WorldWideScience

Sample records for thermal conductivity change

  1. Polymer nanoparticles to decrease thermal conductivity of phase change materials

    OpenAIRE

    Salaün, Fabien; Eric, Devaux; Bourbigot, Serge; Rumeau, Pascal; Chapuis, Pierre-Olivier; Saha, Sourabh Kumar; Volz, Sebastian

    2008-01-01

    Microparticles including paraffin are currently used for textiles coating in order to deaden thermal shocks. We will show that polymer nanoparticles embedded in those microsized capsules allow for decreasing the thermal conductivity of the coating and enhance the protection in the stationary regime. A reasonable volume fraction of polymer nanoparticles reduces the conductivity more than predicted by Maxwell mixing rules. Besides, measurements prove that the polymer nanoparticles do not affect...

  2. Polymer nanoparticles to decrease thermal conductivity of phase change materials

    OpenAIRE

    Chapuis, Po; Saha, Sourabh Kumar; Volz, S.

    2007-01-01

    Microparticles including paraffin are currently used for textiles coating in order to deaden thermal shocks. We will show that polymer nanoparticles embedded in those microsized capsules allow for decreasing the thermal conductivity of the coating and enhance the protection in the stationary regime. A reasonable volume fraction of polymer nanoparticles reduces the conductivity more than predicted by Maxwell mixing rules. Besides, measurements prove that the polymer nanoparticles do not affect...

  3. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Liwu; Khodadadi, J.M. [Department of Mechanical Engineering, Auburn University, 270 Ross Hall, Auburn, AL 36849-5341 (United States)

    2011-01-15

    A review of experimental/computational studies to enhance the thermal conductivity of phase change materials (PCM) that were conducted over many decades is presented. Thermal management of electronics for aeronautics and space exploration appears to be the original intended application, with later extension to storage of thermal energy for solar thermal applications. The present review will focus on studies that concern with positioning of fixed, stationary high conductivity inserts/structures. Copper, aluminum, nickel, stainless steel and carbon fiber in various forms (fins, honeycomb, wool, brush, etc.) were generally utilized as the materials of the thermal conductivity promoters. The reviewed research studies covered a variety of PCM, operating conditions, heat exchange and thermal energy storage arrangements. The energy storage vessels included isolated thermal storage units (rectangular boxes, cylindrical and annular tubes and spheres) and containers that transferred heat to a moving fluid medium passing through it. A few studies have focused on the marked role of flow regimes that are formed due to the presence of thermally unstable fluid layers that in turn give rise to greater convective mixing and thus expedited melting of PCM. In general, it can be stated that due to utilization of fixed high conductivity inserts/structures, the conducting pathways linking the hot and cold ends must be minimized. (author)

  4. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.

    Science.gov (United States)

    Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y

    2015-02-24

    Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.

  5. Shape memory thermal conduction switch

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  6. Changes in Effective Thermal Conductivity During the Carbothermic Reduction of Magnetite Using Graphite

    Science.gov (United States)

    Kiamehr, Saeed; Ahmed, Hesham; Viswanathan, Nurni; Seetharaman, Seshadri

    2017-06-01

    Knowledge of the effective thermal diffusivity changes of systems undergoing reactions where heat transfer plays an important role in the reaction kinetics is essential for process understanding and control. Carbothermic reduction process of magnetite containing composites is a typical example of such systems. The reduction process in this case is highly endothermic and hence, the overall rate of the reaction is greatly influenced by the heat transfer through composite compact. Using Laser-Flash method, the change of effective thermal diffusivity of magnetite-graphite composite pellet was monitored in the dynamic mode over a pre-defined thermal cycle (heating at the rate of 7 K/min to 1423 K (1150 °C), holding the sample for 270 minutes at this temperature and then cooling it down to the room temperature at the same rate as heating). These measurements were supplemented by Thermogravimetric Analysis under comparable experimental conditions as well as quenching tests of the samples in order to combine the impact of various factors such as sample dilatations and changes in apparent density on the progress of the reaction. The present results show that monitoring thermal diffusivity changes during the course of reduction would be a very useful tool in a total understanding of the underlying physicochemical phenomena. At the end, effort is made to estimate the apparent thermal conductivity values based on the measured thermal diffusivity and dilatations.

  7. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  8. Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay

    Directory of Open Access Journals (Sweden)

    W.Z. Chen

    2017-06-01

    Full Text Available Boom Clay is one of the potential host rocks for deep geological disposal of high-level radioactive nuclear waste in Belgium. In order to investigate the mechanism of hydraulic conductivity variation under complex thermo-mechanical coupling conditions and to better understand the thermo-hydro-mechanical (THM coupling behaviour of Boom Clay, a series of permeability tests using temperature-controlled triaxial cell has been carried out on the Boom Clay samples taken from Belgian underground research laboratory (URL HADES. Due to its sedimentary nature, Boom Clay presents across-anisotropy with respect to its sub-horizontal bedding plane. Direct measurements of the vertical (Kv and horizontal (Kh hydraulic conductivities show that the hydraulic conductivity at 80 °C is about 2.4 times larger than that at room temperature (23 °C, and the hydraulic conductivity variation with temperature is basically reversible during heating–cooling cycle. The anisotropic property of Boom Clay is studied by scanning electron microscope (SEM tests, which highlight the transversely isotropic characteristics of intact Boom Clay. It is shown that the sub-horizontal bedding feature accounts for the horizontal permeability higher than the vertical one. The measured increment in hydraulic conductivity with temperature is lower than the calculated one when merely considering the changes in water kinematic viscosity and density with temperature. The nuclear magnetic resonance (NMR tests have also been carried out to investigate the impact of microstructure variation on the THM properties of clay. The results show that heating under unconstrained boundary condition will produce larger size of pores and weaken the microstructure. The discrepancy between the hydraulic conductivity experimentally measured and predicted (considering water viscosity and density changes with temperature can be attributed to the microstructural weakening effect on the thermal volume change

  9. Thermal conductivity measurement of amorphous dielectric multilayers for phase-change memory power reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fong, S. W., E-mail: swfong@stanford.edu; Wong, H.-S. P. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Sood, A. [Department of Material Science and Engineering, Stanford University, Stanford, California 94305 (United States); Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Chen, L. [School of Energy and Power Engineering, Xi' an Jiatong University, Xi' an, Shaanxi 710049 (China); Kumari, N.; Gibson, G. A. [Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, California 94304 (United States); Asheghi, M.; Goodson, K. E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-07-07

    In this work, we investigate the temperature-dependent thermal conductivities of few nanometer thick alternating stacks of amorphous dielectrics, specifically SiO{sub 2}/Al{sub 2}O{sub 3} and SiO{sub 2}/Si{sub 3}N{sub 4}. Experiments using steady-state Joule-heating and electrical thermometry, while using a micro-miniature refrigerator over a wide temperature range (100–500 K), show that amorphous thin-film multilayer SiO{sub 2}/Si{sub 3}N{sub 4} and SiO{sub 2}/Al{sub 2}O{sub 3} exhibit through-plane room temperature effective thermal conductivities of about 1.14 and 0.48 W/(m × K), respectively. In the case of SiO{sub 2}/Al{sub 2}O{sub 3}, the reduced conductivity is attributed to lowered film density (7.03 → 5.44 × 10{sup 28 }m{sup –3} for SiO{sub 2} and 10.2 → 8.27 × 10{sup 28 }m{sup –3} for Al{sub 2}O{sub 3}) caused by atomic layer deposition of thin-films as well as a small, finite, and repeating thermal boundary resistance (TBR) of 1.5 m{sup 2} K/GW between dielectric layers. Molecular dynamics simulations reveal that vibrational mismatch between amorphous oxide layers is small, and that the TBR between layers is largely due to imperfect interfaces. Finally, the impact of using this multilayer dielectric in a dash-type phase-change memory device is studied using finite-element simulations.

  10. Highly Thermal Conductive Nanocomposites

    Science.gov (United States)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2017-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  11. Electrical and Thermal Conductivity

    Science.gov (United States)

    Ventura, Guglielmo; Perfetti, Mauro

    After a Sect. 1.1 devoted to electrical conductivity and a section that deals with magnetic and dielectric losses ( 1.2 ), this chapter explores the theory of thermal conduction in solids. The examined categories of solids are: metals Sect. 1.3.2 , Dielectrics Sects. 1.3.3 and 1.3.4 and Nanocomposites Sect. 1.3.5 . In Sect. 1.3.6 the problem of thermal and electrical contact between materials is considered because contact resistance occurring at conductor joints in magnets or other high power applications can lead to undesirable electrical losses. At low temperature, thermal contact is also critical in the mounting of temperature sensors, where bad contacts can lead to erroneous results, in particular when superconductivity phenomena are involved.

  12. Enhanced thermal conductivity of waste sawdust-based composite phase change materials with expanded graphite for thermal energy storage

    National Research Council Canada - National Science Library

    Yang, Haiyue; Wang, Yazhou; Liu, Zhuangchao; Liang, Daxin; Liu, Feng; Zhang, Wenbo; Di, Xin; Wang, Chengyu; Ho, Shih-Hsin; Chen, Wei-Hsin

    2017-01-01

    .... In particular, the application of phase change materials (PCMs) is considered as an effective and efficient approach to thermal energy storage because of the high latent heat storage capacity at small temperature intervals...

  13. Thermal conductivity changes across a structural phase transition: The case of high-pressure silica

    Science.gov (United States)

    Aramberri, Hugo; Rurali, Riccardo; Íñiguez, Jorge

    2017-11-01

    By means of first-principles calculations, we investigate the thermal properties of silica as it evolves, under hydrostatic compression, from a stishovite phase into a CaCl2-type structure. We compute the thermal conductivity tensor by solving the linearized Boltzmann transport equation iteratively in a wide temperature range, using for this the pressure-dependent harmonic and anharmonic interatomic couplings obtained from first principles. Most remarkably, we find that, at low temperatures, SiO2 displays a large peak in the in-plane thermal conductivity and a highly anisotropic behavior close to the structural transformation. We trace back the origin of these features by analyzing the phonon contributions to the conductivity. We discuss the implications of our results in the general context of continuous structural transformations in solids, as well as the potential geological interest of our results for silica.

  14. On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Kim, Eung-Seon; Sah, Injin; Park, Daegyu; Kim, Youngjun; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this work, the variations of the thermal conductivity of the A3-3 matrix graphite after neutron irradiation is discussed as well as of the IG-110 graphite for comparison. Neutron irradiation of the graphite specimens was carried out as a part of the first irradiation test of KAERI's coated particle fuel specimens by use of Hanaro research reactor. This work can be summarized as follows: 1) In the evaluation of the specific heat of the graphite materials, various literature data were used and the variations of the specific heat data of all the graphite specimens are observed well agreed, irrespectively of the difference in specimens (graphite and matrix graphite and irradiated and un-irradiated). 2) This implies that it should be reasonable that for both structural graphite and fuel matrix graphite, and even for the neuron-irradiated graphite, any of these specific heat data set be used in the calculation of the thermal conductivity. 3) For the irradiated A3-3 matrix graphite specimens, the thermal conductivity decreased on both directions. On the radial direction, the tendency of variation upon temperature is similar to that of unirradiated specimen, i.e., decreasing as the temperature increases. 4) In the German irradiation experiments with A3-27 matrix graphite specimens, the thermal conductivity of the un-irradiated specimen shows a decrease and that of irradiated specimen is nearly constant as the temperature increases. 5) The thermal conductivity of the irradiated IG-110 was considerably decreased compared with that of un-irradiated specimens The difference of the thermal conductivity of un-irradiated and irradiated IG-110 graphite specimens is much larger than that of un-irradiated and irradiated A3-3 matrix graphite specimens.

  15. Thermally conductive polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  16. Photo-controllable thermal diffusivity and thermal conductivity driven by the orientation change of nematic liquid crystal with azo-dendrimers

    Science.gov (United States)

    Ryu, Meguya; Takezoe, Hideo; Haba, Osamu; Yonetake, Koichiro; Morikawa, Junko

    2015-11-01

    We measured the temperature dependences of anisotropic thermal properties, i.e., thermal diffusivity, thermal effusivity, thermal conductivity, and heat capacity per unit volume, of a nematogen 4'-n-pentyloxybiphenyl-4-carbonitrile (5OCB) containing a small amount (0.02 wt. %) of dendritic azobenzene derivatives (azo-dendrimer), using a temperature wave method. The azo-dendrimers spontaneously adsorb on cell surfaces and act as a command surface, i.e., photo-induced planar/homeotropic alignment by ultraviolet/visible light illumination. By using this effect, we demonstrated thermal property changes except for the heat capacity by almost two times within a few tens of seconds. The phenomenon can be applied to a sheet with photo-controllable thermal diffusivity or thermal conductivity.

  17. Reduction of thermal conductivity in YxSb2-xTe3 for phase change memory

    Science.gov (United States)

    Li, Zhen; Miao, Naihua; Zhou, Jian; Xu, Huibin; Sun, Zhimei

    2017-11-01

    Thermal conductivity (κ) is one of the fundamental properties of materials for phase change memory (PCM) application, as the set/reset processes strongly depend upon heat dissipation and transport. The κ of phase change materials in both amorphous and crystalline phases should be quite small, because it determines how energy-efficient the PCM device is during programming. At a high temperature, the electronic thermal conductivity (κe) is always notable for semiconductors, which is still lacking for antimony telluride under doping in the literature as far as we know. In this paper, using density functional theory and Boltzmann transport equations, we report calculations of lattice thermal conductivity κL and electronic thermal conductivity κe of the yttrium doped antimony telluride. We show that the average value of thermal conductivity decreases from ˜2.5 W m-1 K-1 for Sb2Te3 to ˜1.5 W m-1 K-1 for Y0.167Sb1.833Te3. This can be attributed to the reduced κL and κe, especially the κe at high temperature (near melting point). We further point out that the increased effective mass of carriers and the flat valance band edge are responsible for the decrease of κe. The reduced thermal conductivity is highly desirable for the decrease of heat dissipation and transport in PCM operations, which can increase the density of memory and reduce energy consumption.

  18. Thermal contact conductance

    CERN Document Server

    Madhusudana, Chakravarti V

    2013-01-01

    The work covers both theoretical and practical aspects of thermal contact conductance. The theoretical discussion focuses on heat transfer through spots, joints, and surfaces, as well as the role of interstitial materials (both planned and inadvertent). The practical discussion includes formulae and data that can be used in designing heat-transfer equipment for a variety of joints, including special geometries and configurations. All of the material has been updated to reflect the latest advances in the field.

  19. Thermal conductivity of porous structures

    Science.gov (United States)

    Braginsky, L.; Shklover, V.; Witz, G.; Bossmann, H.-P.

    2007-03-01

    Thermal conductivity of porous media is considered. The model permits regular power-series expansion of the expression for thermal conductivity as a function of porosity. The coefficients of the expansion depend on two-site correlation function of local thermal conductivities, which can be calculated from the microscopy image of the structure. Thermal conductivities of some model two-dimensional structures as well as a real porous yttria-stabilized zirconia film are calculated and discussed.

  20. Investigation of Effect Additive Phase Change Materials on the Thermal Conductivity

    Science.gov (United States)

    Nakielska, Magdalena; Chalamoński, Mariusz; Pawłowski, Krzysztof

    2017-10-01

    The aim of worldwide policy is to reduce the amount of consumed energy and conventional fuels. An important branch of the economy that affects the energy balance of the country is construction industry. In Poland, since January 1st, 2017 new limit values have been valid regarding energy saving and thermal insulation of buildings. To meet the requirements of more and more stringent technical and environmental standards, new technological solutions are currently being looked for. When it comes to the use of new materials, phase-change materials are being widely introduced into construction industry. Thanks to phase-change materials, we can increase the amount of heat storage. Great thermal inertia of the building provides more stable conditions inside the rooms and allows the use of unconventional sources of energy such as solar energy. A way to reduce the energy consumption of the object is the use of modern solutions for ventilation systems. An example is the solar chimney, which supports natural ventilation in order to improve internal comfort of the rooms. Numerous studies are being carried out in order to determine the optimal construction of solar chimneys in terms of materials and construction parameters. One of the elements of solar chimneys is an absorption plate, which affects the amount of accumulated heat in the construction. In order to carry out the research on the thermal capacity of the absorption plate, the first research work has been already planned. The work presents the research results of a heat-transfer coefficient of the absorption plates samples made of cement, aggregate, water, and phase-change material in different volume percentage. The work also presents methodology and the research process of phase-change material samples.

  1. Relationship between changes in the crystal lattice strain and thermal conductivity of high burnup UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, Masaki, E-mail: amaya.masaki@jaea.go.j [Fuel Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Nakamura, Jinichi; Fuketa, Toyoshi [Fuel Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kosaka, Yuji [Nuclear Development Corporation, 622-12, Funaishikawa, Tokai-mura, Naka-gun, Ibaraki 319-1111 (Japan)

    2010-01-01

    Two kinds of disk-shaped UO{sub 2} samples (4 mm in diameter and 1 mm in thickness) were irradiated in a test reactor up to about 60 and 130 GWd/t, respectively. The microstructures of the samples were investigated by means of optical microscopy, scanning electron microscopy/ electron probe micro-analysis (SEM/EPMA) and micro-X-ray diffractometry. The measured lattice parameters tended to be considerably smaller than the reported values, and the typical cauliflower structure which is often observed in high burnup fuel pellet is hardly seen in these samples. Thermal diffusivities of the samples were also measured by using a laser flash method, and their thermal conductivities were evaluated by multiplying the heat capacity of unirradiated UO{sub 2} and sample densities. While the thermal conductivities of sample 2 showed recovery after being annealed at 1500 K, those of sample 4 were not clearly observed even after being annealed at 1500 K. These trends suggest that the amount of accumulated irradiation-induced defects depends on the irradiation condition of each sample. From the comparison of the changes in the lattice parameter and strain energy density before and after the thermal diffusivity measurements, it is likely that the thermal conductivity recovery in the temperature region from 1200 to 1500 K is related to the migration of dislocation.

  2. Ultra-high Thermal Conductivity of Spider Silk: Protein Function Study with Controlled Structure Change and Comparison

    Science.gov (United States)

    2016-01-23

    microstructures using Johnson noise electro- thermal technique, Applied Physics A, (2 2015): 0. doi: 10.1007/s00339-015-9056-9 Number of Papers published...conductivity of sub-5?nm Ir film: Defect-electron scattering quantified by residual thermal resistivity , Journal of Applied Physics, (01 2015): 0. doi...inverse of phonon thermal diffusivity as a new parameter: thermal reffusivity (Θ). This parameter was used to identify the thermal resistivity in the

  3. [Calculation of thermal protein changes in food with heat conduction. Determination of reaction rate and activation heat].

    Science.gov (United States)

    Herrmann, J; Brennig, K; Nour, S

    1975-01-01

    The velocity constant k of protein changes is commonly determined by heating as abruptly as possible to a given temperature for various periods. Its dependence on temperature or activation heat is deduced from the k value determinations at different temperatures, using the ARRHENIUS diagram. In contrast to this, the authors determined the k and E values in a temperature field for a constant reaction time. This is done directly in the foodstuff which is introduced (in ball form) into a bath of constant temperature. In case of foodstuffs with mere heat conduction, there are in the interior innumerable spherical shells subjected to the same thermal stress which increases from within towards the exterior. Thermal protein changes (such as the thermal coagulation of egg white and muscle proteins and the formation of metmyochromogen) which can be visualized directly or, in case of enzymatic denaturation, indirectly by colour reactions, using the presence-absence method, may be observed if the ball is cut in half. This procedure (termed "change-over method" by the authors) permits to calculate the unknown k and E values from the radius of the visible inner circle. (This applied also to cylindrical forms.) Since this method allows to estimate approximately these reaction kinetic constants directly in the foodstuff under conditions encountered in practice, it is in many cases better suited for simulating, calculating, or optimizing desirable or undesirable protein changes occurring during thermal processing than the mere model experiment with abrupt heating which does not reproduce the changes in the reaction medium occuring during the slow increase or decrease in temperature.

  4. Thermal conductivity of US coals

    Energy Technology Data Exchange (ETDEWEB)

    Herrin, J.M.; Deming, D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    1996-11-10

    Coal samples in the form of randomly oriented aggregates were obtained from the Pennsylvania State University Coal Bank for the purpose of thermal conductivity measurements. Samples represented 55 locations from throughout the United States and included 6 lignites, 10 subbituminous coals, 36 bituminous coals, and 3 anthracite samples. Matrix thermal conductivities measured at 22{degree}C in the laboratory ranged from 0.22 to 0.55 W/m degree K, with an arithmetic mean of 0.33 W/m degrees K and a standard deviation of 0.07 W/m degrees K. The thermal conductivity of lignites, subbituminous, and bituminous coals is controlled by composition and can be predicted by a three-component (Moisture, ash, and carbon + volatiles) geometric mean model with a rns residual of 6.1%. The thermal conductivity of bituminous and anthracite samples was found to be positively correlated with matrix density. With the exception of three anthracite samples, rank was not correlated with thermal conductivity nor was the ratio of carbon to volatiles. The relatively high thermal conductivity of three anthracite samples (mean of 0.49 W/m degrees K) may have been related to graphitization.

  5. Thermal conductivity of graphene laminate.

    Science.gov (United States)

    Malekpour, H; Chang, K-H; Chen, J-C; Lu, C-Y; Nika, D L; Novoselov, K S; Balandin, A A

    2014-09-10

    We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied, as deposited and compressed, in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 μm. The thermal conductivity of graphene laminate was found to be in the range from 40 to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. Coating plastic materials with thin graphene laminate films that have up to 600× higher thermal conductivity than plastics may have important practical implications.

  6. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  7. Thermal Conductivity of Diamond Composites

    OpenAIRE

    Fedor M. Shakhov; Kidalov, Sergey V.

    2009-01-01

    A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K) and 400 W/(m·K), respectively. Significantly, the thermal expansion coefficient of metals differ...

  8. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  9. Thermal Conductivity of Diamond Composites

    Science.gov (United States)

    Kidalov, Sergey V.; Shakhov, Fedor M.

    2009-01-01

    A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K) and 400 W/(m·K), respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon); one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K). Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  10. Thermal Conductivity of Diamond Composites

    Directory of Open Access Journals (Sweden)

    Fedor M. Shakhov

    2009-12-01

    Full Text Available A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K and 400 W/(m·K, respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon; one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K. Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  11. Engineering thermal conductivity in polymer blends

    Science.gov (United States)

    Rashidi, Vahid; Coyle, Eleanor; Kieffer, John; Pipe, Kevin

    Weak inter-chain bonding in polymers is believed to be a bottleneck for both thermal conductivity and mechanical strength. Most polymers have low thermal conductivity (~0.1 W/mK), hindering their performance in applications for which thermal management is critical (e.g., electronics packaging). In this work, we use computational methods to study how hydrogen bonding between polymer chains as well as water content can be used to engineer thermal transport in bulk polymers. We examine how changes in the number of hydrogen bonds, chain elongation, density, and vibrational density of states correlate with changes in thermal conductivity for polymer blends composed of different relative constituent fractions. We also consider the effects of bond strength, tacticity, and polymer chain mass. For certain blend fractions, we observe large increases in thermal conductivity, and we analyze these increases in terms of modifications to chain chemistry (e.g., inter-chain bonding) and chain morphology (e.g., chain alignment and radius of gyration). We observe that increasing the number of hydrogen bonds in the system results in better packing as well as better chain alignment and elongation that contribute to enhanced thermal conductivity. The Air Force Office of Scientific Research, Grant No. FA9550-14-1-0010.

  12. Significant Reduction of Graphene Thermal Conductivity by Phononic Crystal Structure

    OpenAIRE

    Yang, Lina; CHEN, JIE; Yang, Nuo; Li, Baowen

    2014-01-01

    We studied the thermal conductivity of graphene phononic crystal (GPnC), also named as graphene nanomesh, by molecular dynamics simulations. The dependences of thermal conductivity of GPnCs on both length and temperature are investigated. It is found that the thermal conductivity of GPnCs is significantly lower than that of graphene and can be efficiently tuned by changing the porosity and period length. For example, the ratio of thermal conductivity of GPnC to thermal conductivity of graphen...

  13. High-Thermal-Conductivity Fabrics

    Science.gov (United States)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  14. Thermal conductivity of niobium diselenide

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, F. Jr.

    1976-10-01

    Thermal conductivity measurements have been used to study the temperature dependence of the various scattering mechanisms present in single crystals of NbSe in a temperature range from 1 to 10/sup 0/K. Phonons are found to contribute a substantial fraction of the conduction in this temperature range and, in general, the results agree well with standard theoretical models for three-dimensional metals. The presence of van der Waals boundaries beween the layers introduces no significant boundary scattering for phonons. In addition to the usual electron and point defect scattering terms which are present in the phonon conductivity, a term which has a linear temperature dependence was found. This linear term may be caused by stacking fault scattering centers. A linear field dependence of the electrical magnetoresistance is reported and it is suggested this term may arise from magnetic breakdown at energy gaps in the Fermi surface induced by charge-density waves as suggested by Overhauser. It is noted that the ratio of the superconducting to normal state thermal conductivity is consistent with a BCS-like superconducting energy gap.

  15. The electronic thermal conductivity of graphene

    OpenAIRE

    Kim, Tae Yun; Park, Cheol-Hwan; Marzari, Nicola

    2016-01-01

    Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of d...

  16. Silica encapsulation of n-octadecane via sol-gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance.

    Science.gov (United States)

    Zhang, Huanzhi; Wang, Xiaodong; Wu, Dezhen

    2010-03-01

    A novel microencapsulated phase-change material (PCM) based on an n-octadecane core and an inorganic silica shell was designed to enhance thermal conductivity and phase-change performance. These silica microcapsules were synthesized by using TEOS as an inorganic source through a sol-gel process. Fourier transform infrared spectra confirm that the silica shell material was successfully fabricated onto the surface of the n-octadecane core. Scanning electronic microscopy images suggest that the silica microcapsules exhibit a spherical morphology with a well-defined core-shell microstructure. Furthermore, the silica microcapsules synthesized at pH 2.45 display a smooth and compact surface. These microcapsules also present a large particle size range of 7-16 microm. Wide-angle X-ray scattering patterns indicate that the n-octadecane inside the silica microcapsules still retains a good crystallinity. Thermogravimetric analysis shows that these silica microcapsules are degraded in two distinct steps, and have good thermal stability. The silica-microencapsulated n-octadecane can achieve good phase-change performance, high encapsulation efficiency, and good antiosmosis property by controlling the loading of core material and acidity of the reaction solution during the sol-gel process. The thermal conductivity of the microencapsulated n-octadecane is also significantly enhanced due to the presence of the high thermal conductive silica shell. 2009 Elsevier Inc. All rights reserved.

  17. Simultaneous measurements of thermal conductivity and diffusivity ...

    Indian Academy of Sciences (India)

    Abstract. Measurements of thermal conductivity and thermal diffusivity of twin pellets of Se80Te20–xInx. (x = 2, 4, 6 and 10) glasses, prepared under a load of 5 tons were carried out at room temperature using transient plane source (TPS) technique. The measured values of both thermal conductivity and diffusivity were used ...

  18. Anisotropic thermal conductivity of graphene wrinkles.

    Science.gov (United States)

    Wang, C; Liu, Y; Li, L; Tan, H

    2014-06-07

    In this paper, the anisotropic thermal conductivity characteristics of graphene wrinkles are observed for the first time using a non-equilibrium molecular dynamics method. Our results reveal that the wrinkling level has little effect on the thermal conductivity along the wrinkling direction. However, the wrinkling level plays an important role in the reduction of thermal conductivity along the texture direction, which results from the contributions of increased bond length, von Mises stress, broadening of phonon modes and G-band redshift. These results indicate that graphene wrinkles can be a promising candidate to modulate thermal conductivity properties in nanoscale thermal managements and thermoelectric devices.

  19. COMPUTER RESEARCH OF INFLUENCE OF THERMAL CONDUCTIVITY CHANGE OF THE VACUUM-FILM MOLD OF ON CHARACTERISTICS OF THE CASTING PRODUCTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2013-01-01

    Full Text Available The influence of changes in the thermal conductivity of vacuum-film mold at production of cast iron castings «body» was studied. Three variants of the gating system with different thermal conductivity l, 0,6 l and 0,4 l are considered. The dependencies of speed change and its projections on the time of filling in the allocated form points were established. Statistical distributions of temperatures in the casting for various moments of times are calculated. The technique of the formalization of statistical distributions characterizing the quantification of different groups of grid elements on the average temperature of the object was offered.

  20. How Does Folding Modulate Thermal Conductivity of Graphene

    OpenAIRE

    Yang, Nuo; Ni, Xiaoxi; Jiang, Jin-Wu; Li, Baowen

    2012-01-01

    We study thermal transport in folded graphene nanoribbons using molecular dynamics simulations and the non-equilibrium Green's function method. It is found that the thermal conductivity of flat graphene nanoribbons can be modulated by folding and changing interlayer couplings. The analysis of transmission reveals that the reduction of thermal conductivity is due to scattering of low frequency phonons by the folds. Our results suggest that folding can be utilized in the modulation of thermal t...

  1. Thermistor-based thermal conductivity measurement system

    National Research Council Canada - National Science Library

    Atkins, R.T; Wright, E.A

    1990-01-01

    This report describes a patented method for using commercially available thermistors to make in-situ thermal conductivity measurements with commonly available electronic equipment such as digital voltmeters...

  2. Apparent Thermal Conductivity Of Multilayer Insulation

    Science.gov (United States)

    Mcintosh, Glen E.

    1995-01-01

    Mathematical model of apparent or effective thermal conductivity between two successive layers of multilayer thermal insulation (MLI) offers potential for optimizing performance of insulation. One gains understanding of how each physical mechanism contributes to overall flow of heat through MLI blanket. Model helps analyze engineering tradeoffs among such parameters as number of layers, thicknesses of gaps between layers, types of spacers placed in gaps, weight, overall thickness, and effects of foregoing on apparent thermal conductivity through blanket.

  3. Effective thermal conductivity of condensed polymeric nanofluids ...

    Indian Academy of Sciences (India)

    ... scattering at matrix–particle boundaries. These two mechanisms are combined to arrive at an expression for their effective thermal conductivity. Analysis of the results reveals the possibility to tune the thermal conductivity of such nanosolids over a wide range using the right types of nanoparticles and right concentration.

  4. Variable Thermal Conductivity on Compressible Boundary Layer ...

    African Journals Online (AJOL)

    In this paper, variable thermal conductivity on heat transfer over a circular cylinder is presented. The concept of assuming constant thermal conductivity on materials is however not efficient. Hence, the governing partial differential equation is reduced using non-dimensionless variables into a system of coupled non-linear ...

  5. The Electronic Thermal Conductivity of Graphene.

    Science.gov (United States)

    Kim, Tae Yun; Park, Cheol-Hwan; Marzari, Nicola

    2016-04-13

    Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of doping using electronic and phonon dispersions and electron-phonon couplings calculated from first-principles at the level of density-functional theory and many-body perturbation theory (GW). Then, we include extrinsic electron-impurity scattering using low-temperature experimental estimates. Under these conditions, we find that the in-plane electronic thermal conductivity κe of doped graphene is ∼300 W/mK at room temperature, independently of doping. This result is much larger than expected and comparable to the total thermal conductivity of typical metals, contributing ∼10% to the total thermal conductivity of bulk graphene. Notably, in samples whose physical or domain sizes are of the order of few micrometers or smaller, the relative contribution coming from the electronic thermal conductivity is more important than in the bulk limit, because lattice thermal conductivity is much more sensitive to sample or grain size at these scales. Last, when electron-impurity scattering effects are included we find that the electronic thermal conductivity is reduced by 30 to 70%. We also find that the Wiedemann-Franz law is broadly satisfied at low and high temperatures but with the largest deviations of 20-50% around room temperature.

  6. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  7. Thermal conductivity of unsaturated clay-rocks

    Directory of Open Access Journals (Sweden)

    D. Jougnot

    2010-01-01

    Full Text Available The parameters used to describe the electrical conductivity of a porous material can be used to describe also its thermal conductivity. A new relationship is developed to connect the thermal conductivity of an unsaturated porous material to the thermal conductivity of the different phases of the composite, and two electrical parameters called the first and second Archie's exponents. A good agreement is obtained between the new model and thermal conductivity measurements performed using packs of glass beads and core samples of the Callovo-Oxfordian clay-rocks at different saturations of the water phase. We showed that the three model parameters optimised to fit the new model against experimental data (namely the thermal conductivity of the solid phase and the two Archie's exponents are consistent with independent estimates. We also observed that the anisotropy of the effective thermal conductivity of the Callovo-Oxfordian clay-rock was mainly due to the anisotropy of the thermal conductivity of the solid phase.

  8. Thermal conductivity of iron at high pressures

    Science.gov (United States)

    Suehiro, S.; Ohta, K.; Yagi, T.; Hirose, K.

    2016-12-01

    Earth generates and preserves a dipole magnetic field by self-sustained dynamo action in its liquid outer core for geologic timescale. Secular cooling of the core induces growth of the solid inner core that contributes additional buoyant source for the core convection. The electrical and thermal conductivities of core are fundamental physical parameters for knowing the dynamics inside the Earth. Direct measurements of the electrical and thermal conductivities of iron (Fe) at the Earth's core conditions have been recently reported (Konôpková et al., 2016; Ohta et al., 2016). Measurements of Fe thermal conductivity at the core conditions suggested thermal conductivity of the outer core was 18-32 W/m/K (Konôpková et al., 2016). On the other hand, Ohta et al. (2016) experimentally determined electrical conductivity of Fe at the core conditions, and estimated the core conductivity to be 75-117 W/m/K from obtained electrical conductivity and Wiedemann-Franz relation (κ = σLT; κ: thermal conductivity, σ: electrical conductivity, L: Lorenz number, T: absolute temperature) with ideal Lorenz number. Such large discrepancy in the estimated core thermal conductivity throw doubt on the validity of the Wiedemann-Franz relation at extremely high P-T conditions. In this study, we performed thermal conductivity measurements on Fe up to 130 GPa at room temperature in a diamond anvil cell using the pulsed light heating thermoreflectance technique (Ohta et al., 2012). The obtained thermal conductivity of Fe is in good agreement with calculated thermal conductivity via high-P/room-T Fe electrical conductivity and the Wiedemann-Franz law with constant Lorenz number up to around 50 GPa. However, the obtained thermal conductivity deviated downward from the calculated thermal conductivity profile above 50 GPa. Our results suggest pressure-dependent Lorenz number of Fe,which could be due to pressure- induced electronic topological transition in hcp Fe (Glazyrin et al., 2013). Kon

  9. Thermal conductivity measurements of Summit polycrystalline silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  10. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  11. Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy

    Science.gov (United States)

    Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro

    2017-11-01

    Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.

  12. Conductive thermal modeling of Wyoming geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, H.P.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01

    A summary of techniques used by the Wyoming Geothermal Resource Assessment Group in defining low-temperature hydrothermal resource areas is presented. Emphasis is placed on thermal modeling techniques appropriate to Wyoming's geologic setting. Thermal parameters discussed include oil-well bottom hole temperatures, heat flow, thermal conductivity, and measured temperature-depth profiles. Examples of the use of these techniques are from the regional study of the Bighorn Basin and two site specific studies within the Basin.

  13. Thermal conductivity at different humidity conditions

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Rode, Carsten

    1999-01-01

    The thermal conductivity (the l-value) of several alternative insulation products and a traditional product is determined under different humidity conditions in a specially constructed hot plate apparatus.The hot plate apparatus is constructed with an air gap on each side of the test specimen where...... of the thermal conductivity is 3-8% because of the hygroscopic uptake of humidity from the ambient air....

  14. Measuring nanowire thermal conductivity at high temperatures

    Science.gov (United States)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan

    2018-02-01

    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m‑1 K‑1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.

  15. Thermal conductivity of U.S. coals

    Science.gov (United States)

    Herrin, James M.; Deming, David

    1996-11-01

    Coal samples in the form of randomly oriented aggregates were obtained from the Pennsylvania State University Coal Bank for the purpose of thermal conductivity measurements. Samples represented 55 locations from throughout the United States and included 6 lignites, 10 subbituminous coals, 36 bituminous coals, and 3 anthracite samples. Matrix thermal conductivities measured at 22°C in the laboratory ranged from 0.22 to 0.55 W/m°K, with an arithmetic mean of 0.33 W/m°K and a standard deviation of 0.07 W/m°K. The thermal conductivity of lignites, subbituminous, and bituminous coals is controlled by composition and can be predicted by a three-component (moisture, ash, and carbon + volatiles) geometric mean model with an rms residual of 6.1%. The thermal conductivity of bituminous and anthracite samples was found to be positively correlated with matrix density. With the exception of three anthracite samples, rank was not correlated with thermal conductivity, nor was the ratio of carbon to volatiles. The relatively high thermal conductivity of three anthracite samples (mean of 0.49 W/m°K) may have been related to graphitization.

  16. Temperature dependence of thermal conductivity of biological tissues.

    Science.gov (United States)

    Bhattacharya, A; Mahajan, R L

    2003-08-01

    In this paper, we present our experimental results on the determination of the thermal conductivity of biological tissues using a transient technique based on the principles of the cylindrical hot-wire method. A novel, 1.45 mm diameter, 50 mm long hot-wire probe was deployed. Initial measurements were made on sponge, gelatin and Styrofoam insulation to test the accuracy of the probe. Subsequent experiments conducted on sheep collagen in the range of 25 degrees C thermal conductivity to be a linear function of temperature. Further, these changes in the thermal conductivity were found to be reversible. However, when the tissue was heated beyond 55 degrees C, irreversible changes in thermal conductivity were observed. Similar experiments were also conducted for determining the thermal conductivity of cow liver. In this case, the irreversible effects were found to set in much later at around 90 degrees C. Below this temperature, in the range of 25 degrees C thermal conductivity, as for sheep collagen, varied linearly with temperature. In the second part of our study, in vivo measurements were taken on the different organs of a living pig. Comparison with reported values for dead tissues shows the thermal conductivities of living organs to be higher, indicating thereby the dominant role played by blood perfusion in enhancing the net heat transfer in living tissues. The degree of enhancement is different in different organs and shows a direct dependence on the blood flow rate.

  17. Thermal conductivity of twisted bilayer graphene.

    Science.gov (United States)

    Li, Hongyang; Ying, Hao; Chen, Xiangping; Nika, Denis L; Cocemasov, Alexandr I; Cai, Weiwei; Balandin, Alexander A; Chen, Shanshan

    2014-11-21

    We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (∼300-700 K). This finding indicates that the heat carriers - phonons - in twisted bilayer graphene do not behave in the same manner as that observed in individual graphene layers. The decrease in the thermal conductivity found in twisted bilayer graphene was explained by the modification of the Brillouin zone due to plane rotation and the emergence of numerous folded phonon branches that enhance the phonon Umklapp and normal scattering. The results obtained are important for understanding thermal transport in two-dimensional systems.

  18. An inverse heat conduction problem of estimating thermal conductivity

    CERN Document Server

    Shidfar, S

    2002-01-01

    In this paper we consider an inverse heat conduction problem. We define the inverse and direct problem and solve the direct problem by method of Lines. We estimated the thermal conductivity k(u) which is assumed k(u)=k sub o +k sub 1 u+...+k sub N u sup N and contiguously in the direction normal to the surface of a sample plate.

  19. Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials

    OpenAIRE

    Zhao, Dongliang; Qian, Xin; Gu, Xiaokun; Jajja, Saad Ayub; Yang, Ronggui

    2016-01-01

    Thermal conductivity and interfacial thermal conductance play crucial roles in the design of engineering systems where temperature and thermal stress are of concerns. To date, a variety of measurement techniques are available for both bulk and thin film solid-state materials with a broad temperature range. For thermal characterization of bulk material, the steady-state absolute method, laser flash diffusivity method, and transient plane source method are most used. For thin film measurement, ...

  20. Thermal conductivity of some common forest fuels

    Science.gov (United States)

    G.M. Byram; W.L. Fons

    1952-01-01

    This study was designed to obtain thermal conductivity of som common forest fuels which hitherto had defied such efforts because of their shape, size, or structure. Dry leaves and decayed. wood (punk) were modified so that conductivity measurements could be made by a thin plate uni-directional heat flow calibration stand, Resultss of these measurements are compatible...

  1. Thermal conductivity of microPCMs-filled epoxy matrix composites

    NARCIS (Netherlands)

    Su, J.F.; Wang, X.Y; Huang, Z.; Zhao, Y.H.; Yuan, X.Y.

    2011-01-01

    Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The thermal conductivity of these microPCMs/matrix composites is an important property need to be considered. In this study, a series of

  2. Length-dependent thermal transport and ballistic thermal conduction

    Directory of Open Access Journals (Sweden)

    Bor-Woei Huang

    2015-05-01

    Full Text Available Probing length-dependent thermal conductivity of a given material has been considered as an important experimental method to determine the length of ballistic thermal conduction, or equivalently, the averaged phonon mean free path (l. However, many previous thermal transport measurements have focused on varying the lateral dimensions of samples, rendering the experimental interpretation indirect. Moreover, deducing l is model-dependent in many optical measurement techniques. In addition, finite contact thermal resistances and variations of sample qualities are very likely to obscure the effect in practice, leading to an overestimation of l. We point out that directly investigating one-dimensional length-dependent (normalized thermal resistance is a better experimental method to determine l. In this regard, we find that no clear experimental data strongly support ballistic thermal conduction of Si or Ge at room temperature. On the other hand, data of both homogeneously-alloyed SiGe nanowires and heterogeneously-interfaced Si-Ge core-shell nanowires provide undisputed evidence for ballistic thermal conduction over several micrometers at room temperature.

  3. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  4. Thermal Conduction in Graphene and Graphene Multilayers

    OpenAIRE

    Ghosh, Suchismita

    2009-01-01

    There has been increasing interest in thermal conductivity of materials motivated by the heat removal issues in electronics and by the need of fundamental science to understand heat conduction at nanoscale. This dissertation reports the results of the experimental investigation of heat conduction in graphene and graphene multilayers. Graphene is a planar single sheet of sp2–bonded carbon atoms arranged in honeycomb lattice. It reveals many unique properties, including the extraordinaril...

  5. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    Science.gov (United States)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  6. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  7. Isochoric thermal conductivity of solid furan

    Science.gov (United States)

    Konstantinov, V. A.; Sagan, V. V.; Revyakin, V. P.; Zvonaryova, A. V.; Pursky, O. I.

    2013-05-01

    The thermal conductivity of solid furan samples with different densities has been measured under isochoric conditions in the high-temperature orientationally-disordered phase I. Our isochoric data show a gradual increase of ΛV with temperature, while the isobaric thermal conductivity decreases over this temperature range. This effect shows up more clearly in furan, where the atoms in the ring plane are not equivalent, than in the previously studied C6H6 and C6H12. The increase of ΛV with temperature can be attributed to weakening of the translational-orientational interaction, which in turn leads to reduced phonon scattering on rotational excitations. The experimental data are described in terms of a modified Debye model of thermal conductivity with heat transfer by both low-frequency phonons and "diffuse" modes.

  8. Influence of anisotropy on thermal boundary conductance at solid interfaces

    Science.gov (United States)

    Hopkins, Patrick E.; Beechem, Thomas; Duda, John C.; Hattar, Khalid; Ihlefeld, Jon F.; Rodriguez, Mark A.; Piekos, Edward S.

    2011-09-01

    We investigate the role of anisotropy on interfacial transport across solid interfaces by measuring the thermal boundary conductance from 100 to 500 K across Al/Si and Al/sapphire interfaces with different substrate orientations. The measured thermal boundary conductances show a dependency on substrate crystallographic orientation in the sapphire samples (trigonal conventional cell) but not in the silicon samples (diamond cubic conventional cell). The change in interface conductance in the sapphire samples is ascribed to anisotropy in the Brillouin zone along the principal directions defining the conventional cell. This leads to resultant phonon velocities in the direction of thermal transport that vary nearly 40% based on crystallographic direction.

  9. Thermal conductivity of electron-irradiated graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  10. Accurate Thermal Conductivities from First Principles

    Science.gov (United States)

    Carbogno, Christian

    2015-03-01

    In spite of significant research efforts, a first-principles determination of the thermal conductivity at high temperatures has remained elusive. On the one hand, Boltzmann transport techniques that include anharmonic effects in the nuclear dynamics only perturbatively become inaccurate or inapplicable under such conditions. On the other hand, non-equilibrium molecular dynamics (MD) methods suffer from enormous finite-size artifacts in the computationally feasible supercells, which prevent an accurate extrapolation to the bulk limit of the thermal conductivity. In this work, we overcome this limitation by performing ab initio MD simulations in thermodynamic equilibrium that account for all orders of anharmonicity. The thermal conductivity is then assessed from the auto-correlation function of the heat flux using the Green-Kubo formalism. Foremost, we discuss the fundamental theory underlying a first-principles definition of the heat flux using the virial theorem. We validate our approach and in particular the techniques developed to overcome finite time and size effects, e.g., by inspecting silicon, the thermal conductivity of which is particularly challenging to converge. Furthermore, we use this framework to investigate the thermal conductivity of ZrO2, which is known for its high degree of anharmonicity. Our calculations shed light on the heat resistance mechanism active in this material, which eventually allows us to discuss how the thermal conductivity can be controlled by doping and co-doping. This work has been performed in collaboration with R. Ramprasad (University of Connecticut), C. G. Levi and C. G. Van de Walle (University of California Santa Barbara).

  11. Investigations Regarding the Thermal Conductivity of Straw

    Directory of Open Access Journals (Sweden)

    Marian Pruteanu

    2010-01-01

    Full Text Available The reduction of buildings heat losses and pollutants emissions is a worldwide priority. It’s intending to reduce the specific final energy consumption under limit of 120...150 kWh/m2.yr and even under 15...45 kWh/m2.yr, foreseen in 2020 for the passive houses, which is necessary for a sustainable development and for allowing to became profitable the use of unconventional energies [1]. These values can be achieved through the use of thermal insulations, for protecting the constructions fund and through making envelope elements, as much as possible, from materials with a high thermal resistance, for new buildings. With intention to substitute the conventional thermal insulations: mineral wool, expanded polystyrene, which are both great energy consumers, it’s proposed, among others unconventional technologies and materials, the use of vegetable wastes both as a thermal insulation material and as a material used for building load-bearing and in-fill straw-bale construction. In speciality literature there are presented experimental determinations of this material’s thermal conductivity. The paper proposes a simple method, adequate for the measurement of thermal conductivity for bulk’s materials as straw bales.

  12. Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials

    Science.gov (United States)

    Han, Tiancheng; Bai, Xue; Liu, Dan; Gao, Dongliang; Li, Baowen; Thong, John T. L.; Qiu, Cheng-Wei

    2015-05-01

    The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond.

  13. Electrothermal efficiency, temperature and thermal conductivity of ...

    Indian Academy of Sciences (India)

    A study was made to evaluate the electrothermal efficiency of a DC arc plasma torch and temperature and thermal conductivity of plasma jet in the torch. The torch was operated at power levels from 4 to 20 kW in non-transferred arc mode. The effect of nitrogen in combination with argon as plasma gas on the above ...

  14. Electrothermal efficiency, temperature and thermal conductivity of ...

    Indian Academy of Sciences (India)

    Abstract. A study was made to evaluate the electrothermal efficiency of a DC arc plasma torch and temperature and thermal conductivity of plasma jet in the torch. The torch was operated at power levels from 4 to 20 kW in non-transferred arc mode. The effect of nitrogen in combination with argon as plasma gas on the above ...

  15. Thermally stimulated discharge conductivity in polymer composite ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. This paper describes the results of thermally stimulated discharge conductivity study of activated charcoal–polyvinyl chloride (PVC) thin film thermoelectrets. TSDC has been carried out in the temperature range 308–400°K and at four different polarizing fields. Results are discussed on the basis of mobility of acti-.

  16. Simultaneous measurements of thermal conductivity and diffusivity ...

    Indian Academy of Sciences (India)

    80Te20–In ( = 2, 4, 6 and 10) glasses, prepared under a load of 5 tons were carried out at room temperature using transient plane source (TPS) technique. The measured values of both thermal conductivity and diffusivity were used to ...

  17. Temperature dependence of thermal conductivity of vanadium ...

    Indian Academy of Sciences (India)

    Unknown

    . Cryogenic Engineering .... Thermal conductivity of vanadium substituted BPSCCO system. 441 trical resistivity as well as the small decrease ..... G, Marre D, Putti M and Siri A S 1997 Physica C273 314. Chawlek J M, Uher C, Whitaker J F and ...

  18. Thermally stimulated discharge conductivity in polymer composite ...

    Indian Academy of Sciences (India)

    This paper describes the results of thermally stimulated discharge conductivity study of activated charcoal–polyvinyl chloride (PVC) thin film thermoelectrets. TSDC has been carried out in the temperature range 308–400°K and at four different polarizing fields. Results are discussed on the basis of mobility of activated ...

  19. Electrically Conductive White Thermal-Control Paint

    Science.gov (United States)

    Hsieh, Cheng-Hsien; Forsberg, Gustaf A.; O'Donnell, Timothy P.

    1995-01-01

    Report describes development of white thermal-control paint intended for use on spacecraft. Paint required to exhibit combination of high emittance (equal to or greater than 0.90), low absorptance (equal to or less than 0.20), and electrical conductivity sufficient to prevent charging with static electricity to potentials beyond range of plus or minus 10 V.

  20. Indium Foil Serves As Thermally Conductive Gasket

    Science.gov (United States)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  1. Local measurement of thermal conductivity and diffusivity

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, David H.; Schley, Robert S. [Materials Science and Engineering Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-2209 (United States); Khafizov, Marat [Mechanical and Aerospace Engineering Department, The Ohio State University, 201 W. 19th Ave., Columbus, Ohio 43210 (United States); Wendt, Brycen L. [Nuclear Science and Engineering, Idaho State University, 921 S. 8th Ave., Pocatello, Idaho 83209-8060 (United States)

    2015-12-15

    Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness for extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representatives of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agreed closely with the literature values. A distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.

  2. Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites

    Science.gov (United States)

    Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja

    2016-09-01

    Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.

  3. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites

    National Research Council Canada - National Science Library

    Lukasz Jarosinski; Andrzej Rybak; Karolina Gaska; Grzegorz Kmita; Renata Porebska; Czeslaw Kapusta

    2017-01-01

    .... The thermal conductivity of pure polymers is relatively low and addition of thermally conductive particles into polymer matrix is the method to enhance the overall thermal conductivity of the composite...

  4. Ultrahigh Thermal Conductive yet Superflexible Graphene Films.

    Science.gov (United States)

    Peng, Li; Xu, Zhen; Liu, Zheng; Guo, Yan; Li, Peng; Gao, Chao

    2017-07-01

    Electrical devices generate heat at work. The heat should be transferred away immediately by a thermal manager to keep proper functions, especially for high-frequency apparatuses. Besides high thermal conductivity (K), the thermal manager material requires good foldability for the next generation flexible electronics. Unfortunately, metals have satisfactory ductility but inferior K (≤429 W m(-1) K(-1) ), and highly thermal-conductive nonmetallic materials are generally brittle. Therefore, fabricating a foldable macroscopic material with a prominent K is still under challenge. This study solves the problem by folding atomic thin graphene into microfolds. The debris-free giant graphene sheets endow graphene film (GF) with a high K of 1940 ± 113 W m(-1) K(-1) . Simultaneously, the microfolds render GF superflexible with a high fracture elongation up to 16%, enabling it more than 6000 cycles of ultimate folding. The large-area multifunctional GFs can be easily integrated into high-power flexible devices for highly efficient thermal management. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  6. Thermal conductivity of different colored compomers.

    Science.gov (United States)

    Guler, Cigdem; Keles, Ali; Guler, Mehmet S; Karagoz, Sendogan; Cora, Ömer N; Keskin, Gul

    2017-11-10

    Compomers are mostly used in primary dentition. The thermal conductivity properties of traditional or colored compomers have not been investigated in detail so far. The aim of this in vitro study was to assess and compare the thermal conductivities of traditional and colored compomers. Two sets of compomers - namely, Twinky Star (available in berry, lemon, green, silver, blue, pink, gold and orange shades) and Dyract Extra (available in B1, A3 and A2 shades) - were included in this study. All of the traditional and colored compomers were applied to standard molds and polymerized according to the manufacturers' instructions. Three samples were prepared from each compomer. Measurements were conducted using a heat conduction test setup, and the coefficient of heat conductivity was calculated for each material. The heat conductivity coefficients were statistically analyzed using Kruskal-Wallis and Duncan tests. Uncertainty analysis was also performed on the calculated coefficients of heat conductivity. Statistically significant differences were found (pconductivity properties of the traditional and colored compomers examined. Among all of the tested compomers, the silver shade compomer exhibited the highest coefficient of heat conductivity (p<0.05), while the berry shade exhibited the lowest coefficient (p<0.05). Uncertainty analyses revealed that 6 out of 11 samples showed significant differences. The silver shade compomer should be avoided in deep cavities. The material properties could be improved for colored compomers.

  7. An ultrahigh thermal conductive graphene flexible paper.

    Science.gov (United States)

    Ding, Jiheng; Zhao, Hongran; Wang, Qiaolei; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-11-09

    Graphene nanosheets (GNSs) possess outstanding conductivity, good thermal and chemical stabilities and desirable mechanical strengths. However, the unfunctionalized GNSs are hydrophobic and insoluble in water, which limits their application in many technological areas. Herein, we report a design strategy to exfoliate few-layered aqueous dispersible graphene by a simple ball-milling technique. The modifier of sodium lignosulfonate (LS) enables to synthesize LS-decorated GNSs from natural graphite based on the strong π-π interaction, greatly improving GNSs dispersion in water. The resultant GNSs exhibit a high production yield (∼100%), high dispersion concentration and excellent film formation ability. The electrical and thermal conductivities of the as-prepared graphene paper were up to 2385 S cm(-1) and 1324 W m(-1) K(-1), respectively, superior to those of most previously reported graphene materials. This graphene paper with the superb electrical and thermal conduction properties also exhibits excellent mechanical flexibility and structure intensity during bending, which has potential usages in electronic packaging and high power thermal management.

  8. Thermal effects in microfluidics with thermal conductivity spatially modulated

    Science.gov (United States)

    Vargas Toro, Agustín.

    2014-05-01

    A heat transfer model on a microfluidic is resolved analytically. The model describes a fluid at rest between two parallel plates where each plate is maintained at a differentially specified temperature and the thermal conductivity of the microfluidic is spatially modulated. The heat transfer model in such micro-hydrostatic configuration is analytically resolved using the technique of the Laplace transform applying the Bromwich Integral and the Residue theorem. The temperature outline in the microfluidic is presented as an infinite series of Bessel functions. It is shown that the result for the thermal conductivity spatially modulated has as a particular case the solution when the thermal conductivity is spatially constant. All computations were performed using the computer algebra software Maple. It is claimed that the analytical obtained results are important for the design of nanoscale devices with applications in biotechnology. Furthermore, it is suggested some future research lines such as the study of the heat transfer model in a microfluidic resting between coaxial cylinders with radially modulated thermal conductivity in order to achieve future developments in this area.

  9. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data

    Science.gov (United States)

    Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.

    2006-01-01

    Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.

  10. Multiscale Modeling of UHTC: Thermal Conductivity

    Science.gov (United States)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  11. Thermal conductance measurement on vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Ng, N.; Collins, R.E.; So, L. [School of Physics, University of Sydney, A28, NSW 2006 (Australia)

    2006-12-15

    A method is described for measuring the thermal conductance of vacuum glazing that is well-suited for integration into the manufacturing process of such devices. The sample of vacuum glazing to be measured, initially at elevated temperature, is placed in contact with a second sample of vacuum glazing with a known thermal conductance. The external surfaces of the glazings are then cooled by forced flow of air at room temperature, and a measurement is made of the rate of decrease of the temperature of the contacting glass sheets of the two samples. The method is simple to implement, and can be automated. The results obtained with the method are quite reproducible. The measurement can be made as the production samples of vacuum glazing cool at the completion of the manufacturing process, resulting in significant savings in time and labour compared with other methods. (author)

  12. THERMAL CONDUCTIVITY OF THE POTENTIAL REPOSITORY HORIZON

    Energy Technology Data Exchange (ETDEWEB)

    J.E. BEAN

    2004-09-27

    The primary purpose of this report is to assess the spatial variability and uncertainty of bulk thermal conductivity in the host horizon for the repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). Design plans indicate that approximately 81 percent of the repository will be excavated in the Tptpll, approximately 12 percent in the Tptpmn, and the remainder in the Tptul and Tptpln (BSC 2004 [DIRS 168370]). This report provides three-dimensional geostatistical estimates of the bulk thermal conductivity for the four stratigraphic layers of the repository horizon. The three-dimensional geostatistical estimates of matrix and lithophysal porosity, dry bulk density, and matrix thermal conductivity are also provided. This report provides input to various models and calculations that simulate heat transport through the rock mass. These models include the ''Drift Degradation Analysis, Multiscale Thermohydrologic Model, Ventilation Model and Analysis Report, Igneous Intrusion Impacts on Waste Packages and Waste Forms, Drift-Scale Coupled Processes (DST and TH Seepage) Models'', and ''Drift Scale THM Model''. These models directly or indirectly provide input to the total system performance assessment (TSPA). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large-scale (centimeters-meters) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity.

  13. Analytical estimation of skeleton thermal conductivity of a geopolymer foam from thermal conductivity measurements

    Science.gov (United States)

    Henon, J.; Alzina, A.; Absi, J.; Smith, D. S.; Rossignol, S.

    2015-07-01

    The geopolymers are alumino-silicate binders. The addition of a high pores volume fraction, gives them a thermal insulation character desired in the building industry. In this work, potassium geopolymer foams were prepared at room temperature (< 70 ∘C) by a process of in situ gas release. The porosity distribution shows a multiscale character. However, the thermal conductivity measurements gave values from 0.35 to 0.12 Wm-1.K-1 for a pore volume fraction values between 65 and 85%. In the aim to predict the thermal properties of these foams and focus on the relationship "thermal-conductivity/microstructure", knowledge of the thermal conductivity of their solid skeleton (λ s ) is paramount. However, there is rare work on the determination of this value depending on the initial composition. By the formulation used, the foaming agent contributes to the final network, and it is not possible to obtain a dense material designate to make a direct measurement of λ s . The objective of this work is to use inverse analytical methods to identify the value of λ s . Measurements of thermal conductivity by the fluxmetre technique were performed. The obtained value of the solid skeleton thermal conductivity by the inverse numerical technique is situated in a framework between 0.95 and 1.35 Wm-1.K-1 and is in agreement with one issue from the literature.

  14. Treating Fibrous Insulation to Reduce Thermal Conductivity

    Science.gov (United States)

    Zinn, Alfred; Tarkanian, Ryan

    2009-01-01

    A chemical treatment reduces the convective and radiative contributions to the effective thermal conductivity of porous fibrous thermal-insulation tile. The net effect of the treatment is to coat the surfaces of fibers with a mixture of transition-metal oxides (TMOs) without filling the pores. The TMO coats reduce the cross-sectional areas available for convection while absorbing and scattering thermal radiation in the pores, thereby rendering the tile largely opaque to thermal radiation. The treatment involves a sol-gel process: A solution containing a mixture of transition-metal-oxide-precursor salts plus a gelling agent (e.g., tetraethylorthosilicate) is partially cured, then, before it visibly gels, is used to impregnate the tile. The solution in the tile is gelled, then dried, and then the tile is fired to convert the precursor salts to the desired mixed TMO phases. The amounts of the various TMOs ultimately incorporated into the tile can be tailored via the concentrations of salts in the solution, and the impregnation depth can be tailored via the viscosity of the solution and/or the volume of the solution relative to that of the tile. The amounts of the TMOs determine the absorption and scattering spectra.

  15. Glasses, Stress, Attenuation and Thermal Conductivity

    Science.gov (United States)

    Wu, Jiansheng; Yu, Clare

    2011-03-01

    A wide variety of amorphous materials exhibit similar behavior in their thermal properties. Examples include universal features in the specific heat,thermal conductivity, and ultrasonic attenuation. Recent experiments from the Parpia group at Cornell find that high stress silicon nitride thin film resonators exhibit a remarkably high Q factor, exceeding that of amorphous Si O2 by 2 to 3 orders of magnitude over a broad range of temperatures, and even exceeding that of single crystal silicon at room temperature. We present a model of why the stress reduces the attenuation. The basic assumption is that high stress increases the potential barriers of the excitations of defects that produce the loss, thus reducing the effective density of lossy fluctuators. We predict that high stress could lead to high thermal conductivity and low dielectric loss, making high stress SiN an excellent candidate as a substrate for integrated circuits. This work was supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office.

  16. Accelerating evaluation of converged lattice thermal conductivity

    Science.gov (United States)

    Qin, Guangzhao; Hu, Ming

    2018-01-01

    High-throughput computational materials design is an emerging area in materials science, which is based on the fast evaluation of physical-related properties. The lattice thermal conductivity (κ) is a key property of materials for enormous implications. However, the high-throughput evaluation of κ remains a challenge due to the large resources costs and time-consuming procedures. In this paper, we propose a concise strategy to efficiently accelerate the evaluation process of obtaining accurate and converged κ. The strategy is in the framework of phonon Boltzmann transport equation (BTE) coupled with first-principles calculations. Based on the analysis of harmonic interatomic force constants (IFCs), the large enough cutoff radius (rcutoff), a critical parameter involved in calculating the anharmonic IFCs, can be directly determined to get satisfactory results. Moreover, we find a simple way to largely ( 10 times) accelerate the computations by fast reconstructing the anharmonic IFCs in the convergence test of κ with respect to the rcutof, which finally confirms the chosen rcutoff is appropriate. Two-dimensional graphene and phosphorene along with bulk SnSe are presented to validate our approach, and the long-debate divergence problem of thermal conductivity in low-dimensional systems is studied. The quantitative strategy proposed herein can be a good candidate for fast evaluating the reliable κ and thus provides useful tool for high-throughput materials screening and design with targeted thermal transport properties.

  17. Effective thermal conductivity of a thin composite material

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, P.E. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering; Niemann, R.C. [Argonne National Lab., IL (United States)

    1996-12-31

    The thermal conductivity of a randomly oriented composite material is modeled using a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at small composite thickness. The numerical scheme employs a random number generator to position the filler elements, which have a relatively high thermal conductivity, within a matrix having a relatively low thermal conductivity. Results indicate that, below some threshold thickness, the composite thermal conductivity increases with decreasing thickness, while above the threshold the thermal conductivity is independent of thickness. The threshold thickness increases for increasing filler fraction and increasing k{sub f}/k{sub m}, the ratio between filler and matrix thermal conductivities.

  18. Determination of thermal conductivities of some topsoils using block ...

    African Journals Online (AJOL)

    This study focuses on the determination of In situ measurement of the top soil layer, despite non-homogeneity of natural soils caused by changes in their water content, texture and structure. Thermal Conductivities of clay, loam and sand soils were determined using improved Block method with and without the use of ...

  19. Estimation of Thermal Conductivity in the North- Western Niger Delta ...

    African Journals Online (AJOL)

    matrix thermal conductivity in the Niger Delta sedimentary basin. There is a decrease of thermal conductivity with increasing shale fraction. The bulk conductivity also show an increase with increasing sandstone fraction. Increase in porosity results in a decrease in bulk conductivity. Thermal conductivity values and variations ...

  20. Prediction of thermal conductivity of sedimentary rocks from well logs

    DEFF Research Database (Denmark)

    Fuchs, Sven; Förster, Andrea

    2014-01-01

    The calculation of heat-flow density in boreholes requires reliable values for the change of temperature and rock thermal conductivity with depth. As rock samples for laboratory measurements of thermal conductivity (TC) are usually rare geophysical well logs are used alternatively to determine TC...... combinations of standard geophysical well-logs. In combination with a feasible mixing-model (i.e. geometric mean model) bulk TC is computed along borehole profiles. The underlying approach was proposed by Fuchs & Förster (2014) and rests upon the detailed analysis of the interrelations between major physical...

  1. Characterization of Molten CZT Using Thermal Conductivity and Heat Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Nero, Franco [Y-12 National Security Complex, Oak Ridge, TN (United States); Jackson, Maxx [Y-12 National Security Complex, Oak Ridge, TN (United States); Stowe, Ashley [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-10-10

    To compare thermal conductivity of a polycrystalline semiconductor to the single crystal semiconductor using thermo-physical data acquired from Simultaneous Thermal Analysis and Transient Plane Source heating.

  2. 15th International Conference on Thermal Conductivity

    CERN Document Server

    1978-01-01

    Once again, it gives me a great pleasure to pen the Foreword to the Proceedings of the 15th International Conference on Thermal Conductivity. As in the past, these now biannual conferences pro­ vide a broadly based forum for those researchers actively working on this important property of matter to convene on a regular basis to exchange their experiences and report their findings. As it is apparent from the Table of Contents, the 15th Conference represents perhaps the broadest coverage of subject areas to date. This is indicative of the times as the boundaries between disciplines be­ come increasingly diffused. I am sure the time has come when Con­ ference Chairmen in coming years will be soliciting contributions not only in the physical sciences and engineering', but will actively seek contributions from the earth sciences and life sciences as well. Indeed, the thermal conductivity and related properties of geological and biological materials are becoming of increasing im­ portance to our way of life. As...

  3. Thermal characterization of screen printed conductive pastes for RFID antennas

    Energy Technology Data Exchange (ETDEWEB)

    Janeczek, Kamil, E-mail: kamil.janeczek@itr.org.pl [Tele and Radio Research Institute, 11 Ratuszowa Street, 03-450 Warsaw (Poland); Jakubowska, Malgorzata [Institute of Electronic Materials Technology, 133 Wolczynska Street, 01-919 Warsaw (Poland); Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, 8 Sankt Andrzej Bobola Street, 02-525 Warsaw (Poland); Mlozniak, Anna [Institute of Electronic Materials Technology, 133 Wolczynska Street, 01-919 Warsaw (Poland); Koziol, Grazyna [Tele and Radio Research Institute, 11 Ratuszowa Street, 03-450 Warsaw (Poland)

    2012-09-01

    Thermal resistance is an essential aspect of electronic circuits designing. It leads to unexpected changes in electronic components during their work. In this study, new materials for screen printed RFID tag's antennas were characterized in terms of their resistance to thermal exposure. Polymer materials containing silver flakes, silver nanopowder, carbon nanotubes or conductive polymer PEDOT:PSS were elaborated and used for antenna printing on flexible materials. In order to verify their long term susceptibility to damages caused by the changing environmental conditions, the temperature cycling test was used in three different temperature ranges: +65 Degree-Sign C, -12 Degree-Sign C, -40 Degree-Sign C/+85 Degree-Sign C (3 h in each temp., dwell time 1 h). The highest durability to thermal exposure exhibited the paste with carbon nanotubes dispersed in poly(methyl methacrylate) PMMA and the lowest one - the paste with conductive polymer PEDOT:PSS.

  4. Thermal conductivity and thermal boundary resistance of nanostructures

    Directory of Open Access Journals (Sweden)

    Merabia Samy

    2011-01-01

    Full Text Available Abstract We present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results. PACS 68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv

  5. Thermal Conductivity of Carbon Nanoreinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    C. Kostagiannakopoulou

    2016-01-01

    Full Text Available The present study attempts to investigate the influence of multiwalled carbon nanotubes (MWCNTs and graphite nanoplatelets (GNPs on thermal conductivity (TC of nanoreinforced polymers and nanomodified carbon fiber epoxy composites (CFRPs. Loading levels from 1 to 3% wt. of MWCNTs and from 1 to 15% wt. of GNPs were used. The results indicate that TC of nanofilled epoxy composites increased with the increase of GNP content. Quantitatively, 176% and 48% increase of TC were achieved in nanoreinforced polymers and nanomodified CFRPs, respectively, with the addition of 15% wt. GNPs into the epoxy matrix. Finally, micromechanical models were applied in order to predict analytically the TC of polymers and CFRPs. Lewis-Nielsen model with optimized parameters provides results very close to the experimental ones in the case of polymers. As far as the composites are concerned, the Hashin and Clayton models proved to be sufficiently accurate for the prediction at lower filler contents.

  6. Morphology and thermal conductivity of yttria-stabilized zirconia coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hengbei [Materials Science Department, University of Virginia, Charlottesville, VA 22904 (United States)]. E-mail: hz5e@virginia.edu; Yu Fengling [Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106 (United States); Bennett, Ted D. [Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106 (United States); Wadley, Haydn N.G. [Materials Science Department, University of Virginia, Charlottesville, VA 22904 (United States)

    2006-11-15

    An electron beam directed vapor deposition method was used to grow 7 wt.% Y{sub 2}O{sub 3}-ZrO{sub 2} (7YSZ) coatings and the effects of substrate rotation upon the coating porosity, morphology, texture, and thermal conductivity were explored. As the rotation rate was increased, the texture changed from <1 1 1> to <1 0 0>. Under stationary deposition, the coatings were composed of straight columns, while low-frequency rotation resulted in wavy columns. Increases in rotation rate resulted in a gradual straightening and narrowing of the growth columns. The pore fraction slowly decreased as the rotation rate increased. The thermal conductivity was found to be inversely related to the pore fraction. The structural and thermal conductivity alterations are a result of changes to flux shadowing associated with specimen rotation in a gas jet-entrained vapor plume. The minimum thermal conductivity at a low rotation rate is 0.8 W/(m K), well below that of conventionally deposited coatings.

  7. Thermal conductivity of mass-graded graphene flakes

    OpenAIRE

    Cheh, Jigger; Zhao, Hong

    2011-01-01

    In this letter we study thermal conduction in mass-graded graphene flakes by nonequilibrium molecular dynamics simulations. It is found that mass-graded graphene flakes reveal no thermal rectification effect in thermal conduction process. The dependence of thermal conductivity upon the heat flux and the mass gradient are studied to confirm the generality of the result.The mechanism leading to the absence of thermal rectification effect is also discussed.

  8. Plane waves in a thermally conducting viscous liquid

    Indian Academy of Sciences (India)

    The aim of this paper is to investigate plane waves in a thermally conducting viscous liquid half-space with thermal relaxation times. There exist three basic waves, namely; thermal wave, longitudinal wave and transverse wave in a thermally conducting viscous liquid half-space. Reflection of plane waves from the free ...

  9. Determining in-situ thermal conductivity of coarse textured materials through numerical analysis of thermal

    Science.gov (United States)

    Saito, H.; Hamamoto, S.; Moldrup, P.; Komatsu, T.

    2013-12-01

    for estimating thermal conductivity values of coarse textured layers by numerically analyzing TRT data. A numerical technique combining three-dimensional conductive heat transport and one-dimensional convective heat transport to simulate heat exchange processes between the U-tube and the ground was used. In the numerical simulations, the thermal conductivities for the fine textured layers were kept at the probe-measured values, while the thermal conductivity for the coarse textured layers (constituting around half of the profile depth at both sites) was calibrated. The numerically-based method yielded more reasonable thermal conductivity values for the coarse-textured materials at both TAT and SU sites as compared to the heat pulse probe measurements, while the temperature changes of the heat carry fluid inside the U-tubes were also well simulated.

  10. Numerical Investigation of the Thermal Conductivity of Graphite Nanofibers

    Science.gov (United States)

    Hakak Khadem, Masoud

    The thermal conductivity of graphite nano-fibers (GNFs) with different styles is predicted computationally. GNFs are formed as basal planes of graphene stacked based on the catalytic configuration. The large GNF thermal conductivity relative to a base phase change material (PCM) may lead to improved PCM performance when embedded with GNFs. Three different types of GNFs are modeled: platelet, ribbon, and herringbone. Molecular dynamics (MD) simulations are used in this study as a means to predict the thermal conductivity tensor based on atomic behavior. The in-house MD code, Molecular Dynamics in Arbitrary Geometries (MDAG), was updated with the features required to create the predictions. To model both interlayer van-der Waals and intralayer covalent bonding of carbon atoms in GNFs, a combination of the optimized Tersoff potential function for atoms within the layers and a pairwise Lennard-Jones (LJ) potential function to model the interactions between the layers was used. Tests of energy conservation in the NVE ensemble have been performed to validate the employed potential model. Nose-Hoover, Andersen, and Berendsen thermostats were also incorporated into MDAG to enable MD simulations in NVT ensembles, where the volume, number of atoms, and temperature of the system are conserved. Equilibrium MD with Green-Kubo (GK) relations was then employed to extract the thermal conductivity tensor for symmetric GNFs (platelet and ribbon). The thermal conductivity of solid argon at different temperatures was calculated and compared to other studies to validate the GK implementation. Different heat current formulations, as a result of using the three-body Tersoff potential, were considered and the discrepancy in the calculated thermal conductivity values of graphene using each formula was resolved by employing a novel comparative technique that identifies the most accurate formulation. The effect of stacking configuration on the thermal conductivity of platelet and ribbon GNFs

  11. Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria a.

    2009-01-01

    This paper describes the development of a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air. As with other approaches, care is taken to ensure that the heat flow through the test sample is essentially one-dimensional. However, unlike other approaches, no attempt is made to use heated guards to block the flow of heat from the hot plate to the surroundings. It is argued that since large correction factors must be applied to account for guard imperfections when sample dimensions are small, it may be preferable to simply measure and correct for the heat that flows from the heater disc to directions other than into the sample. Experimental measurements taken in a prototype apparatus, combined with extensive computational modeling of the heat transfer in the apparatus, show that sufficiently accurate measurements can be obtained to allow determination of the thermal conductivity of low thermal conductivity materials. Suggestions are made for further improvements in the method based on results from regression analyses of the generated data.

  12. Thermal conductivity of gas by pulse injection techniques using specific thermal conductivity detector (TCD)

    National Research Council Canada - National Science Library

    Renato Cataluña; Rosângela da Silva; Eliana W. Menezes; Dimitrios Samios

    2004-01-01

    ..., divided by the thermal conductivity. The experimental results obtained with Ar, N2, O2, CH4, CO2, C2H4, C3H6 and i-C4H8 gases are in good agreement with the proposed theoretical model and the linearity correlation confirms the validity...

  13. Discussion on the thermal conductivity enhancement of nanofluids

    National Research Council Canada - National Science Library

    Xie, Huaqing; Yu, Wei; Li, Yang; Chen, Lifei

    2011-01-01

    .... We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids...

  14. Molecular Dynamics Simulations for Anisotropic Thermal Conductivity of Borophene

    OpenAIRE

    Jia, Yue; Li, Chun; Jiang, Jin-Wu; Wei, Ning; Chen, Yang; Zhang, Yongjie Jessica

    2017-01-01

    The present work carries out molecular dynamics simulations to compute the thermal conductivity of the borophene nanoribbon and the borophene nanotube using the Muller-Plathe approach. We investigate the thermal conductivity of the armchair and zigzag borophenes, and show the strong anisotropic thermal conductivity property of borophene. We compare the results of the borophene nanoribbon and the borophene nanotube, and find the thermal conductivity of the borophene is structure dependent.

  15. Strength of VGCF/Al Composites for High Thermal Conductivity

    Science.gov (United States)

    Fukuchi, Kohei; Sasaki, Katsuhiko; Imanishi, Terumitsu; Katagiri, Kazuaki; Kakitsuji, Atsushi; Shimizu, Akiyuki

    In this paper, the evaluation of the strength of the VGCF/Aluminum composites which have high thermal conductivity is reported. VGCF (Vapor Growth Carbon Fiber) is a kind of the Carbon nanotube (CNT) which has very high thermal conductivity as well as CNT. The composites are made by spark plasma sintering. The stress-strain curves of the composites are obtained by the tensile tests and show that the composites have brittle behavior. The brittleness of the composites increases with increase in the volume fraction of VGCF. A numerical simulation based on the micromechanics is conducted to estimate nonlinear behavior in the elastic deformation and plastic deformation of the stress-strain relations of the composites. The theories of Eshelby, Mori-Tanaka, Weibull, and Ramberg-Osgood are employed for the numerical simulation. The simulations give some information of the microstructural change in the composite related to the volume fraction of VGCF.

  16. Enhancing The Extremely High Thermal Conduction of Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Xiuqiang eLi

    2013-10-01

    Full Text Available Graphene and Graphene nanoribbons (GNRs are found to have superior high thermal conductivity favorable for high-performance heat dissipation. In this letter, by using molecular dynamics simulations, we show that constructing specific structure can further enhance high thermal conduction of GNRs. By introducing a small gap at the center, the average heat flux (thermal conductivity can be enhanced by up to 23%, the corresponding increase in total heat current is 16%. This unusual thermal conduction enhancement is achieved by an intriguing physical mechanism of suppress phonon-phonon scattering. Our findings uncover new mechanism to increase thermal conduction of GNRs.

  17. Thermal probes of nanoparticle interfaces: Thermodiffusion and thermal conductivity of nanoparticle suspensions

    Science.gov (United States)

    Putnam, Shawn Arthur

    This dissertation presents an experimental study of heat transport and mass transport in nanoparticle composites. The 3o-method was used for high precision thermal conductivity measurements of PMMA polymers filled with alumina nanoparticles. A microfluidic beam deflection technique, developed in this thesis, was used to measure both the thermal conductivity (Λ) and the thermodiffusion coefficient (DT) of nanoparticle suspensions. Thermal conductivity studies of polymer nanocomposites used effective medium theory and data for the changes in thermal conductivity to estimate the thermal conductance of PMMA/alumina interfaces in the temperature range of 40 30 nm. Thermal conductivity studies of nanoparticle suspensions measured the thermal diffusivity to a precision better than 1%. Solutions of G60--C 70 fullerenes and alkanethiolate-protected Au nanoparticles were measured to maximum volume fractions of 0.6% and 0.35 vol%, respectively. Anomalous enhancements in Λ were not observed. The largest enhancement in Λ was 1.3 +/- 0.8% for 4 nm diameter Au particles suspended in ethanol. Thermodiffusion studies investigated aqueous suspensions of charged polystyrene nanoparticles, proteins of T4 lysozyme, and mutant variants of T4 lysozyme at small particle concentrations (cp ≈ 1-2 vol%). DT was measured as a function of temperature, particle size, particle charge, ionic strength, and ionic species. At room temperature and high salt concentrations (>100 mM), DT for 26 nm polystyrene nanoparticles varied systematically within the range --0.9x10-7 cm2 K -1 50°C, the thermodiffusion coefficients were positive with a value consistent with the predictions of a theoretical model originally proposed by B. Derjaguin that is based on the enthalpy changes due to polarization of water molecules in the double-layer. At high temperatures, DT was also independent of particle size.

  18. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.

    Science.gov (United States)

    Mortazavi, Bohayra; Pötschke, Markus; Cuniberti, Gianaurelio

    2014-03-21

    We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures.

  19. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  20. Extremely High Thermal Conductivity of Graphene: Experimental Study

    OpenAIRE

    Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N.

    2008-01-01

    We report on the first measurement of the thermal conductivity of a suspended single layer graphene. The measurements were performed using a non-contact optical technique. The near room-temperature values of the thermal conductivity in the range ~ 4840 to 5300 W/mK were extracted for a single-layer graphene. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction.

  1. Heat conductivity of high-temperature thermal insulators

    Science.gov (United States)

    Kharlamov, A. G.

    The book deals essentially with the mechanisms of heat transfer by conduction, convection, and thermal radiation in absorbing and transmitting media. Particular attention is given to materials for gas-cooled reactor systems, the temperature dependent conductivities of high-temperature insulations in vacuum, and the thermal conductivities of MgO, Al2O3, ZrO2, and other powders at temperatures up to 2000 C. The thermal conductivity of pyrolitic graphite and graphite foam are studied.

  2. Evaluation of Electrical and Thermal Conductivity of Polymeric ...

    African Journals Online (AJOL)

    PROF HORSFALL

    for the electrical and thermal conductivities of the doped polymers it was observed that both conductivities .... ceramic insulators when very hot may conduct quite well. The more ... Doping also lead to the formation of polarons and bipolarons ...

  3. Studies on Enhancing Transverse Thermal Conductivity Carbon/Carbon Composites

    National Research Council Canada - National Science Library

    Manocha, Lalit M; Manocha, Satish M; Roy, Ajit

    2007-01-01

    The structure derived potential properties of Graphite such as high stiffness coupled with high thermal conductivity and low coefficient of thermal expansion have been better achieved in Carbon fibers...

  4. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites

    Directory of Open Access Journals (Sweden)

    Jarosinski Lukasz

    2017-07-01

    Full Text Available Efficient heat dissipation from modern electronic devices is a key issue for their proper performance. An important role in the assembly of electronic devices is played by polymers, due to their simple application and easiness of processing. The thermal conductivity of pure polymers is relatively low and addition of thermally conductive particles into polymer matrix is the method to enhance the overall thermal conductivity of the composite. The aim of the presented work is to examine a possibility of increasing the thermal conductivity of the filled epoxy resin systems, applicable for electrical insulation, by the use of composites filled with graphene nanoplatelets. It is remarkable that the addition of only 4 wt.% of graphene could lead to 132 % increase in thermal conductivity. In this study, several new aspects of graphene composites such as sedimentation effects or temperature dependence of thermal conductivity have been presented. The thermal conductivity results were also compared with the newest model. The obtained results show potential for application of the graphene nanocomposites for electrical insulation with enhanced thermal conductivity. This paper also presents and discusses the unique temperature dependencies of thermal conductivity in a wide temperature range, significant for full understanding thermal transport mechanisms.

  5. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  6. DEVELOPMENT OF HIGH THERMAL CONDUCTIVITY ELECTRICAL EMBEDDING COMPOUNDS.

    Science.gov (United States)

    This report describes the development of high thermal conductivity electrical embedding compounds utilizing a technique wherein the mold is first...Contained herein, are the pertinent results of a previously reported study which led to the development of three high thermal conductivity compounds...and the further development of several additional compounds with still higher conductivities. (Author)

  7. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites

    OpenAIRE

    Jarosinski Lukasz; Rybak Andrzej; Gaska Karolina; Kmita Grzegorz; Porebska Renata; Kapusta Czeslaw

    2017-01-01

    Efficient heat dissipation from modern electronic devices is a key issue for their proper performance. An important role in the assembly of electronic devices is played by polymers, due to their simple application and easiness of processing. The thermal conductivity of pure polymers is relatively low and addition of thermally conductive particles into polymer matrix is the method to enhance the overall thermal conductivity of the composite. The aim of the presented work is to examine a possib...

  8. Enhancement of thermal contact conductance for electronic systems

    Energy Technology Data Exchange (ETDEWEB)

    Sartre, V.; Lallemand, M. [Centre de Thermique de Lyon, UMR CNRS 5008, INSA, Villeurbanne (France)

    2001-02-01

    Experimental investigations on thermal contact resistance have been performed. The results of this study will be useful in selecting interstitial materials to enhance the thermal conductance of an electronic component/heat sink assembly. The experimental assembly consists of two specimens: a thick copper plate, electrically heated, and an aluminium water-cooled plate. The two specimens are bolted together and the load is applied using a calibrated torque wrench. Various interstitial materials (seven commercial greases and 12 foils) suitable for the thermal enhancement in electronic systems have been investigated. The variables considered are the bolt torque, the heat transfer rate and the grease or foil thickness. Results show that the most influential parameter is the applied torque. The contact resistance decreases as the heat flux or the film thickness decreases. The highest dimensionless contact conductance factors (E) are achieved with greases (3 < E < 6). Phase change material-coated foils exhibit E-values ranging from 2.5 to 3.5. Graphite or metallic foils have E-values lower than 2 and for silicone foils E is significantly reduced (E < 1). Thus, phase change material-coated foils seem to be very promising materials, since they are efficient, easy to implement and do not migrate and vaporise out of the contact area. (author)

  9. Thermal conductivity of penta-graphene from molecular dynamics study.

    Science.gov (United States)

    Xu, Wen; Zhang, Gang; Li, Baowen

    2015-10-21

    Using classical equilibrium molecular dynamics simulations and applying the original Tersoff interatomic potential, we study the thermal transport property of the latest two dimensional carbon allotrope, penta-graphene. It is predicted that its room-temperature thermal conductivity is about 167 W/mK, which is much lower than that of graphene. With normal mode decomposition, the accumulated thermal conductivity with respect to phonon frequency and mean free path is analyzed. It is found that the acoustic phonons make a contribution of about 90% to the thermal conductivity, and phonons with mean free paths larger than 100 nm make a contribution over 50%. We demonstrate that the remarkably lower thermal conductivity of penta-graphene compared with graphene results from the lower phonon group velocities and fewer collective phonon excitations. Our study highlights the importance of structure-property relationship and provides better understanding of thermal transport property and valuable insight into thermal management of penta-graphene.

  10. Tailoring thermal conductivity via three-dimensional porous alumina.

    Science.gov (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-12-09

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m-1·K-1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.

  11. Tailoring thermal conductivity via three-dimensional porous alumina

    Science.gov (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-01-01

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m−1·K−1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties. PMID:27934930

  12. Reduced thermal conductivity of isotopically modulated silicon multilayer structures

    DEFF Research Database (Denmark)

    Bracht, H.; Wehmeier, N.; Eon, S.

    2012-01-01

    -resolved x-ray scattering. Comparison of the experimental results to numerical solutions of the corresponding heat diffusion equations reveals a factor of three lower thermal conductivity of the isotope structure compared to natural Si. Our results demonstrate that the thermal conductivity of silicon can......We report measurements of the thermal conductivity of isotopically modulated silicon that consists of alternating layers of highly enriched silicon-28 and silicon-29. A reduced thermal conductivity of the isotopically modulated silicon compared to natural silicon was measured by means of time...

  13. Thermal Conductivity Measurement of Anisotropic Biological Tissue In Vitro

    Science.gov (United States)

    Yue, Kai; Cheng, Liang; Yang, Lina; Jin, Bitao; Zhang, Xinxin

    2017-06-01

    The accurate determination of the thermal conductivity of biological tissues has implications on the success of cryosurgical/hyperthermia treatments. In light of the evident anisotropy in some biological tissues, a new modified stepwise transient method was proposed to simultaneously measure the transverse and longitudinal thermal conductivities of anisotropic biological tissues. The physical and mathematical models were established, and the analytical solution was derived. Sensitivity analysis and experimental simulation were performed to determine the feasibility and measurement accuracy of simultaneously measuring the transverse and longitudinal thermal conductivities. The experimental system was set up, and its measurement accuracy was verified by measuring the thermal conductivity of a reference standard material. The thermal conductivities of the pork tenderloin and bovine muscles were measured using the traditional 1D and proposed methods, respectively, at different temperatures. Results indicate that the thermal conductivities of the bovine muscle are lower than those of the pork tenderloin muscle, whereas the bovine muscle was determined to exhibit stronger anisotropy than the pork tenderloin muscle. Moreover, the longitudinal thermal conductivity is larger than the transverse thermal conductivity for the two tissues and all thermal conductivities increase with the increase in temperature. Compared with the traditional 1D method, results obtained by the proposed method are slightly higher although the relative deviation is below 5 %.

  14. Reference Correlations of the Thermal Conductivity of Ethene and Propene

    Science.gov (United States)

    Koutian, A.; Huber, M. L.; Perkins, R. A.

    2016-01-01

    New, wide-range reference equations for the thermal conductivity of ethene and propene as a function of temperature and density are presented. The equations are based in part upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory whenever possible. For ethene, we estimate the uncertainty (at the 95% confidence level) for the thermal conductivity from 110 K to 520 K at pressures up to 200 MPa to be 5% for the compressed liquid and supercritical phases. For the low-pressure gas phase (to 0.1 MPa) over the temperature range 270 K to 680 K, the estimated uncertainty is 4%. The correlation is valid from 110 K to 680 K and up to 200 MPa, but it behaves in a physically reasonable manner down to the triple point and may be used at pressures up to 300 MPa, although the uncertainty will be larger in regions where experimental data were unavailable. In the case of propene, data are much more limited. We estimate the uncertainty for the thermal conductivity of propene from 180 K to 625 K at pressures up to 50 MPa to be 5% for the gas, liquid, and supercritical phases. The correlation is valid from 180 K to 625 K and up to 50 MPa, but it behaves in a physically reasonable manner down to the triple point and may be used at pressures up to 100 MPa, although the uncertainty will be larger in regions where experimental data were unavailable. For both fluids, uncertainties in the critical region are much larger, since the thermal conductivity approaches infinity at the critical point and is very sensitive to small changes in density. PMID:27818536

  15. Phase change material thermal capacitor clothing

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  16. Positive dependence of thermal conductivity on temperature in GeTe/Bi2Te3 superlattices: the contribution of electronic and particle wave lattice thermal conductivity

    Science.gov (United States)

    Tong, H.; Lan, F.; Liu, Y. J.; Zhou, L. J.; Wang, X. J.; He, Q.; Wang, K. Z.; Miao, X. S.

    2017-09-01

    Temperature-dependent thermal conductivity of phase-change material, GeTe/Bi2Te3 superlattices, has been investigated in the temperature range of 40-300 K. We have found that thermal conductivity increases with increasing temperature, which is contrary to the common results indicated by other works. In this paper, two possible mechanisms are suggested for this result. One is that the thermal conductivity is affected by the thermal boundary resistance at the interfaces between layers, and the other considers the factor of electronic thermal conductivity in the partially coherent regime which is based on the very wave-particle duality of phonons. Finally, the periodic thickness dependence of the thermal conductivity in GeTe/Bi2Te3 superlattices have been measured at room temperature, and the results indicate the main contribution of electron in the total thermal conductivity and the partially coherent regime of phonon. Thus we believe that the second explanation is more reasonable. The work here deepens the understanding of basic mechanisms of thermal transport in phase-change superlattices, and is instructive in modeling and simulation of phase change memories.

  17. Nanofluids Thermal Conductivity Measurement in a Bénard Cell

    Directory of Open Access Journals (Sweden)

    Mohamed Mojahed

    2013-01-01

    Full Text Available Thermal conductivity measurements of nanofluids were the subject of a considerable amount of published research works. Up to now, the experimental results reported in the current literature are still scarce and show many discrepancies. In this paper we propose measurements of this parameter using another experimental set-up. Because of very good thermal controls and big aspect ratio, the Bénard set-up is particularly well suited to determine the thermal conductivity. The aim of this paper is to detail the experimental measurement protocol. The investigated liquid is composed of single walled carbon nanotubes dispersed in water. The effect of liquid temperature on thermal conductivity was investigated. Obtained results confirm the potential of nanofluids in enhancing thermal conductivity and also show that the thermal conductivity temperature dependence is nonlinear, which is different from the results for metal/metal oxide nanofluids.

  18. Thermal conductivity of microporous layers: Analytical modeling and experimental validation

    Science.gov (United States)

    Andisheh-Tadbir, Mehdi; Kjeang, Erik; Bahrami, Majid

    2015-11-01

    A new compact relationship is developed for the thermal conductivity of the microporous layer (MPL) used in polymer electrolyte fuel cells as a function of pore size distribution, porosity, and compression pressure. The proposed model is successfully validated against experimental data obtained from a transient plane source thermal constants analyzer. The thermal conductivities of carbon paper samples with and without MPL were measured as a function of load (1-6 bars) and the MPL thermal conductivity was found between 0.13 and 0.17 W m-1 K-1. The proposed analytical model predicts the experimental thermal conductivities within 5%. A correlation generated from the analytical model was used in a multi objective genetic algorithm to predict the pore size distribution and porosity for an MPL with optimized thermal conductivity and mass diffusivity. The results suggest that an optimized MPL, in terms of heat and mass transfer coefficients, has an average pore size of 122 nm and 63% porosity.

  19. A study on the thermal conductivity of compacted bentonites

    CERN Document Server

    Tang, Anh-Minh; Le, Trung Tinh; 10.1016/j.clay.2007.11.001

    2008-01-01

    Thermal conductivity of compacted bentonite is one of the most important properties in the design of high-level radioactive waste repositories where this material is proposed for use as a buffer. In the work described here, a thermal probe based on the hot wire method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results were analyzed to observe the effects of various factors (i.e. dry density, water content, hysteresis, degree of saturation and volumetric fraction of soil constituents) on the thermal conductivity. A linear correlation was proposed to predict the thermal conductivity of compacted bentonite based on experimentally observed relationship between the volumetric fraction of air and the thermal conductivity. The relevance of this correlation was finally analyzed together with others existing methods using experimental data on several compacted bentonites.

  20. Thermally Conductive Tape Based on Carbon Nanotube Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA missions require thermal control systems that can accommodate large changes in ambient temperature. The two essential aspects of an effective thermal...

  1. Improvement of Thermal and Electrical Conductivity of Epoxy/boron Nitride/silver Nanoparticle Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungyong; Lim, Soonho [Korea Institute of Science and Technology, Wanju (Korea, Republic of)

    2017-06-15

    In this study, we investigated the effect of BN (boron nitride) on the thermal and the electrical conductivity of composites. In case of epoxy/BN composites, the thermal conductivity was increased as the BN contents were increased. Epoxy/AgNP (Ag nanoparticle) nanocomposites exhibited a slight change of thermal conductivity and showed a electrical percolation threshold at 20 vol% of Ag nanoparticles. At the fixed Ag nanoparticle content below the electrical percolation threshold, increasing the amount of BN enhanced the electrical conductivity as well as thermal conductivity for the epoxy/AgNP/BN composites.

  2. Thermal conductivity and other properties of cementitious grouts

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.

    1998-08-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  3. Thermal conductivity of halide solid solutions: measurement and prediction.

    Science.gov (United States)

    Gheribi, Aïmen E; Poncsák, Sándor; St-Pierre, Rémi; Kiss, László I; Chartrand, Patrice

    2014-09-14

    The composition dependence of the lattice thermal conductivity in NaCl-KCl solid solutions has been measured as a function of composition and temperature. Samples with systematically varied compositions were prepared and the laser flash technique was used to determine the thermal diffusivity from 373 K to 823 K. A theoretical model, based on the Debye approximation of phonon density of state (which contains no adjustable parameters) was used to predict the thermal conductivity of both stoichiometric compounds and fully disordered solid solutions. The predictions obtained with the model agree very well with our measurement. A general method for predicting the thermal conductivity of different halide systems is discussed.

  4. Lattice thermal conductivity in layered BiCuSeO

    KAUST Repository

    Kumar, S.

    2016-06-30

    We quantify the low lattice thermal conductivity in layered BiCuSeO (the oxide with the highest known figure of merit). It turns out that the scattering of acoustical into optical phonons is strongly enhanced in the material because of the special structure of the phonon dispersion. For example, at room temperature the optical phonons account for an enormous 42% of the lattice thermal conductivity. We also quantify the anisotropy of the lattice thermal conductivity and determine the distribution of the mean free path of the phonons at different temperatures to provide a guide for tuning the thermal properties. © the Owner Societies 2016.

  5. THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS

    Energy Technology Data Exchange (ETDEWEB)

    ALLAN,M.

    1998-05-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  6. In-Situ Spatial Variability Of Thermal Conductivity And Volumetric ...

    African Journals Online (AJOL)

    Studies of spatial variability of thermal conductivity and volumetric water content of silty topsoil were conduct-ed on a 0.6 ha site at Abeokuta, South-Western Nigeria. The thermal conductivity (k) was measured at depths of up to 0.06 m along four parallel profiles of 200 m long and at an average temperature of 25 C, using ...

  7. Statistical analysis of thermal conductivity of nanofluid containing ...

    Indian Academy of Sciences (India)

    Administrator

    fraction, particle size and shape of nanoparticles also influence the thermal conductivity enhancement of nano- fluids. Zhang et al (2007) investigated the heat transfer per- formance of TiO2/water nanofluid for various volume fractions and temperatures. They observed that the effec- tive thermal conductivities of nanofluids ...

  8. Lattice thermal conductivity of graphene with conventionally isotopic defects

    OpenAIRE

    Adamyan, Vadym; Zavalniuk, Vladimir

    2012-01-01

    The thermal conductivity of doped graphene flake of finite size is investigated with emphasis on the influence of mass of substituting atoms on this property. It is shown that the graphene doping by small concentrations of relatively heavy atoms results in a disproportionately impressive drop of lattice thermal conductivity.

  9. Determination of Coefficients of Thermal Conductivity (CTC) of ...

    African Journals Online (AJOL)

    The results are in good agreement with the experiment. PP has the least coefficient of thermal conductivity and it is recommended for making of utensils handles while PVC recommended for making of ceilings and drain-waste pipes. Keywords: Coefficients of Thermal Conductivity, Plastics, Wurukum and Modern Markets, ...

  10. Dependence of thermal conductivity in micro to nano silica

    Indian Academy of Sciences (India)

    This work presents the measurement of thermal conductivity of nano-silica particles using needle probe method. The validation test of thermal probe was conducted on ice and THF hydrates using our experimental set up and the results are satisfactory when compared with the literature data. The nano silica used in this ...

  11. Effect of normal processes on thermal conductivity of germanium ...

    Indian Academy of Sciences (India)

    The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between different phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and diamond ...

  12. Effect of normal processes on thermal conductivity of germanium ...

    Indian Academy of Sciences (India)

    Abstract. The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between differ- ent phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and ...

  13. Thermal conductivity of Cu–4⋅ 5 Ti alloy

    Indian Academy of Sciences (India)

    The thermal conductivity (TC) of peak aged Cu–4.5 wt% Ti alloy was measured at different temperatures and studied its variation with temperature. It was found that TC increased with increasing temperature. Phonon and electronic components of thermal conductivity were computed from the results. The alloy exhibits an ...

  14. Development of high-thermal-conductivity silicon nitride ceramics

    Directory of Open Access Journals (Sweden)

    You Zhou

    2015-09-01

    Full Text Available Silicon nitride (Si3N4 with high thermal conductivity has emerged as one of the most promising substrate materials for the next-generation power devices. This paper gives an overview on recent developments in preparing high-thermal-conductivity Si3N4 by a sintering of reaction-bonded silicon nitride (SRBSN method. Due to the reduction of lattice oxygen content, the SRBSN ceramics could attain substantially higher thermal conductivities than the Si3N4 ceramics prepared by the conventional gas-pressure sintering of silicon nitride (SSN method. Thermal conductivity could further be improved through increasing the β/α phase ratio during nitridation and enhancing grain growth during post-sintering. Studies on fracture resistance behaviors of the SRBSN ceramics revealed that they possessed high fracture toughness and exhibited obvious R-curve behaviors. Using the SRBSN method, a Si3N4 with a record-high thermal conductivity of 177 Wm−1K−1 and a fracture toughness of 11.2 MPa m1/2 was developed. Studies on the influences of two typical metallic impurity elements, Fe and Al, on thermal conductivities of the SRBSN ceramics revealed that the tolerable content limits for the two impurities were different. While 1 wt% of impurity Fe hardly degraded thermal conductivity, only 0.01 wt% of Al caused large decrease in thermal conductivity.

  15. Thermal conductance of graphene/hexagonal boron nitride heterostructures

    Science.gov (United States)

    Lu, Simon; McGaughey, Alan J. H.

    2017-03-01

    The lattice-based scattering boundary method is applied to compute the phonon mode-resolved transmission coefficients and thermal conductances of in-plane heterostructures built from graphene and hexagonal boron nitride (hBN). The thermal conductance of all structures is dominated by acoustic phonon modes near the Brillouin zone center that have high group velocity, population, and transmission coefficient. Out-of-plane modes make their most significant contributions at low frequencies, whereas in-plane modes contribute across the frequency spectrum. Finite-length superlattice junctions between graphene and hBN leads have a lower thermal conductance than comparable junctions between two graphene leads due to lack of transmission in the hBN phonon bandgap. The thermal conductances of bilayer systems differ by less than 10% from their single-layer counterparts on a per area basis, in contrast to the strong thermal conductivity reduction when moving from single- to multi-layer graphene.

  16. Thermal conduction in a composite circular cylinder: A new technique for thermal conductivity measurements of lunar core samples

    Science.gov (United States)

    Horai, K.; Winkler, J. L., Jr.; Keihm, S. J.; Langseth, M. G.; Fountain, J. A.; West, E. A.

    1980-01-01

    The core sample is heated from the outside at a known rate and the rise in temperature at the surface of the core tube is measured. Because the temperature at the surface, increasing with time, is a function of the thermal properties of both the core tube and the sample, the thermal properties of the sample can be estimated by comparing the measured temperature with the theory, provided that the thermal properties of the core tube are known. Thus it is not necessary to extract the sample from the core tube to make the measurements. Neither is it necessary to insert a heater, or temperature sensor, into the sample within the core tube, as would be required if another method were applied. The sample remains intact after the measurements. The temperature change in the sample can be kept to a minimum as long as the thermal conductivity determination is possible with a reasonable precision. If the radiative method of heat transfer is chosen, the core tube will only be in mechanical contact with the sample holder and a sensor attached to the core tube to measure the surface temperature, thereby greatly reducing the possibility of disturbing the sample.

  17. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete.

    Science.gov (United States)

    Pan, Pan; Wu, Shaopeng; Hu, Xiaodi; Liu, Gang; Li, Bo

    2017-02-23

    Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC). This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing-thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.

  18. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2017-02-01

    Full Text Available Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC. This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.

  19. Thermal conductivity of Cu–4⋅5 Ti alloy

    Indian Academy of Sciences (India)

    Unknown

    next paragraph. Therefore, Cu–4⋅5 Ti alloy exhibits a pho- non thermal conductivity of 17⋅6 W/m⋅K and electronic conductivity of 0 W/m⋅K at 0 K. The Widemann–Franz–Lorenz Law (2) has been used to decompose the total thermal conductivity of Cu–4⋅5 Ti alloy measured at room temperature (298 K), into electronic.

  20. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor.

    Science.gov (United States)

    Shrestha, R; Lee, K M; Chang, W S; Kim, D S; Rhee, G H; Choi, T Y

    2013-03-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m(-1) K(-1) at room temperature.

  1. Thermal conductivity of a h-BCN monolayer.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Liu, Hong-Yuan; Wei, Ning

    2017-10-18

    A hexagonal graphene-like boron-carbon-nitrogen (h-BCN) monolayer, a new two-dimensional (2D) material, has been synthesized recently. Herein we investigate for the first time the thermal conductivity of this novel 2D material. Using molecular dynamics simulations based on the optimized Tersoff potential, we found that the h-BCN monolayers are isotropic in the basal plane with close thermal conductivity magnitudes. Though h-BCN has the same hexagonal lattice as graphene and hexagonal boron nitride (h-BN), it exhibits a much lower thermal conductivity than the latter two materials. In addition, the thermal conductivity of h-BCN monolayers is found to be size-dependent but less temperature-dependent. Modulation of the thermal conductivity of h-BCN monolayers can also be realized by strain engineering. Compressive strain leads to a monotonic decrease in the thermal conductivity while the tensile strain induces an up-then-down trend in the thermal conductivity. Surprisingly, the small tensile strain can facilitate the heat transport of the h-BCN monolayers.

  2. Moisture and Thermal Conductivity of Lightweight Block Walls

    Science.gov (United States)

    Joosep, R.

    2015-11-01

    This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.

  3. Measurement of in-plane thermal conductivity in polymer films

    Directory of Open Access Journals (Sweden)

    Qingshuo Wei

    2016-04-01

    Full Text Available Measuring the in-plane thermal conductivity of organic thermoelectric materials is challenging but is critically important. Here, a method to study the in-plane thermal conductivity of free-standing films (via the use of commercial equipment based on temperature wave analysis is explored in depth. This subject method required a free-standing thin film with a thickness larger than 10 μm and an area larger than 1 cm2, which are not difficult to obtain for most solution-processable organic thermoelectric materials. We evaluated thermal conductivities and anisotropic ratios for various types of samples including insulating polymers, undoped semiconducting polymers, doped conducting polymers, and one-dimensional carbon fiber bulky papers. This approach facilitated a rapid screening of in-plane thermal conductivities for various organic thermoelectric materials.

  4. Composites with increased thermal conductivity: FEM analysis

    Science.gov (United States)

    Gutkowska, Karolina

    Composites are potential substitutes for metals as the materials used for heat spreaders in specified devises. They have a lot of advantages comparing to conductors, but it is not trivial to manufacture product meeting all of expectations. Main task is to choose the filler and the matrix properly and make them work efficiently. Lately, hope is reposed in carbonbased nanoparticles due to their great features. They are good heat conductors and rather easy to manufacture. There is wide range of materials which can be used as matrix according to their cheap processing, light weight, durability and good chemical affinity to some substances. Polymers are among them. There are being conducted some researches on different compounds. Expected characteristics depend on the application. FEM simulations has been carried out to confirm these theories and results are presented in this paper.

  5. A numerical study of transient, thermally-conductive solar wind

    Science.gov (United States)

    Han, S. M.; Wu, S. T.; Dryer, M.

    1987-01-01

    A numerical analysis of transient solar wind starting at the solar surface and arriving at 1 AU is performed by an implicit numerical method. The model hydrodynamic equations include thermal conduction terms for both steady and unsteady simulations. Simulation results show significant influence of thermal conduction on both steady and time-dependent solar wind. Higher thermal conduction results in higher solar wind speed, higher temperature, but lower plasma density at 1 AU. Higher base temperature at the solar surface gives lower plasma speed, lower temperature, but higher density at 1 AU. Higher base density, on the other hand, gives lower velocity, lower temperature, but higher density at 1 AU.

  6. Influence of thermalization on thermal conduction through molecular junctions: Computational study of PEG oligomers

    Science.gov (United States)

    Pandey, Hari Datt; Leitner, David M.

    2017-08-01

    Thermalization in molecular junctions and the extent to which it mediates thermal transport through the junction are explored and illustrated with computational modeling of polyethylene glycol (PEG) oligomer junctions. We calculate rates of thermalization in the PEG oligomers from 100 K to 600 K and thermal conduction through PEG oligomer interfaces between gold and other materials, including water, motivated in part by photothermal applications of gold nanoparticles capped by PEG oligomers in aqueous and cellular environments. Variation of thermalization rates over a range of oligomer lengths and temperatures reveals striking effects of thermalization on thermal conduction through the junction. The calculated thermalization rates help clarify the scope of applicability of approaches that can be used to predict thermal conduction, e.g., where Fourier's law breaks down and where a Landauer approach is suitable. The rates and nature of vibrational energy transport computed for PEG oligomers are compared with available experimental results.

  7. Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System

    Science.gov (United States)

    Moskito, John

    1996-01-01

    This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.

  8. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Żyła, Gaweł, E-mail: gzyla@prz.edu.pl [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Fal, Jacek; Traciak, Julian [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Gizowska, Magdalena; Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Warsaw, 02-676 (Poland)

    2016-09-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  9. Thermal conductivity of evacuated perlite at low temperatures as a function of load and load history

    Science.gov (United States)

    Dube, W. P.; Sparks, L. L.; Slifka, A. J.

    1991-01-01

    Perlite, a powdered insulation, is commonly used in large cryogenic storage dewars. When these dewars are thermally cycled, the perlite in the evacuated space between the inner and outer vessels of the dewar experiences a changing mechanical load due to thermal expansion and contraction of the inner vessel. Thermal conductivity data were obtained using a boil-off calorimeter. The apparent thermal conductivity of evacuated perlite increases strongly with applied load. Hysteretic behavior of the conductivity was observed when perlite was subjected to cyclic mechanical loading.

  10. Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Furbo, Simon

    2016-01-01

    Sodium acetate trihydrate is a promising phase change material for long term storage of solar thermal energy if supercooling is actively utilized. Well performing thermal energy storages need to be able to charge and discharge energy at a high rate. The relatively low thermal conductivity...... of the phase change material limits the heat exchange capacity rate to and from the storage. Another factor that limits the heat transfer is the contraction and expansion of the salt hydrate during the phase change. This density change causes formation of cavities inside the solid storage material...... fewer large cavities but had a lower thermal conductivity. A composite with sodium acetate trihydrate, thickening agent and 5% graphite flakes had a thermal conductivity of up to 1.1 W/m K....

  11. Thermal Conductivity in Suspension Sprayed Thermal Barrier Coatings: Modeling and Experiments

    Science.gov (United States)

    Ganvir, Ashish; Kumara, Chamara; Gupta, Mohit; Nylen, Per

    2017-01-01

    Axial suspension plasma spraying (ASPS) can generate microstructures with higher porosity and pores in the size range from submicron to nanometer. ASPS thermal barrier coatings (TBC) have already shown a great potential to produce low thermal conductivity coatings for gas turbine applications. It is important to understand the fundamental relationships between microstructural defects in ASPS coatings such as crystallite boundaries, porosity etc. and thermal conductivity. Object-oriented finite element (OOF) analysis has been shown as an effective tool for evaluating thermal conductivity of conventional TBCs as this method is capable of incorporating the inherent microstructure in the model. The objective of this work was to analyze the thermal conductivity of ASPS TBCs using experimental techniques and also to evaluate a procedure where OOF can be used to predict and analyze the thermal conductivity for these coatings. Verification of the model was done by comparing modeling results with the experimental thermal conductivity. The results showed that the varied scaled porosity has a significant influence on the thermal conductivity. Smaller crystallites and higher overall porosity content resulted in lower thermal conductivity. It was shown that OOF could be a powerful tool to predict and rank thermal conductivity of ASPS TBCs.

  12. Conductive ink containing thermally exfoliated graphite oxide and method a conductive circuit using the same

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A conductive ink containing a conductive polymer, wherein the conductive polymer contains at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, and it use in a method for making a conductive circuit.

  13. MHD simulations of coronal dark downflows considering thermal conduction

    Science.gov (United States)

    Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.

    2017-10-01

    While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.

  14. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites

    National Research Council Canada - National Science Library

    Lukasz Jarosinski; Andrzej Rybak; Karolina Gaska; Grzegorz Kmita; Renata Porebska; Czeslaw Kapusta

    2017-01-01

    .... The aim of the presented work is to examine a possibility of increasing the thermal conductivity of the filled epoxy resin systems, applicable for electrical insulation, by the use of composites...

  15. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-12-01

    This factsheet describes a project that developed a new, continuous manufacturing process to make high molecular weight, high thermal conductivity polyethylene fibers and sheets to replace metals and ceramics in heat transfer applications.

  16. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Soon-Ching; Low, Kaw-Sai [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Wilayah Persekutuan (Malaysia)

    2010-12-15

    Investigation on the thermal conductivity of newspaper sandwiched aerated lightweight concrete (ALC) panels is the main purpose of this study. Various densities of ALC panels ranging from 1700, 1400 and 1100 kg/m{sup 3} with three different aerial intensities of newspaper sandwiched were produced. Investigation was limited to the effect of aerial intensity of newspaper sandwiched and the effect of density of ALC on thermal conductivity. It is found that the thermal conductivity of newspaper sandwiched ALC panels reduced remarkably compared to control ALC panels. The reduction was recorded at 18.0%, 21.8% and 20.7% correspond to densities of 1700, 1400 and 1100 kg/m{sup 3} with just a mere 0.05 g/cm{sup 2} aerial intensity of newspaper sandwiched. Newspaper sandwiched has a significant impact on the performance of thermal conductivity of ALC panels based on regression analysis. (author)

  17. Contribution of thermal radiation in measurements of thermal conductivity of sandstone

    Science.gov (United States)

    Zarichnyak, Yu. P.; Ramazanova, A. E.; Emirov, S. N.

    2013-12-01

    The effective thermal conductivity of sandstone at high pressures of up to 400 MPa and temperatures of 273-523 K has been studied. It has been shown that the degree of crystallization of rock-forming minerals substantially influences the temperature and pressure dependences of the thermal conductivity. The contribution of the radiation heat transfer in measurements of the thermal conductivity of sandstone at various temperatures has been analyzed taking into account the reflection and attenuation of the thermal radiation. The results of measuring the reflection and absorption spectra of the thermal radiation have been presented.

  18. Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method

    Science.gov (United States)

    Potenza, M.; Cataldo, A.; Bovesecchi, G.; Corasaniti, S.; Coppa, P.; Bellucci, S.

    2017-07-01

    The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity), and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs) was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg.m-3) the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.

  19. Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method

    Directory of Open Access Journals (Sweden)

    M. Potenza

    2017-07-01

    Full Text Available The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity, and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg·m-3 the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.

  20. Voltage tunability of thermal conductivity in ferroelectric materials

    Science.gov (United States)

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  1. Anomalous size dependence of the thermal conductivity of graphene ribbons.

    Science.gov (United States)

    Nika, Denis L; Askerov, Artur S; Balandin, Alexander A

    2012-06-13

    We investigated the thermal conductivity K of graphene ribbons and graphite slabs as the function of their lateral dimensions. Our theoretical model considered the anharmonic three-phonon processes to the second-order and included the angle-dependent phonon scattering from the ribbon edges. It was found that the long mean free path of the long-wavelength acoustic phonons in graphene can lead to an unusual nonmonotonic dependence of the thermal conductivity on the length L of a ribbon. The effect is pronounced for the ribbons with the smooth edges (specularity parameter p > 0.5). Our results also suggest that, contrary to what was previously thought, the bulk-like three-dimensional phonons in graphite make a rather substantial contribution to its in-plane thermal conductivity. The Umklapp-limited thermal conductivity of graphite slabs scales, for L below ∼30 μm, as log(L), while for larger L, the thermal conductivity approaches a finite value following the dependence K(0) - A × L(-1/2), where K(0) and A are parameters independent of the length. Our theoretical results clarify the scaling of the phonon thermal conductivity with the lateral sizes in graphene and graphite. The revealed anomalous dependence K(L) for the micrometer-size graphene ribbons can account for some of the discrepancy in reported experimental data for graphene.

  2. Thermal rectification in restructured graphene with locally modulated temperature dependence of thermal conductivity

    Science.gov (United States)

    Arora, Anuj; Hori, Takuma; Shiga, Takuma; Shiomi, Junichiro

    2017-10-01

    We study thermal rectification (TR) in a selectively restructured graphene by performing deviational phonon Monte Carlo (MC) simulations with frequency-dependent phonon transport properties obtained from first principles. The restructuring is achieved by introducing vacancy defects in a portion of graphene. The defects significantly change phonon transport properties, resulting in a modulation of temperature dependence of thermal conductivity. With this modulated temperature dependence, we predict TR ratio through a Fourier's-law-based iterative scheme (FIS), where heat flow through the system is analyzed by solving the Fourier's law of heat conduction with spatially varying temperature-dependent thermal conductivity. To identify structure parameters for maximal TR ratio, we investigate the influence of defect size, volume percentage of defects, and system (consisting of defective and nondefective regions) length through FIS analysis. As a result, we find that the TR ratio is mainly a function of length of defective and nondefective regions and volume percentage of defect, and it is mostly independent of defect size. A longer (of the order of 10 μm) nondefective side, coupled to a shorter (of the order of 100 nm) defective side, can lead to large TR ratios. Finally, MC simulation for the restructured graphene (full system) is performed to verify the predictions from FIS analysis. The full system calculations give similar trends but with enhanced TR ratios up to 70% for the temperature range of 200-500 K.

  3. Thermal conductivity measurements of particulate materials under Martian conditions

    Science.gov (United States)

    Presley, M. A.; Christensen, P. R.

    1993-01-01

    The mean particle diameter of surficial units on Mars has been approximated by applying thermal inertia determinations from the Mariner 9 Infrared Radiometer and the Viking Infrared Thermal Mapper data together with thermal conductivity measurement. Several studies have used this approximation to characterize surficial units and infer their nature and possible origin. Such interpretations are possible because previous measurements of the thermal conductivity of particulate materials have shown that particle size significantly affects thermal conductivity under martian atmospheric pressures. The transfer of thermal energy due to collisions of gas molecules is the predominant mechanism of thermal conductivity in porous systems for gas pressures above about 0.01 torr. At martian atmospheric pressures the mean free path of the gas molecules becomes greater than the effective distance over which conduction takes place between the particles. Gas particles are then more likely to collide with the solid particles than they are with each other. The average heat transfer distance between particles, which is related to particle size, shape and packing, thus determines how fast heat will flow through a particulate material.The derived one-to-one correspondence of thermal inertia to mean particle diameter implies a certain homogeneity in the materials analyzed. Yet the samples used were often characterized by fairly wide ranges of particle sizes with little information about the possible distribution of sizes within those ranges. Interpretation of thermal inertia data is further limited by the lack of data on other effects on the interparticle spacing relative to particle size, such as particle shape, bimodal or polymodal mixtures of grain sizes and formation of salt cements between grains. To address these limitations and to provide a more comprehensive set of thermal conductivities vs. particle size a linear heat source apparatus, similar to that of Cremers, was assembled to

  4. Thermal conductivity of disperse insulation materials and their mixtures

    Science.gov (United States)

    Geža, V.; Jakovičs, A.; Gendelis, S.; Usiļonoks, I.; Timofejevs, J.

    2017-10-01

    Development of new, more efficient thermal insulation materials is a key to reduction of heat losses and contribution to greenhouse gas emissions. Two innovative materials developed at Thermeko LLC are Izoprok and Izopearl. This research is devoted to experimental study of thermal insulation properties of both materials as well as their mixture. Results show that mixture of 40% Izoprok and 60% of Izopearl has lower thermal conductivity than pure materials. In this work, material thermal conductivity dependence temperature is also measured. Novel modelling approach is used to model spatial distribution of disperse insulation material. Computational fluid dynamics approach is also used to estimate role of different heat transfer phenomena in such porous mixture. Modelling results show that thermal convection plays small role in heat transfer despite large fraction of air within material pores.

  5. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    Science.gov (United States)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  6. Isotope Effect on the Thermal Conductivity of Graphene

    Directory of Open Access Journals (Sweden)

    Hengji Zhang

    2010-01-01

    Full Text Available The thermal conductivity (TC of isolated graphene with different concentrations of isotope (C13 is studied with equilibrium molecular dynamics method at 300 K. In the limit of pure C12 or C13 graphene, TC of graphene in zigzag and armchair directions are ~630 W/mK and ~1000W/mK, respectively. We find that the TC of graphene can be maximally reduced by ~80%, in both armchair and zigzag directions, when a random distribution of C12 and C13 is assumed at different doping concentrations. Therefore, our simulation results suggest an effective way to tune the TC of graphene without changing its atomic and electronic structure, thus yielding a promising application for nanoelectronics and thermoelectricity of graphene-based nano device.

  7. THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS

    Energy Technology Data Exchange (ETDEWEB)

    R. JONES

    2004-10-22

    This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu et al. (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data

  8. Thermal conductive epoxy enhanced by nanodiamond-coated carbon nanotubes

    Science.gov (United States)

    Zhao, Bo; Jiang, Guohua

    2017-11-01

    Nanodiamond (ND) particles were coated on the surface of carbon nanotubes (CNTs) by chemical reactions. Reliable bonding was formed by the combination of acyl chloride on NDs and amine group on CNTs. ND coated CNTs (CNT-ND) were dispersed into epoxy to fabricate thermal conductive resins. The results show that the surface energy of CNTs is decreased by the coated NDs, which is contributed to the excellent dispersion of CNT-NDs in the epoxy matrix. The heat-transfer channels were built by the venous CNTs cooperating with the coated NDs, which not only plays an effective role of heat conduction for CNTs and NDs, but also avoids the electrical leakage by the protection of NDs surrounding outside of CNTs. Electrical and thermal conductance measurements demonstrate that the influence of the CNT-ND incorporation on the electrical conductance is minor, however, the thermal conductivity is improved significantly for the epoxy filled with CNT-ND.[Figure not available: see fulltext.

  9. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    Science.gov (United States)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  10. Thermal Conductivity Measurement of Liquids by Using a Suspended Microheater

    Science.gov (United States)

    Oh, Dong-Wook

    2017-10-01

    In this paper, the traditional 3ω method is modified in order to measure the thermal conductivity of a droplet of liquid. The 3ω sensor is microfabricated using bulk silicon etching on a silicon wafer to form a microheater on a suspended bridge structure. The Si substrate of over 400 μ m thickness beneath the microheater is etched away so that the sample liquid can fill the gap created between the heater and the bottom boundary of the sensor. The frequency of the sinusoidal heating pulses that are generated from the heater is controlled such that the thermal penetration depth is much smaller than the thickness of the liquid layer. The temperature oscillation of the sample fluid is measured at the thin-film heater to calculate the thermal conductivity of the surrounding fluid. The thermal conductivity and measured values of the de-ionized water and ethanol show a good agreement with the theoretical values at room temperature.

  11. Theory of the dynamical thermal conductivity of metals

    Science.gov (United States)

    Bhalla, Pankaj; Kumar, Pradeep; Das, Nabyendu; Singh, Navinder

    2016-09-01

    The Mori's projection method, known as the memory function method, is an important theoretical formalism to study various transport coefficients. In the present work, we calculate the dynamical thermal conductivity in the case of metals using the memory function formalism. We introduce thermal memory functions for the first time and discuss the behavior of thermal conductivity in both the zero frequency limit and in the case of nonzero frequencies. We compare our results for the zero frequency case with the results obtained by the Bloch-Boltzmann kinetic approach and find that both approaches agree with each other. Motivated by some recent experimental advancements, we obtain several new results for the ac or the dynamical thermal conductivity.

  12. Discussion on the thermal conductivity enhancement of nanofluids

    Directory of Open Access Journals (Sweden)

    Xie Huaqing

    2011-01-01

    Full Text Available Abstract Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW, ethylene glycol (EG, glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed.

  13. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding.

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-02-25

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers.

  14. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859

  15. Discussion on the thermal conductivity enhancement of nanofluids

    Science.gov (United States)

    2011-01-01

    Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed. PMID:21711638

  16. Lumped thermal capacitance analysis of transient heat conduction ...

    African Journals Online (AJOL)

    The thermal energy transferred by unsteady flow of the coolant to the vessel was determined as internal energy change. Numerical algorithms for Matlab Code were implemented to generate data for transient analysis and simulation. The simulations indicated that the temperature variations and the the-rmal stresses were ...

  17. Ultra-small coherent thermal conductance using multi-layer photonic crystal

    Science.gov (United States)

    Lau, W. T.; Shen, J.-T.; Veronis, G.; Fan, S.

    2009-02-01

    A multi-layer photonic crystal can be used to suppress coherent thermal conductance below the vacuum conductance value, over the entire high-temperature range. With interlacing layers of silicon and vacuum, heat can only be carried by photons. The thermal conductance of the crystal would then be determined by the photonic band structure. Partial photonic band gaps that present over most of the thermal spectrum, as well as the suppression of evanescent coupling of photons across the vacuum layers at high frequencies, would reduce the amount heat conducting photon channels below that of the vacuum. Thus such multi-layer structures can be very efficient thermal insulators. Besides, the thermal conductance of such structures can exhibit substantial tunability, by merely changing the size of the vacuum spacing.

  18. A thermal conductivity model for U-­Si compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    U3Si2 is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO2 in commercial light water reactors (LWRs). One of its main benefits compared to UO2 is higher thermal conductivity that increases with temperature. This increase is contrary to UO2, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U3Si2, as compared to the phonon mechanism responsible for thermal transport in UO2. The phonon thermal conductivity in UO2 is unusually low for a fluorite oxide due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U3Si2 as well as other U-­Si compounds has been measured experimentally [1-­4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO2 this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U3Si2 thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO2 (semi-conductor) and U3Si2 (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-­Si compounds with the goal of capturing the effect of damage in U3Si2. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.

  19. Calibration of non-ideal thermal conductivity sensors

    Directory of Open Access Journals (Sweden)

    N. I. Kömle

    2013-04-01

    Full Text Available A popular method for measuring the thermal conductivity of solid materials is the transient hot needle method. It allows the thermal conductivity of a solid or granular material to be evaluated simply by combining a temperature measurement with a well-defined electrical current flowing through a resistance wire enclosed in a long and thin needle. Standard laboratory sensors that are typically used in laboratory work consist of very thin steel needles with a large length-to-diameter ratio. This type of needle is convenient since it is mathematically easy to derive the thermal conductivity of a soft granular material from a simple temperature measurement. However, such a geometry often results in a mechanically weak sensor, which can bend or fail when inserted into a material that is harder than expected. For deploying such a sensor on a planetary surface, with often unknown soil properties, it is necessary to construct more rugged sensors. These requirements can lead to a design which differs substantially from the ideal geometry, and additional care must be taken in the calibration and data analysis. In this paper we present the performance of a prototype thermal conductivity sensor designed for planetary missions. The thermal conductivity of a suite of solid and granular materials was measured both by a standard needle sensor and by several customized sensors with non-ideal geometry. We thus obtained a calibration curve for the non-ideal sensors. The theory describing the temperature response of a sensor with such unfavorable length-to-diameter ratio is complicated and highly nonlinear. However, our measurements reveal that over a wide range of thermal conductivities there is an almost linear relationship between the result obtained by the standard sensor and the result derived from the customized, non-ideal sensors. This allows for the measurement of thermal conductivity values for harder soils, which are not easily accessible when using

  20. Evaluation of Electrical and Thermal Conductivity of Polymeric ...

    African Journals Online (AJOL)

    PROF HORSFALL

    application was compressed in a wooden mold to form tablets of the doped polymers. On testing for the electrical and thermal conductivities of the doped polymers it was observed that both conductivities were greatly enhanced as the concentrations of the dopants increased. Hence it is evident that those polymeric materials ...

  1. Evaluation of electrical and thermal conductivity of polymeric wastes ...

    African Journals Online (AJOL)

    The mixture on melting with heat application was compressed in a wooden mold to form tablets of the doped polymers. On testing for the electrical and thermal conductivities of the doped polymers it was observed that both conductivities were greatly enhanced as the concentrations of the dopants increased. Hence it is ...

  2. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    Energy Technology Data Exchange (ETDEWEB)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David; Turchi, Craig S.; Cath, Tzahi Y.

    2018-02-01

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.

  3. Performance of thermal conductivity probes for planetary applications

    Directory of Open Access Journals (Sweden)

    E. S. Hütter

    2012-05-01

    Full Text Available This work aims to contribute to the development of in situ instruments feasible for space application. Commercial as well as custom-made thermal sensors, based on the transient hot wire technique and suitable for direct measurement of the effective thermal conductivity of granular media, were tested for application under airless conditions. In order to check the ability of custom-made sensors to measure the thermal conductivity of planetary surface layers, detailed numerical simulations predicting the response of the different sensors have been performed. These simulations reveal that for investigations under high vacuum conditions (as they prevail, e.g. on the lunar surface, the derived thermal conductivity values can significantly depend on sensor geometry, axial heat flow, and the thermal contact between probe and surrounding material. Therefore, a careful calibration of each particular sensor is necessary in order to obtain reliable thermal conductivity measurements. The custom-made sensors presented in this work can serve as prototypes for payload to be flown on future planetary lander missions, in particular for airless bodies like the Moon, asteroids and comets, but also for Mars.

  4. Hydrodynamic interaction of SNR shocks with thermally conducting, radiative clouds .

    Science.gov (United States)

    Orlando, S.; Peres, G.; Reale, F.; Bocchino, F.; Plewa, T.; Rosner, R.

    Supernova remnants (SNRs) are privileged laboratories to investigate the physical and chemical evolution of the galactic interstellar medium (ISM) and the mass distribution of the plasma in the Galaxy. Here, we study the interaction of an evolved SNR shock front with on a small interstellar gas cloud. Our model takes into account the hydrodynamics and the effects of the radiative losses and of the thermal conduction. We study the interplay between the radiative cooling and the thermal conduction during the cloud evolution and their effect on the mass and energy exchange between the cloud and the surrounding medium. We find that in cases dominated by the radiative losses the cloud fragments into cold, dense, and compact filaments surrounded by a hot corona which is ablated by the thermal conduction; instead, in cases dominated by the thermal conduction, the shocked cloud evaporates into the ISM in a few dynamical time-scales. In all the cases analyzed we find that the thermal conduction suppresses the hydrodynamic instabilities at the cloud boundaries.

  5. Thermal Conductivity of Compacted Bentonite and Bentonite-Sand Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Lee, Jae Owan; Kwon, Sang Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-06-15

    For the Kyungju bentonite which is considered as a candidate material for the buffer and backfill in the high-level waste repository, the thermal conductivities of compacted bentonite and a bentonite-sand mixture were measured. The thermal conductivities of the compacted bentonite with a dry density of 1.2 to 1.8 Mg/m{sup 3}and the bentonite-sand mixture with a dry density of 1.6 and 1.8 Mg/m{sup 3} were measured within the gravimetric water content range of 10wt% to 20wt% and the sand fraction range of 10 to 30wt%. The thermal conductivity of compacted bentonite and a bentonite-sand mixture increases with increasing dry density and sand weight fraction in the case of constant water weight fraction, and increases with increasing water weight fraction and sand weight fraction in the case of constant dry density. The empirical correlations to describe the thermal conductivity of compacted bentonite and a bentonite-sand mixture as a function of water fraction at each dry density were suggested. These correlations can predict the thermal conductivities of bentonite and a bentonite-sand mixture with a difference below 10%.

  6. Reduction of thermal conductivity in phononic nanomesh structures

    KAUST Repository

    Yu, Jen-Kan

    2010-07-25

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. © 2010 Macmillan Publishers Limited. All rights reserved.

  7. Piezoelectric effect on the thermal conductivity of monolayer gallium nitride

    Science.gov (United States)

    Zhang, Jin

    2018-01-01

    Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.

  8. Modelling Phase Change in a 3D Thermal Transient Analysis

    OpenAIRE

    Haque, EEU; Hampson, PR

    2016-01-01

    A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine) is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC) results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer) and adjacent (metal) s...

  9. Effects of coherent ferroelastic domain walls on the thermal conductivity and Kapitza conductance in bismuth ferrite

    Science.gov (United States)

    Hopkins, Patrick E.; Adamo, Carolina; Ye, Linghan; Huey, Bryan D.; Lee, Stephen R.; Schlom, Darrell G.; Ihlefeld, Jon F.

    2013-03-01

    Ferroelectric and ferroelastic domain structure has a profound effect on the piezoelectric, ferroelectric, and dielectric responses of ferroelectric materials. However, domain walls and strain field effects on thermal properties are unknown. We measured the thermal conductance from 100-400 K of epitaxially grown BiFeO3 thin films with different domain variants, each separated primarily by 71° domain walls. We determined the Kapitza conductance across the domain walls, which is driven by the strain field induced by the domain variants. This domain wall Kapitza conductance is lower than the Kapitza conductance associated with grain boundaries in all previously measured materials.

  10. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  11. Determination of thermal conductivity in foundry mould mixtures

    Directory of Open Access Journals (Sweden)

    G. Solenički

    2010-01-01

    Full Text Available For a thorough understanding of the behaviour of foundry mould mixtures, a good knowledge of thermal properties of mould materials is needed. Laboratory determination of thermal conductivity of mould mixtures enables a better control over scabbing defects which are a major problem in green sand mould mixtures. A special instrument has been designed for that purpose and it is described in this work.

  12. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  13. Estimation of thermal conductivity of short pastry biscuit at different baking stages

    Directory of Open Access Journals (Sweden)

    Chiara Cevoli

    2014-10-01

    Full Text Available Thermal conductivity of a food material is an essential physical property in mathematical modelling and computer simulation of thermal processing. Effective thermal conductivity of non-homogeneous materials, such as food matrices, can be determined experimentally or mathematically. The aim of the following research was to compare the thermal conductivity of short pastry biscuits, at different baking stages (60-160 min, measured by a line heat source thermal conductivity probe and estimated through the use of thermo-physical models. The measures were carried out on whole biscuits and on powdered biscuits compressed into cylindrical cases. Thermal conductivity of the compacted material, at different baking times (and, consequently at different moisture content, was then used to feed parallel, series, Krischer and Maxwell-Eucken models. The results showed that the application of the hot wire method for the determination of thermal conductivity is not fully feasible if applied directly to whole materials due to mechanical changes applied to the structure and the high presence of fats. The method works best if applied to the biscuit component phases separately. The best model is the Krischer one for its adaptability. In this case the value of biscuit thermal conductivity, for high baking time, varies from 0.15 to 0.19 Wm–1 K–1, while the minimum, for low baking time, varies from 0.11 to 0.12 Wm–1 K–1. These values are close to that reported in literature for similar products.

  14. Development of a direct push based in-situ thermal conductivity measurement system

    Science.gov (United States)

    Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct

  15. Effective Thermal Conductivity of Insulating Material made from Recycled Newspapers

    Science.gov (United States)

    Yamada, Etsuro; Takahashi, Kaneko; Sato, Mitsuo; Ishii, Yukihiro

    In this paper, the experimental results are represented on the effective thermal conductivity of cellulose insulation powder which is made from recycled newspapers. This insulating material is useful for energy and resources saving. The steady state cylindrical absolute method is employed by considering the accuracy of measurement. The experimental results are compared with the ones measured previously by other methods. The main results obtained are as follows (1) The effective thermal conductivity of this insulating material increases with increasing temperature and effective specific density, respectively. But, these increasing rate is not so large. (2) The effective thermal conductivity is about 0.04-0.06[W/mK] at the range of the effective specific density less than 100 [kg/m3]. This value is comparable with other industrial insulating materials.

  16. Cryogenic thermal conductivity measurements on candidate materials for space missions

    Science.gov (United States)

    Tuttle, James; Canavan, Edgar; Jahromi, Amir

    2017-12-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. It is common for NASA engineers to propose new candidate materials which have not been totally characterized at cryogenic temperatures. In many cases a material's cryogenic thermal conductivity must be known before selecting it for a specific space-flight application. We developed a test facility in 2004 at NASA's Goddard Space Flight Center to measure the longitudinal thermal conductivity of materials at temperatures between 4 and 300 K, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for ten engineered materials, including alloys, polymers, composites, and a ceramic.

  17. Thermal conductivity of bulk and monolayer MoS2

    KAUST Repository

    Gandi, Appala

    2016-02-26

    © Copyright EPLA, 2016. We show that the lattice contribution to the thermal conductivity of MoS2 strongly dominates the carrier contribution in a broad temperature range from 300 to 800 K. Since theoretical insight into the lattice contribution is largely missing, though it would be essential for materials design, we solve the Boltzmann transport equation for the phonons self-consistently in order to evaluate the phonon lifetimes. In addition, the length scale for transition between diffusive and ballistic transport is determined. The low out-of-plane thermal conductivity of bulk MoS2 (2.3 Wm-1K-1 at 300 K) is useful for thermoelectric applications. On the other hand, the thermal conductivity of monolayer MoS2 (131 Wm-1K-1 at 300 K) is comparable to that of Si.

  18. Aqueous Solution Thermal Conductivity of Beryllium-Subgroup Metal Chlorides

    Directory of Open Access Journals (Sweden)

    K. Abdullayev

    2013-01-01

    Full Text Available The paper presents experimental data on thermal conductivity of BeCl2 and SrCl2 salt aqueous solutions in the temperature range from 20 to 300 °С  and at various electrolyte concentrations  in mass percent. For the first time thermal conductivity of the system Н2О + BeCl2 has been investigated at high temperatures.The experimental results are described with the help of an empirical equation in the form of: λs = λo (1+ Am + Bm3/2 + Cm2,where λs  and λo – thermal conductivity coefficients of solution and water; A, B and C – coefficients depending on electrolyte nature; m – molality in units mol/kg.The formula error is less than  ±1 %.

  19. Thermally conductive cementitious grout for geothermal heat pump systems

    Science.gov (United States)

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  20. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance.

    Science.gov (United States)

    Schmidt, Aaron J; Chen, Xiaoyuan; Chen, Gang

    2008-11-01

    The relationship between pulse accumulation and radial heat conduction in pump-probe transient thermoreflectance (TTR) is explored. The results illustrate how pulse accumulation allows TTR to probe two thermal length scales simultaneously. In addition, the conditions under which radial transport effects are important are described. An analytical solution for anisotropic heat flow in layered structures is given, and a method for measuring both cross-plane and in-plane thermal conductivities of thermally anisotropic thin films is described. As verification, the technique is used to extract the cross-plane and in-plane thermal conductivities of highly ordered pyrolytic graphite. Results are found to be in good agreement with literature values.

  1. Comparative study of thermal conductivity in crystalline and amorphous nanocomposite

    Science.gov (United States)

    Juangsa, Firman Bagja; Muroya, Yoshiki; Ryu, Meguya; Morikawa, Junko; Nozaki, Tomohiro

    2017-06-01

    Silicon nanocrystals (SiNCs)/polystyrene (PS) nanocomposite has been observed to have a significant decrease in thermal conductivity in terms of the SiNC fraction with unspecified factors remained unclear. In this paper, amorphous silicon nanoparticles (a-SiNPs) with a mean diameter of 6 nm and PS nanocomposites were synthesized, and their thermal conductivity, including the density and specific heat, was compared with our previous work which investigated well-crystalized SiNPs (6 nm) and PS nanocomposite. The difference between amorphous and crystalline structure is insignificant, but phonon scattering at SiNPs and PS boundary is the key influencing factor of thermal conductivity reduction. The effective thermal conductivity models for nanocomposite revealed that the thermal boundary resistance, explained by Kapitza principle, is estimated to be 4 × 10-7 m2K/W, showing the significant effect of nanostructured heterogenic surface resistance on overall heat transfer behavior. Preservation of unique properties nanoscale materials and low-cost fabrication by silicon inks process at room temperature give the promising potential of SiNPs based heat transfer management.

  2. A transient divided-bar method for simultaneous measurements of thermal conductivity and thermal diffusivity

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Nielsen, Søren Bom; Balling, Niels

    2016-01-01

    Accurate information on thermal conductivity and thermal diffusivity of materials is of central importance in relation to geoscience and engineering problems involving the transfer of heat. Within the geosciences, this applies to all aspects regarding the determination of terrestrial heat flow...... and subsurface temperature modelling. Several methods, including the classical divided-bar technique, are available for laboratory measurements of thermal conductivity, and much fewer for thermal diffusivity. We have generalized the divided-bar technique to the transient case, in which thermal conductivity...... and volumetric heat capacity, and thereby also thermal diffusivity, are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity may also be determined. Finite element formulation provides a flexible forward solution for heat transfer across the bar...

  3. Periodic composites: quasi-uniform heat conduction, Janus thermal illusion, and illusion thermal diodes

    Science.gov (United States)

    Xu, Liujun; Jiang, Chaoran; Shang, Jin; Wang, Ruizhe; Huang, Jiping

    2017-11-01

    Manipulating thermal conductivities at will plays a crucial role in controlling heat flow. By developing an effective medium theory including periodicity, here we experimentally show that nonuniform media can exhibit quasi-uniform heat conduction. This provides capabilities in proposing Janus thermal illusion and illusion thermal rectification. For the former, we study, via experiment and theory, a big periodic composite containing a small periodic composite with circular or elliptic particles. As a result, we reveal the Janus thermal illusion that describes the whole periodic system with both invisibility illusion along one direction and visibility illusion along the perpendicular direction, which is fundamentally different from the existing thermal illusions for misleading thermal detection. Further, the Janus illusion helps to design two different periodic systems that both work as thermal diodes but with nearly the same temperature distribution, heat fluxes and rectification ratios, thus being called illusion thermal diodes. Such thermal diodes differ from those extensively studied in the literature, and are useful for the areas that require both thermal rectification and thermal camouflage. This work not only opens a door for designing novel periodic composites in thermal camouflage and heat rectification, but also holds for achieving similar composites in other disciplines like electrostatics, magnetostatics, and particle dynamics.

  4. Experimental Investigation of Thermal Conductivity of Meat During Freezing

    Science.gov (United States)

    Shinbayeva, A.; Arkharov, I.; Aldiyarov, A.; Drobyshev, A.; Zhubaniyazova, M.; Kurnosov, V.

    2017-04-01

    The cryogenic technologies of processing and storage of agricultural products are becoming increasingly indispensable in the food industry as an important factor of ensuring food safety. One of such technologies is the shock freezing of meat, which provides a higher degree of preservation of the quality of frozen products in comparison with traditional technologies. The thermal conductivity of meat is an important parameter influencing the energy consumption in the freezing process. This paper presents the results of an experimental investigation of the temperature dependence of the thermal conductivity of beef. The measurements were taken by using a specially designed measurement cell, which allows covering the temperature range from 80 to 300 K.

  5. Peculiarities of determining the effective thermal conductivity of multilayer nanostructures under unsteady heating

    Science.gov (United States)

    Khvesyuk, V. I.; Chirkov, A. Yu

    2017-11-01

    Some features of pulse heating method are considered to study the main regularities of changes in the temperature of thin films in application to flash method. Heat exchange with the surrounding space is taken into account. The characteristic parameters of laser heating system are specified. The mathematical model of the heating process is based on the heat equation with effective heat conductivity. Such an analysis allows to estimate effective thermal diffusivity and thermal conductance including Kapitza conductance. For multi-layer nano-films Kapitza conductance can be estimated as its contribution to effective conductance is significant.

  6. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  7. Die attach dimension and material on thermal conductivity study for high power COB LED

    Science.gov (United States)

    Sarukunaselan, K.; Ong, N. R.; Sauli, Z.; Mahmed, N.; Kirtsaeng, S.; Sakuntasathien, S.; Suppiah, S.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    High power LED began to gain popularity in the semiconductor market due to its efficiency and luminance. Nonetheless, along with the increased in efficiency, there was an increased in the junction temperature too. The alleviating junction temperature is undesirable since the performances and lifetime will be degraded over time. Therefore, it is crucial to solve this thermal problem by maximizing the heat dissipation to the ambience. Improvising the die attach (DA) layer would be the best option because this layer is sandwiched between the chip (heat source) and the substrate (channel to the ambient). In this paper, the impact of thickness and thermal conductivity onto the junction temperature and Von Mises stress is analyzed. Results obtained showed that the junction temperature is directly proportional to the thickness but the stress was inversely proportional to the thickness of the DA. The thermal conductivity of the materials did affect the junction temperature as there was not much changes once the thermal conductivity reached 20W/mK. However, no significant changes were observed on the Von Mises stress caused by the thermal conductivity. Material with the second highest thermal conductivity had the lowest stress, whereas the highest conductivity material had the highest stress value at 20 µm. Overall, silver sinter provided the best thermal dissipation compared to the other materials.

  8. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation.

    Science.gov (United States)

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-25

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.

  9. Reduction in thermal conductivity of BiSbTe lump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Kaleem [King Saud University, Sustainable Energy Technologies Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia); Wan, C. [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Beijing (China); Al-Eshaikh, M.A.; Kadachi, A.N. [King Saud University, Research Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia)

    2017-03-15

    In this work, systematic investigations on the thermal conductivities of BiSbTe lump, microstructured pristine BiSbTe bulk and single wall carbon nanotubes (SWCNTs)/BiSbTe bulk nanocomposites were performed. BiSbTe lumps were crushed to form a coarse powder (200 μm) and effect of particle size reduction on the effective thermal conductivity of BiSbTe (200 μm) bulk were analyzed. For further reduction in the conductivity, a two pronged strategy has been employed. First, additional refinement of BiSbTe (200 μm) were performed through ball milling in an inert environment. Second, SWCNTs in 0.75, and 1.0 vol% were distributed uniformly in the fine BiSbTe ball milled powder. The results showed that the effective thermal conductivities decrease with the reduction in the particle size from lump to BiSbTe (200 μm) bulk as well as with the addition of SWCNTs accompanied by further refinement of BiSbTe particles. The significant reduction in thermal conductivities of the lump was achieved for pure BiSbTe (200 μm) bulk and 0.75 vol% of SWCNTs/BiSbTe composite. This can be ascribed to the enhanced phonon scattering by the grain boundaries between the nanostructured BiSbTe particles as well as the interfaces between BiSbTe and the low dimensional carbon nanotubes. (orig.)

  10. Heat pipes with variable thermal conductance property for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kravets, V.; Alekseik, Ye.; Alekseik, O.; Khairnasov, S. [National Technical University of Ukraine, Kyiv (Ukraine); Baturkin, V.; Ho, T. [Explorationssysteme RY-ES, Bremen (Germany); Celotti, L. [Active Space Technologies GmbH, Berlin (Germany)

    2017-06-15

    The activities presented in this paper demonstrate a new approach to provide passive thermal control using heat pipes, as demonstrated on the electronic unit of DLR’s MASCOT lander, which embarked on the NEA sample return mission Hayabusa 2 (JAXA). The focus is on the development and testing of heat pipes with variable thermal conductance in a predetermined temperature range. These heat pipes act as thermal switches. Unlike standard gasloaded heat pipes and thermal-diode heat pipes construction of presented heat pipes does not include any additional elements. Copper heat pipes with metal fibrous wicks were chosen as baseline design. We obtained positive results by choosing the heat carrier and structural parameters of the wick (i.e., pore diameter, porosity, and permeability). The increase in the thermal conductivity of the heat pipes from 0.04 W/K to 2.1 W/K was observed in the temperature range between −20 °C and +55 °C. Moreover, the heat pipes transferred the predetermined power of not less than 10 W within the same temperature range. The heat pipes have been in flight since December 2014, and the supporting telemetry data were obtained in September 2015. The data showed the nominal operation of the thermal control system.

  11. Thermal conductivity and contact resistance of metal foams

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, E [Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Hsieh, S; Bahrami, M, E-mail: ehsans@uvic.ca [Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC, V3T 0A3 (Canada)

    2011-03-30

    Accurate information on heat transfer and temperature distribution in metal foams is necessary for design and modelling of thermal-hydraulic systems incorporating metal foams. The analysis of heat transfer requires determination of the effective thermal conductivity as well as the thermal contact resistance (TCR) associated with the interface between the metal foam and the adjacent surfaces/layers. In this study, a test bed that allows the separation of effective thermal conductivity and TCR in metal foams is described. Measurements are performed in a vacuum under varying compressive loads using ERG Duocel aluminium foam samples with different porosities and pore densities. Also, a graphical method associated with a computer code is developed to demonstrate the distribution of contact spots and estimate the real contact area at the interface. Our results show that the porosity and the effective thermal conductivity remain unchanged with the variation of compression in the range 0-2 MPa; but TCR decreases significantly with pressure due to an increase in the real contact area at the interface. Moreover, the ratio of real to nominal contact area varies between 0 and 0.013, depending upon the compressive force, porosity, pore density and surface characteristics.

  12. Physical-Statistical Model of Thermal Conductivity of Nanofluids

    Directory of Open Access Journals (Sweden)

    B. Usowicz

    2014-01-01

    Full Text Available A physical-statistical model for predicting the effective thermal conductivity of nanofluids is proposed. The volumetric unit of nanofluids in the model consists of solid, liquid, and gas particles and is treated as a system made up of regular geometric figures, spheres, filling the volumetric unit by layers. The model assumes that connections between layers of the spheres and between neighbouring spheres in the layer are represented by serial and parallel connections of thermal resistors, respectively. This model is expressed in terms of thermal resistance of nanoparticles and fluids and the multinomial distribution of particles in the nanofluids. The results for predicted and measured effective thermal conductivity of several nanofluids (Al2O3/ethylene glycol-based and Al2O3/water-based; CuO/ethylene glycol-based and CuO/water-based; and TiO2/ethylene glycol-based are presented. The physical-statistical model shows a reasonably good agreement with the experimental results and gives more accurate predictions for the effective thermal conductivity of nanofluids compared to existing classical models.

  13. System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics

    Science.gov (United States)

    Kim, Hyun-Jung; Skuza, Jonathan R.; Park, Yeonjoon; King, Glen C.; Choi, Sang H.; Nagavalli, Anita

    2012-01-01

    The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at elevated temperatures. This has led to the implementation of nonstandardized practices that have further complicated the confirmation of reported high ZT materials. The major objective of the procedure described is for the simultaneous measurement of the Seebeck coefficient and thermal diffusivity within a given temperature range. These thermoelectric measurements must be precise, accurate, and reproducible to ensure meaningful interlaboratory comparison of data. The custom-built thermal characterization system described in this NASA-TM is specifically designed to measure the inplane thermal diffusivity, and the Seebeck coefficient for materials in the ranging from 73 K through 373 K.

  14. Fractional Heat Conduction Models and Thermal Diffusivity Determination

    Directory of Open Access Journals (Sweden)

    Monika Žecová

    2015-01-01

    Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.

  15. Interflake thermal conductance of edge-passivated graphene

    Science.gov (United States)

    Shin, Seungha; Kaviany, Massoud

    2011-12-01

    Based on the quantum-junction transmission/Green's function formalism and the dynamical matrix/DFT, we find the phonon wave features result in bimodal resonant transmission in the interflake conductance of H or O edge-passivated graphene. The low-frequency resonant transport mode is due to the weak interaction between the flakes, while the high-frequency resonant transport mode depends on the passivated species and brings the temperature dependence. The phonon transport polarized in the transport directions is dominant because of the asymmetric charge distribution of ...C-O-H-C... and this contributes to the conductance. Thermal conductance decreases due to the passivation junctions, and the electronic thermal conductance becomes negligible except for the O-H junction at high temperatures.

  16. Thermally Conductive Metal-Tube/Carbon-Composite Joints

    Science.gov (United States)

    Copeland, Robert J.

    2004-01-01

    An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.

  17. Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization

    Science.gov (United States)

    Han, Tiancheng; Yuan, Tao; Li, Baowen; Qiu, Cheng-Wei

    2013-01-01

    Invisible cloak has long captivated the popular conjecture and attracted intensive research in various communities of wave dynamics, e.g., optics, electromagnetics, acoustics, etc. However, their inhomogeneous and extreme parameters imposed by transformation-optic method will usually require challenging realization with metamaterials, resulting in narrow bandwidth, loss, polarization-dependence, etc. In this paper, we demonstrate that thermodynamic cloak can be achieved with homogeneous and finite conductivity only employing naturally available materials. It is demonstrated that the thermal localization inside the coating layer can be tuned and controlled robustly by anisotropy, which enables an incomplete cloak to function perfectly. Practical realization of such homogeneous thermal cloak has been suggested by using two naturally occurring conductive materials, which provides an unprecedentedly plausible way to flexibly realize thermal cloak and manipulate heat flow with phonons. PMID:23549139

  18. Determination of thermal conductivity of rocks samples using fabricated equipment

    Directory of Open Access Journals (Sweden)

    Fasunwon Olusola O.

    2008-01-01

    Full Text Available The aim of the paper is to describe how inexpensive/simple physics equipment was fabricated and used in the determination of thermal conductivity of rock samples. We used the experimental techniques known as transient method of measuring thermal properties of rock samples at ambient temperature. We investigated samples found in five locations/region (Ewekoro, Ile-Ife, Igara, Ago-Iwoye, Abeokuta in South western Nigeria. Those samples are limestone, dolerite, marble, gneiss, and granite. Although the samples are multi-mineral as revealed by photomicrograph, the thermal conductivity results obtained 1.40, 1.50, 1.57, 1.75, and 2.94 W/m°C, respectively, are found to be consistent with the ones in literature where highly expensive and sophisticated (not easily affordable in developing nation equipment are used. .

  19. Evaluation of Structure Influence on Thermal Conductivity of Thermal Insulating Materials from Renewable Resources

    Directory of Open Access Journals (Sweden)

    Jolanta VĖJELIENĖ

    2011-07-01

    Full Text Available The development of new thermal insulation materials needs to evaluate properties and structure of raw material, technological factors that make influence on the thermal conductivity of material. One of the most promising raw materials for production of insulation material is straw. The use of natural fibres in insulation is closely linked to the ecological building sector, where selection of materials is based on factors including recyclable, renewable raw materials and low resource production techniques In current work results of research on structure and thermal conductivity of renewable resources for production thermal insulating materials are presented. Due to the high abundance of renewable resources and a good its structure as raw material for thermal insulation materials barley straw, reeds, cattails and bent grass stalks are used. Macro- and micro structure analysis of these substances is performed. Straw bales of these materials are used for determining thermal conductivity. It was found that the macrostructure has the greatest effect on thermal conductivity of materials. Thermal conductivity of material is determined by the formation of a bale due to the large amount of pores among the stalks of the plant, inside the stalk and inside the stalk wall.http://dx.doi.org/10.5755/j01.ms.17.2.494

  20. Minimum Electrical and Thermal Conductivity of Graphene: A Quasiclassical Approach

    OpenAIRE

    Trushin, Maxim; Schliemann, John

    2007-01-01

    We investigate the minimum conductivity of graphene within a quasiclassical approach taking into account electron-hole coherence effects which stem from the chiral nature of low energy excitations. Relying on an analytical solution of the kinetic equation in the electron-hole coherent and incoherent cases we study both the electrical and thermal conductivity whose relation fullfills Wiedemann-Franz law. We found that the most of the previous findings based on the Boltzmann equation are restri...

  1. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  2. A method of measuring the thermal conductivity of liquids

    NARCIS (Netherlands)

    Held, E.F.M. van der; Drunen, F.G. van

    1949-01-01

    We described the development of an apparatus for the determination of the thermal conductivity of liquids. The apparatus is suitable for all kinds of liquids, including the strongest acids. From a given time we pass an electric current through a thin straight wire, placed in a homogeneous material

  3. Thermal conductivity of food materials at elevated temperatures

    NARCIS (Netherlands)

    Spiess, W.E.L.; Walz, E.; Nesvadba, P.; Morley, M.; Haneghem, van I.A.; Salmon, D.R.

    2001-01-01

    In order to expand the available information on thermal conductivity of foods, within the framework of COST Action 93, a collaborative study was organised. In the first step, typical food components (apple pulp, meat, olive oil, sodium caseinate, starch, tomato paste) were used as standards for

  4. Dependence of thermal conductivity on structural parameters in porous samples

    Directory of Open Access Journals (Sweden)

    L. Miettinen

    2012-03-01

    Full Text Available The in-plane thermal conductivity of porous sintered bronze plates was studied both experimentally and numerically. We developed and validated an experimental setup, where the sample was placed in vacuum and heated while its time-dependent temperature field was measured with an infrared camera. The porosity and detailed three-dimensional structure of the samples were determined by X-ray microtomography. Lattice-Boltzmann simulations of thermal conductivity in the tomographic reconstructions of the samples were used to correct the contact area between bronze particles as determined by image analysis from the tomographic reconstructions. Small openings in the apparent contacts could not be detected with the imaging resolution used, and they caused an apparent thermal contact resistance between particles. With this correction included, the behavior of the measured thermal conductivity was successfully explained by an analytical expression, originally derived for regular structures, which involves three structural parameters of the porous structures. There was no simple relationship between heat conductivity and porosity.

  5. Effective thermal conductivity of real two-phase systems using ...

    Indian Academy of Sciences (India)

    An effort is made to correlate it in terms of the ratio of thermal conductivities of the constituents and the physical porosity. Theoretical expression so obtained has been tested on a large number of samples cited in the literature and found that the values predicted are quite close to the experimental results. Comparison of our ...

  6. Effective thermal conductivity of real two-phase systems using ...

    Indian Academy of Sciences (India)

    Unknown

    non-uniform shape of the particles and non-linear flow of heat flux lines in real systems, incorporating an empirical correction factor in place of physical porosity modifies an expression for ETC. An effort is made to correlate it in terms of the ratio of thermal conductivities of the constituents and the physical porosity. Theo-.

  7. Thermal conductivity reduction in oxygen-deficient strontium titanates

    NARCIS (Netherlands)

    Yu, Choongho; Scullin, Matthew L.; Huijben, Mark; Ramesh, Ramamoorthy; Majumdar, Arun

    2008-01-01

    We report significant thermal conductivity reduction in oxygen-deficient lanthanum-doped strontium titanate (Sr1−xLaxTiO3−δ) films as compared to unreduced strontium titanates. Our experimental results suggest that the oxygen vacancies could have played an important role in the reduction. This could

  8. Dependence of thermal conductivity in micro to nano silica

    Indian Academy of Sciences (India)

    The validation test of thermal probe was conducted on ice and THF hydrates using our experimental set up and the results are satisfactory when compared with the literature data. ... power supply leads were sol- dered to them. The probe normally consisted of an electri- cal heater, a temperature sensor and a thermocouple.

  9. A micro-convection model for thermal conductivity of nanofluids

    Indian Academy of Sciences (India)

    Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of ...

  10. On the effect of temperature dependent thermal conductivity on ...

    African Journals Online (AJOL)

    We consider the effect of temperature dependent thermal conductivity on temperature rise in biologic tissues during microwave heating. The method of asymptotic expansion is used for finding solution. An appropriate matching procedure was used in our method. Our result reveals the possibility of multiple solutions and it ...

  11. Statistical analysis of thermal conductivity of nanofluid containing ...

    Indian Academy of Sciences (India)

    TEM image confirmed that the ends of MWCNTs were opened during their oxidation of them in HNO3 and TiO2 nanoparticles successfully attach to the outer surface of oxidized MWCNTs. Thermal conductivity measurements of nanofluids were analysed via two-factor completely randomized design and comparison of data ...

  12. Simulation insights into thermally conductive graphene-based nanocomposites

    Science.gov (United States)

    Konatham, D.; Bui, K. N. D.; Papavassiliou, D. V.; Striolo, A.

    2011-01-01

    Dispersing nanoparticles in a polymer can enhance both mechanical and transport properties. Nanocomposites with high thermal conductivity could be obtained by using thermally conductive nanoparticles. Carbon-based nanoparticles are extremely promising, although high resistances to heat transfer from the nanoparticles to the polymer matrix could cause significant limitations. This work focuses on graphene sheets (GS) dispersed within n-octane. Although pristine GS agglomerate, equilibrium molecular dynamic simulations suggest that when the GS are functionalized with short branched hydrocarbons along the GS edges, they remain well dispersed. Results are reported from equilibrium and non-equilibrium molecular dynamics simulations to assess the effective interactions between dispersed GS, the self-assembly of GS, and the heat transfer through the GS-octane nanocomposite. Tools are designed to understand the effect of GS size, solvent molecular weight and molecular architecture on GS dispersability and GS-octane thermal conductivity. Evidence is provided for the formation of nematic phases when the GS volume fraction increases within octane. The atomic-level results are input for a coarse-grained Monte Carlo simulation that predicts anisotropic thermal conductivity for GS-based composites when the GS show nematic phases.

  13. Entropy generation by nanofluid with variable thermal conductivity ...

    African Journals Online (AJOL)

    The entropy generation by nanofluid with variable thermal conductivity and viscosity of assisted convective flow across a riser pipe of a horizontal flat plate solar collector is investigated numerically. The water based nanofluid with copper nanoparticles is used as the working fluid inside the fluid passing riser pipe.

  14. The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites.

    Science.gov (United States)

    Firkowska, Izabela; Boden, André; Boerner, Benji; Reich, Stephanie

    2015-07-08

    We developed a nanocomposite with highly aligned graphite platelets in a copper matrix. Spark plasma sintering ensured an excellent copper-graphite interface for transmitting heat and stress. The resulting composite has superior thermal conductivity (500 W m(-1) K(-1), 140% of copper), which is in excellent agreement with modeling based on the effective medium approximation. The thermal expansion perpendicular to the graphite platelets drops dramatically from ∼20 ppm K(-1) for graphite and copper separately to 2 ppm K(-1) for the combined structure. We show that this originates from the layered, highly anisotropic structure of graphite combined with residual stress under ambient conditions, that is, strain-engineering of the thermal expansion. Combining excellent thermal conductivity with ultralow thermal expansion results in ideal materials for heat sinks and other devices for thermal management.

  15. Cu/Zn Thermal Conductivity: Experimental And ANFIS Modelling

    Directory of Open Access Journals (Sweden)

    Zaid S. Kareem

    2018-01-01

    Full Text Available Nanofluids are fluids within which particles of nanometre sizes are suspended. In terms of thermal characteristics, nanofluids have a greater heat transfer coefficient and thermal conductivity than other traditional fluids. Bimetallic core/shell Cu/Zn particles of nanometre sizes are novel invented nanoparticle materials with considerable variations in its applications. The particles of nanometre size were suspended in a base fluid for the preparation of nanofluids for different volume fractions. A coated transitory hot wire device were built and standardized and this was subsequently employed for the determination of heat conductivities of the nanofluids for bimetallic ratios, volume fraction, base fluid temperatures and base fluids thermal conductivity. The Adaptive neuro fuzzy inference system (ANFIS model was subsequently employed for modelling the determined results generated. A random test of 20% from various nanofluids showed a deviation less than 1% between measured and modeled results. It was inferred that heat conductivities increase with increase in the particle volume concentrations, especially when the later one at value of 1, the heat conductivities ratio approach to 1.35. Nevertheless, the shape and the method of preparing the particles of nanometre size reveals anomalous enhancements in heat conductivities of bimetallic compared to monocular metallic nanofluids.

  16. Enhancing Thermal Conductivity of Hexagonal Boron Nitride Filled Thermoplastics for Thermal Interface Management

    Science.gov (United States)

    Prindl, John

    Hexagonal Boron Nitride has been shown to enhance thermal conductivity in polymer composites more so than conventional ceramic fillers. However, to see a significant increase in thermal conductivity a high loading level of the advanced ceramic is often needed which can have an adverse effect on the mechanical behavior of the composite part. Applications for thermal management using thermal interface materials (TIM) continue to grow with thermoplastic injection molded parts emerging as an area for market growth. There is a growing need for published technical data in this particular area of application. In the current study, the thermal conductivity and mechanical behavior of hexagonal Boron Nitride (hBN) loaded thermoplastic composites is investigated. The main objectives of this work is produce a novel data package which illustrates the effects of hBN, loaded at high concentrations, across several different thermoplastic resins with the ultimate goal being to find a desirable formulation for specific thermal management applications. The desired properties for such applications being high thermal conductivity and high electrical resistivity with a minimal decrease in mechanical properties. Hexagonal BN cooling filler agglomerates were compounded into polypropylene (PP), nylon-6 (PA-6), and thermoplastic elastomer (TPE) via twin-screw extruder at 3 different loading levels. Injection molded samples were produced and characterized to show varying degrees of thermal conductivity and mechanical strength. Results from this research showed that in all cases, the thermal conductivity increased with increasing levels of hBN addition. The largest increases in thermal conductivity were seen in the PA-6 and TPE systems with the possible indication of exceeding the percolation threshold in the TPE system. This is hypothesized to occur due to the preferential migration of hBN to form conduction pathways around the elastomeric domains in the TPE matrix. Though TPE produced

  17. Uncertainty assessment for measurements performed in the determination of thermal conductivity by scanning thermal microscopy

    Science.gov (United States)

    Ramiandrisoa, Liana; Allard, Alexandre; Hay, Bruno; Gomés, Séverine

    2017-11-01

    Although its use has been restricted to relative studies, scanning thermal microscopy (SThM) is presented today as a candidate technique for performing quantitative measurement of thermal properties at the nanoscale, thanks to the development of relevant calibration protocols. Based on the principle behind near-field microscopes, SThM uses a miniaturized probe to quantify heat transfers versus samples of various thermal conductivities: since the thermal conductivity of a sample cannot be directly estimated, a direct measurand related to the heat transfer must be defined and measured for each sample. That is the reason why the SThM technique applied to thermal conductivity determination belongs to the family of inverse methods. In this work we aim to qualify the technique from a metrological point of view. For the first time, assessment of uncertainty associated with the direct measurand Δ R is performed, yielding a result of less than 2%.

  18. Measurement of thermal conductivity and thermal diffusivity using a thermoelectric module

    Science.gov (United States)

    Beltrán-Pitarch, Braulio; Márquez-García, Lourdes; Min, Gao; García-Cañadas, Jorge

    2017-04-01

    A proof of concept of using a thermoelectric module to measure both thermal conductivity and thermal diffusivity of bulk disc samples at room temperature is demonstrated. The method involves the calculation of the integral area from an impedance spectrum, which empirically correlates with the thermal properties of the sample through an exponential relationship. This relationship was obtained employing different reference materials. The impedance spectroscopy measurements are performed in a very simple setup, comprising a thermoelectric module, which is soldered at its bottom side to a Cu block (heat sink) and thermally connected with the sample at its top side employing thermal grease. Random and systematic errors of the method were calculated for the thermal conductivity (18.6% and 10.9%, respectively) and thermal diffusivity (14.2% and 14.7%, respectively) employing a BCR724 standard reference material. Although errors are somewhat high, the technique could be useful for screening purposes or high-throughput measurements at its current state. This new method establishes a new application for thermoelectric modules as thermal properties sensors. It involves the use of a very simple setup in conjunction with a frequency response analyzer, which provides a low cost alternative to most of currently available apparatus in the market. In addition, impedance analyzers are reliable and widely spread equipment, which facilities the sometimes difficult access to thermal conductivity facilities.

  19. Experimental Investigations on Thermal Conductivity of Fenugreek and Banana Composites

    Science.gov (United States)

    Pujari, Satish; Venkatesh, Talari; Seeli, Hepsiba

    2017-06-01

    The use of composite materials in manufacturing has significantly increased in the past decade. Research is being done to identify natural fibers that can be used as composites. Several natural fibers are already being used in the industry as composites. The appealing advantages of using natural fibers are reflected in lower density when compared to synthetic fibers and also in saving costs. This research paper highlights the experiment that analyses the use of biodegradable fenugreek composite as natural fiber and concludes that fenugreek natural fibers are an excellent substitute to the synthetic fibers in terms of reinforcement properties for the polymers. These fenugreek fibers are naturally sourced, renewable, cost effective and bio-friendly. In thermal energy storage systems as well as in air conditioning systems, thermal insulators are predominantly used to enhance the storage properties. An experiment was created to investigate the thermal properties of fenugreek banana composites for different fiber concentrations. The experimental results showed that the thermal conductivity of the composites decrease with an increase in the fiber content. The experimental results were compared with the theoretical models to describe the variation of thermal conductivity with the volume fraction of the fiber. Good agreement between theoretical and experimental results was observed.

  20. Determination of BWR Spent Nuclear Fuel Assembly Effective Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew D. Hinds

    2001-10-17

    The purpose of this calculation is to provide an effective thermal conductivity for use in predicting peak cladding temperatures in boiling water reactor (BWR) fuel assemblies with 7x7,8x8, and 9x9 rod arrays. The first objective of this calculation is to describe the development and application of a finite element representation that predicts peak spent nuclear fuel temperatures for BWR assemblies. The second objective is to use the discrete representation to develop a basis for determining an effective thermal conductivity (described later) for a BWR assembly with srneared/homogeneous properties and to investigate the thermal behavior of a spent fuel assembly. The scope of this calculation is limited to a steady-state two-dimensional representation of the waste package interior region. This calculation is subject to procedure AP-3.124, Calculations (Ref. 27) and guided by the applicable technical work plan (Ref. 14). While these evaluations were originally developed for the thermal analysis of conceptual waste package designs emplaced in the potential repository at Yucca Mountain, the methodology applies to storage and transportation thermal analyses as well. Note that the waste package sketch in Attachment V depicts a preliminary design, and should not be interpreted otherwise.

  1. Copper-based conductive composites with tailored thermal expansion.

    Science.gov (United States)

    Della Gaspera, Enrico; Tucker, Ryan; Star, Kurt; Lan, Esther H; Ju, Yongho Sungtaek; Dunn, Bruce

    2013-11-13

    We have devised a moderate temperature hot-pressing route for preparing metal-matrix composites which possess tunable thermal expansion coefficients in combination with high electrical and thermal conductivities. The composites are based on incorporating ZrW2O8, a material with a negative coefficient of thermal expansion (CTE), within a continuous copper matrix. The ZrW2O8 enables us to tune the CTE in a predictable manner, while the copper phase is responsible for the electrical and thermal conductivity properties. An important consideration in the processing of these materials is to avoid the decomposition of the ZrW2O8 phase. This is accomplished by using relatively mild hot-pressing conditions of 500 °C for 1 h at 40 MPa. To ensure that these conditions enable sintering of the copper, we developed a synthesis route for the preparation of Cu nanoparticles (NPs) based on the reduction of a common copper salt in aqueous solution in the presence of a size control agent. Upon hot pressing these nanoparticles at 500 °C, we are able to achieve 92-93% of the theoretical density of copper. The resulting materials exhibit a CTE which can be tuned between the value of pure copper (16.5 ppm/°C) and less than 1 ppm/°C. Thus, by adjusting the relative amount of the two components, the properties of the composite can be designed so that a material with high electrical conductivity and a CTE that matches the relatively low CTE values of semiconductor or thermoelectric materials can be achieved. This unique combination of electrical and thermal properties enables these Cu-based metal-matrix composites to be used as electrical contacts to a variety of semiconductor and thermoelectric devices which offer stable operation under thermal cycling conditions.

  2. Thermal conductivity of polymer composite pigmented with titanium dioxide

    Science.gov (United States)

    Ghebrid, N.; Guellal, M.; Rouabah, F.

    2017-04-01

    The aim of this work is to provide a numerical modeling of thermal conductivity of a polymer matrix polystyrene composite filled with titanium dioxide spheres, and to compare the obtained results with theoretical prediction models and the experimental data as a function of the quenching temperature. For this purpose, a numerical study was conducted using the finite element method to predict the effective thermal conductivity of the composite. In addition, a comparison with the results from the analytical models showed that the proposed numerical model is in good agreement with the analytical models of Hatta-Taya and Hashin-Shtrikman. Finally, the comparison of the numerical model to experimental results based on the quenching temperature shows that the best quenching temperature that agrees well with the theoretical model Hashin-Shtrikman is 20 °C.

  3. Lattice thermal conductivity of δ-graphyne - A molecular dynamics study

    Science.gov (United States)

    Zhang, Jide; Cui, Yan; Wang, Shuaiwei

    2017-06-01

    Thermal conductivity of δ-graphyne was investigated using reverse non-equilibrium molecular dynamics simulations. The dependence of the thermal conductivities with the temperature, acetylenic linkages, and external strain were explained by the phonon density of states. Our simulations revealed that as the temperature increased, the thermal conductivity of graphene first increased and then decreased, whereas that of δ-graphyne monotonically decreased. Owing to the presence of the acetylenic linkages, a significant reduction was found in the thermal conductivity of δ-graphyne, which resulted in a phonon vibration mismatch or weakened coupling. Moreover, the temperature profile changed from mono linear to the ladder the number of acetylenic linkages increased. These results play a guidance role in the design and application of thermoelectrics devices using 2D carbon materials.

  4. Interface bond relaxation on the thermal conductivity of Si/Ge core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weifeng; He, Yan; Ouyang, Gang, E-mail: gangouy@hunnu.edu.cn [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications(SICQEA), Hunan Normal University, Changsha 410081 (China); Sun, Changqing [School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-01-15

    The thermal conductivity of Si/Ge core-shell nanowires (CSNWs) is investigated on the basis of atomic-bond-relaxation consideration and continuum mechanics. An analytical model is developed to clarify the interface bond relaxation of Si/Ge CSNWs. It is found that the thermal conductivity of Si core can be modulated through covering with Ge epitaxial layers. The change of thermal conductivity in Si/Ge CSNWs should be attributed to the surface relaxation and interface mismatch between inner Si nanowire and outer Ge epitaxial layer. Our results are in well agreement with the experimental measurements and simulations, suggesting that the presented method provides a fundamental insight of the thermal conductivity of CSNWs from the atomistic origin.

  5. Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films

    Science.gov (United States)

    Lee, Jaeho; Li, Zijian; Reifenberg, John P.; Lee, Sangchul; Sinclair, Robert; Asheghi, Mehdi; Goodson, Kenneth E.

    2011-04-01

    Although lateral thermal conduction in Ge2Sb2Te5 (GST) films can influence the performance of phase change memory (PCM), there are no data available for the in-plane thermal conductivity. This work measures both the in-plane and the out-of-plane thermal conductivities for the amorphous, face-centered-cubic, and hexagonal-close-packed phases of GST using two independent techniques. For crystalline GST, we report anisotropy favoring out-of-plane conduction by up to 54%, which varies with annealing time. Scaling arguments indicate that the anisotropy may be due to the thermal resistance of amorphous regions near grain boundaries. This explanation is consistent with transmission electron microscopy images showing columnar grains and amorphous phase at grain boundaries.

  6. Interface bond relaxation on the thermal conductivity of Si/Ge core-shell nanowires

    Directory of Open Access Journals (Sweden)

    Weifeng Chen

    2016-01-01

    Full Text Available The thermal conductivity of Si/Ge core-shell nanowires (CSNWs is investigated on the basis of atomic-bond-relaxation consideration and continuum mechanics. An analytical model is developed to clarify the interface bond relaxation of Si/Ge CSNWs. It is found that the thermal conductivity of Si core can be modulated through covering with Ge epitaxial layers. The change of thermal conductivity in Si/Ge CSNWs should be attributed to the surface relaxation and interface mismatch between inner Si nanowire and outer Ge epitaxial layer. Our results are in well agreement with the experimental measurements and simulations, suggesting that the presented method provides a fundamental insight of the thermal conductivity of CSNWs from the atomistic origin.

  7. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  8. Switch on the high thermal conductivity of graphene paper.

    Science.gov (United States)

    Xie, Yangsu; Yuan, Pengyu; Wang, Tianyu; Hashemi, Nastaran; Wang, Xinwei

    2016-10-14

    This work reports on the discovery of a high thermal conductivity (κ) switch-on phenomenon in high purity graphene paper (GP) when its temperature is reduced from room temperature down to 10 K. The κ after switch-on (1732 to 3013 W m(-1) K(-1)) is 4-8 times that before switch-on. The triggering temperature is 245-260 K. The switch-on behavior is attributed to the thermal expansion mismatch between pure graphene flakes and impurity-embedded flakes. This is confirmed by the switch behavior of the temperature coefficient of resistance. Before switch-on, the interactions between pure graphene flakes and surrounding impurity-embedded flakes efficiently suppress phonon transport in GP. After switch-on, the structure separation frees the pure graphene flakes from the impurity-embedded neighbors, leading to a several-fold κ increase. The measured κ before and after switch-on is consistent with the literature reported κ values of supported and suspended graphene. By conducting comparison studies with pyrolytic graphite, graphene oxide paper and partly reduced graphene paper, the whole physical picture is illustrated clearly. The thermal expansion induced switch-on is feasible only for high purity GP materials. This finding points out a novel way to switch on/off the thermal conductivity of graphene paper based on substrate-phonon scattering.

  9. Thermal conductivity of wool and wool-hemp insulation

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Wells, C.M.; Carrington, C.G. [University of Otago, Dunedin (New Zealand). Dept. of Physics; Hewitt, N.J. [University of Ulster, Jordanstown (United Kingdom). Centre for Sustainable Technologies

    2006-01-15

    Measurements have been obtained for the thermal resistance of sheep-wool insulation and wool-hemp mixtures, both in the form of bonded insulation batts, using a calibrated guarded hot-box. The density was 9.6-25.9 kg m{sup -3} for the wool and 9.9-18.1 kg m{sup -3} for the wool-hemp mixtures. The measurements were made at a mean sample temperature of 13.3{sup o}C using a calibrated guarded hot-box. The estimated uncertainly in the resistance measurements was of the order of {+-}7%. The thermal conductivity of the samples, derived from the thermal resistance measurements on the basis of the measured thickness, was well correlated with the density, although the variation with density was larger than that obtained in previous studies. The conductivity of the wool-hemp samples was not significantly different from that of the wool samples at the same density. Moisture uptake produced an increase of less than 5% in the conductivity of the bonded wool insulation for an increase in absorbed moisture content of 20%. The thermal resistance was 1.6% lower on average for samples oriented in the horizontal plane rather than the vertical plane, but this difference is not significant. (author)

  10. Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures

    Science.gov (United States)

    Fesmire, James; Sass, Jared; Johnson, Wesley

    2010-01-01

    With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).

  11. Repeatability Measurements of Apparent Thermal Conductivity of Multilayer Insulation (MLI)

    Science.gov (United States)

    Vanderlaan, M.; Stubbs, D.; Ledeboer, K.; Ross, J.; Van Sciver, S.; Guo, W.

    2017-12-01

    This report presents and discusses the results of repeatability experiments gathered from the multi-layer insulation thermal conductivity experiment (MIKE) for the measurement of the apparent thermal conductivity of multi-layer insulation (MLI) at variable boundary temperatures. Our apparatus uses a calibrated thermal link between the lower temperature shield of a concentric cylinder insulation assembly and the cold head of a cryocooler to measure the heat leak. In addition, thermocouple readings are taken in-between the MLI layers. These measurements are part of a multi-phase NASA-Yetispace-FSU collaboration to better understand the repeatability of thermal conductivity measurements of MLI. NASA provided five 25 layer coupons and requested boundary temperatures of 20 K and 300 K. Yetispace provided ten 12-layer coupons and requested boundary temperatures of 77 K and 293 K. Test conditions must be met for a duration of four hours at a steady state variance of less than 0.1 K/hr on both cylinders. Temperatures from three Cernox® temperature sensors on each of the two cylinders are averaged to determine the boundary temperatures. A high vacuum, less than 10-5 torr, is maintained for the duration of testing. Layer density varied from 17.98 – 26.36 layers/cm for Yetispace coupons and 13.05 – 17.45 layers/cm for the NASA coupons. The average measured heat load for the Yetispace coupons was 2.40 W for phase-one and 2.92 W for phase-two. The average measured heat load for the NASA coupons was 1.10 W. This suggests there is still unknown variance of MLI performance. It has been concluded, variations in the insulation installation heavy effect the apparent thermal conductivity and are not solely dependent on layer density.

  12. Simultaneous Measurement of Thermal Diffusivity and Thermal Conductivity by Means of Inverse Solution for One-Dimensional Heat Conduction (Anisotropic Thermal Properties of CFRP for FCEV)

    Science.gov (United States)

    Kosaka, Masataka; Monde, Masanori

    2015-11-01

    For safe and fast fueling of hydrogen in a fuel cell electric vehicle at hydrogen fueling stations, an understanding of the heat transferred from the gas into the tank wall (carbon fiber reinforced plastic (CFRP) material) during hydrogen fueling is necessary. Its thermal properties are needed in estimating heat loss accurately during hydrogen fueling. The CFRP has anisotropic thermal properties, because it consists of an adhesive agent and layers of the CFRP which is wound with a carbon fiber. In this paper, the thermal diffusivity and thermal conductivity of the tank wall material were measured by an inverse solution for one-dimensional unsteady heat conduction. As a result, the thermal diffusivity and thermal conductivity were 2.09 × 10^{-6}{ m}2{\\cdot }{s}^{-1} and 3.06{ W}{\\cdot }{m}{\\cdot }^{-1}{K}^{-1} for the axial direction, while they were 6.03 × 10^{-7} {m}2{\\cdot }{s}^{-1} and 0.93 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} for the radial direction. The thermal conductivity for the axial direction was about three times higher than that for the radial direction. The thermal diffusivity shows the same trend in both directions because the thermal capacity, ρ c, is independent of direction, where ρ is the density and c is the heat capacity.

  13. Thermal Effusivity and Thermal Conductivity of Biodiesel/Diesel and Alcohol/Water Mixtures

    Science.gov (United States)

    Guimarães, A. O.; Machado, F. A. L.; da Silva, E. C.; Mansanares, A. M.

    2012-11-01

    The photopyroelectric (PPE) technique was used for the determination of the thermal effusivity and thermal conductivity of biodiesel in diesel and other binary liquid mixtures, precisely, ethanol, and ethylene glycol in water. The front configuration (FPPE) has been explored in the frequency scan approach for obtaining thermal-effusivity values. Measurements show good reproducibility, with uncertainties around 1 % to 2 %, and the results for reference samples, such as ethanol and water, are in good agreement with literature values. The thermal-conductivity values of all samples were determined using the thermal-effusivity data presented here and the thermal-diffusivity data of exactly the same set of samples, reported elsewhere. Based on these results, the different strengths in the molecular interactions related to the several mixtures were evidenced, as proposed by Dadarlat et al. It was shown that, indeed, the thermal effusivity is the property presenting the smallest sensitivity for the molecular association phenomenon, while the thermal conductivity presents an intermediate sensitivity. Nevertheless, the analysis of both properties revealed the existence of weak cohesive interactions among the hydrocarbons of diesel and the esters of biodiesel.

  14. Low lattice thermal conductivity and good thermoelectric performance of cinnabar

    Science.gov (United States)

    Zhao, Yinchang; Dai, Zhenhong; Lian, Chao; Zeng, Shuming; Li, Geng; Ni, Jun; Meng, Sheng

    2017-11-01

    Based on the combination of first-principles calculations, Boltzmann transport equation, and electron-phonon interaction (EPI), we investigate the thermal and electronic transport properties of crystalline cinnabar (α -HgS ). The calculated lattice thermal conductivity κL is remarkably low, e.g., 0.60 Wm-1K-1 at 300 K , which is about 30 % of the value for the typical thermoelectric material PbTe. Via taking fully into account the k dependence of the electron relaxation time computed from the EPI matrix, the accurate numerical results of thermopower S , electrical conductivity σ , and electronic thermal conductivity κE are obtained. The calculated power factor S2σ is relatively high while the value of κE is negligible, which, together with the fairly low κL, leads to a good thermoelectric performance in the n -type doped α -HgS , with the figure of merit z T even exceeding 1.4. Our analyses reveal that (i) the large weighted phase space and the quite low phonon group velocity result in the low κL, (ii) the presence of flat band around the Fermi level combined with the large band gap causes the high S , and (iii) the small electron linewidths of the conduction band lead to a large relaxation time and thus a relatively high σ . These results support that α -HgS is a potential candidate for thermoelectric applications.

  15. Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids

    Science.gov (United States)

    Cieśliński, Janusz T.; Ronewicz, Katarzyna; Smoleń, Sławomir

    2015-12-01

    In this study the results of simultaneous measurements of dynamic viscosity, thermal conductivity, electrical conductivity and pH of two nanofluids, i.e., thermal oil/Al2O3 and thermal oil/TiO2 are presented. Thermal oil is selected as a base liquid because of possible application in ORC systems as an intermediate heating agent. Nanoparticles were tested at the concentration of 0.1%, 1%, and 5% by weight within temperature range from 20 °C to 60 °C. Measurement devices were carefully calibrated by comparison obtained results for pure base liquid (thermal oil) with manufacturer's data. The results obtained for tested nanofluids were compared with predictions made by use of existing models for liquid/solid particles mixtures.

  16. Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2015-12-01

    Full Text Available In this study the results of simultaneous measurements of dynamic viscosity, thermal conductivity, electrical conductivity and pH of two nanofluids, i.e., thermal oil/Al2O3 and thermal oil/TiO2 are presented. Thermal oil is selected as a base liquid because of possible application in ORC systems as an intermediate heating agent. Nanoparticles were tested at the concentration of 0.1%, 1%, and 5% by weight within temperature range from 20 °C to 60 °C. Measurement devices were carefully calibrated by comparison obtained results for pure base liquid (thermal oil with manufacturer’s data. The results obtained for tested nanofluids were compared with predictions made by use of existing models for liquid/solid particles mixtures.

  17. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.

    Science.gov (United States)

    Hu, Jiuning; Ruan, Xiulin; Chen, Yong P

    2009-07-01

    We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.

  18. Lattice thermal conductivity of borophene from first principle calculation

    Science.gov (United States)

    Xiao, Huaping; Cao, Wei; Ouyang, Tao; Guo, Sumei; He, Chaoyu; Zhong, Jianxin

    2017-04-01

    The phonon transport property is a foundation of understanding a material and predicting the potential application in mirco/nano devices. In this paper, the thermal transport property of borophene is investigated by combining first-principle calculations and phonon Boltzmann transport equation. At room temperature, the lattice thermal conductivity of borophene is found to be about 14.34 W/mK (error is about 3%), which is much smaller than that of graphene (about 3500 W/mK). The contributions from different phonon modes are qualified, and some phonon modes with high frequency abnormally play critical role on the thermal transport of borophene. This is quite different from the traditional understanding that thermal transport is usually largely contributed by the low frequency acoustic phonon modes for most of suspended 2D materials. Detailed analysis further reveals that the scattering between the out-of-plane flexural acoustic mode (FA) and other modes likes FA + FA/TA/LA/OP ↔ TA/LA/OP is the predominant phonon process channel. Finally the vibrational characteristic of some typical phonon modes and mean free path distribution of different phonon modes are also presented in this work. Our results shed light on the fundamental phonon transport properties of borophene, and foreshow the potential application for thermal management community.

  19. Prediction of the Effective Thermal Conductivity of Powder Insulation

    Science.gov (United States)

    Jin, Lingxue; Park, Jiho; Lee, Cheonkyu; Jeong, Sangkwon

    The powder insulation method is widely used in structural and cryogenic systems such as transportation and storage tanks of cryogenic fluids. The powder insulation layer is constructed by small particle powder with light weight and some residual gas with high porosity. So far, many experiments have been carried out to test the thermal performance of various kinds of powder, including expanded perlite, glass microspheres, expanded polystyrene (EPS). However, it is still difficult to predict the thermal performance of powder insulation by calculation due to the complicated geometries, including various particle shapes, wide powder diameter distribution, and various pore sizes. In this paper, the effective thermal conductivity of powder insulation has been predicted based on an effective thermal conductivity calculationmodel of porous packed beds. The calculation methodology was applied to the insulation system with expanded perlite, glass microspheres and EPS beads at cryogenic temperature and various vacuum pressures. The calculation results were compared with previous experimental data. Moreover, additional tests were carried out at cryogenic temperature in this research. The fitting equations of the deformation factor of the area-contact model are presented for various powders. The calculation results show agood agreement with the experimental results.

  20. Thermal conductivity of isotopically modified graphene.

    Science.gov (United States)

    Chen, Shanshan; Wu, Qingzhi; Mishra, Columbia; Kang, Junyong; Zhang, Hengji; Cho, Kyeongjae; Cai, Weiwei; Balandin, Alexander A; Ruoff, Rodney S

    2012-01-10

    In addition to its exotic electronic properties graphene exhibits unusually high intrinsic thermal conductivity. The physics of phonons--the main heat carriers in graphene--has been shown to be substantially different in two-dimensional (2D) crystals, such as graphene, from in three-dimensional (3D) graphite. Here, we report our experimental study of the isotope effects on the thermal properties of graphene. Isotopically modified graphene containing various percentages of 13C were synthesized by chemical vapour deposition (CVD). The regions of different isotopic compositions were parts of the same graphene sheet to ensure uniformity in material parameters. The thermal conductivity, K, of isotopically pure 12C (0.01% 13C) graphene determined by the optothermal Raman technique, was higher than 4,000 W mK(-1) at the measured temperature T(m)~320 K, and more than a factor of two higher than the value of K in graphene sheets composed of a 50:50 mixture of 12C and 13C. The experimental data agree well with our molecular dynamics (MD) simulations, corrected for the long-wavelength phonon contributions by means of the Klemens model. The experimental results are expected to stimulate further studies aimed at a better understanding of thermal phenomena in 2D crystals.

  1. Highly thermally conductive and mechanically strong graphene fibers.

    Science.gov (United States)

    Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie

    2015-09-04

    Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals. Copyright © 2015, American Association for the Advancement of Science.

  2. Thermal Conductivity of the Potential Repository Horizon Model Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Ramsey

    2002-08-29

    The purpose of this report is to assess the spatial variability and uncertainty of thermal conductivity in the host horizon for the proposed repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). The Tptpul is the layer directly above the repository host layers, which consist of the Tptpmn, Tptpll, and the Tptpln. Current design plans indicate that the largest portion of the repository will be excavated in the Tptpll (Board et al. 2002 [157756]). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large scale (cm-m) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity and perhaps repository system performance as well. To assess the spatial variability and uncertainty of thermal conductivity, a model is proposed that is functionally dependent on the volume fraction of lithophysae and the thermal conductivity of the matrix portion of the rock. In this model, void space characterized as lithophysae is assumed to be air-saturated under all conditions, while void space characterized as matrix may be either water- or air-saturated. Lithophysae are assumed to be air-saturated under all conditions since the units being studied are all located above the water table in the region of interest, and the relatively strong capillary forces of the matrix will, under most conditions, preferentially retain any moisture present in the rock.

  3. Measurement of thermal conductivity of polymeric nanocomposite materials

    OpenAIRE

    Gannoum, Misel

    2016-01-01

    A measuring device of the thermal conductivity of Polymeric nanocomposite materials is presented. This project is a continuation of a previous master student work. The goal of this project is to build a miniaturized version of the previous device in order to overturn certain limitations and improve its overall performance. The new device uses much smaller size samples, which ensures sample integrity/rigidity and saves material which in the case of nanoadditives may be expensive or scarce. In ...

  4. Increased Thermal Conductivity in Metal-Organic Heat Carrier Nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, Manjula I.; Liu, Jian; McGrail, B. Peter; Jenks, Jeromy WJ; Schaef, Herbert T.; Shutthanandan, V.; Nie, Zimin; Martin, Paul F.; Nune, Satish K.

    2016-06-15

    Metal organic heat carriers (MOHCs) are recently developed nanofluids containing metal organic framework (MOF) nanoparticles dispersed in various base fluids including refrigerants (R245Fa) and methanol. MOHCs utilize the MOF properties to improve the thermo-physical properties of base fluids. Here, we report the synthesis and characterization of MOHCs containing nanoMIL-101(Cr) and graphene oxide (GO) in an effort to improve the thermo-physical properties of various base fluids. MOHC containing MIL-101(Cr)/GO nanocomposites showed enhanced surface area, porosity, and nitrogen adsorption compared with the intrinsic nano MIL-101(Cr) and the properties depend on the amount of GO added. Powder X-ray diffraction (PXRD) confirmed the preserved crystallinity of MIL-101(Cr) in all nanocomposites with the absence of any unreacted GO. Scanning electron microscopy images confirmed the presence of near spherical MIL-101(Cr) nanoparticles in the range of 40-80 nm in diameter. MOHC nanofluids containing MIL-101(Cr)/GO in methanol exhibited significant enhancement in the thermal conductivity (by approxi-mately 50%) relative to that of the intrinsic nano MIL-101(Cr) in methanol. The thermal conductivity of base fluid (methanol) was enhanced by about 20 %. The enhancement in the thermal conductivity of nanoMIL-101(Cr) MOHCs due to graphene oxide functionalization is explained using a classical Maxwell model.

  5. Tuning the thermal conductance of molecular junctions with interference effects

    Science.gov (United States)

    Klöckner, J. C.; Cuevas, J. C.; Pauly, F.

    2017-12-01

    We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo(phenylene ethynylene) derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and, more generally, in nanostructured metal-organic hybrid systems, which are important to determine how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.

  6. Manipulating the temperature dependence of the thermal conductivity of graphene phononic crystal.

    Science.gov (United States)

    Hu, Shiqian; An, Meng; Yang, Nuo; Li, Baowen

    2016-07-01

    By using non-equilibrium molecular dynamics simulations, modulating the temperature dependence of thermal conductivity of graphene phononic crystals (GPnCs) is investigated. It is found that the temperature dependence of thermal conductivity of GPnCs follows ∼T (-α) behavior. The power exponents (α) can be efficiently tuned by changing the characteristic size of GPnCs. The phonon participation ratio spectra and dispersion relation reveal that the long-range phonon modes are more affected in GPnCs with larger holes (L 0). Our results suggest that constructing GPnCs is an effective method to manipulate the temperature dependence of thermal conductivity of graphene, which would be beneficial for developing GPnC-based thermal management and signal processing devices.

  7. Design rules for interfacial thermal conductance: Building better bridges

    Science.gov (United States)

    Polanco, Carlos A.; Rastgarkafshgarkolaei, Rouzbeh; Zhang, Jingjie; Le, Nam Q.; Norris, Pamela M.; Ghosh, Avik W.

    2017-05-01

    We study the thermal conductance across solid-solid interfaces as the composition of an intermediate matching layer is varied. In the absence of phonon-phonon interactions, an added layer can make the interfacial conductance increase or decrease depending on the interplay between (1) an increase in phonon transmission due to better bridging between the contacts and (2) a decrease in the number of available conduction channels that must conserve their momenta transverse to the interface. When phonon-phonon interactions are included, the added layer is seen to aid conductance when the decrease in resistances at the contact-layer boundaries compensate for the additional layer resistance. For the particular systems explored in this work, the maximum conductance happens when the layer mass is close to the geometric mean of the contact masses. The surprising result, usually associated with coherent antireflection coatings, follows from a monotonic increase in the boundary resistance with the interface mass ratio. This geometric mean condition readily extends to a compositionally graded interfacial layer with an exponentially varying mass that generates the thermal equivalent of a broadband impedance matching network.

  8. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    Science.gov (United States)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  9. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Science.gov (United States)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  10. Room temperature screening of thermal conductivity by means of thermal transient measurements

    Science.gov (United States)

    García-Cañadas, Jorge; Cheng, Shudan; Márquez-García, Lourdes; Prest, Martin J.; Akbari-Rahimabadi, Ahmad; Min, Gao

    2016-10-01

    A proof of concept of the possibility to estimate thermal conductivity of bulk disc samples at room temperature by means of thermal decays is demonstrated. An experimental set-up was designed and fabricated, which is able to perform thermal transient measurements by using a specially designed multifunctional probe that has the ability to measure temperature at its tip. Initially, the probe is heated by a heater coil located in its interior until the tip temperature reaches a steady state. Then, the probe is contacted with a disc sample which produces a temperature decay until a new state is reached. The difference between the initial and final states temperatures shows a correlation with the thermal conductivity of the sample. Employing a calibration equation, obtained using reference materials, the thermal conductivity can be calculated. Reasonably good random and systematic errors (<13% and ~9% respectively) are obtained. Theoretical simulations performed using COMSOL show a good qualitative agreement with experimental results. This new method involves an inexpensive and simple set-up which can be especially useful for thermal conductivity screening and high-throughput measurements.

  11. Thermal conductivity of organic semi-conducting materials using 3omega and photothermal radiometry techniques

    Directory of Open Access Journals (Sweden)

    Reisdorffer Frederic

    2014-01-01

    Full Text Available Organic semiconductors for opto-electronic devices show several defects which can be enhanced while increasing the operating temperature. Their thermal management and especially the reduction of their temperature are of great interest. For the heat transfer study, one has to measure the thermal conductivity of thin film organic materials. However the major difficulty for this measurement is the very low thickness of the films which needs the use of very specific techniques. In our work, the 3-omega and photothermal radiometric methods were used to measure the thermal conductivity of thin film organic semiconducting material (Alq3. The measurements were performed as function of the thin film thickness from 45 to 785 nm and also of its temperature from 80 to 350 K. With the 3 omega method, a thermal conductivity value of 0.066 W.m−1K−1 was obtained for Alq3 thin film of 200 nm at room temperature, in close agreement with the photothermal value. Both techniques appear to be complementary: the 3 omega method is easier to implement for large temperature range and small thicknesses down to a few tens of nanometers whereas the photothermal method is more suitable for thicknesses over 200nm since it provides additional information such as the thin film volumetric heat capacity.

  12. Phonon and electron mean free path dependent contributions to thermal conductivity in crystalline materials and thermal interface conductance across metal alloy-dielectric interfaces

    Science.gov (United States)

    Freedman, Justin P.

    Electronic and optical devices continue to decrease in size year after year. Today, devices feature length scales that are commensurate to energy carrier mean free paths. As a result, the physical principles that govern their operation and energy transport processes continue to dramatically change. This work aims to understand the nanoscale thermal transport processes in crystalline materials and across metal-dielectric interfaces. Solid-state devices, such as light emitting diodes (LED) and high power electronics, are replacing older technologies, such as incandescent and fluorescent lighting. Nitride-based semiconductors are the primary material candidates to replace these older technologies, in part because of their high thermal conductivity. In Chapter 2, the phonon mean free path dependent contributions to thermal conductivity in LED-based materials are presented. Using high frequency surface temperature modulation that generates nondiffusive phonon transport the phonon mean free path spectra of GaAs, GaN, AlN, and 4H-SiC at temperatures near 80 K, 150 K, 300 K, and 400 K are shown. This work demonstrates that phonons with mean free paths greater than 230 +/- 120 nm, 1000 +/- 200 nm, 2500 +/- 800 nm, and 4200 +/- 850 nm contribute ˜50% of the bulk thermal conductivity of GaAs, GaN, AlN, and 4H-SiC near room temperature. By nondimensionalizing the data based on Umklapp scattering rates of phonons, a universal phonon mean free path spectrum in small unit cell crystalline semiconductors at high temperature is identified. In Chapter 3, a theoretical framework based on the electron-phonon coupled Boltzmann transport equations (BTEs) is presented for the interpretation of nondiffusive thermal conductivity measurements in gold made via frequency domain thermoreflectance (FDTR). The thermal conductivity of a bulk gold crystal was measured over a temperature range of 23 K to 304 K as a function of FDTR's laser spot size. Through comparison of an analytical solution to

  13. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    Science.gov (United States)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  14. Electrically and Thermally Conducting Nanocomposites for Electronic Applications

    Directory of Open Access Journals (Sweden)

    Daryl Santos

    2010-02-01

    Full Text Available Nanocomposites made up of polymer matrices and carbon nanotubes are a class of advanced materials with great application potential in electronics packaging. Nanocomposites with carbon nanotubes as fillers have been designed with the aim of exploiting the high thermal, electrical and mechanical properties characteristic of carbon nanotubes. Heat dissipation in electronic devices requires interface materials with high thermal conductivity. Here, current developments and challenges in the application of nanotubes as fillers in polymer matrices are explored. The blending together of nanotubes and polymers result in what are known as nanocomposites. Among the most pressing current issues related to nanocomposite fabrication are (i dispersion of carbon nanotubes in the polymer host, (ii carbon nanotube-polymer interaction and the nature of the interface, and (iii alignment of carbon nanotubes in a polymer matrix. These issues are believed to be directly related to the electrical and thermal performance of nanocomposites. The recent progress in the fabrication of nanocomposites with carbon nanotubes as fillers and their potential application in electronics packaging as thermal interface materials is also reported.

  15. Reduction of Thermal Signature Using Fabrics with Conductive Additives

    Directory of Open Access Journals (Sweden)

    Vitalija RUBEŽIENĖ

    2013-12-01

    Full Text Available The most effective way to reduce the thermal signature is to reduce the emissivity. The goal of our research is to create the material, which can reduce the thermal signature, and make it interflow with environment. The materials and material compositions concealing the thermal signature of the object were developed using aluminium coatings and conductive metalized fibres, i. e. yarns with stainless steel staples or coated with silver. The analysis of the prepared samples was carried out with equipment consisting of a stand with integrated heating controller imitating the human body. The concealing properties of the samples in the far infrared (FIR spectral range were evaluated using ThermaCAM Reporter 7.0. The thermal signature analysis of prepared samples demonstrates that respectable results could be obtained using yarns coated with silver and materials coated with aluminium, but the first one is more flexible and preferable for clothing.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.1730

  16. Utilizing Interfaces for Nano- and Micro-scale Control of Thermal Conductivity

    Science.gov (United States)

    2015-08-17

    which structure is like [B]- graphene sheets sandwiching Al, shows higher thermal conductivity perpendicular to the planes compared to the in-plane...modifying the balance of thermal conductivity and electrical conductivity , since bismuth telluride-type materials are the champion thermoelectric...substantially reduce thermal conductivity by ~30% in crystals examined. (2) A striking contrast with thermal transport in carbon/ graphene materials was

  17. Design and Construction of a Thermal Contact Resistance and Thermal Conductivity Measurement System

    Science.gov (United States)

    2015-09-01

    been applied successfully in research such as for measurement of fiberglass insulation by Sathe et al. [33] and is comprehensively discussed in Pratt...thermal conductivity [33], it cannot specifically measure thermal contact resistance at the interfaces, normally not necessary for fiberglass insulation...YVO(4), and Y(3)Al(5)O(12) measured by quasi-one-dimensional flash method,” Optics Express, vol. 14, no. 22, pp. 10528-10536, Oct. 2006. [29] Y

  18. Effect of fibre shape on transverse thermal conductivity of ...

    Indian Academy of Sciences (India)

    Ultimately, it is the combined resistance to the heat flow that determines the conductivity of any material. Since this combined resistance do change in a wide range with different shapes of fibres and hence are the large variations in the effective conductivity. In the case of an elliptic fibre (figure 9), there exists a possibility of ...

  19. Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei, E-mail: weiw2015@gmail.com [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Cai, Jianchao, E-mail: caijc@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Hu, Xiangyun, E-mail: xyhu@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Han, Qi, E-mail: hanqi426@gmail.com [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Liu, Shuang, E-mail: lius@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Zhou, Yingfang, E-mail: yingfang.zhou@abdn.ac.uk [School of Engineering, University of Aberdeen, FN 264, King' s College, Aberdeen, AB24 3UE (United Kingdom)

    2016-08-26

    A theoretical effective thermal conductivity model for nanofluids is derived based on fractal distribution characteristics of nanoparticle aggregation. Considering two different mechanisms of heat conduction including particle aggregation and convention, the model is expressed as a function of the fractal dimension and concentration. In the model, the change of fractal dimension is related to the variation of aggregation shape. The theoretical computations of the developed model provide a good agreement with the experimental results, which may serve as an effective approach for quantitatively estimating the effective thermal conductivity of nanofluids. - Highlights: • A thermal conductivity model is derived based on fractal aggregation distribution. • The relationship between aggregation shape and fractal dimension is analyzed. • Predictions of the proposed model show good agreement with experimental data.

  20. Abnormal thermal shock behavior in electrical conductivity of Ti2SnC

    Directory of Open Access Journals (Sweden)

    Linquan Zhang

    2017-08-01

    Full Text Available Some ternary carbide and nitride ceramics have been demonstrated to exhibit abnormal thermal shock behavior in mechanical properties. However, the influence of thermal shock on other properties is not clear. This work reports on the influence of thermal shock on electrical conductivity of Ti2SnC as a representative member of ternary carbides. Abnormal change in electrical conductivity was first demonstrated during quenching Ti2SnC in water at 500–800 °C. The residual electrical conductivity of the quenched Ti2SnC gradually decreased with increasing temperature, but abnormally increased after quenching at 600 °C. The microstructure of surface cracks was characterized. The main mechanism for the abnormal electrical conductivity recovery is that some narrow branching cracks are filled by metallic Sn precipitating from Ti2SnC.

  1. Hot wire needle probe for thermal conductivity detection

    Science.gov (United States)

    Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban

    2015-11-10

    An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.

  2. Effect of interfacial treatment on the thermal properties of thermal conductive plastics

    Directory of Open Access Journals (Sweden)

    2007-09-01

    Full Text Available In this paper, ZnO, which is processed by different surface treatment approaches, is blended together with polypropylene to produce thermal conductive polymer composites. The composites are analyzed by Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM to investigate the surface modification of filler, their distribution in the matrix and the condition of two-phase interface. Optimized content of filler surface modifier is investigated as well. The results showed that using low-molecular coupling agent produces positive effect to improve the interface adhesion between filler and matrix, and the thermal conductivity of the composite as well. Macro-molecular coupling agent can strongly improve two-phase interface, but it is not beneficial at obtaining a high thermal conductivity. The blend of ZnO without modification and polypropylene has many defects in the two-phase interface, and the thermal conductivity of the composite is between those of composites produced by previous two approaches. The surface treatment of the filler also allowed producing the composites with lower coefficient of thermal expansion (CTE. As for the content of low-molecular coupling agent, it obtains the best effect at 1.5 wt%.

  3. Effects of basal-plane thermal conductivity and interface thermal conductance on the hot spot temperature in graphene electronic devices

    Science.gov (United States)

    Choi, David; Poudel, Nirakar; Cronin, Stephen B.; Shi, Li

    2017-02-01

    Electrostatic force microscopy and scanning thermal microscopy are employed to investigate the electric transport and localized heating around defects introduced during transfer of graphene grown by chemical vapor deposition to an oxidized Si substrate. Numerical and analytical models are developed to explain the results based on the reported basal-plane thermal conductivity, κ, and interfacial thermal conductance, G, of graphene and to investigate their effects on the peak temperature. Irrespective of the κ values, increasing G beyond 4 × 107 W m-2 K-1 can reduce the peak temperature effectively for graphene devices made on sub-10 nm thick gate dielectric, but not for the measured device made on 300-nm-thick oxide dielectric, which yields a cross-plane thermal conductance (Gox) much smaller than the typical G of graphene. In contrast, for typical G values reported for graphene, increasing κ from 300 W m-1 K-1 toward 3000 W m-1 K-1 is effective in reducing the hot spot temperature for the 300-nm-thick oxide devices but not for the sub-10 nm gate dielectric case, because the heat spreading length (l) can be appreciably increased relative to the micron-scale localized heat generation spot size (r0) only when the oxide layer is sufficiently thick. As such, enhancement of κ increases the vertical heat transfer area above the gate dielectric only for the thick oxide case. In all cases considered, the hot spot temperature is sensitive to varying G and κ only when the G/Gox ratio and r0/l ratio are below about 5, respectively.

  4. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  5. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Science.gov (United States)

    Ma, Zhaoji; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong

    2017-06-01

    Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  6. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  7. Modelling Phase Change in a 3D Thermal Transient Analysis

    Directory of Open Access Journals (Sweden)

    E Haque

    2016-09-01

    Full Text Available A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer and adjacent (metal surfaces. Initial temperatures are established using a liner extrapolation based on experimental data. Results yield good correlation with experimental data.

  8. Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems

    Science.gov (United States)

    Ankireddy, Krishnamraju; Menon, Akanksha K.; Iezzi, Brian; Yee, Shannon K.; Losego, Mark D.; Jur, Jesse S.

    2016-11-01

    Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon-nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver-nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (Δ T) of 113°C] due to their low electrical resistance. The voltage generated from the silver-nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization.

  9. Measurements of thermal diffusivity, specific heat capacity and thermal conductivity with LFA 447 apparatus

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    The LFA 447 can be successfully used for measurements of thermal diffusivity, specific heat and thermal conductivity of various samples. It is especially useful when determining the properties of materials on a very small scale. The matrix measurement mode allows for determining the local...... properties with a fine resolution, down to 1 millimeter. Special attention needs to be taken when determining the specific heat capacity in the comparative method. First of all, the test and reference sample should be of nearly identical thickness. Secondly, their heat diffusion time should be comparable, so...... that the heat losses from both samples during the measurement are similar. Finally, the leveling of the samples is very important. Very small discrepancies can cause a massive error in the derivation of specific heat capacity and, as a result, thermal conductivity....

  10. Experimental thermal conductivity, thermal diffusivity, and specific heat values for mixtures of nitrogen, oxygen, and argon

    Science.gov (United States)

    Perkins, R. A.; Cieszkiewicz, M. T.

    1991-01-01

    Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.

  11. Effect of composition on thermal conductivity of silica insulation media.

    Science.gov (United States)

    Park, Sung; Kwon, Young-Pil; Kwon, Hyuk-Chon; Lee, Hae-Weon; Lee, Jae Chun

    2008-10-01

    Nano-sized fumed silica-based insulation media were prepared by adding TiO2 powders and ceramic fibers as opacifiers and structural integrity improvers, respectively. The high temperature thermal conductivities of the fumed silica-based insulation media were investigated using different types of TiO2 opacifier and by varying its content. The opacifying effects of nanostructured TiO2 powders produced by homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial TiO2 powder. The nanostructured HPPLT TiO2 powder with a mean particle size of 1.8 microm was more effective to reduce radiative heat transfer than the commercial one with a similar mean particle size. The insulation samples with the HPPLT TiO2 powder showed about 46% lower thermal conductivity at temperatures of about 820 degrees C than those with the commercial one. This interesting result might be due to the more effective radiation scattering efficiency of the nanostructured HPPLT TiO2 powder which has better gap filling and coating capability in nano-sized composite compacts.

  12. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids

    Science.gov (United States)

    Hadadian, Mahboobeh; Goharshadi, Elaheh K.; Youssefi, Abbas

    2014-12-01

    Highly stable graphene oxide (GO)-based nanofluids were simply prepared by dispersing graphite oxide with the average crystallite size of 20 nm, in polar base fluids without using any surfactant. Electrical conductivity, thermal conductivity, and rheological properties of the nanofluids were measured at different mass fractions and various temperatures. An enormous enhancement, 25,678 %, in electrical conductivity of distilled water was observed by loading 0.0006 mass fraction of GO at 25 °C. GO-ethylene glycol nanofluids exhibited a non-Newtonian shear-thinning behavior followed by a shear-independent region. This shear-thinning behavior became more pronounced at higher GO concentrations. The maximum ratio of the viscosity of nanofluid to that of the ethylene glycol as a base fluid was 3.4 for the mass fraction of 0.005 of GO at 20 °C under shear rate of 27.5 s-1. Thermal conductivity enhancement of 30 % was obtained for GO-ethylene glycol nanofluid for mass fraction of 0.07. The measurement of the transport properties of this new kind of nanofluid showed that it could provide an ideal fluid for heat transfer and electronic applications.

  13. Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids.

    Science.gov (United States)

    Zhao, Ningbo; Li, Zhiming

    2017-05-19

    To effectively predict the thermal conductivity and viscosity of alumina (Al₂O₃)-water nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly, using a two-step method, four Al₂O₃-water nanofluids were prepared respectively by dispersing different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial basis function (RBF) neural network was constructed to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids as a function of nanoparticle volume fraction and temperature. The experimental results showed that both nanoparticle volume fraction and temperature could enhance the thermal conductivity of Al₂O₃-water nanofluids. However, the viscosity only depended strongly on Al₂O₃ nanoparticle volume fraction and was increased slightly by changing temperature. In addition, the comparative analysis revealed that the RBF neural network had an excellent ability to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids with the mean absolute percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an effective way to predict the thermophysical properties of nanofluids with limited experimental data.

  14. Thermal energy storage in phase change material

    Science.gov (United States)

    White, P.; Buchlin, J. M.

    1982-03-01

    The present study deals with an experimental investigation of low temperature thermal storage based on macroencapsulation of Phase Change Material (PCM). The storage performance capabilities of capsule bed, tube bank and tubular single-pass heat exchanger are compared. The tests are conducted on the VKI Solar Utility Network (SUN) which is a closed loop facility designed to study air heating systems. An original data acquisition chain based on two conversing microprocessors is developed to carry out mass flow, pressure drop and temperature measurements. The experimental results are interpreted on the basis of comparison with numerical predictions and they allow to draw the following conclusions. Each type of matrix has its own range of operation for practical application but from a heat transfer standpoint, the PCM capsule packing unit is strongly recommended. It is suggested to extend this investigation to the effect of Reynolds number to find optimum range for thermomechanical efficiency.

  15. Thermal switching of the electrical conductivity of Si(111)([Formula

    DEFF Research Database (Denmark)

    Wells, J W; Kallehauge, Jesper; Hofmann, Ph

    2007-01-01

    The temperature-dependent surface conductivity of the Si(111)([Formula: see text])Ag surface was measured using a microscopic four-point probe. The conductivity was found to undergo a sharp increase of about three orders of magnitude when the system was heated above about 220 K. This strong...... conductivity change is reversible and attributed to the phase transition which is generally believed to occur on this surface. It is also shown that, in order to find the true surface conductivity, it is necessary to separate it from the contribution of the bulk and space charge layer. In this work......, this is achieved by using a finite-element model. A percolating network of Ag islands on Si(111) was also studied and a much simpler behaviour (compared to that of Si(111)([Formula: see text])Ag) was found. The temperature-dependent conductivity of this system was found to display typical metallic behaviour...

  16. Thermal conductivity thermal diffusivity of UO{sub 2}-BeO nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Fábio A.; Camarano, Denise M.; Santos, Ana M. M.; Ferraz, Wilmar B.; Silva, Mayra A.; Ferreira, Ricardo A.N., E-mail: fam@cdtn.br, E-mail: dmc@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: mayra.silva@cdtn.br, E-mail: ricardoanf@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The temperature distribution in nuclear fuel pellets is of vital importance for the performance of the reactor, as it affects the heat transfer, the mechanical behavior and the release of fission gas during irradiation, reducing safety margins in possible accident scenarios. One of the main limitation for the current uranium dioxide nuclear fuel (UO{sub 2}) is its low thermal conductivity, responsible for the higher temperature of the pellet center and, consequently, for a higher radial temperature gradient. Thus, the addition of another material to increase the UO{sub 2} fuel thermal conductivity has been considered. Among the additives that are being investigated, beryllium oxide (BeO) has been chosen due to its high thermal conductivity, with potential to optimize power generation in pressurized light water reactors (PWR). In this work, UO{sub 2}-BeO pellets were obtained by the physical mixing of the powders with additions of 2wt% and 3wt% of BeO. The thermal diffusivity and conductivity of the pellets were determined from room temperature up to 500 °C. The results were normalized to 95% of the theoretical density (TD) of the pellets and varied according to the BeO content. The range of the values of thermal diffusivity and conductivity were 1.22 mm{sup 2}∙s{sup -1} to 3.69 mm{sup 2}∙s{sup -1} and 3.80 W∙m{sup -}'1∙K{sup -1} to 9.36 W∙m{sup -1}∙K{sup -1}, respectively. (author)

  17. Investigation of Thermal and Electrical Properties for Conductive Polymer Composites

    Science.gov (United States)

    Juwhari, Hassan K.; Abuobaid, Ahmad; Zihlif, Awwad M.; Elimat, Ziad M.

    2017-10-01

    This study addresses the effects of temperature ranging from 300 K to 400 K on thermal ( κ) and electrical ( σ) conductivities, and Lorenz number ( L) for different conductive polymeric composites (CPCs), as tailoring the ratios between both conductivities of the composites can be influential in the design optimization of certain thermo-electronic devices. Both κ and σ were found to have either a linear or a nonlinear (2nd and 3rd degree polynomial function) increasing behavior with increased temperatures, depending on the conduction mechanism occurring in the composite systems studied. Temperature-dependent behavior of L tends to show decreasing trends above 300 K, where at 300 K the highest and the lowest values were found to be 3 × 103 W Ω/K2 for CPCs containing iron particles and 3 × 10-2 W Ω/K2 for CPCs-containing carbon fibers respectively. Overall, temperature-dependent behavior of κ/ σ and L can be controlled by heterogeneous structures produced via mechanical-molding-compression. These structures are mainly responsible for energy-transfer processes or transport properties that take place by electrons and phonons in the CPCs' bulks. Hence, the outcome is considered significant in the development process of high performing materials for the thermo-electronic industry.

  18. Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures.

    Science.gov (United States)

    Pei, Qing-Xiang; Zhang, Xiaoliang; Ding, Zhiwei; Zhang, Ying-Yan; Zhang, Yong-Wei

    2017-07-14

    Phosphorene, a new two-dimensional (2D) semiconducting material, has attracted tremendous attention recently. However, its structural instability under ambient conditions poses a great challenge to its practical applications. A possible solution for this problem is to encapsulate phosphorene with more stable 2D materials, such as graphene, forming van der Waals heterostructures. In this study, using molecular dynamics simulations, we show that the thermal stability of phosphorene in phosphorene/graphene heterostructures can be enhanced significantly. By sandwiching phosphorene between two graphene sheets, its thermally stable temperature is increased by 150 K. We further study the thermal transport properties of phosphorene and find surprisingly that the in-plane thermal conductivity of phosphorene in phosphorene/graphene heterostructures is much higher than that of the free-standing one, with a net increase of 20-60%. This surprising increase in thermal conductivity arises from the increase in phonon group velocity and the extremely strong phonon coupling between phosphorene and the graphene substrate. Our findings have an important meaning for the practical applications of phosphorene in nanodevices.

  19. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate

    Science.gov (United States)

    Waite, W.F.; Stern, L.A.; Kirby, S.H.; Winters, W.J.; Mason, D.H.

    2007-01-01

    Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C and 17°C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4°C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment.

  20. Simultaneous measurement of thermal conductivity and heat capacity by flash thermal imaging methods

    Science.gov (United States)

    Tao, N.; Li, X. L.; Sun, J. G.

    2017-06-01

    Thermal properties are important for material applications involved with temperature. Although many measurement methods are available, they may not be convenient to use or have not been demonstrated suitable for testing of a wide range of materials. To address this issue, we developed a new method for the nondestructive measurement of the thermal effusivity of bulk materials with uniform property. This method is based on the pulsed thermal imaging-multilayer analysis (PTI-MLA) method that has been commonly used for testing of coating materials. Because the test sample for PTI-MLA has to be in a two-layer configuration, we have found a commonly used commercial tape to construct such test samples with the tape as the first-layer material and the bulk material as the substrate. This method was evaluated for testing of six selected solid materials with a wide range of thermal properties covering most engineering materials. To determine both thermal conductivity and heat capacity, we also measured the thermal diffusivity of these six materials by the well-established flash method using the same experimental instruments with a different system setup. This paper provides a description of these methods, presents detailed experimental tests and data analyses, and discusses measurement results and their comparison with literature values.

  1. Geometrical Effect on Thermal Conductivity of Unidirectional Fiber-Reinforced Polymer Composite along Different In-plane Orientations

    Science.gov (United States)

    Fang, Zenong; Li, Min; Wang, Shaokai; Li, Yanxia; Wang, Xiaolei; Gu, Yizhuo; Liu, Qianli; Tian, Jie; Zhang, Zuoguang

    2017-11-01

    This paper focuses on the anisotropic characteristics of the in-plane thermal conductivity of fiber-reinforced polymer composite based on experiment and simulation. Thermal conductivity along different in-plane orientations was measured by laser flash analysis (LFA) and steady-state heat flow method. Their heat transfer processes were simulated to reveal the geometrical effect on thermal conduction. The results show that the in-plane thermal conduction of unidirectional carbon-fiber-reinforced polymer composite is greatly influenced by the sample geometry at an in-plane orientation angle between 0° to 90°. By defining radius-to-thickness as a dimensionless shape factor for the LFA sample, the apparent thermal conductivity shows a dramatic change when the shape factor is close to the tangent of the orientation angle (tanθ). Based on finite element analysis, this phenomenon was revealed to correlate with the change of the heat transfer process. When the shape factor is larger than tanθ, the apparent thermal conductivity is consistent with the estimated value according to the theoretical model. For a sample with a shape factor smaller than tanθ, the apparent thermal conductivity shows a slow growth around a low value, which seriously deviates from the theory estimation. This phenomenon was revealed to correlate with the change of the heat transfer process from a continuous path to a zigzag path. These results will be helpful in optimizing the ply scheme of composite laminates for thermal management applications.

  2. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation

    Science.gov (United States)

    Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei

    2017-07-01

    The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.

  3. Thermal conductivity of graphene with defects induced by electron beam irradiation.

    Science.gov (United States)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L; Mulchandani, Ashok; Lake, Roger K; Balandin, Alexander A

    2016-08-14

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ∼7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2) the thermal conductivity decreases from ∼(1.8 ± 0.2) × 10(3) W mK(-1) to ∼(4.0 ± 0.2) × 10(2) W mK(-1) near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ∼400 W mK(-1). The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.

  4. Effects of Particle Surface Charge, Species, Concentration, and Dispersion Method on the Thermal Conductivity of Nanofluids

    Directory of Open Access Journals (Sweden)

    Raghu Gowda

    2010-01-01

    Full Text Available The purpose of this experimental study is to evaluate the effects of particle species, surface charge, concentration, preparation technique, and base fluid on thermal transport capability of nanoparticle suspensions (nanofluids. The surface charge was varied by changing the pH value of the fluids. The alumina (Al2O3 and copper oxide (CuO nanoparticles were dispersed in deionized (DI water and ethylene glycol (EG, respectively. The nanofluids were prepared using both bath-type and probe sonicator under different power inputs. The experimental results were compared with the available experimental data as well as the predicted values obtained from Maxwell effective medium theory. It was found that ethylene glycol is more suitable for nanofluids applications than DI water in terms of thermal conductivity improvement and stability of nanofluids. Surface charge can effectively improve the dispersion of nanoparticles by reducing the (aggregated particle size in base fluids. A nanofluid with high surface charge (low pH has a higher thermal conductivity for a similar particle concentration. The sonication also has a significant impact on thermal conductivity enhancement. All these results suggest that the key to the improvement of thermal conductivity of nanofluids is a uniform and stable dispersion of nanoscale particles in a fluid.

  5. Fuel Cell Thermal Management Through Conductive Cooling Plates

    Science.gov (United States)

    Colozza, Anthony J.; Burke, Kenneth A.

    2008-01-01

    An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system.

  6. Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids

    Science.gov (United States)

    Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro

    2015-03-01

    A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.

  7. Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    Mingchao Wang

    2014-04-01

    Full Text Available Exploring thermal transport in graphene–polymer nanocomposite is significant to its applications with better thermal properties. Interfacial thermal conductance between graphene and polymer matrix plays a critical role in the improvement of thermal conductivity of graphene–polymer nanocomposite. Unfortunately, it is still challenging to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, using nonequilibrium molecular dynamics (NEMD simulations, we investigate the interfacial thermal conductance of graphene–polyethylene (PE nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductance of graphene–polymer nanocomposites was studied, taking into account the effects of model size and thermal conductivity of graphene. An analytical model is also used to calculate the thermal conductivity of nanocomposite. The results are considered to contribute to the development of new graphene–polymer nanocomposites with tailored thermal properties.

  8. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.

    Science.gov (United States)

    Wei, Ning; Xu, Lanqing; Wang, Hui-Qiong; Zheng, Jin-Cheng

    2011-03-11

    Graphene is an outstanding material with ultrahigh thermal conductivity. Its thermal transfer properties under various strains are studied by reverse nonequilibrium molecular dynamics. Based on the unique two-dimensional structure of graphene, the distinctive geometries of graphene sheets and graphene nanoribbons with large flexibility and their intriguing thermal properties are demonstrated under strains. For example, the corrugation under uniaxial compression and helical structure under light torsion, as well as tube-like structure under strong torsion, exhibit enormously different thermal conductivity. The important robustness of thermal conductivity is found in the corrugated and helical configurations of graphene nanoribbons. Nevertheless, thermal conductivity of graphene is very sensitive to tensile strain. The relationship among phonon frequency, strain and thermal conductivity are analyzed. A similar trend line of phonon frequency dependence of thermal conductivity is observed for armchair graphene nanoribbons and zigzag graphene nanoribbons. The unique thermal properties of graphene nanoribbons under strains suggest their great potentials for nanoscale thermal managements and thermoelectric applications.

  9. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage.

    Science.gov (United States)

    Xin, Guoqing; Sun, Hongtao; Scott, Spencer Michael; Yao, Tiankai; Lu, Fengyuan; Shao, Dali; Hu, Tao; Wang, Gongkai; Ran, Guang; Lian, Jie

    2014-09-10

    Organic phase change materials (PCMs) have been utilized as latent heat energy storage and release media for effective thermal management. A major challenge exists for organic PCMs in which their low thermal conductivity leads to a slow transient temperature response and reduced heat transfer efficiency. In this work, 2D thermally annealed defect-free graphene sheets (GSs) can be obtained upon high temperature annealing in removing defects and oxygen functional groups. As a result of greatly reduced phonon scattering centers for thermal transport, the incorporation of ultralight weight and defect free graphene applied as nanoscale additives into a phase change composite (PCC) drastically improve thermal conductivity and meanwhile minimize the reduction of heat of fusion. A high thermal conductivity of the defect-free graphene-PCC can be achieved up to 3.55 W/(m K) at a 10 wt % graphene loading. This represents an enhancement of over 600% as compared to pristine graphene-PCC without annealing at a comparable loading, and a 16-fold enhancement than the pure PCM (1-octadecanol). The defect-free graphene-PCC displays rapid temperature response and superior heat transfer capability as compared to the pristine graphene-PCC or pure PCM, enabling transformational thermal energy storage and management.

  10. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-05-31

    Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.

  11. Thermal signal propagation in soils in Romania: conductive and non-conductive processes

    Directory of Open Access Journals (Sweden)

    C. Demetrescu

    2007-11-01

    Full Text Available Temperature data recorded in 2002 and 2003 at 10 stations out of the 70 available in the Romanian automatic weather stations network are presented and analyzed in terms of the heat transfer from air to underground. The air temperature at 2 m, the soil temperatures at 0, 5, 10, 20, 50 and 100 cm below the surface as well as rain fall and snow cover thickness have been monitored. The selected locations sample various climate environments in Romania. Preliminary analytical modelling shows that soil temperatures track air temperature variations at certain locations and, consequently, the heat transfer is by conduction, while at other stations processes such as soil freezing and/or solar radiation heating play an important part in the heat flux balance at the air/soil interface. However, the propagation of the annual thermal signal in the uppermost one meter of soil is mainly by conduction; the inferred thermal diffusivity for 8 stations with continuous time series at all depth levels ranges from 3 to 10×10−7 m2 s−1.

  12. Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA in a photovoltaic thermal collector

    Directory of Open Access Journals (Sweden)

    J. Allan

    2016-03-01

    Full Text Available Samples of Ethylene-Vinyl Acetate (EVA were doped with particles of Boron Nitride (BN in concentrations ranging from 0-60% w/w. Thermal conductivity was measured using a Differential Scanning Calorimetery (DSC technique. The thermal conductivity of parent EVA was increased from 0.24W/m ⋅ K to 0.80W/m ⋅ K for the 60% w/w sample. Two PV laminates were made; one using the parent EVA the other using EVA doped with 50% BN. When exposed to a one directional heat flux the doped laminate was, on average, 6% cooler than the standard laminate. A finite difference model had good agreement with experimental results and showed that the use of 60% BN composite achieved a PV performance increase of 0.3% compared to the standard laminate.

  13. Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA) in a photovoltaic thermal collector

    Energy Technology Data Exchange (ETDEWEB)

    Allan, J., E-mail: james.p.allan14@gmail.com [School of Engineering and Design, Brunel University, London, UB8 3PH (United Kingdom); ChapmanBDSP, Saffron House, 6-10 Kirby Street, London, EC1N 8EQ (United Kingdom); Pinder, H.; Dehouche, Z. [School of Engineering and Design, Brunel University, London, UB8 3PH (United Kingdom)

    2016-03-15

    Samples of Ethylene-Vinyl Acetate (EVA) were doped with particles of Boron Nitride (BN) in concentrations ranging from 0-60% w/w. Thermal conductivity was measured using a Differential Scanning Calorimetery (DSC) technique. The thermal conductivity of parent EVA was increased from 0.24 W/m ⋅ K to 0.80 W/m ⋅ K for the 60% w/w sample. Two PV laminates were made; one using the parent EVA the other using EVA doped with 50% BN. When exposed to a one directional heat flux the doped laminate was, on average, 6% cooler than the standard laminate. A finite difference model had good agreement with experimental results and showed that the use of 60% BN composite achieved a PV performance increase of 0.3% compared to the standard laminate.

  14. Phase change thermal control materials, method and apparatus

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  15. Flexible composite material with phase change thermal storage

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  16. THERMAL CONDUCTIVITY OF THE REGENERATION WASTE TEXTILES USED TO THERMAL INSULATION

    OpenAIRE

    Gheorghe Horga; Mihaela Horga; Ioan Hossu; Dorin Avram; Florin Breaban

    2013-01-01

    This paper presents theoretical and experimental studies on the behavior thermal conductivity of textiles made from regeneration fiber used to make the shells for insulation of pipelines. Was investigated the behavior of textile fibers regeneration at densities, temperatures and different layer thickness, in two structures: material in the form of fibers in the form of flock, named blanket and textile material in the form of fiber layer consolidated named, no woven material.Measurements were ...

  17. Determination of the Thermal Resistance of Pipe Insulation Material from Thermal Conductivity of Flat Insulation Products

    OpenAIRE

    Koenen, Alain; Marquis, Damien M.

    2015-01-01

    New European product standards now include a mandatory requirement for manufacturers to declare the temperature-dependent thermal conductivity for each insulation used in building equipments and industrial installations. For pipe insulation systems, the measurement is usually performed by a standard pipe test method, in which the value on a large temperature range is integrated to reduce temperature range and improve temperature measurement control. The alternative proposed in this article co...

  18. Vaporization response of evaporating drops with finite thermal conductivity

    Science.gov (United States)

    Agosta, V. D.; Hammer, S. S.

    1975-01-01

    A numerical computing procedure was developed for calculating vaporization histories of evaporating drops in a combustor in which travelling transverse oscillations occurred. The liquid drop was assumed to have a finite thermal conductivity. The system of equations was solved by using a finite difference method programmed for solution on a high speed digital computer. Oscillations in the ratio of vaporization of an array of repetitivity injected drops in the combustor were obtained from summation of individual drop histories. A nonlinear in-phase frequency response factor for the entire vaporization process to oscillations in pressure was evaluated. A nonlinear out-of-phase response factor, in-phase and out-of-phase harmonic response factors, and a Princeton type 'n' and 'tau' were determined. The resulting data was correlated and is presented in graphical format. Qualitative agreement with the open literature is obtained in the behavior of the in-phase response factor. Quantitatively the results of the present finite conductivity spray analysis do not correlate with the results of a single drop model.

  19. Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs

    DEFF Research Database (Denmark)

    Fuchs, Sven; Balling, Niels; Förster, Andrea

    2015-01-01

    In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents...... of each property vary depending on the selected well-log combination. Best prediction is in the range of 2–8 per cent for the specific heat capacity, of 5–10 per cent for the thermal conductivity, and of 8–15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated...... by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is conductivity...

  20. The influence of low dose neutron irradiation on the thermal conductivity of Allcomp carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Porter, Wallace D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    Oak Ridge National Laboratory was contracted via a Work for Others Agreement with Allcomp Inc. (NFE-14-05011-MSOF: Carbon Foam for Beam Stop Applications ) to determine the influence of low irradiation dose on the thermal conductivity of Allcomp Carbon Foam. Samples (6 mm dia. x 5 mm thick) were successfully irradiated in a rabbit capsule in a hydraulic tube in the target region of the High Flux Isotope Reactor at the Oak Ridge National Laboratory. The specimens were irradiated at Tirr = 747.5 C to a neutron damage dose of 0.2 dpa. There is a small dimensional and volume shrinkage and the mass and density appear reduced (we would expect density to increase as volume reduces at constant mass). The small changes in density, dimensions or volume are not of concern. At 0.2 dpa the irradiation shrinkage rate difference between the glassy carbon skeleton and the CVD coating was not sufficient to cause a large enough irradiation-induced strain to create any mechanical degradation. Similarly differential thermal expansion was not a problem. It appears that only the thermal conductivity was affected by 0.2 dpa. For the intended application conditions, i.e. @ 400 C and 0 DPA (start- up) the foam thermal conductivity is about 57 W/m.K and at 700 C and 0.2 DPA (end of life) the foam thermal conductivity is approx. 30.7 W/m.K. The room temp thermal conductivity drops from 100-120 W/m.K to approximately 30 W/m.K after 0.2 dpa of neutron irradiation.

  1. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  2. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  3. Experimental and modeling study of forest fire effect on soil thermal conductivity

    Science.gov (United States)

    Kathleen M. Smits; Elizabeth Kirby; William J. Massman; Scott Baggett

    2016-01-01

    An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire heated soils, comprehensive data that evaluate the long-term effect of extreme heating from a fire on the soil thermal conductivity are limited....

  4. Equilibrium limit of thermal conduction and boundary scattering in nanostructures.

    Science.gov (United States)

    Haskins, Justin B; Kınacı, Alper; Sevik, Cem; Çağın, Tahir

    2014-06-28

    Determining the lattice thermal conductivity (κ) of nanostructures is especially challenging in that, aside from the phonon-phonon scattering present in large systems, the scattering of phonons from the system boundary greatly influences heat transport, particularly when system length (L) is less than the average phonon mean free path (MFP). One possible route to modeling κ in these systems is through molecular dynamics (MD) simulations, inherently including both phonon-phonon and phonon-boundary scattering effects in the classical limit. Here, we compare current MD methods for computing κ in nanostructures with both L ⩽ MFP and L ≫ MFP, referred to as mean free path constrained (cMFP) and unconstrained (uMFP), respectively. Using a (10,0) CNT (carbon nanotube) as a benchmark case, we find that while the uMFP limit of κ is well-defined through the use of equilibrium MD and the time-correlation formalism, the standard equilibrium procedure for κ is not appropriate for the treatment of the cMFP limit because of the large influence of boundary scattering. To address this issue, we define an appropriate equilibrium procedure for cMFP systems that, through comparison to high-fidelity non-equilibrium methods, is shown to be the low thermal gradient limit to non-equilibrium results. Further, as a means of predicting κ in systems having L ≫ MFP from cMFP results, we employ an extrapolation procedure based on the phenomenological, boundary scattering inclusive expression of Callaway [Phys. Rev. 113, 1046 (1959)]. Using κ from systems with L ⩽ 3 μm in the extrapolation, we find that the equilibrium uMFP κ of a (10,0) CNT can be predicted within 5%. The equilibrium procedure is then applied to a variety of carbon-based nanostructures, such as graphene flakes (GF), graphene nanoribbons (GNRs), CNTs, and icosahedral fullerenes, to determine the influence of size and environment (suspended versus supported) on κ. Concerning the GF and GNR systems, we find that

  5. Correction on the influence of thermal contact resistance in thermal conductivity measurements using the guarded hot plate method

    Directory of Open Access Journals (Sweden)

    Stepanić Nenad

    2009-01-01

    Full Text Available This work considers the influence of finite thermal contact resistances which exist in thermal conductivity measurements of homogeneous and poor thermal conductive materials using the guarded hot plate method. As an example of correction method proposed in this work, different experimental results obtained from a standard reference material sample (with the conductivity of about 1 W/mK have been presented.

  6. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  7. Characterization of low thermal conductivity PAN-based carbon fibers

    Science.gov (United States)

    Katzman, Howard A.; Adams, P. M.; Le, T. D.; Hemminger, Carl S.

    1992-01-01

    The microstructure and surface chemistry of eight low thermal conductivity (LTC) PAN-based carbon fibers were determined and compared with PAN-based fibers heat treated to higher temperatures. Based on wide-angle x ray diffraction, the LTC PAN fibers all appear to have a similar turbostratic structure with large 002 d-spacings, small crystallite sizes, and moderate preferred orientation. Limited small-angle x ray scattering (SAXS) results indicate that, with the exception of LTC fibers made by BASF, the LTC fibers do not have well developed pores. Transmission electron microscopy shows that the texture of the two LTC PAN-based fibers studied (Amoco T350/23X and /25X) consists of multiple sets of parallel, wavy, bent layers that interweave with each other forming a complex three dimensional network oriented randomly around the fiber axis. X ray photoelectron spectroscopy (XPS) analysis finds correlations between heat treated temperatures and the surface composition chemistry of the carbon fiber samples.

  8. Thermally Induced Chain Orientation for Improved Thermal Conductivity of P(VDF-TrFE) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Junnan [University of Michigan; Tan, Aaron C. [University of Michigan

    2017-09-29

    The potential for polymer thin films to be used as coatings or dielectrics is limited by their low thermal conductivity, ..kappa... However, there have been very limited studies on ..kappa.. enhancement for polymer thin films. In this work, we show that the out-of-plane ..kappa.. of a poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) thin film can be enhanced when it undergoes the appropriate thermal annealing conditions. When the film is annealed above its melting temperature, we achieve a 300-400% increase in ..kappa.. across the measured temperature range, compared to the as-cast film. We attribute this enhancement to the extensive ordering of polymer backbone chains perpendicular to the substrate during the melt-recrystallization process.

  9. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  10. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  11. Reduction in thermal boundary conductance due to proton implantation in silicon and sapphire

    Science.gov (United States)

    Hopkins, Patrick E.; Hattar, Khalid; Beechem, Thomas; Ihlefeld, Jon F.; Medlin, Douglas L.; Piekos, Edward S.

    2011-06-01

    We measure the thermal boundary conductance across Al/Si and Al/Al2O3 interfaces that are subjected to varying doses of proton ion implantation with time domain thermoreflectance. The proton irradiation creates a major reduction in the thermal boundary conductance that is much greater than the corresponding decrease in the thermal conductivities of both the Si and Al2O3 substrates into which the ions were implanted. Specifically, the thermal boundary conductances decrease by over an order of magnitude, indicating that proton irradiation presents a unique method to systematically decrease the thermal boundary conductance at solid interfaces.

  12. Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 2: Hysteresis effect under cyclic compressive load

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, E. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada); Djilali, N. [Dept. Mechanical Eng., and Institute for Integrated Energy Systems, University of Victoria, P.O. Box 3055, Victoria, BC (Canada); Bahrami, M. [Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, Surrey, BC (Canada)

    2010-12-15

    Heat transfer through the gas diffusion layer (GDL) is a key process in the design and operation of a PEM fuel cell. The analysis of this process requires the determination of the effective thermal conductivity as well as the thermal contact resistance between the GDL and adjacent surfaces/layers. The Part 1 companion paper describes an experimental procedure and a test bed devised to allow separation of the effective thermal conductivity and thermal contact resistance, and presents measurements under a range of static compressive loads. In practice, during operation of a fuel cell stack, the compressive load on the GDL changes. In the present study, experiments are performed on Toray carbon papers with 78% porosity and 5% PTFE under a cyclic compressive load. Results show a significant hysteresis in the loading and unloading cycle data for total thermal resistance, thermal contact resistance (TCR), effective thermal conductivity, thickness, and porosity. It is found that after 5 loading-unloading cycles, the geometrical, mechanical, and thermal parameters reach a ''steady-state'' condition and remain unchanged. A key finding of this study is that the TCR is the dominant component of the GDL total thermal resistance with a significant hysteresis resulting in up to a 34% difference between the loading and unloading cycle data. This work aims to clarify the impact of unsteady/cyclic compression on the thermal and structural properties of GDLs and provides new insights on the importance of TCR which is a critical interfacial transport phenomenon. (author)

  13. The Conductive Thermal Control Material Systems for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted to develop and demonstrate the feasibility of processing the space environment stable, multifunctional thermal control material system...

  14. Suppressing thermal conductivity of suspended tri-layer graphene by gold deposition.

    Science.gov (United States)

    Wang, Jiayi; Zhu, Liyan; Chen, Jie; Li, Baowen; Thong, John T L

    2013-12-17

    A simple and general strategy for suppressing the thermal conductivity in graphene is shown. The strategy uses gold nano-particles physically deposited on graphene to continuously reduce the thermal conductivity of graphene with increasing coverage, which demonstrates the potential for practical development of graphene-based devices with tunable thermal conductivity for thermal management. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3ω mode and novel calibration strategies.

    Science.gov (United States)

    Wilson, Adam A; Muñoz Rojo, Miguel; Abad, Begoña; Perez, Jaime Andrés; Maiz, Jon; Schomacker, Jason; Martín-Gonzalez, Marisol; Borca-Tasciuc, Diana-Andra; Borca-Tasciuc, Theodorian

    2015-10-07

    This work discusses measurement of thermal conductivity (k) of films using a scanning hot probe method in the 3ω mode and investigates the calibration of thermal contact parameters, specifically the thermal contact resistance (R(th)C) and thermal exchange radius (b) using reference samples with different thermal conductivities. R(th)C and b were found to have constant values (with b = 2.8 ± 0.3 μm and R(th)C = 44,927 ± 7820 K W(-1)) for samples with thermal conductivity values ranging from 0.36 W K(-1) m(-1) to 1.1 W K(-1) m(-1). An independent strategy for the calibration of contact parameters was developed and validated for samples in this range of thermal conductivity, using a reference sample with a previously measured Seebeck coefficient and thermal conductivity. The results were found to agree with the calibration performed using multiple samples of known thermal conductivity between 0.36 and 1.1 W K(-1) m(-1). However, for samples in the range between 16.2 W K(-1) m(-1) and 53.7 W K(-1) m(-1), calibration experiments showed the contact parameters to have considerably different values: R(th)C = 40,191 ± 1532 K W(-1) and b = 428 ± 24 nm. Finally, this work demonstrates that using these calibration procedures, measurements of both highly conductive and thermally insulating films on substrates can be performed, as the measured values obtained were within 1-20% (for low k) and 5-31% (for high k) of independent measurements and/or literature reports. Thermal conductivity results are presented for a SiGe film on a glass substrate, Te film on a glass substrate, polymer films (doped with Fe nano-particles and undoped) on a glass substrate, and Au film on a Si substrate.

  16. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeon-Geun, E-mail: hglee@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Daejong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Seung Jae [KEPCO Nuclear Fuel, 242, Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Park, Ji Yeon; Kim, Weon-Ju [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-01-15

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  17. Thermal conductivity of sedimentary rocks - selected methodological, mineralogical and textural studies

    Energy Technology Data Exchange (ETDEWEB)

    Midttoemme, Kirsti

    1997-12-31

    The thermal conductivity of sedimentary rocks is an important parameter in basin modelling as the main parameter controlling the temperature within a sedimentary basin. This thesis presents measured thermal conductivities, mainly on clay- and mudstone. The measured values are compared with values obtained by using thermal conductivity models. Some new thermal conductivity models are developed based on the measured values. The values obtained are less than most previously published values. In a study of unconsolidated sediments a constant deviation was found between thermal conductivities measured with a needle probe and a divided bas apparatus. Accepted thermal conductivity models based on the geometric mean model fail to predict the thermal conductivity of clay- and mudstone. Despite this, models based on the geometric mean model, where the effect of porosity is taken account of by the geometric mean equation, seem to be the best. Existing models underestimate the textural influence on the thermal conductivity of clay- and mudstone. The grain size was found to influence the thermal conductivity of artificial quartz samples. The clay mineral content seems to be a point of uncertainty in both measuring and modelling thermal conductivity. A good universal thermal conductivity model must include many mineralogical and textural factors. Since this is difficult, different models restricted to specific sediment types and textures are suggested to be the best solution to obtain realistic estimates applicable in basin modelling. 243 refs., 64 figs., 31 tabs.

  18. Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory

    Science.gov (United States)

    Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert

    2018-02-01

    Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.

  19. Thermal-Conductivity Characterization of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells and Electrolyzers Under Mechanical Loading

    Science.gov (United States)

    Hamour, M.; Garnier, J. P.; Grandidier, J. C.; Ouibrahim, A.; Martemianov, S.

    2011-05-01

    Accurate information on the temperature field and associated heat transfer rates is particularly important for proton exchange membrane fuel cells (PEMFC) and PEM electrolyzers. An important parameter in fuel cell and electrolyzer performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL) which is a solid porous medium. Usually, this parameter is introduced in modeling and performance analysis without taking into account the dependence of the GDL thermal conductivity λ (in W · m-1 · K-1) on mechanical compression. Nevertheless, mechanical stresses arising in an operating system can change significantly the thermal conductivity and heat exchange. Metrology allowing the characterization of the GDL thermal conductivity as a function of the applied mechanical compression has been developed in this study using the transient hot-wire technique (THW). This method is the best for obtaining standard reference data in fluids, but it is rarely used for thermal-conductivity measurements in solids. The experiments provided with Quintech carbon cloth indicate a strong dependence (up to 300%) of the thermal conductivity λ on the applied mechanical load. The experiments have been provided in the pressure range 0 cloth layers have been provided. The conducted experiments indicate the independence of the measured thermal conductivity on the number of GDL layers and, thus, justify the robustness of the developed method and apparatus for this type of application.

  20. On the thermal stability of a radiating plasma subject to nonlocal thermal conduction. I - Linear analysis

    Science.gov (United States)

    Chun, E.; Rosner, R.

    1993-01-01

    We study the linear stability of an optically thin uniform radiating plasma subject to nonlocal heat transport. We derive the dispersion relation appropriate to this problem, and the marginal wavenumbers for instability. Our analysis indicates that nonlocal heat transport acts to reduce the stabilizing influence of thermal conduction, and that there are critical values for the electron mean free path such that the plasma is always unstable. Our results may be applied to a number of astrophysical plasmas, one such example being the halos of clusters of galaxies.

  1. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor.

    Science.gov (United States)

    Liang, Xin M; Sekar, Praveen K; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-05-20

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to -40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments.

  2. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    Science.gov (United States)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-01-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037

  3. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods

    Directory of Open Access Journals (Sweden)

    Insun Jo

    2015-05-01

    Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  4. Estimation of effective thermal conductivity enhancement using foam in heat exchangers based on a new analytical model

    Directory of Open Access Journals (Sweden)

    Maryam Haghighi

    2010-03-01

    Full Text Available Thermal performance of open-cell metal foam has been investigated under low Reynolds number by comparing the heat transfer coefficient and thermal conductivity for the flow through a packed channel of high porosity metal foam to that of an open channel. In the case of Al-Air at porosity 0.971, the ratio of heat transfer coefficients is estimated to be 18.5 when the thermal conductivity ratio of foam matrix to fluid conductivity is 130. This demonstrates that the useusing of foam in the structure of conventional air coolers increases effective thermal conductivity, heat transfer coefficient and thermal performance considerably. To overcome the drawbacks of previous models, a new model to describe the effective thermal conductivity of foam was developed. The model estimates effective thermal conductivity based on a non-isotropic tetrakaidecahedron unit-cell and is not confined only to isotropic cases as in previous models. Effective thermal conductivity is a function of foam geometrical characteristics, including ligament length (L, length of the sides of horizontal square faces (b, inclination angle that defines the orientation of the hexagonal faces with respect to the rise direction (θ, porosity, size, shape of metal lump at ligament intersections and heat transfer direction. Changing dimensionless foam ligament radius or height (d from 0.1655 to 0.2126 for Reticulated vitreous foam -air (RVC-aAir at θ=π/4 and dimensionless spherical node diameter (e equal to 0.339, raises effective thermal conductivity by 31%. Moreover, increasing θ from π/4 to 0.4π for RVC-aAir at d=0.1655 and e=0.339 enhances effective thermal conductivity by 33%.

  5. Thermophysical properties of fluids: dynamic viscosity and thermal conductivity

    Science.gov (United States)

    Latini, G.

    2017-11-01

    Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected

  6. Evaluation of different measurements for effective thermal conductivity of fibrous materials

    Directory of Open Access Journals (Sweden)

    Tian Ming-Wei

    2014-01-01

    Full Text Available Effective thermal conductivity is generally recognized as the intrinsic factor to reveal the thermal responses of fibrous materials. Here, two typical measurements, the step-wise transient method and the guarded hot plate method, were utilized to identify their feasibility for the effective thermal conductivity of fibrous materials (non-woven fabric and twill fabric with different stacking layers.

  7. In-situ thermal conductivity estimates in the Western Niger Delta ...

    African Journals Online (AJOL)

    An estimate of thermal conductivity was carried out in 21 well-spaced petroleum wells in the western Niger Delta using sonic and continuous temperature logs. The temperature logs were measured after the wells had attained thermal equilibrium as a result of drilling activities. Regional thermal conductivity varies from ...

  8. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling

    Science.gov (United States)

    Ren, Zongqing; Lee, Jaeho

    2018-01-01

    Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.

  9. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling.

    Science.gov (United States)

    Ren, Zongqing; Lee, Jaeho

    2018-01-26

    Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.

  10. Phase-change techniques for finite element conduction codes

    Energy Technology Data Exchange (ETDEWEB)

    Lemmon, E C

    1979-01-01

    A method employing integral averaging techniques is proposed to aid conduction finite element code users in approximating multidimensional phase change problems such as: (a) liquid solidification under action of surface heat removal such as ice production or solidification of a casting, (b) thermal/chemical decomposition of a solid without removal of degraded material from the remaining virgin material such as charring of wood or reinforced plastics, (c) ablation of solids where the products of decomposition are removed on formation such as melting glass or subliming teflon. Of prime interest to the method is the determination of the amount of material solidified, decomposed, melted or sublimed and the location of the phase change interface as a function of time as it moves through the one-, two-, or three-dimensional finite element mesh. As the interface moves through each element, the energy involved in the phase change process and the difference in heat capacity and conductivity of two phases is accounted for. A method is also included to accommodate convective heat transfer at the moving phase change interface.

  11. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.

    Science.gov (United States)

    Liang, Xin M; Ding, Weiping; Chen, Hsiu-hung; Shu, Zhiquan; Zhao, Gang; Zhang, Hai-feng; Gao, Dayong

    2011-10-01

    Obtaining accurate thermal properties of biomaterials plays an important role in the field of cryobiology. Currently, thermal needle, which is constructed by enclosing a manually winded thin metal wire with an insulation coating in a metallic sheath, is the only available device that is capable of measuring thermal conductivity of biomaterials. Major drawbacks, such as macroscale sensor size, lack of versatile format to accommodate samples with various shapes and sizes, neglected effects of heat transfer inside the probe and thermal contact resistance between the sensing element and the probe body, difficult to mass produce, poor data repeatability and reliability and labor-intense sensor calibration, have significantly reduced their potential to be an essential measurement tool to provide key thermal property information of biological specimens. In this study, we describe the development of an approach to measure thermal conductivity of liquids and soft bio-tissues using a proof-of-concept MEMS based thermal probe. By employing a microfabricated closely-packed gold wire to function as the heater and the thermistor, the presented thermal sensor can be used to measure thermal conductivities of fluids and natural soft biomaterials (particularly, the sensor may be directly inserted into soft tissues in living animal/plant bodies or into tissues isolated from the animal/plant bodies), where other more standard approaches cannot be used. Thermal standard materials have been used to calibrate two randomly selected thermal probes at room temperature. Variation between the obtained system calibration constants is less than 10%. By incorporating the previously obtained system calibration constant, three randomly selected thermal probes have been successfully utilized to measure the thermal conductivities of various solutions and tissue samples under different temperatures. Overall, the measurements are in agreement with the recommended values (percentage error less than 5

  12. Determination of the Local Thermal Conductivity of Functionally Graded Materials by a Laser Flash Method

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... by scanning them point by point and determining the thermal conductivity as a function of the spatial dimensions. The method proves to be repeatable and of reasonable accuracy and can be used to determine the local thermal properties on a scale of millimeters. In this study, the method was successfully...... applied to create a map of thermal conductivity of a functionally graded material sample....

  13. Conductive heat flows in research drill holes in thermal areas of Yellowstone National Park, Wyoming

    Science.gov (United States)

    White, Donald E.

    1978-01-01

    In convection systems with boiling springs, geysers, fumaroles, and other thermal features, the modes of heat flow become increasingly complex as a single liquid phase at depth rises into the near-surface environment where heat flows by convection of liquid and vapor and by conduction in high thermal gradients. This paper is mainly concerned with the changing patterns of conductive heat flow as related to channels of subsurface convective flow and to horizontal distance from spring vents. The primary data consist of temperatures measured in 13 cored drill holes as drilling progressed. Some temperatures plot convincingly on straight-line segments that suggest conductive gradients in rocks of nearly constant thermal conductivity. Temperature gradients and the conductive component of total heat flow nearly always decrease drastically downward; the gradient and heat flow of the lowest depth interval recognized in each hole is commonly only about 10 percent of the highest interval; the changes in gradient at interval boundaries are commonly interpreted as channels of near-boiling water or of cooler meteoric water. Temperature reversals are probably related to inflowing cooler water rather than to transient effects from recent changes. Some temperatures plot on curved segments that probably indicate dispersed convective upflow and boiling of water in ground penetrated by the drill hole. Other similar curved segments are too low in temperature for local boiling and are probably on the margins of hot upflow zones, reflecting conductive cooling of flowing water. The conifers of Yellowstone National Park (mainly lodgepole pine) seem to have normal growth characteristics where near-surface conductive heat flow is below about 200 heat-flow units (1 HFU = 10-6 cal/cm2 = 41.8 mW/m2). Most areas of abnormal "stunted" trees (low ratio of height to base diameter, and low density of spacing) are characterized by conductive heat flows of about 250 to 350 HFU. The critical factor

  14. Significant Electronic Thermal Transport in the Conducting Polymer Poly(3,4‐ethylenedioxythiophene)

    DEFF Research Database (Denmark)

    Weathers, Annie; Khan, Zia Ullah; Brooke, Robert

    2015-01-01

    Suspended microdevices are employed to measure the in-plane electrical conductivity, thermal conductivity, and Seebeck coefficient of suspended poly(3,4-ethylenedioxythiophene) (PEDOT) thin films. The measured thermal conductivity is higher than previously reported for PEDOT and generally increas...... with the electrical conductivity. The increase exceeds that predicted by the Wiedemann–Franz law for metals and can be explained by significant electronic thermal transport in PEDOT....

  15. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.

    Science.gov (United States)

    Khadem, Masoud H; Wemhoff, Aaron P

    2013-02-28

    Non-equilibrium molecular dynamics (NEMD) simulations are used to investigate the thermal conductivity of herringbone graphite nanofibers (GNFs) at room temperature by breaking down the axial and transverse conductivity values into intralayer and interlayer components. The optimized Tersoff potential is used to account for intralayer carbon-carbon interactions while the Lennard-Jones potential is used to model the interlayer carbon-carbon interactions. The intralayer thermal conductivity of the graphene layers near room temperature is calculated for different crease angles and number of layers using NEMD with a constant applied heat flux. The edge effect on a layer's thermal conductivity is investigated by computing the thermal conductivity values in both zigzag and armchair directions of the heat flow. The interlayer thermal conductivity is also predicted by imposing hot and cold Nosé-Hoover thermostats on two layers. The limiting case of a 90° crease angle is used to compare the results with those of single-layer graphene and few-layer graphene. The axial and transverse thermal conductivities are then calculated using standard trigonometric conversions of the calculated intralayer and interlayer thermal conductivities, along with calculations of few-layer graphene without a crease. The results show a large influence of the crease angle on the intralayer thermal conductivity, and the saturation of thermal conductivity occurs when number of layers is more than three. The axial thermal conductivity, transverse thermal conductivity in the crease direction, and transverse thermal conductivity normal to the crease for the case of a five-layer herringbone GNF with a 45° crease angle are calculated to be 27 W∕m K, 263 W∕m K, and 1500 W∕m K, respectively, where the axial thermal conductivity is in good agreement with experimental measurements.

  16. Phase change thermal energy storage material

    Science.gov (United States)

    Benson, David K.; Burrows, Richard W.

    1987-01-01

    A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.

  17. High-Conductance Thermal Interfaces Based on Carbon Nanotubes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel thermal interface material (TIM) that is based on an array of vertical carbon nanotubes (CNTs) for high heat flux applications. For...

  18. High-Conductance Thermal Interfaces Based on Carbon Nanotubes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The new devices and missions to achieve the aims of the NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and...

  19. Thermal conductivity of snow measured by three independent methods and anisotropy considerations

    Directory of Open Access Journals (Sweden)

    F. Riche

    2013-02-01

    Full Text Available The thermal conductivity of snow determines the temperature gradient, and by this, it has a direct effect on the rate of snow metamorphism. It is therefore a key property of snow. However, thermal conductivities measured with the transient needle probe and the steady-state, heat flux plate differ. In addition, the anisotropy of thermal conductivity plays an important role in the accuracy of thermal conductivity measurements. In this study, we investigated three independent methods to measure snow thermal conductivity and its anisotropy: a needle probe with a long heating time, a guarded heat flux plate, and direct numerical simulation at the microstructural level of the pore and ice structure. The three methods were applied to identical snow samples. We analyzed the consistency and the difference between these methods. As already shown in former studies, we observed a distinct difference between the anisotropy of thermal conductivity in small rounded grains and in depth hoar. Indeed, the anisotropy between vertical and horizontal thermal conductivity components ranges between 0.5–2. This can cause a difference in thermal conductivity measurements carried out with needle probes of up to –25 % to +25 % if the thermal conductivity is calculated only from a horizontally inserted needle probe. Based on our measurements and the comparison of the three methods studied here, the direct numerical simulation is the most reliable method, as the tensorial components of the thermal conductivity can be calculated and the corresponding microstructure is precisely known.

  20. High Thermal Conductivity Functionally Graded Heat Sinks for High Power Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase I program proposes the development of a high thermal conductivity (400 W/mK), low coefficient of thermal expansion (7-10 ppm/?K), and light...

  1. CTE-Matched, Liquid-Cooled, High Thermal Conductivity Heat Sink Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a CTE-matched, liquid-cooled, high thermal conductivity heat sink for use in spacecraft thermal management applications. The material...

  2. Palaeointensity, core thermal conductivity and the unknown age of the inner core

    Science.gov (United States)

    Smirnov, Aleksey V.; Tarduno, John A.; Kulakov, Evgeniy V.; McEnroe, Suzanne A.; Bono, Richard K.

    2016-05-01

    Data on the evolution of Earth's magnetic field intensity are important for understanding the geodynamo and planetary evolution. However, the paleomagnetic record in rocks may be adversely affected by many physical processes, which must be taken into account when analysing the palaeointensity database. This is especially important in the light of an ongoing debate regarding core thermal conductivity values, and how these relate to the Precambrian geodynamo. Here, we demonstrate that several data sets in the Precambrian palaeointensity database overestimate the true paleofield strength due to the presence of non-ideal carriers of palaeointensity signals and/or viscous re-magnetizations. When the palaeointensity overestimates are removed, the Precambrian database does not indicate a robust change in geomagnetic field intensity during the Mesoproterozoic. These findings call into question the recent claim that the solid inner core formed in the Mesoproterozoic, hence constraining the thermal conductivity in the core to `moderate' values. Instead, our analyses indicate that the presently available palaeointensity data are insufficient in number and quality to constrain the timing of solid inner core formation, or the outstanding problem of core thermal conductivity. Very young or very old inner core ages (and attendant high or low core thermal conductivity values) are consistent with the presently known history of Earth's field strength. More promising available data sets that reflect long-term core structure are geomagnetic reversal rate and field morphology. The latter suggests changes that may reflect differences in Archean to Proterozoic core stratification, whereas the former suggest an interval of geodynamo hyperactivity at ca. 550 Ma.

  3. Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth

    DEFF Research Database (Denmark)

    Kerdsongpanya, Sit; Hellman, Olle; Sun, Bo

    2017-01-01

    The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since many modern technologies require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity, which takes into account...

  4. Thermal conductivity of sedimentary rocks as function of Biot’s coefficient

    DEFF Research Database (Denmark)

    Orlander, Tobias; Pasquinelli, Lisa; Asmussen, J.J.

    2017-01-01

    A theoretical model for prediction of effective thermal conductivity with application to sedimentary rocks is presented. Effective thermal conductivity of sedimentary rocks can be estimated from empirical relations or theoretically modelled. Empirical relations are limited to the empirical...... conductivity of solids is typically orders of magnitude larger than that of fluids, grain contacts constituting the solid connectivity governs the heat transfer of sedi-mentary rocks and hence should be the basis for modelling effective thermal con-ductivity. By introducing Biot’s coefficient, α, we propose (1...... – α) as a measure of the solid connectivity and show how effective thermal conductivity of water saturated and dry sandstones can be modelled....

  5. Thermal effect of climate change on groundwater-fed ecosystems

    Science.gov (United States)

    Burns, Erick; Zhu, Yonghui; Zhan, Hongbin; Manga, Michael; Williams, Colin F.; Ingebritsen, Steven E.; Dunham, Jason

    2017-01-01

    Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land-surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.

  6. Thermal effect of climate change on groundwater-fed ecosystems

    Science.gov (United States)

    Burns, Erick R.; Zhu, Yonghui; Zhan, Hongbin; Manga, Michael; Williams, Colin F.; Ingebritsen, Steven E.; Dunham, Jason B.

    2017-04-01

    Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land-surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.

  7. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures.

    Science.gov (United States)

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100 °C during heating to ~800 °C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m(-1) K(-1). The surrogate aggregates effectively reduce the conductivity to ~1.25 W m(-1) K(-1) at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  8. Effect of Surrogate Aggregates on the Thermal Conductivity of Concrete at Ambient and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Tae Sup Yun

    2014-01-01

    Full Text Available The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100°C during heating to ~800°C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m−1 K−1. The surrogate aggregates effectively reduce the conductivity to ~1.25 W m−1 K−1 at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  9. Thermal Conductivity and Raman Spectra of Carbon Fibers

    Science.gov (United States)

    Liu, Xuebo; Dong, Hua; Li, Yan; Mei, Ning

    2017-10-01

    Due to its unique physical properties, carbon fiber (CF) has been widely studied for extensive application in aerospace and machinery. In this study, the thermal diffusivity of three kinds of CF sample is characterized by the transient electrothermal technique at room temperature. By subtracting the effect of radiative losses, the effective thermal diffusivity of CFs can be calculated as 6.46× 10^{-6} m2\\cdot s^{-1}, 6.58× 10^{-6} m2\\cdot s^{-1} and 2.01× 10^{-4} m2\\cdot s^{-1}, respectively. For the first time, the emissivity coefficient of carbon fiber is calibrated as 0.78. Combined with Raman spectra and phonon scattering, we found that the better crystalline structure and low defect in CF have an obvious impact on its thermal diffusivity.

  10. A molecular dynamics study of stiffness-dependent thermal conductivity of graphene

    Science.gov (United States)

    Huang, Jianzhang; Han, Qiang

    2017-03-01

    Non-equilibrium molecular dynamics (NEMD) simulations is used to investigate the effect of support stiffness on thermal conductivity property based on the ‘graphene-springs’ model. It shows that the support stiffness greatly influences the thermal conductivity. Thermal conductivity of graphene decreases nonlinearly as the support stiffness increases. The temperature stability of thermal conductivity property of graphene can be improved by the support stiffness. For patterned stiffness supported stripe, thermal conductivity is significantly dependent on the patterned area, angle and stripe distribution. The work in this paper reveals the possibility for designing and controlling of thermal conduction of graphene by using support stiffness, which is beneficial to the application of graphene in nanoscale devices.

  11. Molecular Dynamics Simulations of the Thermal Conductivity of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Osman, M.; Srivastava, Deepak; Govindan,T. R. (Technical Monitor)

    2000-01-01

    Carbon nanotubes (CNT) have very attractive electronic, mechanical. and thermal properties. Recently, measurements of thermal conductivity in single wall CNT mats showed estimated thermal conductivity magnitudes ranging from 17.5 to 58 W/cm-K at room temperature. which are better than bulk graphite. The cylinderical symmetry of CNT leads to large thermal conductivity along the tube axis, additionally, unlike graphite. CNTs can be made into ropes that can be used as heat conducting pipes for nanoscale applications. The thermal conductivity of several single wall carbon nanotubes has been calculated over temperature range from l00 K to 600 K using non-equilibrium molecular dynamics using Tersoff-Brenner potential for C-C interactions. Thermal conductivity of single wall CNTs shows a peaking behavior as a function of temperature. Dependence of the peak position on the chirality and radius of the tube will be discussed and explained in this presentation.

  12. The Role of Thermal Conduction in Tearing Mode Theory

    CERN Document Server

    Connor, J W; Hastie, R J; Liu, Y Q

    2014-01-01

    The role of anisotropic thermal diffusivity on tearing mode stability is analysed in general toroidal geometry. A dispersion relation linking the growth rate to the tearing mode stability parameter, Delta, is derived. By using a resistive MHD code, modified to include such thermal transport, to calculate tearing mode growth rates, the dispersion relation is employed to determine Delta in situations with finite plasma pressure that are stabilised by favourable average curvature in a simple resistive MHD model. We also demonstrate that the same code can also be used to calculate the basis-functions [C J Ham, et al, Plasma Phys. Control. Fusion 54 (2012) 105014] needed to construct Delta.

  13. Influence of thermal effects on stability of nanoscale films and filaments on thermally conductive substrates

    Science.gov (United States)

    Seric, Ivana; Afkhami, Shahriar; Kondic, Lou

    2018-01-01

    We consider fluid films and filaments of nanoscale thickness on thermally conductive substrates exposed to external heating and discuss the influence of the variation of material parameters with temperature on film stability. Particular focus is on metal films exposed to laser irradiation. Due to the short length scales involved, the absorption of heat in the metal is directly coupled to the film evolution, since the absorption length and the film thickness are comparable. Such a setup requires self-consistent consideration of fluid mechanical and thermal effects. We approach the problem via volume-of-fluid-based simulations that include destabilizing liquid metal-solid substrate interaction potentials. These simulations couple fluid dynamics directly with the spatio-temporal evolution of the temperature field both in the fluid and in the substrate. We focus on the influence of the temperature variation of material parameters, in particular of surface tension and viscosity. Regarding variation of surface tension with temperature, the main finding is that while the Marangoni effect may not play a significant role in the considered setting, the temporal variation of surface tension (modifying normal stress balance) is significant and could lead to complex evolution including oscillatory evolution of the liquid metal-air interface. Temperature variation of film viscosity is also found to be relevant. Therefore, the variations of surface tensions and viscosity could both influence the emerging wavelengths in experiments. By contrast, the filament geometry is found to be much less sensitive to a variation of material parameters with temperature.

  14. CORRELATIONS OF THERMAL CONDUCTIVITY BETWEEN STRATIGRAPHIC UNITS IN THE BROADER AREA OF ZAGREB

    OpenAIRE

    Miron Kovačić

    2007-01-01

    Thermal conductivity (KTV) of geological formations is one of the parameters responsible for the propagation of the heat under the earth surface. During geothermal investigations in the broader area of the Croatian capital of Zagreb the thermal conductivity was measured on the rock samples from the surface and the boreholes. The results of the measurements are presented in this work and used as a basis for calculations of the thermal conductivity of distinct geological formations within the i...

  15. Chirality- and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study

    OpenAIRE

    Zhong, Wei-rong; Zhang, Mao-Ping; Ai, Bao-quan; Zheng, Dong-Qin

    2011-01-01

    The thermal conductivity of graphene nanoribbons (layer from 1 to 8 atomic planes) is investigated by using the nonequilibrium molecular dynamics method. We present that the room-temperature thermal conductivity decays monotonically with the number of the layers in few-layer graphene. The superiority of zigzag graphene in thermal conductivity is only available in high temperature region and disappears in multi-layer case. It is explained that the phonon spectral shrink in high frequency induc...

  16. An empirical model for the thermal conductivity of compacted bentonite and a bentonite-sand mixture

    Science.gov (United States)

    Cho, Won-Jin; Lee, Jae-Owan; Kwon, Sangki

    2011-11-01

    The thermal conductivities of compacted bentonite and a bentonite-sand mixture were measured to investigate the effects of dry density, water content and sand fraction on the thermal conductivity. A single expression has been proposed to describe the thermal conductivity of the compacted bentonite and the bentonite-sand mixture once their primary parameters such as dry density, water content and sand fraction are known.

  17. Modeling of Cross-Plane Interface Thermal Conductance Between Graphene Nano-Ribbons (Postprint)

    Science.gov (United States)

    2014-09-19

    to the intrinsic thermal conductance across bi-layer graphene in the limit of no edges, i.e. η∼ 1 or large bi-layer graphene flakes . On the other...AFRL-RX-WP-JA-2014-0192 MODELING OF CROSS-PLANE INTERFACE THERMAL CONDUCTANCE BETWEEN GRAPHENE NANO- RIBBONS (POSTPRINT) Ajit K. Roy...MODELING OF CROSS-PLANE INTERFACE THERMAL CONDUCTANCE BETWEEN GRAPHENE NANO-RIBBONS (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER

  18. Controllable Thermal Rectification Realized in Binary Phase Change Composites

    Science.gov (United States)

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-03-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.

  19. Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy.

    Science.gov (United States)

    Hwang, Gwangseok; Kwon, Ohmyoung

    2016-03-07

    Using null-point scanning thermal microscopy (NP SThM), we have measured and analyzed the size dependence of the thermal conductivity of graphene. To do so, we rigorously re-derived the principal equation of NP SThM in terms of thermal property measurements so as to explain how this technique can be effectively used to quantitatively measure the local thermal resistance with nanoscale spatial resolution. This technique has already been proven to resolve the major problems of conventional SThM, and to quantitatively measure the temperature profile. Using NP SThM, we measured the variation in the thermal resistance of suspended chemical vapor deposition (CVD)-grown graphene disks with radii of 50-3680 nm from the center to the edge with respect to the size. By thoroughly analyzing the size dependence of the thermal resistance, we show that, with increasing graphene size, the ballistic resistance becomes more dominant in the thermal resistance experienced by a heat source of finite size and that the thermal conductivity experienced by such a heat source can even decrease. The results of this study reveal that the thermal conductivity of graphene detected by a heat source depends on the size of the heat source relative to that of the suspended graphene and on how the heat source and graphene are connected. As demonstrated in this study, NP SThM will be very useful for quantitative thermal characterization of not only CVD-grown graphene but also various other nanomaterials and nanodevices.

  20. Origin of ultra-low thermal conductivity in complex chalcogenides ...

    Indian Academy of Sciences (India)

    Kanishka Biswas

    Thermoelectrics (TE). The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. ... Thermoelectric materials allow the direct conversion between thermal and electrical energy. Coal, 41 %. Biomass & Waste. 23 % ... Luxury vehicle: Cool/warm seat. Direct Heat to Electricity ...

  1. Thermally stimulated discharge conductivity study of zinc oxide ...

    Indian Academy of Sciences (India)

    The present work deals with transmission electron microscopy (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermally stimulated discharge current (TSDC) study of inorganic metal oxide (ZnO) nanoparticles and its thermoelectrets. The thermoelectrets were prepared by applying different electric ...

  2. Dielectric Strength and Thermal Conductivity of Mineral Oil based Nanofluids

    NARCIS (Netherlands)

    Jin, H.

    2015-01-01

    In many applications of high voltage engineering, electrical and thermal stresses increase due to an ongoing decrease of product dimensions. In particular, the electrical industry is interested in applying nanofluids in transformers to be able to decrease transformer size and weight. The requirement

  3. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite.

    Science.gov (United States)

    Jang, Wanyoung; Chen, Zhen; Bao, Wenzhong; Lau, Chun Ning; Dames, Chris

    2010-10-13

    The thermal conductivity of graphene and ultrathin graphite (thickness from 1 to ∼20 layers) encased within silicon dioxide was measured using a heat spreader method. The thermal conductivity increases with the number of graphene layers, approaching the in-plane thermal conductivity of bulk graphite for the thickest samples, while showing suppression below 160 W/m-K at room temperature for single-layer graphene. These results show the strong effect of the encasing oxide in disrupting the thermal conductivity of adjacent graphene layers, an effect that penetrates a characteristic distance of approximately 2.5 nm (∼7 layers) into the core layers at room temperature.

  4. Spectral phonon scattering effects on the thermal conductivity of nano-grained barium titanate

    Science.gov (United States)

    Donovan, Brian F.; Foley, Brian M.; Ihlefeld, Jon F.; Maria, Jon-Paul; Hopkins, Patrick E.

    2014-08-01

    We study the effect of grain size on thermal conductivity of thin film barium titanate over temperatures ranging from 200 to 500 K. We show that the thermal conductivity of Barium Titanate (BaTiO3) decreases with decreasing grain size as a result of increased phonon scattering from grain boundaries. We analyze our results with a model for thermal conductivity that incorporates a spectrum of mean free paths in BaTiO3. In contrast to the common gray mean free path assumption, our findings suggest that the thermal conductivity of complex oxide perovskites is driven by a spectrum of phonons with varying mean free paths.

  5. Microstructure design and control for improvement of thermal conductivity of SiCf/SiC composites

    Science.gov (United States)

    Yoshida, Katsumi; Kajikawa, Satoshi; Yano, Toyohiko

    2013-09-01

    We focused on microstructure design and control of SiCf/SiC composite based on our fabrication process and the simple model of thermal conductivity of the SiCf/SiC composite, and the improvement of their thermal conductivity was investigated. Submicron-sized α-SiC with coarse α-SiC particles addition was used as the starting materials for SiC matrix layers between SiC fiber cloths because it showed higher thermal conductivity. The thermal conductivity of PCS-composite, EPD-composite and Untreated-composite was 18, 45 and 56 W/m K, respectively, and these values were much higher than that of the composites reported in our previous papers. Untreated composite is simply considered as a multilayered composite consisting of the SiC fiber layers with high thermal conductivity and the SiC matrix layers with high thermal conductivity. The experimental thermal conductivity of the Untreated composite well agreed with the theoretical thermal conductivity calculated by series model. Thermal conductivity of EPD-composite was lower than that of Untreated composite. In EPD-composite, the thermal conductivity of SiC fiber layers with the SiC matrix should be lower than that of SiC fibers themselves due to the SiC matrix with slightly lower thermal conductivity in SiC fiber cloths. The SiC matrix formed in SiC fiber cloths in PCS-composite was derived from PCS, and this matrix would show much lower thermal conductivity due to its low crystallinity. PCS-composite is considered as a multilayered composite consisting of the SiC fiber layers with very low thermal conductivity and the SiC matrix layers with high thermal conductivity, and thus the PCS-composite has low thermal conductivity. In this study, higher thermal conductivity of SiCf/SiC composite was successfully achieved by EPD process and using microstructure-controlled SiC matrix and polycrystalline SiC fibers.

  6. Investigation of the Effective Thermal Conductivity in Containment Wall of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Kunsan National University, Gunsan (Korea, Republic of)

    2016-05-15

    Many computational codes used for analyzing pressure of containment was developed such as CAP (Containment Analysis Package). These computational codes consider concrete conductivity instead of thermal conductivity of containment wall which have special geometry as heat sink. For precise analysis, effective thermal conductivity of containment wall has to be measured in individual NPPs. Thermal properties of concrete such as thermal conductivity have been investigated as function of chemical composition and temperature. Generally, containment of OPR1000 is constructed by Prestressed (PS) concrete-a composite material. Containment wall of OPR1000 is made up of steel liner, tendon, rebar and concrete as shown in Figure 1. Role of steel liner protects release of radioactive materials so called leak tightness. The effective thermal conductivity of containment wall in OPR1000 is analyzed by numerical tool (CFD) and compared with thermal conductivity models in composite solids. The effective thermal conductivity of containment wall of OPR1000 is investigated by numerical analysis (CFD). The thermal conductivity of reinforced concrete is 18.6% higher than that of concrete only. Several models were compared with CFD results. Rayleigh-Parallel liner model agrees well with CFD results. Experiment results will be compared with CFD result and models. CFD result was calculated in low steel volume fraction (0.0809) than that of OPR1000 (0.1043). The effective thermal conductivity in OPR1000 has slightly higher than CFD result because of different volume fraction.

  7. Application of Hot-wire Method for Measuring Thermal Conductivity of Fine Ceramics

    Directory of Open Access Journals (Sweden)

    Shangxi WANG

    2016-11-01

    Full Text Available Ceramic substrate is preferred in high density packaging due to its high electrical resistivity and moderate expansion coefficient. The thermal conductivity is a key parameter for packaging substrates. There are two common methods to measure the thermal conductivity, which are the hot-wire method and the laser-flash method. Usually, the thermal conductivities of porcelain is low and meet the measurement range of hot-wire method, and the measured value by hot-wire method has little difference with that by laser-flash method. In recent years, with the requirement of high-powered LED lighting, some kinds of ceramic substrates with good thermal conductivity have been developed and their thermal conductivity always measured by the means of laser flash method, which needs expensive instrument. In this paper, in order to detect the thermal conductivity of fine ceramic with convenience and low cost, the feasibility of replacing the laser flash method with hot wire method to measure thermal conductivity of ceramic composites was studied. The experiment results showed that the thermal conductivity value of fine ceramics measured by the hot-wire method is severely lower than that by the laser-flash method. However, there is a positive relationship between them. It is possible to measure the thermal conductivity of fine ceramic workpiece instantly by hot-wire method via a correction formula.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12543

  8. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  9. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.

    Science.gov (United States)

    Liu, Ying; Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G; Qiao, Rui

    2015-06-28

    Nanocomposites based on graphene dispersed in matrices of soft materials are promising thermal management materials. Their effective thermal conductivity depends on both the thermal conductivity of graphene and the conductance of the thermal transport across graphene-matrix interfaces. Here, we report on molecular dynamics simulations of the thermal transport across the interfaces between defected graphene and soft materials in two different modes: in the "across" mode, heat enters graphene from one side of its basal plane and leaves through the other side; in the "non-across" mode, heat enters or leaves graphene simultaneously from both sides of its basal plane. We show that as the density of vacancy defects in graphene increases from 0% to 8%, the conductance of the interfacial thermal transport in the "across" mode increases from 160.4 ± 16 to 207.8 ± 11 MW/m(2) K, while that in the "non-across" mode increases from 7.2 ± 0.1 to 17.8 ± 0.6 MW/m(2) K. The molecular mechanisms for these variations of thermal conductance are clarified using the phonon density of states and structural characteristics of defected graphene. On the basis of these results and effective medium theory, we show that it is possible to enhance the effective thermal conductivity of thermal nanocomposites by tuning the density of vacancy defects in graphene despite the fact that graphene's thermal conductivity always decreases as vacancy defects are introduced.

  10. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.

    Science.gov (United States)

    Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S

    2014-11-26

    Thermal properties of single wall carbon nanotube sheets (SWCNT-sheets) are of significant importance in the area of thermal management, as an isolated SWCNT possesses high thermal conductivity of the value about 3000 W m(-1) K(-1). Here we report an indirect method of estimating the thermal conductivity of a nanometer thick suspended SWCNT-sheet by employing the Raman scattering technique. Tube diameter size is examined by the transmissions electron microscopy study. The Raman analysis of the radial breathing modes predicts narrow diameter size distribution with achiral (armchair) symmetry of the constituent SWCNTs. From the first order temperature coefficient of the A1g mode of the G band along with the laser power dependent frequency shifting of this mode, the thermal conductivity of the suspended SWCNT-sheet is estimated to be about ∼18.3 W m(-1) K(-1). Our theoretical study shows that the thermal conductivity of the SWCNT-sheet has contributions simultaneously from the intratube and intertube thermal transport. The intertube thermal conductivity (with contributions from the van der Waals interaction) is merely around 0.7 W m(-1) K(-1), which is three orders smaller than the intratube thermal conductivity, leading to an abrupt decrease in the thermal conductivity of the SWCNT-sheet as compared to the reported value for isolated SWCNT.

  11. Experimental study on thermal conductivity of free-standing fluorinated single-layer graphene

    Science.gov (United States)

    Narasaki, Masahiro; Wang, Haidong; Nishiyama, Takashi; Ikuta, Tatsuya; Takahashi, Koji

    2017-08-01

    We measured the thermal conductivity of free-standing fluorinated single-layer graphene (FSLG) using a precise T-type method. Pristine graphene was fluorinated and suspended above the substrate using xenon difluoride gas. Compared with the thermal conductivity of pristine single-layer graphene (SLG) (˜2000 W/mK) previously measured by the same T-type method for the same original SLG, the FSLG exhibited a much lower thermal conductivity (˜80 W/mK) and a weak dependence of the thermal conductivity on nanohole defects. The experimental results suggest that the fluorine atoms and sp3 bonding in the FSLG strongly contributed to phonon scattering. The phonon scattering by the fluorine atoms and sp3 bonding has a dominant effect on the thermal conductivity decrease over the phonon scattering by nanohole defects. This study lays a foundation for the thermal measurement of 2D fluorinated materials and benefits future applications of fluorinated graphene.

  12. A review on measurement techniques of apparent thermal conductivity of nanofluids

    Science.gov (United States)

    Tsz Loong, Tang; Salleh, Hamidon

    2017-08-01

    Thermal conductivity of nanofluids has been extensively studied for a number of years because it is a very first evaluation of the heat transfer performance of nanofluids. However, not the single theoretical model predicts thermal conductivity of nanofluids accurately. Hence, different measurement techniques have been used to measure thermal conductivity of nanofluids. This paper focuses on different measurement techniques of thermal conductivity of nanofluids. The working principle, limitation and advantages of different measurement techniques have been discussed. The measurement techniques discussed in this paper included transient hot wire, transient plane source, 3-omega technique, steady-state parallel method, thermal comparator and laser flash method. Eventually, some suggestions have been made for improving the reliability of the measurement of thermal conductivity.

  13. Thermal conductivity of granular porous media: A pore scale modeling approach

    Directory of Open Access Journals (Sweden)

    R. Askari

    2015-09-01

    Full Text Available Pore scale modeling method has been widely used in the petrophysical studies to estimate macroscopic properties (e.g. porosity, permeability, and electrical resistivity of porous media with respect to their micro structures. Although there is a sumptuous literature about the application of the method to study flow in porous media, there are fewer studies regarding its application to thermal conduction characterization, and the estimation of effective thermal conductivity, which is a salient parameter in many engineering surveys (e.g. geothermal resources and heavy oil recovery. By considering thermal contact resistance, we demonstrate the robustness of the method for predicting the effective thermal conductivity. According to our results obtained from Utah oil sand samples simulations, the simulation of thermal contact resistance is pivotal to grant reliable estimates of effective thermal conductivity. Our estimated effective thermal conductivities exhibit a better compatibility with the experimental data in companion with some famous experimental and analytical equations for the calculation of the effective thermal conductivity. In addition, we reconstruct a porous medium for an Alberta oil sand sample. By increasing roughness, we observe the effect of thermal contact resistance in the decrease of the effective thermal conductivity. However, the roughness effect becomes more noticeable when there is a higher thermal conductivity of solid to fluid ratio. Moreover, by considering the thermal resistance in porous media with different grains sizes, we find that the effective thermal conductivity augments with increased grain size. Our observation is in a reasonable accordance with experimental results. This demonstrates the usefulness of our modeling approach for further computational studies of heat transfer in porous media.

  14. Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins

    Science.gov (United States)

    Mu, Mulan; Wan, Chaoying; McNally, Tony

    2017-12-01

    The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.

  15. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    OpenAIRE

    Xiaoliang Zhang; Yufei Gao; Yuli Chen; Ming Hu

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the...

  16. Modeling Interfacial Thermal Boundary Conductance of Engineered Interfaces

    Science.gov (United States)

    2014-08-31

    interface between materials 1 & 2 with an impurity mass mint , the energy transmission of all phonon frequencies is maximized when mint = (m1 +m2)/2...properties of the source and sink. Figure 5: Phonon transmission spectra, with curves corresponding to different impurity masses, mint (left plot) or...substrate [2, 34]. The thermal decay of each sample, measured by TDTR, was compared to a multilayer solution of the heat diffusion equation to extract

  17. Thermal conductivity of metal cloth heat pipe wicks

    Science.gov (United States)

    Phillips, J. R.; Chow, L. C.; Grosshandler, W. L.

    1987-08-01

    Experimental results on heat conduction through a metal cloth wick saturated with a liquid are determined and compared to results from both a new mean-gap-conductance model, based on the wick geometry, and the simple series model. The mean-gap-conductance model includes three-dimensional and contact conductance effects, and it evaluates the effects of the mesh geometry in addition to predicting the effective conductivity. This new model predicts the experimental data to within 10 percent, while the series model may be more than 40 percent in error. The present model is used to determine theoretical limits on the maximum and minimum conductivity enhancement as a function of geometric parameters, and to establish guidelines for the design of heat pipe wicks.

  18. Effective Thermal Conductivity of Graphite Materials with Cracks

    Science.gov (United States)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  19. Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity

    Science.gov (United States)

    Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.

    2011-01-01

    The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.

  20. The Conductive Thermal Control Material Systems for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II proposal is submitted to further develop and Validate materials and process engineering of the space environment stable, multifunctional conductive...

  1. Study on shear-induced thermal conductivity for heat transfer enhancement with non-Newtonian viscoelastic fluids

    Science.gov (United States)

    Lee, Dong-Ryul; Yoon, Hyun-Joong

    2013-09-01

    Shear-induced viscosity and thermal conductivity measurements were performed for viscoelastic fluids. This research was also designed to investigate the extent to which the thermal conductivity of viscoelastic fluids is affected by fluid motion under conditions in which it is known that the viscous properties undergo significant changes, and then the effect of the shear-induced thermal conductivity measured on the convective heat transfer enhancement for a heat exchanger system. It was also found experimentally that the thermal conductivity increased with shear rate for two polyacrylamide solutions of 1000 and 2000 wppm with order of 23%-43% and 17%-21%, respectively, depending on temperature (20-50 °C). The increase in the thermal conductivity with a shear rate was greater for lower concentration polyacrylamide solutions than for higher concentration ones, with a difference of 8%-22% depending on temperature range (20-50 °C). The convective heat transfer enhancement with the shear-induced thermal conductivity in the infinite rectangular duct was of the order of 41%-74% and 41%-52% over the entire temperature range (20-50 °C) of the two polyacrylamide solutions of 1000 and 2000 wppm, respectively.

  2. Double-Wall Nanotubes and Graphene Nanoplatelets for Hybrid Conductive Adhesives with Enhanced Thermal and Electrical Conductivity.

    Science.gov (United States)

    Messina, Elena; Leone, Nancy; Foti, Antonino; Di Marco, Gaetano; Riccucci, Cristina; Di Carlo, Gabriella; Di Maggio, Francesco; Cassata, Antonio; Gargano, Leonardo; D'Andrea, Cristiano; Fazio, Barbara; Maragò, Onofrio Maria; Robba, Benedetto; Vasi, Cirino; Ingo, Gabriel Maria; Gucciardi, Pietro Giuseppe

    2016-09-07

    Improving the electrical and thermal properties of conductive adhesives is essential for the fabrication of compact microelectronic and optoelectronic power devices. Here we report on the addition of a commercially available conductive resin with double-wall carbon nanotubes and graphene nanoplatelets that yields simultaneously improved thermal and electrical conductivity. Using isopropanol as a common solvent for the debundling of nanotubes, exfoliation of graphene, and dispersion of the carbon nanostructures in the epoxy resin, we obtain a nanostructured conducting adhesive with thermal conductivity of ∼12 W/mK and resistivity down to 30 μΩ cm at very small loadings (1% w/w for nanotubes and 0.01% w/w for graphene). The low filler content allows one to keep almost unchanged the glass-transition temperature, the viscosity, and the curing parameters. Die shear measurements show that the nanostructured resins fulfill the MIL-STD-883 requirements when bonding gold-metalized SMD components, even after repeated thermal cycling. The same procedure has been validated on a high-conductivity resin characterized by a higher viscosity, on which we have doubled the thermal conductivity and quadrupled the electrical conductivity. Graphene yields better performances with respect to nanotubes in terms of conductivity and filler quantity needed to improve the resin. We have finally applied the nanostructured resins to bond GaN-based high-electron-mobility transistors in power-amplifier circuits. We observe a decrease of the GaN peak and average temperatures of, respectively, ∼30 °C and ∼10 °C, with respect to the pristine resin. The obtained results are important for the fabrication of advanced packaging materials in power electronic and microwave applications and fit the technological roadmap for CNTs, graphene, and hybrid systems.

  3. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    Energy Technology Data Exchange (ETDEWEB)

    Owerre, S. A., E-mail: solomon@aims.ac.za [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, Cape Town 7945, South Africa and Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada)

    2016-07-28

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κ{sup xy} changes sign as a function of magnetic field or temperature on the kagome lattice, and κ{sup xy} changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κ{sup xy} has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T{sup 2} law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  4. From conduction to convection of thermally relativistic fluids between two parallel walls under gravitational force

    CERN Document Server

    Yano, Ryosuke

    2015-01-01

    We discuss the thermal conduction and convection of thermally relativistic fluids between two parallel walls under the gravitational force, both theoretically and numerically. In the theoretical discussion, we assume that the Lorentz contraction is ignored and spacetime is flat. For understanding of the thermal conduction and convection of thermally relativistic fluids between two parallel walls under the gravitational force, we solve the relativistic Boltzmann equation using the direct simulation Monte Carlo method. Numerical results indicate that strongly nonequilibrium states are formed in vicinities of two walls, which do not allow us to discuss the transition of the thermal conduction to the thermal convection of thermally relativistic fluids under the gravitational force in the framework of the relativistic Navier-Stokes-Fourier equation, when the flow-field is under the transition regime between the rarefied and continuum regimes, whereas such strongly nonequilibrium states are not formed in vicinities...

  5. Effect of functional groups on thermal conductivity of graphene/paraffin nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, Zabiholah; Araghi, Houshang, E-mail: araghi@aut.ac.ir

    2016-11-25

    In this paper, thermal conductivity of graphene/paraffin nanocomposite using micromechanical model has been studied. The behavior of thermal conductivity of nanocomposite as a function of volume fraction of graphene is studied. Then is shown that as the interfacial thermal resistance at the graphene–paraffin interface decreases, the thermal conductivity of nanocomposite increases. In order to reduce the interfacial thermal resistance, functional groups in the interface between graphene and paraffin are used. It can be observed that using functional groups of hydrogen, methyl and phenyl in the interface of nanocomposite, contributes to the improvement of the thermal conductivity. Moreover, as the rate of coverage of the surface of graphene with functional groups of H, CH{sub 3} and C{sub 6}H{sub 5} increases, the thermal conductivity of nanocomposite improves. - Highlights: • Thermal conductivity nanocomposite exhibit nonlinear behavior with volume faction. • Phenyl is better to form the thermal conductivity network in paraffin. • The thickness of interfacial layer can be obtained 12.75 nm.

  6. Tuning the Anisotropy of In-Plane Thermal Conduction in Thin Films by Modulating Thickness

    Science.gov (United States)

    Zeng, Yuqiang; Marconnet, Amy

    2018-01-01

    Anisotropy in thermal conductivity is promising for directing the heat-flow pathways in modern applications including thermal management of electronic devices. While some materials, like graphite, have strong anisotropy when comparing the in-plane thermal conductivity to cross-plane thermal conductivity, few naturally occurring materials have significant anisotropy within the in-plane directions, with an anisotropy ratio of ˜3 in few-layer black phosphorus being among the highest. In this Letter, we propose to control the thermal-conduction anisotropy by periodically modulating the thickness of thin films. Specifically, we model the thermal conduction in silicon-based thickness-modulated films using full three-dimensional simulations based on the phonon frequency-dependent Boltzmann transport equation. Our simulations demonstrate that phonon scattering with appropriately sized and shaped thickness-modulation features leads to a significant anisotropy in thermal conduction. In the diffusive regime, the same types of features lead to relatively low anisotropy (as calculated using the conventional heat diffusion equation). Thus, the enhanced thermal-conduction anisotropy with small features comes from the phonon scattering and size effects. Modulating the thickness of the thin films allows tuning the thermal-anisotropy ratio across an order of magnitude. Moreover, the proposed structures can be fabricated with currently available silicon-based nanofabrication techniques, without the need for exotic or expensive materials.

  7. Novel high refractive index, thermally conductive additives for high brightness white LEDs

    Science.gov (United States)

    Hutchison, Richard Stephen

    In prior works the inclusion of nanoparticle fillers has typically been shown to increase the thermal conductivity or refractive index of polymer nanocomposites separately. High refractive index zirconia nanoparticles have already proved their merit in increasing the optical efficiency of encapsulated light emitting diodes. However, the thermal properties of zirconia-silicone nanocomposites have yet to be investigated. While phosphor-converted light emitting diodes are at the forefront of solid-state lighting technologies for producing white light, they are plagued by efficiency losses due to excessive heating at the semiconductor die and in and around the phosphor particles, as well as photon scattering losses in the phosphor layer. It would then be of great interest if the high refractive index nanoparticles were found to both be capable of increasing the refractive index, thus reducing the optical scattering, and also the thermal conductivity, channeling more heat away from the LED die and phosphors, mitigating efficiency losses from heat. Thermal conductance measurements on unfilled and nanoparticle loaded silicone samples were conducted to quantify the effect of the zirconia nanoparticle loading on silicone nanocomposite thermal conductivity. An increase in thermal conductivity from 0.27 W/mK to 0.49 W/mK from base silicone to silicone with 33.5 wt% zirconia nanoparticles was observed. This trend closely mirrored a basic rule of mixtures prediction, implying a further enhancement in thermal conductivity could be achieved at higher nanoparticle loadings. The optical properties of transparency and light extraction efficiency of these composites were also investigated. While overall the zirconia nanocomposite showed good transparency, there was a slight decrease at the shorter wavelengths with increasing zirconia content. For longer wavelength LEDs, such as green or red, this might not matter, but phosphor-converted white LEDs use a blue LED as the photon source

  8. STRUCTURAL, THERMAL AND CONDUCTIVITY STUDIES OF PAN-LIBF4 POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    S. K. NIPPANI

    2016-11-01

    Full Text Available The polymer electrolytes with various compositions of Polyacrylonitrile/N-N Dimethylformamide (DMF/Lithiumtetrafluoroborate (LiBF4 are synthesized by solution casting technique. The free standing, clear and transparent 60-80 micron thick films are formed. The promising structural and complexation changes in polymer electrolytes have been explored by X-ray diffraction (XRD and Fourier transform infra-red (FTIR techniques. The thermal properties of all solid polymer electrolytes (SPE were studied by Thermo gravimetric Analyzer (TGA and Differential Thermal Analyzer (DTA. The electrical properties, i.e., ionic conductivity of solid polymer electrolytes has been measured as a function of temperature and composition. A Polymer membrane for 3 wt. % of salt has a conductivity of 3.06x10-4 mScm-1 at room temperature and 1.53x10-3 mScm-1 at 358K. The conductivity values increased with increase in temperature and offered an ionic conductivity of the order of 10-3 mScm-1 at temperatures 358K. Activation energy, enthalpy and entropy values are determined for all polymer complexes.

  9. Thermal conductivity of rare earth-uranium ternary oxides of the type RE 6UO 12

    Science.gov (United States)

    Krishnaiah, M. V.; Seenivasan, G.; Srirama Murti, P.; Mathews, C. K.

    2002-11-01

    The knowledge of thermophysical properties of the rare earth uranium ternary oxides of the type RE 6UO 12 (RE=La, Gd and Dy) is essential to understand the fuel performance during reactor operation and for modeling fuel behavior. Literature on the high temperature properties of this compound is not available and there is no report at all on the thermal conductivity of these compounds. Hence a study of thermal conductivity of this compound has been taken up. The compounds were synthesized by a solution combustion method using metal nitrates and urea. Thermal diffusivity of these compounds was measured by the laser flash method in the temperature range 673-1373 K. The specific heat data was computed using Neumann-Kopp's law. Thermal conductivity was calculated using the measured thermal diffusivity value, density and specific heat data for different temperatures. The temperature dependence of thermal conductivity and the implication of structural aspects of these compounds on the data are discussed here.

  10. Effect of Tensile Strain on Thermal Conductivity in Monolayer Graphene Nanoribbons: A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Zhongzhou Li

    2013-07-01

    Full Text Available The thermal conductivity of monolayer graphene nanoribbons (GNRs with different tensile strain is investigated by using a nonequilibrium molecular dynamics method. Significant increasing amplitude of the molecular thermal vibration, molecular potential energy vibration and thermal conductivity vibration of stretching GNRs were detected. Some 20%~30% thermal conductivity decay is found in 9%~15% tensile strain of GNR cases. It is explained by the fact that GNR structural ridges scatter some low-frequency phonons which pass in the direction perpendicular to the direction of GNR stretching which was indicated by a phonon density of state investigation.

  11. Evidence of second order transition induced by the porosity in the thermal conductivity of sintered metals

    Directory of Open Access Journals (Sweden)

    Aïmen E. Gheribi

    2014-07-01

    Full Text Available In this paper, using both experimental data and theoretical modelling, we investigate the degradation of the thermal conductivity of sintered metals due simultaneously to the grain boundary thermal resistance and the porosity. We show that the porosity dependence of the thermal conductivity of sintered material from spherical particle powder, exhibits a critical behaviour associated with a second order phase transition. An analytical model with a single parameter is proposed to describe the critical behaviour of the thermal conductivity of sintered metals versus porosity.

  12. Thermal Conductivity of Papua New Guinea Balsa Wood Measured using the Needle Probe Procedure

    OpenAIRE

    Nathan James Kotlarewski; Barbara Ozarska; Benson K. Gusamo

    2014-01-01

    A study was undertaken with the aim to determine thermal properties of balsa wood grown in plantations in Papua New Guinea. Thermal conductivity values were measured using the needle probe procedure according to ASTM D5334 (2008). The mean thermal conductivity results of balsa were in the range of 0.0381 W/mK to 0.0665 W/mK, similar to other materials currently used as insulators in the construction industry. A balsa sample with a density of 113 kg m3 had the lowest thermal conductivity value...

  13. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity.

    Science.gov (United States)

    Wu, Xufei; Varshney, Vikas; Lee, Jonghoon; Zhang, Teng; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-06-08

    Penta-graphene (PG) has been identified as a novel two-dimensional (2D) material with an intrinsic bandgap, which makes it especially promising for electronics applications. In this work, we use first-principles lattice dynamics and iterative solution of the phonon Boltzmann transport equation (BTE) to determine the thermal conductivity of PG and its more stable derivative, hydrogenated penta-graphene (HPG). As a comparison, we also studied the effect of hydrogenation on graphene thermal conductivity. In contrast to hydrogenation of graphene, which leads to a dramatic decrease in thermal conductivity, HPG shows a notable increase in thermal conductivity, which is much higher than that of PG. Considering the necessity of using the same thickness when comparing thermal conductivity values of different 2D materials, hydrogenation leads to a 63% reduction in thermal conductivity for graphene, while it results in a 76% increase for PG. The high thermal conductivity of HPG makes it more thermally conductive than most other semiconducting 2D materials, such as the transition metal chalcogenides. Our detailed analyses show that the primary reason for the counterintuitive hydrogenation-induced thermal conductivity enhancement is the weaker bond anharmonicity in HPG than PG. This leads to weaker phonon scattering after hydrogenation, despite the increase in the phonon scattering phase space. The high thermal conductivity of HPG may inspire intensive research around HPG and other derivatives of PG as potential materials for future nanoelectronic devices. The fundamental physics understood from this study may open up a new strategy to engineer thermal transport properties of other 2D materials by controlling bond anharmonicity via functionalization.

  14. FEM (finite element method) thermal modeling and thermal hydraulic performance of an enhanced thermal conductivity UO2/BeO composite fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenzhong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Purdue Univ., West Lafayette, IN (United States)

    2011-03-24

    An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (Finite Element Method) thermal models of enhanced thermal conductivity oxide nuclear fuels was developed. The results showed significant increase in the fuel thermal conductivities and have good agreement with the measured ones. The reactor performance analysis showed that the decrease in centerline temperature was 250-350K for the UO2-BeO composite fuel, and thus we can improve nuclear reactors' performance and safety, and high-level radioactive waste generation.

  15. An apparatus to measure the thermal conductivity of insulation panels at sub-ambient temperature

    NARCIS (Netherlands)

    Vanapalli, Srinivas; Klünder, T.; Hegeman, I.; Tolboom, A.H.; ter Brake, Hermanus J.M.

    2017-01-01

    A single-sided guarded-plate apparatus has been developed to measure the thermal conductivity of insulation panels of sub-meter size at sub-ambient temperatures ranging from 250 to 300 K. This apparatus allows thermal conductivity measurements to be performed at large temperature differences

  16. Monte Carlo analysis: error of extrapolated thermal conductivity from molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-07

    In this short report, we give an analysis of the extrapolated thermal conductivity of UO2 from earlier molecular dynamics (MD) simulations [1]. Because almost all material properties are functions of temperature, e.g. fission gas release, the fuel thermal conductivity is the most important parameter from a model sensitivity perspective [2]. Thus, it is useful to perform such analysis.

  17. Thermal conduction and heating by nonthermal electrons in the X-ray halo of M87

    Science.gov (United States)

    Tucker, W. H.; Rosner, R.

    1983-01-01

    A hydrostatic model for the X-ray halo around the giant elliptical galaxy M87 is presented. It is shown that by taking into account the processes of thermal conduction, and nonthermal heating by relativistic electrons in the radio lobes, a self-consistent hydrostatic model can be constructed. There is no need to invoke radiative accretion or the suppression of thermal conductivity.

  18. Thermally conductive and electrically insulating EVA composite encapsulant for solar photovoltaic (PV cell

    Directory of Open Access Journals (Sweden)

    2008-05-01

    Full Text Available A new way of improving the heat dissipating ability and PV efficiency of the solar cells by enhancing the thermal conductivity of the rear EVA layer was reported. The thermal conductivity, electrical resistivity, degree of curing of the EVA encapsulating composites and the PV efficiency of the solar cells are investigated. Filling with the thermal conductive fillers enhances the thermal conductivity of the composites effectively. The thermal conductivity of the filler influences significantly the thermal conductivity of the composite at high filler loading (greater than 20 vol%. Thermal conductivities of the composites filled with SiC, ZnO or BN reach respectively 2.85, 2.26 and 2.08 W/m•K at filler content of 60 vol%. The composites filled with ZnO or BN exhibit superior electrical insulation to those filled with SiC or Al2O3. ZnO can promote the cross-linking reaction of the EVA matrix. The test results indicated that the EVA composite encapsulating rear films filled with thermal conductive fillers are able to improve the PV efficiency and the heat dissipating ability of the solar cell effectively.

  19. Experimental and theoretical investigation of thermal conductivity of ethylene glycol containing functionalized single walled carbon nanotubes

    Science.gov (United States)

    Hemmat Esfe, Mohammad; Firouzi, Masoumeh; Afrand, Masoud

    2018-01-01

    In this paper, functionalized single walled carbon nanotubes (FSWCNTs) were suspended in Ethylene Glycol (EG) at different volume fractions. A KD2 pro thermal conductivity meter was used to measure the thermal conductivity in the temperature range from 30 to 50 °C. Nanofluids were prepared in solid volume fraction of 0.02, 0.05, 0.075, 0.1, 0.25, 0.5 and, 0.75%. Experimental results revealed that the thermal conductivity of the nanofluid is a non-linear function of temperature and SWCNTs volume fraction in the range of this investigation. Thermal conductivity increases with temperature and nanoparticles volume fraction as usual for this type of nanofluid. Maximum increment in thermal conductivity of the nanofluids was found to be about 45% at 0.75 vol fractions loading at 50 °C. Finally, a new correlation based on artificial neural network (ANN) approach has been proposed for SWCNT-EG thermal conductivity in terms of nanoparticles volume fraction and temperature using the experimental data. Used ANN approach has estimated the experimental values of thermal conductivity with the absolute average relative deviation lower than 0.9%, mean square error of 3.67 × 10-5 and regression coefficient of 0.9989. Comparison between the suggested techniques with various used correlation in the literatures established that the ANN approach is better to other presented methods and therefore can be proposed as a useful means for predicting of the nanofluids thermal conductivity.

  20. An overview of high thermal conductive hot press forming die material development

    Directory of Open Access Journals (Sweden)

    A.R. Zulhishamuddin

    2015-12-01

    Full Text Available Most of the automotive industries are using high strength steel components, which are produced via hot press forming process. This process requires die material with high thermal conductivity that increases cooling rate during simultaneous quenching and forming stage. Due to the benefit of high quenching rate, thermal conductive die materials were produced by adding carbide former elements. This paper presents an overview of the modification of alloying elements in tool steel for high thermal conductivity properties by transition metal elements addition. Different types of manufacturing processes involved in producing high thermal conductive materials were discussed. Methods reported were powder metallurgy hot press, direct metal deposition, selective laser melting, direct metal laser sintering and spray forming. Elements likes manganese, nickel, molybdenum, tungsten and chromium were proven to increase thermal conductivity properties. Thermal conductivity properties resulted from carbide network presence in the steel microstructure. To develop feasible and low cost hot press forming die material, casting of Fe-based alloy with carbide former composition can be an option. Current thermal conductivity properties of hot press forming die material range between 25 and 66 W/m.K. The wide range of thermal conductivity varies the mechanical properties of the resulting components and lifetime of HPF dies.

  1. Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying

    DEFF Research Database (Denmark)

    Tureson, Nina; Van Nong, Ngo; Fournier, Daniele

    2017-01-01

    samples exhibit a high carrier density of the order of 1021 cm−3. Inclusion of heavy transition metals into ScN enables the reduction in thermal conductivity by an increase in phonon scattering. The Nb inserted ScN thin films exhibited a thermal conductivity lower than the value of the ScN reference (10...

  2. Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating

    NARCIS (Netherlands)

    Overduin, P.; Kane, D.L.; Loon, van W.K.P.

    2006-01-01

    The thermal conductivity of the thin seasonally freezing and thawing soil layer in permafrost landscapes exerts considerable control over the sensitivity of the permafrost to energy and mass exchanges at the surface. At the same time, the thermal conductivity is sensitive to the state of the soil,

  3. A Device to Emulate Diffusion and Thermal Conductivity Using Water Flow

    Science.gov (United States)

    Blanck, Harvey F.

    2005-01-01

    A device designed to emulate diffusion and thermal conductivity using flowing water is reviewed. Water flowing through a series of cells connected by a small tube in each partition in this plastic model is capable of emulating diffusion and thermal conductivity that occurs in variety of systems described by several mathematical equations.

  4. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...

  5. Thermal conductivity of nonlinear waves in disordered chains

    Indian Academy of Sciences (India)

    2015-11-27

    dependent conductivity (). We find indications for ... Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany; Theory of Oscillations Department, University of Nizhniy Novgorod, Russia ...

  6. Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    George OGUNTALA

    2017-08-01

    Full Text Available In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the thermal performance of the porous fin increases. The numerical solutions by the Haar wavelet collocation method are in good agreement with the standard numerical solutions.

  7. Thermal Conductivity of Ten Selected Binary Alloy Systems.

    Science.gov (United States)

    1975-05-01

    105. Yelon, W. B. and Berger. L., liMagnon Heat Conduction and Mignon -Electron Stei in Fe-Ni,ŕ Phys. Rev. Led., 35( 17), 1207-10, 1970. 106. Yelon, W...B. and Berger, L.9 "’ Mignon Heat Conduction and Mignon scattering Pro- ceases in Iron- Nickel Alloys,ŕ Phys. Rev. B, 6(5), 1974- 85, 1972. 107

  8. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management.

    Science.gov (United States)

    Song, Na; Jiao, Dejin; Cui, Siqi; Hou, Xingshuang; Ding, Peng; Shi, Liyi

    2017-01-25

    An anisotropic thermally conductive film with tailorable microstructures and macroproperties is fabricated using a layer-by-layer (LbL) assembly of graphene oxide (GO) and nanofibrillated cellulose (NFC) on a flexible NFC substrate driven by hydrogen bonding interactions, followed by chemical reduction process. The resulting NFC/reduced graphene oxide (RGO) hybrid film reveals an orderly hierarchical structure in which the RGO nanosheets exhibit a high degree of orientation along the in-plane direction. The assembly cycles dramatically increase the in-plane thermal conductivity (λX) of the hybrid film to 12.6 W·m(-1)·K(-1), while the cross-plane thermal conductivity (λZ) shows a lower value of 0.042 W·m(-1)·K(-1) in the hybrid film with 40 assembly cycles. The thermal conductivity anisotropy reaches up to λX/λZ = 279, which is substantially larger than that of similar polymeric nanocomposites, indicating that the LbL assembly on a flexible NFC substrate is an efficient technique for the preparation of polymeric nanocomposites with improved heat conducting property. Moreover, the layered hybrid film composed of 1D NFC and 2D RGO exhibits synergetic mechnical properties with outstanding flexibility and a high tensile strength (107 MPa). The combination of anisotropic thermal conductivity and superior mechanical performance may facilitate the applications in thermal management.

  9. The Effect of Particle Size on Thermal Conduction in Granular Mixtures

    Science.gov (United States)

    Lee, Junghwoon; Yun, Tae Sup; Choi, Sung-Uk

    2015-01-01

    Shredded rubber tire is a geomaterial that is potentially useful in environmental and engineering projects. Here, we study the effect of particle size ratio on the thermal conductivity of granular mixtures containing rubber tire particles. Glass beads were mixed at various volume fractions with rubber particles of varying size. The 3D network model analysis using synthetic packed assemblies was used to determine the dominant factors influencing the thermal conduction of the mixtures. Results present that mixtures with varying size ratios exhibit different nonlinear evolutions of thermal conductivity values with mixture fractions. In particular, mixtures with large insulating materials (e.g., rubber particles) have higher thermal conduction that those with small ones. This is because the larger insulating particles allow better interconnectivity among the conductive particles, thereby avoiding the interruption of the thermal conduction of the conductive particles. Similar tests conducted with natural sand corroborate the significant effect of the relative size of the insulating particles. The 3D network model identifies the heterogeneity of local and effective thermal conductivity and the influence of connectivity among conductive particles. A supplementary examination of electrical conductivity highlights the significance of local and long-range connectivity on conduction paths in granular mixtures. PMID:28793419

  10. The Effect of Particle Size on Thermal Conduction in Granular Mixtures

    Directory of Open Access Journals (Sweden)

    Junghwoon Lee

    2015-07-01

    Full Text Available Shredded rubber tire is a geomaterial that is potentially useful in environmental and engineering projects. Here, we study the effect of particle size ratio on the thermal conductivity of granular mixtures containing rubber tire particles. Glass beads were mixed at various volume fractions with rubber particles of varying size. The 3D network model analysis using synthetic packed assemblies was used to determine the dominant factors influencing the thermal conduction of the mixtures. Results present that mixtures with varying size ratios exhibit different nonlinear evolutions of thermal conductivity values with mixture fractions. In particular, mixtures with large insulating materials (e.g., rubber particles have higher thermal conduction that those with small ones. This is because the larger insulating particles allow better interconnectivity among the conductive particles, thereby avoiding the interruption of the thermal conduction of the conductive particles. Similar tests conducted with natural sand corroborate the significant effect of the relative size of the insulating particles. The 3D network model identifies the heterogeneity of local and effective thermal conductivity and the influence of connectivity among conductive particles. A supplementary examination of electrical conductivity highlights the significance of local and long-range connectivity on conduction paths in granular mixtures.

  11. Accurate prediction of spectral phonon relaxation time and thermal conductivity of intrinsic and perturbed materials

    Science.gov (United States)

    Feng, Tianli

    The prediction of spectral phonon relaxation time, mean-free-path, and thermal conductivity can provide significant insights into the thermal conductivity of bulk and nanomaterials, which are important for thermal management and thermoelectric applications. We perform frequency-domain normal mode analysis (NMA) on pure bulk argon and pure bulk germanium. Spectral phonon properties, including the phonon dispersion, relaxation time, mean free path, and thermal conductivity of argon and germanium at different temperatures have been calculated. We find the dependence of phonon relaxation time tau on frequency o and temperature T vary from ~o-1.3 to ~o -1.8 and ~T-0.8 to ~T-1.8 for argon, and from ~o-0.6 to ~o-2.8 and ~T -0.4 to ~T-2.5 for germanium. The predicted thermal conductivities are in reasonable agreement with those obtained from the Green-Kubo method. We show, using both analytical derivations and numerical simulations, that the eigenvectors are necessary in time-domain NMA but unnecessary in frequency-domain NMA. The function of eigenvectors in frequency-domain NMA is to distinguish each phonon branch. Furthermore, it is found in solids not only the phonon frequency but also the phonon eigenvector can shift from harmonic lattice profile at finite temperature, due to thermal expansion and anharmonicity of interatomic potential. The anharmonicity of phonon eigenvector, different with that of frequency, only exists in the materials which contain at least two types of atoms and two different interatomic forces. Introducing anharmonic eigenvectors makes it easier to distinguish phonon branches in frequency-domain NMA although does not influence the results. For time-domain NMA, anharmonic eigenvectors make the results more accurate than harmonic eigenvectors. In addition, the phonon spectral relaxation time of defective silicon is calculated from frequency-domain NMA based on molecular dynamics. We show that the thermal conductivity k predicted from this approach

  12. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  13. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking.

    Science.gov (United States)

    Uetani, Kojiro; Ata, Seisuke; Tomonoh, Shigeki; Yamada, Takeo; Yumura, Motoo; Hata, Kenji

    2014-09-03

    Electrostatic flocking is applied to create an array of aligned carbon fibers from which an elastomeric thermal interface material (TIM) can be fabricated with a high through-plane thermal conductivity of 23.3 W/mK. A high thermal conductivity can be achieved with a significantly low filler level (13.2 wt%). As a result, this material retains the intrinsic properties of the matrix, i.e., elastomeric behavior. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Assessment of effective thermal conductivity in U–Mo metallic fuels with distributed gas bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang; Casella, Andrew M.; Lavender, Curt A.; Senor, David J.; Burkes, Douglas E.

    2015-07-15

    This work presents a numerical method to assess the relative impact of various microstructural features including grain sizes, nanometer scale intragranular gas bubbles, and larger intergranular gas bubbles in irradiated U–Mo metallic fuels on the effective thermal conductivity. A phase-field model was employed to construct a three-dimensional polycrystalline U–Mo fuel alloy with a given crystal morphology and gas bubble microstructures. An effective thermal conductivity “concept” was taken to capture the effect of polycrystalline structures and gas bubble microstructures with significant size differences on the thermal conductivity. The thermal conductivity of inhomogeneous materials was calculated by solving the heat transport equation. The obtained results are in reasonably good agreement with experimental measurements made on irradiated U–Mo fuel samples containing similar microstructural features. The developed method can be used to predict the thermal conductivity degradation in operating nuclear fuels if the evolution of microstructures is known during operation of the fuel.

  15. Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level

    Science.gov (United States)

    Guan, Kang; Wu, Jianqing; Cheng, Laifei

    2016-01-01

    The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130

  16. Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids

    Directory of Open Access Journals (Sweden)

    Wu Jiangtao

    2011-01-01

    Full Text Available Abstract The thermal conductivity of boron nitride/ethylene glycol (BN/EG nanofluids was investigated by transient hot-wire method and two abnormal phenomena was reported. One is the abnormal higher thermal conductivity enhancement for BN/EG nanofluids at very low-volume fraction of particles, and the other is the thermal conductivity enhancement of BN/EG nanofluids synthesized with large BN nanoparticles (140 nm which is higher than that synthesized with small BN nanoparticles (70 nm. The chain-like loose aggregation of nanoparticles is responsible for the abnormal increment of thermal conductivity enhancement for the BN/EG nanofluids at very low particles volume fraction. And the difference in specific surface area and aspect ratio of BN nanoparticles may be the main reasons for the abnormal difference between thermal conductivity enhancements for BN/EG nanofluids prepared with 140- and 70-nm BN nanoparticles, respectively.

  17. A laboratory study of the correlation between the thermal conductivity and electrical resistivity of soil

    Science.gov (United States)

    Wang, Jie; Zhang, Xiaopei; Du, Lizhi

    2017-10-01

    Thermal conductivity k (Wm- 1 K- 1) and electrical resistivity ρ (Ω·m) depend on common parameters such as grain size, dry density and saturation, allowing the finding of a relationship between both parameters. In this paper, we found a linear quantitative formula between thermal conductivity and electrical resistivity of soil. To accomplish this, we measured the thermal conductivity and electrical resistivity of 57 soil samples in the laboratory; samples included 8 reconstructed soils from the Changchun area (clay, silt, and sand) with approximately 7 different saturation levels. A linear relationship between thermal conductivity and electrical resistivity was found excluding the parameter of soil saturation, and the linear model was validated with undisturbed soils in Changchun area. To fully use this relationship (e.g., by imaging the thermal conductivity of soils with electrical resistivity tomography), further measurements with different soils are needed.

  18. On the Effective Thermal Conductivity of Frost Considering Mass Diffusion and Eddy Convection

    Science.gov (United States)

    Kandula, Max

    2010-01-01

    A physical model for the effective thermal conductivity of water frost is proposed for application to the full range of frost density. The proposed model builds on the Zehner-Schlunder one-dimensional formulation for porous media appropriate for solid-to-fluid thermal conductivity ratios less than about 1000. By superposing the effects of mass diffusion and eddy convection on stagnant conduction in the fluid, the total effective thermal conductivity of frost is shown to be satisfactorily described. It is shown that the effects of vapor diffusion and eddy convection on the frost conductivity are of the same order. The results also point out that idealization of the frost structure by cylindrical inclusions offers a better representation of the effective conductivity of frost as compared to spherical inclusions. Satisfactory agreement between the theory and the measurements for the effective thermal conductivity of frost is demonstrated for a wide range of frost density and frost temperature.

  19. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    Science.gov (United States)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  20. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.

    Science.gov (United States)

    Yang, Haiying; Tang, Yunqing; Gong, Jie; Liu, Yu; Wang, Xiaoliang; Zhao, Yanfang; Yang, Ping; Wang, Shuting

    2013-11-01

    A systematic investigation of the thermal conductivity of zigzag graphene nanoribbons (ZGNRs) doped with nitrogen and containing a vacancy defect was performed using reverse nonequilibrium molecular dynamics (RNEMD). The investigation showed that the thermal conductivity of the ZGNRs was significantly reduced by nitrogen doping. The thermal conductivity dropped rapidly when the nitrogen doping concentration was low. Also, the presence of a vacancy defect was found to significantly decrease the thermal conductivity. Initially, as the vacancy moved from the heat sink to the heat source, the phonon frequency and the phonon energy increased, and the thermal conductivity decreased. When the distance between the vacancy in the ZGNR and the edge of the heat sink reached 2.214 nm, tunneling began to occur, allowing high-frequency phonons to pass through the vacancies and transfer some energy. The curve of the thermal conductivity of the ZGNRs versus the vacancy position was found to be pan-shaped, with the thermal conductivity of the ZGNRs controlled by the phonon. These findings could be useful when attempting to control heat transfer on the nanoscale using GNR-based thermal devices.

  1. Tuning thermal conductance of CNT interface junction via stretching and atomic bonding

    Science.gov (United States)

    Liao, Dongmei; Chen, Wen; Zhang, Jingchao; Yue, Yanan

    2017-11-01

    In this work, various effects of stretching and bonding strength on the thermal transport at CNT junctions are comprehensively studied by classical molecular dynamics (MD) simulations. The modeling is performed on a typical parallel-aligned junction formed by two single-walled (10, 10) CNTs. The overlap length is the first condition we studied and it is found that thermal conductance is significantly increased from 1.00 to 11.76 nW K‑1 with overlap length from 0.982 to 6.877 nm. Surprisingly, the thermal conductance per unit overlap length is increased rather than a constant value. The van der Waals interaction in non-bonded CNTs has a positive correlation on thermal conductance, which means thermal conductance can be effectively enhanced by applied force in the inter-tube direction. In the axial direction, the applied force is an important condition to adjust thermal conductance at bonded junction. Results show that the thermal conductance for overlap length of 1.966 nm can be enhanced from 2.81 to 3.42 nW K‑1 at the initial stage because of the combined squeezing force. However, as applied force approaches the breaking value, the atomic bonding at the junction is greatly weakened with a rapidly dropping thermal conductance from 3.42 to 1.88 nW K‑1.

  2. Study of thermal conductivity enhancement of aqueous suspensions containing silver nanoparticles

    Science.gov (United States)

    Iyahraja, S.; Rajadurai, J. Selwin

    2015-05-01

    Nanofluids are prepared by dispersing polyvinylpyrrolidone coated silver nanoparticles in distilled water. The thermal conductivity of nanofluids is measured by KD2 Pro thermal analyzer which is based on transient hot wire method. The influence of size and concentration of nanoparticles, surfactant and temperature of suspensions on the enhancement of the thermal conductivity is analyzed. The experimental results show that the thermal conductivity of nanofluids increases with the decrease in the size and increase in the concentration of the nanoparticles. Even with low volume fraction of 0.1 % and 20 nm size of silver nanoparticles, a high thermal conductivity enhancement of 54 % has been achieved. The surfactant and the temperature have a significant effect on the thermal conductivity enhancement of the nanofluids. The increase in temperature of the nanofluid from 30oC to 60oC increases its thermal conductivity up to 69 % whereas the addition of surfactant lessens the thermal conductivity enhancement to 34.2% with polyvinylpyrrolidone and 31.5 % with sodium dodecyl sulfate. The experimental results are compared with the existing theoretical models.

  3. CORRELATIONS OF THERMAL CONDUCTIVITY BETWEEN STRATIGRAPHIC UNITS IN THE BROADER AREA OF ZAGREB

    Directory of Open Access Journals (Sweden)

    Miron Kovačić

    2007-12-01

    Full Text Available Thermal conductivity (KTV of geological formations is one of the parameters responsible for the propagation of the heat under the earth surface. During geothermal investigations in the broader area of the Croatian capital of Zagreb the thermal conductivity was measured on the rock samples from the surface and the boreholes. The results of the measurements are presented in this work and used as a basis for calculations of the thermal conductivity of distinct geological formations within the investigated area. It was found out that the values of the thermal conductivity of the rocks in the investigated area vary greatly. The measurements are within the well known scope for certain rock types. The thermal conductivity of the rocks from the Tertiary units corresponds with the average values being typical for such kind of rocks, while the basement carbonate rocks are characterized by the values being by 1 W/K-1m-1 higher than the average. After comparing the thermal conductivity of the stratigraphic units in the broader area of Zagreb it has been established that the values of the thermal conductivity of geological formations in the investigated area are also very different, and that they generally rise with their age. The relative relationships show that the Quaternary, Pliocene and Tertiary sedimentary rocks act as thermal insulators, while Triassic rocks behave as the heat conductor (the paper is published in Croatian.

  4. Measurements of thermal conductivity and the coefficient of thermal expansion for polysilicon thin films by using double-clamped beams

    Science.gov (United States)

    Liu, Haiyun; Wang, Lei

    2018-01-01

    In this paper, a test structure for simultaneously determining thermal conductivity and the coefficient of thermal expansion (CTE) of polysilicon thin film is proposed. The test structure consists of two double-clamped beams with different lengths. A theoretical model for extracting thermal conductivity and CTE based on electrothermal analysis and resonance frequency approach is developed. Both flat and buckled beams are considered in the theoretical model. The model is confirmed by finite element software ANSYS. The test structures are fabricated by surface micromachined fabrication process. Experiments are carried out in our atmosphere. Thermal conductivity and CTE of polysilicon thin film are obtained to be (29.96  ±  0.92) W · m · K‑1 and (2.65  ±  0.03)  ×  10‑6 K‑1, respectively, with temperature ranging from 300–400 K.

  5. A practical dimensionless equation for the thermal conductivity of carbon nanotubes and CNT arrays

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2014-05-01

    Full Text Available Experimental results reported in the last decade on the thermal conductivity of carbon nanotubes (CNTs have shown a fairly divergent behavior. An underlying intrinsic consistency was believed to exist in spite of the divergence in the thermal conductivity data of various CNTs. A dimenisonless equation that describes the temperature dependence of thermal conductivity was derived by introducing reduced forms relative to a chosen reference point. This equation can serve as a practical approximation to characterize the conductivity of individual CNT with different structural parameters as well as bulk CNT arrays with different bundle configurations. Comparison of predictions by the equation and historical measurements showed good agreements within their uncertainties.

  6. Graphene and Carbon Nanotubes Synergistically Improved the Thermal Conductivity of Phenolic Resin

    Directory of Open Access Journals (Sweden)

    Wang Han

    2017-01-01

    Full Text Available People discover the synergistic effect of graphene and carbon nanotubes on heat conduction in graphene carbon nanotubes / epoxy resin hybrid composites. In this article we added them into the phenolic resin and test the thermal conductivity. We found the thermal conductivity was increased by 6.5% in the phenolic resin by adding 0.45wt% graphene and 0.15wt% single wall carbon nanotubes (maintain the mass ratio 3:1. So if graphene and carbon nanotubes are added in proportion, thermal conductivity of phenolic resin will be improved significantly which is better than only carbon nanotubes or graphene.

  7. Heat conduction and thermal stabilization in YBCO tape

    Indian Academy of Sciences (India)

    Abstract. Yttrium barium copper oxide (YBCO) coated conductors are widely used in the conduction-cooled superconducting magnets with rapid development in refrigeration technologies at present. 'Quench' is a state that refers to the irreversible and uncontrolled superconductor to resistive transitions in the superconductor ...

  8. Note: Development of a microfabricated sensor to measure thermal conductivity of picoliter scale liquid samples.

    Science.gov (United States)

    Park, Byoung Kyoo; Yi, Namwoo; Park, Jaesung; Kim, Dongsik

    2012-10-01

    This paper presents a thermal analysis device, which can measure thermal conductivity of picoliter scale liquid sample. We employ the three omega method with a microfabricated AC thermal sensor with nanometer width heater. The liquid sample is confined by a micro-well structure fabricated on the sensor surface. The performance of the instrument was verified by measuring the thermal conductivity of 27-picoliter samples of de-ionized (DI) water, ethanol, methanol, and DI water-ethanol mixtures with accuracies better than 3%. Furthermore, another analytical scheme allows real-time thermal conductivity measurement with 5% accuracy. To the best of our knowledge, this technique requires the smallest volume of sample to measure thermal property ever.

  9. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites

    Science.gov (United States)

    Sun, K.; Zhang, Z. D.; Qian, L.; Dang, F.; Zhang, X. H.; Fan, R. H.

    2016-02-01

    The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermal properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.

  10. Experimental Preparation and Numerical Simulation of High Thermal Conductive Cu/CNTs Nanocomposites

    Directory of Open Access Journals (Sweden)

    Muhsan Ali Samer

    2014-07-01

    Full Text Available Due to the rapid growth of high performance electronics devices accompanied by overheating problem, heat dissipater nanocomposites material having ultra-high thermal conductivity and low coefficient of thermal expansion was proposed. In this work, a nanocomposite material made of copper (Cu reinforced by multi-walled carbon nanotubes (CNTs up to 10 vol. % was prepared and their thermal behaviour was measured experimentally and evaluated using numerical simulation. In order to numerically predict the thermal behaviour of Cu/CNTs composites, three different prediction methods were performed. The results showed that rules of mixture method records the highest thermal conductivity for all predicted composites. In contrast, the prediction model which takes into account the influence of the interface thermal resistance between CNTs and copper particles, has shown the lowest thermal conductivity which considered as the closest results to the experimental measurement. The experimentally measured thermal conductivities showed remarkable increase after adding 5 vol.% CNTs and higher than the thermal conductivities predicted via Nan models, indicating that the improved fabrication technique of powder injection molding that has been used to produced Cu/CNTs nanocomposites has overcome the challenges assumed in the mathematical models.

  11. A Model of Thermal Conductivity for Planetary Soils: 1. Theory for Unconsolidated Soils

    Science.gov (United States)

    Piqueux, S.; Christensen, P. R.

    2009-01-01

    We present a model of heat conduction for mono-sized spherical particulate media under stagnant gases based on the kinetic theory of gases, numerical modeling of Fourier s law of heat conduction, theoretical constraints on the gas thermal conductivity at various Knudsen regimes, and laboratory measurements. Incorporating the effect of the temperature allows for the derivation of the pore-filling gas conductivity and bulk thermal conductivity of samples using additional parameters (pressure, gas composition, grain size, and porosity). The radiative and solid-to-solid conductivities are also accounted for. Our thermal model reproduces the well-established bulk thermal conductivity dependency of a sample with the grain size and pressure and also confirms laboratory measurements finding that higher porosities generally lead to lower conductivities. It predicts the existence of the plateau conductivity at high pressure, where the bulk conductivity does not depend on the grain size. The good agreement between the model predictions and published laboratory measurements under a variety of pressures, temperatures, gas compositions, and grain sizes provides additional confidence in our results. On Venus, Earth, and Titan, the pressure and temperature combinations are too high to observe a soil thermal conductivity dependency on the grain size, but each planet has a unique thermal inertia due to their different surface temperatures. On Mars, the temperature and pressure combination is ideal to observe the soil thermal conductivity dependency on the average grain size. Thermal conductivity models that do not take the temperature and the pore-filling gas composition into account may yield significant errors.

  12. Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity

    Science.gov (United States)

    Tosi, Nicola; Yuen, David A.; de Koker, Nico; Wentzcovitch, Renata M.

    2013-04-01

    In numerical simulations of mantle convection it is commonly assumed that the coefficients of thermal expansion α and thermal conduction k are either constant or pressure-dependent. Pressure changes are generally computed using parametrizations that rely on extrapolations of low-pressure data for a single upper-mantle phase. Here we collect data for both the pressure and temperature dependence of α from a database of first-principles calculations, and of k from recent experimental studies. We use these data-sets to construct analytical parametrizations of α and k for the major upper- and lower-mantle phases that can be easily incorporated into exisiting convection codes. We then analyze the impact of such parametrizations on Earth's mantle dynamics by employing two-dimensional numerical models of thermal convection. When α is the only variable parameter, both its temperature and pressure dependence enhance hot plumes and tend to inhibit the descent of cold downwellings. Taking into account a variable k leads to a strong increase of the bulk mantle temperature, which reduces the buoyancy available to amplify bottom boundary layer instabilities and causes mantle flow to be driven primarily by the instability of cold plates whose surface velocity also tends to rise. When both parameters are considered together, we observe an increased propensity to local layering which favors slab stagnation in the transition zone and subsequent thickening in the lower mantle. Furthermore, the values of k near the core-mantle boundary ultimately control the effect of this physical property on convection, which stresses the importance of determining the thermal conductivity of the post-perovskite phase.

  13. Effect of Residence Time of Graphitisation on Thermal Conductivity of Molded Graphite

    Directory of Open Access Journals (Sweden)

    Pedy Artsanti

    2010-06-01

    Full Text Available The effect of residence time of graphitisation on thermal conductivity of molded graphite has been examined. The examination has been conducted by varying residence time of graphitisation of molded carbon with petroleum coke as raw material and coal tar pitch. Graphitisation has been conducted by heating molded graphite at 2500 °C in argon atmosphere with residention time of 10, 30 and 90 minutes. Graphitisation degree, density, shrinking mass and porosity of molded graphite were examined and so was its thermal conductivity. The result showed that the decrease of porosity and the increase of graphitisation degree due to the increasing of residention time of graphitisation will increase the thermal conductivity of graphite. Molded graphite graphitisized with residence time for 90 minutes residention time gave thermal conductivity of 2.134 Watt/mK and graphitization degree 0.718.

  14. The effect of surfactant on stability and thermal conductivity of carbon nanotube based nanofluids

    Directory of Open Access Journals (Sweden)

    Leong Kin Yuen

    2016-01-01

    Full Text Available The addition of highly conductive substance such as carbon nanotubes into a traditional heat transfer fluid will enhance the fluids’ thermal conductivity. However, dispersion process of carbon nanotubes into base fluids is not an easy task due to hydrophobic characteristic of its surface. This study attempts to investigate the stability and thermal conductivity of carbon nanotube based ethylene glycol/water nanofluids with and without surfactants. Stability investigation was conducted through observation and zeta potential measurement methods. As for the thermal conductivity, the samples were measured based on transient line heat source. The results showed that 0.01 wt.% of carbon nanotube based nanofluid, containing 0.01wt.% hexadecyltrimethylammonium bromide possess highest zeta potential value compared to the other tested samples. 0.5 wt. % of carbon nanotube based nanofluids with gum arabic exhibit 25.7% thermal conductivity enhancement.

  15. Serpentine Thermal Coupling Between a Stream and a Conducting Body

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H.; Lorente, S.; Anderson, R.; Bejan, A.

    2012-02-15

    Here we document the effect of flow configuration on the heat transfer performance of a serpentine shaped stream embedded in a conducting solid. Several configurations with fixed volume of fluid are considered: U-shaped with varying spacing between the parallel portions of the U, serpentine shapes with three elbows, and conducting soil with several parallelepipedal shapes. We show that the spacing must be greater than a critical value in order for the heat transfer density of the stream-solid configuration to be the highest that it can be. Spacings larger than this critical value do not yield improvements in heat transfer density. We also show that even though the heat transfer is time dependent, the stream-solid configuration has an effective number of heat transfer units Ntu that is nearly constant in time. The larger Ntu values correspond to the configurations with greater heat transfer density.

  16. Dispersion relations for the hyperbolic thermal conductivity, thermoelasticity and thermoviscoelasticity

    Science.gov (United States)

    Vitokhin, Evgeniy Yu.; Ivanova, Elena A.

    2017-11-01

    The Maxwell-Cattaneo heat conduction theory, the Lord-Shulman theory of thermoelasticity and a hyperbolic theory of thermoviscoelasticity are studied. The dispersion relations are analyzed in the case when a solution is represented in the form of an exponential function decreasing in time. Simple formulas that quite accurately approximate the dispersion curves are obtained. Based on the results of analysis of the dispersion relations, an experimental method of determination of the heat flux relaxation time is suggested.

  17. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations.

    Science.gov (United States)

    Liu, Gang; Wang, Haifeng; Gao, Yan; Zhou, Jian; Wang, Hui

    2017-01-25

    Borophene (boron sheet) as a new type of two-dimensional (2D) material was grown successfully recently. Unfortunately, the structural stability of freestanding borophene is still an open issue. Theoretical research has found that full hydrogenation can remove such instability, and the product is called borophane. In this paper, using first-principles calculations we investigate the lattice dynamics and thermal transport properties of borophane. The intrinsic lattice thermal conductivity and the relaxation time of borophane are investigated by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. We find that the intrinsic lattice thermal conductivity of borophane is anisotropic, as the higher value (along the zigzag direction) is about two times of the lower one (along the armchair direction). The contributions of phonon branches to the lattice thermal conductivities along different directions are evaluated. It is found that both the anisotropy of thermal conductivity and the different phonon branches which dominate the thermal transport along different directions are decided by the group velocity and the relaxation time of phonons with very low frequency. In addition, the size dependence of thermal conductivity is investigated using cumulative thermal conductivity. The underlying physical mechanisms of these unique properties are also discussed in this paper.

  18. Length-dependent thermal conductivity in suspended single-layer graphene.

    Science.gov (United States)

    Xu, Xiangfan; Pereira, Luiz F C; Wang, Yu; Wu, Jing; Zhang, Kaiwen; Zhao, Xiangming; Bae, Sukang; Tinh Bui, Cong; Xie, Rongguo; Thong, John T L; Hong, Byung Hee; Loh, Kian Ping; Donadio, Davide; Li, Baowen; Özyilmaz, Barbaros

    2014-04-16

    Graphene exhibits extraordinary electronic and mechanical properties, and extremely high thermal conductivity. Being a very stable atomically thick membrane that can be suspended between two leads, graphene provides a perfect test platform for studying thermal conductivity in two-dimensional systems, which is of primary importance for phonon transport in low-dimensional materials. Here we report experimental measurements and non-equilibrium molecular dynamics simulations of thermal conduction in suspended single-layer graphene as a function of both temperature and sample length. Interestingly and in contrast to bulk materials, at 300 K, thermal conductivity keeps increasing and remains logarithmically divergent with sample length even for sample lengths much larger than the average phonon mean free path. This result is a consequence of the two-dimensional nature of phonons in graphene, and provides fundamental understanding of thermal transport in two-dimensional materials.

  19. Quantitative Analysis of the Relationship Between Microstructures and Thermal Conductivity for YSZ Coatings

    Science.gov (United States)

    Chen, Ning; Song, Xuemei; Liu, Ziwei; Lin, Chucheng; Zeng, Yi; Huang, Liping; Zheng, Xuebing

    2017-04-01

    The thermal conductivities of as-sprayed yttria-stabilized zirconia thermal barrier coating prepared by atmospheric plasma spraying at different temperatures are investigated based on quantitative microstructural analysis. Multiple linear regression is used to develop quantitative models which describe the relationship between multiple elements such as porosity, grain boundary density, monoclinic phase content, temperature and thermal conductivity. Results reveal that the thermal conductivity of the coating is mainly determined by the porosity and grain boundary density below 300 °C and by the monoclinic phase content above 800 °C. Furthermore, based on the significance testing analysis, the confidence interval under a confidence level of 95% at different temperatures enables researchers to predict the thermal conductivity based on microstructural information.

  20. Homotopy analysis method for variable thermal conductivity heat flux gage with edge contact resistance

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Abdul [Gonzaga Univ., Spokane, WA (United States). Dept. of Mechanical Engineering; Khani, Farzad [Bakhtar Institute of Higher Education, Ilam (Iran, Islamic Republic of). Dept. of Mathematics; Darvishi, Mohammad Taghi [Razi Univ., Kermanshah (Iran, Islamic Republic of). Dept. of Mathematics

    2010-10-15

    The homotopy analysis method (HAM) has been used to develop an analytical solution for the thermal performance of a circular-thin-foil heat flux gage with temperature dependent thermal conductivity and thermal contact resistance between the edge of the foil and the heat sink. Temperature distributions in the foil are presented illustrating the effect of incident heat flux, radiation emission from the foil, variable thermal conductivity, and contact resistance between the foil and the heat sink. The HAM results agree up to four places of decimal with the numerical solutions generated using the symbolic algebra package Maple. This close comparison vouches for the high accuracy and stability of the analytic solution. (orig.)

  1. Reduction of thermal conductivity by low energy multi-Einstein optic modes

    Directory of Open Access Journals (Sweden)

    Huili Liu

    2016-06-01

    Full Text Available The lattice dynamics and thermal transport in Cu2-δSe compounds were investigated via theoretical calculations, neutron measurement, and characterization of thermal properties. The results show that binary ordered Cu2-δSe has an extremely low lattice thermal conductivity at low temperatures. The low energy multi-Einstein optic modes are the dominant approach obtaining such an extremely low lattice thermal conductivity. It is indicated that the damped vibrations of copper ions could contribute to the low energy multi-Einstein optic modes, especially for those low energy branches at 2–4 meV.

  2. Calculation of thermal conductivity for new materials used in intake systems of internal combustion engines

    Science.gov (United States)

    Birtok-Bǎneasǎ, Corneliu; RaÅ£iu, Sorin Aurel; HepuÅ£, Teodor

    2017-07-01

    This paper presents a method for reduce thermal losses in the intake system of an internal combustion engine, whit improvement of airflow and thermal protection. The method consists in insulating the intake with a new kind of material. The present paper focuses on calculation of thermal conductivity for a new material developed by the authors, using the heat flux plate method. This experimental method consists in placing the sample of the new material in a calorimetric chamber and heating from underside. As the heat flux which passes through the sample material is constant and knowing the values of the temperatures for the both sides of sample, the sample material thermal conductivity is determined.

  3. Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites

    OpenAIRE

    Park, Wonjung; Hu, Jiuning; Jauregui, Luis A.; Ruan, Xiulin; Chen, Yong P.

    2014-01-01

    The author reports an experimental study of electrical and thermal transport in reduced graphene oxide (RGO)/polystyrene (PS) composites. The electrical conductivity (sigma) of RGO/PS composites with different RGO concentrations at room temperature shows a percolation behavior with the percolation threshold of similar to 0.25 vol. %. Their temperature-dependent electrical conductivity follows Efros-Shklovskii variable range hopping conduction in the temperature range of 30-300K. The thermal c...

  4. Ultra-low thermal conductivities of hot-pressed attapulgite and its potential as thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan; Ren, Zhifeng, E-mail: bohr123@163.com, E-mail: zren@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Wang, Xiuzhang [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Hubei Key Laboratory of Pollutant Analysis and Reuse Technology and School of Physics and Electronic Science, Hubei Normal University, Huangshi, Hubei 435002 (China); Wang, Yumei [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Tang, Zhongjia; Makarenko, Tatyana; Guloy, Arnold [Department of Chemistry, University of Houston, Houston, Texas 77204 (United States); Zhang, Qinyong, E-mail: bohr123@163.com, E-mail: zren@uh.edu [Center for Advanced Materials and Energy, Xihua University, Chengdu, Sichuan 610039 (China)

    2016-03-07

    In the past, there have been very few reports on thermal properties of attapulgite which is a widely used clay mineral. In this work, we report on extremely low thermal conductivities in attapulgite samples synthesized by hot-pressing. Attapulgite powder was hot-pressed at different temperatures into bulk samples, and a systematic study was conducted on the microstructures and thermal properties. Differential scanning calorimetry analysis shows that hot-pressing induces a rapid dehydration of the attapulgite powders. X-ray diffraction data and scanning/transmission electron microscopy reveal that the hot-pressed attapulgite features high porosity and complex microstructures, including an amorphous phase. As a result, the hot-pressed attapulgite exhibits thermal conductivity less than 2.5 W m{sup −1} K{sup −1} up to 600 °C. For one sample with porosity of 45.7%, the thermal conductivity is as low as 0.34 W m{sup −1} K{sup −1} at 50 °C. This suggests the potential of hot-pressed attapulgite as a candidate for thermal barrier materials.

  5. Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces

    Science.gov (United States)

    Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.

    2014-07-01

    The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.

  6. The thermal conductivity of SiGe heterostructure nanowires with different cores and shells

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Kedong, E-mail: kedongbi@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Wang, Jianqiang; Wang, Yujuan; Sha, Jingjie [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Wang, Zan [School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001 (China); Chen, Minhua [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Chen, Yunfei, E-mail: yunfeichen@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China)

    2012-08-20

    Non-equilibrium molecular dynamics (NEMD) simulation is performed to investigate thermal conductivities of two kinds of SiGe heterostructure nanowires (NWs), core(Si)/shell(Ge) and core(Ge)/(Si) NWs, using different interaction potentials between core and shell atoms. The influence of the proportion of core particles on the overall thermal conductivity of NWs is studied as well. Simulation results demonstrate that thermal conductivities of each kind of NWs with strong potential between core and shell atoms are higher than those of their counterparts with weak interaction between Si and Ge atoms. It is also found that thermal conductivities of both kinds of Si/Ge heterostructure NWs reduce with the decrease of the proportion of core atoms when the shell is not very thick. -- Highlights: ► Van der Waals and covalent interactions between the core and shell are compared. ► The role of shell in core–shell nanowire's thermal conductivity is investigated. ► A good heat conductor should be viewed as shell to get low thermal conductivity. ► The thermal conductivity is influenced by the proportion of core particles.

  7. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites

    Energy Technology Data Exchange (ETDEWEB)

    Jakubinek, Michael B.; Kim, Keun Su; Simard, Benoit [Security and Disruptive Technologies, Division of Emerging Technologies, National Research Council Canada, Ottawa, ON (Canada); Niven, John F. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Johnson, Michel B. [Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Ashrafi, Behnam [Aerospace, Division of Engineering, National Research Council Canada, Montreal, QC (Canada); White, Mary Anne [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Institute for Research in Materials, Dalhousie University, Halifax, NS (Canada); Department of Chemistry, Dalhousie University, Halifax, NS (Canada)

    2016-08-15

    The thermal conductivity of bulk, self-supporting boron nitride nanotube (BNNT) sheets composed of nominally 100% BNNTs oriented randomly in-plane was measured by a steady-state, parallel thermal conductance method. The sheets were either collected directly during synthesis or produced by dispersion and filtration. Differences between the effective thermal conductivities of filtration-produced BNNT buckypaper (∝1.5 W m{sup -1} K{sup -1}) and lower-density as-synthesized sheets (∝0.75 W m{sup -1} K{sup -1}), which are both porous materials, were primarily due to their density. The measured results indicate similar thermal conductivity, in the range of 7-12 W m{sup -1} K{sup -1}, for the BNNT network in these sheets. High BNNT-content composites (∝30 wt.% BNNTs) produced by epoxy impregnation of the porous BNNT network gave 2-3 W m{sup -1} K{sup -1}, more than 10 x the baseline epoxy. The combination of manufacturability, thermal conductivity, and electrical insulation offers exciting potential for electrically insulating, thermally conductive coatings and packaging. Thermal conductivity of free-standing BNNT buckypaper, buckypaper composites, and related materials at room temperature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Maximum thermal conductance for a micro-channel, utilising Newtonian and non-Newtonian fluid

    Science.gov (United States)

    Stocks, M. D.; Bello-Ochende, T.; Meyer, J. P.

    2014-06-01

    This paper investigates the thermal behaviour of two micro-channel elements cooled by Newtonian and non-Newtonian fluids, with the objective to maximise thermal conductance subject to constraints. This is done firstly for a two-dimensional duct micro-channel and secondly for a three-dimensional complex micro-channel. A numerical model is used to solve the governing equations relating to flow and temperature fields for both cases. The geometric configuration of each cooling channel is optimised for Newtonian and non-Newtonian fluid at a fixed inlet velocity and heat flux. In addition, the effect of porosity on thermal conductance is investigated. It was found, in both cases, that the non-Newtonian fluid characteristics result in a significant variation in thermal conductance as inlet velocity is increased. The characteristics of a dilatant fluid greatly reduce thermal conductance on account of shear thickening on the boundary surface. In contrast, a pseudoplastic fluid shows increased thermal conductance. A comparison of the complex micro-channel and the duct micro-channel shows the improved thermal conductance resulting from greater flow access to the conductive area, achieved by the complex micro-channel.

  9. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets.

    Science.gov (United States)

    Kim, Hyun Su; Bae, Hyun Sung; Yu, Jaesang; Kim, Seong Yun

    2016-05-25

    One of the most important physical factors related to the thermal conductivity of composites filled with graphene nanoplatelets (GNPs) is the dimensions of the GNPs, that is, their lateral size and thickness. In this study, we reveal the relationship between the thermal conductivity of polymer composites and the realistic size of GNP fillers within the polymer composites (measured using three-dimensional (3D) non-destructive micro X-ray CT analysis) while minimizing the effects of the physical parameters other than size. A larger lateral size and thickness of the GNPs increased the likelihood of the matrix-bonded interface being reduced, resulting in an effective improvement in the thermal conductivity and in the heat dissipation ability of the composites. The thermal conductivity was improved by up to 121% according to the filler size; the highest bulk and in-plane thermal conductivity values of the composites filled with 20 wt% GNPs were 1.8 and 7.3 W/m·K, respectively. The bulk and in-plane thermal conductivity values increased by 650 and 2,942%, respectively, when compared to the thermal conductivity values of the polymer matrix employed (0.24 W/m·K).

  10. Parameter dependent thermal conductivity model for titanium and graphite powder mixture compact

    Energy Technology Data Exchange (ETDEWEB)

    Azad, G.M.S.; Cui, T.; Huque, Z. [Prairie View A and M Univ., Prairie View, TX (United States). Dept. of Mechanical Engineering

    1996-12-31

    Self-Propagating High-Temperature Synthesis (SHS) is an energy-efficient combustion method of producing refractory, ceramic, and composite materials from their constituent powders. To accurately model the SHS process it is important to understand the physical and chemical mechanisms involved in the reaction process along with the effects of various microstructural and physical parameters controlling the process. Physical parameters include the initial temperature of the green compact, thermal conductivity of the compact, density, particle size and mixture ratio of the constituents. Of these parameters, effective thermal conductivity is directly dependent on the initial density, mixing ratio and the particle size of the constituents. Here, the effects of initial density, composition mixture ratio, and particle size on thermal conductivity of titanium and graphite powder mixture compact has been experimentally investigated and a thermal conductivity model has been developed. Thermal conductivity values have been measured for compact densities ranging from 45% to 775 of maximum theoretical density and for Ti/C mixture ratio by weight ranging from 0.7 to 1.3. The model predicts that, for an increase in density, thermal conductivity increases but it decreases with an increase of Ti/C mixture ratio. The experimental results also show the dependence trend of thermal conductivity on particle size of the constituents.

  11. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1 - Experimental study

    Science.gov (United States)

    Ahadi, Mohammad; Tam, Mickey; Saha, Madhu S.; Stumper, Jürgen; Bahrami, Majid

    2017-06-01

    In this work, a new methodology is proposed for measuring the through-plane thermal conductivity of catalyst layers (CLs) in polymer electrolyte membrane fuel cells. The proposed methodology is based on deconvolution of bulk thermal conductivity of a CL from measurements of two thicknesses of the CL, where the CLs are sandwiched in a stack made of two catalyst-coated substrates. Effects of hot-pressing, compression, measurement method, and substrate on the through-plane thermal conductivity of the CL are studied. For this purpose, different thicknesses of catalyst are coated on ethylene tetrafluoroethylene (ETFE) and aluminum (Al) substrates by a conventional Mayer bar coater and measured by scanning electron microscopy (SEM). The through-plane thermal conductivity of the CLs is measured by the well-known guarded heat flow (GHF) method as well as a recently developed transient plane source (TPS) method for thin films which modifies the original TPS thin film method. Measurements show that none of the studied factors has any effect on the through-plane thermal conductivity of the CL. GHF measurements of a non-hot-pressed CL on Al yield thermal conductivity of 0.214 ± 0.005 Wṡm-1ṡK-1, and TPS measurements of a hot-pressed CL on ETFE yield thermal conductivity of 0.218 ± 0.005 Wṡm-1ṡK-1.

  12. Molecular simulations and lattice dynamics determination of Stillinger-Weber GaN thermal conductivity

    Science.gov (United States)

    Liang, Zhi; Jain, Ankit; McGaughey, Alan J. H.; Keblinski, Pawel

    2015-09-01

    The bulk thermal conductivity of Stillinger-Weber (SW) wurtzite GaN in the [0001] direction at a temperature of 300 K is calculated using equilibrium molecular dynamics (EMD), non-equilibrium MD (NEMD), and lattice dynamics (LD) methods. While the NEMD method predicts a thermal conductivity of 166 ± 11 W/m.K, both the EMD and LD methods predict thermal conductivities that are an order of magnitude greater. We attribute the discrepancy to significant contributions to thermal conductivity from long-mean free path phonons. We propose that the Grüneisen parameter for low-frequency phonons is a good predictor of the severity of the size effects in NEMD thermal conductivity prediction. For weakly anharmonic crystals characterized by small Grüneisen parameters, accurate determination of thermal conductivity by NEMD is computationally impractical. The simulation results also indicate the GaN SW potential, which was originally developed for studying the atomic-level structure of dislocations, is not suitable for prediction of its thermal conductivity.

  13. The effect of functionalized silver nanoparticles over the thermal conductivity of base fluids

    Directory of Open Access Journals (Sweden)

    Merve Seyhan

    2017-04-01

    Full Text Available Thermal conductivities of nanofluids are expected to be higher than common heat transfer fluids. The use of metal nanoparticles has not been intensely investigated for heat transfer applications due to lack of stability. Here we present an experimental study on the effect of silver nanoparticles (Ag NPs which are stabilized with surfactants, on the thermal conductivity of water, ethylene glycol and hexane. Hydrophilic Ag NPs were synthesized in aqueous medium with using gum arabic as surfactant and oleic acid/oleylamine were used to stabilize Ag NPs in the organic phase. The enhancement up to 10 per cent in effective thermal conductivity of hexane and ethylene glycol was achieved with addition of Ag NPs at considerably low concentrations (i.e. 2 and 1 per cent, by weight, for hexane and ethylene glycol respectively. However, almost 10 per cent of deterioration was recorded at effective thermal conductivity of water when Ag NPs were added at 1 per cent (by wt. Considerable amount of Gum Arabic in the medium is shown to be the major contributor to this fall, causing lowering of thermal conductivity of water. Same particles performed much better in ethylene glycol where the stabilizer does not lower the thermal conductivity of the base fluid. Also thermal conductivity of nanofluids was found to be temperature independent except water based Ag nanofluids above a threshold concentration. This temperature dependency is suggested to be due to inhibition of hydrogen bonding among water molecules in the presence of high amounts of gum arabic.

  14. The effect of functionalized silver nanoparticles over the thermal conductivity of base fluids

    Science.gov (United States)

    Seyhan, Merve; Altan, Cem Levent; Gurten, Berna; Bucak, Seyda

    2017-04-01

    Thermal conductivities of nanofluids are expected to be higher than common heat transfer fluids. The use of metal nanoparticles has not been intensely investigated for heat transfer applications due to lack of stability. Here we present an experimental study on the effect of silver nanoparticles (Ag NPs) which are stabilized with surfactants, on the thermal conductivity of water, ethylene glycol and hexane. Hydrophilic Ag NPs were synthesized in aqueous medium with using gum arabic as surfactant and oleic acid/oleylamine were used to stabilize Ag NPs in the organic phase. The enhancement up to 10 per cent in effective thermal conductivity of hexane and ethylene glycol was achieved with addition of Ag NPs at considerably low concentrations (i.e. 2 and 1 per cent, by weight, for hexane and ethylene glycol respectively). However, almost 10 per cent of deterioration was recorded at effective thermal conductivity of water when Ag NPs were added at 1 per cent (by wt). Considerable amount of Gum Arabic in the medium is shown to be the major contributor to this fall, causing lowering of thermal conductivity of water. Same particles performed much better in ethylene glycol where the stabilizer does not lower the thermal conductivity of the base fluid. Also thermal conductivity of nanofluids was found to be temperature independent except water based Ag nanofluids above a threshold concentration. This temperature dependency is suggested to be due to inhibition of hydrogen bonding among water molecules in the presence of high amounts of gum arabic.

  15. Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2011-09-28

    This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

  16. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets

    Science.gov (United States)

    Kim, Hyun Su; Bae, Hyun Sung; Yu, Jaesang; Kim, Seong Yun

    2016-01-01

    One of the most important physical factors related to the thermal conductivity of composites filled with graphene nanoplatelets (GNPs) is the dimensions of the GNPs, that is, their lateral size and thickness. In this study, we reveal the relationship between the thermal conductivity of polymer composites and the realistic size of GNP fillers within the polymer composites (measured using three-dimensional (3D) non-destructive micro X-ray CT analysis) while minimizing the effects of the physical parameters other than size. A larger lateral size and thickness of the GNPs increased the likelihood of the matrix-bonded interface being reduced, resulting in an effective improvement in the thermal conductivity and in the heat dissipation ability of the composites. The thermal conductivity was improved by up to 121% according to the filler size; the highest bulk and in-plane thermal conductivity values of the composites filled with 20 wt% GNPs were 1.8 and 7.3 W/m·K, respectively. The bulk and in-plane thermal conductivity values increased by 650 and 2,942%, respectively, when compared to the thermal conductivity values of the polymer matrix employed (0.24 W/m·K). PMID:27220415

  17. Effect of pore size and shape on the thermal conductivity of metal-organic frameworks.

    Science.gov (United States)

    Babaei, Hasan; McGaughey, Alan J H; Wilmer, Christopher E

    2017-01-01

    We investigate the effect of pore size and shape on the thermal conductivity of a series of idealized metal-organic frameworks (MOFs) containing adsorbed gas using molecular simulations. With no gas present, the thermal conductivity decreases with increasing pore size. In the presence of adsorbed gas, MOFs with smaller pores experience reduced thermal conductivity due to phonon scattering introduced by gas-crystal interactions. In contrast, for larger pores (>1.7 nm), the adsorbed gas does not significantly affect thermal conductivity. This difference is due to the decreased probability of gas-crystal collisions in larger pore structures. In contrast to MOFs with simple cubic pores, the thermal conductivity in structures with triangular and hexagonal pore channels exhibits significant anisotropy. For different pore geometries at the same atomic density, hexagonal channel MOFs have both the highest and lowest thermal conductivities, along and across the channel direction, respectively. In the triangular and hexagonal channeled structures, the presence of gas molecules has different effects on thermal conductivity along different crystallographic directions.

  18. Evidence for thermal activation in the glassy dynamics of insulating granular aluminum conductance

    Science.gov (United States)

    Grenet, T.; Delahaye, J.

    2017-11-01

    Insulating granular aluminum is one of the proto-typical disordered insulators whose low temperature electrical conductance exhibits ubiquitous non-equilibrium phenomena. These include slow responses to temperature or gate voltage changes, characteristic field effect anomalies and ageing phenomena typical of a glass. In this system the influence of temperature on the glassy dynamics has remained elusive. A similar situation was met in insulating indium oxide and it was concluded that in high carrier density Anderson insulators, electronic slow relaxations essentially proceed via activationless processes. In this work we experimentally demonstrate that thermal effects do play a role and that the slow dynamics in granular aluminum is subject to thermal activation. We show how its signatures can be revealed and activation energy distributions can be extracted, providing a promising grasp on the nature of the microscopic mechanism at work in glassy Anderson insulators. We explain why some of the experimental protocols previously used in the literature fail to reveal thermal activation in these systems. Our results and analyses call for a reassessment of the emblematic case of indium oxide, and question the existence of purely activationless dynamics in any of the systems studied so far.

  19. Crystallite Size Effect on Thermal Conductive Properties of Nonwoven Nanocellulose Sheets.

    Science.gov (United States)

    Uetani, Kojiro; Okada, Takumi; Oyama, Hideko T

    2015-07-13

    The thermal conductive properties, including the thermal diffusivity and resultant thermal conductivity, of nonwoven nanocellulose sheets were investigated by separately measuring the thermal diffusivity of the sheets in the in-plane and thickness directions with a periodic heating method. The cross-sectional area (or width) of the cellulose crystallites was the main determinant of the thermal conductive properties. Thus, the results strongly indicate that there is a crystallite size effect on phonon conduction within the nanocellulose sheets. The results also indicated that there is a large interfacial thermal resistance between the nanocellulose surfaces. The phonon propagation velocity (i.e., the sound velocity) within the nanocellulose sheets was estimated to be ∼800 m/s based on the relationship between the thermal diffusivities and crystallite widths. The resulting in-plane thermal conductivity of the tunicate nanocellulose sheet was calculated to be ∼2.5 W/mK, markedly higher than other plastic films available for flexible electronic devices.

  20. Thermal conductivity model for powdered materials under vacuum based on experimental studies

    Directory of Open Access Journals (Sweden)

    N. Sakatani

    2017-01-01

    Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.