miljø Isolering with and without salts, Perlite (water-repellent), and Rockwool A-batts for comparison.All measurements of the materials started with no affection of moisture. Nevertheless, results were achieved...
Lattice thermal conductivity of LaSe
Energy Technology Data Exchange (ETDEWEB)
Li, Wei, E-mail: tolwwt@163.com [School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); Pan, Zhong-liang; Chen, Jun-fang; He, Qin-yu [School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); Wang, Teng [School of Computer, South China Normal University, 510631 Guangzhou (China)
2015-07-15
The phonon dispersions and phonon density of states of LaSe are obtained, based on density functional perturbation theory and the norm-conserving pseudo-potential method. An anomaly in calculated phonon dispersion curves is presented and interpreted as a Kohn anomaly. The heat capacity of LaSe is calculated then. For the three-phonon process scattering, the lowest non-harmonic cubic terms of the interatomic potential are considered to obtain single-phonon relaxation rate by applying the Fermi's golden rule. For the boundary scattering, the average phonon relaxation time was obtained. Considering two kinds of phonon scattering mechanisms, we obtain the lattice thermal conductivity of LaSe.
Thermal conductivity of thoria-urania SIMFUEL
International Nuclear Information System (INIS)
Bhagat, R.K.; Kutty, T.R.G.; Kumar, Arun; Kulkarni, R.V.; Kamath, H.S.
2011-01-01
In India, there has been sustained interest in thorium fuels and fuel cycles because of large deposits of thorium as compared to very modest reserves uranium. An Advanced Heavy Water Reactor (AHWR) has been designed in BARC for the timely development of thorium-based technologies for the entire thorium fuel cycle. The average composition of the proposed fuel for AHWR is ThO 2 -3.45% 233 UO 2 . Thermal conductivity of the fuel is required in computer codes for modeling the fuel performance and is one of the important parameters which determine the maximum allowable power rating of the reactor fuel. In order to evaluate the safety and predict the performance of the fuel, it is important to understand the effect of fission products on thermophysical properties of the fuel under irradiation. Due to a very limited PIE data available in literature, measurement of these properties on simulated high burn-up nuclear fuels (SIMFUEL) was carried out
International Nuclear Information System (INIS)
Nagirnyi, T.S.
1993-01-01
Studies of the coupled processes in electrically conducting nonferromagnetic viscoelastic bodies usually begin with a system of equations that accounts for the influence of rheology on the mechanical and temperature fields. In this context, rheology is understood as the course of certain internal processes in the body that are reflected when the relaxation time and the defects of thermomechanical moduli are specified. In this work, the methods of continuum mechanics are used to state a system of equations for the quantitative description of coupled mechanical, thermal, and electromagnetic processes taking account of structural transformations in the context of the model of a rheologically simple electrically conducting nonferromagnetic body
Thermal Conductivity of Nanotubes: Effects of Chirality and Isotope Impurity
Gang, Zhang; Li, Baowen
2005-01-01
We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for t...
Improved coupling of the conduction and flow equations in TRAC
International Nuclear Information System (INIS)
Addessio, F.L.
1981-01-01
Recent nuclear-reactor-systems modeling efforts have been directed toward the development of computer codes capable of simulating transients in short computational times. For this reason, a stability enhancing two-stem method (SETS) has been applied to the two-phase flow equations in the Transient Reactor Analysis Code (TRAC) allowing the Courant limit to be violated. Unfortunately, the coupling between the wall conduction equation and the fluid-dynamics equations is performed semi-implicitly, that is, the wall-heat transfer term, is evaluated using old-time heat-transfer coefficients and wall temperatures and new-time coolant temperatures. This coupling may lead to numerical instabilities at large time steps because of large variations in the heat-transfer coefficient in certain regimes of the boiling curve. Consequently, simply using new-time wall temperatures is not sufficient. A technique that also incorporates new-time heat-transfer coefficients must be used
Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity
Miller, Robert A.; Kuczmarski, Maria a.
2009-01-01
This paper describes the development of a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air. As with other approaches, care is taken to ensure that the heat flow through the test sample is essentially one-dimensional. However, unlike other approaches, no attempt is made to use heated guards to block the flow of heat from the hot plate to the surroundings. It is argued that since large correction factors must be applied to account for guard imperfections when sample dimensions are small, it may be preferable to simply measure and correct for the heat that flows from the heater disc to directions other than into the sample. Experimental measurements taken in a prototype apparatus, combined with extensive computational modeling of the heat transfer in the apparatus, show that sufficiently accurate measurements can be obtained to allow determination of the thermal conductivity of low thermal conductivity materials. Suggestions are made for further improvements in the method based on results from regression analyses of the generated data.
Energy Technology Data Exchange (ETDEWEB)
Midttoemme, Kirsti
1997-12-31
The thermal conductivity of sedimentary rocks is an important parameter in basin modelling as the main parameter controlling the temperature within a sedimentary basin. This thesis presents measured thermal conductivities, mainly on clay- and mudstone. The measured values are compared with values obtained by using thermal conductivity models. Some new thermal conductivity models are developed based on the measured values. The values obtained are less than most previously published values. In a study of unconsolidated sediments a constant deviation was found between thermal conductivities measured with a needle probe and a divided bas apparatus. Accepted thermal conductivity models based on the geometric mean model fail to predict the thermal conductivity of clay- and mudstone. Despite this, models based on the geometric mean model, where the effect of porosity is taken account of by the geometric mean equation, seem to be the best. Existing models underestimate the textural influence on the thermal conductivity of clay- and mudstone. The grain size was found to influence the thermal conductivity of artificial quartz samples. The clay mineral content seems to be a point of uncertainty in both measuring and modelling thermal conductivity. A good universal thermal conductivity model must include many mineralogical and textural factors. Since this is difficult, different models restricted to specific sediment types and textures are suggested to be the best solution to obtain realistic estimates applicable in basin modelling. 243 refs., 64 figs., 31 tabs.
Lattice thermal conductivity in layered BiCuSeO
Kumar, S.; Schwingenschlö gl, Udo
2016-01-01
structure of the phonon dispersion. For example, at room temperature the optical phonons account for an enormous 42% of the lattice thermal conductivity. We also quantify the anisotropy of the lattice thermal conductivity and determine the distribution
On non-extensive nature of thermal conductivity
Indian Academy of Sciences (India)
Abstract. In this paper we study non-extensive nature of thermal conductivity. It is observed that there is similarity between non-extensive entropic index and fractal dimension obtained for the silica aerogel thermal conductivity data at low temperature.
Thermal conductivity of oriented polymer films
Nysten, B.; Gonry, P.; Issi, J.P.; Govaert, L.E.; Lemstra, P.J.; Tong, T.W.
1994-01-01
The effect of stretching on the thermal cond. of polyethylene (PE) films is presented and compared to results obtained previously for oriented polyacetylene films and PE fibers. As expected, the longitudinal thermal cond. increases with the stretching level and thermal cond. values comparable to
Thermal conductivity of carbon nanotube cross-bar structures
International Nuclear Information System (INIS)
Evans, William J; Keblinski, Pawel
2010-01-01
We use non-equilibrium molecular dynamics (NEMD) to compute the thermal conductivity (κ) of orthogonally ordered cross-bar structures of single-walled carbon nanotubes. Such structures exhibit extremely low thermal conductivity in the range of 0.02-0.07 W m -1 K -1 . These values are five orders of magnitude smaller than the axial thermal conductivity of individual carbon nanotubes, and are comparable to the thermal conductivity of still air.
Modeling conductive cooling for thermally stressed dairy cows.
Gebremedhin, Kifle G; Wu, Binxin; Perano, K
2016-02-01
Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mean free path dependent phonon contributions to interfacial thermal conductance
Energy Technology Data Exchange (ETDEWEB)
Tao, Yi; Liu, Chenhan; Chen, Weiyu; Cai, Shuang; Chen, Chen; Wei, Zhiyong; Bi, Kedong; Yang, Juekuan; Chen, Yunfei, E-mail: yunfeichen@seu.edu.cn
2017-06-15
Interfacial thermal conductance as an accumulation function of the phonon mean free path is rigorously derived from the thermal conductivity accumulation function. Based on our theoretical model, the interfacial thermal conductance accumulation function between Si/Ge is calculated. The results show that the range of mean free paths (MFPs) for phonons contributing to the interfacial thermal conductance is far narrower than that for phonons contributing to the thermal conductivity. The interfacial thermal conductance is mainly contributed by phonons with shorter MFPs, and the size effects can be observed only for an interface constructed by nanostructures with film thicknesses smaller than the MFPs of those phonons mainly contributing to the interfacial thermal conductance. This is why most experimental measurements cannot detect size effects on interfacial thermal conductance. A molecular dynamics simulation is employed to verify our proposed model. - Highlights: • A model to account for the interfacial thermal conductance as an accumulation function of phonon mean free path is proposed; • The model predicts that the range of mean free paths (MFPs) for phonons contributing to the interfacial thermal conductance is far narrower than that contributing to the thermal conductivity; • This model can be conveniently implemented to estimate the size effects on the interfacial thermal conductance for the interfaces formed by a nanostructure contacting a substrate.
Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity
Directory of Open Access Journals (Sweden)
F. Dubuffet
2002-01-01
Full Text Available The thermal conductivity of mantle materials has two components, the lattice component klat from phonons and the radiative component krad due to photons. These two contributions of variable thermal conductivity have a nonlinear dependence in the temperature, thus endowing the temperature equation in mantle convection with a strongly nonlinear character. The temperature derivatives of these two mechanisms have different signs, with ∂klat /∂T negative and dkrad /dT positive. This offers the possibility for the radiative conductivity to control the chaotic boundary layer instabilities developed in the deep mantle. We have parameterized the weight factor between krad and klat with a dimensionless parameter f , where f = 1 corresponds to the reference conductivity model. We have carried out two-dimensional, time-dependent calculations for variable thermal conductivity but constant viscosity in an aspect-ratio 6 box for surface Rayleigh numbers between 106 and 5 × 106. The averaged Péclet numbers of these flows lie between 200 and 2000. Along the boundary in f separating the chaotic and steady-state solutions, the number decreases and the Nusselt number increases with internal heating, illustrating the feedback between internal heating and radiative thermal conductivity. For purely basal heating situation, the time-dependent chaotic flows become stabilized for values of f of between 1.5 and 2. The bottom thermal boundary layer thickens and the surface heat flow increases with larger amounts of radiative conductivity. For magnitudes of internal heating characteristic of a chondritic mantle, much larger values of f , exceeding 10, are required to quench the bottom boundary layer instabilities. By isolating the individual conductive mechanisms, we have ascertained that the lattice conductivity is partly responsible for inducing boundary layer instabilities, while the radiative conductivity and purely depth-dependent conductivity exert a stabilizing
The thermal conductivity of beds of spheres
International Nuclear Information System (INIS)
McElroy, D.L.; Weaver, F.J.; Shapiro, M.; Longest, A.W.; Yarbrough, D.W.
1987-01-01
The thermal conductivities (k) of beds of solid and hollow microspheres were measured using two radial heat flow techniques. One technique provided k-data at 300 K for beds with the void spaces between particles filled with argon, nitrogen, or helium from 5 kPa to 30 MPa. The other technique provided k-data with air at atmospheric pressure from 300 to 1000 K. The 300 K technique was used to study bed systems with high k-values that can be varied by changing the gas type and gas pressure. Such systems can be used to control the operating temperature of an irradiation capsule. The systems studied included beds of 500 μm dia solid Al 2 O 3 , the same Al 2 O 3 spheres mixed with spheres of silica--alumina or with SiC shards, carbon spheres, and nickel spheres. Both techniques were used to determine the k-value of beds of hollow spheres with solid shells of Al 2 O 3 , Al 2 O 3 /center dot/7 w/o Cr 2 O 3 , and partially stabilized ZrO 2 . The hollow microspheres had diameters from 2100 to 3500 μm and wall thicknesses from 80 to 160 μm. 12 refs., 7 figs., 4 tabs
Development of irradiated UO2 thermal conductivity model
International Nuclear Information System (INIS)
Lee, Chan Bock; Bang Je-Geon; Kim Dae Ho; Jung Youn Ho
2001-01-01
Thermal conductivity model of the irradiated UO 2 pellet was developed, based upon the thermal diffusivity data of the irradiated UO 2 pellet measured during thermal cycling. The model predicts the thermal conductivity by multiplying such separate correction factors as solid fission products, gaseous fission products, radiation damage and porosity. The developed model was validated by comparison with the variation of the measured thermal diffusivity data during thermal cycling and prediction of other UO 2 thermal conductivity models. Since the developed model considers the effect of gaseous fission products as a separate factor, it can predict variation of thermal conductivity in the rim region of high burnup UO 2 pellet where the fission gases in the matrix are precipitated into bubbles, indicating that decrease of thermal conductivity by bubble precipitation in rim region would be significantly compensated by the enhancing effect of fission gas depletion in the UO 2 matrix. (author)
An appraisal of computational techniques for transient heat conduction equation
International Nuclear Information System (INIS)
Kant, T.
1983-01-01
A semi-discretization procedure in which the ''space'' dimension is discretized by the finite element method is emphasized for transient problems. This standard methodology transforms the space-time partial differential equation (PDE) system into a set of ordinary differential equations (ODE) in time. Existing methods for transient heat conduction calculations are then reviewed. Existence of two general classes of time integration schemes- implicit and explicit is noted. Numerical stability characteristics of these two methods are elucidated. Implicit methods are noted to be numerically stable, permitting large time steps, but the cost per step is high. On the otherhand, explicit schemes are noted to be inexpensive per step, but small step size is required. Low computational cost of the explicit schemes make it very attractive for nonlinear problems. However, numerical stability considerations requiring use of very small time steps come in the way of its general adoption. Effectiveness of the fourth-order Runge-Kutta-Gill explicit integrator is then numerically evaluated. Finally we discuss some very recent works on development of computational algorithms which not only achieve unconditional stability, high accuracy and convergence but involve computations on matrix equations of elements only. This development is considered to be very significant in the light of our experience gained for simple heat conduction calculations. We conclude that such algorithms have the potential for further developments leading to development of economical methods for general transient analysis of complex physical systems. (orig.)
IMPSOR, 3-D Boundary Problems Solution for Thermal Conductivity Calculation
International Nuclear Information System (INIS)
Wilson, D.G.; Williams, M.A.
1994-01-01
1 - Description of program or function: IMPSOR implements finite difference methods for multidimensional moving boundary problems with Dirichlet or Neumann boundary conditions. The geometry of the spatial domain is a rectangular parallelepiped with dimensions specified by the user. Dirichlet or Neumann boundary conditions may be specified on each face of the box independently. The user defines the initial and boundary conditions as well as the thermal and physical properties of the problem and several parameters for the numerical method, e.g. degree of implicitness, time-step size. 2 - Method of solution: The spatial domain is partitioned and the governing equation discretized, which yields a nonlinear system of equations at each time-step. This nonlinear system is solved using a successive over-relaxation (SOR) algorithm. For a given node, the previous iteration's temperature and thermal conductivity values are used for advanced points with current values at previous points. This constitutes a Gauss-Seidel iteration. Most of the computing time used by the numerical method is spent in the iterative solution of the nonlinear system. The SOR scheme employed is designed to accommodate vectorization on a Cray X-MP. 3 - Restrictions on the complexity of the problem: Maximum of 70,000 nodes
Reduction in thermal conductivity of ceramics due to radiation damage
International Nuclear Information System (INIS)
Klemens, P.G.; Hurley, G.F.; Clinard, F.W. Jr.
1976-01-01
Ceramics are required for a number of applications in fusion reactors. In several of these applications, the thermal conductivity is an important design parameter as it affects the level of temperature and thermal stress in service. Ceramic insulators are known to suffer substantial reduction in thermal conductivity due to neutron irradiation damage. The present study estimates the reduction in thermal conductivity at high temperature due to radiation induced defects. Point, extended, and extended partly transparent defects are considered
Determination of thermal conductivity of magnesium-alloys
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An indirect method, Angstroms method was adopted and an instrument was designed to determine the thermal conductivity of magnesium metal and alloys. Angstroms method is an axial periodic heat flow technique by which the thermal diffusivity can be measured directly. Then thermal conductivity can be obtained with relation to thermal diffusivity. Compared with the recommended data from the literature the fitted values of the thermal diffiusivity correspond with 3%, and the credible probability of the thermal conductivity in the range of 0-450 ℃ is about 95%. The method is applicable in the given temperature range.
Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials
Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.
2001-01-01
Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.
Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers
Directory of Open Access Journals (Sweden)
Byong Chol Bai
2015-01-01
Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.
International Nuclear Information System (INIS)
Choudhury, M.; Hazarika, G.C.; Sibanda, P.
2013-01-01
We investigate the effects of temperature dependent viscosity and thermal conductivity on natural convection flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface. The flow is permeated by uniform transverse magnetic field. The fluid viscosity and thermal conductivity are assumed to vary as inverse linear functions of temperature. The coupled non-linear systems of partial differential equations are solved using the finite difference method. The effects of variable viscosity parameter, variable thermal conductivity parameter and magnetic parameter on the flow field and the heat transfer characteristics are discussed and shown graphically. (author)
Thermal conductance of heat transfer interfaces for conductively cooled superconducting magnets
International Nuclear Information System (INIS)
Cooper, T.L.; Walters, J.D.; Fikse, T.H.
1996-01-01
Minimizing thermal resistances across interfaces is critical for efficient thermal performance of conductively cooled superconducting magnet systems. Thermal conductance measurements have been made for a flexible thermal coupling, designed to accommodate magnet-to-cryocooler and cryocooler-to-shield relative motion, and an interface incorporating Multilam designed as a sliding thermal connector for cryocoolers. Temperature changes were measured across each interface as a function of heat input. Thermal conductances have been calculated for each interface, and the impact of each interface on conductively cooled magnet systems will be discussed
Thermal Conductivity of Carbon Nanotubes Embedded in Solids
Institute of Scientific and Technical Information of China (English)
CAO Bing-Yang; HOU Quan-Wen
2008-01-01
@@ A carbon-nanotube-atom fixed and activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes (CNTs) embedded in solid argon. Though a 6.5% volume fraction of CNTs increases the composite thermal conductivity to about twice as much as that of the pure basal material, the thermal conductivity of CNTs embedded in solids is found to be decreased by 1/8-1/5with reference to that of pure ones. The decrease of the intrinsic thermal conductivity of the solid-embedded CNTs and the thermal interface resistance are demonstrated to be responsible for the results.
Institute of Scientific and Technical Information of China (English)
X.G.Liang; X.S.Ge; 等
1992-01-01
This investigation was done to study the gas filled powder insulation and thermal conductivity probe for the measurent of thermal conductivity of powders.The mathematical analysis showed that the heat capacity of the probe itself and the thermal rsistance between the probe and powder must be considered .The authors developed a slender probe and measured the effective thermal conductivity of sillca and carbon black powders under a variety of conditions.
Temperature dependence of the thermal conductivity in chiral carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Mensah, N.G. [Department of Mathematics, University of Cape Coast, Cape Coast (Ghana); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Nkrumah, G. [Department of Physics, University of Ghana, Legon, Accra (Ghana) and Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: geon@ug.edu.gh; Mensah, S.Y. [Department of Physics, Laser and Fibre Optics Centre, University of Cape Coast, Cape Coast (Ghana); Allotey, F.K.A. [Institute of Mathematical Sciences, Accra (Ghana)
2004-08-30
The thermal conductivity of a chiral carbon nanotube (CCNT) is calculated using a tractable analytical approach. This is based on solving the Boltzmann kinetic equation with energy dispersion relation obtained in the tight binding approximation. The results obtained are numerically analysed. Unusually high electron thermal conductivity {chi}{sub ez} is observed along the tubular axis. The dependence of {chi}{sub ez} against temperature T was plotted for varying {delta}{sub z} and a given {delta}{sub s} ({delta}{sub z} and {delta}{sub s} are the overlapping integrals (exchange energy) for the jumps along the tubular axis and the base helix, respectively). It is noted that {chi}{sub ez} shows a peaking behaviour before falling off at higher temperature. As {delta}{sub z} varies from 0.010 eV to 0.048 eV for a given {delta}{sub s}=0.0150 eV, the peak values of {chi}{sub ez} shift from 40000 W/m K at 100 K to 55000 W/m K at about 300 K. Interestingly our results at 104 K which is 41000 W/m K and occurred at {delta}{sub z}=0.023 eV compares very well with that reported for a 99.9% isotopically enriched {sup 12}C diamond crystal. Another interesting result obtained is the fact that the circumferential electron thermal conductivity {chi}{sub ec} appears to be very small. The ratio of {chi}{sub ez} to {chi}{sub ec} is of the order of 2.
Thermal conductivity of niobium single crystals in a magnetic field
International Nuclear Information System (INIS)
Gladun, C.; Vinzelberg, H.
1980-01-01
The thermal conductivity in longitudinal magnetic fields up to 5 T and in the temperature range 3.5 to 15 K is measured in two high purity niobium single crystals having residual resistivity ratios of 22700 and 19200 and orientations of the rod axis [110] and [100]. The investigations show that by means of the longitudinal magnetic field the thermal conductivity may decrease only to a limiting value. In the crystal directions [110] and [100] for the ratio of the thermal conductivity in zero field and the thermal conductivity in the saturation field the temperature-independent factors 1.92 and 1.27, respectively, are determined. With the aid of these factors the thermal conductivity in the normal state is evaluated from the measured values of thermal conductivity below Tsub(c) in the magnetic field. The different conduction and scattering mechanisms are discussed. (author)
Studies on Enhancing Transverse Thermal Conductivity Carbon/Carbon Composites
National Research Council Canada - National Science Library
Manocha, Lalit M; Manocha, Satish M; Roy, Ajit
2007-01-01
The structure derived potential properties of Graphite such as high stiffness coupled with high thermal conductivity and low coefficient of thermal expansion have been better achieved in Carbon fibers...
Thermal conductivity measurements in unsaturated hydrate-bearing sediments
Dai, Sheng; Cha, Jong-Ho; Rosenbaum, Eilis J.; Zhang, Wu; Seol, Yongkoo
2015-08-01
Current database on the thermal properties of hydrate-bearing sediments remains limited and has not been able to capture their consequential changes during gas production where vigorous phase changes occur in this unsaturated system. This study uses the transient plane source (TPS) technique to measure the thermal conductivity of methane hydrate-bearing sediments with various hydrate/water/gas saturations. We propose a simplified method to obtain thermal properties from single-sided TPS signatures. Results reveal that both volume fraction and distribution of the pore constituents govern the thermal conductivity of unsaturated specimens. Thermal conductivity hysteresis is observed due to water redistribution and fabric change caused by hydrate formation and dissociation. Measured thermal conductivity increases evidently when hydrate saturation Sh > 30-40%, shifting upward from the geometric mean model prediction to a Pythagorean mixing model. These observations envisage a significant drop in sediment thermal conductivity when residual hydrate/water saturation falls below ~40%, hindering further gas production.
Thermal conductivity of silicon nanocrystals and polystyrene nanocomposite thin films
International Nuclear Information System (INIS)
Juangsa, Firman Bagja; Muroya, Yoshiki; Nozaki, Tomohiro; Ryu, Meguya; Morikawa, Junko
2016-01-01
Silicon nanocrystals (SiNCs) are well known for their size-dependent optical and electronic properties; they also have the potential for low yet controllable thermal properties. As a silicon-based low-thermal conductivity material is required in microdevice applications, SiNCs can be utilized for thermal insulation. In this paper, SiNCs and polymer nanocomposites were produced, and their thermal conductivity, including the density and specific heat, was measured. Measurement results were compared with thermal conductivity models for composite materials, and the comparison shows a decreasing value of the thermal conductivity, indicating the effect of the size and presence of the nanostructure on the thermal conductivity. Moreover, employing silicon inks at room temperature during the fabrication process enables a low cost of fabrication and preserves the unique properties of SiNCs. (paper)
International Nuclear Information System (INIS)
Bazinski, S.J.; Wang, X.; Sangeorzan, B.P.; Guessous, L.
2016-01-01
The objective of this research is to experimentally determine the effective in-plane thermal conductivity of a lithium iron phosphate pouch cell. An experimental setup is designed to treat the battery cell as a straight rectangular fin in natural convection. Thermography and heat sensors were used to collect data that yields the temperature distribution and heat transfer rate of the fin, respectively. One-dimensional fin equations were combined with the experimental data to yield the in-plane thermal conductivity through an iterative process that best-fits the data to the model. The experiment was first calibrated using reference plates of different metals. The fin model predicts the thermal conductivity value well with a correction factor of approximately 7%–9%. Using this experimental method, the in-plane thermal conductivity of the pouch cells is measured at different state of charge (SOC) levels. The in-plane thermal conductivity decreases approximately 0.13 Wm"−"1 °C"−"1 per 10% increase in SOC for the LFP cells. This translates to a 4.2% overall decrease in the thermal conductivity as the cell becomes fully charged. - Highlights: • A method is proposed to measure the in-plane thermal conductivity of a pouch cell. • The thermal conductivity decreases slightly with increase in SOC for the LFP cells. • The fin model predicts the thermal conductivity well with a correction factor.
Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation
Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.
2016-01-01
Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030
Electrothermal efficiency, temperature and thermal conductivity of ...
Indian Academy of Sciences (India)
Different types of DC plasma torches operating at power levels between 2 to 6000 kW [1] ... systems and showed that η was higher for the LPPS system. ..... [8] M I Boulos, P Fauchais and E Pfender, Thermal plasmas fundamentals and ...
Assessment of effective thermal conductivity in U–Mo metallic fuels with distributed gas bubbles
Energy Technology Data Exchange (ETDEWEB)
Hu, Shenyang; Casella, Andrew M.; Lavender, Curt A.; Senor, David J.; Burkes, Douglas E.
2015-07-15
This work presents a numerical method to assess the relative impact of various microstructural features including grain sizes, nanometer scale intragranular gas bubbles, and larger intergranular gas bubbles in irradiated U–Mo metallic fuels on the effective thermal conductivity. A phase-field model was employed to construct a three-dimensional polycrystalline U–Mo fuel alloy with a given crystal morphology and gas bubble microstructures. An effective thermal conductivity “concept” was taken to capture the effect of polycrystalline structures and gas bubble microstructures with significant size differences on the thermal conductivity. The thermal conductivity of inhomogeneous materials was calculated by solving the heat transport equation. The obtained results are in reasonably good agreement with experimental measurements made on irradiated U–Mo fuel samples containing similar microstructural features. The developed method can be used to predict the thermal conductivity degradation in operating nuclear fuels if the evolution of microstructures is known during operation of the fuel.
Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study
Energy Technology Data Exchange (ETDEWEB)
Bresme, F., E-mail: f.bresme@imperial.ac.uk [Chemical Physics Section, Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom and Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Biddle, J. W.; Sengers, J. V.; Anisimov, M. A. [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)
2014-04-28
We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.
Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study
International Nuclear Information System (INIS)
Bresme, F.; Biddle, J. W.; Sengers, J. V.; Anisimov, M. A.
2014-01-01
We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures
Molecular dynamics simulation of thermal conductivities of superlattice nanowires
Institute of Scientific and Technical Information of China (English)
YANG; Juekuan(杨决宽); CHEN; Yunfei(陈云飞); YAN; Jingping(颜景平)
2003-01-01
Nonequilibrium molecular dynamics simulations were carried out to investigate heat transfer in superlattice nanowires. Results show that for fixed period length superlattice nanowires, the ratio of the total interfacial thermal resistance to the total thermal resistance and the effective thermal conductivities are invariant with the changes in interface numbers. Increasing the period length leads to an increase in the average interfacial thermal resistance, which indicates that the interfacial thermal resistance depends not only on the materials that constitute the alternating segments of superlattice nanowires, but also on the lattice strain throughout the segments. The modification of the lattice structure due to the lattice mismatch should be taken into account in the acoustic mismatch model. Simulation results also demonstrated the size confinement effect on the thermal conductivities for low dimensional structures, i.e. the thermal conductivities and the interfacial thermal resistance increase as the nanowire cross-sectional area increases.
International Nuclear Information System (INIS)
Tan, Shi-Hua; Tang, Li-Ming; Chen, Ke-Qiu
2014-01-01
The phonon scattering and thermal conductance properties have been studied in two coupled graphene nanoribbons connected by different bridge atoms by using density functional theory in combination with non-equilibrium Green's function approach. The results show that a wide range of thermal conductance tuning can be realized by changing the chemical bond strength and atom mass of the bridge atoms. It is found that the chemical bond strength (bridge atom mass) plays the main role in phonon scattering at low (high) temperature. A simple equation is presented to describe the relationship among the thermal conductance, bridge atom, and temperature.
Enhanced thermal conductance of polymer composites through embeddingaligned carbon nanofibers
Directory of Open Access Journals (Sweden)
Dale K. Hensley
2016-07-01
Full Text Available The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers.
Thermal Conductivity Measurement of Anisotropic Biological Tissue In Vitro
Yue, Kai; Cheng, Liang; Yang, Lina; Jin, Bitao; Zhang, Xinxin
2017-06-01
The accurate determination of the thermal conductivity of biological tissues has implications on the success of cryosurgical/hyperthermia treatments. In light of the evident anisotropy in some biological tissues, a new modified stepwise transient method was proposed to simultaneously measure the transverse and longitudinal thermal conductivities of anisotropic biological tissues. The physical and mathematical models were established, and the analytical solution was derived. Sensitivity analysis and experimental simulation were performed to determine the feasibility and measurement accuracy of simultaneously measuring the transverse and longitudinal thermal conductivities. The experimental system was set up, and its measurement accuracy was verified by measuring the thermal conductivity of a reference standard material. The thermal conductivities of the pork tenderloin and bovine muscles were measured using the traditional 1D and proposed methods, respectively, at different temperatures. Results indicate that the thermal conductivities of the bovine muscle are lower than those of the pork tenderloin muscle, whereas the bovine muscle was determined to exhibit stronger anisotropy than the pork tenderloin muscle. Moreover, the longitudinal thermal conductivity is larger than the transverse thermal conductivity for the two tissues and all thermal conductivities increase with the increase in temperature. Compared with the traditional 1D method, results obtained by the proposed method are slightly higher although the relative deviation is below 5 %.
Tailoring thermal conductivity via three-dimensional porous alumina.
Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol
2016-12-09
Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m -1 ·K -1 , which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.
Tailoring thermal conductivity via three-dimensional porous alumina
Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol
2016-01-01
Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m−1·K−1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties. PMID:27934930
Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy
Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro
2017-11-01
Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.
Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy
Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro
2018-06-01
Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.
Thermal conductivity and thermal expansion of hot-pressed trisodium uranate (Na3UO4)
International Nuclear Information System (INIS)
Hofman, G.L.; Bottcher, J.H.; Buzzell, J.A.; Schwartzenberger, G.M.
1986-01-01
Thermal conductivity and thermal expansion of Na 3 UO 4 prepared by two different reaction processes were determined over a temperature range of 20-1000 0 C. Compositional differences in the samples resulting from the different reaction processes have a pronounced effect on thermal expansion and on thermal conductivity below 500 0 C. Above 500 0 C, these compositional differences in the thermal conductivities decrease. (orig.)
Thermal equation of state for lattice Boltzmann gases
International Nuclear Information System (INIS)
Zheng, Ran
2009-01-01
The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar–Gross–Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invariance, recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar–Gross–Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics
International Nuclear Information System (INIS)
Yang Yuching; Chang Winjin; Fang Tehua; Fang Shihchung
2008-01-01
In this study, a general methodology for determining the thermal conductance between the probe tip and the workpiece during microthermal machining using Scanning Thermal Microscopy (SThM) has been proposed. The processing system was considered as an inverse heat conduction problem with an unknown thermal conductance. Temperature dependence for the material properties and thermal conductance in the analysis of heat conduction is taken into account. The conjugate gradient method is used to solve the inverse problem. Furthermore, this methodology can also be applied to estimate the thermal contact conductance in other transient heat conduction problems, like metal casting process, injection molding process, and electronic circuit systems
Thermal conductivity of graphene mediated by strain and size
International Nuclear Information System (INIS)
Kuang, Youdi; Shi, Sanqiang; Wang, Xinjiang
2016-01-01
Based on first-principles calculations and full iterative solution of the linearized Boltzmann–Peierls transport equation for phonons, we systematically investigate effects of strain, size and temperature on the thermal conductivity k of suspended graphene. The calculated size-dependent and temperature-dependent k for finite samples agree well with experimental data. The results show that, contrast to the convergent room-temperature k = 5450 W/m-K of unstrained graphene at a sample size ~8 cm, k of strained graphene diverges with increasing the sample size even at high temperature. Out-of-plane acoustic phonons are responsible for the significant size effect in unstrained and strained graphene due to their ultralong mean free path and acoustic phonons with wavelength smaller than 10 nm contribute 80% to the intrinsic room temperature k of unstrained graphene. Tensile strain hardens the flexural modes and increases their lifetimes, causing interesting dependence of k on sample size and strain due to the competition between boundary scattering and intrinsic phonon–phonon scattering. k of graphene can be tuned within a large range by strain for the size larger than 500 μm. These findings shed light on the nature of thermal transport in two-dimensional materials and may guide predicting and engineering k of graphene by varying strain and size
Experimental determination of thermal conductivity and gap conductance of fuel rod for HTGR
International Nuclear Information System (INIS)
Kikuchi, Teruo; Iwamoto, Kazumi; Ikawa, Katsuichi; Ishimoto, Kiyoshi
1985-01-01
The thermal conductivity of fuel compacts and the gap conductance between the fuel compact and the graphite sleeve in fuel rods for a high-temperature gas-cooled reactor (HTGR) were measured by the center heating method. These measurements were made as functions of volume percent particle loading and temperature for thermal conductivity and as functions of gap distance and gas composition for gap conductance. The thermal conductivity of fuel compacts decreases with increasing temperature and with increasing particle loading. The gap conductance increases with increasing temperature and decrease with increasing gap distance. A good gap conductance was observed with helium fill gas. It was seen that the gap conductance was dependent on the thermal conductivity of fill gas and conductance by radiation and could be neglected the conductance through solid-solid contact points of fuel compact and graphite sleeve. (author)
Thermal conductivity of granular porous media: A pore scale modeling approach
Directory of Open Access Journals (Sweden)
R. Askari
2015-09-01
Full Text Available Pore scale modeling method has been widely used in the petrophysical studies to estimate macroscopic properties (e.g. porosity, permeability, and electrical resistivity of porous media with respect to their micro structures. Although there is a sumptuous literature about the application of the method to study flow in porous media, there are fewer studies regarding its application to thermal conduction characterization, and the estimation of effective thermal conductivity, which is a salient parameter in many engineering surveys (e.g. geothermal resources and heavy oil recovery. By considering thermal contact resistance, we demonstrate the robustness of the method for predicting the effective thermal conductivity. According to our results obtained from Utah oil sand samples simulations, the simulation of thermal contact resistance is pivotal to grant reliable estimates of effective thermal conductivity. Our estimated effective thermal conductivities exhibit a better compatibility with the experimental data in companion with some famous experimental and analytical equations for the calculation of the effective thermal conductivity. In addition, we reconstruct a porous medium for an Alberta oil sand sample. By increasing roughness, we observe the effect of thermal contact resistance in the decrease of the effective thermal conductivity. However, the roughness effect becomes more noticeable when there is a higher thermal conductivity of solid to fluid ratio. Moreover, by considering the thermal resistance in porous media with different grains sizes, we find that the effective thermal conductivity augments with increased grain size. Our observation is in a reasonable accordance with experimental results. This demonstrates the usefulness of our modeling approach for further computational studies of heat transfer in porous media.
In-Situ Spatial Variability Of Thermal Conductivity And Volumetric ...
African Journals Online (AJOL)
Studies of spatial variability of thermal conductivity and volumetric water content of silty topsoil were conduct-ed on a 0.6 ha site at Abeokuta, South-Western Nigeria. The thermal conductivity (k) was measured at depths of up to 0.06 m along four parallel profiles of 200 m long and at an average temperature of 25 C, using ...
Lattice thermal conductivity in layered BiCuSeO
Kumar, S.
2016-06-30
We quantify the low lattice thermal conductivity in layered BiCuSeO (the oxide with the highest known figure of merit). It turns out that the scattering of acoustical into optical phonons is strongly enhanced in the material because of the special structure of the phonon dispersion. For example, at room temperature the optical phonons account for an enormous 42% of the lattice thermal conductivity. We also quantify the anisotropy of the lattice thermal conductivity and determine the distribution of the mean free path of the phonons at different temperatures to provide a guide for tuning the thermal properties. © the Owner Societies 2016.
Effective electrical and thermal conductivity of multifilament twisted superconductors
International Nuclear Information System (INIS)
Chechetkin, V.R.
2013-01-01
The effective electrical and thermal conductivity of composite wire with twisted superconducting filaments embedded into normal metal matrix is calculated using the extension of Bruggeman method. The resistive conductivity of superconducting filaments is described in terms of symmetric tensor, whereas the conductivity of a matrix is assumed to be isotropic and homogeneous. The dependence of the resistive electrical conductivity of superconducting filaments on temperature, magnetic field, and current density is implied to be parametric. The resulting effective conductivity tensor proved to be non-diagonal and symmetric. The non-diagonal transverse–longitudinal components of effective electrical conductivity tensor are responsible for the redistribution of current between filaments. In the limits of high and low electrical conductivity of filaments the transverse effective conductivity tends to that of obtained previously by Carr. The effective thermal conductivity of composite wires is non-diagonal and radius-dependent even for the isotropic and homogeneous thermal conductivities of matrix and filaments.
Geometric model for softwood transverse thermal conductivity. Part I
Hong-mei Gu; Audrey Zink-Sharp
2005-01-01
Thermal conductivity is a very important parameter in determining heat transfer rate and is required for developing of drying models and in industrial operations such as adhesive cure rate. Geometric models for predicting softwood thermal conductivity in the radial and tangential directions were generated in this study based on obervation and measurements of wood...
Thermal conductivity of a superconducting spin-glass
International Nuclear Information System (INIS)
Crisan, M.
1988-01-01
The temperature dependence of the thermal conductivity for a superconducting spin-glass is calculated, taking a short-range spin-spin interaction in a super-conductor carrying a uniform flow. The presence of the short-range interaction between frozen spins gives rise to a strong depression in the thermal conductivity
Structural relaxation and thermal conductivity coefficient of liquids
International Nuclear Information System (INIS)
Abdurasulov, A.
1992-01-01
Present article is devoted to structural relaxation and thermal conductivity coefficient of liquids. The thermoelastic properties of liquids were studied taking into account the contribution of translational and structural relaxation. The results of determination of dynamic coefficient of thermal conductivity of liquids taking into account the contribution of translational and structural relaxation are presented.
Effect of normal processes on thermal conductivity of germanium ...
Indian Academy of Sciences (India)
Abstract. The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between differ- ent phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and ...
Thermal conductivity of Cu–4⋅5 Ti alloy
Indian Academy of Sciences (India)
Unknown
Abstract. The thermal conductivity (TC) of peak aged Cu–4⋅5 wt% Ti alloy was measured at different tem- peratures and studied its variation with temperature. It was found that TC increased with increasing tem- perature. Phonon and electronic components of thermal conductivity were computed from the results. The.
Thermal conductivity of Cu–4.5 Ti alloy
Indian Academy of Sciences (India)
The thermal conductivity (TC) of peak aged Cu–4.5 wt% Ti alloy was measured at different temperatures and studied its variation with temperature. It was found that TC increased with increasing temperature. Phonon and electronic components of thermal conductivity were computed from the results. The alloy exhibits an ...
Deterioration in effective thermal conductivity of aqueous magnetic nanofluids
Altan, C.L.; Gurten, B.; Sommerdijk, N.A.J.M.; Bucak, S.
2014-01-01
Common heat transfer fluids have low thermal conductivities, which decrease their efficiency in many applications. On the other hand, solids have much higher thermal conductivity values. Previously, it was shown that the addition of different nanoparticles to various base fluids increases the
Dependence of thermal conductivity in micro to nano silica
Indian Academy of Sciences (India)
This work presents the measurement of thermal conductivity of nano-silica particles using needle probe method. The validation test of thermal probe was conducted on ice and THF hydrates using our experimental set up and the results are satisfactory when compared with the literature data. The nano silica used in this ...
Thermal conductivity of microPCMs-filled epoxy matrix composites
Su, J.F.; Wang, X.Y; Huang, Z.; Zhao, Y.H.; Yuan, X.Y.
2011-01-01
Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The thermal conductivity of these microPCMs/matrix composites is an important property need to be considered. In this study, a series of microPCMs have been fabricated using the in situ polymerization with various core/shell ratio and average diameter; the thermal conductivity of microPCMs/epoxy composites were investigated in detai...
Effective thermal conductivity of nanofluids: the effects of microstructure
International Nuclear Information System (INIS)
Fan Jing; Wang Liqiu
2010-01-01
We examine numerically the effects of particle-fluid thermal conductivity ratio, particle volume fraction, particle size distribution and particle aggregation on macroscale thermal properties for seven kinds of two-dimensional nanofluids. The results show that the radius of gyration and the non-dimensional particle-fluid interfacial area are two important parameters in characterizing the geometrical structure of nanoparticles. A non-uniform particle size is found to be unfavourable for the conductivity enhancement, while particle-aggregation benefits the enhancement especially when the radius of gyration of aggregates is large. Without considering the interfacial thermal resistance, a larger non-dimensional particle-fluid interfacial area between the base fluid and the nanoparticles is also desirable for enhancing thermal conductivity. The nanofluids with nanoparticles of connected cross-shape show a much higher (lower) effective thermal conductivity when the particle-fluid conductivity ratio is larger (smaller) than 1.
Thermal and electrical conductivities of Cd-Zn alloys
International Nuclear Information System (INIS)
Saatci, B; Ari, M; Guenduez, M; Meydaneri, F; Bozoklu, M; Durmus, S
2006-01-01
The composition and temperature dependences of the thermal and electrical conductivities of three different Cd-Zn alloys have been investigated in the temperature range of 300-650 K. Thermal conductivities of the Cd-Zn alloys have been determined by using the radial heat flow method. It has been found that the thermal conductivity decreases slightly with increasing temperature and the data of thermal conductivity are shifting together to the higher values with increasing Cd composition. In addition, the electrical measurements were determined by using a standard DC four-point probe technique. The resistivity increases linearly and the electrical conductivity decreases exponentially with increasing temperature. The resistivity and electrical conductivity are independent of composition of Cd and Zn. Also, the temperature coefficient of Cd-Zn alloys has been determined, which is independent of composition of Cd and Zn. Finally, Lorenz number has been calculated using the thermal and electrical conductivity values at 373 and 533 K. The results satisfy the Wiedemann-Franz (WF) relation at T 373 K), the WF relation could not hold and the phonon component contribution of thermal conductivity dominates the thermal conduction
Thermal conduction in classical low-dimensional lattices
International Nuclear Information System (INIS)
Lepri, Stefano; Livi, Roberto; Politi, Antonio
2003-01-01
Deriving macroscopic phenomenological laws of irreversible thermodynamics from simple microscopic models is one of the tasks of non-equilibrium statistical mechanics. We consider stationary energy transport in crystals with reference to simple mathematical models consisting of coupled oscillators on a lattice. The role of lattice dimensionality on the breakdown of the Fourier's law is discussed and some universal quantitative aspects are emphasized: the divergence of the finite-size thermal conductivity is characterized by universal laws in one and two dimensions. Equilibrium and non-equilibrium molecular dynamics methods are presented along with a critical survey of previous numerical results. Analytical results for the non-equilibrium dynamics can be obtained in the harmonic chain where the role of disorder and localization can be also understood. The traditional kinetic approach, based on the Boltzmann-Peierls equation is also briefly sketched with reference to one-dimensional chains. Simple toy models can be defined in which the conductivity is finite. Anomalous transport in integrable non-linear systems is briefly discussed. Finally, possible future research themes are outlined
Thermal properties of conducting polypyrrole nanotubes
Czech Academy of Sciences Publication Activity Database
Rudajevová, A.; Varga, M.; Prokeš, J.; Kopecká, J.; Stejskal, Jaroslav
2015-01-01
Roč. 128, č. 4 (2015), s. 730-736 ISSN 0587-4246. [ISPMA 13 - International Symposium on Physics of Materials /13./. Praha, 31.08.2014-04.09.2014] R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : conducting polymer * polyaniline * polypyrrole Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.525, year: 2015
Thermal Conductivities of Some Polymers and Composites
2018-02-01
conductivities (Kt) of epoxies, polyurethanes, and hydrocarbons of interest to the Army. The study explores the effects of different curing agents...obtained. 4.12 p-DCPD P-DCPD is currently of interest for composite armor applications because of its unusual ballistic properties and its high TG...the matrix, and recalling that Kt for the fiber does not dominate in the simple model above, a reasonable upper bound for Kt for a 50 volume
Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity.
Wu, Xufei; Varshney, Vikas; Lee, Jonghoon; Zhang, Teng; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei
2016-06-08
Penta-graphene (PG) has been identified as a novel two-dimensional (2D) material with an intrinsic bandgap, which makes it especially promising for electronics applications. In this work, we use first-principles lattice dynamics and iterative solution of the phonon Boltzmann transport equation (BTE) to determine the thermal conductivity of PG and its more stable derivative, hydrogenated penta-graphene (HPG). As a comparison, we also studied the effect of hydrogenation on graphene thermal conductivity. In contrast to hydrogenation of graphene, which leads to a dramatic decrease in thermal conductivity, HPG shows a notable increase in thermal conductivity, which is much higher than that of PG. Considering the necessity of using the same thickness when comparing thermal conductivity values of different 2D materials, hydrogenation leads to a 63% reduction in thermal conductivity for graphene, while it results in a 76% increase for PG. The high thermal conductivity of HPG makes it more thermally conductive than most other semiconducting 2D materials, such as the transition metal chalcogenides. Our detailed analyses show that the primary reason for the counterintuitive hydrogenation-induced thermal conductivity enhancement is the weaker bond anharmonicity in HPG than PG. This leads to weaker phonon scattering after hydrogenation, despite the increase in the phonon scattering phase space. The high thermal conductivity of HPG may inspire intensive research around HPG and other derivatives of PG as potential materials for future nanoelectronic devices. The fundamental physics understood from this study may open up a new strategy to engineer thermal transport properties of other 2D materials by controlling bond anharmonicity via functionalization.
Mathematical modelling of pasta dough dynamic viscosity, thermal conductivity and diffusivity
Directory of Open Access Journals (Sweden)
Andrei Ionuţ SIMION
2015-08-01
Full Text Available This work aimed to study the mathematical variation of three main thermodynamic properties (dynamic viscosity, thermal conductivity and thermal diffusivity of pasta dough obtained by mixing wheat semolina and water with dough humidity and deformation speed (for dynamic viscosity, respectively with dough humidity and temperature (for thermal diffusivity and conductivity. The realized regression analysis of existing graphical data led to the development of mathematical models with a high degree of accuracy. The employed statistical tests (least squares, relative error and analysis of variance revealed that the obtained equations are able to describe and predict the tendency of the dough thermodynamic properties.
Thermal conductivity tests on buffermasses of bentonite/silt
International Nuclear Information System (INIS)
Knutsson, S.
1977-09-01
The investigation concerns the thermal conductivity of the bentonite/quartz buffer mass suggested as embedding substance for radioactive canisters. The first part presents the theoretical relationships associated with the various heat transfer mechanisms in moist granular materials. Chapter 3 describes the author's experimental determination of the thermal conductivity of the buffer mass. The tested mass consisted of 10 percent (by weight) bentonite and 90 percent natural silt. Four tests were made with different water content values and degree of water saturation. A comparison between the measured and calculated thermal conductivities is given. It is shown that the conductivity can be calculated with an accuracy of +-20 percent. (author)
Method for estimating the lattice thermal conductivity of metallic alloys
International Nuclear Information System (INIS)
Yarbrough, D.W.; Williams, R.K.
1978-08-01
A method is described for calculating the lattice thermal conductivity of alloys as a function of temperature and composition for temperatures above theta/sub D//2 using readily available information about the atomic species present in the alloy. The calculation takes into account phonon interactions with point defects, electrons and other phonons. Comparisons between experimental thermal conductivities (resistivities) and calculated values are discussed for binary alloys of semiconductors, alkali halides and metals. A discussion of the theoretical background is followed by sufficient numerical work to facilitate the calculation of lattice thermal conductivity of an alloy for which no conductivity data exist
International Nuclear Information System (INIS)
Burkes, Douglas E.; Casella, Andrew M.; Huber, Tanja K.
2015-01-01
Highlights: • Hsu equation provides best thermal conductivity estimate of U–Mo dispersion fuel. • Simple model considering interaction layer formation was coupled with Hsu equation. • Interaction layer thermal conductivity is not the most important attribute. • Effective thermal conductivity is mostly influenced by interaction layer formation. • Fuel particle distribution also influences the effective thermal conductivity. - Abstract: The Global Threat Reduction Initiative Program continues to develop existing and new test reactor fuels to achieve the maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix, porosity that forms during fabrication of the fuel plates or rods, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation, dispersed particle size, and volume fraction of dispersed phase in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be as important in determining the effective conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the dispersed particle distribution by minimizing interaction
Phonon thermal conductance of disordered graphene strips with armchair edges
International Nuclear Information System (INIS)
Shi Lipeng; Xiong Shijie
2009-01-01
Based on the model of lattice dynamics together with the transfer matrix technique, we investigate the thermal conductances of phonons in quasi-one-dimensional disordered graphene strips with armchair edges using Landauer formalism for thermal transport. It is found that the contributions to thermal conductance from the phonon transport near von Hove singularities is significantly suppressed by the presence of disorder, on the contrary to the effect of disorder on phonon modes in other frequency regions. Besides the magnitude, for different widths of the strips, the thermal conductance also shows different temperature dependence. At low temperatures, the thermal conductance displays quantized features of both pure and disordered graphene strips implying that the transmission of phonon modes at low frequencies are almost unaffected by the disorder
Thermal conductivity analysis and applications of nanocellulose materials
Uetani, Kojiro; Hatori, Kimihito
2017-01-01
Abstract In this review, we summarize the recent progress in thermal conductivity analysis of nanocellulose materials called cellulose nanopapers, and compare them with polymeric materials, including neat polymers, composites, and traditional paper. It is important to individually measure the in-plane and through-plane heat-conducting properties of two-dimensional planar materials, so steady-state and non-equilibrium methods, in particular the laser spot periodic heating radiation thermometry method, are reviewed. The structural dependency of cellulose nanopaper on thermal conduction is described in terms of the crystallite size effect, fibre orientation, and interfacial thermal resistance between fibres and small pores. The novel applications of cellulose as thermally conductive transparent materials and thermal-guiding materials are also discussed. PMID:29152020
Tuning thermal conduction via extended defects in graphene
Huang, Huaqing; Xu, Yong; Zou, Xiaolong; Wu, Jian; Duan, Wenhui
2013-05-01
Designing materials for desired thermal conduction can be achieved via extended defects. We theoretically demonstrate the concept by investigating thermal transport in graphene nanoribbons (GNRs) with the extended line defects observed by recent experiments. Our nonequilibrium Green's function study excluding phonon-phonon interactions finds that thermal conductance can be tuned over wide ranges (more than 50% at room temperature), by controlling the orientation and the bond configuration of the embedded extended defect. Further transmission analysis reveals that the thermal-conduction tuning is attributed to two fundamentally different mechanisms, via modifying the phonon dispersion and/or tailoring the strength of defect scattering. The finding, applicable to other materials, provides useful guidance for designing materials with desired thermal conduction.
Study on thermal conductive BN/novolac resin composites
International Nuclear Information System (INIS)
Li, Shasha; Qi, Shuhua; Liu, Nailiang; Cao, Peng
2011-01-01
Highlights: → Boron nitride (BN) particles were used to modify novolac resin. → BN particles were pretreated by γ-aminopropyltriethoxysilane. → The thermal conductivity trend of composite almost agrees with the predicted data from the Maxwell-Eucken model. → At BN concentration of 80 wt.%, thermal conductivity value of composite is 4.5 times that of pure novolac resin. → Combined use of the larger and smaller particles with a mass ratio of 1:2 provides the composites with the maximum thermal conductivity among the testing systems. → The composite thermal property also increases with an increase in the BN concentration. - Abstract: In this study, γ-aminopropyltriethoxysilane-treated boron nitride (BN) particles were used to modify novolac resin. The effect of varying the BN concentration, particle size, and hybrid BN fillers with the binary particle size distribution on the thermal conductivity of the composites was investigated. Scanning electron microscopy (SEM) imaging showed homogeneously dispersed treated BN particles in the matrix. Furthermore, the thermal conductivity increased as the BN concentration was increased. This behavior was also observed when the filler size was increased. Experimentally obtained thermal conductivity values agree with the predicted data from the Maxwell-Eucken model well at less than 70 wt.% BN loading. A larger particle size BN-filled novolac resin exhibits a higher thermal conductivity than a smaller particle size BN-filled one. The combined use of 0.5 and 15 μm particles with a mass ratio of 2:1 achieved the maximum thermal conductivity among the testing systems. The thermal resistance properties of the composites were also studied.
A recommendation for the thermal conductivity of oxide fuels
International Nuclear Information System (INIS)
Kang, K. H.; Ryu, H. J.; Song, K. C.; Yang, M. S.; Na, S. H.; Lee, Y. W.; Moon, H. S.; Kim, H. S.
2004-01-01
The thermal conductivity of nuclear fuel is one of the most important properties because it affects the fuel operating temperature. Therefore, it influences almost all the important processes occurred in nuclear fuel during irradiation, such as gas release, swelling and grain growth. The model of the thermal conductivity of nuclear fuel should be used in the codes to evaluate the performance of it analytically and be required in the nuclear fuel research and development. The thermal conductivity, k, of UO 2 depends on the deviation from stoichiometry, x, the burnup, b, and the fractional porosity, p, as well as the temperature, T: k = k(x, b, p, T), (1) Changes in thermal conductivity occur during irradiation because of fission-gas bubble formation, pores, cracks, fission product build-up and possible changes in the oxygen to uranium ratio (O/U). The dependence on temperature and porosity has been well studied and incorporated in computer codes used for the in-pile fuel behavior analysis. There are several studies on the effect of impurity on the thermal conductivity of UO 2 . In this paper, the variables affected on the thermal conductivity were studied. The available data of the thermal conductivity of UO 2 , UO 2+x , (U, Pu)O 2 , (U, Pu)O 2 and simulated fuel for irradiation fuel were reviewed and analyzed. The best models were recommended
Thermal conductivity of a h-BCN monolayer.
Zhang, Ying-Yan; Pei, Qing-Xiang; Liu, Hong-Yuan; Wei, Ning
2017-10-18
A hexagonal graphene-like boron-carbon-nitrogen (h-BCN) monolayer, a new two-dimensional (2D) material, has been synthesized recently. Herein we investigate for the first time the thermal conductivity of this novel 2D material. Using molecular dynamics simulations based on the optimized Tersoff potential, we found that the h-BCN monolayers are isotropic in the basal plane with close thermal conductivity magnitudes. Though h-BCN has the same hexagonal lattice as graphene and hexagonal boron nitride (h-BN), it exhibits a much lower thermal conductivity than the latter two materials. In addition, the thermal conductivity of h-BCN monolayers is found to be size-dependent but less temperature-dependent. Modulation of the thermal conductivity of h-BCN monolayers can also be realized by strain engineering. Compressive strain leads to a monotonic decrease in the thermal conductivity while the tensile strain induces an up-then-down trend in the thermal conductivity. Surprisingly, the small tensile strain can facilitate the heat transport of the h-BCN monolayers.
Directory of Open Access Journals (Sweden)
K. S. Reddy
2010-01-01
Full Text Available A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν on the structure composition factor (ψ of the food materials is studied. The models are compared with the experimental data of various foods at the initial freezing temperature. The effective thermal conductivity estimated by the Maxwell-Eucken-I + Present model shows good agreement with the experimental data with a minimum average deviation of ±8.66% and maximum deviation of ±42.76% of Series + Present Model. The combined models have advantages over other empirical and semiempirical models.
Lattice dynamics and thermal conductivity of lithium fluoride via first-principles calculations
Liang, Ting; Chen, Wen-Qi; Hu, Cui-E.; Chen, Xiang-Rong; Chen, Qi-Feng
2018-04-01
The lattice thermal conductivity of lithium fluoride (LiF) is accurately computed from a first-principles approach based on an iterative solution of the Boltzmann transport equation. Real-space finite-difference supercell approach is employed to generate the second- and third-order interatomic force constants. The related physical quantities of LiF are calculated by the second- and third- order potential interactions at 30 K-1000 K. The calculated lattice thermal conductivity 13.89 W/(m K) for LiF at room temperature agrees well with the experimental value, demonstrating that the parameter-free approach can furnish precise descriptions of the lattice thermal conductivity for this material. Besides, the Born effective charges, dielectric constants and phonon spectrum of LiF accord well with the existing data. The lattice thermal conductivities for the iterative solution of BTE are also presented.
Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites
Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja
2016-09-01
Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.
Thermal Conductivity of Polymer Composite poypropilene-Sand
International Nuclear Information System (INIS)
Betha; Mashuri; Sudirman; Karo Karo, Aloma
2001-01-01
Thermal conductivity composite materials polypropylene (PP)-sand have been investigated. PP composite with sand to increase thermal conductivity from the polymer. The composite in this observation is done by mixing matrix (PP melt flow 2/10)and filler sand)by means tool labo plastomil. The result of thermal conductivity is composite of PP-sand which is obtained increase and followed by the raising of filler particle volume fraction. The analysis of thermal conductivity based on the model Cheng and Vachon, model Lewis and Nielsen where this model has the function to support experiment finding. It is proved that Lewis' and Nielsen's model almost approach experiment result. And then thermal conductivity raising will be analyzed by the model of pararel-series conductive with the two (2)phases system. It is showed that sand in PP MF 2 composite have the big role to increase the thermal conductivity than sand in PP MF 10 composition, but it is not easy to shape conductive medium
Exact solution of nonsteady thermal boundary layer equation
International Nuclear Information System (INIS)
Dorfman, A.S.
1995-01-01
There are only a few exact solutions of the thermal boundary layer equation. Most of them are derived for a specific surface temperature distribution. The first exact solution of the steady-state boundary layer equation was given for a plate with constant surface temperature and free-stream velocity. The same problem for a plate with polynomial surface temperature distribution was solved by Chapmen and Rubesin. Levy gave the exact solution for the case of a power law distribution of both surface temperature and free-stream velocity. The exact solution of the steady-state boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution was given by the author in two forms: of series and of the integral with an influence function of unheated zone. A similar solution of the nonsteady thermal boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution is presented here. In this case, the coefficients of series depend on time, and in the limit t → ∞ they become the constant coefficients of a similar solution published before. This solution, unlike the one presented here, does not satisfy the initial conditions at t = 0, and, hence, can be used only in time after the beginning of the process. The solution in the form of a series becomes a closed-form exact solution for polynomial surface temperature and a power law free-stream velocity distribution. 7 refs., 2 figs
Remarkable reduction of thermal conductivity in phosphorene phononic crystal
International Nuclear Information System (INIS)
Xu, Wen; Zhang, Gang
2016-01-01
Phosphorene has received much attention due to its interesting physical and chemical properties, and its potential applications such as thermoelectricity. In thermoelectric applications, low thermal conductivity is essential for achieving a high figure of merit. In this work, we propose to reduce the thermal conductivity of phosphorene by adopting the phononic crystal structure, phosphorene nanomesh. With equilibrium molecular dynamics simulations, we find that the thermal conductivity is remarkably reduced in the phononic crystal. Our analysis shows that the reduction is due to the depressed phonon group velocities induced by Brillouin zone folding, and the reduced phonon lifetimes in the phononic crystal. Interestingly, it is found that the anisotropy ratio of thermal conductivity could be tuned by the ‘non-square’ pores in the phononic crystal, as the phonon group velocities in the direction with larger projection of pores is more severely suppressed, leading to greater reduction of thermal conductivity in this direction. Our work provides deep insight into thermal transport in phononic crystals and proposes a new strategy to reduce the thermal conductivity of monolayer phosphorene. (paper)
Predicting lattice thermal conductivity with help from ab initio methods
Broido, David
2015-03-01
The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.
Thermal conductivity of polymer composites with oriented boron nitride
International Nuclear Information System (INIS)
Ahn, Hong Jun; Eoh, Young Jun; Park, Sung Dae; Kim, Eung Soo
2014-01-01
Highlights: • Thermal conductivity depended on the orientation of BN in the polymer matrices. • Hexagonal boron nitride (BN) particles were treated by C 27 H 27 N 3 O 2 and C 14 H 6 O 8 . • Amphiphilic-agent-treated BN particles are more easily oriented in the composite. • BN/PVA composites with C 14 H 6 O 8 -treated BN showed the highest thermal conductivity. • Thermal conductivity of the composites was compared with several theoretical models. - Abstract: Thermal conductivity of boron nitride (BN) with polyvinyl alcohol (PVA) and/or polyvinyl butyral (PVB) was investigated as a function of the degree of BN orientation, the numbers of hydroxyl groups in the polymer matrices and the amphiphilic agents used. The composites with in-plane orientation of BN showed a higher thermal conductivity than the composites with out-of-plane orientation of BN due to the increase of thermal pathway. For a given BN content, the composites with in-plane orientation of BN/PVA showed higher thermal conductivity than the composites with in-plane orientation of BN/PVB. This result could be attributed to the improved degree of orientation of BN, caused by a larger number of hydroxyl groups being present. Those treated with C 14 H 6 O 8 amphiphilic agent demonstrated a higher thermal conductivity than those treated by C 27 H 27 N 3 O 2 . The measured thermal conductivity of the composites was compared with that predicted by the several theoretical models
Experiments on thermal conductivity in buffer materials for geologic repository
International Nuclear Information System (INIS)
Kanno, T.; Yano, T.; Wakamatsu, H.; Matsushima, E.
1989-01-01
Engineered barriers for geologic disposal for HLW are planned to consist of canister, overpack and buffer elements. One of important physical characteristics of buffer materials is determining temperature profiles within the near field in a repository. Buffer materials require high thermal conductivity to disperse radiogenic heat away to the host rock. As the buffer materials, compacted blocks of the mixture of sodium bentonite and sand have been the most promising candidate in some countries, e.g. Sweden, Switzerland and Japan. The authors have been carrying out a series of thermal dispersion experiments to evaluate thermal conductivity of bentonite/quartz sand blocks. In this study, the following two factors considered to affect thermal properties of the near field were examined: effective thermal conductivities of buffer materials, and heat transfer characteristics of the gap between overpack and buffer materials
International Nuclear Information System (INIS)
Nguyen, Ba Nghiep; Henager, Charles H.
2013-01-01
SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby–Mori–Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al. [J. Nucl. Mater. 307–311 (2002) 1120–1125, Fusion Sci. Technol. 45 (2004) 583–591, Compos. Sci. Technol. 62 (2002) 1127–1139.
Statistical analysis of thermal conductivity of nanofluid containing ...
Indian Academy of Sciences (India)
Thermal conductivity measurements of nanofluids were analysed via two-factor completely randomized design and comparison of data means is carried out with Duncan's multiple-range test. Statistical analysis of experimental data show that temperature and weight fraction have a reasonable impact on the thermal ...
Dependence of thermal conductivity in micro to nano silica
Indian Academy of Sciences (India)
on the effects of particle size on thermal conductivity of sili- ca. Several methods have been used to measure thermal con- ductivity of soils and details of these methods have been presented (Donazzi 1977). The methods can be divided into two major categories: steady heat-flow method and transient heat-flow method.
Robust design and thermal fatigue life prediction of anisotropic conductive film flip chip package
International Nuclear Information System (INIS)
Nam, Hyun Wook
2004-01-01
The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF(Anisotropic Conductive Film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue life of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear bi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design Of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2 nd DOE was conducted to obtain RSM equation for the choose 3 design parameter. The coefficient of determination (R 2 ) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for Feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430μm, and 78μm, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter
MHD simulations of coronal dark downflows considering thermal conduction
Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.
2017-10-01
While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.
Parametrisation of the niobium thermal conductivity in the superconducting state
International Nuclear Information System (INIS)
Koechlin, F.; Bonin, B.
1996-01-01
Thermal conductivity measurements of niobium sheets manufactured for deep-drawing of superconducting cavities have been gathered. Due to various histories of the niobium samples and a wide range of metal purities (35< RRR<1750) the data offer a large scatter of thermal conductivities. An attempt is made to obtain an analytical expression with realistic parameters for the thermal conductivity between 1.8 K and 9.25 K. The set of parameters deduced from a least square fit of experimental data is not very different from those yielded by the theory of superconducting metals, taken as a starting point. This should make possible to obtain a reasonable guess of the thermal conductivity of niobium in this temperature range, once the RRR and the past history of the metal samples have been determined. (author)
Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel
Energy Technology Data Exchange (ETDEWEB)
Ng, Soon-Ching; Low, Kaw-Sai [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Wilayah Persekutuan (Malaysia)
2010-12-15
Investigation on the thermal conductivity of newspaper sandwiched aerated lightweight concrete (ALC) panels is the main purpose of this study. Various densities of ALC panels ranging from 1700, 1400 and 1100 kg/m{sup 3} with three different aerial intensities of newspaper sandwiched were produced. Investigation was limited to the effect of aerial intensity of newspaper sandwiched and the effect of density of ALC on thermal conductivity. It is found that the thermal conductivity of newspaper sandwiched ALC panels reduced remarkably compared to control ALC panels. The reduction was recorded at 18.0%, 21.8% and 20.7% correspond to densities of 1700, 1400 and 1100 kg/m{sup 3} with just a mere 0.05 g/cm{sup 2} aerial intensity of newspaper sandwiched. Newspaper sandwiched has a significant impact on the performance of thermal conductivity of ALC panels based on regression analysis. (author)
Thermal conductivity measurements at cryogenic temperatures at LASA
International Nuclear Information System (INIS)
Broggi, F.; Pedrini, D.; Rossi, L.
1995-08-01
Here the improvement realised to have better control of the reference junction temperature and measurements carried out on Nb 3 Sn cut out from 2 different coils (named LASA3 and LASA5), showing the difference between the longitudinal and the transverse thermal conductivity, is described. Two different methods of data analysis are presented, the DAM (derivative approximated method) and the TCI (thermal conductivity integral. The data analysis for the tungsten and the LASA5 coil has been done according to the two methods showing that the TCI method with polynomial functions is not adequate to describe the thermal conductivity. Only a polynomial fit based on the TCI method but limited at a lower order than the nominal, when the data are well distributed along the range of measurements, can describe reasonably the thermal conductivity dependence with the temperature. Finally the measurements on a rod of BSCCO 2212 high T c superconductor are presented
Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions
Tuttle, JIm; Canavan, Ed; Jahromi, Amir
2017-01-01
Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.
Statistical analysis of thermal conductivity of nanofluid containing ...
Indian Academy of Sciences (India)
Administrator
four temperatures for thermal conductivity of pristine. MWCNTs ... MWCNTs. In other words, the augmentation of the ... TiO2 nanofluid, means with different letters are significantly different .... Chen L and Xie H 2010 Thermochim Acta 497 67.
Thermal conductivities of some lead and bismuth glasses
Velden, P.F. van
1965-01-01
Thermal conductivities have been measured, mainly at 40°C, of glasses within the systems PbO-Bi2O3-SiO2, PbO-Bi2O3-Al2O3-SiO2, and BaO- (Bi2O3 or PbO) -SiO2. Aiming at lowest thermal conductivity, preference was given to glasses of low silica and low alumina contents. Glass formation persists at
Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering
DEFF Research Database (Denmark)
Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob
The increasing focus on better building insulation is important to lower energy consumption. Development of new and improved insulation materials can contribute to solving this problem. Foam glass has a good insulating effect due to its large gas volume (porosity >90 %). It can be produced with o...... the thermal conductivity varies with gas composition. This allows us to determine the contribution of the gas and solid phase to the total thermal conductivity of a foam glass....
Mechanism of the thermal conductivity of type-I clathrates
International Nuclear Information System (INIS)
Ikeda, M. S.
2015-01-01
Due to their intrinsically low thermal conductivity, intermetallic type-I clathrates are promising candidates for thermoelectric energy conversion, most notably for waste-heat recovery above room temperature. Combining their low thermal conductivity with the enhanced electrical power factor of strongly correlated materials can be considered as one of the most promising routes to a next generation thermoelectric material. However, although much investigated, the physical origin of the low thermal conductivity of type-I clathrates is still debated. Therefore, the main goal of this thesis was to gain deeper insight into the mechanism of the low thermal conductivity of type-I clathrates. On the basis of recent inelastic neutron and X-ray scattering studies on type-I clathrates and skutterudites, an analytical model for describing the phonon thermal conductivity of such filled cage compounds was developed within this thesis. This model is based on the phononic filter effect and on strongly enhanced Umklapp scattering. Data on several Ge-based single crystalline type-I clathrates are discussed in the context of this model, revealing the influence of host framework vacancies, charge carriers, and large defects such as grain boundaries on the low-temperature thermal conductivity of type-I clathrates. Since for waste heat recovery the thermal conductivity at elevated temperatures is of interest, a sophisticated 3w-experiment for accurate measurements of bulk and thin film materials at elevated temperatures was developed. With the help of this experiment, a universal dependence of the intrinsic phonon thermal conductivity of type-I clathrates on the sound velocity and the lowest-lying guest Einstein mode was demonstrated for the first time. Further investigations on thermoelectric materials including the first Ce-containing type-I clathrate, skutterudites, and thin films complete this doctoral work. (author)
Identification of temperature-dependent thermal conductivity and experimental verification
International Nuclear Information System (INIS)
Pan, Weizhen; Yi, Fajun; Zhu, Yanwei; Meng, Songhe
2016-01-01
A modified Levenberg–Marquardt method (LMM) for the identification of temperature-dependent thermal conductivity is proposed; the experiment and structure of the specimen for identification are also designed. The temperature-dependent thermal conductivities of copper C10200 and brass C28000 are identified to verify the effectiveness of the proposed identification method. The comparison between identified results and the measured data of laser flash diffusivity apparatus indicates the fine consistency and potential usage of the proposed method. (paper)
Thermal conductivities of (ZrxPu(1-x)/2Am(1-x)/2)N solid solutions
International Nuclear Information System (INIS)
Nishi, Tsuyoshi; Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo
2011-01-01
The thermal conductivity of Zr-based transuranium (TRU) nitride solid solutions is important for designing subcritical cores in nitride-fueled ADS. Some results have been reported concerning the thermal conductivities of (Zr,Pu)N. However, there have been no experimental data on the thermal conductivities of Zr-based nitride solid solutions containing MA. In this study, the authors prepared sintered samples of (Zr x Pu (1-x)/2 Am (1-x)/2) N (x=0.0, 0.58, 0.80) solid solutions. The thermal diffusivity and heat capacity of (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions were measured using a laser flash method and drop calorimetry, respectively. Thermal conductivities were determined from the measured thermal diffusivities, heat capacities and bulk densities over a temperature range of 473 to 1473 K. The thermal conductivities of (Zr 0.58 Pu 0.21 Am 0.21 )N and (Zr 0.80 Pu 0.10 Am 0.10 )N solid solutions were found to be higher than that of (Pu 0.5 Am 0.5 )N due to the high thermal conductivity of ZrN as the principal component, although they were lower than that of ZrN due to the impurifying effect of the transuranium elements. Thus, the thermal conductivities of (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions increased with increasing ZrN concentration. Moreover, in order to help to promote the design study of nitride-fueled ADS, the thermal conductivity of the (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions were fitted to an equation using the least squares method. (author)
Evaluation of uranium dioxide thermal conductivity using molecular dynamics simulations
International Nuclear Information System (INIS)
Kim, Woongkee; Kaviany, Massoud; Shim, J. H.
2014-01-01
It can be extended to larger space, time scale and even real reactor situation with fission product as multi-scale formalism. Uranium dioxide is a fluorite structure with Fm3m space group. Since it is insulator, dominant heat carrier is phonon, rather than electrons. So, using equilibrium molecular dynamics (MD) simulation, we present the appropriate calculation parameters in MD simulation by calculating thermal conductivity and application of it to the thermal conductivity of polycrystal. In this work, we investigate thermal conductivity of uranium dioxide and optimize the parameters related to its process. In this process, called Green Kubo formula, there are two parameters i.e correlation length and sampling interval, which effect on ensemble integration in order to obtain thermal conductivity. Through several comparisons, long correlation length and short sampling interval give better results. Using this strategy, thermal conductivity of poly crystal is obtained and comparison with that of pure crystal is made. Thermal conductivity of poly crystal show lower value that that of pure crystal. In further study, we broaden the study to transport coefficient of radiation damaged structures using molecular dynamics. Although molecular dynamics is tools for treating microscopic scale, most macroscopic issues related to nuclear materials such as voids in fuel materials and weakened mechanical properties by radiation are based on microscopic basis. Thus, research on microscopic scale would be expanded in this field and many hidden mechanism in atomic scales will be revealed via both atomic scale simulations and experiments
Low-temperature thermal conductivity of terbium-gallium garnet
International Nuclear Information System (INIS)
Inyushkin, A. V.; Taldenkov, A. N.
2010-01-01
Thermal conductivity of paramagnetic Tb 3 Ga 5 O 12 (TbGG) terbium-gallium garnet single crystals is investigated at temperatures from 0.4 to 300 K in magnetic fields up to 3.25 T. A minimum is observed in the temperature dependence κ(T) of thermal conductivity at T min = 0.52 K. This and other singularities on the κ(T) dependence are associated with scattering of phonons from terbium ions. The thermal conductivity at T = 5.1 K strongly depends on the magnetic field direction relative to the crystallographic axes of the crystal. Experimental data are considered using the Debye theory of thermal conductivity taking into account resonance scattering of phonons from Tb 3+ ions. Analysis of the temperature and field dependences of the thermal conductivity indicates the existence of a strong spin-phonon interaction in TbGG. The low-temperature behavior of the thermal conductivity (field and angular dependences) is mainly determined by resonance scattering of phonons at the first quasi-doublet of the electron spectrum of Tb 3+ ion.
Thermal conductivity of the Lennard-Jones chain fluid model.
Galliero, Guillaume; Boned, Christian
2009-12-01
Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8values of the Lennard-Jones chain fluid model merge on the same "universal" curve when plotted as a function of the excess entropy. Furthermore, it is shown that the reduced configurational thermal conductivity of the Lennard-Jones chain fluid model is approximately proportional to the reduced excess entropy for all fluid states and all chain lengths.
Effective thermal conductivity of advanced ceramic breeder pebble beds
Energy Technology Data Exchange (ETDEWEB)
Pupeschi, S., E-mail: simone.pupeschi@kit.edu; Knitter, R.; Kamlah, M.
2017-03-15
As the knowledge of the effective thermal conductivity of ceramic breeder pebble beds under fusion relevant conditions is essential for the development of solid breeder blanket concepts, the EU advanced and reference lithium orthosilicate material were investigated with a newly developed experimental setup based on the transient hot wire method. The effective thermal conductivity was investigated in the temperature range RT–700 °C. Experiments were performed in helium and air atmospheres in the pressure range 0.12–0.4 MPa (abs.) under a compressive load up to 6 MPa. Results show a negligible influence of the chemical composition of the solid material on the bed’s effective thermal conductivity. A severe reduction of the effective thermal conductivity was observed in air. In both atmospheres an increase of the effective thermal conductivity with the temperature was detected, while the influence of the compressive load was found to be small. A clear dependence of the effective thermal conductivity on the pressure of the filling gas was observed in helium in contrast to air, where the pressure dependence was drastically reduced.
Estimation of effective thermal conductivity tensor from composite microstructure images
International Nuclear Information System (INIS)
Thomas, M; Boyard, N; Jarny, Y; Delaunay, D
2008-01-01
The determination of the effective thermal properties of inhomogeneous materials is a long-standing problem of continuously interest. The impressive number of methods developed to measure or estimate the thermal properties of composite materials clearly exhibits the importance given to their knowledge. Homogenization models are a cheap way to determine or predict them. Many different approaches of homogenization were developed, but the last advances are credited to numerical methods. In this study, a new computational model is developed to estimate the 2D thermal conductivity tensor and the thermal main directions of a pure carbon/epoxy unidirectional composite. This tool is based on real composite microstructure.
Voltage tunability of thermal conductivity in ferroelectric materials
Ihlefeld, Jon; Hopkins, Patrick Edward
2016-02-09
A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.
Round robin testing of thermal conductivity reference materials
International Nuclear Information System (INIS)
Hulstrom, L.C.; Tye, R.P.; Smith, S.E.
1985-07-01
The Basalt Waste Isolation Project (BWIP), operated by Rockwell Hanford Operations, has a need to determine the thermal properties of basalt in the region being considered for a nuclear waste repository in basalt. Experimental data on thermal conductivity and its variation with temperature are information required for the characterization of basalt. To establish thermal conductivity values for the reference materials, an interlaboratory measurements program was undertaken. The program was planned to meet the objectives of performing an experimental characterization of the new stock and providing a detailed analysis of the results such that reference values of thermal conductivity could be determined. This program of measurements of the thermal conductivity of Pyrex 7740 and Pyroceram 9606 has produced recommended values that are within +- 1% of those accepted previously. These measurements together with those of density indicate that the present lots of material are similar to those previously available. Pyrex 7740 and Pyroceram 9606 can continue to be used with confidence as thermal conductivity reference materials for studies on rocks and minerals and other materials of similar thermal conductivity. The uncertainty range for Pyrex 7740 and Pyroceram 9606 up to 300 0 C is +- 10.3% and +- 5.6%, respectively. This range is similar to that indicated for the previously recommended values proposed some 18 years ago. It would appear that the overall state of the art in thermal conductivity measurements for materials in this range has changed little in the intervening years. The above uncertainties, which would have been greater had not three data sets been eliminated, are greater than those which are normally claimed for each individual method. Analyses of these differences through refinements in techniques and additional measurements to higher temperatures are required. 13 refs., 7 figs., 4 tabs
Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites
Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.
2010-01-01
Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity
THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS
Energy Technology Data Exchange (ETDEWEB)
R. JONES
2004-10-22
This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu et al. (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data
THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS
International Nuclear Information System (INIS)
R. JONES
2004-01-01
This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu and others (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data from each test specimen to meet three specific conditions: (1) Known value
Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze
Tuttle, James E.; Canavan, Edgar; DiPirro, Michael
2009-01-01
Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.
Thermal conductive epoxy enhanced by nanodiamond-coated carbon nanotubes
Zhao, Bo; Jiang, Guohua
2017-11-01
Nanodiamond (ND) particles were coated on the surface of carbon nanotubes (CNTs) by chemical reactions. Reliable bonding was formed by the combination of acyl chloride on NDs and amine group on CNTs. ND coated CNTs (CNT-ND) were dispersed into epoxy to fabricate thermal conductive resins. The results show that the surface energy of CNTs is decreased by the coated NDs, which is contributed to the excellent dispersion of CNT-NDs in the epoxy matrix. The heat-transfer channels were built by the venous CNTs cooperating with the coated NDs, which not only plays an effective role of heat conduction for CNTs and NDs, but also avoids the electrical leakage by the protection of NDs surrounding outside of CNTs. Electrical and thermal conductance measurements demonstrate that the influence of the CNT-ND incorporation on the electrical conductance is minor, however, the thermal conductivity is improved significantly for the epoxy filled with CNT-ND.[Figure not available: see fulltext.
Design and Construction of a Thermal Contact Resistance and Thermal Conductivity Measurement System
2015-09-01
thank my Mom, Dad , Allison, Jessica, and father-in-law, Tom, for always being there to listen and encourage me. xxiv THIS PAGE INTENTIONALLY...thermal conductivity is temperature measurement inaccuracies. A probe constructed of a poor thermally conductive material when inserted into a hot...interface- resistance-measurement-using-a-transient-method/ [26] H. Fukushima, L. T. Drzal, B. P. Rook and M. J. Rich , “Thermal conductivity of exfoliated
Thermal conductivity of graphene nanoribbons accounting for phonon dispersion and polarization
International Nuclear Information System (INIS)
Wang, Yingjun; Xie, Guofeng
2015-01-01
The relative contribution to heat conduction by different phonon branches is still an intriguing and open question in phonon transport of graphene nanoribbons (GNRs). By incorporating the direction–dependent phonon–boundary scattering into the linearized phonon Boltzmann transport equation, we find that because of lower Grüneisen parameter, the TA phonons have the major contribution to thermal conductivity of GNRs, and in the case of smooth edge and micron–length of GNRS, the relative contribution of TA branch to thermal conductivity is over 50%. The length and edge roughness of GNRs have distinct influences on the relative contribution of different polarization branches to thermal conductivity. The contribution of TA branch to thermal conductivity increases with increasing the length or decreasing the edge roughness of GNRs. On the contrary, the contribution of ZA branch to thermal conductivity increases with decreasing the length or increasing the edge roughness of GNRs. The contribution of LA branch is length and roughness insensitive. Our findings are helpful for understanding and engineering the thermal conductivity of GNRs.
Determining Effective Thermal Conductivity of Fabrics by Using Fractal Method
Zhu, Fanglong; Li, Kejing
2010-03-01
In this article, a fractal effective thermal conductivity model for woven fabrics with multiple layers is developed. Structural models of yarn and plain woven fabric are derived based on the fractal characteristics of macro-pores (gap or channel) between the yarns and micro-pores inside the yarns. The fractal effective thermal conductivity model can be expressed as a function of the pore structure (fractal dimension) and architectural parameters of the woven fabric. Good agreement is found between the fractal model and the thermal conductivity measurements in the general porosity ranges. It is expected that the model will be helpful in the evaluation of thermal comfort for woven fabric in the whole range of porosity.
Fuel thermal conductivity (FTHCON). Status report. [PWR; BWR
Energy Technology Data Exchange (ETDEWEB)
Hagrman, D. L.
1979-02-01
An improvement of the fuel thermal conductivity subcode is described which is part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The original version was published in the Materials Properties (MATPRO) Handbook, Section A-2 (Fuel Thermal Conductivity). The improved version incorporates data which were not included in the previous work and omits some previously used data which are believed to come from cracked specimens. The models for the effect of porosity on thermal conductivity and for the electronic contribution to thermal coductivity have been completely revised in order to place these models on a more mechanistic basis. As a result of modeling improvements the standard error of the model with respect to its data base has been significantly reduced.
Superior thermal conductivity in suspended bilayer hexagonal boron nitride
Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen
2016-01-01
We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm−1K−1(+141 Wm−1K−1/ −24 Wm−1K−1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN. PMID:27142571
Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites
Fasanella, Nicholas A.; Sundararaghavan, Veera
2016-05-01
The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.
Discussion on the thermal conductivity enhancement of nanofluids
2011-01-01
Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed. PMID:21711638
Pretest Calculations of Temperature Changes for Field Thermal Conductivity Tests
International Nuclear Information System (INIS)
N.S. Brodsky
2002-01-01
A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J · m -3 · K -1 ), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result
Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding
Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming
2016-01-01
Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859
Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.
Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk
2014-12-01
The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.
Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.
Hsieh, Chien-Te; Lee, Cheng-En; Chen, Yu-Fu; Chang, Jeng-Kuei; Teng, Hsi-sheng
2015-11-28
The in-plane (kip) and through-plane (ktp) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher kip and ktp values, as compared to the CNT- and GN-based heat sinks. The kip and ktp values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m(-1) K(-1) at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both kip and ktp values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (ε) can be well described by two empirical equations: kip = 567 ln(ε) + 1120 and ktp = 20.6 ln(ε) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics.
Thermal conductivity of yttrium iron garnet at low temperatures
International Nuclear Information System (INIS)
Joshi, Y.P.; Sing, D.P.
1979-01-01
An analysis of the low-temperature thermal conductivity of yttrium iron garnet is presented giving consideration to the fact that in a conventional conductivity experiment the magnon temperature gradient inside a magnetic insulator need not be necessarily equal to the phonon temperature gradient. Consequently the effective conductivity can be less than the algebraic sum of the phonon and magnon intrinsic conductivities, depending on the magnon-phonon thermal relaxation rate. This relaxation rate has been distinguished from the individual phonon and magnon relaxation rates and an expression is derived for it. Theoretical calculations of the effective conductivity are found to be in good agreement with experimental results. The contribution of magnons to the effective conductivity is observed to be small at all temperatures below the conductivity maximum. (author)
A thermal conductivity model for U-Si compounds
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-02
U_{3}Si_{2} is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO_{2} in commercial light water reactors (LWRs). One of its main benefits compared to UO_{2} is higher thermal conductivity that increases with temperature. This increase is contrary to UO_{2}, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U_{3}Si_{2}, as compared to the phonon mechanism responsible for thermal transport in UO_{2}. The phonon thermal conductivity in UO_{2} is unusually low for a fluorite oxide due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U_{3}Si_{2} as well as other U-Si compounds has been measured experimentally [1-4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO_{2} this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U_{3}Si_{2} thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO_{2} (semi-conductor) and U_{3}Si_{2} (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-Si compounds with the goal of capturing the effect of damage in U_{3}Si_{2}. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.
Constitutional equations of thermal stresses of particle-reinforced composite
International Nuclear Information System (INIS)
Asakawa, Atsushi; Noda, Naotake; Tohgo, Keiichiro; Tsuji, Tomoaki.
1994-01-01
Functionally gradient materials (FGM) have been developed as ultrahigh-heat-resistant materials in aircraft, space engineering and nuclear fields. In the heat-resistant FGM which contain particles (ceramics) in the matrix (metal), the matrix will be subjected to plastic deformation, particles will be debonded, and finally cracks will be generated. The constitutive equations of FGM which take into account the damage process and change in temperature are necessary in order to solve these phenomena. In this paper, the constitutive equations of particle-reinforced composites with consideration of the damage process and change in temperature are estimated by the equivalent inclusion method in terms of elastoplasticity. The stress-strain relations and the coefficients of linear thermal expansion of the composites (Al-PSZ and Ti-PSZ) are calculated in ultrahigh temperature. (author)
Thermal conductivity of mesoporous films measured by Raman spectroscopy
Stoib, B.; Filser, S.; Petermann, N.; Wiggers, H.; Stutzmann, M.; Brandt, M. S.
2014-04-01
We measure the in-plane thermal conductance of mesoporous Ge and SiGe thin films using the Raman-shift method and, based on a finite differences simulation accounting for the geometry of the sample, extract the in-plane thermal conductivity. For a suspended thin film of laser-sintered SiGe nanoparticles doped with phosphorus, we find an effective in-plane thermal conductivity of 0.05 W/m K in vacuum for a temperature difference of 400 K and a mean temperature of 500 K. Under similar conditions, the effective in-plane thermal conductivity of a laser-sintered undoped Ge nanoparticle film is 0.5 W/m K. Accounting for a porosity of approximately 50%, the normalized thermal conductivities are 0.1 W/m K and 1 W/m K, respectively. The thermoelectric performance is discussed, considering that the electrical in-plane conductivity is also affected by the mesoporosity.
Calibration of non-ideal thermal conductivity sensors
Directory of Open Access Journals (Sweden)
N. I. Kömle
2013-04-01
Full Text Available A popular method for measuring the thermal conductivity of solid materials is the transient hot needle method. It allows the thermal conductivity of a solid or granular material to be evaluated simply by combining a temperature measurement with a well-defined electrical current flowing through a resistance wire enclosed in a long and thin needle. Standard laboratory sensors that are typically used in laboratory work consist of very thin steel needles with a large length-to-diameter ratio. This type of needle is convenient since it is mathematically easy to derive the thermal conductivity of a soft granular material from a simple temperature measurement. However, such a geometry often results in a mechanically weak sensor, which can bend or fail when inserted into a material that is harder than expected. For deploying such a sensor on a planetary surface, with often unknown soil properties, it is necessary to construct more rugged sensors. These requirements can lead to a design which differs substantially from the ideal geometry, and additional care must be taken in the calibration and data analysis. In this paper we present the performance of a prototype thermal conductivity sensor designed for planetary missions. The thermal conductivity of a suite of solid and granular materials was measured both by a standard needle sensor and by several customized sensors with non-ideal geometry. We thus obtained a calibration curve for the non-ideal sensors. The theory describing the temperature response of a sensor with such unfavorable length-to-diameter ratio is complicated and highly nonlinear. However, our measurements reveal that over a wide range of thermal conductivities there is an almost linear relationship between the result obtained by the standard sensor and the result derived from the customized, non-ideal sensors. This allows for the measurement of thermal conductivity values for harder soils, which are not easily accessible when using
International Nuclear Information System (INIS)
Uno, Masayoshi; Murakami, Yukihiro
2011-01-01
CeO 2 sample as a surrogate for fuel and BaCeO 3 and BaMoO 4 samples as surrogates for the second phases, which have a lower thermal conductivity than the fuel matrix, were made. The thermal conductivity of these samples was measured by a thermal microscope. In this method, the thermal conductivity of a small region (e.g. 20 μm x 20 μm) of the sample can be measured. The valid thermal conductivity values for all the samples were obtained and the conditions of sample surface preparation and the thermal microscope measurement were found out. The thermal conductivity of a CeO 2 composite pellet which had the BaCeO 3 or BaMoO 4 second phase layer was also estimated. (author)
Estimation of Thermal Conductivity in the North- Western Niger Delta ...
African Journals Online (AJOL)
Thermal conductivity estimates are computed from nineteen petroleum wells in the north-western Niger Delta, Nigeria, using a geometric mean model. Sonic and gamma-ray logs were digitised and used in the estimation of in situ conductivity. The Niger Delta is composed of three major diachronous lithostratigraphic units of ...
In-pile Thermal Conductivity Characterization with Time Resolved Raman
Energy Technology Data Exchange (ETDEWEB)
Wang, Xinwei [Iowa State Univ., Ames, IA (United States). Dept. of Mechanical Engineering; Hurley, David H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2018-03-19
The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.
Thermal conductance of nanofluids: is the controversy over?
International Nuclear Information System (INIS)
Keblinski, Pawel; Prasher, Ravi; Eapen, Jacob
2008-01-01
Over the last decade nanofluids (colloidal suspensions of solid nanoparticles) sparked excitement as well as controversy. In particular, a number of researches reported dramatic increases of thermal conductivity with small nanoparticle loading, while others showed moderate increases consistent with the effective medium theories on well-dispersed conductive spheres. Accordingly, the mechanism of thermal conductivity enhancement is a hotly debated topic. We present a critical analysis of the experimental data in terms of the potential mechanisms and show that, by accounting for linear particle aggregation, the well established effective medium theories for composite materials are capable of explaining the vast majority of the reported data without resorting to novel mechanisms such as Brownian motion induced nanoconvection, liquid layering at the interface, or near-field radiation. However, particle aggregation required to significantly enhance thermal conductivity, also increases fluid viscosity rendering the benefit of nanofluids to flow based cooling applications questionable.
Process for fabricating composite material having high thermal conductivity
Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.
2001-01-01
A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.
Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.
Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E
2015-09-02
The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.
Shear deformation-induced anisotropic thermal conductivity of graphene.
Cui, Liu; Shi, Sanqiang; Wei, Gaosheng; Du, Xiaoze
2018-01-03
Graphene-based materials exhibit intriguing phononic and thermal properties. In this paper, we have investigated the heat conductance in graphene sheets under shear-strain-induced wrinkling deformation, using equilibrium molecular dynamics simulations. A significant orientation dependence of the thermal conductivity of graphene wrinkles (GWs) is observed. The directional dependence of the thermal conductivity of GWs stems from the anisotropy of phonon group velocities as revealed by the G-band broadening of the phonon density of states (DOS), the anisotropy of thermal resistance as evidenced by the G-band peak mismatch of the phonon DOS, and the anisotropy of phonon relaxation times as a direct result of the double-exponential-fitting of the heat current autocorrelation function. By analyzing the relative contributions of different lattice vibrations to the heat flux, we have shown that the contributions of different lattice vibrations to the heat flux of GWs are sensitive to the heat flux direction, which further indicates the orientation-dependent thermal conductivity of GWs. Moreover, we have found that, in the strain range of 0-0.1, the anisotropy ratio of GWs increases monotonously with increasing shear strain. This is induced by the change in the number of wrinkles, which is more influential in the direction perpendicular to the wrinkle texture. The findings elucidated here emphasize the utility of wrinkle engineering for manipulation of nanoscale heat transport, which offers opportunities for the development of thermal channeling devices.
Effects of lithium insertion on thermal conductivity of silicon nanowires
International Nuclear Information System (INIS)
Xu, Wen; Zhang, Gang; Li, Baowen
2015-01-01
Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reduction in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms
Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.
2014-12-01
Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.
Thermal conductivity of graphene with defects induced by electron beam irradiation
Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.
2016-07-01
We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is
Ventura, Isaac Aguilar; Rahaman, Ariful; Lubineau, Gilles
2013-01-01
conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured
International Nuclear Information System (INIS)
Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David
2017-01-01
Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.
Reduction of thermal conductivity in phononic nanomesh structures
Yu, Jen-Kan
2010-07-25
Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. © 2010 Macmillan Publishers Limited. All rights reserved.
Reduction of thermal conductivity in phononic nanomesh structures.
Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas; Varghese, Joseph; Heath, James R
2010-10-01
Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.
Liquid-like thermal conduction in intercalated layered crystalline solids
Li, B.; Wang, H.; Kawakita, Y.; Zhang, Q.; Feygenson, M.; Yu, H. L.; Wu, D.; Ohara, K.; Kikuchi, T.; Shibata, K.; Yamada, T.; Ning, X. K.; Chen, Y.; He, J. Q.; Vaknin, D.; Wu, R. Q.; Nakajima, K.; Kanatzidis, M. G.
2018-03-01
As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.
Size dictated thermal conductivity of GaN
Beechem, Thomas E.; McDonald, Anthony E.; Fuller, Elliot J.; Talin, A. Alec; Rost, Christina M.; Maria, Jon-Paul; Gaskins, John T.; Hopkins, Patrick E.; Allerman, Andrew A.
2016-09-01
The thermal conductivity of n- and p-type doped gallium nitride (GaN) epilayers having thicknesses of 3-4 μm was investigated using time domain thermoreflectance. Despite possessing carrier concentrations ranging across 3 decades (1015-1018 cm-3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends—and their overall reduction relative to bulk—are explained leveraging established scattering models where it is shown that, while the decrease in p-type layers is partly due to the increased impurity levels evolving from its doping, size effects play a primary role in limiting the thermal conductivity of GaN layers tens of microns thick. Device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.
Thermal conductivity of the pine-biocarbon-preform/copper composite
Parfen'eva, L. S.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.; Faber, K. T.
2010-07-01
The thermal conductivity of composites of a new type prepared by infiltration under vacuum of melted copper into empty sap channels (aligned with the sample length) of high-porosity biocarbon preforms of white pine tree wood has been studied in the temperature range 5-300 K. The biocarbon preforms have been prepared by pyrolysis of tree wood in an argon flow at two carbonization temperatures of 1000 and 2400°C. From the experimental values of the composite thermal conductivities, the fraction due to the thermal conductivity of the embedded copper is isolated and found to be substantially lower than that of the original copper used in preparation of the composites. The decrease in the thermal conductivity of copper in the composite is assigned to defects in its structure, namely, breaks in the copper filling the sap channels, as well as the radial ones, also filled by copper. A possibility of decreasing the thermal conductivity of copper in a composite due to its doping by the impurities present in the carbon preform is discussed.
Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
Felix, Isaac M; Pereira, Luiz Felipe C
2018-02-09
Superlattices are ideal model systems for the realization and understanding of coherent (wave-like) and incoherent (particle-like) phonon thermal transport. Single layer heterostructures of graphene and hexagonal boron nitride have been produced recently with sharp edges and controlled domain sizes. In this study we employ nonequilibrium molecular dynamics simulations to investigate the thermal conductivity of superlattice nanoribbons with equal-sized domains of graphene and hexagonal boron nitride. We analyze the dependence of the conductivity with the domain sizes, and with the total length of the ribbons. We determine that the thermal conductivity reaches a minimum value of 89 W m -1 K -1 for ribbons with a superlattice period of 3.43 nm. The effective phonon mean free path is also determined and shows a minimum value of 32 nm for the same superlattice period. Our results also reveal that a crossover from coherent to incoherent phonon transport is present at room temperature for BNC nanoribbons, as the superlattice period becomes comparable to the phonon coherence length. Analyzing phonon populations relative to the smallest superlattice period, we attribute the minimum thermal conductivity to a reduction in the population of flexural phonons when the superlattice period equals 3.43 nm. The ability to manipulate thermal conductivity using superlattice-based two-dimensional materials, such as graphene-hBN nanoribbons, opens up opportunities for application in future nanostructured thermoelectric devices.
Thermal and electrical conductivities of high purity tantalum
International Nuclear Information System (INIS)
Archer, S.L.
1978-01-01
The electrical resistivity and thermal conductivity of three high purity tantalum samples have been measured as functions of temperature over a temperature range of 5K to 65K. Sample purities ranged up to a resistivity ratio of 1714. The highest purity sample had a residual resistivity of .76 x 10 -10 OMEGA-m. The intrinsic resistivity varied as T 3 . 9 from 10K to 31K. The thermal conductivity of the purest sample had a maximum of 840 W/mK at 9.8K. The intrinsic thermal resistivity varied as T 2 . 4 from 10K to 35K. At low temperatures electrons were scattered primarily by impurities and by phonons with both interband and intraband transitions observed. The electrical and thermal resistivity is departed from Matthiessen's rule at low temperatures
Interfacial thermal conductance in multilayer graphene/phosphorene heterostructure
International Nuclear Information System (INIS)
Zhang, Ying-Yan; Pei, Qing-Xiang; Mai, Yiu-Wing; Lai, Siu-Kai
2016-01-01
Vertical integration of 2D materials has recently appeared as an effective method for the design of novel nano-scale devices. Using non-equilibrium molecular dynamics simulations, we study the interfacial thermal transport property of graphene/phosphorene heterostructures where phosphorene is sandwiched in between graphene. Various modulation techniques are thoroughly explored. We found that the interfacial thermal conductance at the interface of graphene and phosphorene can be enhanced significantly by using vacancy defects, hydrogenation and cross-plane compressive strain. By contrast, the reduction in the interfacial thermal conductance can be achieved by using cross-plane tensile strain. Our results provide important guidelines for manipulating the thermal transport in graphene/phosphorene based-nano-devices. (paper)
Spectral mapping of thermal conductivity through nanoscale ballistic transport
Hu, Yongjie; Zeng, Lingping; Minnich, Austin J.; Dresselhaus, Mildred S.; Chen, Gang
2015-08-01
Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral distribution of energy among heat carriers. Here, we experimentally measure this spectral distribution by probing quasi-ballistic transport near nanostructured heaters down to 30 nm using ultrafast optical spectroscopy. Our approach allows us to quantify up to 95% of the total spectral contribution to thermal conductivity from all phonon modes. The measurement agrees well with multiscale and first-principles-based simulations. We further demonstrate the direct construction of mean free path distributions. Our results provide a new fundamental understanding of thermal transport and will enable materials design in a rational way to achieve high performance.
Thermophysical properties of fluids: dynamic viscosity and thermal conductivity
Latini, G.
2017-11-01
Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected
Porous Alumina and Zirconia Ceramics With Tailored Thermal Conductivity
Czech Academy of Sciences Publication Activity Database
Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, Jiří
2012-01-01
Roč. 395, č. 1 (2012), 012022-012022 ISSN 1742-6588. [European Thermal Sciences Conference (Eurotherm)/6./. Poitiers, 04.09.2012-07.09.2012] Institutional support: RVO:61389021 Keywords : Ceramics * alumina * zirconia * porosity * thermal conductivity * pore-forming agent * oxide ceramics * starch * porosity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://iopscience.iop.org/1742-6596/395/1/012022/pdf/1742-6596_395_1_012022.pdf
Determination of thermal conductivity in foundry mould mixtures
Directory of Open Access Journals (Sweden)
G. Solenički
2010-01-01
Full Text Available For a thorough understanding of the behaviour of foundry mould mixtures, a good knowledge of thermal properties of mould materials is needed. Laboratory determination of thermal conductivity of mould mixtures enables a better control over scabbing defects which are a major problem in green sand mould mixtures. A special instrument has been designed for that purpose and it is described in this work.
Lattice thermal conductivity of silicate glasses at high pressures
Chang, Y. Y.; Hsieh, W. P.
2016-12-01
Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.
Numerical Investigation of the Thermal Conductivity of Graphite Nanofibers
Hakak Khadem, Masoud
The thermal conductivity of graphite nano-fibers (GNFs) with different styles is predicted computationally. GNFs are formed as basal planes of graphene stacked based on the catalytic configuration. The large GNF thermal conductivity relative to a base phase change material (PCM) may lead to improved PCM performance when embedded with GNFs. Three different types of GNFs are modeled: platelet, ribbon, and herringbone. Molecular dynamics (MD) simulations are used in this study as a means to predict the thermal conductivity tensor based on atomic behavior. The in-house MD code, Molecular Dynamics in Arbitrary Geometries (MDAG), was updated with the features required to create the predictions. To model both interlayer van-der Waals and intralayer covalent bonding of carbon atoms in GNFs, a combination of the optimized Tersoff potential function for atoms within the layers and a pairwise Lennard-Jones (LJ) potential function to model the interactions between the layers was used. Tests of energy conservation in the NVE ensemble have been performed to validate the employed potential model. Nose-Hoover, Andersen, and Berendsen thermostats were also incorporated into MDAG to enable MD simulations in NVT ensembles, where the volume, number of atoms, and temperature of the system are conserved. Equilibrium MD with Green-Kubo (GK) relations was then employed to extract the thermal conductivity tensor for symmetric GNFs (platelet and ribbon). The thermal conductivity of solid argon at different temperatures was calculated and compared to other studies to validate the GK implementation. Different heat current formulations, as a result of using the three-body Tersoff potential, were considered and the discrepancy in the calculated thermal conductivity values of graphene using each formula was resolved by employing a novel comparative technique that identifies the most accurate formulation. The effect of stacking configuration on the thermal conductivity of platelet and ribbon GNFs
Thermal computations for electronics conductive, radiative, and convective air cooling
Ellison, Gordon
2010-01-01
IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble
Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing
2016-11-24
Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.
Caliper variable sonde for thermal conductivity measurements in situ
Energy Technology Data Exchange (ETDEWEB)
Oelsner, C; Leischner, H; Pischel, S
1968-01-01
For the measurement of the thermal conductivity of the formations surrounding a borehole, a sonde having variable diameter (consisting of an inflatable rubber cylinder with heating wires embedded in its wall) is described. The conditions for the usual sonde made of metal are no longer fulfilled, but the solution to the problem of determining the thermal conductivity from the temperature rise is given, based on an approach by Carslaw and Jaeger, which contains the Bessel functions of the second kind. It is shown that a simpler solution for large values of time can be obtained through the Laplace transformation, and the necessary series developments for computer application are also given. The sonde and the necessary measuring circuitry are described. Tests measurements have indicated that the thermal conductivity can be determined with this sonde with a precision of + 10%.
Thermal conductivity at a disordered quantum critical point
International Nuclear Information System (INIS)
Hartnoll, Sean A.; Ramirez, David M.; Santos, Jorge E.
2016-01-01
Strongly disordered and strongly interacting quantum critical points are difficult to access with conventional field theoretic methods. They are, however, both experimentally important and theoretically interesting. In particular, they are expected to realize universal incoherent transport. Such disordered quantum critical theories have recently been constructed holographically by deforming a CFT by marginally relevant disorder. In this paper we find additional disordered fixed points via relevant disordered deformations of a holographic CFT. Using recently developed methods in holographic transport, we characterize the thermal conductivity in both sets of theories in 1+1 dimensions. The thermal conductivity is found to tend to a constant at low temperatures in one class of fixed points, and to scale as T"0"."3 in the other. Furthermore, in all cases the thermal conductivity exhibits discrete scale invariance, with logarithmic in temperature oscillations superimposed on the low temperature scaling behavior. At no point do we use the replica trick.
Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.
Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V
2017-05-01
This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Aurangzeb; Ali, Zulqurnain; Gurmani, Samia Faiz; Maqsood, Asghari
2006-01-01
Thermal conductivity, thermal diffusivity and heat capacity per unit volume of porous consolidated igneous rocks have been measured, simultaneously by Gustafsson's probe at room temperature and normal pressure using air as saturant. Data are presented for eleven samples of dunite, ranging in porosity from 0.130 to 0.665% by volume, taken from Chillas near Gilgit, Pakistan. The porosity and density parameters have been measured using American Society of Testing and Materials (ASTM) standards at ambient conditions. The mineral composition of samples has been analysed from their thin sections (petrography). An empirical model to predict the thermal conductivity of porous consolidated igneous rocks is also proposed. The thermal conductivities are predicted by some of the existing models along with the proposed one. It is observed that the values of effective thermal conductivity predicted by the proposed model are in agreement with the experimental thermal conductivity data within 6%
Strain and thermal conductivity in ultrathin suspended silicon nanowires
Fan, Daniel; Sigg, Hans; Spolenak, Ralph; Ekinci, Yasin
2017-09-01
We report on the uniaxial strain and thermal conductivity of well-ordered, suspended silicon nanowire arrays between 10 to 20 nm width and 22 nm half-pitch, fabricated by extreme-ultraviolet (UV) interference lithography. Laser-power-dependent Raman spectroscopy showed that nanowires connected monolithically to the bulk had a consistent strain of ˜0.1 % , whereas nanowires clamped by metal exhibited variability and high strain of up to 2.3%, having implications in strain engineering of nanowires. The thermal conductivity at room temperature was measured to be ˜1 W /m K for smooth nanowires and ˜0.1 W /m K for rougher ones, similar to results by other investigators. We found no modification of the bulk properties in terms of intrinsic scattering, and therefore, the decrease in thermal conductivity is mainly due to boundary scattering. Different types of surface roughness, such as constrictions and line-edge roughness, may play roles in the scattering of phonons of different wavelengths. Such low thermal conductivities would allow for very efficient thermal energy harvesting, approaching and passing values achieved by state-of-the-art thermoelectric materials.
Theory of thermal conductivity in the disordered electron liquid
Energy Technology Data Exchange (ETDEWEB)
Schwiete, G., E-mail: schwiete@uni-mainz.de [Johannes Gutenberg Universität, Spin Phenomena Interdisciplinary Center (SPICE) and Institut für Physik (Germany); Finkel’stein, A. M. [Texas A& M University, Department of Physics and Astronomy (United States)
2016-03-15
We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electrical conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections. The interest in this correction arises from the fact that it violates the Wiedemann–Franz law. We checked that the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator transition in Si MOSFETs.
Effect of Particle Size on Thermal Conductivity of Nanofluid
Chopkar, M.; Sudarshan, S.; Das, P. K.; Manna, I.
2008-07-01
Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles.
Theory of thermal conductivity in the disordered electron liquid
International Nuclear Information System (INIS)
Schwiete, G.; Finkel’stein, A. M.
2016-01-01
We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electrical conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections. The interest in this correction arises from the fact that it violates the Wiedemann–Franz law. We checked that the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator transition in Si MOSFETs.
Experimental Investigation of Thermal Conductivity of Meat During Freezing
Shinbayeva, A.; Arkharov, I.; Aldiyarov, A.; Drobyshev, A.; Zhubaniyazova, M.; Kurnosov, V.
2017-04-01
The cryogenic technologies of processing and storage of agricultural products are becoming increasingly indispensable in the food industry as an important factor of ensuring food safety. One of such technologies is the shock freezing of meat, which provides a higher degree of preservation of the quality of frozen products in comparison with traditional technologies. The thermal conductivity of meat is an important parameter influencing the energy consumption in the freezing process. This paper presents the results of an experimental investigation of the temperature dependence of the thermal conductivity of beef. The measurements were taken by using a specially designed measurement cell, which allows covering the temperature range from 80 to 300 K.
High thermal conductivity lossy dielectric using a multi layer configuration
Tiegs, Terry N.; Kiggans, Jr., James O.
2003-01-01
Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.
Origin of low thermal conductivity in nuclear fuels.
Yin, Quan; Savrasov, Sergey Y
2008-06-06
Using a novel many-body approach, we report lattice dynamical properties of UO2 and PuO2 and uncover various contributions to their thermal conductivities. Via calculated Grüneisen constants, we show that only longitudinal acoustic modes having large phonon group velocities are efficient heat carriers. Despite the fact that some optical modes also show their velocities which are extremely large, they do not participate in the heat transfer due to their unusual anharmonicity. Ways to improve thermal conductivity in these materials are discussed.
Nakamura, Yoshiaki
2018-01-01
The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.
Želi, Velibor; Zorica, Dušan
2018-02-01
Generalization of the heat conduction equation is obtained by considering the system of equations consisting of the energy balance equation and fractional-order constitutive heat conduction law, assumed in the form of the distributed-order Cattaneo type. The Cauchy problem for system of energy balance equation and constitutive heat conduction law is treated analytically through Fourier and Laplace integral transform methods, as well as numerically by the method of finite differences through Adams-Bashforth and Grünwald-Letnikov schemes for approximation derivatives in temporal domain and leap frog scheme for spatial derivatives. Numerical examples, showing time evolution of temperature and heat flux spatial profiles, demonstrate applicability and good agreement of both methods in cases of multi-term and power-type distributed-order heat conduction laws.
Thermal conductivity of the vortex lattice state involving the antiferromagnetism around the core
International Nuclear Information System (INIS)
Takigawa, Mitsuaki; Ichioka, Masanori; Machida, Kazushige
2004-01-01
The thermal conductivity κ xx is the difference between higher and lower temperature regions, because the spatially-resolved thermal conductivity κ xx (r) is localized around the vortex core at lower temperature and delocalized at higher temperature. On one hand, much attention is focused on the spin and charge ordering around the vortex. When the antiferromagnetism appears around the core, the energy gap suppresses the density of states on the Fermi energy, and the zero-energy peak at the vortex core splits or vanishes. The κ xx under the Neel temperature is suppressed by the antiferromagnetism. We solve the Bogoliubov-de Gennes equation self-consistently by two-dimensional extended Hubbard model including the repulsive interaction U, and calculate the κ xx on the basis of the linear response theory. The picture of the spatial variation of the thermal conductivity κ(r) through the spin resolved local DOS well explains recent experiments
Energy Technology Data Exchange (ETDEWEB)
Yang, Ping, E-mail: yangpingdm@ujs.edu.cn [Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013 (China); Li, Xialong; Zhao, Yanfan [Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013 (China); Yang, Haiying [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Shuting, E-mail: wangst@mail.hust.edu.cn [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)
2013-11-01
We investigate the thermal transport properties of armchair graphene nanoribbons (AGNRs) possessing various sizes of triangular vacancy defect within a temperature range of 200–600 K by using classical molecular dynamics simulation. The results show that the thermal conductivities of the graphene nanoribbons decrease with increasing sizes of triangular vacancy defects in both directions across the whole temperature range tested, and the presence of the defect can decrease the thermal conductivity by more than 40% as the number of removed cluster atoms is increased to 25 (1.56% for vacancy concentration) owing to the effect of phonon–defect scattering. In the meantime, we find the thermal conductivity of defective graphene nanoribbons is insensitive to the temperature change at higher vacancy concentrations. Furthermore, the dependence of temperatures and various sizes of triangular vacancy defect for the thermal rectification ration are also detected. This work implies a possible route to achieve thermal rectifier for 2D materials by defect engineering.
Reduction in thermal conductivity of BiSbTe lump
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Kaleem [King Saud University, Sustainable Energy Technologies Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia); Wan, C. [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Beijing (China); Al-Eshaikh, M.A.; Kadachi, A.N. [King Saud University, Research Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia)
2017-03-15
In this work, systematic investigations on the thermal conductivities of BiSbTe lump, microstructured pristine BiSbTe bulk and single wall carbon nanotubes (SWCNTs)/BiSbTe bulk nanocomposites were performed. BiSbTe lumps were crushed to form a coarse powder (200 μm) and effect of particle size reduction on the effective thermal conductivity of BiSbTe (200 μm) bulk were analyzed. For further reduction in the conductivity, a two pronged strategy has been employed. First, additional refinement of BiSbTe (200 μm) were performed through ball milling in an inert environment. Second, SWCNTs in 0.75, and 1.0 vol% were distributed uniformly in the fine BiSbTe ball milled powder. The results showed that the effective thermal conductivities decrease with the reduction in the particle size from lump to BiSbTe (200 μm) bulk as well as with the addition of SWCNTs accompanied by further refinement of BiSbTe particles. The significant reduction in thermal conductivities of the lump was achieved for pure BiSbTe (200 μm) bulk and 0.75 vol% of SWCNTs/BiSbTe composite. This can be ascribed to the enhanced phonon scattering by the grain boundaries between the nanostructured BiSbTe particles as well as the interfaces between BiSbTe and the low dimensional carbon nanotubes. (orig.)
Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data
Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.
2006-01-01
Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.
Effective Thermal Conductivity of Open Cell Polyurethane Foam Based on the Fractal Theory
Directory of Open Access Journals (Sweden)
Kan Ankang
2013-01-01
Full Text Available Based on the fractal theory, the geometric structure inside an open cell polyurethane foam, which is widely used as adiabatic material, is illustrated. A simplified cell fractal model is created. In the model, the method of calculating the equivalent thermal conductivity of the porous foam is described and the fractal dimension is calculated. The mathematical formulas for the fractal equivalent thermal conductivity combined with gas and solid phase, for heat radiation equivalent thermal conductivity and for the total thermal conductivity, are deduced. However, the total effective heat flux is the summation of the heat conduction by the solid phase and the gas in pores, the radiation, and the convection between gas and solid phase. Fractal mathematical equation of effective thermal conductivity is derived with fractal dimension and vacancy porosity in the cell body. The calculated results have good agreement with the experimental data, and the difference is less than 5%. The main influencing factors are summarized. The research work is useful for the enhancement of adiabatic performance of foam materials and development of new materials.
Thermal diffusivity and conductivity of thorium- uranium mixed oxides
Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.
2018-03-01
Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.
UJI KONDUKTIVITAS TERMAL PADA DAUN BAYAM DENGAN MENGGUNAKAN THERMAL CONDUCTIVITY APPARATUS
Firmansyah, Firmansyah; Syafutra, Heriyanto; Sidikrubadi, Sidikrubadi; Irzaman, Irzaman
2017-01-01
Abstract Has successfully tested thermal conductivity on spinach leaves by using Thermal Conductivity Apparatus. Thermal conductivity Apparatus assisted with Steam generator, Caliper, Micrometer, and iron. The thermal conductivity value of spinach leaves is 0.5208 watts / (m.K). This thermal conductivity test on foliage, fruits using Thermal Conductivity Apparatus are very easy to do in Basic Physics Laboratory by physics study program students in Indonesia. Keywords: Thermal Conductivi...
Heat pipes with variable thermal conductance property for space applications
Energy Technology Data Exchange (ETDEWEB)
Kravets, V.; Alekseik, Ye.; Alekseik, O.; Khairnasov, S. [National Technical University of Ukraine, Kyiv (Ukraine); Baturkin, V.; Ho, T. [Explorationssysteme RY-ES, Bremen (Germany); Celotti, L. [Active Space Technologies GmbH, Berlin (Germany)
2017-06-15
The activities presented in this paper demonstrate a new approach to provide passive thermal control using heat pipes, as demonstrated on the electronic unit of DLR’s MASCOT lander, which embarked on the NEA sample return mission Hayabusa 2 (JAXA). The focus is on the development and testing of heat pipes with variable thermal conductance in a predetermined temperature range. These heat pipes act as thermal switches. Unlike standard gasloaded heat pipes and thermal-diode heat pipes construction of presented heat pipes does not include any additional elements. Copper heat pipes with metal fibrous wicks were chosen as baseline design. We obtained positive results by choosing the heat carrier and structural parameters of the wick (i.e., pore diameter, porosity, and permeability). The increase in the thermal conductivity of the heat pipes from 0.04 W/K to 2.1 W/K was observed in the temperature range between −20 °C and +55 °C. Moreover, the heat pipes transferred the predetermined power of not less than 10 W within the same temperature range. The heat pipes have been in flight since December 2014, and the supporting telemetry data were obtained in September 2015. The data showed the nominal operation of the thermal control system.
Carson, James K.
2018-06-01
Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.
Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage
Directory of Open Access Journals (Sweden)
Baydaa Jaber Nabhan
2015-06-01
Full Text Available Phase change materials (PCMs such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.% of (TiO2 nano-particles with about (10nm diameter. It is found that the phase change temperature varies with adding (TiO2 nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity has been found to increase by about (10% at nanoparticles loading (5wt.% and 15oC.
Institute of Scientific and Technical Information of China (English)
Peng; WAN; Jingyang; WANG
2016-01-01
The crucial challenge for current nanoscale thermal insulation materials,such as Al2O3 and SiO2 aerogel composites,is to solve the trade-off between extremely low thermal conductivity and unsatisfied thermal stability.Typical high-temperature ceramic SiC possesses excellent mechanical properties and
Surface effects on the thermal conductivity of silicon nanowires
Li, Hai-Peng; Zhang, Rui-Qin
2018-03-01
Thermal transport in silicon nanowires (SiNWs) has recently attracted considerable attention due to their potential applications in energy harvesting and generation and thermal management. The adjustment of the thermal conductivity of SiNWs through surface effects is a topic worthy of focus. In this paper, we briefly review the recent progress made in this field through theoretical calculations and experiments. We come to the conclusion that surface engineering methods are feasible and effective methods for adjusting nanoscale thermal transport and may foster further advancements in this field. Project supported by the National Natural Science Foundation ofChina (Grant No. 11504418), China Scholarship Council (Grant No. 201706425053), Basic Research Program in Shenzhen, China (Grant No. JCYJ20160229165210666), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).
System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics
Kim, Hyun-Jung; Skuza, Jonathan R.; Park, Yeonjoon; King, Glen C.; Choi, Sang H.; Nagavalli, Anita
2012-01-01
The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at elevated temperatures. This has led to the implementation of nonstandardized practices that have further complicated the confirmation of reported high ZT materials. The major objective of the procedure described is for the simultaneous measurement of the Seebeck coefficient and thermal diffusivity within a given temperature range. These thermoelectric measurements must be precise, accurate, and reproducible to ensure meaningful interlaboratory comparison of data. The custom-built thermal characterization system described in this NASA-TM is specifically designed to measure the inplane thermal diffusivity, and the Seebeck coefficient for materials in the ranging from 73 K through 373 K.
Interlayer thermal conductance within a phosphorene and graphene bilayer.
Hong, Yang; Zhang, Jingchao; Zeng, Xiao Cheng
2016-11-24
Monolayer graphene possesses unusual thermal properties, and is often considered as a prototype system for the study of thermal physics of low-dimensional electronic/thermal materials, despite the absence of a direct bandgap. Another two-dimensional (2D) atomic layered material, phosphorene, is a natural p-type semiconductor and it has attracted growing interest in recent years. When a graphene monolayer is overlaid on phosphorene, the hybrid van der Waals (vdW) bilayer becomes a potential candidate for high-performance thermal/electronic applications, owing to the combination of the direct-bandgap properties of phosphorene with the exceptional thermal properties of graphene. In this work, the interlayer thermal conductance at the phosphorene/graphene interface is systematically investigated using classical molecular dynamics (MD) simulation. The transient pump-probe heating method is employed to compute the interfacial thermal resistance (R) of the bilayer. The predicted R value at the phosphorene/graphene interface is 8.41 × 10 -8 K m 2 W -1 at room temperature. Different external and internal conditions, i.e., temperature, contact pressure, vacancy defect, and chemical functionalization, can all effectively reduce R at the interface. Numerical results of R reduction as a function of temperature, interfacial coupling strength, defect ratio, or hydrogen coverage are reported with the most R reduction amounting to 56.5%, 70.4%, 34.8% and 84.5%, respectively.
Thermally Conductive Metal-Tube/Carbon-Composite Joints
Copeland, Robert J.
2004-01-01
An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.
Thermal characterization of screen printed conductive pastes for RFID antennas
Energy Technology Data Exchange (ETDEWEB)
Janeczek, Kamil, E-mail: kamil.janeczek@itr.org.pl [Tele and Radio Research Institute, 11 Ratuszowa Street, 03-450 Warsaw (Poland); Jakubowska, Malgorzata [Institute of Electronic Materials Technology, 133 Wolczynska Street, 01-919 Warsaw (Poland); Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, 8 Sankt Andrzej Bobola Street, 02-525 Warsaw (Poland); Mlozniak, Anna [Institute of Electronic Materials Technology, 133 Wolczynska Street, 01-919 Warsaw (Poland); Koziol, Grazyna [Tele and Radio Research Institute, 11 Ratuszowa Street, 03-450 Warsaw (Poland)
2012-09-01
Thermal resistance is an essential aspect of electronic circuits designing. It leads to unexpected changes in electronic components during their work. In this study, new materials for screen printed RFID tag's antennas were characterized in terms of their resistance to thermal exposure. Polymer materials containing silver flakes, silver nanopowder, carbon nanotubes or conductive polymer PEDOT:PSS were elaborated and used for antenna printing on flexible materials. In order to verify their long term susceptibility to damages caused by the changing environmental conditions, the temperature cycling test was used in three different temperature ranges: +65 Degree-Sign C, -12 Degree-Sign C, -40 Degree-Sign C/+85 Degree-Sign C (3 h in each temp., dwell time 1 h). The highest durability to thermal exposure exhibited the paste with carbon nanotubes dispersed in poly(methyl methacrylate) PMMA and the lowest one - the paste with conductive polymer PEDOT:PSS.
Thermal conductivity in one-dimensional nonlinear systems
Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo
2000-03-01
Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.
Thermal characterization of screen printed conductive pastes for RFID antennas
International Nuclear Information System (INIS)
Janeczek, Kamil; Jakubowska, Małgorzata; Młożniak, Anna; Kozioł, Grażyna
2012-01-01
Thermal resistance is an essential aspect of electronic circuits designing. It leads to unexpected changes in electronic components during their work. In this study, new materials for screen printed RFID tag's antennas were characterized in terms of their resistance to thermal exposure. Polymer materials containing silver flakes, silver nanopowder, carbon nanotubes or conductive polymer PEDOT:PSS were elaborated and used for antenna printing on flexible materials. In order to verify their long term susceptibility to damages caused by the changing environmental conditions, the temperature cycling test was used in three different temperature ranges: +65 °C, −12 °C, −40 °C/+85 °C (3 h in each temp., dwell time 1 h). The highest durability to thermal exposure exhibited the paste with carbon nanotubes dispersed in poly(methyl methacrylate) PMMA and the lowest one – the paste with conductive polymer PEDOT:PSS.
Entropy generation by nanofluid with variable thermal conductivity ...
African Journals Online (AJOL)
The entropy generation by nanofluid with variable thermal conductivity and viscosity of assisted convective flow across a riser pipe of a horizontal flat plate solar collector is investigated numerically. The water based nanofluid with copper nanoparticles is used as the working fluid inside the fluid passing riser pipe.
Thermal conductivity of food materials at elevated temperatures
Spiess, W.E.L.; Walz, E.; Nesvadba, P.; Morley, M.; Haneghem, van I.A.; Salmon, D.R.
2001-01-01
In order to expand the available information on thermal conductivity of foods, within the framework of COST Action 93, a collaborative study was organised. In the first step, typical food components (apple pulp, meat, olive oil, sodium caseinate, starch, tomato paste) were used as standards for
Evaluation of Electrical and Thermal Conductivity of Polymeric ...
African Journals Online (AJOL)
PROF HORSFALL
ABSTRACT: This work being gingered by the big menace being posed on our environment by polymeric waste and it's rechanneling involved the studying of the electrical and thermal conductivities of the polymers PP, PE, PS and nylon66 doped with charcoal and graphite. Five grams of each polymer was mixed with ...
Calculation of the thermal conductivity of frozen foods
International Nuclear Information System (INIS)
Orrego A, C.E.
1998-01-01
A simple model is presented for the presage of the thermal conductivity of frozen foods those combines different authors' proposals. For varied materials on those that there is available information of the modification of this property with the temperature in frozen systems, the comparison of the dear and empiric values is made to evaluate these predictions
Fused silica thermal conductivity dispersion at high temperature
International Nuclear Information System (INIS)
Bouchut, P.; Decruppe, D.; Delrive, L.
2004-01-01
A continuous CO 2 laser is focused to locally anneal small fused silica spots. A noncontact radiometry diagnostic enables us to follow surface temperature variation that occurs from site to site. A 'steady state' dispersion of surface temperature is observed across our sample. We show that nonhomogeneous silica thermal conductivity, above 1000 K is responsible for this temperature dispersion
Thermal conductivity in an argon arc at atmospheric pressure
Bol, L.; Timmermans, C.J.; Schram, D.C.
1984-01-01
The thermal conductivity of an argon plasma has been determined in a phi 5 mm wall stabilized atmospheric argon arc in the temperature range from 10000 to 16000 K. The calculations are based on the energy balance, and include non-LTE effects like ambipolar diffusion and overpopulation of the ground
A method of measuring the thermal conductivity of liquids
Held, E.F.M. van der; Drunen, F.G. van
1949-01-01
We described the development of an apparatus for the determination of the thermal conductivity of liquids. The apparatus is suitable for all kinds of liquids, including the strongest acids. From a given time we pass an electric current through a thin straight wire, placed in a homogeneous material
Origin of ultra-low thermal conductivity in complex chalcogenides ...
Indian Academy of Sciences (India)
Kanishka Biswas
Chem. A 2015, 3, 648. Banik et al. Chem. Mater., 2015, 27, 581. Guin et al. J. Mater. Chem. .... Thermal conductivity of SnTe. 13. 300 400 500 600 700. 0. 1. 2. 3. SnTe κ lat. (W. /mK). T (K) κ min .... (b) part-crystalline part-liquid state,. (c) rattling ...
Determination of thermal conductivities of some topsoils using block ...
African Journals Online (AJOL)
This study focuses on the determination of In situ measurement of the top soil layer, despite non-homogeneity of natural soils caused by changes in their water content, texture and structure. Thermal Conductivities of clay, loam and sand soils were determined using improved Block method with and without the use of ...
Electrothermal efﬁciency, temperature and thermal conductivity
Indian Academy of Sciences (India)
A study was made to evaluate the electrothermal efﬁciency of a DC arc plasma torch and temperature and thermal conductivity of plasma jet in the torch. The torch was operated at power levels from 4 to 20 kW in non-transferred arc mode. The effect of nitrogen in combination with argon as plasma gas on the above ...
Modeling of the effective thermal conductivity of sintered porous pastes
Ordonez-Miranda, J.; Hermens, M.; Nikitin, I.; Kouznetsova, V.G.; Volz, S.
2014-01-01
The thermal conductivity of sintered porous pastes of metals is modelled, based on an analytical and a numerical approach. The first method arises from the differential effective medium theory and considers the air voids as ellipsoidal pores of different sizes, while second one is based on the
Well-log based prediction of thermal conductivity
DEFF Research Database (Denmark)
Fuchs, Sven; Förster, Andrea
Rock thermal conductivity (TC) is paramount for the determination of heat flow and the calculation of temperature profiles. Due to the scarcity of drill cores compared to the availability of petrophysical well logs, methods are desired to indirectly predict TC in sedimentary basins. Most...
Thermal conductivity reduction in oxygen-deficient strontium titanates
Yu, Choongho; Scullin, Matthew L.; Huijben, Mark; Ramesh, Ramamoorthy; Majumdar, Arun
2008-01-01
We report significant thermal conductivity reduction in oxygen-deficient lanthanum-doped strontium titanate (Sr1−xLaxTiO3−δ) films as compared to unreduced strontium titanates. Our experimental results suggest that the oxygen vacancies could have played an important role in the reduction. This could
Silicate bonding properties: Investigation through thermal conductivity measurements
Energy Technology Data Exchange (ETDEWEB)
Lorenzini, M; Cesarini, E; Cagnoli, G; Campagna, E; Losurdo, G; Martelli, F; Piergiovanni, F; Vetrano, F [INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Haughian, K; Hough, J; Martin, I; Reid, S; Rowan, S; Veggel, A A van, E-mail: lorenzini@fi.infn.i [SUPA, University of Glasgow, Department of Physics and Astronomy, Kelvin Building G12 8QQ Glasgow, Scotland (United Kingdom)
2010-05-01
A direct approach to reduce the thermal noise contribution to the sensitivity limit of a GW interferometric detector is the cryogenic cooling of the mirrors and mirrors suspensions. Future generations of detectors are foreseen to implement this solution. Silicon has been proposed as a candidate material, thanks to its very low intrinsic loss angle at low temperatures and due to its very high thermal conductivity, allowing the heat deposited in the mirrors by high power lasers to be efficiently extracted. To accomplish such a scheme, both mirror masses and suspension elements must be made of silicon, then bonded together forming a quasi-monolithic stage. Elements can be assembled using hydroxide-catalysis silicate bonding, as for silica monolithic joints. The effect of Si to Si bonding on suspension thermal conductance has therefore to be experimentally studied. A measurement of the effect of silicate bonding on thermal conductance carried out on 1 inch thick silicon bonded samples, from room temperature down to 77 K, is reported. In the explored temperature range, the silicate bonding does not seem to affect in a relevant way the sample conductance.
Thermal conductivity of fresh and irradiated U-Mo fuels
Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Elgeti, Stefan; Reiter, Christian; Robinson, Adam. B.; Smith, Frances. N.; Wachs, Daniel. M.; Petry, Winfried
2018-05-01
The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, thermal conductivity of fresh dispersion fuel at a temperature of 150 °C decreased from 59 W/m·K to 18 W/m·K at a burn-up of 4.9·1021 f/cc and further to 9 W/m·K at a burn-up of 6.1·1021 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep than for dispersion fuel. For a burn-up of 3.5·1021 f/cc of monolithic fuel, a thermal conductivity of 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. (2015). The difference of decrease for both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increased burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice also affect both dispersion and monolithic fuel.
A micro-convection model for thermal conductivity of nanofluids
Indian Academy of Sciences (India)
Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of ...
Evaluation of electrical and thermal conductivity of polymeric wastes ...
African Journals Online (AJOL)
This work being gingered by the big menace being posed on our environment by polymeric waste and it's rechanneling involved the studying of the electrical and thermal conductivities of the polymers PP, PE, PS and nylon66 doped with charcoal and graphite. Five grams of each polymer was mixed with varying ...
Pressure effects on thermal conductivity and expansion of geologic materials
International Nuclear Information System (INIS)
Sweet, J.N.
1979-02-01
Through analysis of existing data, an estimate is made of the effect of pressure or depth on the thermal conductivity and expansion of geologic materials which could be present in radioactive waste repositories. In the case of homogeneous dense materials, only small shifts are predicted to occur at depths less than or equal to 3 km, and these shifts will be insignificant as compared with those caused by temperature variations. As the porosity of the medium increases, the variation of conductivity and expansion with pressure becomes greater, with conductivity increasing and expansion decreasing as pressure increases. The pressure dependence of expansion can be found from data on the temperature variation of the isobaric compressibility. In a worst case estimate, a decrease in expansion of approx. 25% is predicted for 5% porous sandstone at a depth of 3 km. The thermal conductivity of a medium with gaseous inclusions increases as the porosity decreases, with the magnitude of the increase being dependent on the details of the porosity collapse. Based on analysis of existing data on tuff and sandstone, a weighted geometric mean formula is recommended for use in calculating the conductivity of porous rock. As a result of this study, it is recommended that measurement of rock porosity versus depth receive increased attention in exploration studies and that the effect of porosity on thermal conductivity and expansion should be examined in more detail
Low Thermal Conductance Transition Edge Sensor (TES) for SPICA
International Nuclear Information System (INIS)
Khosropanah, P.; Dirks, B.; Kuur, J. van der; Ridder, M.; Bruijn, M.; Popescu, M.; Hoevers, H.; Gao, J. R.; Morozov, D.; Mauskopf, P.
2009-01-01
We fabricated and characterized low thermal conductance transition edge sensors (TES) for SAFARI instrument on SPICA. The device is based on a superconducting Ti/Au bilayer deposited on suspended SiN membrane. The critical temperature of the device is 113 mK. The low thermal conductance is realized by using long and narrow SiN supporting legs. All measurements were performed having the device in a light-tight box, which to a great extent eliminates the loading of the background radiation. We measured the current-voltage (IV) characteristics of the device in different bath temperatures and determine the thermal conductance (G) to be equal to 320 fW/K. This value corresponds to a noise equivalent power (NEP) of 3x10 -19 W/√(Hz). The current noise and complex impedance is also measured at different bias points at 55 mK bath temperature. The measured electrical (dark) NEP is 1x10 -18 W/√(Hz), which is about a factor of 3 higher than what we expect from the thermal conductance that comes out of the IV curves. Despite using a light-tight box, the photon noise might still be the source of this excess noise. We also measured the complex impedance of the same device at several bias points. Fitting a simple first order thermal-electrical model to the measured data, we find an effective time constant of about 2.7 ms and a thermal capacity of 13 fJ/K in the middle of the transition.
High temperature thermal conductivity measurements of UO2 by Direct Electrical Heating. Final report
International Nuclear Information System (INIS)
Bassett, B.
1980-10-01
High temperature properties of reactor type UO 2 pellets were measured using a Direct Electrical Heating (DEH) Facility. Modifications to the experimental apparatus have been made so that successful and reproducible DEH runs may be carried out while protecting the pellets from oxidation at high temperature. X-ray diffraction measurements on the UO 2 pellets have been made before and after runs to assure that sample oxidation has not occurred. A computer code has been developed that will model the experiment using equations that describe physical properties of the material. This code allows these equations to be checked by comparing the model results to collected data. The thermal conductivity equation for UO 2 proposed by Weilbacher has been used for this analysis. By adjusting the empirical parameters in Weilbacher's equation, experimental data can be matched by the code. From the several runs analyzed, the resulting thermal conductivity equation is lambda = 1/4.79 + 0.0247T/ + 1.06 x 10 -3 exp[-1.62/kT/] - 4410. exp[-3.71/kT/] where lambda is in w/cm K, k is the Boltzman constant, and T is the temperature in Kelvin
Minimized thermal conductivity in highly stable thermal barrier W/ZrO{sub 2} multilayers
Energy Technology Data Exchange (ETDEWEB)
Doering, Florian; Major, Anna; Eberl, Christian; Krebs, Hans-Ulrich [University of Goettingen, Institut fuer Materialphysik, Goettingen (Germany)
2016-10-15
Nanoscale thin-film multilayer materials are of great research interest since their large number of interfaces can strongly hinder phonon propagation and lead to a minimized thermal conductivity. When such materials provide a sufficiently small thermal conductivity and feature in addition also a high thermal stability, they would be possible candidates for high-temperature applications such as thermal barrier coatings. For this article, we have used pulsed laser deposition in order to fabricate thin multilayers out of the thermal barrier material ZrO{sub 2} in combination with W, which has both a high melting point and high density. Layer thicknesses were designed such that bulk thermal conductivity is governed by the low value of ZrO{sub 2}, while ultrathin W blocking layers provide a high number of interfaces. By this phonon scattering, reflection and shortening of mean free path lead to a significant reduction in overall thermal conductivity even below the already low value of ZrO{sub 2}. In addition to this, X-ray reflectivity measurements were taken showing strong Bragg peaks even after annealing such multilayers at 1300 K. Those results identify W/ZrO{sub 2} multilayers as desired thermally stable, low-conductivity materials. (orig.)
The effect of radiation induced electrical conductivity (RIC) on the thermal conductivity
International Nuclear Information System (INIS)
White, D.P.
1993-01-01
Microwave heating of plasmas in fusion reactors requires the development of microwave windows through which the microwaves can pass without great losses. The degradation of the thermal conductivity of alumina in a radiation environment is an important consideration in reliability studies of these microwave windows. Several recent papers have addressed this question at higher temperatures and at low temperatures. The current paper extends the low temperature calculations to determine the effect of phonon-electron scattering on the thermal conductivity at 77 K due to RIC. These low temperature calculations are of interest because the successful application of high power (>1 MW) windows for electron cyclotron heating systems in fusion reactors will most likely require cryogenic cooling to take advantage of the low loss tangent and higher thermal conductivity of candidate window materials at these temperatures
Thermal conductivity model of vibro-packed fuel
International Nuclear Information System (INIS)
Yeon Soo, Kim
2001-01-01
In an effort to dispose of excess weapons grade plutonium accumulated in the cold war era in the United States and the Russian Federation, one method currently under investigation is the conversion of the plutonium into mixed oxide (MOX) reactor fuel for LWRs and fast reactors in the Russian Federation. A fuel option already partly developed at the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad is that of vibro-packed MOX. Fuel rod fabrication using powder vibro-packing is attractive because it includes neither a process too complex to operate in glove boxes (or remotely), nor a waste-producing step necessary for the conventional pellet rod fabrication. However, because of its loose bonding between fuel particles at the beginning of life, vibro-packed MOX fuel has a somewhat less effective thermal conductivity than fully sintered pellet fuel, and undergoes more restructuring. Helium would also likely be pressurized in vibro-packed MOX fuel rods for LWRs to enhance initial fuel thermal conductivity. The combination of these two factors complicates development of an accurate thermal conductivity model. But clearly in order to predict fuel thermomechanical responses during irradiation of vibro-packed MOX fuel, fuel thermal conductivity must be known. The Vibropac fuel of interest in this study refers the fuel that is compacted with irregular fragments of mixed oxide fuel. In this paper, the thermal-conductivity models in the literature that dealt with relatively similar situations to the present case are examined. Then, the best model is selected based on accuracy of prediction and applicability. Then, the selected model is expanded to fit the various situations of interest. (author)
Validity of the isotropic thermal conductivity assumption in supercell lattice dynamics
Ma, Ruiyuan; Lukes, Jennifer R.
2018-02-01
Superlattices and nano phononic crystals have attracted significant attention due to their low thermal conductivities and their potential application as thermoelectric materials. A widely used expression to calculate thermal conductivity, presented by Klemens and expressed in terms of the relaxation time by Callaway and Holland, originates from the Boltzmann transport equation. In its most general form, this expression involves a direct summation of the heat current contributions from individual phonons of all wavevectors and polarizations in the first Brillouin zone. In common practice, the expression is simplified by making an isotropic assumption that converts the summation over wavevector to an integral over wavevector magnitude. The isotropic expression has been applied to superlattices and phononic crystals, but its validity for different supercell sizes has not been studied. In this work, the isotropic and direct summation methods are used to calculate the thermal conductivities of bulk Si, and Si/Ge quantum dot superlattices. The results show that the differences between the two methods increase substantially with the supercell size. These differences arise because the vibrational modes neglected in the isotropic assumption provide an increasingly important contribution to the thermal conductivity for larger supercells. To avoid the significant errors that can result from the isotropic assumption, direct summation is recommended for thermal conductivity calculations in superstructures.
Experimental Investigations on Thermal Conductivity of Fenugreek and Banana Composites
Pujari, Satish; Venkatesh, Talari; Seeli, Hepsiba
2018-04-01
The use of composite materials in manufacturing has significantly increased in the past decade. Research is being done to identify natural fibers that can be used as composites. Several natural fibers are already being used in the industry as composites. The appealing advantages of using natural fibers are reflected in lower density when compared to synthetic fibers and also in saving costs. This research paper highlights the experiment that analyses the use of biodegradable fenugreek composite as natural fiber and concludes that fenugreek natural fibers are an excellent substitute to the synthetic fibers in terms of reinforcement properties for the polymers. These fenugreek fibers are naturally sourced, renewable, cost effective and bio-friendly. In thermal energy storage systems as well as in air conditioning systems, thermal insulators are predominantly used to enhance the storage properties. An experiment was created to investigate the thermal properties of fenugreek banana composites for different fiber concentrations. The experimental results showed that the thermal conductivity of the composites decrease with an increase in the fiber content. The experimental results were compared with the theoretical models to describe the variation of thermal conductivity with the volume fraction of the fiber. Good agreement between theoretical and experimental results was observed.
International Nuclear Information System (INIS)
Fukushima, S.; Ohmichi, T.; Maeda, A.; Watanabe, H.
1982-01-01
The thermal conductivities of near-stoichiometric (U, Gd)O 2 solid solutions containing CdOsub(1.5) up to 15 mol% were determined in the temperature range 700 to 2000 K from thermal diffusivities measured by the laser flash method. Temperature dependence of the thermal conductivities up to around 1600 K could be expressed by the phonon conduction equation K = (A + BT) -1 . The thermal conductivity decreased gradually with an increase of gadolinium content. Thermal resistivities caused by lattice defects were calculated from a theoretical model considering U 4+ , U 5+ and Gd 3+ ions as phonon scattering centers. It was found that this model was in good agreement with the experimental results. The calculation based on this model indicates that the lattice strain effect on the lattice defect thermal resistivity is much larger than the mass effect. (orig.)
Hou, Quanwen; Zhao, Xiaopeng; Meng, Tong; Liu, Cunliang
2016-09-01
Thermal metamaterials and devices based on transformation thermodynamics often require materials with anisotropic and inhomogeneous thermal conductivities. In this study, still based on the concept of transformation thermodynamics, we designed a planar illusion thermal device, which can delocalize a heat source in the device such that the temperature profile outside the device appears to be produced by a virtual source at another position. This device can be constructed by only one kind of material with constant anisotropic thermal conductivity. The condition which should be satisfied by the device is provided, and the required anisotropic thermal conductivity is then deduced theoretically. This study may be useful for the designs of metamaterials or devices since materials with constant anisotropic parameters have great facility in fabrication. A prototype device has been fabricated based on a composite composed by two naturally occurring materials. The experimental results validate the effectiveness of the device.
The thermal conductivity and thermal diffusivity of four types of rice flours and one type of rice protein were determine at temperatures ranging from 4.8 to 36.8 C, bulk densities 535 to 875.8 kg/m3, and moisture contents 2.6 to 16.7 percent (w.b.), using a KD2 Thermal Properties Analyzer. It was ...
Thermal conductivity and rectification in asymmetric archaeal lipid membranes
Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven
2018-05-01
Nature employs lipids to construct nanostructured membranes that self-assemble in an aqueous environment to separate the cell interior from the exterior environment. Membrane composition changes among species and according to environmental conditions, which allows organisms to occupy a wide variety of different habitats. Lipid bilayers are phase-change materials that exhibit strong thermotropic and lyotropic phase behavior in an aqueous environment, which may also cause thermal rectification. Among different types of lipids, archaeal lipids are of great interest due to their ability to withstand extreme conditions. In this paper, nonequilibrium molecular dynamics simulations were employed to study the nanostructures and thermal properties of different archaeols and to investigate thermal rectification effects in asymmetric archaeal membranes. In particular, we are interested in understanding the role of bridged phytanyl chains and cyclopentane groups in controlling the phase transition temperature and heat flow across the membrane. Our results indicate that the bridged phytanyl chains decrease the molecular packing of lipids, whereas the existence of cyclopentane rings on the tail groups increases the molecular packing by enhancing the interactions between isoprenoid chains. We found that macrocyclic archaeols have the highest thermal conductivity, whereas macrocyclic archaeols with two cyclopentane rings have the lowest. The effect of the temperature on the variation of thermal conductivity was found to be progressive. Our results further indicate that small thermal rectification effects occur in asymmetric archaeol bilayer membranes at around 25 K temperature gradient. The calculated thermal rectification factor was around 0.09 which is in the range of rectification factor obtained experimentally for nanostructures such as carbon nanotubes (0.07). Such phenomena may be of biological significance and could also be optimized for use in various engineering
Status of rates and rate equations for thermal leptogenesis
Biondini, S.; Bödeker, D.; Brambilla, N.; Garny, M.; Ghiglieri, J.; Hohenegger, A.; Laine, M.; Mendizabal, S.; Millington, P.; Salvio, A.; Vairo, A.
2018-02-01
In many realizations of leptogenesis, heavy right-handed neutrinos play the main role in the generation of an imbalance between matter and antimatter in the early Universe. Hence, it is relevant to address quantitatively their dynamics in a hot and dense environment by taking into account the various thermal aspects of the problem at hand. The strong washout regime offers an interesting framework to carry out calculations systematically and reduce theoretical uncertainties. Indeed, any matter-antimatter asymmetry generated when the temperature of the hot plasma T exceeds the right-handed neutrino mass scale M is efficiently erased, and one can focus on the temperature window T ≪ M. We review recent progress in the thermal field theoretic derivation of the key ingredients for the leptogenesis mechanism: the right-handed neutrino production rate, the CP asymmetry in the heavy-neutrino decays and the washout rates. The derivation of evolution equations for the heavy-neutrino and lepton-asymmetry number densities, their rigorous formulation and applicability are also discussed.
International Nuclear Information System (INIS)
Hagino, H; Kawahara, Y; Goto, A; Miyazaki, K
2012-01-01
The in-plane effective thermal conductivity of free-standing Si thin films with periodic micropores was measured at -100 to 0 °C. The Si thin films with micropores were prepared from silicon-on-insulator (SOI) wafers by standard microfabrication processes. The dimensions of the free-standing Si thin films were 200μm×150μm×2 μm, with staggered 4 μm pores having an average pitch of 4 mm. The Si thin film serves both as a heater and thermometer. The average temperature rise of the thin film is a function of its in-plane thermal conductivity. The effective thermal conductivity was calculated using a simple one-dimensional heat conduction model. The measured thermal conductivity was much lower than that expected based on classical model evaluations. A significant phonon size effect was observed even in the microsized structures, and the mean free path for phonons is very long even at the room temperature.
Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures
Fesmire, James; Sass, Jared; Johnson, Wesley
2010-01-01
With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).
Directory of Open Access Journals (Sweden)
Chen Jie-Dong
2016-01-01
Full Text Available In this paper, we investigate the local fractional Laplace equation in the steady heat-conduction problem. The solutions involving the non-differentiable graph are obtained by using the characteristic equation method (CEM via local fractional derivative. The obtained results are given to present the accuracy of the technology to solve the steady heat-conduction in fractal media.
Influences in Thermal Conductivity Evaluation Using the Thermal Probe Method; some Practical Aspects
Strâmbu, Vasile
2012-01-01
The thermal probe is a device used for measuring the thermal conductivity of materials in the food industry, plastics industry, geotechnical engineering and studies of soft soils and rocks. The method also started being utilized in the field of construction materials with particularities that take into account their composition and the state they are in.
Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo
Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.
International Nuclear Information System (INIS)
Han-Fu, Wang; Wei-Guo, Chu; Yan-Jun, Guo; Hao, Jin
2010-01-01
In this study, we evaluate the values of lattice thermal conductivity κ L of type II Ge clathrate (Ge 34 ) and diamond phase Ge crystal (d-Ge) with the equilibrium molecular dynamics (EMD) method and the Slack's equation. The key parameters of the Slack's equation are derived from the thermodynamic properties obtained from the lattice dynamics (LD) calculations. The empirical Tersoff's potential is used in both EMD and LD simulations. The thermal conductivities of d-Ge calculated by both methods are in accordance with the experimental values. The predictions of the Slack's equation are consistent with the EMD results above 250 K for both Ge 34 and d-Ge. In a temperature range of 200–1000 K, the κ L value of d-Ge is about several times larger than that of Ge 34 . (condensed matter: structure, thermal and mechanical properties)
Lattice dynamics and lattice thermal conductivity of thorium dicarbide
Energy Technology Data Exchange (ETDEWEB)
Liao, Zongmeng [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Qiu, Wujie [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ke, Xuezhi, E-mail: xzke@phy.ecnu.edu.cn [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Zhang, Wenqing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Zhiyuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
2014-11-15
The elastic and thermodynamic properties of ThC{sub 2} with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C{sub 2} dimer in ThC{sub 2} is similar to that of a free standing C{sub 2} dimer. This indicates that the C{sub 2} dimer in ThC{sub 2} is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC{sub 2} was calculated by means of the Debye–Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC{sub 2} contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.
Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity
Energy Technology Data Exchange (ETDEWEB)
Li, Zhehao, E-mail: ccgri_lzh@163.com [Changchun Gold Research Institute, 130012 (China); Peng, Yuelian, E-mail: pyl@live.com.au [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Dong, Yajun; Fan, Hongwei [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Chen, Ping [The Research Institute of Environmental Protection, North China Pharmaceutical Group Corporation, 050015 (China); Qiu, Lin [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Qi [National Major Science and Technology Program Management Office for Water Pollution Control and Treatment, MEP, 100029 (China)
2014-10-30
Highlights: • The effects on vapor flux and thermal efficiency were simulated. • The conditions favoring vapor flux also favored thermal efficiency. • Four microporous polymer membranes were compared. • The SiO{sub 2} aerogel coating reduced the thermal conductivity of polymer membranes. • A 3ω technique was used to measure the thermal conductivity of membranes. - Abstract: The effects of the membrane characteristics and operational conditions on the vapor flux and thermal efficiency in a direct contact membrane distillation (DCMD) process were studied with a mathematical simulation. The membrane temperature, driving force of vapor transfer, membrane distillation coefficient, etc. were used to analyze the effects. The operating conditions that increased the vapor flux improved the thermal efficiency. The membrane characteristics of four microporous membranes and their performances in DCMD were compared. A polysulfone (PSf) membrane prepared via vapor-induced phase separation exhibited the lowest thermal conductivity. The PSf and polyvinylidene difluoride (PVDF) membranes were modified using SiO{sub 2} aerogel blending and coating to reduce the thermal conductivity of the membrane. The coating process was more effective than the blending process toward this end. The changes in the structure of the modified membrane were observed with a scanning electron microscope. Si was found on the modified membrane surface with an energy spectrometer. The PVDF composite and support membranes were tested during the DCMD process; the composite membrane had a higher vapor flux and a better thermal efficiency than the support. A new method based on a 3ω technique was used to measure the thermal conductivity of the membranes.
Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity
International Nuclear Information System (INIS)
Li, Zhehao; Peng, Yuelian; Dong, Yajun; Fan, Hongwei; Chen, Ping; Qiu, Lin; Jiang, Qi
2014-01-01
Highlights: • The effects on vapor flux and thermal efficiency were simulated. • The conditions favoring vapor flux also favored thermal efficiency. • Four microporous polymer membranes were compared. • The SiO 2 aerogel coating reduced the thermal conductivity of polymer membranes. • A 3ω technique was used to measure the thermal conductivity of membranes. - Abstract: The effects of the membrane characteristics and operational conditions on the vapor flux and thermal efficiency in a direct contact membrane distillation (DCMD) process were studied with a mathematical simulation. The membrane temperature, driving force of vapor transfer, membrane distillation coefficient, etc. were used to analyze the effects. The operating conditions that increased the vapor flux improved the thermal efficiency. The membrane characteristics of four microporous membranes and their performances in DCMD were compared. A polysulfone (PSf) membrane prepared via vapor-induced phase separation exhibited the lowest thermal conductivity. The PSf and polyvinylidene difluoride (PVDF) membranes were modified using SiO 2 aerogel blending and coating to reduce the thermal conductivity of the membrane. The coating process was more effective than the blending process toward this end. The changes in the structure of the modified membrane were observed with a scanning electron microscope. Si was found on the modified membrane surface with an energy spectrometer. The PVDF composite and support membranes were tested during the DCMD process; the composite membrane had a higher vapor flux and a better thermal efficiency than the support. A new method based on a 3ω technique was used to measure the thermal conductivity of the membranes
International Nuclear Information System (INIS)
Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Bai, Jun; Wu, Jian; Jia, Shenli
2015-01-01
The equation of state, ionization equilibrium, and conductivity are the most important parameters for investigation of dense plasma. The equation of state is calculated with the non-ideal effects taken into consideration. The electron chemical potential and pressure, which are commonly used thermodynamic quantities, are calculated by the non-ideal free energy and compared with results of a semi-empirical equation of state based on Thomas-Fermi-Kirzhnits model. The lowering of ionization potential, which is a crucial factor in the calculation of non-ideal Saha equation, is settled according to the non-ideal free energy. The full coupled non-ideal Saha equation is applied to describe the ionization equilibrium of dense plasma. The conductivity calculated by the Lee-More-Desjarlais model combined with non-ideal Saha equation is compared with experimental data. It provides a possible approach to verify the accuracy of the equation of state and ionization equilibrium
In vitro burn model illustrating heat conduction patterns using compressed thermal papers.
Lee, Jun Yong; Jung, Sung-No; Kwon, Ho
2015-01-01
To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.
Interface conductance between roughened Be and steel under thermal deformation
International Nuclear Information System (INIS)
Tillack, M.S.; Abelson, R.D.
1995-01-01
Predictability and control over temperatures and stresses are necessary in order to assure acceptable tritium release, component reliability and lifetime in solid breeder blankets. These blankets usually contain beryllium multiplier in either pebble-bed or solid block forms. For the solid block forms, uncertainties remain in the prediction of the thermal resistance between the Be and its cladding. Several parameters are important, including surface roughness and flatness, background gas pressure, and external loads which may result from blanket thermal deformations and/or pressure stresses. Differential thermal deformation between Be and steel can cause separation to occur between the two solid surfaces, which could seriously degrade the heat transfer. Existing models and data for solid-solid conductance show inconsistencies, even for steel surfaces. Little data or none exists for the Be-steel system, in which differential surface deformations are expected. In this work, we describe a new model which incorporates the combined influences of thermal deformation and contact pressure. Data were taken with small Be specimens as a function of the relevant parameters. The results show that the inclusion of non-conforming surfaces provides a richer range of behavior. Thermal deformations degrade the heat transfer by about a factor of two from flat surfaces, but this effect tends to decrease above about 100 kW m -2 . Contact pressure (above about 1 MPa) between the two materials can effectively maintain good conductance. The flatness and roughness of the surfaces are the most critical parameters. The work also demonstrates the large degree of variation in conductance with background gas pressure. (orig.)
International Nuclear Information System (INIS)
Kim, Dong-Joo; Yang, Jae-Ho; Kim, Jong-Hun; Rhee, Young-Woo; Kang, Ki-Won; Kim, Keon-Sik; Song, Kun-Woo
2007-01-01
The effects of solid fission products on the thermal conductivity of uranium base oxide nuclear fuel were experimentally investigated. Neodymium (Nd) and ruthenium (Ru) were added to represent the physical states of solid fission products such as 'dissolved oxide' and 'metallic precipitate', respectively. Thermal conductivity was determined on the basis of the thermal diffusivity, density and specific heat values. The effects of the additives on the thermal conductivity were quantified in the form of the thermal resistivity equation - the reciprocal of the phonon conduction equation - which was determined from the measured data. It is concluded that the thermal conductivity of the irradiated nuclear fuel is affected by both the 'dissolved oxide' and the 'metallic precipitate', however, the effects are in the opposite direction and the 'dissolved oxide' influences the thermal conductivity more significantly than that of the 'metallic precipitate'
Effect of microscale gaseous thermal conduction on the thermal behavior of a buckled microbridge
International Nuclear Information System (INIS)
Wang Jiaqi; Tang Zhenan; Li Jinfeng; Zhang Fengtian
2008-01-01
A microbridge is a basic micro-electro-mechanical systems (MEMS) device and has great potential for application in microsensors and microactuators. The thermal behavior of a microbridge is important for designing a microbridge-based thermal microsensor or microactuator. To study the thermal behavior of a microbridge consisting of Si 3 N 4 and polysilicon with a 2 µm suspended gap between the substrate and the microbridge while the microbridge is heated by an electrical current fed through the polysilicon, a microbridge model is developed to correlate theoretically the input current and the temperature distribution under the buckling conditions, especially considering the effects of the microscale gaseous thermal conduction due to the microbridge buckling. The calculated results show that the buckling of the microbridge changes the microscale gaseous thermal conduction, and thus greatly affects the thermal behavior of the microbridge. We also evaluate the effects of initial buckling on the temperature distribution of the microbridge. The experimental results show that buckling should be taken into account if the buckling is large. Therefore, the variation in gaseous thermal conduction and the suspended gap height caused by the buckling should be considered in the design of such thermomechanical microsensors and microactuators, which requires more accurate thermal behavior
DEFF Research Database (Denmark)
Zajas, Jan Jakub; Heiselberg, Per
The LFA 447 can be successfully used for measurements of thermal diffusivity, specific heat and thermal conductivity of various samples. It is especially useful when determining the properties of materials on a very small scale. The matrix measurement mode allows for determining the local...... that the heat losses from both samples during the measurement are similar. Finally, the leveling of the samples is very important. Very small discrepancies can cause a massive error in the derivation of specific heat capacity and, as a result, thermal conductivity....
Hu, Jiuning; Chen, Yong P.
2013-06-01
We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.
Ming, Yi; Li, Hui-Min; Ding, Ze-Jun
2016-03-01
Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.
Thermal expansion anomaly and thermal conductivity of U3O8
International Nuclear Information System (INIS)
Schulz, B.
1975-01-01
The anomaly in the thermal expansion of U 3 O 8 and results of the thermal conductivity of this compound are described. U 3 O 8 powder heat treated at 1,223 K was consolidated by pressing and sintering in air at 1,223 and 1,373 K to a density of 66% and 80.8% TD. The O/U ratio was 2.67 and 2.63 respectively, the crystal structure being orthorhombic in both cases. For UOsub(2.63) the thermal linear expansion was measured in the temperature range 293 K-1,063 K in pressing direction and normal to it, while for UOsub(2.67) measurements were done parallel to the pressing direction. The curves of the linear thermal expansion from 373 K up to 623 K show negative values and above positive for the three curves. The results are related to known data of phase-transition-temperatures of the orthorhombic U 3 O 8 . Measurements of the thermal conductivity were done on UOsub(2.67). Because of the high porosity of the samples, known relationships for the porosity correction of the thermal conductivity were proved on alumina with 34 % porosity. The values of the thermal conductivity of UOsub(2.67) (corrected to zero porosity) show a very slight temperature dependence, they are about three times lower than those of the stoichiometric uranium dioxide in the same temperature range
Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
Hu, Jiuning; Ruan, Xiulin; Chen, Yong P
2009-07-01
We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.
Fabrication and thermal conductivity of boron carbide/copper cermet
International Nuclear Information System (INIS)
Maruyama, Tadashi; Onose, Shoji
1999-01-01
Studies on fabrication and thermal conductivity of B 4 C/Cu cermet were made to obtain high performance neutron absorber materials for Liquid Metal-cooled Fast Breeder Reactor (LMFBR). A mixed powder of B 4 C and Cu was mechanically blended at high speed thereby a coating layer of Cu was formed on the surface of B 4 C powder. Then the B 4 C powder with Cu coating was hot pressed at temperatures from 950 to 1,050degC to form a B 4 C cermet. A high density B 4 C/Cu cermet with 70 vol% of B 4 C and relative density higher than 90% was successfully fabricated. In spite of the low volume fraction of Cu, the B 4 C/Cu cermet exhibited high thermal conductivity which originated from the existence of continuous metallic phase Cu in B 4 C/Cu cermet. (author)
Thermal conductivity and PVT measurements of pentafluoroethane (refrigerant HFC-125)
International Nuclear Information System (INIS)
Tsvetkov, O.B.; Kletski, A.V.; Laptev, Yu.A.
1995-01-01
By means of the transient and steady-state coaxial cylinder methods, the thermal conductivity of pentfluoroethane was investigated at temperatures from 187 to 419 K and pressures from atmospheric to 6.0 MPa. The estimated uncertainty of the measured results is ± (2-3)%. The operation of the experimental apparatus was validated by measuring the thermal conductivity of R22 and R12. Determinations of the vapor pressure and PVT properties were carried out by a constant-volume apparatus for the temperature range 263 to 443 K, pressures up to 6 MPa, and densities from 36 to 516 kg m -3 . The uncertainties in temperature, pressure, and density are less than ±10 mK, ±0.08%, and ±0.1%, respectively
Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates
DEFF Research Database (Denmark)
Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf
2014-01-01
as the rhabdophane structure is preserved. The bound hydrate water is accommodated in the rhabdophane structure and is stable at temperatures of up to 650 oC. The thermal stability of the hydrate water and the phosphate structure are of significance for the proton conductivity. The LaPO4·0.6H2O and NdPO4•0.5H2O......Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...... to the monazite structure upon dehydration. The thermal stability of the hydrate is studied and found to contain water of two types, physically adsorbed and structurally bound hydrate water. The adsorbed water is correlated to the specific surface area and can be reversibly recovered when dehydrated as long...
Synthesis and thermal conductivity of type II silicon clathrates
Beekman, M.; Nolas, G. S.
2006-08-01
We have synthesized and characterized polycrystalline Na 1Si 136 and Na 8Si 136, compounds possessing the type II clathrate hydrate crystal structure. Resistivity measurements from 10 to 300 K indicate very large resistivities in this temperature range, with activated temperature dependences indicative of relatively large band gap semiconductors. The thermal conductivity is very low; two orders-of-magnitude lower than that of diamond-structure silicon at room temperature. The thermal conductivity of Na 8Si 136 displays a temperature dependence that is atypical of crystalline solids and more indicative of amorphous materials. This work is part of a continuing effort to explore the many different compositions and structure types of clathrates, a class of materials that continues to be of interest for scientific and technological applications.
Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity
Hayat, Tasawar; Javed, Mehwish; Imtiaz, Maria; Alsaedi, Ahmed
2018-03-01
This paper presents the study of Jeffrey fluid flow by a rotating disk with variable thickness. Energy equation is constructed by using Cattaneo-Christov heat flux model with variable thermal conductivity. A system of equations governing the model is obtained by applying boundary layer approximation. Resulting nonlinear partial differential system is transformed to ordinary differential system. Homotopy concept leads to the convergent solutions development. Graphical analysis for velocities and temperature is made to examine the influence of different involved parameters. Thermal relaxation time parameter signifies that temperature for Fourier's heat law is more than Cattaneo-Christov heat flux. A constitutional analysis is made for skin friction coefficient and heat transfer rate. Effects of Prandtl number on temperature distribution and heat transfer rate are scrutinized. It is observed that larger Reynolds number gives illustrious temperature distribution.
Thermal Conductivity of the Potential Repository Horizon Model Report
International Nuclear Information System (INIS)
Ramsey, J.
2002-01-01
The purpose of this report is to assess the spatial variability and uncertainty of thermal conductivity in the host horizon for the proposed repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). The Tptpul is the layer directly above the repository host layers, which consist of the Tptpmn, Tptpll, and the Tptpln. Current design plans indicate that the largest portion of the repository will be excavated in the Tptpll (Board et al. 2002 [157756]). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large scale (cm-m) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity and perhaps repository system performance as well. To assess the spatial variability and uncertainty of thermal conductivity, a model is proposed that is functionally dependent on the volume fraction of lithophysae and the thermal conductivity of the matrix portion of the rock. In this model, void space characterized as lithophysae is assumed to be air-saturated under all conditions, while void space characterized as matrix may be either water- or air-saturated. Lithophysae are assumed to be air-saturated under all conditions since the units being studied are all located above the water table in the region of interest, and the relatively strong capillary forces of the matrix will, under most conditions, preferentially retain any moisture present in the rock
Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering
Barati, M.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.
2018-04-01
We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon–phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.
Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco
2013-01-01
Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915
Naya, Daniel E; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco
2013-09-22
Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)-in such a way that a scale-invariant ratio between both variables is equal to one-as could be expected from the Scholander-Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs.
Highly thermal conductive carbon fiber/boron carbide composite material
International Nuclear Information System (INIS)
Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.
1996-01-01
In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)
Origin of low thermal conductivity in SnSe
Xiao, Yu; Chang, Cheng; Pei, Yanling; Wu, Di; Peng, Kunling; Zhou, Xiaoyuan; Gong, Shengkai; He, Jiaqing; Zhang, Yongsheng; Zeng, Zhi; Zhao, Li-Dong
2016-09-01
We provide direct evidence to understand the origin of low thermal conductivity of SnSe using elastic measurements. Compared to state-of-the-art lead chalcogenides Pb Q (Q =Te , Se, S), SnSe exhibits low values of sound velocity (˜1420 m /s ) , Young's modulus (E ˜27.7 GPa ) , and shear modulus (G ˜9.6 GPa ) , which are ascribed to the extremely weak Sn-Se atomic interactions (or bonds between layers); meanwhile, the deduced average Grüneisen parameter γ of SnSe is as large as ˜3.13, originating from the strong anharmonicity of the bonding arrangement. The calculated phonon mean free path (l ˜ 0.84 nm) at 300 K is comparable to the lattice parameters of SnSe, indicating little room is left for further reduction of the thermal conductivity through introducing nanoscale microstructures and microscale grain boundaries. The low elastic properties indicate that the weak chemical bonding stiffness of SnSe generally causes phonon modes softening which eventually slows down phonon propagation. This work provides insightful data to understand the low lattice thermal conductivity of SnSe.
Thermal conductivity and emissivity measurements of uranium carbides
International Nuclear Information System (INIS)
Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Zanonato, P.; Tusseau-Nenez, S.
2015-01-01
Highlights: • Thermal conductivity and emissivity measurements of uranium carbides were performed. • The tested materials are candidates as targets for radioactive ion beam production. • The results are correlated with the materials composition and microstructure. - Abstract: Thermal conductivity and emissivity measurements on different types of uranium carbide are presented, in the context of the ActiLab Work Package in ENSAR, a project within the 7th Framework Program of the European Commission. Two specific techniques were used to carry out the measurements, both taking place in a laboratory dedicated to the research and development of materials for the SPES (Selective Production of Exotic Species) target. In the case of thermal conductivity, estimation of the dependence of this property on temperature was obtained using the inverse parameter estimation method, taking as a reference temperature and emissivity measurements. Emissivity at different temperatures was obtained for several types of uranium carbide using a dual frequency infrared pyrometer. Differences between the analyzed materials are discussed according to their compositional and microstructural properties. The obtainment of this type of information can help to carefully design materials to be capable of working under extreme conditions in next-generation ISOL (Isotope Separation On-Line) facilities for the generation of radioactive ion beams.
Tuning the thermal conductance of molecular junctions with interference effects
Klöckner, J. C.; Cuevas, J. C.; Pauly, F.
2017-12-01
We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo(phenylene ethynylene) derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and, more generally, in nanostructured metal-organic hybrid systems, which are important to determine how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.
The Thermal Electrical Conductivity Probe (TECP) for Phoenix
Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish
2009-01-01
The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2
Electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state
Petrov, Yu V.; Inogamov, N. A.; Mokshin, A. V.; Galimzyanov, B. N.
2018-01-01
The electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state is calculated by using the relaxation time approach and structural factor of ions obtained by molecular dynamics simulation. Resistivity witin the Ziman-Evans approach is also considered to be higher than in the approach with previously calculated conductivity via the relaxation time. Calculations based on the construction of the ion structural factor through the classical molecular dynamics and kinetic equation for electrons are more economical in terms of computing resources and give results close to the Kubo-Greenwood with the quantum molecular dynamics calculations.
Directory of Open Access Journals (Sweden)
Reisdorffer Frederic
2014-01-01
Full Text Available Organic semiconductors for opto-electronic devices show several defects which can be enhanced while increasing the operating temperature. Their thermal management and especially the reduction of their temperature are of great interest. For the heat transfer study, one has to measure the thermal conductivity of thin film organic materials. However the major difficulty for this measurement is the very low thickness of the films which needs the use of very specific techniques. In our work, the 3-omega and photothermal radiometric methods were used to measure the thermal conductivity of thin film organic semiconducting material (Alq3. The measurements were performed as function of the thin film thickness from 45 to 785 nm and also of its temperature from 80 to 350 K. With the 3 omega method, a thermal conductivity value of 0.066 W.m−1K−1 was obtained for Alq3 thin film of 200 nm at room temperature, in close agreement with the photothermal value. Both techniques appear to be complementary: the 3 omega method is easier to implement for large temperature range and small thicknesses down to a few tens of nanometers whereas the photothermal method is more suitable for thicknesses over 200nm since it provides additional information such as the thin film volumetric heat capacity.
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments
Zhu, Dongming; Spuckler, Charles M.
2010-01-01
The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.
Thermal diffusivity and thermal conductivity of (Th,U)O2 fuels
International Nuclear Information System (INIS)
Sengupta, A.K.; Jarvis, T.; Nair, M.R.; Ramachandran, R.; Mujumdar, S.; Purushotham, D.S.C.
2000-05-01
India has vast reserves of thorium (> 460,000 tons) and sustained work on all aspects of thorium utilization has been initiated. In this context work on fabrication of sintered thoria and mixed (Th,U)O 2 pellets and evaluation of their thermophysical properties have been taken up in Radiometallurgy Division. Thermal conductivity, being the most important thermal properties, has been calculated using the experimentally measured thermal diffusivity, density and literature values of specific heats for ThO 2 and thoria containing 2,4,6,10 and 20% UO 2 . Thermal diffusivity was measured experimentally by the laser flash method from 600 to 1600 deg C in vacuum. It was observed that thermal conductivity of ThO 2 and mixed (Th,U)O 2 decrease with increase in temperature. It was also observed that the conductivity decreases with increase in UO 2 content, the decrease being more at lower temperature than that at higher temperatures. Empirical relations correlating thermal conductivity to temperatures have been generated by the least square fit method and reported. (author)
Electrically and Thermally Conducting Nanocomposites for Electronic Applications
Directory of Open Access Journals (Sweden)
Daryl Santos
2010-02-01
Full Text Available Nanocomposites made up of polymer matrices and carbon nanotubes are a class of advanced materials with great application potential in electronics packaging. Nanocomposites with carbon nanotubes as fillers have been designed with the aim of exploiting the high thermal, electrical and mechanical properties characteristic of carbon nanotubes. Heat dissipation in electronic devices requires interface materials with high thermal conductivity. Here, current developments and challenges in the application of nanotubes as fillers in polymer matrices are explored. The blending together of nanotubes and polymers result in what are known as nanocomposites. Among the most pressing current issues related to nanocomposite fabrication are (i dispersion of carbon nanotubes in the polymer host, (ii carbon nanotube-polymer interaction and the nature of the interface, and (iii alignment of carbon nanotubes in a polymer matrix. These issues are believed to be directly related to the electrical and thermal performance of nanocomposites. The recent progress in the fabrication of nanocomposites with carbon nanotubes as fillers and their potential application in electronics packaging as thermal interface materials is also reported.
Nanoscale Electromechanics To Measure Thermal Conductivity, Expansion, and Interfacial Losses.
Mathew, John P; Patel, Raj; Borah, Abhinandan; Maliakkal, Carina B; Abhilash, T S; Deshmukh, Mandar M
2015-11-11
We study the effect of localized Joule heating on the mechanical properties of doubly clamped nanowires under tensile stress. Local heating results in systematic variation of the resonant frequency; these frequency changes result from thermal stresses that depend on temperature dependent thermal conductivity and expansion coefficient. The change in sign of the linear expansion coefficient of InAs is reflected in the resonant response of the system near a bath temperature of 20 K. Using finite element simulations to model the experimentally observed frequency shifts, we show that the thermal conductivity of a nanowire can be approximated in the 10-60 K temperature range by the empirical form κ = bT W/mK, where the value of b for a nanowire was found to be b = 0.035 W/mK(2), significantly lower than bulk values. Also, local heating allows us to independently vary the temperature of the nanowire relative to the clamping points pinned to the bath temperature. We suggest a loss mechanism (dissipation ~10(-4)-10(-5)) originating from the interfacial clamping losses between the metal and the semiconductor nanostructure.
Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings
Bansal, Narottam P.; Zhu, Dongming
2006-01-01
Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.
Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites
International Nuclear Information System (INIS)
Fathy, A.; El-Kady, Omyma
2013-01-01
Highlights: ► The copper–alumina composites were prepared by powder metallurgy (P/M) method with nano-Cu/Al 2 O 3 powders. ► The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. ► The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. ► The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. ► Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. - Abstract: Copper–alumina composites were prepared by powder metallurgy (P/M) technology. Nano-Cu/Al 2 O 3 powders, was deoxidized from CuO/Al 2 O 3 powders which synthesized by thermochemical technique by addition of Cu powder to an aqueous solution of aluminum nitrate. The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. The large variation in the thermal conductivities can be related to the microstructural characteristics of the interface between Al 2 O 3 and the Cu-matrix. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The reduction of thermal conductivity and coefficient of thermal expansion were
EFFECTS OF IRRADIATION ON THERMAL CONDUCTIVITY OF ALLOY 690 AT LOW NEUTRON FLUENCE
Directory of Open Access Journals (Sweden)
WOO SEOG RYU
2013-04-01
Full Text Available Alloy 690 has been selected as a steam generator tubing material for SMART owing to a near immunity to primary water stress corrosion cracking. The steam generators of SMART are faced with a neutron flux due to the integrated arrangement inside a reactor vessel, and thus it is important to know the irradiation effects of the thermal conductivity of Alloy 690. Alloy 690 was irradiated at HANARO to fluences of (0.7−28 × 1019n/cm2 (E>0.1MeV at 250°C, and its thermal conductivity was measured using the laser-flash equipment in the IMEF. The thermal conductivity of Alloy 690 was dependent on temperature, and it was a good fit to the Smith-Palmer equation, which modified the Wiedemann-Franz law. The irradiation at 250°C did not degrade the thermal conductivity of Alloy 690, and even showed a small increase (1% at fluences of (0.7∼28 × 1019n/cm2 (E>0.1MeV.
International Nuclear Information System (INIS)
Narsilio, G A; Yun, T S; Kress, J; Evans, T M
2010-01-01
This paper summarizes a method to characterize conduction properties in soils at the particle-scale. The method set the bases for an alternative way to estimate conduction parameters such as thermal conductivity and hydraulic conductivity, with the potential application to hard-to-obtain samples, where traditional experimental testing on large enough specimens becomes much more expensive. The technique is exemplified using 3D synthetic grain packings generated with discrete element methods, from which 3D granular images are constructed. Images are then imported into the finite element analyses to solve the corresponding governing partial differential equations of hydraulic and thermal conduction. High performance computing is implemented to meet the demanding 3D numerical calculations of the complex geometrical domains. The effects of void ratio and inter-particle contacts in hydraulic and thermal conduction are explored. Laboratory measurements support the numerically obtained results and validate the viability of the new methods used herein. The integration of imaging with rigorous numerical simulations at the pore-scale also enables fundamental observation of particle-scale mechanisms of macro-scale manifestation.
Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong
2017-01-05
The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
One-dimensional heat conduction equation of the polar bear hair
Directory of Open Access Journals (Sweden)
Zhu Wei-Hong
2015-01-01
Full Text Available Hairs of a polar bear (Ursus maritimus possess special membrane-pore structure. The structure enables the polar bear to survive in the harsh Arctic regions. In this paper, the membrane-pore structure be approximately considered as fractal space, 1-D heat conduction equation of the polar bear hair is established and the solution of the equation is obtained.
Thermal and Electrical Investigation of Conductive Polylactic Acid Based Filaments
Dobre, R. A.; Marcu, A. E.; Drumea, A.; Vlădescu, M.
2018-06-01
Printed electronics gain momentum as the involved technologies become affordable. The ability to shape electrostatic dissipative materials in almost any form is useful. The idea to use a general-purpose 3D printer to manufacture the electrical interconnections for a circuit is very attractive. The advantage of using a 3D printed structure over other technologies are mainly the lower price, less requirements concerning storage and use conditions, and the capability to build thicker traces while maintaining flexibility. The main element allowing this to happen is a printing filament with conductive properties. The paper shows the experiments that were performed to determine the thermal and electrical properties of polylactic acid (PLA) based ESD dissipative filament. Quantitative results regarding the thermal behavior of the DC resistance and the variation of the equivalent parallel impedance model parameters (losses resistance, capacitance, impedance magnitude and phase angle) with frequency are shown.. Using these results, new applications like printed temperature sensors can be imagined.
Synthesis, sintering properties and thermal conductivity of uranium carbonitrides
International Nuclear Information System (INIS)
Wolters, R.A.M.
1978-01-01
An introduction to the applications and chemistry of uranium carbonitrides is given including the potential use as a nuclear fuel. The powder synthesis of UC, UN and mixtures of UC and UN by a cyclic process is described. The correlation between the composition ratio UN/(UC+UN) in the final product and the parameters of the process is only determined qualitatively. Batch synthesis of a powder does not lead to an increase of the content of metallic impurities and oxygen. The impurity level is determined by that of the starting uranium metal and the thermal conductivity of the sintered compacts of uranium carbonitrides are determined via the measurement of the thermal diffusivity at 1100-1700 K. (Auth.)
Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru
2017-07-01
Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.
The effect of compressive viscosity and thermal conduction on the longitudinal MHD waves
Bahari, K.; Shahhosaini, N.
2018-05-01
longitudinal Magnetohydrodynamic (MHD) oscillations have been studied in a slowly cooling coronal loop, in the presence of thermal conduction and compressive viscosity, in the linear MHD approximation. WKB method has been used to solve the governing equations. In the leading order approximation the dispersion relation has been obtained, and using the first order approximation the time dependent amplitude has been determined. Cooling causes the oscillations to amplify and damping mechanisms are more efficient in hot loops. In cool loops the oscillation amplitude increases with time but in hot loops the oscillation amplitude decreases with time. Our conclusion is that in hot loops the efficiency of the compressive viscosity in damping longitudinal waves is comparable to that of the thermal conduction.
International Nuclear Information System (INIS)
Qin Fang; Wen Wen; Chen Ji-Sheng
2014-01-01
The thermal and electrical transport properties of an ideal anyon gas within fractional exclusion statistics are studied. By solving the Boltzmann equation with the relaxation-time approximation, the analytical expressions for the thermal and electrical conductivities of a three-dimensional ideal anyon gas are given. The low-temperature expressions for the two conductivities are obtained by using the Sommerfeld expansion. It is found that the Wiedemann—Franz law should be modified by the higher-order temperature terms, which depend on the statistical parameter g for a charged anyon gas. Neglecting the higher-order terms of temperature, the Wiedemann—Franz law is respected, which gives the Lorenz number. The Lorenz number is a function of the statistical parameter g. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Effective thermal conductivity estimate of heterogenous media by a lattice Boltzmann method
Energy Technology Data Exchange (ETDEWEB)
Arab, M.R.; Pateyron, B.; El Ganaoui, M.; Labbe, J.C. [Limoges Univ., Limoges (France). Science des Procedes Ceramiques et de Traitements de Surface
2009-07-01
Statistical lattice Boltzmann methods (LBM) are often used to simulate isothermal fluid flow for problems with complex geometry or porous structures. This study used an LBM algorithm to evaluate the effective thermal conductivity (ETC) of simple 2-D configurations. The LBM algorithm was also used to estimate the ECT of a porous structure. The Bhatnagar-Gross-Krook approximation was used to determine the discrete form of the Boltzmann equation for a single phase flow. A comparison with the finite element method (FEM) was also conducted. Results of the study demonstrated that the LBM algorithm accurately simulates the phenomena of heat and mass transfer for both the simple 2-D configurations as well as the porous media. The tool will be used to determine the influence of thermal contact resistance on heat transfer. 6 refs., 1 tab., 7 figs.
Baston, Daniel P.; Kueper, Bernard H.
2009-02-01
A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green's function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx ( q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large.
Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles
Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo
2017-07-01
We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.
Coupled heat conduction and thermal stress formulation using explicit integration
International Nuclear Information System (INIS)
Marchertas, A.H.; Kulak, R.F.
1982-06-01
The formulation needed for the conductance of heat by means of explicit integration is presented. The implementation of these expressions into a transient structural code, which is also based on explicit temporal integration, is described. Comparisons of theoretical results with code predictions are given both for one-dimensional and two-dimensional problems. The coupled thermal and structural solution of a concrete crucible, when subjected to a sudden temperature increase, shows the history of cracking. The extent of cracking is compared with experimental data
Shear viscosity and thermal conductivity of nuclear 'pasta'
International Nuclear Information System (INIS)
Horowitz, C. J.; Berry, D. K.
2008-01-01
We calculate the shear viscosity η and thermal conductivity κ of a nuclear pasta phase in neutron star crusts. This involves complex nonspherical shapes. We use semiclassical molecular dynamics simulations involving 40, 000 to 100, 000 nucleons. The viscosity η can be simply expressed in terms of the height Z* and width Δq of the peak in the static structure factor S p (q). We find that η increases somewhat, compared to a lower density phase involving spherical nuclei, because Z* decreases from form factor and ion screening effects. However, we do not find a dramatic increase in η from nonspherical shapes, as may occur in conventional complex fluids
LBM estimation of thermal conductivity in meso-scale modelling
International Nuclear Information System (INIS)
Grucelski, A
2016-01-01
Recently, there is a growing engineering interest in more rigorous prediction of effective transport coefficients for multicomponent, geometrically complex materials. We present main assumptions and constituents of the meso-scale model for the simulation of the coal or biomass devolatilisation with the Lattice Boltzmann method. For the results, the estimated values of the thermal conductivity coefficient of coal (solids), pyrolytic gases and air matrix are presented for a non-steady state with account for chemical reactions in fluid flow and heat transfer. (paper)
Radiative contribution to the thermal conductivity of fibrous insulations
Linford, R. M. F.; Schmitt, R. J.; Hughes, T. A.
1974-01-01
An approach is shown for using a simple two-flux model to interpret infrared transmission data for a variety of reuseable surface insulations materials and to calculate the radiation transmission. A description is given of preliminary experiments on mullite and silica-based materials. The calculated parameters are compared with the measured values of the total thermal conductivity, as determined on guarded hot plate equipment. It is pointed out that for many samples the newly developed four-flux model must be utilized because the scattering properties of the fibers are often dependent on the wavelength of the radiation.
Acoustical study of electro- and thermal conductivity of liquid metals
International Nuclear Information System (INIS)
Tekuchev, V.V.; Rygalov, L.N.; Ivanova, I.V.; Barashkov, B.I.
2003-01-01
One established a link between electrical, elastic and structural properties of electronic smelts. One calculated polyterms of resistance and thermal conductivity of liquid metals (Be, Cd, U, V, Mo, Cr, rare-earth metals) on the basis of data covering both melting and boiling points. For some metals the values were obtained for the first time. To analyze kinetic properties of metals under high temperatures one should apply complex many-particles model representations and efficient computing equipment. It is pointed out that essential problems blocking efforts to tackle the mentioned task result in necessity to find simple though approximate models describing satisfactorily properties of metals [ru
International Nuclear Information System (INIS)
Hamilton, D.C.
1986-01-01
Measurements are reported for the electrical conductivity of liquid nitrogen (N 2 ), oxygen (O 2 ) and benzene (C 6 H 6 ), and Hugoniot equation of state of liquid 1-butene (C 4 H 8 ) under shock compressed conditions. The conductivity data span 7 x 10 -4 to 7 x 10 1 Ω -1 cm -1 over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs
Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.
2015-01-01
To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.
Menezes de Oliveira, Marilia; Wen, Peng; Ahfock, Tony
2016-09-01
This paper focuses on electroconvulsive therapy (ECT) and head models to investigate temperature profiles arising when anisotropic thermal and electrical conductivities are considered in the skull layer. The aim was to numerically investigate the threshold for which this therapy operates safely to the brain, from the thermal point of view. A six-layer spherical head model consisting of scalp, fat, skull, cerebro-spinal fluid, grey matter and white matter was developed. Later on, a realistic human head model was also implemented. These models were built up using the packages from COMSOL Inc. and Simpleware Ltd. In these models, three of the most common electrode montages used in ECT were applied. Anisotropic conductivities were derived using volume constraint and included in both spherical and realistic head models. The bio-heat transferring problem governed by Laplace equation was solved numerically. The results show that both the tensor eigenvalues of electrical conductivity and the electrode montage affect the maximum temperature, but thermal anisotropy does not have a significant influence. Temperature increases occur mainly in the scalp and fat, and no harm is caused to the brain by the current applied during ECT. The work assures the thermal safety of ECT and also provides a numerical method to investigate other non-invasive therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kosevich, Yuriy A.; Savin, Alexander V.; Cantarero, Andrés
2013-01-01
We present molecular dynamics simulation of phonon thermal conductivity of semiconductor nanoribbons with an account for phonon quantum statistics. In our semiquantum molecular dynamics simulation, dynamics of the system is described with the use of classical Newtonian equations of motion where the effect of phonon quantum statistics is introduced through random Langevin-like forces with a specific power spectral density (color noise). The color noise describes interaction of the molecular system with the thermostat. The thermal transport of silicon and germanium nanoribbons with atomically smooth (perfect) and rough (porous) edges are studied. We show that the existence of rough (porous) edges and the quantum statistics of phonon change drastically the low-temperature thermal conductivity of the nanoribbon in comparison with that of the perfect nanoribbon with atomically smooth edges and classical phonon dynamics and statistics. The rough-edge phonon scattering and weak anharmonicity of the considered lattice produce a weakly pronounced maximum of thermal conductivity of the nanoribbon at low temperature.
Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity
International Nuclear Information System (INIS)
Sadri, Somayyeh; Raveshi, Mohammad Reza; Amiri, Shayan
2012-01-01
In this study, one type of applicable analytical method, differential transformation method (DTM), is used to evaluate the efficiency and behavior of a straight fin with variable thermal conductivity and heat transfer coefficient. Fins are widely used to enhance heat transfer between primary surface and the environment in many industrial applications. The performance of such a surface is significantly affected by variable thermal conductivity and heat transfer coefficient, particularly for large temperature differences. General heat transfer equation related to the fin is derived and dimensionalized. The concept of differential transformation is briefly introduced, and then this method is employed to derive solutions of nonlinear equations. Results are evaluated for several cases such as: laminar film boiling or condensation, forced convection, laminar natural convection, turbulent natural convection, nucleate boiling, and radiation. The obtained results from DTM are compared with the numerical solution to verify the accuracy of the proposed method. The effects of design parameters on temperature and efficiency are evaluated by some figures. The major aim of the present study, which is exclusive for this article, is to find the effect of the modes of heat transfer on fin efficiency. It has been shown that for radiation heat transfer, thermal efficiency reaches its maximum value
Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes
Directory of Open Access Journals (Sweden)
Zhaoji Ma
2017-06-01
Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.
Development of Tailorable Electrically Conductive Thermal Control Material Systems
Deshpande, M. S.; Harada, Y.
1997-01-01
The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and
Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity
Jiang, Fei
2018-04-01
We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild's (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.
International Nuclear Information System (INIS)
Ling, Ziye; Chen, Jiajie; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo
2015-01-01
Highlights: • Expanded graphite can improve thermal conductivity of RT44HC by 20–60 times. • Thermal conductivity of PCM/EG composites keeps constant before/after melting. • Thermal conductivity of PCMs nearly doubled during phase changing. • Thermal conductivity of composite PCM increases with density and percentage of EG. • The simple model predicts thermal conductivity of EG-based composites accurately. - Abstract: This work studies factors that affect the thermal conductivity of an organic phase change material (PCM), RT44HC/expanded graphite (EG) composite, which include: EG mass fraction, composite PCM density and temperature. The increase of EG mass fraction and bulk density will both enhance thermal conductivity of composite PCMs, by up to 60 times. Thermal conductivity of RT44HC/EG composites remains independent on temperature outside the phase change range (40–45 °C), but nearly doubles during the phase change. The narrow temperature change during the phase change allows the maximum heat flux or minimum temperature for heat source if attaching PCMs to a first (constant temperature) or second (constant heat flux) thermal boundary. At last, a simple thermal conductivity model for EG-based composites is put forward, based on only two parameters: mass fraction of EG and bulk density of the composite. This model is validated with experiment data presented in this paper and in literature, showing this model has general applicability to any composite of EG and poor thermal conductive materials
Thermal conductivity of uranium: effects of purity and microstructure
International Nuclear Information System (INIS)
Sandenaw, T.A.
1975-10-01
Thermal conductivity curves for polycrystalline uranium are presented for the temperature range below 373 0 K. The curves are for specimens prepared by different fabrication procedures from material of known purity and hardness. Included is a curve for U/2wt percent Mo alloy. Different mechanisms appear to be influencing the thermal conductivity behavior of uranium in well-defined temperature regions: below 37 to 43 0 K, approximately 40 to approximately 80 0 K, 80 to approximately 280 0 K, and from 280 0 K to the α → β transformation temperature. Mechanisms responsible for results in one temperature region continue to exert a strong influence in the next higher temperature region. Impurities and initial microstructure seem to influence results at any starting temperature. Evidence is presented for the possibility of imperfection ordering in uranium between approximately 40 and approximately 280 0 K. It is postulated that the type of ordering is capable with a martensite-like behavior and that all physical property results depend on the extent of a modification of the α-phase on cooling below approximately 280 0 K
Thermal Conductivity of Ethylene Vinyl Acetate Copolymer/Nanofiller Blends
Ghose, S.; Watson, K. A.; Working, D. C.; Connell, J. W.; Smith, J. G., Jr.; Lin, Y.; Sun, Y. P.
2007-01-01
To reduce weight and increase the mobility, comfort, and performance of future spacesuits, flexible, thermally conductive fabrics and plastic tubes are needed for the Liquid Cooling and Ventilation Garment. Such improvements would allow astronauts to operate more efficiently and safely for extended extravehicular activities. As an approach to raise the thermal conductivity (TC) of an ethylene vinyl acetate copolymer (Elvax 260), it was compounded with three types of carbon based nanofillers: multi-walled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNFs), and expanded graphite (EG). In addition, other nanofillers including metallized CNFs, nickel nanostrands, boron nitride, and powdered aluminum were also compounded with Elvax 260 in the melt at various loading levels. In an attempt to improve compatibility between Elvax 260 and the nanofillers, MWCNTs and EG were modified by surface coating and through noncovalent and covalent attachment of organic molecules containing alkyl groups. Ribbons of the nanocomposites were extruded to form samples in which the nanofillers were aligned in the direction of flow. Samples were also fabricated by compression molding to yield nanocomposites in which the nanofillers were randomly oriented. Mechanical properties of the aligned samples were determined by tensile testing while the degree of dispersion and alignment of nanoparticles were investigated using high-resolution scanning electron microscopy. TC measurements were performed using a laser flash (Nanoflash ) technique. TC of the samples was measured in the direction of, and perpendicular to, the alignment direction. Additionally, tubing was also extruded from select nanocomposite compositions and the TC and mechanical flexibility measured.
A hot-wire method based thermal conductivity measurement apparatus for teaching purposes
International Nuclear Information System (INIS)
Alvarado, S; Marín, E; Juárez, A G; Calderón, A; Ivanov, R
2012-01-01
The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer and a high purity platinum wire). The wire, which is immersed in the investigated sample, is heated by passing a constant electrical current through it, and its temperature evolution, ΔT, is measured as a function of time, t, for several values of the current. A straightforward methodology is then used for data processing in order to obtain the liquid thermal conductivity. The start point is the well known linear relationship between ΔT and ln(t) predicted for long heating times by a model based on a solution of the heat conduction equation for an infinite lineal heat source embedded in an infinite medium into which heat is conducted without convective and radiative heat losses. A criterion is used to verify that the selected linear region is the one that matches the conditions imposed by the theoretical model. As a consequence the method involves least-squares fits in linear, semi-logarithmic (semi-log) and log-log graphs, so that it becomes attractive not only to teach about heat transfer and thermal properties measurement techniques, but also as a good exercise for students of undergraduate courses of physics and engineering learning about these kinds of mathematical functional relationships between variables. The functionality of the experiment was demonstrated by measuring the thermal conductivity in samples of liquids with well known thermal properties. (paper)
International Nuclear Information System (INIS)
Valalaki, K; Nassiopoulou, A G
2017-01-01
An improved approach for determining thermal conductivity using the 3 ω method was used to determine anisotropic porous Si thermal conductivity in the temperature range 77–300 K. In this approach, thermal conductivity is extracted from experimental data of the third harmonic of the voltage (3 ω ) as a function of frequency, combined with consequent FEM simulations. The advantage is that within this approach the finite thickness of the sample and the heater are taken into account so that the corresponding errors introduced in thermal conductivity values when using Cahill’s simplified analytical formula are eliminated. The developed method constitutes a useful tool for measuring the thermal conductivity of samples with unknown thermal properties. The thermal conductivity measurements with the 3 ω method are discussed and compared with those obtained using the well-established dc method. (paper)
International Nuclear Information System (INIS)
Kato, Masato; Morimoto, Kyoichi; Komeno, Akira; Nakamichi, Shinya; Kashimura, Motoaki; Abe, Tomoyuki; Uno, Hiroki; Ogasawara, Masahiro; Tamura, Tetsuya; Sugata, Hirotada; Sunaoshi, Takeo; Shibata, Kazuya
2006-10-01
Japan Atomic Energy Agency has developed a fast breeder reactor (FBR), and plutonium and uranium mixed oxide (MOX) having low density and 20-30%Pu content has used as a fuel of the FBR, Monju. In plutonium, Americium has been accumulated during long-term storage, and Am content will be increasing up to 2-3% in the MOX. It is essential to evaluate the influence of Am content on physical properties of MOX on the development of FBR in the future. In this study melting points and thermal conductivities which are important data on the fuel design were measured systematically in wide range of composition, and the effects of Am accumulated were evaluated. The solidus temperatures of MOX were measured as a function of Pu content, oxygen to metal ratio (O/M) and Am content using thermal arrest technique. The sample was sealed in a tungsten capsule in vacuum for measuring solidus temperature. In the measurements of MOX with Pu content of more than 30%, a rhenium inner capsule was used to prevent the reaction between MOX and tungsten. In the results, it was confirmed that the melting points of MOX decrease with as an increase of Pu content and increase slightly with a decrease of O/M ratio. The effect of Am content on the fuel design was negligible small in the range of Am content up to 3%. Thermal conductivities of MOX were evaluated from thermal diffusivity measured by laser flash method and heat capacity calculated by Neumann- Kopp's law. The thermal conductivity of MOX decreased slightly in the temperature of less than 1173K with increasing Am content. The effect of Am accumulated in long-term storage fuel was evaluated from melting points and thermal conductivities measured in this study. It is concluded that the increase of Am in the fuel barely affect the fuel design in the range of less than 3%Am content. (author)
A reconstruction of Maxwell model for effective thermal conductivity of composite materials
International Nuclear Information System (INIS)
Xu, J.Z.; Gao, B.Z.; Kang, F.Y.
2016-01-01
Highlights: • Deficiencies were found in classical Maxwell model for effective thermal conductivity. • Maxwell model was reconstructed based on potential mean-field theory. • Reconstructed Maxwell model was extended with particle–particle contact resistance. • Predictions by reconstructed Maxwell model agree excellently with experimental data. - Abstract: Composite materials consisting of high thermal conductive fillers and polymer matrix are often used as thermal interface materials to dissipate heat generated from mechanical and electronic devices. The prediction of effective thermal conductivity of composites remains as a critical issue due to its dependence on considerably factors. Most models for prediction are based on the analog between electric potential and temperature that satisfy the Laplace equation under steady condition. Maxwell was the first to derive the effective electric resistivity of composites by examining the far-field spherical harmonic solution of Laplace equation perturbed by a sphere of different resistivity, and his model was considered as classical. However, a close review of Maxwell’s derivation reveals that there exist several controversial issues (deficiencies) inherent in his model. In this study, we reconstruct the Maxwell model based on a potential mean-field theory to resolve these issues. For composites made of continuum matrix and particle fillers, the contact resistance among particles was introduced in the reconstruction of Maxwell model. The newly reconstructed Maxwell model with contact resistivity as a fitting parameter is shown to fit excellently to experimental data over wide ranges of particle concentration and mean particle diameter. The scope of applicability of the reconstructed Maxwell model is also discussed using the contact resistivity as a parameter.
Estimation of thermal conductivity of short pastry biscuit at different baking stages
Cevoli, C.; Fabbri, A.; Marai, S.V.; Ferrari, E.; Guarnieri, A.
2014-01-01
Thermal conductivity of a food material is an essential physical property in mathematical modelling and computer simulation of thermal processing. Effective thermal conductivity of non-homogeneous materials, such as food matrices, can be determined experimentally or mathematically. The aim of the following research was to compare the thermal conductivity of short pastry biscuits, at different baking stages (60-160 min), measured by a line heat source thermal conductivity probe and estimated t...
Development of In-plane Thermal Conductivity Calculation Methods in Thin Films
Directory of Open Access Journals (Sweden)
A. A. Barinov
2017-01-01
Full Text Available The future nanoelectronics development involves using the smaller- -and-smaller-sized circuit components based on the micro- and nanostructures. This causes a growth of the specific heat flows up to 100 W/cm2. Since performance of electronic devices is strongly dependent on the temperature there is a challenge to create the heat transfer models, which take into account the size effect and ensure a reliable estimate of the thermal conductivity. This is one of the crucial tasks for development of new generations of integrated circuits.The paper studies heat transfer processes using the silicon thin films as an example. Thermal conductivity calculations are performed taking into account the influence of the classical size effect in the context of the Sondheimer model based on the solution of the Boltzmann transport equation.The paper, for the first time, presents and considers the influence of various factors on the thermal conductivity of thin films, namely temperature, film thickness, polarization of the phonon waves (transverse and longitudinal, velocity and relaxation time versus frequency for the phonons of different wave types.Based on the analysis, three models with different accuracy are created to estimate the influence of detailing processes under consideration on the thermal conductivity in a wide range of temperatures (from 10 K to 450 К and film thickness (from 10 nm to 100 µm.So in the model I for the first time in calculating thermal conductivity of thin films we properly and circumstantially take into account the dependence of the velocity and the relaxation time of phonons on the frequency and polarization. The obtained values are in a good agreement with available experimental data and theoretical models of other authors. In the following models we use few average methods for relaxation times and velocities, which leads to significant reduction in calculating accuracy up to the values exceeding 100%.Therefore, when calculating
Thermal conductivity thermal diffusivity of UO{sub 2}-BeO nuclear fuel pellets
Energy Technology Data Exchange (ETDEWEB)
Mansur, Fábio A.; Camarano, Denise M.; Santos, Ana M. M.; Ferraz, Wilmar B.; Silva, Mayra A.; Ferreira, Ricardo A.N., E-mail: fam@cdtn.br, E-mail: dmc@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: mayra.silva@cdtn.br, E-mail: ricardoanf@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2017-07-01
The temperature distribution in nuclear fuel pellets is of vital importance for the performance of the reactor, as it affects the heat transfer, the mechanical behavior and the release of fission gas during irradiation, reducing safety margins in possible accident scenarios. One of the main limitation for the current uranium dioxide nuclear fuel (UO{sub 2}) is its low thermal conductivity, responsible for the higher temperature of the pellet center and, consequently, for a higher radial temperature gradient. Thus, the addition of another material to increase the UO{sub 2} fuel thermal conductivity has been considered. Among the additives that are being investigated, beryllium oxide (BeO) has been chosen due to its high thermal conductivity, with potential to optimize power generation in pressurized light water reactors (PWR). In this work, UO{sub 2}-BeO pellets were obtained by the physical mixing of the powders with additions of 2wt% and 3wt% of BeO. The thermal diffusivity and conductivity of the pellets were determined from room temperature up to 500 °C. The results were normalized to 95% of the theoretical density (TD) of the pellets and varied according to the BeO content. The range of the values of thermal diffusivity and conductivity were 1.22 mm{sup 2}∙s{sup -1} to 3.69 mm{sup 2}∙s{sup -1} and 3.80 W∙m{sup -}'1∙K{sup -1} to 9.36 W∙m{sup -1}∙K{sup -1}, respectively. (author)
Energy Technology Data Exchange (ETDEWEB)
Lebelo, Ramoshweu Solomon, E-mail: sollyl@vut.ac.za [Department of Mathematics, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1911 (South Africa)
2014-10-24
In this paper the CO{sub 2} emission and thermal stability in a long cylindrical pipe of combustible reactive material with variable thermal conductivity are investigated. It is assumed that the cylindrical pipe loses heat by both convection and radiation at the surface. The nonlinear differential equations governing the problem are tackled numerically using Runge-Kutta-Fehlberg method coupled with shooting technique method. The effects of various thermophysical parameters on the temperature and carbon dioxide fields, together with critical conditions for thermal ignition are illustrated and discussed quantitatively.
International Nuclear Information System (INIS)
Wu, Weixiong; Zhang, Guoqing; Ke, Xiufang; Yang, Xiaoqing; Wang, Ziyuan; Liu, Chenzhen
2015-01-01
Highlights: • A kind of composite phase change material board (PCMB) is prepared and tested. • PCMB presents a large thermal storage capacity and enhanced thermal conductivity. • PCMB displays much better cooling effect in comparison to natural air cooling. • PCMB presents different cooling characteristics in comparison to ribbed radiator. - Abstract: A kind of phase change material board (PCMB) was prepared for use in the thermal management of electronics, with paraffin and expanded graphite as the phase change material and matrix, respectively. The as-prepared PCMB presented a large thermal storage capacity of 141.74 J/g and enhanced thermal conductivity of 7.654 W/(m K). As a result, PCMB displayed much better cooling effect in comparison to natural air cooling, i.e., much lower heating rate and better uniformity of temperature distribution. On the other hand, compared with ribbed radiator technology, PCMB also presented different cooling characteristics, demonstrating that they were suitable for different practical application
Pei, Qing-Xiang; Zhang, Xiaoliang; Ding, Zhiwei; Zhang, Ying-Yan; Zhang, Yong-Wei
2017-07-14
Phosphorene, a new two-dimensional (2D) semiconducting material, has attracted tremendous attention recently. However, its structural instability under ambient conditions poses a great challenge to its practical applications. A possible solution for this problem is to encapsulate phosphorene with more stable 2D materials, such as graphene, forming van der Waals heterostructures. In this study, using molecular dynamics simulations, we show that the thermal stability of phosphorene in phosphorene/graphene heterostructures can be enhanced significantly. By sandwiching phosphorene between two graphene sheets, its thermally stable temperature is increased by 150 K. We further study the thermal transport properties of phosphorene and find surprisingly that the in-plane thermal conductivity of phosphorene in phosphorene/graphene heterostructures is much higher than that of the free-standing one, with a net increase of 20-60%. This surprising increase in thermal conductivity arises from the increase in phonon group velocity and the extremely strong phonon coupling between phosphorene and the graphene substrate. Our findings have an important meaning for the practical applications of phosphorene in nanodevices.
Directory of Open Access Journals (Sweden)
Nicholas Curry
2014-08-01
Full Text Available Suspension plasma spraying (SPS has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS or electron beam physical vapor deposition (EB-PVD coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM.
Guo, San-Dong; Chen, Peng
2018-04-01
Topological semimetals are currently attracting increasing interest due to their potential applications in topological qubits and low-power electronics, which are closely related to their thermal transport properties. Recently, the triply degenerate nodal points near the Fermi level of WC are observed by using angle-resolved photoemission spectroscopy. In this work, by solving the Boltzmann transport equation based on first-principles calculations, we systematically investigate the phonon transport properties of topological semimetals WC and WN. The predicted room-temperature lattice thermal conductivities of WC (WN) along the a and c directions are 1140.64 (7.47) W m-1 K-1 and 1214.69 (5.39) W m-1 K-1. Considering the similar crystal structure of WC and WN, it is quite interesting to find that the thermal conductivity of WC is more than two orders of magnitude higher than that of WN. It is found that, different from WN, the large acoustic-optical (a-o) gap prohibits the acoustic+acoustic → optical (aao) scattering, which gives rise to very long phonon lifetimes, leading to ultrahigh lattice thermal conductivity in WC. For WN, the lack of an a-o gap is due to soft phonon modes in optical branches, which can provide more scattering channels for aao scattering, producing very short phonon lifetimes. Further deep insight can be attained from their different electronic structures. Distinctly different from that in WC, the density of states of WN at the Fermi level becomes very sharp, which leads to destabilization of WN, producing soft phonon modes. It is found that the small shear modulus G and C44 limit the stability of WN, compared with WC. Our studies provide valuable information for phonon transports in WC and WN, and motivate further experimental studies to study their lattice thermal conductivities.
First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene
International Nuclear Information System (INIS)
Gu, Xiaokun; Yang, Ronggui
2015-01-01
There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides
On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations
International Nuclear Information System (INIS)
An Hengbin; Mo Zeyao; Xu Xiaowen; Liu Xu
2009-01-01
The 2-D 3-T heat conduction equations can be used to approximately describe the energy broadcast in materials and the energy swapping between electron and photon or ion. To solve the equations, a fully implicit finite volume scheme is often used as the discretization method. Because the energy diffusion and swapping coefficients have a strongly nonlinear dependence on the temperature, and some physical parameters are discontinuous across the interfaces between the materials, it is a challenge to solve the discretized nonlinear algebraic equations. Particularly, as time advances, the temperature varies so greatly in the front of energy that it is difficult to choose an effective initial iterate when the nonlinear algebraic equations are solved by an iterative method. In this paper, a method of choosing a nonlinear initial iterate is proposed for iterative solving this kind of nonlinear algebraic equations. Numerical results show the proposed initial iterate can improve the computational efficiency, and also the convergence behavior of the nonlinear iteration.
Simultaneous measurement of thermal conductivity and heat capacity by flash thermal imaging methods
Tao, N.; Li, X. L.; Sun, J. G.
2017-06-01
Thermal properties are important for material applications involved with temperature. Although many measurement methods are available, they may not be convenient to use or have not been demonstrated suitable for testing of a wide range of materials. To address this issue, we developed a new method for the nondestructive measurement of the thermal effusivity of bulk materials with uniform property. This method is based on the pulsed thermal imaging-multilayer analysis (PTI-MLA) method that has been commonly used for testing of coating materials. Because the test sample for PTI-MLA has to be in a two-layer configuration, we have found a commonly used commercial tape to construct such test samples with the tape as the first-layer material and the bulk material as the substrate. This method was evaluated for testing of six selected solid materials with a wide range of thermal properties covering most engineering materials. To determine both thermal conductivity and heat capacity, we also measured the thermal diffusivity of these six materials by the well-established flash method using the same experimental instruments with a different system setup. This paper provides a description of these methods, presents detailed experimental tests and data analyses, and discusses measurement results and their comparison with literature values.
Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film
International Nuclear Information System (INIS)
Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn
2005-09-01
In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells
Transport tensors in perfectly aligned low-density fluids: Self-diffusion and thermal conductivity
International Nuclear Information System (INIS)
Singh, G. S.; Kumar, B.
2001-01-01
The modified Taxman equation for the kinetic theory of low-density fluids composed of rigid aspherical molecules possessing internal degrees of freedom is generalized to obtain the transport tensors in a fluid of aligned molecules. The theory takes care of the shape of the particles exactly but the solution has been obtained only for the case of perfectly aligned hard spheroids within the framework of the first Sonine polynomial approximation. The expressions for the thermal-conductivity components have been obtained for the first time whereas the self-diffusion components obtained here turn out to be exactly the same as those derived by Kumar and Masters [Mol. Phys. >81, 491 (1994)] through the solution of the Lorentz-Boltzmann equation. All our expressions yield correct results in the hard-sphere limit
Innovation of fission gas release and thermal conductivity measurement methods
International Nuclear Information System (INIS)
Van der Meer, K.; Soboler, V.
1998-01-01
This presentation described two innovative measurement methods being currently developed at SCK-CEN in order to support the modeling of fuel performance. The first one is an acoustic method to measure the fission gas release in a fuel rod in a non destructive way. The total rod pressure is determined by generating a heat pulse causing a pressure wave that propagates through the gas to an ultrasound transducer. The final pulse width being proportional to the pressure, the latter can thus be determined. The measurement of the acoustic resonance frequency at fixed temperatures enables the distinction between different gas components. The second method is a non-stationary technique to investigate the thermal properties of the fuel rod, like thermal conductivity, diffusivity and heat capacity. These properties are derived from the amplitude and the phase shift of the fuel centre temperature response induced by a periodic temperature variation. These methods did not reveal any physical limitations for the practical applicability. Furthermore, they are rather simple. Preliminary investigations have proven both methods to be more accurate than techniques usually utilized. (author)
A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch
Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.
2005-01-01
Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.
Numerical modeling of thermal conductive heating in fractured bedrock.
Baston, Daniel P; Falta, Ronald W; Kueper, Bernard H
2010-01-01
Numerical modeling was employed to study the performance of thermal conductive heating (TCH) in fractured shale under a variety of hydrogeological conditions. Model results show that groundwater flow in fractures does not significantly affect the minimum treatment zone temperature, except near the beginning of heating or when groundwater influx is high. However, fracture and rock matrix properties can significantly influence the time necessary to remove all liquid water (i.e., reach superheated steam conditions) in the treatment area. Low matrix permeability, high matrix porosity, and wide fracture spacing can contribute to boiling point elevation in the rock matrix. Consequently, knowledge of these properties is important for the estimation of treatment times. Because of the variability in boiling point throughout a fractured rock treatment zone and the absence of a well-defined constant temperature boiling plateau in the rock matrix, it may be difficult to monitor the progress of thermal treatment using temperature measurements alone. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch
International Nuclear Information System (INIS)
Krishnan, V.B.; Singh, J.D.; Woodruff, T.R.; Vaidyanathan, R.; Notardonato, W.U.
2004-01-01
Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed
International Nuclear Information System (INIS)
Kadri, M.
1983-01-01
The time dependent heat conduction equation in the x-y Cartesian geometry is formulated in terms of a nine-point finite difference relation using a Taylor series expansion technique. The accuracy of the nine-point formulation over the five-point formulation has been tested and evaluated for various reactor fuel-cladding plate configurations using a computer program. The results have been checked against analytical solutions for various model problems. The following cases were considered in the steady-state condition: (a) The thermal conductivity and the heat generation were uniform. (b) The thermal conductivity was constant, the heat generation variable. (c) The thermal conductivity varied linearly with the temperature, the heat generation was uniform. (d) Both thermal conductivity and heat generation vary. In case (a), approximately, for the same accuracy, 85% fewer grid points were needed for the nine-point relation which has a 14% higher convergence rate as compared to the five-point relation. In case (b), on the average, 84% fewer grid points were needed for the nine-point relation which has a 65% higher convergence rate as compared to the five-point relation. In case (c) and (d), there is significant accuracy (91% higher than the five-point relation) for the nine-point relation when a worse grid was used. The numerical solution of the nine-point formula in the time dependent case was also more accurate and converges faster than the numerical solution of the five-point formula for all comparative tests related to heat conduction problems in a nuclear fuel element
Thermal conductivity and thermal expansion of stainless steels D9 and HT9
International Nuclear Information System (INIS)
Leibowitz, L.; Blomquist, R.A.
1988-01-01
Renewed interest in the use of metallic fuels in liquid-metal fast breeder reactors has prompted study of the thermodynamic and transport properties of its materials. Two stainless steels are of particular interest because of their good performance under irradiation. These are D9, an austenitic steel, and HT9, a ferritic steel. Thermal conductivity and thermal expansion data for these alloys are of particular interest in assessing in-reactor behavior. Because literature data were inadequate, measurements of these two properties for the two steels were performed and are reported to 1200 K. Of particular interest is the influence on these properties of a phase transition in HT9
Splines employment for inverse problem of nonstationary thermal conduction
International Nuclear Information System (INIS)
Nikonov, S.P.; Spolitak, S.I.
1985-01-01
An analytical solution has been obtained for an inverse problem of nonstationary thermal conduction which is faced in nonstationary heat transfer data processing when the rewetting in channels with uniform annular fuel element imitators is investigated. In solving the problem both boundary conditions and power density within the imitator are regularized via cubic splines constructed with the use of Reinsch algorithm. The solution can be applied for calculation of temperature distribution in the imitator and the heat flux in two-dimensional approximation (r-z geometry) under the condition that the rewetting front velocity is known, and in one-dimensional r-approximation in cases with negligible axial transport or when there is a lack of data about the temperature disturbance source velocity along the channel
Isotope Effect on the Thermal Conductivity of Graphene
Directory of Open Access Journals (Sweden)
Hengji Zhang
2010-01-01
Full Text Available The thermal conductivity (TC of isolated graphene with different concentrations of isotope (C13 is studied with equilibrium molecular dynamics method at 300 K. In the limit of pure C12 or C13 graphene, TC of graphene in zigzag and armchair directions are ~630 W/mK and ~1000W/mK, respectively. We find that the TC of graphene can be maximally reduced by ~80%, in both armchair and zigzag directions, when a random distribution of C12 and C13 is assumed at different doping concentrations. Therefore, our simulation results suggest an effective way to tune the TC of graphene without changing its atomic and electronic structure, thus yielding a promising application for nanoelectronics and thermoelectricity of graphene-based nano device.
Low-temperature thermal conductivity of highly porous copper
International Nuclear Information System (INIS)
Tomás, G; Bonfait, G; Martins, D; Cooper, A
2015-01-01
The development and characterization of new materials is of extreme importance in the design of cryogenic apparatus. Recently Versarien ® PLC developed a technique capable of producing copper foam with controlled porosity and pore size. Such porous materials could be interesting for cryogenic heat exchangers as well as of special interest in some devices used in microgravit.y environments where a cryogenic liquid is confined by capillarity.In the present work, a system was developed to measure the thermal conductivity by the differential steady-state mode of four copper foam samples with porosity between 58% and 73%, within the temperatures range 20 - 260 K, using a 2 W @ 20 K cryocooler. Our measurements were validated using a copper control sample and by the estimation of the Lorenz number obtained from electrical resistivity measurements at room temperature. With these measurements, the Resistivity Residual Ratio and the tortuosity were obtained. (paper)
Thermal conductivity at the nanoscale: A molecular dynamics study
Lyver, John W., IV
With the growing use of nanotechnology and nanodevices in many fields of engineering and science, a need for understanding the thermal properties of such devices has increased. The ability for nanomaterials to conduct heat is highly dependent on the purity of the material, internal boundaries due to material changes and the structure of the material itself. Experimentally measuring the heat transport at the nanoscale is extremely difficult and can only be done as a macro output from the device. Computational methods such as various Monte Carlo (MC) and molecular dynamics (MD) techniques for studying the contribution of atomic vibrations associated with heat transport properties are very useful. The Green--Kubo method in conjunction with Fourier's law for calculating the thermal conductivity, kappa, has been used in this study and has shown promise as one approach well adapted for understanding nanosystems. Investigations were made of the thermal conductivity using noble gases, modeled with Lennard-Jones (LJ) interactions, in solid face-centered cubic (FCC) structures. MC and MD simulations were done to study homogeneous monatomic and binary materials as well as slabs of these materials possessing internal boundaries. Additionally, MD simulations were done on silicon carbide nanowires, nanotubes, and nanofilaments using a potential containing two-body and three-body terms. The results of the MC and MD simulations were matched against available experimental and other simulations and showed that both methods can accurately simulate real materials in a fraction of the time and effort. The results of the study show that in compositionally disordered materials the selection of atomic components by their mass, hard-core atomic diameter, well depth, and relative concentration can change the kappa by as much as an order of magnitude. It was found that a 60% increase in mass produces a 25% decrease in kappa. A 50% increase in interatomic strength produces a 25% increase in
Energy Technology Data Exchange (ETDEWEB)
Itoh, Takahito; Hamaguchi, Yohei; Uno, Takahiro; Kubo, Masataka [Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1577 Kurima Machiya-cho, Tsu, Mie 514-8507 (Japan); Aihara, Yuichi; Sonai, Atsuo [Samsung Yokohama Research Institute, 2-7 Sugasawa-cho, Tsurumi-ku, Yokohama 230-0027 (Japan)
2006-01-16
Hyperbranched polymer (poly-1a) with sulfonic acid groups at the end of chains was successfully synthesized. Interpenetration reaction of poly-1a with a hyperbranched polymer with acryloyl groups at the end of chains (poly-1b) as a cross-linker afforded a tough electrolyte membrane. The poly-1a and the resulting electrolyte membrane showed the ionic conductivities of 7x10{sup -4} and 8x10{sup -5} S/cm, respectively, at 150C under dry condition. The ionic conductivities of the poly-1a and the electrolyte membrane exhibited the VTF type temperature dependence. And also, both poly-1a and the resulting electrolyte membrane were thermally stable up to 200C. (author)
The effects of MWNT on thermal conductivity and thermal mechanical properties of epoxy
Ismadi, A. I.; Othman, R. N.
2017-12-01
Multiwall nanotube (MWNT) was used as filler in various studies to improve thermal conductivity and mechanical properties of epoxy. Present study varied different weight loading (0, 0.1 %, 0.5 %, 1 %, 1.5 %, 3 % and 5 %) of MWNT in order to observe the effects on the epoxy. Nanocomposite was analyzed by dynamic-mechanical thermal analyser (DMTA) and KD2 pro analyzer. DMTA measured storage modulus (E') and glass transition temperature (Tg) of the nanocomposite. Result showed that Tg value of neat epoxy is higher than all MWNT epoxy nanocomposite. Tg values drop from 81.55 °C (neat epoxy) to 65.03 °C (at 0.1 wt%). This may happen due to the agglomeration of MWNT in the epoxy. However, Tg values increases with the increase of MWNT wt%. Tg values increased from 65.03 °C to 78.53 °C at 1 wt%. Increment of storage modulus (E') at 3 °C (glassy region) was observed as the MWNT loading increases. Maximum value of E' during glassy region was observed to be at 5 wt% with (7.26±0.7) E+08 Pa compared to neat epoxy. On the contrary, there is slight increased and slight decreased with E' values at 100 °C (rubbery region) for all nanocomposite. Since epoxy exhibits low thermal conductivity properties, addition of MWNT has enhanced the properties. Optimum value of thermal conductivity was observed at 3 wt%. The values increased up to 9.03 % compared to neat epoxy. As expected, the result showed decrease value in thermal conductivity at 5 wt% as a result of agglomeration of MWNT in the epoxy.
Phonon-mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-based Methods
Energy Technology Data Exchange (ETDEWEB)
Chernatynskiy, Aleksandr [Univ. of Florida, Gainesville, FL (United States); Turney, Joseph E. [Carnegie Mellon Univ., Pittsburgh, PA (United States); McGaughey, Alan J. H. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Amon, Christina H. [Univ. of Toronto, ON (Canada); Phillpot, Simon R. [Univ. of Florida, Gainesville, FL (United States)
2011-07-22
Phonon properties predicted from lattice dynamics calculations and the Boltzmann Transport Equation (BTE) are used to elucidate the thermal-transport properties of ionic materials. It is found that a rigorous treatment of the Coulombic interactions within the harmonic analysis is needed for the analysis of the phonon structure of the solid, while a short-range approximation is sufficient for the third-order force constants. The effects on the thermal conductivity of the relaxation time approximation, the classical approximation to the phonon statistics, the direct summation method for the electrostatic interactions, and the quasi-harmonic approximation to lattice dynamics are quantified. Quantitative agreement is found between predictions from molecular dynamics simulations (a method valid at temperatures above the Debye temperature) and the BTE result within quasi-harmonic approximation over a wide temperature range.
Thermal signal propagation in soils in Romania: conductive and non-conductive processes
Directory of Open Access Journals (Sweden)
C. Demetrescu
2007-11-01
Full Text Available Temperature data recorded in 2002 and 2003 at 10 stations out of the 70 available in the Romanian automatic weather stations network are presented and analyzed in terms of the heat transfer from air to underground. The air temperature at 2 m, the soil temperatures at 0, 5, 10, 20, 50 and 100 cm below the surface as well as rain fall and snow cover thickness have been monitored. The selected locations sample various climate environments in Romania. Preliminary analytical modelling shows that soil temperatures track air temperature variations at certain locations and, consequently, the heat transfer is by conduction, while at other stations processes such as soil freezing and/or solar radiation heating play an important part in the heat flux balance at the air/soil interface. However, the propagation of the annual thermal signal in the uppermost one meter of soil is mainly by conduction; the inferred thermal diffusivity for 8 stations with continuous time series at all depth levels ranges from 3 to 10×10^{−7} m^{2} s^{−1}.
Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results
Bertolini, Davide; Tani, Alessandro
1997-10-01
Equilibrium molecular dynamics simulations have been carried out in the microcanonical ensemble at 300 and 255 K on the extended simple point charge (SPC/E) model of water [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)]. In addition to a number of static and dynamic properties, thermal conductivity λ has been calculated via Green-Kubo integration of the heat current time correlation functions (CF's) in the atomic and molecular formalism, at wave number k=0. The calculated values (0.67+/-0.04 W/mK at 300 K and 0.52+/-0.03 W/mK at 255 K) are in good agreement with the experimental data (0.61 W/mK at 300 K and 0.49 W/mK at 255 K). A negative long-time tail of the heat current CF, more apparent at 255 K, is responsible for the anomalous decrease of λ with temperature. An analysis of the dynamical modes contributing to λ has shown that its value is due to two low-frequency exponential-like modes, a faster collisional mode, with positive contribution, and a slower one, which determines the negative long-time tail. A comparison of the molecular and atomic spectra of the heat current CF has suggested that higher-frequency modes should not contribute to λ in this temperature range. Generalized thermal diffusivity DT(k) decreases as a function of k, after an initial minor increase at k=kmin. The k dependence of the generalized thermodynamic properties has been calculated in the atomic and molecular formalisms. The observed differences have been traced back to intramolecular or intermolecular rotational effects and related to the partial structure functions. Finally, from the results we calculated it appears that the SPC/E model gives results in better agreement with experimental data than the transferable intermolecular potential with four points TIP4P water model [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)], with a larger improvement for, e.g., diffusion, viscosities, and dielectric properties and a smaller one for thermal conductivity. The SPC/E model shares
Study of thermal conductivity and thermal rectification in exponential mass graded lattices
Energy Technology Data Exchange (ETDEWEB)
Shah, Tejal N. [Bhavan' s Sheth R.A. College of Science, Khanpur, Ahmedabad 380 001, Gujarat (India); Gajjar, P.N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, Gujarat (India)
2012-01-09
Concept of exponential mass variation of oscillators along the chain length of N oscillators is proposed in the present Letter. The temperature profile and thermal conductivity of one-dimensional (1D) exponential mass graded harmonic and anharmonic lattices are studied on the basis of Fermi–Pasta–Ulam (FPU) β model. Present findings conclude that the exponential mass graded chain provide higher conductivity than that of linear mass graded chain. The exponential mass graded anharmonic chain generates the thermal rectification of 70–75% which is better than linear mass graded materials, so far. Thus instead of using linear mass graded material, the use of exponential mass graded material will be a better and genuine choice for controlling the heat flow at nano-scale. -- Highlights: ► In PRE 82 (2010) 040101, use of mass graded material as a thermal devices is explored. ► Concept of exponential mass graded material is proposed. ► The rectification obtained is about 70–75% which is better than linear mass graded materials. ► The exponential mass graded material will be a better choice for the thermal devices at nano-scale.
Ventura, Isaac Aguilar
2013-05-31
Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Asif Mahmood
Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity
Thermally Conductive Tape Based on Carbon Nanotube Array, Phase II
National Aeronautics and Space Administration — Future NASA missions require thermal control systems that can accommodate large changes in ambient temperature. The two essential aspects of an effective thermal...
The Fuel Performance Analysis of LWR Fuel containing High Thermal Conductivity Reinforcements
International Nuclear Information System (INIS)
Kim, Seung Su; Ryu, Ho Jin
2015-01-01
The thermal conductivity of fuel affects many performance parameters including the fuel centerline temperature, fission gas release and internal pressure. In addition, enhanced safety margin of fuel might be expected when the thermal conductivity of fuel is improved by the addition of high thermal conductivity reinforcements. Therefore, the effects of thermal conductivity enhancement on the fuel performance of reinforced UO2 fuel with high thermal conductivity compounds should be analyzed. In this study, we analyzed the fuel performance of modified UO2 fuel with high thermal conductivity reinforcements by using the FRAPCON-3.5 code. The fissile density and mechanical properties of the modified fuel are considered the same with the standard UO2 fuel. The fuel performance of modified UO2 with high thermal conductivity reinforcements were analyzed by using the FRAPCON-3.5 code. The thermal conductivity enhancement factors of the modified fuels were obtained from the Maxwell model considering the volume fraction of reinforcements
International Nuclear Information System (INIS)
Lin, Changpeng; Rao, Zhonghao
2017-01-01
Highlights: • Different contributions to thermal conductivity are obtained. • Thermal conductivity of paraffin could be improved by boron nitride. • Crystallization effect from boron nitride was the key factor. • Paraffin nanocomposite is the desirable candidate for thermal energy storage. - Abstract: While paraffin is widely used in thermal energy storage today, its low thermal conductivity has become a bottleneck for the further applications. Here, we construct two kinds of paraffin-based phase change material nanocomposites through introducing boron nitride (BN) nanostructures into n-eicosane to enhance the thermal conductivity. Molecular dynamics (MD) simulation was adopted to estimate their thermal conductivities and related thermal properties. The results indicate that, after adding BN nanostructures, the latent heat of composites is reduced compared with the pure paraffin and they both show a glass-like thermal conductivity which increases as the temperature rises. This happens because the increasing temperature leads to gradually smaller inconsistency in vibrational density of state along three directions and increasingly significant overlaps among them. Furthermore, by decomposing the thermal conductivity, it is found that the major contribution to the overall thermal conductivity comes from BN nanostructures, while the contribution of n-eicosane is insignificant. Though the thermal conductivity from n-eicosane term is small, it has been improved greatly compared with amorphous state of n-eicosane, mainly due to the crystallization effects from BN nanostructures. This work will provide microscopic views and insights into the thermal mechanism of paraffin and offer effective guidances to enhance the thermal conductivity.
Reduction of thermal conductivity in YxSb2-xTe3 for phase change memory
Li, Zhen; Miao, Naihua; Zhou, Jian; Xu, Huibin; Sun, Zhimei
2017-11-01
Thermal conductivity (κ) is one of the fundamental properties of materials for phase change memory (PCM) application, as the set/reset processes strongly depend upon heat dissipation and transport. The κ of phase change materials in both amorphous and crystalline phases should be quite small, because it determines how energy-efficient the PCM device is during programming. At a high temperature, the electronic thermal conductivity (κe) is always notable for semiconductors, which is still lacking for antimony telluride under doping in the literature as far as we know. In this paper, using density functional theory and Boltzmann transport equations, we report calculations of lattice thermal conductivity κL and electronic thermal conductivity κe of the yttrium doped antimony telluride. We show that the average value of thermal conductivity decreases from ˜2.5 W m-1 K-1 for Sb2Te3 to ˜1.5 W m-1 K-1 for Y0.167Sb1.833Te3. This can be attributed to the reduced κL and κe, especially the κe at high temperature (near melting point). We further point out that the increased effective mass of carriers and the flat valance band edge are responsible for the decrease of κe. The reduced thermal conductivity is highly desirable for the decrease of heat dissipation and transport in PCM operations, which can increase the density of memory and reduce energy consumption.
Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles
Gu, Xiaokun; Zhao, C. Y.
2018-05-01
Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Lotfizadeh Dehkordi, Babak, E-mail: babakld@siswa.um.edu.my; Ghadimi, Azadeh; Metselaar, Henk S. C., E-mail: h.metselaar@um.edu.my [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering (Malaysia)
2013-01-15
The aim of this study is to investigate the effect of ultrasonication on the stability and thermal conductivity of TiO{sub 2} water nanofluids. A UV-Vis spectrophotometer was employed to determine the relative stability of nanofluids. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of power of sonication (20-80 %), time of sonication (2-20 min), and volume concentration (0.1-1 vol%) of nanofluids as the independent variables. Second-order polynomial equations were established to predict the responses, thermal conductivity, and stability of nanofluids with the intervals of 1 week and 1 month. The significance of the models was tested by means of analysis of variance (ANOVA). The optimum stability and thermal conductivity of TiO{sub 2} nanofluids with various sonication power and time at volume concentrations of 0.1, 0.55, and 1 % were studied. In addition, a correlation between the stability and thermal conductivity enhancement was derived in this study. The results revealed that, at low concentrations, nanofluids would become stable by low power and short period of sonication; however, no enhancement was observed in the thermal conductivity. Conversely, at high concentrations, stability and high thermal conductivity of nanofluids coincided at 1 vol%.
International Nuclear Information System (INIS)
Lotfizadeh Dehkordi, Babak; Ghadimi, Azadeh; Metselaar, Henk S. C.
2013-01-01
The aim of this study is to investigate the effect of ultrasonication on the stability and thermal conductivity of TiO 2 water nanofluids. A UV–Vis spectrophotometer was employed to determine the relative stability of nanofluids. Response surface methodology based on the Box–Behnken design was implemented to investigate the influence of power of sonication (20–80 %), time of sonication (2–20 min), and volume concentration (0.1–1 vol%) of nanofluids as the independent variables. Second-order polynomial equations were established to predict the responses, thermal conductivity, and stability of nanofluids with the intervals of 1 week and 1 month. The significance of the models was tested by means of analysis of variance (ANOVA). The optimum stability and thermal conductivity of TiO 2 nanofluids with various sonication power and time at volume concentrations of 0.1, 0.55, and 1 % were studied. In addition, a correlation between the stability and thermal conductivity enhancement was derived in this study. The results revealed that, at low concentrations, nanofluids would become stable by low power and short period of sonication; however, no enhancement was observed in the thermal conductivity. Conversely, at high concentrations, stability and high thermal conductivity of nanofluids coincided at 1 vol%.
Directory of Open Access Journals (Sweden)
X. J. Wang
2014-04-01
Full Text Available Rare earth metal borides have attracted great interest due to their unusual properties, such as superconductivity and f-electron magnetism. A recent discovery attributes the tunability of magnetism in rare earth aluminoborides to the effect of so-called “building defects.” In this paper, we report data for the effect of building defects on the thermal conductivities of α-TmAlB4 single crystals. Building defects reduce the thermal conductivity of α-TmAlB4 by ≈30%. At room temperature, the thermal conductivity of AlB2 is nearly a factor of 5 higher than that of α-TmAlB4. AlB2 single crystals are thermally anisotropic with the c-axis thermal conductivity nearly twice the thermal conductivity of the a-b plane. Temperature dependence of the thermal conductivity near and above room temperature reveals that both electrons and phonons contribute substantially to thermal transport in AlB2 with electrons being the dominant heat carriers.
Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
Haskins, Justin B; Kınacı, Alper; Sevik, Cem; Çağın, Tahir
2014-06-28
Determining the lattice thermal conductivity (κ) of nanostructures is especially challenging in that, aside from the phonon-phonon scattering present in large systems, the scattering of phonons from the system boundary greatly influences heat transport, particularly when system length (L) is less than the average phonon mean free path (MFP). One possible route to modeling κ in these systems is through molecular dynamics (MD) simulations, inherently including both phonon-phonon and phonon-boundary scattering effects in the classical limit. Here, we compare current MD methods for computing κ in nanostructures with both L ⩽ MFP and L ≫ MFP, referred to as mean free path constrained (cMFP) and unconstrained (uMFP), respectively. Using a (10,0) CNT (carbon nanotube) as a benchmark case, we find that while the uMFP limit of κ is well-defined through the use of equilibrium MD and the time-correlation formalism, the standard equilibrium procedure for κ is not appropriate for the treatment of the cMFP limit because of the large influence of boundary scattering. To address this issue, we define an appropriate equilibrium procedure for cMFP systems that, through comparison to high-fidelity non-equilibrium methods, is shown to be the low thermal gradient limit to non-equilibrium results. Further, as a means of predicting κ in systems having L ≫ MFP from cMFP results, we employ an extrapolation procedure based on the phenomenological, boundary scattering inclusive expression of Callaway [Phys. Rev. 113, 1046 (1959)]. Using κ from systems with L ⩽ 3 μm in the extrapolation, we find that the equilibrium uMFP κ of a (10,0) CNT can be predicted within 5%. The equilibrium procedure is then applied to a variety of carbon-based nanostructures, such as graphene flakes (GF), graphene nanoribbons (GNRs), CNTs, and icosahedral fullerenes, to determine the influence of size and environment (suspended versus supported) on κ. Concerning the GF and GNR systems, we find that
International Nuclear Information System (INIS)
Zhang Yue-Fei; Wang Li; Wei Bin; Ji Yuan; Han Xiao-Dong; Zhang Ze; Heiderhoff, R.; Geinzer, A. K.; Balk, L. J.
2012-01-01
The local thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the AlN sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3ω method. A thermal conductivity of 308 W/m·K within grains corresponding to that of high-purity single crystal AlN is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy. (condensed matter: structural, mechanical, and thermal properties)
Experimental and modeling study of forest fire effect on soil thermal conductivity
Kathleen M. Smits; Elizabeth Kirby; William J. Massman; Scott Baggett
2016-01-01
An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire heated soils, comprehensive data that evaluate the long-term effect of extreme heating from a fire on the soil thermal conductivity are limited....
Energy Technology Data Exchange (ETDEWEB)
Liang, Qi, E-mail: alfred_02030210@163.com; Wei, Yuan
2014-03-15
Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model.
International Nuclear Information System (INIS)
Liang, Qi; Wei, Yuan
2014-01-01
Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model
Lubczynski, M.W.; Chavarro-Rincon, D.C.; Rossiter, David
2017-01-01
Conductive sapwood (xylem) area (Ax) of all trees in a given forested area is the main factor contributing to spatial tree transpiration. One hundred ninety-five trees of 9 species in the Kalahari region of Botswana were felled, stained, cut into discs, and measured to develop allometric equations
Anharmonicity Rise the Thermal Conductivity in Amorphous Silicon
Lv, Wei; Henry, Asegun
We recently proposed a new method called Direct Green-Kubo Modal Analysis (GKMA) method, which has been shown to calculate the thermal conductivity (TC) of several amorphous materials accurately. A-F method has been widely used for amorphous materials. However, researchers have found out that it failed on several different materials. The missing component of A-F method is the harmonic approximation and considering only the interactions of modes with similar frequencies, which neglect interactions of modes with large frequency difference. On the contrary, GKMA method, which is based on molecular dynamics, intrinsically includes all types of phonon interactions. In GKMA method, each mode's TC comes from both mode self-correlations (autocorrelations) and mode-mode correlations (crosscorrelations). We have demonstrated that the GKMA predicted TC of a-Si from Tersoff potential is in excellent agreement with one of experimental results. In this work, we will present the GKMA applications on a-Si using multiple potentials and gives us more insight of the effect of anharmonicity on the TC of amorphous silicon. This research was supported Intel grant AGMT DTD 1-15-13 and computational resources by NSF supported XSEDE resources under allocations DMR130105 and TG- PHY130049.
Piezoelectric effect on the thermal conductivity of monolayer gallium nitride
Zhang, Jin
2018-01-01
Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.
Evaluation of Candidate In-Pile Thermal Conductivity Techniques
International Nuclear Information System (INIS)
Fox, B.; Ban, H.; Daw, J.; Condie, K.; Knudson, D.; Rempe, J.
2009-01-01
Thermophysical properties of materials must be known for proper design, test, and application of new fuels and structural properties in nuclear reactors. In the case of nuclear fuels during irradiation, the physical structure and chemical composition change as a function of time and position within the rod. Typically, thermal conductivity changes, as well as other thermophysical properties being evaluated during irradiation in a materials and test reactor, are measured out-of-pile in 'hot-cells'. Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provide understanding of the sample's end state at the time each measurement is made. There are also limited thermophysical property data for advanced fuels. Such data are needed for the development of next generation reactors and advanced fuels for existing nuclear plants. Having the capacity to effectively and quickly characterize fuels and material properties during irradiation has the potential to improve the fidelity of nuclear fuel data and reduce irradiation testing costs
Lu, Zexi; Wang, Yan; Ruan, Xiulin
2018-02-01
Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.
Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments
Energy Technology Data Exchange (ETDEWEB)
Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)
2015-01-15
Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium
Evidence of thermal conduction depression in hot coronal loops
Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Provornikova, Elena; Davila, Joseph
2015-08-01
Slow magnetoacoustic waves were first detected in hot (>6 MK) flare loops by the SOHO/SUMER spectrometer as Doppler shift oscillations in Fe XIX and Fe XXI lines. These oscillations are identified as standing slow-mode waves because the estimated phase speeds are close to the sound speed in the loop and some cases show a quarter period phase shift between velocity and intensity oscillations. The observed very rapid excitation and damping of standing slow mode waves have been studied by many authors using theories and numerical simulations, however, the exact mechanisms remain not well understood. Recently, flare-induced longitudinal intensity oscillations in hot post-flare loops have been detected by SDO/AIA. These oscillations have the similar physical properties as SUMER loop oscillations, and have been interpreted as the slow-mode waves. The multi-wavelength AIA observations with high spatio-temporal resolution and wide temperature coverage allow us to explore the wave excitation and damping mechanisms with an unprecedented detail to develope new coronal seismology. In this paper, we present accurate measurements of the effective adiabatic index (γeff) in the hot plasma from the electron temperature and density wave signals of a flare-induced longitudinal wave event using SDO/AIA data. Our results strikingly and clearly reveal that thermal conduction is highly depressed in hot (˜10 MK) post-flare loops and suggest that the compressive viscosity is the dominant wave damping mechanism which allows determination of the viscosity coefficient from the observables by coronal seismology. This new finding challenges our current understanding of thermal energy transport in solar and stellar flares, and may provide an alternative explanation of long-duration events and enhance our understand of coronal heating mechanism. We will discuss our results based on non-ideal MHD theory and simulations. We will also discuss the flare trigger mechanism based on magnetic topology
Effective methods of solving of model equations of certain class of thermal systems
International Nuclear Information System (INIS)
Lach, J.
1985-01-01
A number of topics connected with solving of model equations of certain class of thermal systems by the method of successive approximations is touched. A system of partial differential equations of the first degree, appearing most frequently in practical applications of heat and mass transfer theory is reduced to an equivalent system of Volterra integral equations of the second kind. Among a few sample applications the thermal processes appearing in the fuel channel of nuclear reactor are solved. The theoretical analysis is illustrated by the results of numerical calculations given in tables and diagrams. 111 refs., 17 figs., 16 tabs. (author)
Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.
Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan
2017-10-16
In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.
Ceramic materials with low thermal conductivity and low coefficients of thermal expansion
Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min
1992-01-01
Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.
Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid
Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.
Lumped thermal capacitance analysis of transient heat conduction ...
African Journals Online (AJOL)
Lumped thermal capacitance analysis has been undertaken to investigate the transient temperature variations, associated induced thermal stress distributions, and the structural integrity of Ghana Research Reactor-1 (GHAR R-1) vessel after 15 years of operation. The beltline configuration of the cylindrical vessel of the ...
High thermal conductivity connector having high electrical isolation
Nieman, Ralph C.; Gonczy, John D.; Nicol, Thomas H.
1995-01-01
A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.
Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory
Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert
2018-02-01
Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.
MOT solution of the PMCHWT equation for analyzing transient scattering from conductive dielectrics
Uysal, Ismail Enes
2015-01-01
Transient electromagnetic interactions on conductive dielectric scatterers are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation with a marching on-in-time (MOT) scheme. The proposed scheme, unlike the previously developed ones, permits the analysis on scatterers with multiple volumes of different conductivity. This is achieved by maintaining an extra temporal convolution that only depends on permittivity and conductivity of these volumes. Its discretization and computation come at almost no additional cost and do not change the computational complexity of the resulting MOT solver. Accuracy and applicability of the MOT-PMCHWT solver are demonstrated by numerical examples.
The Interfacial Thermal Conductance of Epitaxial Metal-Semiconductor Interfaces
Ye, Ning
Understanding heat transport at nanometer and sub-nanometer lengthscales is critical to solving a wide range of technological challenges related to thermal management and energy conversion. In particular, finite Interfacial Thermal Conductance (ITC) often dominates transport whenever multiple interfaces are closely spaced together or when heat originates from sources that are highly confined by interfaces. Examples of the former include superlattices, thin films, quantum cascade lasers, and high density nanocomposites. Examples of the latter include FinFET transistors, phase-change memory, and the plasmonic transducer of a heat-assisted magnetic recording head. An understanding of the physics of such interfaces is still lacking, in part because experimental investigations to-date have not bothered to carefully control the structure of interfaces studied, and also because the most advanced theories have not been compared to the most robust experimental data. This thesis aims to resolve this by investigating ITC between a range of clean and structurally well-characterized metal-semiconductor interfaces using the Time-Domain Thermoreflectance (TDTR) experimental technique, and by providing theoretical/computational comparisons to the experimental data where possible. By studying the interfaces between a variety of materials systems, each with unique aspects to their tunability, I have been able to answer a number of outstanding questions regarding the importance of interfacial quality (epitaxial/non-epitaxial interfaces), semiconductor doping, matching of acoustic and optical phonon band structure, and the role of phonon transport mechanisms apart from direct elastic transmission on ITC. In particular, we are able to comment on the suitability of the diffuse mismatch model (DMM) to describe the transport across epitaxial interfaces. To accomplish this goal, I studied interfacial thermal transport across CoSi2, TiSi2, NiSi and PtSi - Si(100) and Si(111), (silicides
Thermal conductivity of bulk and monolayer MoS2
Gandi, Appala; Schwingenschlö gl, Udo
2016-01-01
is largely missing, though it would be essential for materials design, we solve the Boltzmann transport equation for the phonons self-consistently in order to evaluate the phonon lifetimes. In addition, the length scale for transition between diffusive
Directory of Open Access Journals (Sweden)
Waris Khan
2016-11-01
Full Text Available This article describes the effect of thermal radiation on the thin film nanofluid flow of a Williamson fluid over an unsteady stretching surface with variable fluid properties. The basic governing equations of continuity, momentum, energy, and concentration are incorporated. The effect of thermal radiation and viscous dissipation terms are included in the energy equation. The energy and concentration fields are also coupled with the effect of Dufour and Soret. The transformations are used to reduce the unsteady equations of velocity, temperature and concentration in the set of nonlinear differential equations and these equations are tackled through the Homotopy Analysis Method (HAM. For the sake of comparison, numerical (ND-Solve Method solutions are also obtained. Special attention has been given to the variable fluid properties’ effects on the flow of a Williamson nanofluid. Finally, the effect of non-dimensional physical parameters like thermal conductivity, Schmidt number, Williamson parameter, Brinkman number, radiation parameter, and Prandtl number has been thoroughly demonstrated and discussed.
Energy Technology Data Exchange (ETDEWEB)
Kondo, Masatoshi, E-mail: kondo.masatoshi@nr.titech.ac.jp [Tokyo Institute of Technology, 2-12-1, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Nakajima, Yuu; Tsuji, Mitsuyo [Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Nozawa, Takashi [Japan Atomic Energy Agency, Rokkasyo-mura, Kamikita-gun, Aomori 039-3212 (Japan)
2016-11-01
Graphical abstract: Thermal diffusivities and thermal conductivities of liquid Pb–Li alloys (Pb–5Li, Pb–11Li and Pb–17Li). - Highlights: • The densities and specific heats of liquid Pb–Li alloys are evaluated based on the previous studies, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal diffusivities of liquid Pb–Li alloys (i.e., Pb–5Li, Pb–11Li and Pb–17Li) are obtained by laser flash method, and mathematically expressed in the equations with the functions of temperature and Li concentration. • The thermal conductivities of liquid Pb–Li alloys were evaluated and mathematically expressed in the equations with the functions of temperature and Li concentration. - Abstract: The thermophysical properties of lead lithium alloy (Pb–Li) are essential for the design of liquid Pb–Li blanket system. The purpose of the present study is to make clear the density, the thermal diffusivity and the heat conductivity of the alloys as functions of temperature and Li concentration. The densities of the solid alloys were measured by means of the Archimedean method. The densities of the alloys at 300 K as a function of Li concentration (0 at% < χ{sub Li} < 28 at%) were obtained in the equation as ρ{sub (300} {sub K)} [g/cm{sup 3}] = −6.02 × 10{sup −2} × χ{sub Li} + 11.3. The density of the liquid alloys was formulated as functions of temperature and Li concentration (0 at% < χ{sub Li} < 30 at%), and expressed in the equation as ρ [g/cm{sup 3}] = (9.00 × 10{sup −6} × T − 7.01 × 10{sup −2}) × χ{sub Li} + 11.4 − 1.19 × 10{sup −3}T. The thermal diffusivity of Pb, Pb–5Li, Pb–11Li and Pb–17Li were measured by means of laser flash method. The thermal diffusivity of Pb–17Li was obtained in the equation as α{sub Pb–17Li} [cm{sup 2}/s] = 3.46 × 10{sup −4}T + 1.05 × 10{sup −1} for the temperature range between 573 K and 773 K. The thermal conductivity of
Directory of Open Access Journals (Sweden)
Insun Jo
2015-05-01
Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.
Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong
2015-01-01
An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037
Thermal conductivity of pillared graphene-epoxy nanocomposites using molecular dynamics
Lakshmanan, A.; Srivastava, S.; Ramazani, A.; Sundararaghavan, V.
2018-04-01
Thermal conductivity in a pillared graphene-epoxy nanocomposite (PGEN) is studied using equilibrium molecular dynamics simulations. PGEN is a proposed material for advanced thermal management applications because it combines high in-plane conductivity of graphene with high axial conductivity of a nanotube to significantly enhance the overall conductivity of the epoxy matrix material. Anisotropic conductivity of PGEN has been compared with that of pristine and functionalized carbon nanotube-epoxy nanocomposites, showcasing the advantages of the unique hierarchical structure of PGEN. Compared to pure carbon allotropes, embedding the epoxy matrix also promotes a weaker dependence of conductivity on thermal variations. These features make this an attractive material for thermal management applications.
Zhu, Dongming; Lee, Kang N.; Miller, Robert A.
2001-01-01
Plasma-sprayed mullite and BSAS coatings have been developed to protect SiC/SiC ceramic matrix composites from high temperature environmental attack. In this study, thermal conductivity and thermal barrier functions of these coating systems are evaluated using a laser high-heat-flux test rig. The effects of water vapor on coating thermal conductivity and durability are studied by using alternating furnace and laser thermal gradient cyclic tests. The influence of laser high thermal-gradient cycling on coating failure modes is also investigated.
Improved thermal conductivity of TiO2-SiO2 hybrid nanofluid in ethylene glycol and water mixture
Hamid, K. A.; Azmi, W. H.; Nabil, M. F.; Mamat, R.
2017-10-01
The need to study hybrid nanofluid properties such as thermal conductivity has increased recently in order to provide better understanding on nanofluid thermal properties and behaviour. Due to its ability to improve heat transfer compared to conventional heat transfer fluids, nanofluids as a new coolant fluid are widely investigated. This paper presents the thermal conductivity of TiO2-SiO2 nanoparticles dispersed in ethylene glycol (EG)-water. The TiO2-SiO2 hybrid nanofluids is measured for its thermal conductivity using KD2 Pro Thermal Properties Analyzer for concentration ranging from 0.5% to 3.0% and temperature of 30, 50 and 70°C. The results show that the increasing in concentration and temperature lead to enhancement in thermal conductivity at range of concentration studied. The maximum enhancement is found to be 22.1% at concentration 3.0% and temperature 70°C. A new equation is proposed based on the experiment data and found to be in good agreement where the average deviation (AD), standard deviation (SD) and maximum deviation (MD) are 1.67%, 1.66% and 5.13%, respectively.
Energy Technology Data Exchange (ETDEWEB)
Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)
2014-12-15
We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.
Ren, Zongqing; Lee, Jaeho
2018-01-01
Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.
Ren, Zongqing; Lee, Jaeho
2018-01-26
Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.
In-situ thermal conductivity estimates in the Western Niger Delta ...
African Journals Online (AJOL)
An estimate of thermal conductivity was carried out in 21 well-spaced petroleum wells in the western Niger Delta using sonic and continuous temperature logs. The temperature logs were measured after the wells had attained thermal equilibrium as a result of drilling activities. Regional thermal conductivity varies from ...
Thermal conductivity of gypsum plasterboards : at ambient temperature and exposed to fire
Korte, de A.C.J.; Brouwers, H.J.H.; Wald, F.; Kallerova, P.; Chlouba, J.
2009-01-01
One of the more complicated thermal properties to calculate for gypsum plasterboard is the thermal conductivity. The thermal conductivity is important because it plays an important role in the fire behaviour of gypsum plasterboards. Plasterboard often protects steel structures of buildings, because
DEFF Research Database (Denmark)
Zajas, Jan Jakub; Heiselberg, Per
2013-01-01
Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... by scanning them point by point and determining the thermal conductivity as a function of the spatial dimensions. The method proves to be repeatable and of reasonable accuracy and can be used to determine the local thermal properties on a scale of millimeters. In this study, the method was successfully...... applied to create a map of thermal conductivity of a functionally graded material sample....
DEFF Research Database (Denmark)
Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund
2011-01-01
in this article utilizes integration of the concrete and the microencapsulated Phase Change Material (PCM). PCM has the ability to absorb and release significant amounts of heat at a specific temperature range. As a consequence of admixing PCM to the concrete, new thermal properties like thermal conductivity...... and specific heat capacity have to be defined. This paper presents results from the measurements of the thermal conductivity of various microencapsulated PCM-concrete and PCM-cement-paste mixes. It was discovered that increase of the amount of PCM decreases the thermal conductivity of the concrete PCM mixture....... Finally, a theoretical calculation methodology of thermal conductivity for PCM-concrete mixes is developed....
Effect of fibre shape on transverse thermal conductivity of ...
Indian Academy of Sciences (India)
2Mechanical Engineering, JNTU College of Engineering, Kakinada 533 003, India e-mail: ... by numerical method using finite element analysis. .... The steady state thermal problem is solved using finite element analysis software ANSYS. A.
Energy Technology Data Exchange (ETDEWEB)
Bassett, B
1980-10-01
High temperature properties of reactor type UO/sub 2/ pellets were measured using a Direct Electrical Heating (DEH) Facility. Modifications to the experimental apparatus have been made so that successful and reproducible DEH runs may be carried out while protecting the pellets from oxidation at high temperature. X-ray diffraction measurements on the UO/sub 2/ pellets have been made before and after runs to assure that sample oxidation has not occurred. A computer code has been developed that will model the experiment using equations that describe physical properties of the material. This code allows these equations to be checked by comparing the model results to collected data. The thermal conductivity equation for UO/sub 2/ proposed by Weilbacher has been used for this analysis. By adjusting the empirical parameters in Weilbacher's equation, experimental data can be matched by the code. From the several runs analyzed, the resulting thermal conductivity equation is lambda = 1/4.79 + 0.0247T/ + 1.06 x 10/sup -3/ exp(-1.62/kT/) - 4410. exp(-3.71/kT/) where lambda is in w/cm K, k is the Boltzman constant, and T is the temperature in Kelvin.
Energy Technology Data Exchange (ETDEWEB)
Kukkonen, I.; Suppala, I. [Geological Survey of Finland, Espoo (Finland)
1999-01-01
In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into `active` drill hole methods, and `passive` indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial `leak` of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm{sup -1}, temperature recording with 5-7 sensors placed along the probe, and