WorldWideScience

Sample records for thermal comfort parameters

  1. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... and operators to navigate the complex and varied world of standards in the field of thermal environment for improving indoor environmental quality and energy saving. The examples discussed in the paper will also be useful for the standardization, leading to harmonized documents more readable for all users....... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...

  2. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available wider range of temperature limits, saving energy while still satisfying the majority of building occupants. It is also noted that thermal comfort varies significantly between individuals and it is generally not possible to provide a thermal environment...

  3. Effective Ventilation Parameters and Thermal Comfort Study of Air-conditioned Offices

    OpenAIRE

    Roonak Daghigh; Kamaruzzaman Sopian

    2009-01-01

    The study presents objective and subjective studies of thermal comfort levels and ventilation characteristics of two air-conditioned postgraduate study offices. The observations were performed at the offices of Department of Electrical and Electronic Engineering, in University Putra Malaysia. Thermal comfort variables were measured while the students answered a survey on their sensation of the indoor climate. Concurrently, tracer gas analysis, based on concentration decay method, is employed ...

  4. Thermal comfort: research and practice

    NARCIS (Netherlands)

    Ir. Joost van Hoof; Mitja Mazej; Jan Hensen

    2010-01-01

    Thermal comfort -the state of mind, which expresses satisfaction with the thermal environment- is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half

  5. Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.

  6. Understanding the adaptive approach to thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, M.A. [Oxford Univ. (United Kingdom). Centre for the Study of Christianity and Culture; Nicol, J.F. [Oxford Brookes Univ. (United Kingdom). School of Architecture

    1998-10-01

    This paper explains the adaptive approach to thermal comfort, and an adaptive model for thermal comfort is presented. The model is an example of a complex adaptive system (Casti 1996) whose equilibria are determined by the restrictions acting upon it. People`s adaptive actions are generally effective in securing comfort, which occurs at a wide variety of indoor temperatures. These comfort temperatures depend upon the circumstances in which people live, such as the climate and the heating or cooling regime. The temperatures may be estimated from the mean outdoor temperature and the availability of a heating or cooling plant. The evaluation of the parameters of the adaptive model requires cross-sectional surveys to establish current norms and sequential surveys (with and without intervention) to evaluate the rapidity of people`s adaptive actions. Standards for thermal comfort will need revision in the light of the adaptive approach. Implications of the adaptive model for the HVAC industry are noted.

  7. Exploring the relationship between structurally defined geometrical parameters of reinforced concrete beams and the thermal comfort on indoor environment

    DEFF Research Database (Denmark)

    Lee, Daniel Sang-Hoon; Naboni, Emanuele

    2017-01-01

    the resultant heat exchange behaviour, and the implication on thermal comfort indoor environment. However, the current paper presents the thermal mass characteristics of one geometrical type. The study is based on results derived from computational fluid dynamics (CFD) analysis, where Rhino 3D is used...

  8. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

  9. Thermal Comfort Index

    Directory of Open Access Journals (Sweden)

    Teodoreanu Elena

    2016-10-01

    Full Text Available We are showing some bioclimatic indices (formulas or nomograms for medical purposes, therapeutic tourism, sports. or regionalization. They are based on one, two, three or more different meteorological parameters.

  10. A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input

    Directory of Open Access Journals (Sweden)

    Mario Collotta

    2014-07-01

    Full Text Available Heating, ventilating and air-conditioning (HVAC systems are typical non-linear time-variable multivariate systems with disturbances and uncertainties. In this paper, an approach based on a combined neuro-fuzzy model for dynamic and automatic regulation of indoor temperature is proposed. The proposed artificial neural network performs indoor temperatures forecasts that are used to feed a fuzzy logic control unit in order to manage the on/off switching of the HVAC system and the regulation of the inlet air speed. Moreover, the used neural network is optimized by the analytical calculation of the embedding parameters, and the goodness of this approach is tested through MATLAB. The fuzzy controller is driven by the indoor temperature forecasted by the neural network module and is able to adjust the membership functions dynamically, since thermal comfort is a very subjective factor and may vary even in the same subject. The paper shows some experimental results, through a real implementation in an embedded prototyping board, of the proposed approach in terms of the evolution of the inlet air speed injected by the fan coils, the indoor air temperature forecasted by the neural network model and the adjusting of the membership functions after receiving user feedback.

  11. THERMAL COMFORT FOR REQUIRED BODY TEMPERATURES AND AMBIENT CONDITIONS

    OpenAIRE

    KAYNAKLI, Ömer; YAMANKARADENİZ, Recep

    2010-01-01

    ABSTRACTIn industrialized countries about 90 % of the time is spent indoors. The environmental parameters affecting indoor thermal comfort are air temperature, humidity, air velocity and mean radiant temperature. In assessing thermal environment, besides these environmental parameters, we should also consider some personal parameters such as clothing and human activity. In this study, we tried to determine the thermal comfort factors with reference to required skin temperature (tsk,req) and s...

  12. Thermal comfort assessment of buildings

    CERN Document Server

    Carlucci, Salvatore

    2013-01-01

    A number of metrics for assessing human thermal response to climatic conditions have been proposed in scientific literature over the last decades. They aim at describing human thermal perception of the thermal environment to which an individual or a group of people is exposed. More recently, a new type of “discomfort index” has been proposed for describing, in a synthetic way, long-term phenomena. Starting from a systematic review of a number of long-term global discomfort indices, they are then contrasted and compared on a reference case study in order to identify their similarities and differences and strengths and weaknesses. Based on this analysis, a new short-term local discomfort index is proposed for the American Adaptive comfort model. Finally, a new and reliable long-term general discomfort index is presented. It is delivered in three versions and each of them is suitable to be respectively coupled with the Fanger, the European Adaptive and the American Adaptive comfort models.

  13. Thermodynamical analysis of human thermal comfort

    International Nuclear Information System (INIS)

    Prek, Matjaz

    2006-01-01

    Traditional methods of human thermal comfort analysis are based on the first law of thermodynamics. These methods use an energy balance of the human body to determine heat transfer between the body and its environment. By contrast, the second law of thermodynamics introduces the useful concept of exergy. It enables the determination of the exergy consumption within the human body dependent on human and environmental factors. Human body exergy consumption varies with the combination of environmental (room) conditions. This process is related to human thermal comfort in connection with temperature, heat, and mass transfer. In this paper a thermodynamic analysis of human heat and mass transfer based on the 2nd law of thermodynamics in presented. It is shown that the human body's exergy consumption in relation to selected human parameters exhibits a minimal value at certain combinations of environmental parameters. The expected thermal sensation also shows that there is a correlation between exergy consumption and thermal sensation. Thus, our analysis represents an improvement in human thermal modelling and gives more information about the environmental impact on expected human thermal sensation

  14. Thermal comfort in commercial kitchens (RP-1469)

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.; Stoops, John L.

    2013-01-01

    The indoor climate in commercial kitchens is often unsatisfactory, and working conditions can have a significant effect on employees’ comfort and productivity. The type of establishment (fast food, casual, etc.) and climatic zone can influence thermal conditions in the kitchens. Moreover, the size...... and arrangement of the kitchen zones, appliances, etc., further complicate an evaluation of the indoor thermal environment in commercial kitchens. In general, comfort criteria are stipulated in international standards (e.g., ASHRAE 55 or ISO EN 7730), but are these standardized methods applicable...... to such environments as commercial kitchens? This article describes a data collection protocol based on measurements of physical and subjective parameters. The procedure was used to investigate more than 100 commercial kitchens in the United States in both summer and winter. The physical measurements revealed...

  15. Thermal comfort in urban transitional spaces

    Energy Technology Data Exchange (ETDEWEB)

    Chungyoon Chun [Yonsei University, Seoul (Korea). College of Human Ecology, Department of Housing and Interior Design; Tamura, A. [Yokohama National University (Japan). Department of Architecture and Building Science

    2005-05-15

    This paper deals with thermal comfort in urban transitional spaces. This topic investigates thermal comfort during walking activities through transitional spaces-urban corridors, shopping streets, and open-ended passageways. The study involves a field study and a laboratory study with a sequenced walk through an environmental control chamber. Subjects in both studies wore the same clothing ensembles, walked the same speed, and evaluated their thermal comfort at 20 designated point in the field and in specific rooms in the control chamber. Air temperature, relative humidity, and air velocity were measured concurrently as the thermal comfort votes completed. Findings revealed that the previously experienced temperatures determined thermal comfort at the following point in the sequence. Because thermal comfort at a point can be influenced widely by relative placement of temperatures in sequence, thermal comfort in transitional spaces can be adapted very widely compared to comfort inside of buildings. Thermal comfort along the experimental courses was evaluated by averaging the temperature of a course. (author)

  16. A note on the evolution of the daily pattern of thermal comfort-related micrometeorological parameters in small urban sites in Athens

    Science.gov (United States)

    Charalampopoulos, Ioannis; Tsiros, Ioannis; Chronopoulou-Sereli, Aikaterini; Matzarakis, Andreas

    2015-09-01

    Studies on human thermal comfort in urban areas typically quantify and assess the influence of the atmospheric parameters studying the values and their patterns of the selected index or parameter. In this paper, the interpretation tools are the first derivative of the selected parameters (∆Parameter/∆t) and the violin plots. Using these tools, the effect of sites' configuration on thermal conditions was investigated. Both derivatives and violin plots indicated the ability of vegetation to act as a buffer to the rapid changes of air temperature, mean radiant temperature, and the physiologically equivalent temperature (PET). The study is focused on the "thermal extreme" seasons of winter (December, January, and February) and summer (June, July, and August) during a 3-year period of measurements in five selected sites under calm wind and sunny conditions. According to the results, the absence of vegetation leads to high derivative values whereas the existence of dense vegetation tends to keep the parameters' values relatively low, especially under hot weather conditions.

  17. Radiant heat and thermal comfort in vehicles.

    Science.gov (United States)

    Devonshire, Joel M; Sayer, James R

    2005-01-01

    Infrared-reflective (IRR) treatment of automotive glass has been shown to reduce air temperature in vehicle cabins, thereby increasing fuel economy and occupant comfort. Its effect on radiant heat, however, may augment these benefits. In this study, the hypothesis that radiant heat affects subjective comfort ratings in a vehicle was tested. IRR films were systematically applied to the driver-side window of an outdoor stationary vehicle. In Phase 1, cabin air temperature was controlled while participants rated their thermal comfort. In Phase 2, air temperature was adjusted according to participants' responses. Results in Phase 1 showed that the IRR treatment improved thermal comfort on the left forearm, which was exposed to direct solar irradiance, but not whole-body thermal comfort. In Phase 2, participants indicated that they were comfortable at a higher air temperature (mean of 2.5 degrees F [1.4 degrees C]) with the IRR treatment than in the untreated condition. The results indicate that reducing radiant heat via IRR treatment affects subjective assessments of thermal comfort and allows occupants to maintain the same level of comfort in a warmer vehicle cabin. Applications of this research include future implementations of IRR treatment on automotive glass that may lead to greater fuel economy savings and occupant comfort than have previously been estimated.

  18. Investigation and analysis of human body thermal comfort in classroom

    Science.gov (United States)

    Zhai, Xue

    2017-05-01

    In this survey, we selected the 11th building of North China Electric Power University as the research object. Data were measured and distributed on each floor. We record the temperature of the classroom, humidity, wind speed, average radiation temperature and other environmental parameters. And we used spare time to create a questionnaire survey of the subjective feeling of the survey, to get everyone in the classroom TSV (hot feeling vote value) and TCV (thermal comfort vote). We analyzed the test data and survey data. What's more we discuss and reflect on the thermal comfort of the human body in different indoor temperature atmospheres.

  19. The Analysis of Thermal Comfort in Kitchen

    Science.gov (United States)

    Ilma Rahmillah, Fety; Hotma Uli Tumanggor, Agustina; Dila Sari, Amarria

    2017-06-01

    Human also has a thermoreceptor which is a non-specialized sensory receptor that has relative changes in temperature. Thermal comfort is a very important element for human body. Kitchen as an important part of a home is often forgotten. Cooking in the kitchen is a routine activity which is done from the morning until the evening; begin with preparing breakfast, lunch and dinner. The problem in this study was the occurance of heat when cooking in the kitchen without air conditioning in tropical countries. This research analyzes thermal comfort while doing cooking activities in conventional kitchen with gas stoves in tropical dry season. Two residential kitchens are observed by measuring the temperature and humidity as well as analyze other possible factors. Psychometric chart is used to assess the comfort zone in the kitchen. This research is using Predicted Mean Vote (PMV) Index and Predicted Percentage Dissatisfied (PPD) Index. By using online psychometric chart, the sensation is in warm condition with the range value of PMV between 1.73 up to 2.36 and PPD 63% untill 90%. However, 71% respondents perceived morning kitchen thermal as comfortable.

  20. Adaptive principles for thermal comfort in dwellings: From comfort temperatures to avoiding discomfort

    OpenAIRE

    Alders, E.E.; Kurvers, S.R.; Van den Ham, E.R.

    2011-01-01

    Many theories on thermal comfort exist and there are many ways to deliver this in an energy efficient way. Both aspects are often studied in a static way and most of these studies only regard one of the aspects, seldom investigating what influence the way of delivering thermal comfort has on the actual perceived thermal comfort. This paper analyses the knowledge of the different disciplines and integrates it to get a holistic image of comfort and its delivery systems as well as opportunities ...

  1. Adaptive thermal comfort opportunities for dwellings: Providing thermal comfort only when and where needed in dwellings in the Netherlands

    OpenAIRE

    Alders, Noortje

    2016-01-01

    The aim of the research presented in this thesis is to design the characteristics of an Adaptive Thermal Comfort System for Dwellings to achieve a significantly better energy performance whilst not compromising the thermal comfort perception of the occupants. An Adaptive Thermal Comfort System is defined as the whole of passive and active comfort components of the dwelling that dynamically adapts its settings to varying user comfort demands and weather conditions (seasonal, diurnal and hourly...

  2. The impacts of the thermal radiation field on thermal comfort, energy consumption and control — A critical overview

    NARCIS (Netherlands)

    V. Soebarto; Joost van Hoof; E. Halawa

    2014-01-01

    Thermal comfort is determined by the combined effect of the six thermal comfort parameters: temperature, air moisture content, thermal radiation, air relative velocity, personal activity and clothing level as formulated by Fanger through his double heat balance equations. In conventional air

  3. Thermal sensation and thermal comfort in changing environments

    NARCIS (Netherlands)

    Velt, K.B.; Daanen, H.A.M.

    2017-01-01

    It is the purpose of this study to investigate thermal sensation (TS) and thermal comfort (TC) in changing environments. Therefore, 10 subjects stayed in a 30 °C, 50% relative humidity for 30 min in summer clothes and then moved to a 20 °C room where they remained seated for 30 min (Hot to Reference

  4. Design for thermal sensation and comfort states in vehicles cabins

    International Nuclear Information System (INIS)

    Alahmer, Ali; Abdelhamid, Mahmoud; Omar, Mohammed

    2012-01-01

    This manuscript investigates the analysis and modeling of vehicular thermal comfort parameters using a set of designed experiments aided by thermography measurements. The experiments are conducted using a full size climatic chamber to host the test vehicle, to accurately assess the transient and steady state temperature distributions of the test vehicle cabin. Further investigate the thermal sensation (overall and local) and the human comfort states under artificially created relative humidity scenarios. The thermal images are calibrated through a thermocouples network, while the outside temperature and relative humidity are manipulated through the climatic environmental chamber with controlled soaking periods to guarantee the steady state conditions for each test scenario. The relative humidity inside the passenger cabin is controlled using a Total Humidity Controller (THC). The simulation uses the experimentally extracted boundary conditions via a 3-D Berkeley model that is set to be fully transient to account for the interactions in the velocity and temperature fields in the passenger compartment, which included interactions from turbulent flow, thermal buoyancy and the three modes of heat transfer conduction, convection and radiation. The model investigates the human comfort by analyzing the effect of the in-cabin relative humidity from two specific perspectives; firstly its effect on the body temporal variation of temperature within the cabin. Secondly, the Local Sensation (LS) and Comfort (LC) are analyzed for the different body segments in addition to the Overall Sensation (OS) and the Overall Comfort (OC). Furthermore, the human sensation is computed using the Fanger model in terms of the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices. The experimental and simulation results show that controlling the RH levels during the heating and the cooling processes (winter and summer conditions respectively) aid the A/C system to

  5. THERMAL COMFORT IN VERNACULAR COURTYARD HOUSES: CASE STUDY -CHHATTISGARH

    OpenAIRE

    Swasti Sthapak*1, Dr. Abir Bandyopadhyay2

    2017-01-01

    The paper firstly introduces vernacular architecture and defines thermal comfort. The second section of this paper gives an account of the way vernacular houses respond to climate and achieve thermal comfort. Vernacular houses of Chhattisgarh, a central state of India are selected for this study to find the evidence that vernacular architecture is likely to be passively comfortable. Courtyards play a vital role in creating thermal comfort along with other social and cultural roles. Vernacular...

  6. Human comfort and self-estimated performance in relation to indoor environmental parameters and building features

    OpenAIRE

    Frontczak, Monika Joanna; Wargocki, Pawel

    2011-01-01

    The main objective of the Ph.D. study was to examine occupants’ perception of comfort and self-estimated job performance in non-industrial buildings (homes and offices), in particular how building occupants understand comfort and which parameters, not necessarily related to indoor environments, influence the perception of comfort.To meet the objective, the following actions were taken: (1) a literature survey exploring which indoor environmental parameters (thermal, acoustic, visualenvironmen...

  7. Design of outdoor urban spaces for thermal comfort

    Science.gov (United States)

    Harriet J. Plumley

    1977-01-01

    Microclimates in outdoor urban spaces may be modified by controlling the wind and radiant environments in these spaces. Design guidelines were developed to specify how radiant environments may be selected or modified to provide conditions for thermal comfort. Fanger's human-thermal-comfort model was used to determine comfortable levels of radiant-heat exchange for...

  8. Comfort parameters - Ventilation of a subway wagon

    Science.gov (United States)

    Petr, Pavlíček; Ladislav, Tříska

    2017-09-01

    Research and development of a ventilation system is being carried out as a part of project TA04030774 of the Technology Agency of the Czech Republic. Name of the project is "Research and Development of Mass-optimized Components for Rail Vehicles". Problems being solved are development and testing of a new concept for ventilation systems for public transport vehicles. The main improvements should be a reduction of the mass of the whole system, easy installation and reduction of the noise of the ventilation system. This article is focused on the comfort parameters in a subway wagon (measurement and evaluation carried out on a function sample in accordance with the regulations). The input to the project is a ventilator hybrid casing for a subway wagon, which was manufactured and tested during the Ministry of Industry and Trade project TIP FR-TI3/449.

  9. Adaptive principles for thermal comfort in dwellings : From comfort temperatures to avoiding discomfort

    NARCIS (Netherlands)

    Alders, E.E.; Kurvers, S.R.; Van den Ham, E.R.

    2011-01-01

    Many theories on thermal comfort exist and there are many ways to deliver this in an energy efficient way. Both aspects are often studied in a static way and most of these studies only regard one of the aspects, seldom investigating what influence the way of delivering thermal comfort has on the

  10. The control of human thermal comfort by the smart clothing

    Directory of Open Access Journals (Sweden)

    Sahta I.

    2014-01-01

    Full Text Available Generally, human thermal comfort depends on combinations of clothing structure and chemical nature of fibers, external conditions and factors related to wearer. Thermal comfort of a clothing system is associated with thermal balance of body and its thermoregulatory responses to the dynamic interactions with the clothing and the environment, and can be quantified in terms of Met and Clo units. One of the important functions of clothing is to provide adequate thermal comfort for wellness and high performance. To do this research, clothing with an integrated human microclimate regulating electrical system has been developed. The clothing contains: Peltier elements, which provide cooling effect; electronic control system with heat sensor – thermistor, which controls the optimal operating parameters, and energy source. The aim of experiments is to verify, how the cooling system, integrated in the clothes, influences indicators of the human microclimate. For this reason, the experiments of wearing by the appropriate operating conditions are carried out by measuring temperature changes in different locations in space between the body and clothes during activities. The analysis of experimental results reveals the system's operational efficiency as well as the negative impact of non-evaporative materials on the possibility of vapour removal through the garment surface.

  11. Progress in thermal comfort research over the last twenty years

    OpenAIRE

    de Dear, R; Akimoto, T; Arens, E; Brager, G; Candido, C; Cheong, K.W.; Li, B; Nishihara, N; Sekhar, S.C.; Tanabe, S; Toftum, J; Zhang, H; Zhu, Y

    2013-01-01

    Climate change and the urgency of decarbonizing the built environment are driving technological innovation in the way we deliver thermal comfort to occupants. These changes, in turn, seem to be setting the directions for contemporary thermal comfort research. This article presents a literature review of major changes, developments, and trends in the field of thermal comfort research over the last 20 years. One of the main paradigm shift was the fundamental conceptual reorientation that has ta...

  12. Optimal bus temperature for thermal comfort during a cool day

    NARCIS (Netherlands)

    Velt, K. B.; Daanen, H. A M

    2017-01-01

    A challenge for electric buses is to minimize heating and cooling power to maximally extend the driving range, but still provide sufficient thermal comfort for the driver and passengers. Therefore, we investigated the thermal sensation (TS) and thermal comfort (TC) of passengers in buses during a

  13. Adaptive thermal comfort explained by means of the Fanger-model; Adaptief thermisch comfort verklaard met Fanger-model

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, W.; Loomans, M.G.L.C.; Hensen, J. [Technische Universiteit Eindhoven, Eindhoven (Netherlands)

    2008-07-15

    This article examines the relation between the adaptive thermal comfort (ATC) model and the Fanger model. The most important data collected were the value ranges of individual parameters in relation to ATC assessment. The ATC model uses a relatively simple indicator of thermal comfort. It treats the desired operational indoor temperature as a measure of thermal comfort in direct comparison to the outdoor temperature. This has the advantage of providing a relatively straightforward and transparent way of assessing occupant comfort. The Fanger model makes use of human thermal equilibrium, and is more flexible and more widely applicable. The results of the comparison show that, in a temperate climate like that of the Netherlands, the Fanger model is fully capable of explaining the results of the ATC model. [Dutch] In dit artikel is de relatie tussen het adaptief thermisch comfort (ATC) model en het Fanger-model nader onderzocht. Hierbij is vooral gekeken naar de ranges van waarden van de individuele parameters in relatie tot de ATC-beoordeling. Her ATC-model maakt gebruik van een minder complexe indicator om een uitspraak te doen over het thermisch comfort. Bij deze aanpak wordt de gewenste operatieve binnentemperatuur, als maat voor her thermisch comfort, direct gerelateerd aan de buitentemperatuur. Een voordeel hiervan is dat op een relatief eenvoudige en inzichtelijke manier een waardering van her comfort kan worden gegeven. Het Fanger-model maakt gebruik van de warmtebalans van de mens en is flexibeler en breder toepasbaar. De resultaten van de vergelijking laten zien dat voor een gematigd klimaat als in Nederland het Fanger-model goed in staat is om de resultaten van het ATC-model te verklaren.

  14. Progress in thermal comfort research over the last twenty years

    DEFF Research Database (Denmark)

    Dear, R. J. de; Akimoto, T.; Arens, E. A.

    2013-01-01

    review of major changes, developments, and trends in the field of thermal comfort research over the last 20 years. One of the main paradigm shift was the fundamental conceptual reorientation that has taken place in thermal comfort thinking over the last 20 years; a shift away from the physically based......Climate change and the urgency of decarbonizing the built environment are driving technological innovation in the way we deliver thermal comfort to occupants. These changes, in turn, seem to be setting the directions for contemporary thermal comfort research. This article presents a literature...... developed, driven by the continuous challenge to model thermal comfort at the same anatomical resolution and to combine these localized signals into a coherent, global thermal perception. Finally, the demand for ever increasing building energy efficiency is pushing technological innovation in the way we...

  15. Development of Light Powered Sensor Networks for Thermal Comfort Measurement.

    Science.gov (United States)

    Lee, Dasheng

    2008-10-16

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  16. Energy flow and thermal comfort in buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome

    is based on both radiation and convection. Radiant terminals have the advantage of making use of low grade sources (i.e. low temperature heating and high temperature cooling), thus decreasing the primary energy consumption of buildings. But there is a lack of knowledge on the heat transfer from...... the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam, radiant floor, wall and ceiling) have been compared for a typical office room, both numerically......), radiant and air-based terminals have similar energy needs. For higher air change rate, the energy consumption of radiant terminals is lower than that of air-based terminals due to the higher air temperature. At 2 ACH, the energy savings of a radiant wall can be estimated to around 10 % compared...

  17. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China

    Directory of Open Access Journals (Sweden)

    Zhibin Wu

    2017-09-01

    Full Text Available Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC located in the hot summer and cold winter (HSCW climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET* was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  18. A statistical downscaling algorithm for thermal comfort applications

    Science.gov (United States)

    Rayner, David; Lindberg, Fredrik; Thorsson, Sofia; Holmer, Björn

    2015-11-01

    We describe a new two-step modeling framework for investigating the impact of climate change on human comfort in outdoor urban environments. In the first step, climate change scenarios for air temperature and solar radiation (global, diffuse, direct components) are created using a change-factor algorithm. The change factors are calculated by comparing ranked daily regional climate model outputs for a future-period and a present-day period, and then changes consistent with these daily change factors are applied to historical hourly climate observations. In the second step, the mean-radiant-temperature ( T mrt) is calculated using the SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry) model. T mrt, which describes the radiant heat exchange between a person and their surroundings, is one of the most important meteorologically derived parameters governing human energy balance and outdoor thermal comfort, especially during warm and sunny days. We demonstrate that change factors can be applied independently to maximum air temperature and daily global solar radiation, and show that the outputs from the algorithm, when aggregated to daily values, are consistent with the driving regional climate model. Finally, we demonstrate how to obtain quantitative information from the scenarios regarding the potential impact of climate change on outdoor thermal comfort, by calculating changes in the distribution of hourly summer day-time T mrt and changes in the number of hours with T mrt >55 °C.

  19. Evaluating local and overall thermal comfort in buildings using thermal manikins

    Energy Technology Data Exchange (ETDEWEB)

    Foda, E.

    2012-07-01

    Evaluation methods of human thermal comfort that are based on whole-body heat balance with its surroundings may not be adequate for evaluations in non-uniform thermal conditions. Under these conditions, the human body's segments may experience a wide range of room physical parameters and the evaluation of the local (segmental) thermal comfort becomes necessary. In this work, subjective measurements of skin temperature were carried out to investigate the human body's local responses due to a step change in the room temperature; and the variability in the body's local temperatures under different indoor conditions and exposures as well as the physiological steady state local temperatures. Then, a multi-segmental model of human thermoregulation was developed based on these findings to predict the local skin temperatures of individuals' body segments with a good accuracy. The model predictability of skin temperature was verified for steady state and dynamic conditions using measured data at uniform neutral, cold and warm as well as different asymmetric thermal conditions. The model showed very good predictability with average absolute deviation ranged from 0.3-0.8 K. The model was then implemented onto the control system of the thermal manikin 'THERMINATOR' to adjust the segmental skin temperature set-points based on the indoor conditions. This new control for the manikin was experimentally validated for the prediction of local and overall thermal comfort using the equivalent temperature measure. THERMINATOR with the new control mode was then employed in the evaluation of localized floor-heating system variants towards maximum energy efficiency. This aimed at illustrating a design strategy using the thermal manikin to find the optimum geometry and surface area of a floor-heater for a single seated person. Furthermore, a psychological comfort model that is based on local skin temperature was adapted for the use with the model of human

  20. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-10-01

    Full Text Available Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  1. Importance of thermal comfort for library building in Kuching, Sarawak

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, S.H.; Baharun, A.; Abdul Mannan, M.D.; Abang Adenan, D.A. [Department of Civil Engineering, Faculty of Engineering, University Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak (Malaysia)

    2013-07-01

    Malaysian Government takes an initiative to provide library in housing areas to improve the quality of human capital. However, the government has to evaluate every aspect of their provision to ensure the services provided meet the demands of the users, including the aspect of thermal comfort in the building. For this study, a library constructed using Industrialised Building System (IBS) are selected for thermal comfort evaluation. The data were analyzed using Corrected Effective Temperature (CET) index. From the data analysis, it shows that thermal comfort in the library could not be achieved most of the time unless when the mechanical cooling is used. A series of technical design improvements are then recommended to improve the thermal comfort inside the library by incorporating construction details without increasing the cost.

  2. Thermal Comfort Assessment: A Case Study at Malaysian Automotive Industry

    OpenAIRE

    A. R. Ismail; N. Jusoh; R. Zulkifli; K. Sopian; B. M. Deros

    2009-01-01

    Problem statement: Thermal comfort has a great influence on the productivity and satisfaction of indoor building occupants. The exposure to excessive heat during work may cause discomfort and contributed to low productivity among workers. Malaysia known with its hot and humid weather where in most of the survey study published indicated that workers in Malaysia automotive industries had exposed to excessive temperature while working. The study investigated the thermal comfort level experience...

  3. Thermal comfort study of plastics manufacturing industry in converting process

    OpenAIRE

    Sugiono Sugiono; Oyong Novareza; Ryan Fardian

    2017-01-01

    Thermal comfort is one of ergonomics factors that can create a significant impact to workers performance. For a better thermal comfort, several environment factors (air temperature, wind speed and relative humidity) should be considered in this research. The object of the study is a building for converting process of plastics manufacturing industry located in Malang, Indonesia. The maximum air temperature inside the building can reach as high as 36°C. The result of this study shows that heat ...

  4. Health and thermal comfort: From WHO guidance to housing strategies

    International Nuclear Information System (INIS)

    Ormandy, David; Ezratty, Véronique

    2012-01-01

    There are many references to the WHO guidance on thermal comfort in housing, but not to the original source material. Based on archive material, this paper gives the evidential basis for the WHO guidance. It then reports on evidence that some groups may be more susceptible to high or low indoor temperatures than others. It examines different methods for measuring thermal comfort, such as air temperature measurement, assessing residents' perception, and predicting satisfaction. Resident's perception was used effectively in the WHO LARES project, showing that self-reported poor health was significantly associated with poor thermal comfort. Tools to inform strategies directed at dealing with cold homes and fuel poverty are considered, including Energy Performance Certificates, Fuel Poverty Indicators, and the English Housing Health and Safety Rating System. Conclusions from a WHO Workshop on Housing, Energy and Thermal Comfort are also summarised. The WHO view of thermal comfort, which is driven by protecting health from both high and low indoor temperatures, should be recognised in energy efficiency, fuel poverty and climate change strategies. While this is a major challenge, it could provide both health gains for individuals, and economic benefits for society. - Highlights: ► WHO guidance on thermal comfort is directed to protecting health in the home environment. ► In particular, the WHO guidance aims to protect the health of the most susceptible and fragile. ► Housing energy efficiency strategies protect health, and attack inequities. ► Housing energy efficiency strategies also have economic benefits for society.

  5. Predicting Human Thermal Comfort in Automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J.; Bharathan, D.; Chaney, L.

    2005-06-01

    The objects of this report are to: (1) increase national energy security by reducing fuel use for vehicle climate control systems; (2) show/demonstrate technology that can reduce the fuel used by LD vehicles' ancillary systems; and (3) develop tools to evaluate the effectiveness of energy-efficient systems including--comfort, cost, practicality, ease-of-use, and reliability.

  6. Thermal Comfort in a Naturally-Ventilated Educational Building

    Directory of Open Access Journals (Sweden)

    David Mwale Ogoli

    2012-11-01

    Full Text Available A comprehensive study of thermal comfort in a naturally ventilated education building (88,000 ft2 in a Chicago suburb will be conducted with 120 student subjects in 2007. This paper discusses some recent trends in worldwide thermal comfort studies and presents a proposal of research for this building through a series of questionnaire tables. Two research methods used inthermal comfort studies are field studies and laboratory experiments in climate-chambers. The various elements that constitute a “comfortable” thermal environment include physical factors (ambient air temperature, mean radiant temperature, air movement and humidity, personal factors(activity and clothing, classifications (gender, age, education, etc. and psychological expectations (knowledge, experience, psychological effect of visual warmth by, say, a fireplace. Comparisons are made using data gathered from Nairobi, Kenya.Keywords: Comfort, temperature, humidity and ventilation

  7. Preliminary research on virtual thermal comfort of automobile occupants

    Science.gov (United States)

    Horobet, Tiberiu; Danca, Paul; Nastase, Ilinca; Bode, Florin

    2018-02-01

    Numerical simulation of climate conditions in automotive industry for the study of thermal comfort had become more and more prominent in the last years compared with the classical approach which consists in wind tunnel measurements and field testing, the main advantages being the reduction of vehicle development time and costs. The study presented in this paper is a part of a project intended to evaluate different strategies of cabin ventilation for improving the thermal comfort inside vehicles. A virtual thermal manikin consisting of 24 parts was introduced on the driver seat in a vehicle. A heat load calculated for summer condition in the city of Cluj-Napoca, Romania was imposed as boundary condition. The purpose of this study was to elaborate a virtual thermal manikin suitable for our research, introduction of the manikin inside the vehicle and to examine his influence inside the automobile. The thermal comfort of the virtual manikin was evaluated in terms of temperature and air velocity.

  8. The evaluation of the overall thermal comfort inside a vehicle

    Science.gov (United States)

    Neacsu, Catalin; Tabacu, Ion; Ivanescu, Mariana; Vieru, Ionel

    2017-10-01

    The thermal comfort is one of the most important aspects of the modern vehicles that can influence the safety, the fuel consumption and the pollutions regulation. The objective of this paper is to compare the global and absolute thermal comfort indexes for two vehicles with different distribution air systems inside the car cockpit, one using only front air vents, and the other using both front and rear air vents. The methodology of calculus consists in using the 3D model of the interior vehicle, generally in a CAD format. Then, using a meshing software to create the finite element model of the interior surfaces inside the cockpit and the volume of internal air. Using the obtained finite element geometry, there will be conducted a Theseus FE calculus using the given boundary conditions. The results of the numerical simulation are presented in terms of graphs and figures and also PMV, PPD and DTS thermal comfort indexes. With the obtained results, we will then create the graphs that allows us to evaluate the global and absolute thermal comfort indexes. The results of the evaluation show us that the use of the method allow us to evaluate with a greater accuracy the thermal comfort for the whole vehicle, not only for each passenger, like the standard methods. This shows us that in terms of general and absolute thermal comfort, the vehicle that use front and rear systems is better than the version that use only a front system. The thermal comfort is an important aspect to be taken into account from the beginning of the design stage of a vehicle, by choosing the right air conditioning system. In addition, by using the numerical simulation, we are able to reduce the time needed for preliminary tests and be able to provide the vehicle to the market earlier, at a lower development cost.

  9. Underground passenger comfort : rethinking the current thermal and lighting standards

    Energy Technology Data Exchange (ETDEWEB)

    Raines, K.M. [Architectural Association Graduate School, London (United Kingdom). Environment and Energy Studies Programme

    2009-07-01

    This paper reported on a study that examined methods to improve passenger comfort in London's mass public underground transport system. In Central London, passenger surveys and thermal measuring have revealed that underground train stations are thermally uncomfortable, especially in older and deeper tunnels. Problems include excess heat accumulation, insufficient ventilation, occupancy overcrowding, and disconnection from the outside environment. New air-conditioning coupled with increasing station occupancies could lead to an increase in the excessive internal heat gains and the degradation of the soil capacity around the tunnels to absorb heat. This study examined the existing energy-intensive and unsatisfactory methods of cooling and lighting in London's underground stations and explored passive and low-energy strategies to improve human comfort. Environmental modelling software was used to analyze several strategies to improve passenger comfort. Simulations revealed that dynamic design solutions can introduce subterranean sunlight at the platform level and modulate the thermal interaction between the indoor and outdoor environments to achieve a comfortable equilibrium. Thermal analysis showed that increasing the ventilation would help to cool the thermal mass of the station construction and surrounding soil, help to dissipate internal heat gains, improve passenger comfort, and may replace the need for mechanical systems. The study found that by implementing methods that suit the seasonal conditions, the indoor temperatures can adapt to provide thermal neutrality to its passengers. Hybrid systems for ventilation, cooling, and lighting may provide year-round comfort. Coupling and decoupling of the building with the outdoor environment can increase the comfort level of indoor temperatures throughout the year. It was concluded that the ground surrounding the tunnel would be able to absorb more heat if the thermal conductivity of the tunnel surface were

  10. Usage of Modern Sensors for Thermal Comfort Determination

    Directory of Open Access Journals (Sweden)

    Jan JANEČKA

    2009-06-01

    Full Text Available The following article deals with human thermal comfort dilemma. Firstly, the sensor for operative temperature evaluation and than synthetic skin type sensor will be introduced. There is no compact sensor on the market, which can measure operative temperature, so the effort is to develop this kind of sensor. It is necessary to measure more physical quantities, like air temperature, mean radiant temperature, air flow velocity and relative air velocity, to calculate operative temperature. Human thermal comfort does not depend only on environment conditions but also on personal factors, which are different for every human being. It's especially energy expenditure and human clothes thermal resistance.

  11. Analysis of Thermal Comfort in an Intelligent Building

    Directory of Open Access Journals (Sweden)

    Majewski Grzegorz

    2017-06-01

    Full Text Available Analysis of thermal comfort in the ENERGIS Building, an intelligent building in the campus of the Kielce University of Technology, Poland is the focus of this paper. For this purpose, air temperature, air relative humidity, air flow rate and carbon dioxide concentration were measured and the mean radiant temperature was determined. Thermal sensations of the students occupying the rooms of the building were evaluated with the use of a questionnaire. The students used a seven-point scale of thermal comfort. The microclimate measurement results were used to determine the Predicted Mean Vote and the Predicted Percentage Dissatisfied indices.

  12. Assessing Thermal Comfort Due to a Ventilated Double Window

    Science.gov (United States)

    Carlos, Jorge S.; Corvacho, Helena

    2017-10-01

    Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.

  13. Coupling of the Models of Human Physiology and Thermal Comfort

    Science.gov (United States)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  14. Coupling of the Models of Human Physiology and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus–FE [1]. In the paper validation of the model for very light physical activities (1 met indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  15. Impact of measurable physical phenomena on contact thermal comfort

    Science.gov (United States)

    Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján

    Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  16. Impact of measurable physical phenomena on contact thermal comfort

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2017-01-01

    Full Text Available Cabin HVAC (Heating Ventilation and Air-conditioning systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  17. Thermal Comfort and Optimum Humidity Part 2

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  18. Thermal Comfort and Optimum Humidity Part 1

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  19. Thermal comfort and building energy consumption implications – A review

    International Nuclear Information System (INIS)

    Yang, Liu; Yan, Haiyan; Lam, Joseph C.

    2014-01-01

    Highlights: • We review studies of thermal comfort and discuss building energy use implications. • Adaptive comfort models tend to have a wider comfort temperature range. • Higher indoor temperatures would lead to fewer cooling systems and less energy use. • Socio-economic study and post-occupancy evaluation of built environment is desirable. • Important to consider future climate scenarios in heating, cooling and power schemes. - Abstract: Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO 2 emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews thermal comfort research work and discusses the implications for building energy efficiency. Predicted mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising summer set point temperature has good energy saving potential, in that it can be applied to both new and existing buildings. Further research and development work conducive to a better understanding of thermal comfort and energy conservation in buildings have been identified and discussed. These include (i) social-economic and cultural studies in general and post-occupancy evaluation of the built environment and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy planning/distribution systems in response to the expected changes in heating and cooling requirements due to climate change

  20. Modeling of the thermal comfort in vehicles using COMSOL multiphysics

    Science.gov (United States)

    Gavrila, Camelia; Vartires, Andreea

    2016-12-01

    The environmental quality in vehicles is a very important aspect of building design and evaluation of the influence of the thermal comfort inside the car for ensuring a safe trip. The aim of this paper is to modeling and simulating the thermal comfort inside the vehicles, using COMSOL Multiphysics program, for different ventilation grilles. The objective will be the implementing innovative air diffusion grilles in a prototype vehicle. The idea behind this goal is to introduce air diffusers with a special geometry allowing improving mixing between the hot or the cold conditioned air introduced in the cockpit and the ambient.

  1. The effects of vegetation on indoor thermal comfort

    DEFF Research Database (Denmark)

    Pastore, Luisa; Corrao, Rossella; Heiselberg, Per Kvols

    2017-01-01

    Highlights •A multi-scale simulation methodology to assess the effects of vegetation on thermal comfort is used. •It application is shown on a case of urban and building retrofit intervention. •The effect of plants on the microclimate and indoor environment is assessed. •A decrease of up to 4.8 °C...... in indoor temperature is registered. •The final impact on the indoor thermal comfort based on the adaptive model is determined....

  2. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  3. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    Science.gov (United States)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  4. Adaptive thermal comfort opportunities for dwellings: Providing thermal comfort only when and where needed in dwellings in the Netherlands

    Directory of Open Access Journals (Sweden)

    Noortje Alders

    2016-08-01

    Full Text Available The aim of the research presented in this thesis is to design the characteristics of an Adaptive Thermal Comfort System for Dwellings to achieve a significantly better energy performance whilst not compromising the thermal comfort perception of the occupants. An Adaptive Thermal Comfort System is defined as the whole of passive and active comfort components of the dwelling that dynamically adapts its settings to varying user comfort demands and weather conditions (seasonal, diurnal and hourly depending on the aspects adapted, thus providing comfort only where, when and at the level needed by the user, to improve possibilities of harvesting the environmental energy (e.g. solar gain and outdoor air when available and storing it when abundant. In order to be able to create an Adaptive Thermal Comfort System to save energy knowledge is needed as to where, when, what kind and how much energy is needed to provide the thermal comfort. Therefore, this research aimed to gain insight in the dynamic behaviour of the weather and the occupant and the opportunities to design the characteristics of an Adaptive Thermal Comfort System for Dwellings to achieve a significantly better energy performance whilst not compromising the thermal comfort perception of the occupants answering the main research question;  What are the most efficient strategies for delivering thermal comfort in the residential sector with respect to better energy performances and an increasing demand for flexibility in use and comfort conditions? To answer the main research question three steps were taken, which also represent the three parts of the research: 1. The dynamic information of the factors influencing the thermal heat balance of the dwelling was gathered in order to determine their opportunities for adaptivity. A multidisciplinary approach to Thermal Comfort Systems is followed taking into account the dynamic of occupancy profiles, weather, building physics, HVAC and controls. A

  5. Thermal comfort in residential buildings by the millions

    DEFF Research Database (Denmark)

    Østergård, Torben; Maagaard, Steffen; Jensen, Rasmus Lund

    2016-01-01

    In Danish building code and many design briefings, criteria regarding thermal comfort are defined for “critical” rooms in residential buildings. Identifying the critical room is both difficult and time-consuming for large, multistory buildings. To reduce costs and time, such requirement often cau...

  6. Effect of urban albedo surfaces on thermal comfort | Mansouri ...

    African Journals Online (AJOL)

    It turns out that the reflectivity of materials known as the albedo, plays a leading role in this degradation. A numerical study was carried out to assess the thermal comfort of citizens by applying reflective materials for roofs, facades and floor. The results show that the reflective light paints help in moderating the microclimate, ...

  7. Research and Design for Thermal Comfort in Dutch Urban Squares

    NARCIS (Netherlands)

    Lenzholzer, S.

    2012-01-01

    Human thermal comfort in urban outdoor places was generally not an issue in Dutch urban design. This neglect shows problematic effects of discomfort, but also missed chances in urban life quality. The existing problems are alleviated due to the expected effects of climate change with even higher

  8. Structural Properties of Dwelling and Thermal Comfort in Tropical ...

    African Journals Online (AJOL)

    The structural properties of dwelling units, in particular “window types” in 1, 250 apartments and their indoor temperature levels were collected. One hypothesis was formulated: (HO) There is no significant variation in effective temperature index and thus thermal comfort between dwellings built with wooden windows and ...

  9. Double face : Adjustable translucent system to improve thermal comfort

    NARCIS (Netherlands)

    Turrin, M.; Tenpierik, M.J.; De Ruiter, P.; Van der Spoel, W.H.; Chang Lara, C.; Heinzelmann, F.; Teuffel, P.; Van Bommel, W.

    2015-01-01

    The DoubleFace project aims at developing a new product that passively improves thermal comfort of indoor and semi-indoor spaces by means of lightweight materials for latent heat storage, while simultaneously allowing daylight to pass through as much as possible. Specifically, the project aims at

  10. Improvement of Thermal Comfort in a Naturally Ventilated Office

    DEFF Research Database (Denmark)

    Bjørn, Erik; Jensen, J.; Larsen, J.

    The paper describes the results of laboratory investigations in a mock-up of an office space with the purpose of investigating the impact of different opening strategies on thermal comfort conditions in the occupied zone. The results show that different window opening strategies result in quite...

  11. Indoor thermal environment and comfort conditions in the temperate ...

    African Journals Online (AJOL)

    This paper presents the results of thermal comfort investigation conducted on forty-two acclimatized individuals casting their votes on a scale of preference at half-hourly intervals for a period of seven days. Simultaneously, indoor and outdoor temperature and humidity readings were obtained using simple hygrometers.

  12. Thermal comfort analysis of hostels in National Institute of ...

    Indian Academy of Sciences (India)

    Thermal comfort study was carried out in the hostels of National Institute of Technology Calicut,Kerala, which is located in a warm humid climatic zone of India. Measurements of ambient temperature, globe temperature, relative humidity, air velocity and illuminance were carried out in eight hostels, and in parallel a ...

  13. The correlation between thermal comfort in buildings and fashion products.

    Science.gov (United States)

    Giesel, Aline; de Mello Souza, Patrícia

    2012-01-01

    This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.

  14. Thermal Comfort-CFD maps for Architectural Interior Design

    DEFF Research Database (Denmark)

    Naboni, Emanuele; Lee, Daniel Sang-Hoon; Fabbri, Kristian

    2017-01-01

    opportunities of movable interior partitions (operated by the users) could be estimated, providing a new layer of information to the designer. The applicability of the thermal maps within an architectural design process is discussed adopting standard energy simulation comfort outputs as a reference...... moving a series of internal partitions so as to avoid the danger of over-heating. It is thus necessary that existing simulation software tools are tested to the purpose of modelling and visualizing the indoor thermal environment complexity. The research discusses how thermal comfort maps, which...... are prepared with the use of Computational Fluid Dynamic simulation method, could integrate energy simulation outputs to uphold qualitative architectural design decisions. Mean radiant temperature maps were thus used to design the retrofit of a small educational building in Copenhagen. The thermal...

  15. The Adaptive Thermal Comfort model may not always predict thermal effects on performance

    DEFF Research Database (Denmark)

    Wyon, David Peter; Wargocki, Pawel

    2014-01-01

    A letter to the editor is presented in response to the article "Progress in thermal comfort research over the last twenty years," by R.J. de Dear and colleagues.......A letter to the editor is presented in response to the article "Progress in thermal comfort research over the last twenty years," by R.J. de Dear and colleagues....

  16. Thermal comfort study of plastics manufacturing industry in converting process

    Directory of Open Access Journals (Sweden)

    Sugiono Sugiono

    2017-09-01

    Full Text Available Thermal comfort is one of ergonomics factors that can create a significant impact to workers performance. For a better thermal comfort, several environment factors (air temperature, wind speed and relative humidity should be considered in this research. The object of the study is a building for converting process of plastics manufacturing industry located in Malang, Indonesia. The maximum air temperature inside the building can reach as high as 36°C. The result of this study shows that heat stress is dominantly caused by heat source from machine and wall building. The computational fluid dynamics (CFD simulation is used to show the air characteristic through inside the building. By using the CFD simulation, some scenarios of solution are successfully presented. Employees thermal comfort was investigated based on predicted mean vote model (PMV and predicted percentage of dissatisfied model (PPD. Existing condition gives PMV in range from 1.83 to 2.82 and PPD in range from 68.9 to 98%. Meanwhile, modification of ventilation and replacing ceiling material from clear glass into reflective clear glass gave significant impact to reduce PMV into range from 1.63 to 2.18 and PPD into range from 58.2 to 84.2%. In sort, new design converting building process has more comfortable for workers.

  17. Outdoor thermal comfort and behaviour in urban area

    Science.gov (United States)

    Inavonna, I.; Hardiman, G.; Purnomo, A. B.

    2018-01-01

    Outdoor comfort is important due to the public spaces functions. Open spaces provide thermal comfort and a pleasant experience to improve the city life quality effectively. The influence of thermal comfort in outdoor activities is a complex problem. This paper presents a literature review and discussion of aspects of physical, psychology, and social behaviour toward outdoor thermal comfort. The valuation is determined not only by the “physical state” but also by the “state of mind”. The assessment is static and objective (i.e., physical and physiological characteristics) that it should be measured. Furthermore, an effective model to provide the knowledge of climatic conditions, as well as the dynamic and subjective aspects (i.e., psychological and social characteristics and behaviour), requires a comprehensive interview and observation. The model will be examined to describe the behaviour that is a reflection of perception and behaviour toward the environment. The adaptation process will constantly evolve so that it becomes a continuous cause between human behaviour and the spatial setting of the formation, which is eventually known as places and not just spaces. This evolutionary process is a civic art form.

  18. Urban Climate Design: Improving thermal comfort in Dutch neighbourhoods

    Directory of Open Access Journals (Sweden)

    Laura Kleerekoper

    2017-11-01

    , materials and colour. Simulations and measurements Contextual aspects and combinations of measures can seriously influence the effects of measures. To get a grip on such effects and their co-occurrence (interrelations, possible adaptations to an existing rural configuration were modelled and their effects on the microclimate were simulated using the numerical program ENVI-met. It is demonstrated that, for instance, trees combined with highly reflective façades do often not provide cooling, whereas trees combined with moderate façade colouring does. To assess the effects of a single measure, independent of its context, single parameter simulations of thermal comfort (PET were performed. This is the first time that such a comparative study was undertaken in The Netherlands. The complexity of the situations was increased gradually from an empty field with only pavement or only grass, to pavement with grass and a single building, moving up to a building with a few trees to many trees, multiple buildings and built forms.  During this study it became clear that airflow has a significant influence on the comfort temperature. However, cooling by means of creating drafts on a mesoscale is difficult to manage and control. The low wind speed, which is typical for Dutch heat waves, provides ventilation through thermal stratification. Airflow between warm and cool spaces only occurs with sufficient temperature differences and low wind speed. This principle was investigated on the side towards new measures because little is known about the effects of generating airflow as a result of façade colour. Measurements were performed first in a small-scale experiment in a controlled area and when results seemed promising this was extended to a full-scale situation on an average Summer’s day.  Research design In current practice, urban design pays little or no attention to the urban microclimate and urban-heat stress. Designers indicate that they have insufficient knowledge and evaluation

  19. Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California

    Energy Technology Data Exchange (ETDEWEB)

    Shendell, Derek Garth [Univ. of California, Los Angeles, CA (United States)

    2003-01-01

    indoor air guideline ''target level'', and concentrations of most target VOCs were low. O and M questionnaire results suggested insufficient training and communication between custodians and SD offices concerning HVAC systems. Future studies should attempt larger sample sizes and cover larger geographical areas but continue to assess multiple IEQ parameters during occupied hours. Teachers, custodians, and SD staff must be educated on the importance of adequate ventilation with filtered outdoor air.

  20. Adaptive thermal comfort for buildings in Portugal based on occupants' thermal perception

    Energy Technology Data Exchange (ETDEWEB)

    Matias, L.; Pina Santos, C.; Rebelo, M. [LNEC National Laboratory for Civil Engineering, Lisbon (Portugal); Almeida, S. [FCT Foundation for Science and Technology, Lisbon (Portugal); Correia Guedes, M. [IST Higher Technical Inst., Lisbon (Portugal)

    2009-07-01

    The use of air conditioning systems in Portugal has increased in recent years. Most new service buildings are equipped with mechanical air conditioning systems, either due to commercial reasons, productivity, or due to high internal thermal loads, and solar gains through windows. However, a large percentage of older service buildings are still naturally ventilated. In ASHRAE 55 thermal comfort standard, an adaptive model was adopted as an optional method for determining acceptable thermal conditions in naturally conditioned spaces. Recently, Portugal's National Laboratory for Civil Engineering (LNEC) initiated an interdisciplinary research study in this field. The research team of physicists, social scientists, and civil engineers developed better modeling of adaptive thermal strategies. This paper described the adaptive approach that defined indoor thermal comfort requirements applicable to Portuguese buildings. The study focused on assessing, in real use conditions, indoor environments and the response of occupants of office and educational buildings, and homes for the elderly. The results were obtained from 285 field surveys carried out on 40 buildings and a set of 2367 questionnaires completed by occupants. Field surveys assessed and measured the main indoor environmental parameters during summer, winter and mid-season. This paper included the results of the analysis to the occupants' thermal perception and expectation, by relating them to both measured and collected indoor thermal environments and outdoor climate. The relation between the occupants' thermal sensation and preference was analysed for different types of activities, throughout different seasons. Results showed that occupants may tolerate broader temperature ranges than those indicated in current standards, particularly in the heating season. 10 refs., 3 tabs., 9 figs.

  1. Objective and subjective thermal comfort evaluation in Hungary

    Directory of Open Access Journals (Sweden)

    Kajtar Laszlo

    2017-01-01

    Full Text Available Thermal comfort sensation can be predicted in the most exact way based on Fanger’s predicted mean vote (PMV model. This evaluation method takes all the six influencing factors into consideration: air temperature and humidity, air velocity, mean radiant temperature of surrounding surfaces, clothing insulation, and occupants’ activities. Fanger’s PMV method was developed for temperate climate and European people, with the participation of university students as subjects. Many researchers had investigated its validity in different geographic locations (i. e. climatic conditions, people and under non-laboratory circumstances. The results were summarised by van Hoof which had been published in the scientific references. The articles gave us the idea to elaborate the former measurement results. During the last decades thermal comfort was evaluated by our research team using subjective scientific questionnaires and applying the objective Fanger’s model in several office buildings in Hungary. The relation between the PMV and actual mean vote values were analysed based on these results. Investigations were carried out under steady-state conditions in winter time. We performed objective thermal comfort evaluations based on instrumental measurements using the PMV theory. Parallel to this we assessed the subjective thermal sensation using scientific questionnaires. The mathematical relationship between the actual mean vote and PMV was defined according to the evaluated thermal environment: AMV = PMV + 0.275, (arg. –1.7 ≤ PMV ≤ +0.5.

  2. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    Science.gov (United States)

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  3. Evaluation of the thermal comfort of ceramic floor tiles

    Directory of Open Access Journals (Sweden)

    Carmeane Effting

    2007-09-01

    Full Text Available In places where people are bare feet, the thermal sensation of cold or hot depends on the environmental conditions and material properties including its microstructure and crustiness surface. The uncomforting can be characterized by heated floor surfaces in external environments which are exposed to sun radiation (swimming polls areas or by cold floor surfaces in internal environments (bed rooms, path rooms. The property named thermal effusivity which defines the interface temperature when two semi-infinite solids are putted in perfect contact. The introduction of the crustiness surface on the ceramic tiles interferes in the contact temperature and also it can be a strategy to obtain ceramic tiles more comfortable. Materials with low conductivities and densities can be obtained by porous inclusion are due particularly to the processing conditions usually employed. However, the presence of pores generally involves low mechanical strength. This work has the objective to evaluate the thermal comfort of ceramics floor obtained by incorporation of refractory raw materials (residue of the polishing of the porcelanato in industrial atomized ceramic powder, through the thermal and mechanical properties. The theoretical and experimental results show that the porosity and crustiness surface increases; there is sensitive improvement in the comfort by contact.

  4. Thermal Comfort Project: A Cool Solution to the Nation's Energy Security Challenges

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    This fact sheet describes how the CTTS thermal comfort project will increase energy security by reducing fuel consumed by auxiliary loads such as air conditioning. It also describes physiological and psychological computer models and thermal comfort manikin.

  5. Usage of Modern Sensors for Thermal Comfort Determination

    OpenAIRE

    Jan JANEČKA; Daniel ZUTH

    2009-01-01

    The following article deals with human thermal comfort dilemma. Firstly, the sensor for operative temperature evaluation and than synthetic skin type sensor will be introduced. There is no compact sensor on the market, which can measure operative temperature, so the effort is to develop this kind of sensor. It is necessary to measure more physical quantities, like air temperature, mean radiant temperature, air flow velocity and relative air velocity, to calculate operative temperature. Human ...

  6. Ecosystem Biomimicry: A way to achieve thermal comfort in architecture

    Directory of Open Access Journals (Sweden)

    H. Abaeian

    2016-10-01

    Full Text Available The strategies to reduce the consumption of non-renewable energies in buildings are becoming increasingly important. In the meantime, nature-inspired approaches have emerged as a new strategy to achieve thermal comfort in the interiors. However, the use of these approaches in architecture and buildings requires a proper understanding regarding the features of ecosystems. Although acquiring this knowledge requires a high degree of familiarity with the fields such as biology and environmental science, review of achievements made by the use of these features could facilitate the understanding of ecomimicry processes and thereby contribute to environmental sustainability in buildings. In other words, this paper concerns the relationship between these features and the thermal comfort inside the building. Biomimicry is an approach to innovation that seeks sustainable solutions to human challenges by emulating nature’s time-tested patterns and strategies. The objective of this paper is to use such review to provide an approach to the use of natural features for achieving thermal comfort in the buildings of hot and dry climates. In this review, the successful examples are analyzed to identify and examine the principles that influence the thermal comfort in both building and urban levels. The results show that the three elements of water, wind, sun are the effective natural resources that must be utilized in the design in a way proportional and consistent with the natural features. In addition, functional features of ecosystem can be of value only in the presence of a processual  relationship between them.

  7. DoubleFace: Adjustable translucent system to improve thermal comfort

    Directory of Open Access Journals (Sweden)

    Michela Turrin

    2014-11-01

    Full Text Available The DoubleFace project aims at developing a new product that passively improves thermal comfort of indoor and semi-indoor spaces by means of lightweight materials for latent heat storage, while simultaneously allowing daylight to pass through as much as possible. Specifically, the project aims at designing and prototyping an adjustable translucent modular system featuring thermal insulation and thermal absorption in a calibrated manner, which is adjustable according to different heat loads during summer- and wintertime. The output consists of a proof of concept, a series of performance simulations and measurement and a prototype of an adjustable thermal mass system based on lightweight and translucent materials: phase-changing materials (PCM for latent heat storage and translucent aerogel particles for thermal insulation.

  8. Hygrothermal response of a dwelling house. Thermal comfort criteria

    Directory of Open Access Journals (Sweden)

    Adrian IACOB

    2015-12-01

    Full Text Available The use of local natural materials in order to reduce the environmental negative impact of buildings has become common practice in recent years; such buildings are to be found in all regions of the planet. The high level of thermal protection provided by the envelope elements made from natural materials such as straw bale insulation, hemp insulation or sheep wool, and their lack of thermal massiveness require a more complex analysis on their ability to keep interior comfort without accentuated variations. This paper proposes a comparative analysis between different solutions for a residential building located near a Romanian city, Cluj-Napoca. The elements of the building envelope are designed in three alternative solutions, using as substitute to classical solutions (concrete and polystyrene, masonry and polystyrene, straw bales and rammed earth for enclosing elements. For this purpose there are conducted numerical simulations of heat and mass transfer, using a mathematical model that allows the analysis of indoor comfort, by comparing both objective factors (air temperature, operative temperature and relative humidity and subjective factors, which are needed to define interior thermal comfort indices PPD and PMV. Finally, a set of conclusions are presented and future research directions are drawn.

  9. Indoor Air Quality and Thermal Comfort in School Buildings

    Science.gov (United States)

    Juhásová Šenitková, Ingrid

    2017-12-01

    This paper presents results to thermal comfort and environment quality questions in 21 school building rooms. Results show that about 80% of the occupants expressed satisfaction with their thermal comfort in only 11% of the buildings surveyed. Air quality scores were somewhat higher, with 26% of buildings having 80% or occupant satisfaction. With respect to thermal comfort and air quality performance goals set out by standards, most buildings appear to be falling far short. Occupant surveys offer a means to systematically measure this performance, and also to provide diagnostic information for building designers and operators. The odours from building materials as well as human odours were studied by field measurement. The odour intensity and indoor air acceptability were assessed by a sensory panel. The concentrations of total volatile organic compounds and carbon dioxide were measured. The odours from occupancy and building materials were studied under different air change rate. The case study of indoor air acceptability concerning to indoor odours and its effect on perceived air quality are also presented in this paper.

  10. Numerical Analysis of Thermal Comfort at Urban Environment

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.

    2009-08-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (athletic park), named "Serafeio Athletic and Cultural Centre," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  11. Numerical Analysis of Thermal Comfort at Open Air Spaces

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  12. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI to Other Outdoor Thermal Comfort Indices

    Directory of Open Access Journals (Sweden)

    Iacopo Golasi

    2016-07-01

    Full Text Available Outdoor thermal comfort is an essential factor of people’s everyday life and deeply affects the habitability of outdoor spaces. However the indices used for its evaluation were usually developed for indoor environments assuming still air conditions and absence of solar radiation and were only later adapted to outdoor spaces. For this reason, in a previous study the Mediterranean Outdoor Comfort Index (MOCI was developed, which is an empirical index able to estimate the thermal perception of people living in the Mediterranean area. In this study it was compared numerically (by using the data obtained through a field survey with other selected thermal indices. This comparison, performed in terms of Spearman’s rho correlation coefficient, association Gamma, percentage of correct predictions and cross-tabulation analysis, led to identify the MOCI as the most suitable index to examine outdoor thermal comfort in the interested area. As a matter of fact it showed a total percentage of correct predictions of 35.5%. Good performances were reported even in thermophysiological indices as the Physiological Equivalent Temperature (PET and Predicted Mean Vote (PMV. Moreover it was revealed that adaptation and acclimatization phenomena tend to have a certain influence as well.

  13. Passenger thermal perceptions, thermal comfort requirements, and adaptations in short- and long-haul vehicles.

    Science.gov (United States)

    Lin, Tzu-Ping; Hwang, Ruey-Lung; Huang, Kuo-Tsang; Sun, Chen-Yi; Huang, Ying-Che

    2010-05-01

    While thermal comfort in mass transportation vehicles is relevant to service quality and energy consumption, benchmarks for such comfort that reflect the thermal adaptations of passengers are currently lacking. This study reports a field experiment involving simultaneous physical measurements and a questionnaire survey, collecting data from 2,129 respondents, that evaluated thermal comfort in short- and long-haul buses and trains. Experimental results indicate that high air temperature, strong solar radiation, and low air movement explain why passengers feel thermally uncomfortable. The overall insulation of clothing worn by passengers and thermal adaptive behaviour in vehicles differ from those in their living and working spaces. Passengers in short-haul vehicles habitually adjust the air outlets to increase thermal comfort, while passengers in long-haul vehicles prefer to draw the drapes to reduce discomfort from extended exposure to solar radiation. The neutral temperatures for short- and long-haul vehicles are 26.2 degrees C and 27.4 degrees C, while the comfort zones are 22.4-28.9 degrees C and 22.4-30.1 degrees C, respectively. The results of this study provide a valuable reference for practitioners involved in determining the adequate control and management of in-vehicle thermal environments, as well as facilitating design of buses and trains, ultimately contributing to efforts to achieve a balance between the thermal comfort satisfaction of passengers and energy conserving measures for air-conditioning in mass transportation vehicles.

  14. Weather and Tourism: Thermal Comfort and Zoological Park Visitor Attendance

    Directory of Open Access Journals (Sweden)

    David R. Perkins

    2016-03-01

    Full Text Available Weather events have the potential to greatly impact business operations and profitability, especially in outdoor-oriented economic sectors such as Tourism, Recreation, and Leisure (TRL. Although a substantive body of work focuses on the macroscale impacts of climate change, less is known about how daily weather events influence attendance decisions, particularly relating to the physiological thermal comfort levels of each visitor. To address this imbalance, this paper focuses on ambient thermal environments and visitor behavior at the Phoenix and Atlanta zoos. Daily visitor attendances at each zoo from September 2001 to June 2011, were paired with the Physiologically Equivalent Temperature (PET to help measure the thermal conditions most likely experienced by zoo visitors. PET was calculated using hourly atmospheric variables of temperature, humidity, wind speed, and cloud cover from 7 a.m. to 7 p.m. at each zoological park location and then classified based on thermal comfort categories established by the American Society of Heating and Air Conditioning Engineers (ASHRAE. The major findings suggested that in both Phoenix and Atlanta, optimal thermal regimes for peak attendance occurred within “slightly warm” and “warm” PET-based thermal categories. Additionally, visitors seemed to be averse to the most commonly occurring thermal extreme since visitors appeared to avoid the zoo on excessively hot days in Phoenix and excessively cold days in Atlanta. Finally, changes in the daily weather impacted visitor attendance as both zoos experienced peak attendance on days with dynamic changes in the thermal regimes and depressed attendances on days with stagnant thermal regimes. Building a better understanding of how weather events impact visitor demand can help improve our assessments of the potential impacts future climate change may have on tourism.

  15. Contribution of Portuguese Vernacular Building Strategies to Indoor Thermal Comfort and Occupants’ Perception

    Directory of Open Access Journals (Sweden)

    Jorge Fernandes

    2015-11-01

    Full Text Available Solar passive strategies that have been developed in vernacular architecture from different regions are a response to specific climate effects. These strategies are usually simple, low-tech and have low potential environmental impact. For this reason, several studies highlight them as having potential to reduce the demands of non-renewable energy for buildings operation. In this paper, the climatic contrast between northern and southern parts of mainland Portugal is presented, namely the regions of Beira Alta and Alentejo. Additionally, it discusses the contribution of different climate-responsive strategies developed in vernacular architecture from both regions to assure thermal comfort conditions. In Beira Alta, the use of glazed balconies as a strategy to capture solar gains is usual, while in Alentejo the focus is on passive cooling strategies. To understand the effectiveness of these strategies, thermal performances and comfort conditions of two case studies were evaluated based on the adaptive comfort model. Field tests included measurement of hygrothermal parameters and surveys on occupants’ thermal sensation. From the results, it has been found that the case studies have shown a good thermal performance by passive means alone and that the occupants feel comfortable, except during winter where there is the need to use simple heating systems.

  16. Thermal comfort of dual-chamber ski gloves

    Science.gov (United States)

    Dotti, F.; Colonna, M.; Ferri, A.

    2017-10-01

    In this work, the special design of a pair of ski gloves has been assessed in terms of thermal comfort. The glove 2in1 Gore-Tex has a dual-chamber construction, with two possible wearing configurations: one called “grip” to maximize finger flexibility and one called “warm” to maximize thermal insulation in extremely cold conditions. The dual-chamber gloves has been compared with two regular ski gloves produced by the same company. An intermittent test on a treadmill was carried out in a climatic chamber: it was made of four intense activity phases, during which the volunteer ran at 9 km/h on a 5% slope for 4 minutes, spaced out by 5-min resting phases. Finger temperature measurements were compared with the thermal sensations expressed by two volunteers during the test.

  17. Retrofitted green roofs and walls and improvements in thermal comfort

    Science.gov (United States)

    Feitosa, Renato Castiglia; Wilkinson, Sara

    2017-06-01

    Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.

  18. Thermal comfort in residential buildings by the millions

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2016-01-01

    In Danish building code and many design briefings, criteria regarding thermal comfort are defined for “critical” rooms in residential buildings. Identifying the critical room is both difficult and time-consuming for large, multistory buildings. To reduce costs and time, such requirement often...... causes other less critical rooms to be designed with the same constraints as the critical one. In this paper, we propose a method to overcome the difficulty of identifying critical rooms and exploit the design potential of other rooms. First we have defined a set of typical room variations present...

  19. Proposition of Regression Equations to Determine Outdoor Thermal Comfort in Tropical and Humid Environment

    OpenAIRE

    Sangkertadi Sangkertadi; Reny Syafriny

    2012-01-01

    This study is about field experimentation in order to construct regression equations of perception of thermalcomfort for outdoor activities under hot and humid environment. Relationships between thermal-comfort perceptions, micro climate variables (temperatures and humidity) and body parameters (activity, clothing, body measure) have been observed and analyzed. 180 adults, men, and women participated as samples/respondents. This study is limited for situation where wind velocity is about 1 m/...

  20. CFD simulation of a cabin thermal environment with and without human body - thermal comfort evaluation

    Science.gov (United States)

    Danca, Paul; Bode, Florin; Nastase, Ilinca; Meslem, Amina

    2018-02-01

    Nowadays, thermal comfort became one of the criteria in choosing a vehicle. In last decades time spent by people in vehicles had risen substantially. During each trip, thermal comfort must to be ensured for a good psychological and physical state of the passengers. Also, a comfortable environment leads to a higher power concentration of the driver thereby to a safe trip for vehicle occupants and for all traffic participants. The present study numerically investigated the effect of human body sited in the driver's place, over the air velocity distribution and over the thermal comfort in a passenger compartment. CFD simulations were made with different angles of the left inlet grill, in both cases, with and without driver presence. In majority of the actual vehicles environment studies, are made without consideration of human body geometry, in this case, the results precision can be affected. The results show that the presence of human body, lead to global changing of the whole flow pattern inside the vehicular cabin. Also, the locations of the maximum velocities are changing with the angle of the guiding vanes. The thermal comfort PMV/PPD indexes were calculated for each case. The presence of human body leads to a more comfortable environment.

  1. A possible connection between thermal comfort and health

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, John L.

    2004-05-20

    It is a well-established fact that cardiovascular health requires periodic exercise during which the human body often experiences significant physical discomfort. It is not obvious to the exerciser that the short-term pain and discomfort has a long-term positive health impact. Many cultures have well-established practices that involve exposing the body to periodic thermal discomfort. Scandinavian saunas and American Indian sweat lodges are two examples. Both are believed to promote health and well-being. Vacations often intentionally include significant thermal discomfort as part of the experience (e.g., sunbathing, and downhill skiing). So people often intentionally make themselves thermally uncomfortable yet the entire foundation of providing the thermal environment in our buildings is done to minimize the percentage of people thermally dissatisfied. We must provide an environment that does not negatively impact short-term health and we need to consider productivity but are our current thermal comfort standards too narrowly defined and do these standards actually contribute to longer-term negative health impacts? This paper examines the possibility that the human body thermoregulatory system has a corollary relationship to the cardiovascular system. It explores the possibility that we have an inherent need to exercise our thermoregulatory system. Potential, physiological, sociological and energy ramifications of these possibilities are discussed.

  2. Estimation of some comfort parameters for sleeping environments in dry-tropical sub-Saharan Africa region

    International Nuclear Information System (INIS)

    Djongyang, Noël; Tchinda, René; Njomo, Donatien

    2012-01-01

    Highlights: ► Thermal comfort in sleeping environments in the sub-Saharan Africa is presented. ► Comfort charts for the dry-tropical regions were established. ► Total insulation values for bedding systems range between 0.81 clo and 0.94 clo. ► Thermoneutral operative temperature ranges between 29.5 °C and 31.7 °C. ► Thermoneutral air temperature ranges between 27.1 °C and 29.6 °C. - Abstract: A human being spends approximately one-third of his/her life in sleep. For an efficient and peaceful rest, he/she therefore needs some level of comfort. This includes acceptable environmental parameters as well as suitable bedding systems. While the theories of thermal comfort in workplaces at daytime are currently well established, research on thermal comfort for sleeping environment at night is limited. Further studies in relation with sleep are needed. This paper presents an investigation on thermal comfort in sleeping environments in the sub-Saharan Africa region. The comfort equation used is based on the energy balance of the human body derived from Fanger’s comfort model. Comfort charts for the dry-tropical sub-Saharan Africa region were established using indoor climatic conditions collected over five years in Ouagadougou (12°22′N, 1°32′W). Results obtained show that the suitable monthly total insulation values for bedding systems in the dry-tropical regions range between 0.81 clo and 0.94 clo. The thermoneutral operative temperature range between 29 °C and 32 °C, while the thermoneutral air temperature range between 27 °C and 30 °C.

  3. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    Science.gov (United States)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-08-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  4. Sensitivity analysis for daily building operation from the energy and thermal comfort standpoint

    Directory of Open Access Journals (Sweden)

    Ignjatović Marko G.

    2016-01-01

    Full Text Available Improving energy performance of buildings is one of the most important tasks for reaching sustainability. Assessing building energy consumption is performed more often with specialized simulation tools. Sensitivity analysis proved to be a valuable tool for creating more reliable and realistic building energy models and better buildings. This paper briefly describes the methodology for running global sensitivity analysis and tools that can be used, and presents the results of such an analysis conducted for winter period, daily, on input variables covering a real building's operation, control and occupant related parameters that affect both thermal comfort and heating energy consumption. Two sets of inputs were created. The only difference between these sets is an addition of clothing insulation and occupant heat gain as input variables. The reference building was simulated for three distinctive winter weeks. Two additional input variables have an effect especially on thermal comfort, but they do not disturb the relative order of other influential input variables. The common influential variables for both energy consumption and thermal comfort were identified and are: air handling unit sup-ply temperature and airflow rate and control system related parameters. This can help in future research into implementing the simulation-assisted optimized operation in real buildings. [Projekat Ministarstva nauke Republike Srbije, br. TR-33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  5. Parametric Modelling and Traditional Architecture: Improving the thermal comfort of the traditional courtyard house in Morocco

    Directory of Open Access Journals (Sweden)

    El Harrouni Khalid

    2018-01-01

    Full Text Available The traditional courtyard house of the Mediterranean Basin has been viewed as a complex regulating system that creates a microclimate which historically worked, and still works, in a passive way to provide acceptable thermal comfort in summer. The internal courtyard is generally described as a positive factor that can moderate extreme outdoor climatic conditions. However, some researches have shown that the courtyard could become a negative factor from the energy efficiency point of view. For this purpose, this paper is based on a research study exploring sustainable characteristics of Moroccan traditional housing and its climatic adaptation, delving into the Rabat-Salé case study. A traditional courtyard model is used as a case study to analyze the indoor thermal comfort without using mechanical heating and cooling systems. The thermal behavior of the rooms surrounding the courtyard is analyzed under a temperate and humid climate of Rabat-Salé medina. The simulation modelling is carried out to analyze the effectiveness of different parameters to improve the indoor climate during summer and winter, including the façade orientation, the air infiltration, the surroundings, the ceiling height, the walls and roof/ceiling insulation and the shading devices. Tools for climatic design, Mahoney’s tables, Givoni and Szokolay bio climatic diagrams have been also used to improve design strategies in terms of thermal comfort.

  6. Thermal comfort indices of female Murrah buffaloes reared in the Eastern Amazon

    Science.gov (United States)

    da Silva, Jamile Andréa Rodrigues; de Araújo, Airton Alencar; Lourenço Júnior, José de Brito; dos Santos, Núbia de Fátima Alves; Garcia, Alexandre Rossetto; de Oliveira, Raimundo Parente

    2015-09-01

    The study aimed to develop new and more specific thermal comfort indices for buffaloes reared in the Amazon region. Twenty female Murrah buffaloes were studied for a year. The animals were fed in pasture with drinking water and mineral supplementation ad libitum. The following parameters were measured twice a week in the morning (7 AM) and afternoon (1 PM): air temperature (AT), relative air humidity (RH), dew point temperature (DPT), wet bulb temperature (WBT), black globe temperature (BGT), rectal temperature (RT), respiratory rate (RR), and body surface temperature (BST). The temperature and humidity index (THI), globe temperature and humidity index (GTHI), Benezra's comfort index (BTCI), and Ibéria's heat tolerance index (IHTI) were calculated so they could be compared to the new indices. Multivariate regression analyses were carried out using the canonical correlation model, and all indices were correlated with the physiological and climatic variables. Three pairs of indices (general, effective, and practical) were determined comprising the buffalo comfort climatic condition index (BCCCI) and the buffalo environmental comfort index (BECI). The indices were validated and a great agreement was found among the BCCCIs (general, effective, and practical), with 98.3 % between general and effective a.nd 92.6 % between general and practical. A significant correlation ( P physiological and climatic variables, which indicated that these may be used in pairs to diagnose thermal stress in buffaloes reared in the Amazon.

  7. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  8. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  9. The effect of fabric structural parameters and fiber type on the comfort-related properties of commercial apparel fabrics

    CSIR Research Space (South Africa)

    Stoffberg, ME

    2015-10-01

    Full Text Available The effect of fabric structural parameters and fiber type on the comfort-related properties, namely water vapor resistance and thermal resistance, of commercial apparel (suiting) fabrics, containing both natural and man-made fibers have been studied...

  10. Computation of thermal comfort inside a passenger car compartment

    International Nuclear Information System (INIS)

    Mezrhab, A.; Bouzidi, M.

    2006-01-01

    This paper describes a numerical model to study the behaviour of thermal comfort inside the passenger car compartment according to climatic conditions and materials that compose the vehicle. The specifically developed numerical model is based on the nodal method and the finite difference method. Its specificities are: (i) the transient mode, (ii) the taking into account of the combined convection, conduction and radiation heat transfer, (iii) the coupling of two spectral bands (short-wave and long-wave radiation) and two solar fluxes (beam and diffuse). The compartment is subdivided in several solid nodes (materials constituting the compartment) and fluid nodes (volumes of air inside the compartment). The establishment of the heat balance for each node gives the evolution of its temperature. Effects of solar radiation, types of glazing, car colour and radiative properties of materials constituting the compartment are investigated

  11. Influence of evapotranspiration on thermal comfort in central European cities

    Science.gov (United States)

    Goldbach, A.; Kuttler, W.

    2012-04-01

    In future, more and more people will be exposed to the negative thermal effects of urban climate, which will be exacerbated by predicted climate change. In regard to urban climate studies, it is necessary to develop adaptation and mitigation strategies tailored to the problem area and to include them in the local planning process. Urban green spaces or water bodies could help to mitigate the radiation and air temperature. For this purpose eddy-covariance technique has been carried out in Oberhausen (Germany; 51° N, 6° E) between 15 August 2010 and 14 August 2011 to quantify turbulent sensible and latent heat fluxes in areas with various types of urban land use. The results show that sensible heat flux (QH) is 20 % higher, latent heat flux (QE) 90 % lower at the urban (URB) site compared to the suburban one (SUB). Furthermore, partition of the turbulent heat fluxes (QH/Q* resp. QE/Q*) clearly depends on plan area density (λP). The human-biometeorological thermal index, the physiologically equivalent temperature (PET), demonstrates that green spaces counteract growing thermal stress on city-dwellers due to improving thermal comfort. Aside from the positive effect of shading, inner-city green spaces can only be effective if an adequate water supply is ensured. Otherwise, the positive thermal effects of green spaces resulting from transpiration will be reduced to a minimum or eliminated entirely, which is confirmed by the measured values. Additional planning recommendations for urban planners within cities located at mid-latitudes derived from measuring results are given.

  12. Thermal comfort of seats as visualized by infrared thermography.

    Science.gov (United States)

    Sales, Rosemary Bom Conselho; Pereira, Romeu Rodrigues; Aguilar, Maria Teresa Paulino; Cardoso, Antônio Valadão

    2017-07-01

    Published studies that deal with the question of how the temperature of chair seats influences human activities are few, but the studies considering such a factor, a function of the type of material, could contribute to improvements in the design of chairs. This study evaluates seat temperatures of 8 types of chairs made of different materials. The parts of the furniture that people come into contact with, and the thermal response of the material to heating and cooling have been evaluated. Infrared thermography was used for this, as it is a non-contact technique that does not present any type of risk in the measurement of temperatures. Seats made of synthetic leather (leatherette), wood and polyester fabric were found to have the highest temperatures, and the plywood seat showed the lowest. The study has also revealed that thermography can contribute to studies of thermal comfort of chair seats in addition to determining the most suitable material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Children thermal comfort in primary schools in Ho Chi Minh City in Vietnam

    OpenAIRE

    Le, Thi Ho Vi; Gillott, Mark C.; Rodrigues, Lucélia Taranto

    2017-01-01

    Indoor environmental quality significantly impacts on students’ performance and productivity, particularly thermal comfort levels. Currently in Vietnam, very few studies have dealt with the issue and the current trend is to install energy-intensive air-conditioning in primary schools as this is perceived as more comfortable. In this study, the authors investigated the users’ perceptions of thermal comfort in three primary schools in Ho Chi Minh City during the mid-season (September 2015) and ...

  14. CFD simulations of thermal comfort in naturally ventilated primary school classrooms

    Directory of Open Access Journals (Sweden)

    Stevanović Žana Ž.

    2016-01-01

    Full Text Available The purpose of Thermal Comfort is to specify the combinations of indoor space environment and personal factors that will produce thermal environment conditions acceptable to 80% or more of the occupants within a space. Naturally ventilated indoors has a very complex air movement, which depends on numerous variables such as: outdoor interaction, intensity of infiltration, the number of openings, the thermal inertia of walls, occupant behaviors, etc. The most important mechanism for naturally ventilated indoors is the intensity of infiltration and thermal buoyancy mechanism. In this study the objective was to determine indicators of thermal comfort for children, by the CFD model based on experimental measurements with modification on turbulent and radiant heat transfer mathematical model. The case study was selected on school children aged 8 and 9 years in primary school „France Prešern“, Belgrade. The purpose was to evaluate the relationships between the indoor environment and the subjective responses. Also there was analysis of infiltration and stack effect based on meterological data on site. The main parameters that were investigated are: operative temperature, radiant temperature, concentration of CO2 and air velocity. The new correction of turbulence and radiative heat transfer models has been validated by comparison with experimental data using additional statistical indicators. It was found that both turbulence model correct and the new radiative model of nontransparent media have a significant influence on CFD data set accuracy.

  15. Street greenery and its physical and psychological impact on outdoor thermal comfort

    NARCIS (Netherlands)

    Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; Hove, van B.

    2015-01-01

    This study focuses on the benefits of street greenery for creating thermally comfortable streetscapes in moderate climates. It reports on investigations on the impact of street greenery on outdoor thermal comfort from a physical and psychological perspective. For this purpose, we examined nine

  16. The effect of different transitional spaces on thermal comfort and energy consumption of residential buildings

    NARCIS (Netherlands)

    Taleghani, M.; Tenpierik, M.J.; Van den Dobbelsteen, A.A.J.F.

    2012-01-01

    Purpose- This paper focuses on the effect of courtyards, atria and sunspaces on indoor thermal comfort and energy consumption for heating and cooling. One of the most important purposes is to understand if certain transitional spaces can reduce the energy consumption of and improve thermal comfort

  17. A review of human thermal comfort experiments in controlled and semi-controlled environments

    NARCIS (Netherlands)

    Craenendonck, Van Stijn; Lauriks, Leen; Vuye, Cedric; Kampen, Jarl

    2018-01-01

    There are three main methods to improve thermal comfort in existing buildings: modeling, experiments and measurements. Regarding experiments, no standardized procedure exists. This article provides an answer to the question: “What is the most common practice for human thermal comfort experiments in

  18. Thermal Comfort: An Index for Hot, Humid Asia. Educational Building Digest 12.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    The sensation of thermal comfort is determined by a combination of air temperature, humidity of the air, rate of movement of the air, and radiant heat. This digest is intended to assist architects to design educational facilities that are as thermally comfortable as is possible without recourse to mechanical air conditioning. A nomogram is…

  19. Analysis of thermal comfort and indoor air quality in a mechanically ventilated theatre

    Energy Technology Data Exchange (ETDEWEB)

    Kavgic, M.; Mumovic, D.; Young, A. [The Bartlett School of Graduate Studies, University College London, Gower Street, London, WC1E 6BT, England (United Kingdom); Stevanovic, Z. [Institute of Nuclear Sciences - Vinca, P.O. Box 522, 11001 Belgrade (RS)

    2008-07-01

    Theatres are the most complex of all auditorium structures environmentally. They usually have high heat loads, which are of a transient nature as audiences come and go, and from lighting which changes from scene to scene, and they generally have full or nearly full occupancy. Theatres also need to perform well acoustically, both for the spoken word and for music, and as sound amplification is less used than in other auditoria, background noise control is critically important. All these factors place constraints on the ventilation design, and if this is poor, it can lead to the deterioration of indoor air quality and thermal comfort. To analyse the level of indoor air quality and thermal comfort in a typical medium-sized mechanically ventilated theatre, and to identify where improvements could typically be made, a comprehensive post-occupancy evaluation study was carried out on a theatre in Belgrade. The evaluation, based on the results of monitoring (temperature, relative humidity, CO{sub 2}, air speed and heat flux) and modelling (CFD), as well as the assessment of comfort and health as perceived by occupants, has shown that for most of the monitored period the environmental parameters were within the standard limits of thermal comfort and IAQ. However, two important issues were identified, which should be borne in mind by theatre designers in the future. First, the calculated ventilation rates showed that the theatre was over-ventilated, which will have serious consequences for its energy consumption, and secondly, the displacement ventilation arrangement employed led to higher than expected complaints of cold discomfort, probably due to cold draughts around the occupants' feet. (author)

  20. Integration of human physiology. Individual Thermal comfort in thermal comfort models; Integratie van de menselijke fysiologie. Individueel thermisch comfort in thermische comfortmodellen

    Energy Technology Data Exchange (ETDEWEB)

    Frijns, A. [Faculteit Werktuigbouwkunde, Technische Universiteit Eindhoven, Eindhoven (Netherlands); Van Marken Lichtenbelt, W.; Kingsma, B. [Department of Human Biology, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht (Netherlands)

    2011-09-15

    When designing climate installations, the PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied index) values are used as guidelines. Installations are designed in such a way that the 'average' user in a 'steady-state' condition experiences thermal comfort. Studies show that individual physiological processes might be suitable for integration in the design models. [Dutch] Bij het ontwerp van klimaatinstallaties worden de PMV/PPD-waarden van Fanger (PMV staat voor de Predicted Mean Vote index en PPD is de Predicted Percentage Dissatisfied index) als richtlijn gebruikt. Installaties worden zodanig ontworpen dat een 'gemiddelde' persoon in een 'steady-state' conditie deze als thermisch comfortabel ervaart. Studies wijzen uit dat individuele fysiologische processen mogelijk ook in ontwerpmodellen inpasbaar zijn.

  1. Using a Zonal Model To Assess the Effect of a Heated Floor on Thermal Comfort Quality

    International Nuclear Information System (INIS)

    Boukhris, Yosr; Gharbi, Leila; Ghrab-Morcos, Nadia

    2009-01-01

    People s perceptions of indoor air quality and thermal comfort are affected by air speed and temperature. We have extended the three-dimensional zonal model, ZAER, to be able to predict the temperature fields and the air distributions between and within rooms in the case of natural convection. This paper presents an application of the new zonal model dealing with the influence of a heated floor of one room upon the winter thermal comfort of an unconditioned Tunisian dwelling. Coupling ZAER with a thermal comfort model allows the assessment of the thermal quality of the dwelling through the prediction of a comfort indicator. The obtained results show that a heated floor can be a useful component to improve thermal comfort in the Tunisian context, even in another room

  2. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  3. Definition of specific comfort parameters, indoor environmental and architectural quality

    DEFF Research Database (Denmark)

    Mortensen, Andrea; Heiselberg, Per Kvols; Knudstrup, Mary-Ann

    2018-01-01

    In the coming years, the European building sector faces a large challenge to reduce the energy consumption and CO2 emission. Private homeowners need to participate in this process, but various barriers prevent them from conducting extensive energy renovations. Studies have, nonetheless, shown...... that improvements in indoor environment, comfort and architecture can motivate the Danish homeowners to complete energy renovations. In order to utilize these results and thereby reduce the energy consumption in the existing Danish building stock, this paper examines which aspects of indoor environment and comfort...... the homeowners find essential, and which level of architectural change they prefer. The presented results derive from a survey conducted January 2012 where 883 homeowners completed a questionnaire about energy renovation. The aspects found most crucial for good indoor environment and comfort are stable and right...

  4. Silicon infrared sensors for thermal comfort and control

    Energy Technology Data Exchange (ETDEWEB)

    Culp, C.H. (Honeywell Inc., Arlington Heights, IL (United States)); Krafthefer, B.C. (Honeywell Inc., Bloomington, MN (United States)); Rhodes, M.L.; Listvan, M.A.

    1993-04-01

    Obtaining a satisfactory comfort level is becoming increasingly important to building owners. Today, comfort control typically means using the space temperature to control space conditions. However, in the near-future, comfort control will mean measuring sensible temperature, radiant temperature, humidity and velocity, then calculating a comfort value, and controlling conditions of the space. The main factors affecting individual worker comfort are more easily measured than others. For example, radiant temperature is a relatively difficult and expensive measurement to make because of the cost of radiant sensors. Accordingly, this article describes a low cost infrared (IR) radiant sensor that is based on silicon microstructure technology. The importance of radiant temperature to comfort is also discussed.

  5. Human Thermal Comfort In Residential House Buildings Of Jimma Town Southwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Chali Yadeta

    2015-08-01

    Full Text Available Indoor human thermal comfort is an important factor in indoor air quality assessment. Thermal comfort affects human health work efficiency and overall wellbeing. Thermal discomfort in indoors lowers the emotional and physical health of the occupants. This paper targets to explore human thermal comfort in residential house buildings of Jimma town and state some possible mechanisms to improve the existing thermal discomfort in large number the houses. For the study 303 structured questionnaires were distributed to the residential houses in thirteen places of the town based on predetermined criteria. The study reveals that human thermal discomfort in residential houses Jimma town are mainly from poor architectural design and improper use of heat generating appliances in indoors. The uses architectural design that suites the present climatic conditions and use of materials that facilitates ventilations will enhance the realization of the required human thermal comfort in residential houses of the study area.

  6. Proposition of Regression Equations to Determine Outdoor Thermal Comfort in Tropical and Humid Environment

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2012-05-01

    Full Text Available This study is about field experimentation in order to construct regression equations of perception of thermalcomfort for outdoor activities under hot and humid environment. Relationships between thermal-comfort perceptions, micro climate variables (temperatures and humidity and body parameters (activity, clothing, body measure have been observed and analyzed. 180 adults, men, and women participated as samples/respondents. This study is limited for situation where wind velocity is about 1 m/s, which touch the body of the respondents/samples. From questionnaires and field measurements, three regression equations have been developed, each for activity of normal walking, brisk walking, and sitting.

  7. Ride comfort analysis with physiological parameters for an e-health train.

    Science.gov (United States)

    Lee, Youngbum; Shin, Kwangsoo; Lee, Sangjoon; Song, Yongsoo; Han, Sungho; Lee, Myoungho

    2009-12-01

    Transportation by train has numerous advantages over road transportation, especially with regard to energy efficiency, ecological features, safety, and punctuality. However, the contrast in ride comfort between standard road transportation and train travel has become a competitive issue. The ride comfort enhancement technology of tilting trains (TTX) is a particularly important issue in the development of the Korean high-speed railroad business. Ride comfort is now defined in international standards such as UIC13 and ISO2631. The Korean standards such as KSR9216 mainly address physical parameters such as vibration and noise. In the area of ride comfort, living quality parameter techniques have recently been considered in Korea, Japan, and Europe. This study introduces biological parameters, particularly variations in heart rate, as a more direct measure of comfort. Biological parameters are based on physiological responses rather than on purely external mechanical parameters. Variability of heart rate and other physiological parameters of passengers are measured in a simulation involving changes in the tilting angle of the TTX. This research is a preliminary study for the implementation of an e-health train, which would provide passengers with optimized ride comfort. The e-health train would also provide feedback on altered ride comfort situations that can improve a passenger's experience and provide a healthcare service on the train. The aim of this research was to develop a ride comfort evaluation system for the railway industry, the automobile industry, and the air industry. The degree of tilt correlated with heart rate, fatigue, and unrelieved alertness.

  8. The field investigation on thermal comfort of tent in early autumn of Tianjin

    Directory of Open Access Journals (Sweden)

    Yang Hao

    2016-01-01

    Full Text Available In a university campus in Tianjin, four tents were set up to investigate the thermal environment and thermal comfort. Both the field investigation and questionnaires were adopted in this experiment. Two hundred people were investigated, and two hundred questionnaires were gotten. The results show that the thermal comfort zone of officers and soldiers is 24°C to 28°C in early fall, it is a wide range. There is a big error between the PMV index and the actual survey results, PMV calculation index is not accurate in tents environment. The results will have a significant effect on improving the thermal comfort of tents..

  9. The Effect of Thermal Mass on Annual Heat Load and Thermal Comfort in Cold Climate Construction

    DEFF Research Database (Denmark)

    Stevens, Vanessa; Kotol, Martin; Grunau, Bruno

    2016-01-01

    been shown to reduce the annual heating demand. However, few studies exist regarding the effects of thermal mass in cold climates. The purpose of this research is to determine the effect of high thermal mass on the annual heat demand and thermal comfort in a typical Alaskan residence using energy...... that while increased thermal mass does have advantages in all climates, such as a decrease in summer overheating, it is not an effective strategy for decreasing annual heat demand in typical residential buildings in Alaska. (C) 2015 American Society of Civil Engineers.......Thermal mass in building construction refers to a building material's ability to absorb and release heat based on changing environmental conditions. In building design, materials with high thermal mass used in climates with a diurnal temperature swing around the interior set-point temperature have...

  10. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador

    Science.gov (United States)

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2017-03-01

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  11. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador

    Science.gov (United States)

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2018-03-01

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  12. Thermal Comfort Level Assessment in Urban Area of Petrolina-PE County, Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Vieira de Azevedo

    Full Text Available Abstract This study evaluated the thermal conditions of urban areas in Petrolina-PE, from continuous data collected in urban and rural areas for the year of 2012. The results characterized urban heat islands (UHI with varying intensity in urban areas, especially UHI = 5.3 °C (high intensity occurred on April 28, 2012. It was evident that the constituent elements of urban areas contribute to the formation and expansion of UHI bringing thermal discomfort for its inhabitants. An adaptation to Thom’s equation for calculating the Thermal Discomfort Index (DIT, was used to obtain the maximum (DITx and minimum (DITm thermal discomfort. In the urban area, the DITm indicated thermal comfort in 23.0% of the days and partial comfort in 77.0% of days surveyed. Already, the DITx characterized 71.6% of days with partial comfort and 28.4% of days with thermal discomfort. In the rural area, The DITm indicated that 41.5% of days were thermally comfortable and 58.5% of days had partial comfort. However, the DITx pointed 87.7% of the days of this environment with partial thermal comfort and 12.3% of thermally uncomfortable days. Finally, the results showed that afforestation of urban area constitutes to an effective and efficient way to mitigate thermal discomfort.

  13. Assessment of Thermal Comfort in a Building Heated with a Tiled Fireplace with the Function of Heat Accumulation

    Science.gov (United States)

    Telejko, Marek; Zender-Świercz, Ewa

    2017-10-01

    Thermal comfort determines the state of satisfaction of a person or group of people with thermal conditions of the environment in which the person or group of persons is staying. This state of satisfaction depends on the balance between the amount of heat generated by the body’s metabolism, and the dissipation of heat from the body to the surrounding environment. Due to differences in body build, metabolism, clothing etc. individuals may feel the parameters of the environment in which they are staying differently. Therefore, it is impossible to ensure the thermal comfort of all users of the room. However, properly designed building systems (heating, ventilation, air conditioning) allow for creating optimal thermal conditions that will evaluated positively by the vast majority of users. Due to the fact that currently we spend even 100% of the day indoors, the subject becomes extremely important. The article presents the evaluation of thermal comfort in rooms heated with a tiled fireplace with the function of accumulation of heat using the PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied) indices. It also presents the results of studies, on the quality of the micro-climate in such spaces. The system of heating premises described in the article is not a standard solution, but is now more and more commonly used as a supplement to the heating system, or even as a primary heating system in small objects, e.g. single-family houses, seasonal homes, etc. The studies comprised the measurements and analysis of typical internal micro-climate parameters: temperature, relative humidity and CO2 concentration. The results obtained did not raise any major reservations. In order to fully assess the conditions of use, the evaluation of thermal comfort of the analyzed rooms was made. Therefore, additionally the temperature of radiation of the surrounding areas, and the insulation of the users’ clothing was determined. Based on the data obtained, the PPD and PMV

  14. A decision-tree-based model for evaluating the thermal comfort of horses

    Directory of Open Access Journals (Sweden)

    Ana Paula de Assis Maia

    2013-12-01

    Full Text Available Thermal comfort is of great importance in preserving body temperature homeostasis during thermal stress conditions. Although the thermal comfort of horses has been widely studied, there is no report of its relationship with surface temperature (T S. This study aimed to assess the potential of data mining techniques as a tool to associate surface temperature with thermal comfort of horses. T S was obtained using infrared thermography image processing. Physiological and environmental variables were used to define the predicted class, which classified thermal comfort as "comfort" and "discomfort". The variables of armpit, croup, breast and groin T S of horses and the predicted classes were then subjected to a machine learning process. All variables in the dataset were considered relevant for the classification problem and the decision-tree model yielded an accuracy rate of 74 %. The feature selection methods used to reduce computational cost and simplify predictive learning decreased model accuracy to 70 %; however, the model became simpler with easily interpretable rules. For both these selection methods and for the classification using all attributes, armpit and breast T S had a higher power rating for predicting thermal comfort. Data mining techniques show promise in the discovery of new variables associated with the thermal comfort of horses.

  15. Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands

    NARCIS (Netherlands)

    Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; Jacobs, M.H.; Hove, van B.

    2015-01-01

    Green infrastructure can improve thermal comfort in outdoor urban spaces in moderate climates. The impact of green spaces on thermal comfort is often exclusively investigated through meteorological variables and human-biometeorological indices. Yet, studies on perceived thermal comfort are scarce.

  16. A new hybrid thermal comfort guideline for the Netherlands (ISSO 74: 2014)

    NARCIS (Netherlands)

    A.M. van Weele; A.C. Boerstra; J. van Hoof

    2014-01-01

    Boerstra, A.C., van Hoof, J., van Weele, A.C. (2014) A new hybrid thermal comfort guideline for the Netherlands (ISSO 74: 2014). In: Nicol, F., Roaf, S., Brotas, L, Humphreys, M. Proceedings of 8th Windsor Conference: Counting the Cost of Comfort in a changing world. Cumberland Lodge, Windsor, UK,

  17. Transient analysis and improvement of indoor thermal comfort for an air-conditioned room with thermal insulations

    Directory of Open Access Journals (Sweden)

    D. Prakash

    2015-09-01

    Full Text Available Thermal insulations over the building envelop reduce the heat gain due to solar radiation and may enhance good and uniform indoor thermal comfort for the occupants. In this paper, the insulation layer-wood wool is laid over the roof and exposed wall of an air-conditioned room and its performance on indoor thermal comfort is studied by computational fluid dynamics (CFD technique. From this study, 3% of indoor thermal comfort index-predicted mean vote (PMV is improved by providing wood wool layer. In addition, the optimum supply air temperature of air-conditioning unit for good thermal comfort is predicted as in the range of 299–300 K (26–27 °C.

  18. STATUS THERMAL COMFORT PADA LINGKUNGAN ATMOSFER PERMUKIMAN DI WILAYAH KECAMATAN DENPASAR BARAT

    Directory of Open Access Journals (Sweden)

    Komang Edy Indrawan Kusuma

    2016-07-01

    Full Text Available The effect of residential atmosphere environment generally gives environment stress to the life of the dwellers. One of the environment stress source is the unfulfilment of thermal comfort. The rapid development of residential at Denpasar City cause the variation on building density that are low, medium, high, and very high density classifications. Residential configuration of each classification gives very strong influence to status of urban’s thermal comfort. Purpose of the research is to understand the thermal index profile PET, to identify the status of thermal comfort and to analyze the influence of Tmrt to thermal index PET of residential atmosphere environment at West Denpasar Sub-district area. The research was performed at residential atmosphere environment of West Denpasar Sub-district area by using RayMan model simulation to obtain thermal index profile PET. Sampling technique used the stratified random sampling method with data diversity that is used based on the buildings density. The thermal index profile PET of residential of low density classification is the lowest thermal index profile PET compared to the other three classifications, which are the medium, high, and very high density. One hundred percent of status of thermal comfort of residential atmosphere environment is in hot thermal stress and based on average thermal index PET is on physiological stress level of “Strong heat stress”. Tmrt is the most influential variable to thermal index PET. The concept to increase the status of thermal comfort of residential atmosphere environment at West Denpasar area used the bioclimatic approach. Investigation of status of thermal comfort of residential atmosphere environment at West Denpasar Sub-district area has given the directive of urban planning in improving and revitalized urban spaces.

  19. Application of thermal comfort theory in probabilistic safety assessment of a nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Tao; Sun Canhui; Li Zhenyang; Wang Zenghui

    2011-01-01

    Human factor errors in probabilistic safety assessment (PSA) of a nuclear power plant (NPP) can be prevented using thermal comfort analysis. In this paper, the THERP + HCR model is modified by using PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied) index system, so as to obtain the operator cognitive reliability,and to reflect and analyze human perception, thermal comfort status,and cognitive ability in a specific NPP environment. The mechanism of human factors in the PSA is analyzed by operators of skill, rule and knowledge types. The THERP + HCR model modified by thermal comfort theory can reflect the conditions in actual environment, and optimize reliability analysis of human factors. Improving human thermal comfort for different types of operators reduces adverse factors due to human errors, and provides a safe and optimum decision-making for NPPs. (authors)

  20. New Equation for Estimating Outdoor Thermal Comfort in Humid-Tropical Environment.

    OpenAIRE

    S Sangkertadi; R Syafriny

    2014-01-01

    This paper presents the results of research focusing on thermal comfort at outdoor spaces in humid tropical climate. The study was conducted in the city of Manado, Indonesia inthe years 2011 and 2012, by way of field-experimentation and measurements of microclimate.From the results of measurements and questionnaires, it was carried out development of regression equations. Through statistical analysis it has been generated three thermal comfort equations for outdoor, which each for normal walk...

  1. The Influence of Thermal Comfort on the Quality of Life of Nursing Home Residents.

    Science.gov (United States)

    Mendes, Ana; Papoila, Ana Luísa; Carreiro-Martins, Pedro; Aguiar, Lívia; Bonassi, Stefano; Caires, Iolanda; Palmeiro, Teresa; Ribeiro, Álvaro Silva; Neves, Paula; Pereira, Cristiana; Botelho, Amália; Neuparth, Nuno; Teixeira, João Paulo

    2017-01-01

    Thermal comfort (TC) parameters were measured in 130 rooms from nursing homes (NH), following ISO 7730:2005 in order to evaluate the influence of winter season TC indices on quality of life (QoL) in older individuals. Mean radiant temperature (mrT), predicted mean vote (PMV) and predicted percent of dissatisfied people (PPD) indices, and the respective measurement uncertainties were calculated using Monte Carlo Method. The WHOQOL-BREF questionnaire was conducted from September 2012 to April 2013, during the winter season TC sampling campaign. Winter PMV and PPD indices showed significant differences between seasons in median values for comfort. There were also significant differences between seasons for air temperature, air velocity, mrT, and relative humidity. The winter PMV index displayed a "slightly cool" [≤-1] to "cool" [≤-2] in thermal sensation scale [-3 to 3]. PPD index reflected this discomfort as evidenced by a high rate of predicted dissatisfied occupants (64%). The influence of winter season TC on older individual QoL results demonstrated that values of PMV above -0.7 had higher mean score of QoL (coefficient estimate: 11.13 units) compared with values of PMV below -0.7. These findings are of relevance to public health and may be useful for understanding NH indoor environment variables thus implementing preventive policies in terms of standards and guidelines for these susceptible populations.

  2. CFD Modeling of Thermal Manikin Heat Loss in a Comfort Evaluation Benchmark Test

    DEFF Research Database (Denmark)

    Nilsson, Håkan O.; Brohus, Henrik; Nielsen, Peter V.

    2007-01-01

    for comfort evaluation. The main idea is to focus on people. It is the comfort requirements of occupants that decide what thermal climate that will prevail. It is therefore important to use comfort simulation methods that originate from people, not just temperatures on surfaces and air.......Computer simulated persons (CSPs) today are different in many ways, reflecting various software possibilities and limitations as well as different research interest. Unfortunately, too few of the theories behind thermal manikin simulations are available in the public domain. Many researchers...

  3. Adaptive Thermal Comfort in The Tropic: A Case Study of The Aceh Tsunami Museum

    Directory of Open Access Journals (Sweden)

    Laina Hilma Sari

    2013-12-01

    Full Text Available Thermal comfort calculated using ISO 7730 has been questioned and responded by more adaptive thermal comfort methods. This study was therefore conducted to assess the acceptable thermal comfort for the local people in the tropical Aceh using the measurement based on ISO 7730 and with adaptive thermal comfort method by questionnaires. In this research, Aceh Tsunami Museum building, located in Banda Aceh, Indonesia, was in an open designed layout to be assessed as a case study. This study was conducted onsite using mechanical equipment and involving 138 respondents. The result shows that the comfort temperature calculated by mechanical equipment based on ISO 7730 is 23.140C. This is in contrast with the result of the questionnaires that showed people in an open building design rate the air temperature up to 320C as slightly cool. This condition is influenced by the mean air speed of 2.34 m/s and the mean relative humidity of 66.25%. This finding agrees that obtaining the comfort air temperature especially in tropics merely from the prediction of comfort index in ISO 7730 is inaccurate since the respondents actually could adapt with the higher air temperature.

  4. Impact of shade on outdoor thermal comfort-a seasonal field study in Tempe, Arizona.

    Science.gov (United States)

    Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini

    2016-12-01

    Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

  5. Simulation and measurement of thermal comfort; Simulation und Messung der thermischen Behaglichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Conrad; Kornadt, Oliver [Bauhaus-Universitaet Weimar, Professur Bauphysik (Germany)

    2010-12-15

    An approach is introduced, which enables the assessment of thermal comfort considering the complex and inhomogeneous climatic conditions in buildings as well as the human physiology. Computational fluid dynamic is linked with a numerical model representing the thermophysiological behavior of the human body (UC Berkeley Comfort Model). By dint of CFD, the climatic conditions in buildings are simulated with a detailed resolution. Basing on the simulations, the thermophysiological model is able to determine the temperature distribution of the human body, the heat flux to the environment as well as thermal comfort. The approach is used for the exemplified investigation of thermal comfort and sensation in a room equipped with a radiant cooling floor. (Copyright copyright 2010 Ernst and Sohn Verlag fuer Architektur und technische Wissenschaften GmbH and Co. KG, Berlin)

  6. A simplified tool for building layout design based on thermal comfort simulations

    Directory of Open Access Journals (Sweden)

    Prashant Anand

    2017-06-01

    Full Text Available Thermal comfort aspects of indoor spaces are crucial during the design stages of building layout planning. This study presents a simplified tool based on thermal comfort using predicted mean vote (PMV index. Thermal comfort simulations were performed for 14 different possible room layouts based on window configurations. ECOTECT 12 was used to determine the PMV of these rooms for one full year, leading to 17,808 simulations. Simulations were performed for three different climatic zones in India and were validated using in-situ measurements from one of these climatic zones. For moderate climates, rooms with window openings on the south façade exhibited the best thermal comfort conditions for nights, with comfort conditions prevailing for approximately 79.25% of the time annually. For operation during the day, windows on the north façade are favored, with thermal comfort conditions prevailing for approximately 77.74% of the time annually. Similar results for day and night time operation for other two climatic zones are presented. Such an output is essential in deciding the layout of buildings on the basis of functionality of the different rooms (living room, bedroom, kitchen corresponding to different operation times of the day.

  7. Assessment of human thermal comfort and mitigation measures in different urban climatotopes

    Science.gov (United States)

    Müller, N.; Kuttler, W.

    2012-04-01

    This study analyses thermal comfort in the model city of Oberhausen as an example for the densely populated metropolitan region Ruhr, Germany. As thermal loads increase due to climate change negative impacts especially for city dwellers will arise. Therefore mitigation strategies should be developed and considered in urban planning today to prevent future thermal stress. The method consists of the combination of in-situ measurements and numerical model simulations. So in a first step the actual thermal situation is determined and then possible mitigation strategies are derived. A measuring network was installed in eight climatotopes for a one year period recording air temperature, relative humidity, wind speed and wind direction. Based on these parameters the human thermal comfort in terms of physiological equivalent temperature (PET) was calculated by RayMan Pro software. Thus the human comfort of different climatotopes was determined. Heat stress in different land uses varies, so excess thermal loads in urban areas could be detected. Based on the measuring results mitigation strategies were developed, such as increasing areas with high evaporation capacity (green areas and water bodies). These strategies were implemented as different plan scenarios in the microscale urban climate model ENVI-met. The best measure should be identified by comparing the range and effect of these scenarios. Simulations were run in three of the eight climatotopes (city center, suburban and open land site) to analyse the effectiveness of the mitigation strategies in several land use structures. These cover the range of values of all eight climatotopes and therefore provide representative results. In the model area of 21 ha total, the modified section in the different plan scenarios was 1 ha. Thus the effect of small-scale changes could be analysed. Such areas can arise due to population decline and structural changes and hold conversion potential. Emphasis was also laid on analysing the

  8. Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses

    DEFF Research Database (Denmark)

    Vanhoutteghem, Lies; Skarning, Gunnlaug Cecilie Jensen; Hviid, Christian Anker

    2015-01-01

    a solution space defined by targets for daylighting and thermal comfort. In contrast with existing guidelines, the results show an upper limit for energy savings and utilisation of solar gains in south-oriented rooms. Instead, low U-values are needed in both north- and south oriented rooms before large......Appropriate window solutions are decisive for the design of 'nearly zero-energy' buildings with healthy and comfortable indoor environment. This paper focuses on the relationship between size, orientation and glazing properties of façade windows for different side-lit room geometries in Danish...... 'nearly zero-energy' houses. The effect of these parameters on space heating demand, daylighting and thermal environment is evaluated by means of EnergyPlus and DAYSIM and presented in charts illustrating how combinations of design parameters with minimum space heating demand can be selected within...

  9. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    Science.gov (United States)

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Experimental study of thermal comfort on stab resistant body armor.

    Science.gov (United States)

    Ji, Tingchao; Qian, Xinming; Yuan, Mengqi; Jiang, Jinhui

    2016-01-01

    This research aims to investigate the impacts of exercise intensity and sequence on human physiology parameters and subjective thermal sensation when wearing stab resistant body armor under daily working conditions in China [26 and 31 °C, 45-50 % relative humidity (RH)], and to investigate on the relationship between subjective judgments and objective parameters. Eight male volunteers were recruited to complete 3 terms of exercises with different velocity set on treadmill for 90 min at 26 °C and 31 °C, 45-50 % RH. In Exercise 1 volunteers were seated during the test. In Exercise 2, volunteers walked with the velocity of 3 km/h in the first 45 min and 6 km/h in the left 45 min. In Exercise 3, volunteers walked with the velocity of 6 km/h in the first 45 min and 3 km/h in the left 45 min. The body core temperature, skin temperature and subjective judgments were recorded during the whole process. Analysis of variance was performed among all the tests. Individual discrepancy of Exercise 1 is larger than that of Exercise 2 and 3. On the premise of the same walking distance and environmental conditions, core temperature in Exercise 3 is about 0.2 °C lower than that in Exercise 2 in the end; and with the velocity decrease from 6 km/h to 3 km/h in the end, thermal tolerance of Exercise 3 is about 1 degree lower than that in Exercise 2. Skin temperatures of human trunk were at least 1 °C higher than that of limbs. Activity narrows the individual discrepancy on core temperature. Within experimental conditions, decreasing of intensity at last stage makes the core temperature lower and the whole process much tolerable. The core temperature is more sensitive to the external disturbance on the balance of the whole body, and it can reflect the subjective thermal sensation and physical exertion.

  11. THERMAL COMFORT STUDY OF TEACHERS' ROOM AT SEKOLAH BINA MULIA PONTIANAK

    Directory of Open Access Journals (Sweden)

    Albert Suryajaya

    2014-01-01

    Full Text Available Thermal comfort is one of the important aspects to ensure the comfort of a building. School building, e.g. Sekolah Bina Mulia, Pontianak is used for education activities for about eight hours a day. The teachersfourth floor and still applies the natural air ventilation system while other rooms use mechanical ventilation system. It is interesting to see thermal comfort condition in the ort of the room depends on the environment. Because of its position on the fourth floor, the wind circulation can flow freely and the application of air ventilation is possible. The average temperature is 29.599ºC, 71.216% for relative humidity and 0.143 m/s for wind speed, and 29.482ºC for MRT. The average value of PMV is 1.615. The thermal comfort value, based on the average of PPS*(PMV calculation for three days observation is 0.130 and it is the neutral condition. This means the room is comfort for the users and it is mainly because  of the windows, sun shading, and the building materials which support the natural air ventilation of the school   Kenyamanan termal merupakan salah satu aspek penting untuk memastikan suatu bangunan dapat memberikan kenyamanan bagi penggunanya. Bangunan sekolah, seperti Sekolah Bina Mulia Pontianak merupakan bangunan pendidikan yang digunakan kurang lebih delapan jam dalam satu hari. Ruang guru pada sekolah Bina Mulia, yang terletak pada lantai empat masih menggunakan sistem ventilasi udara alami sementara ruangan lain menggunakan sistem penghawaan mekanikal. Kenyamanan termal pada ruangan tentu sangat tergantung pada Keadaan lingkungan. Karena posisinya yang cukup tinggi, pergerakan udara pada ruangan juga lebih bebas. Artinya, aplikasi ventilasi udara alami sangat memungkinkan. Nilai temperatur udara rata-rata pada ruangan adalah 29,599 ºC, kelembaban 71,216%, kecepatan udara 0,143 m/det dan nilai temperatur radiasi 29,482ºC. Nilai PMV rata-rata pada ruangan adalah 1,615. Nilai PPS*(PMV rata-rata pada ruangan

  12. Experimental Measures of Bus Comfort Levels Using Kinematic Parameters Recorded by Smartphone

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, S. dell' ; Eboli, L.; Futia, G.; Mazzulla, G.; Pungillo, G.

    2016-07-01

    Comfort on board plays an essential role in the levels of satisfaction of a bus service perceived by passengers. The aim of this paper is to propose a measure of comfort based on two kinds of data: perceptions of passengers (subjective data) and accelerations of bus (objective data). For the collection of subjective data a questionnaire was addressed to a sample of university students, while a smartphone, equipped with GPS device and 3-axis accelerometer, was used to record the accelerations. Based on the recorded parameters, we determined the thresholds of the acceleration values beyond which the level of comfort cannot be considered as good.. (Author)

  13. Dynamic indoor thermal comfort model identification based on neural computing PMV index

    Science.gov (United States)

    Sahari, K. S. Mohamed; Jalal, M. F. Abdul; Homod, R. Z.; Eng, Y. K.

    2013-06-01

    This paper focuses on modelling and simulation of building dynamic thermal comfort control for non-linear HVAC system. Thermal comfort in general refers to temperature and also humidity. However in reality, temperature or humidity is just one of the factors affecting the thermal comfort but not the main measures. Besides, as HVAC control system has the characteristic of time delay, large inertia, and highly nonlinear behaviour, it is difficult to determine the thermal comfort sensation accurately if we use traditional Fanger's PMV index. Hence, Artificial Neural Network (ANN) has been introduced due to its ability to approximate any nonlinear mapping. Using ANN to train, we can get the input-output mapping of HVAC control system or in other word; we can propose a practical approach to identify thermal comfort of a building. Simulations were carried out to validate and verify the proposed method. Results show that the proposed ANN method can track down the desired thermal sensation for a specified condition space.

  14. Underground railway environment in the UK. Pt. 1: review of thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Ampofo, F.; Maidment, G.; Missenden, J. [London South Bank University, London (United Kingdom). Faculty of Engineering

    2004-04-01

    The thermal comfort conditions in underground railway environments in the UK, especially those found on the London underground railway system, have in recent years received exposure in the press. However, little has been written on the complications and difficulties associated with cooling an underground railway system with a massive heat load let alone one designed and constructed by Victorians. The deep and small tunnels make cooling of the underground railway environment differ from those normally encountered in conventional air conditioning and also the process is energy and capital intensive. This may lead to the conclusion that the acceptable thermal comfort criteria for say an office may not be achievable in an underground railway environment and perhaps thermal comfort criteria not quite equalling the office level maybe acceptable in such an environment. This part of the paper reviews published work on thermal comfort for the underground railway environment. The results will be correlated with the percentage of dissatisfied passengers due to the thermal conditions within the underground railway system. Based on these results, an attempt will be made to define ''acceptable'' thermal comfort criteria for an underground railway environment. (author)

  15. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  16. Field study of thermal comfort in non-air-conditioned buildings in a tropical island climate.

    Science.gov (United States)

    Lu, Shilei; Pang, Bo; Qi, Yunfang; Fang, Kun

    2018-01-01

    The unique geographical location of Hainan makes its climate characteristics different from inland areas in China. The thermal comfort of Hainan also owes its uniqueness to its tropical island climate. In the past decades, there have been very few studies on thermal comfort of the residents in tropical island areas in China. A thermal environment test for different types of buildings in Hainan and a thermal comfort field investigation of 1944 subjects were conducted over a period of about two months. The results of the survey data show that a high humidity environment did not have a significant impact on human comfort. The neutral temperature for the residents in tropical island areas was 26.1 °C, and the acceptable temperature range of thermal comfort was from 23.1 °C to 29.1 °C. Residents living in tropical island areas showed higher heat resistance capacity, but lower cold tolerance than predicted. The neutral temperature for females (26.3 °C) was higher than for males (25.8 °C). Additionally, females were more sensitive to air temperature than males. The research conclusions can play a guiding role in the thermal environment design of green buildings in Hainan Province. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  18. Thermal Comfort and Ventilation Criteria for low Energy Residential Buildings in Building Codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim

    2012-01-01

    of the indoor air quality in such buildings. Currently, there are no global guidelines for specifying the indoor thermal environment in such low-energy buildings. The objective of this paper is to analyse the classification of indoor thermal comfort levels and recommended ventilation rates for different low...

  19. Subjective sensation on sleep, fatigue, and thermal comfort in winter shelter-analogue settings

    Science.gov (United States)

    Maeda, Kazuki; Mochizuki, Yosuke; Tsuzuki, Kazuyo; Nabeshima, Yuki

    2017-10-01

    We aimed to examine sleep in shelter-analogue settings in winter to determine the subjective sensation and environmental conditions in evacuation shelters. Twelve young healthy students took part in the sleep study of two nights for seven hours from Midnight to 7 AM in the gymnasium. One night the subject used a pair of futons and on the other the subject used the emergency supplies of four blankets and a set of portable partitions. During the night, air temperature, humidity and air velocity were measured in the area around the sleeping subjects. Sleep parameters measured by actigraphy, skin temperature, microclimate temperature, rectal temperature, and the heart rates of the subjects were continuously measured and recorded during the sleeping period. The subjects completed questionnaires regarding their thermal comfort and subjective sleep before and after the sleep. The subjects felt more coldness on their head and peripheral parts of the body using the emergency blankets than the futon during the sleep. Moreover, fatigue was felt more on the lower back and lower extremities from using emergency blankets than the futon after sleep. However, the sleep efficiency index and subjective sleep evaluation by OSA questionnaire did not reveal any good correlationship. The emergency supplies should be examined for their suitability to provide comfortable and healthy sleep in the shelter-analogue settings.

  20. Thermal comfort in sun spaces: To what extend can energy collectors and seasonal energy storages provide thermal comfort in sun space?

    Directory of Open Access Journals (Sweden)

    Christian Wiegel

    2017-10-01

    Full Text Available Preparation for fossil fuel substitution in the building sector persists as an essential subject in architectural engineering. Since the building sector still remains as one of the three major global end energy consumer – climate change is closely related to construction and design. We have developed the archetype sun space to what it is today : a simple but effective predominant naturally ventilated sun trap and as well as living space enlargement. With the invention of industrial glass orangery’s more and more changed from frost protecting envelopes to living spaces from which we meantime expect thermal comfort in high quality. But what level of thermal comfort provide sun spaces? And to what extend may sun spaces manage autarkic operation profiting from passive solar gains and, beyond that, surplus energy generation for energy neutral conditioning of aligned spaces? We deliver detailed information for this detected gap of knowledge. We know about limited thermal comfort in sun spaces winter times. This reasons the inspection of manifold collector technologies, which enable to be embedded in facades and specifically in sun space envelopes. Nonetheless, effective façade integrated collectors are ineffective in seasons with poor irradiation. Hence, the mismatch of offer and demand we have experienced with renewable energies ignites thinking about appropriate seasonal energy storages, which enlarges the research scope of this work. This PhD thesis project investigates on both, a yearly empirical test set up analysis and a virtual simulation of different oriented and located sun spaces abroad Germany. Both empirical and theoretical evaluation result in a holistic research focusing on a preferred occupation time in terms of cumulative frequencies of operational temperature and decided local discomfort, of potential autarkic sun space operation and prospective surplus exergy for alternative heating of aligned buildings. The results are mapped

  1. Combining several thermal indices to generate a unique heat comfort assessment methodology

    Directory of Open Access Journals (Sweden)

    Wissam EL Hachem

    2015-11-01

    Full Text Available Purpose: The proposed methodology hopes to provide a systematic multi-disciplinary approach to assess the thermal environment while minimizing unneeded efforts. Design/methodology/approach: Different factors affect the perception of the human thermal experience: metabolic rate (biology, surrounding temperatures (heat balance and environmental factors and cognitive treatment (physiology.This paper proposes a combination of different multidisciplinary variables to generate a unique heat comfort assessment methodology. The variables at stake are physiological, biological, and environmental. Our own heat analysis is thoroughly presented and all relevant equations are described. Findings: Most companies are oblivious about potential dangers of heat stress accidents and thus about methods to monitor and prevent them. This methodology enables the company or the concerned individual to conduct a preliminary assessment with minimal wasted resources and time in unnecessary steps whilst providing a guideline for a detailed study with minimal error rates if needed. More so, thermal comfort is an integral part of sound ergonomics practices, which in turn are decisive for the success of any lean six sigma initiative. Research limitations/implications: This methodology requires several full implementations to finalize its design. Originality/value: Most used heat comfort models are inherently uncertain and tiresome to apply. An extensive literature review confirms the need for a uniform assessment methodology that combines the different thermal comfort models such as the Fanger comfort model (PMV, PPD and WGBT since high error rates coupled with tiresome calculations often hinder the thermal assessment process.

  2. Investigation on the Temporal Surface Thermal Conditions for Thermal Comfort Researches Inside A Vehicle Cabin Under Summer Season Climate

    Directory of Open Access Journals (Sweden)

    Zhang Wencan

    2016-01-01

    Full Text Available With the proposes of improving occupant's thermal comfort and reducing the air conditioning power consumption, the present research carried out a comprehensive study on the surface thermal conductions and their influence parameters. A numerical model was built considering the transient conduction, convective and radiation heat transfer inside a vehicle cabin. For more accurate simulation of the radiation heat transfer behaviors, the radiation was considered into two spectral bands (short wave and long wave radiation, and the solar radiation was calculated by two solar fluxes (beam and diffuse solar radiation. An experiment was conducted to validate the numerical approach, showing a good agreement with the surface temperature. The surface thermal conditions were numerically simulated. The results show that the solar radiation is the most important factor in determining the internal surface thermal conditions. Effects of the window glass properties and the car body surface conditions were investigated. The numerical calculation results indicate that reducing the transitivity of window glass can effectively reduce the internal surface temperature. And the reflectivity of the vehicle cabin also has an important influence on the surface temperature, however, it's not so obvious as comparison to the window glass.

  3. Adaptive Thermal Comfort in Learning Spaces: A Study of the Cold Period in Ensenada, Baja California

    Directory of Open Access Journals (Sweden)

    Julio Rincón

    2017-12-01

    Full Text Available Environmental thermal conditions decisively influence people’s performance, comfort, well-being and mood. In closed spaces, where people spend 80% of their time, thermal perception is a phenomenon studied from a multidisciplinary methodological approach. In Mexico, thermal comfort has been studied in isolation in different cities in the country, specifically at sites with warm, temperate or semi-cold bioclimate. The thermal estimates presented in this paper are the result of a thermal comfort study carried out during the cold period in the city of Ensenada, Baja California, which has a dry temperate bioclimate. The study was carried out from January 30th to March 3rd 2017 and consisted of the application of a questionnaire and the simultaneous recording of temperature, relative humidity and wind speed. The questionnaire was designed based on the subjective assessment scale suggested in ISO 10551 and ANSI/ASHRAE 55, while the instruments for measuring and recording environmental variables were selected and used based on ISO 7726. A database with 983 observations was created, and the data were processed using the Averages Intervals Thermal Sensation method. The thermal comfort range estimated for indoor spaces was 16.8 °C to 23.8 °C, with an ideal neutral temperature of 20.3 °C. The percentage of satisfaction vote with these results was 91%.

  4. Thermal sensation and comfort with transient metabolic rates

    DEFF Research Database (Denmark)

    Goto, Tomonobu; Toftum, Jørn; Dear, R. d.

    2002-01-01

    This study investigated the effect on thermal perceptions and preferences of controlled metabolic excursions of various intensities (20%, 40%, 60% relative work load) and durations (3-30 min) imposed on subjects that alternated between sedentary activity and exercise on a treadmill. The thermal...... environment was held constant at a temperature corresponding to PMV=0 at sedentary activity. Even low activity changes of short duration (1 min at 20% relative work load) affected thermal perceptions. However, after circa 15 min of constant activity, subjective thermal responses approximated the steady...

  5. Thermal comfort, physiological responses and performance during exposure to a moderate temperature drift

    DEFF Research Database (Denmark)

    Schellen, Lisje; van Marken Lichtenbelt, Wouter; de Wit, Martin

    2008-01-01

    The objective of this research was to study the effects of a moderate temperature drift on human thermal comfort, physiological responses, productivity and performance. A dynamic thermophysiological model was used to examine the possibility of simulating human thermal responses and thermal comfort...... under moderate transient conditions. To examine the influence of a moderate temperature ramp, a climate room set-up with experimental subjects was used. Eight subjects visited the climate room on two occasions: 1) exposure to a transient condition (a moderate temperature ramp) and 2) a steady...... temperature corresponding with a neutral thermal sensation (control situation). During the experiments both physiological responses and thermal sensation were measured. Productivity and performance were assessed with a ‘Remote Performance Measurement’ (RPM) method. Physiological and thermal sensation data...

  6. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    OpenAIRE

    Sangkertadi Sangkertadi; Reny Syafriny

    2016-01-01

    The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical ...

  7. Energy Conversion for Thermal Comfort and Air Quality Within Car Cabin

    Science.gov (United States)

    Kristanto, Daniel; Leephakpreeda, Thananchai

    2017-03-01

    Thermal comfort and air quality within a car cabin are required during driving throughout various climates where energy is efficiently consumed to maintain acceptable conditions by air conditioning (AC) unit. This paper proposes an analysis of energy conversion within a car cabin for thermal comfort and air quality. Mathematical models, based on energy and mass balances, are developed to determine process variables of a car cabin. Experimental data from real conditions is compared with simulated results for model validation. There is very good agreement between those results. The proposed models are used to simulate interesting case studies in real circumstances for investigation on trade-off among thermal comfort, air quality, and energy usage.

  8. Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone

    Directory of Open Access Journals (Sweden)

    Andrés Gallardo

    2016-07-01

    Full Text Available This study aims to determine the optimal approach for evaluating thermal comfort in an office that uses natural ventilation as the main conditioning strategy; the office is located in Quito-Ecuador. The performance of the adaptive model included in CEN Standard EN15251 and the traditional PMV model are compared with reports of thermal environment satisfaction surveys presented simultaneously to all occupants of the office to determine which of the two comfort models is most suitable to evaluate the thermal environment. The results indicate that office occupants have developed some degree of adaptation to the climatic conditions of the city where the office is located (which only demands heating operation, and tend to accept and even prefer lower operative temperatures than those considered optimum by applying the PMV model. This is an indication that occupants of naturally conditioned buildings are usually able to match their comfort temperature to their normal environment. Therefore, the application of the adaptive model included in CEN Standard EN15251 seems like the optimal approach for evaluating thermal comfort in naturally conditioned buildings, because it takes into consideration the adaptive principle that indicates that if a change occurs such as to produce discomfort, people tend to react in ways which restore their comfort.

  9. An Open Source "Smart Lamp" for the Optimization of Plant Systems and Thermal Comfort of Offices.

    Science.gov (United States)

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2016-03-07

    The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called "Smart Lamp", useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.

  10. Joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids

    International Nuclear Information System (INIS)

    Baldi, Simone; Karagevrekis, Athanasios; Michailidis, Iakovos T.; Kosmatopoulos, Elias B.

    2015-01-01

    Highlights: • Energy efficient operation of photovoltaic-equipped interconnected microgrids. • Optimized energy demand for a block of heterogeneous buildings with different sizes. • Multiobjective optimization: matching demand and supply taking into account thermal comfort. • Intelligent control mechanism for heating, ventilating, and air conditioning units. • Optimization of energy consumption and thermal comfort at the aggregate microgrid level. - Abstract: Electrical smart microgrids equipped with small-scale renewable-energy generation systems are emerging progressively as an alternative or an enhancement to the central electrical grid: due to the intermittent nature of the renewable energy sources, appropriate algorithms are required to integrate these two typologies of grids and, in particular, to perform efficiently dynamic energy demand and distributed generation management, while guaranteeing satisfactory thermal comfort for the occupants. This paper presents a novel control algorithm for joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids. Energy demand shaping is achieved via an intelligent control mechanism for heating, ventilating, and air conditioning units. The intelligent control mechanism takes into account the available solar energy, the building dynamics and the thermal comfort of the buildings’ occupants. The control design is accomplished in a simulation-based fashion using an energy simulation model, developed in EnergyPlus, of an interconnected microgrid. Rather than focusing only on how each building behaves individually, the optimization algorithm employs a central controller that allows interaction among the buildings of the microgrid. The control objective is to optimize the aggregate microgrid performance. Simulation results demonstrate that the optimization algorithm efficiently integrates the microgrid with the photovoltaic system that provides free electric energy: in

  11. Effects of heated seat and foot heater on thermal comfort and heater energy consumption in vehicle.

    Science.gov (United States)

    Oi, Hajime; Yanagi, Kotaro; Tabata, Koji; Tochihara, Yutaka

    2011-08-01

    Subjective experiments involving 12 different conditions were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal sensation and thermal comfort. The experimental conditions involved various combinations of the operative temperature in the test room (10 or 20°C), a heated seat (on/off) and a foot heater (room operative temperature +10 or +20°C). The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. The room operative temperature at which the occupants felt a 'neutral' overall thermal sensation was decreased by about 3°C by using the heated seat or foot heater and by about 6°C when both devices were used. Moreover, the effects of these devices on vehicle heater energy consumption were investigated using simulations. As a result, it was revealed that heated seats and foot heaters can reduce the total heater energy consumption of vehicles. Statement of Relevance: Subjective experiments were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal comfort. The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. These devices can reduce the total heater energy consumption in vehicles.

  12. Influence of duration of thermal comfort provision on heating behavior of buildings

    International Nuclear Information System (INIS)

    Bojic, Milorad; Despotovic, Milan

    2007-01-01

    Because of the permanent dilemma whether residential buildings using district heating should be heated continually or discontinuously, we evaluated how the yearly heating load and the peak heating load of a small building in Serbia depend on the duration of thermal comfort provision. Using HTB2 software, a product of the Welsh School of Architecture, it was found that an increase in the duration of thermal comfort provision in the building from 16 h to 24 h increases the yearly heating load by 20%, reduces the peak heating load by up to 40% and may increase the number of new customers served with the same heating plant by up to 40%

  13. Adaptive Thermal Comfort in Japanese Houses during the Summer Season: Behavioral Adaptation and the Effect of Humidity

    Directory of Open Access Journals (Sweden)

    Hom B. Rijal

    2015-09-01

    Full Text Available In order to clarify effect of humidity on the room temperatures reported to be comfortable, an occupant thermal comfort and behavior survey was conducted for five summers in the living rooms and bedrooms of residences in the Kanto region of Japan. We have collected 13,525 thermal comfort votes from over 239 residents of 120 homes, together with corresponding measurements of room temperature and humidity of the air. The residents were generally well-satisfied with the thermal environment of their houses, with or without the use of air-conditioning, and thus were well-adapted to their thermal conditions. The humidity was found to have very little direct effect on the comfort temperature. However, the comfort temperature was strongly related to the reported skin moisture. Behavioral adaptation such as window opening and fan use increase air movement and improve thermal comfort.

  14. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available To protect humans from heat stress risks, thermal comfort and heat stress potential were evaluated under arid environment, which had never been made for such climate. The thermal indices THI, WBGT, PET, and UTCI were used to evaluate thermal comfort and heat stress. RayMan software model was used to estimate the PET, and the UTCI calculator was used for UTCI. Dry and wet bulb temperatures (Td, Tw, natural wet bulb temperature (Tnw, and globe temperature (Tg were measured in a summer day to be used in the calculation. The results showed the following. (i The thermal sensation and heat stress levels can be evaluated by either the PET or UTCI scales, and both are valid for extremely high temperature in the arid environment. (ii In the comfort zone, around 75% of individuals would be satisfied with the surrounding environment and feel comfortable during the whole day. (iii Persons are exposed to strong heat stress and would feel uncomfortable most of the daytime in summer. (iv Heat fatigue is expected with prolonged exposure to sun light and activity. (v During the daytime, humans should schedule their activities according to the highest permissible values of the WBGT to avoid thermal shock.

  15. Improvement of thermal comfort by cooling clothing in warm climate

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Melikov, Arsen Krikor; Kolencíková, Sona

    2014-01-01

    on the inner surface. We conducted experiments with human subjects in climate chambers maintained at 30 °C and RH 50% to compare the effectiveness of the cooling clothing with that of other convective cooling devices. The use of cooling clothing with a convective cooling device improved the subjects’ thermal...

  16. Physical and Thermal Comfort Properties of Viscose Fabrics made from Vortex and Ring Spun Yarns

    Science.gov (United States)

    Thilagavathi, G.; Muthukumar, N.; Kumar, V. Kiran; Sadasivam, Sanjay; Sidharth, P. Mithun; Nikhil Jain, G.

    2017-06-01

    Viscose fiber is frequently preferred for various types of inner and outer knitwear products for its comfort and visual characteristics. In this study, the physical and thermal comfort properties of viscose fabrics made from ring and vortex yarns have been studied to explore the impact of spinning process on fabric properties. 100% viscose fibers were spun into yarns by ring and vortex spinning and the developed yarns were converted to single jersey fabrics. The results indicated that fabrics made from vortex spun yarns had better pilling resistance over that of those from ring spun yarns. There was no significant difference between bursting strength values of vortex and ring spun yarn fabrics. Fabrics made from ring yarn had better dimensional stability compared to fabrics made from vortex yarn. The air permeability and water vapour permeability of vortex yarn fabrics were higher than ring spun yarn fabrics. The vortex yarn fabrics had better thermal comfort properties compared to ring yarn fabrics.

  17. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    ) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations.......The study in this article investigates 15 ventilated window typologies with different pane configurations and glazing types in climates of four European countries (United Kingdom, Denmark, France and Germany) in order to identify the optimum typology with regard to their energy balance and impact...

  18. A model for managing and evaluating solar radiation for indoor thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    La Gennusa, Maria; Rizzo, Gianfranco [Dipartimento di Ricerche Energetiche ed Ambientali (DREAM), Universita degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Nucara, Antonino; Pietrafesa, Matilde [Dipartimento di Informatica, Matematica, Elettronica e Trasporti (DIMET), Universita Mediterranea di Reggio Calabria, Feo di Vito, 89060 Reggio Calabria (Italy)

    2007-05-15

    Thermal comfort of people occupying indoor spaces depends, to a large extent, on the direct component of solar radiation incident on the human body. In turn, even the diffuse component of the solar radiation could affect the thermal sensations of people. Despite this evidence, at the present there is a lack in the availability of simple and reliable methods capable of taking into account the influence of the solar radiation on thermal balance in the human body. In this work a comprehensive method is presented for the computation of the mean radiant temperature of people in thermal moderate indoor environments in the presence of solar radiation. The effects produced on the amount of solar radiation entering rooms in the presence of shadowing devices are also analysed. Finally, an application of the method is provided for a non-parallelepiped room equipped with a south window: results are shown in terms of the mean radiant temperature. A simple evaluation of thermal comfort conditions, referring to the present international standards, is also provided. The model can be easily linked to the computerized methods for analyzing the thermal behaviour of buildings, and is intended as a support for the thermal comfort evaluation methods. (author)

  19. Thermal comfort range of a military cold protection glove: database by thermophysiological simulation.

    Science.gov (United States)

    Zimmermann, Carsten; Uedelhoven, Wolfgang H; Kurz, Bernhard; Glitz, Karl Jochen

    2008-09-01

    The thermal insulation properties of a military wet/cold protection glove of the German Bundeswehr were investigated using the thermophysiological simulation device CYBOR with a heated full-scale hand model. The aim of this study was the physiology related and more reliable estimation of a database for the thermal comfort range of the glove in terms of environmental limit temperatures and maximum safe wearing times (limit times). For that purpose the simulation device CYBOR is equipped with a control feature allowing the simulation of the physiological effect that the blood flow into the hands as the dominant heat source is reduced with decreasing skin temperature (vasoconstriction effect). In the simulation test, the criterion defining the thermal comfort range of the glove was the maintenance of a minimum hand phantom skin temperature of 15 degrees C. For various assumed metabolic rates between 50 and 175 W m(-2) and environmental temperatures down to -22 degrees C, the maximum safe wearing times within the thermal comfort range of the military glove were estimated between only 20 min and almost 1 h. The used simulation scenario for the prediction of environmental limit temperatures, however, tends to deliver too low values in correlation to the estimated limit times and needs further critical consideration. The estimated data concerning the thermal comfort range of the wet/cold protection glove of the German Bundeswehr leads to the recommendation for a use of this model in mild cold climatic regions. The presented thermophysiological simulation procedure for the evaluation of the cold protection properties of gloves in terms of maximum safe wearing times within the thermal comfort range can be a useful tool to establish practical operating instructions for soldiers or civilians acting in cold environments.

  20. Numerical study on human model shape and grid dependency for indoor thermal comfort evaluation

    International Nuclear Information System (INIS)

    Seo, Jin Won; Choi, Yun Ho; Park, Jae Hong

    2013-01-01

    Various computer-simulated person (CSP) models have been used to represent occupants in indoor airflow simulations using computational fluid dynamics (CFD). Despite the capability of CFD to predict temperature and velocity fields in an automotive cabin or a room in a building, it is more difficult to evaluate the degree of thermal comfort considered by the CSP models. Up to now, the shapes of CSP models and their grid characteristics have not been studied for the evaluation of indoor thermal comfort. In this paper, the effects of the human model's shape and the physical characteristics of the grids are studied. The FLUENT code is used for analysis, and the predicted mean vote (PMV), predicted percentage dissatisfied (PPD), and equivalent homogeneous temperature (EHT) values are used for the evaluation and comparison of thermal comfort. The computational results show that the CSP shape and grid features do not affect the global flow fields or the evaluations of PMV and PPD. However, more precise results are obtained from the evaluation of thermal comfort by EHT when detailed human models with a prism grid are used.

  1. Thermo-active building systems and sound absorbers: Thermal comfort under real operation conditions

    DEFF Research Database (Denmark)

    Köhler, Benjamin; Rage, Nils; Chigot, Pierre

    2018-01-01

    Radiant systems are established today and have a high ecological potential in buildings while ensuring thermal comfort. Free-hanging sound absorbers are commonly used for room acoustic control, but can reduce the heat exchange when suspended under an active slab. The aim of this study is to evalu......Radiant systems are established today and have a high ecological potential in buildings while ensuring thermal comfort. Free-hanging sound absorbers are commonly used for room acoustic control, but can reduce the heat exchange when suspended under an active slab. The aim of this study...... is to evaluate the impact on thermal comfort of horizontal and vertical free-hanging porous sound absorbers placed in rooms of a building cooled by Thermo-Active Building System (TABS), under real operation conditions. A design comparing five different ceiling coverage ratios and two room types has been...... implemented during three measurement periods. A clear correlation between increase of ceiling coverage ratio and reduction of thermal comfort could not be derived systematically for each measurement period and room type, contrarily to what was expected from literature. In the first two monitoring periods...

  2. A control-oriented model for combined building climate comfort and aquifer thermal energy storage system

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Bloemendal, J.M.; Jaxa-Rozen, M.; Keviczky, T.

    2016-01-01

    This paper presents a control-oriented model for combined building climate comfort and aquifer thermal energy storage (ATES) system. In particular, we first provide a description of building operational systems together with control framework variables. We then focus on the derivation of an

  3. Optimisation of Heating Energy Demand and Thermal Comfort of a Courtyard-Atrium Dwelling

    NARCIS (Netherlands)

    Taleghani, M.; Tenpierik, M.; Dobbelsteen, A.

    2013-01-01

    In the light of energy reduction, transitional spaces are recognised as ways to receive natural light and fresh air. This paper analyses the effects of courtyard and atrium as two types of transitional spaces on heating demand and thermal comfort of a Dutch low-rise dwelling, at current and future

  4. Thermal history and comfort in a Brazilian subtropical climate: a 'cool' addiction hypothesis

    OpenAIRE

    Vecchi, Renata De; Cândido, Christhina Maria; Lamberts, Roberto

    2016-01-01

    Abstract Currently, there is a rising trend for commercial buildings to use air conditioning to provide indoor thermal comfort. This paper focuses on the impact of prolonged exposure to indoor air-conditioned environments on occupants' thermal acceptability and preferences in a mixed-mode building in Brazil. Questionnaires were administered while indoor microclimatic measurements were carried out (i.e., air temperature, radiant air temperature, air speed and humidity). Results suggest signifi...

  5. Simulating Physiological Response with a Passive Sensor Manikin and an Adaptive Thermal Manikin to Predict Thermal Sensation and Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chaney, Larry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hepokoski, Mark [ThermoAnalytics Inc.; Curran, Allen [ThermoAnalytics Inc.; Burke, Richard [Measurement Technology NW; Maranville, Clay [Ford Motor Company

    2015-04-14

    Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome by increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios. These manikins can act as human surrogates from which local skin and core temperatures can be obtained, which are necessary for accurately predicting local and whole body thermal sensation and comfort using a physiology-based comfort model (e.g., the Berkeley Comfort Model). This paper evaluates two different types of manikins, i) an adaptive sweating thermal manikin, which is coupled with a human thermoregulation model, running in real-time, to obtain realistic skin temperatures; and, ii) a passive sensor manikin, which is used to measure boundary conditions as they would act on a human, from which skin and core temperatures can be predicted using a thermophysiological model. The simulated physiological responses and comfort obtained from both of these manikin-model coupling schemes are compared to those of a human subject within a vehicle cabin compartment transient heat-up scenario.

  6. Evaluation of Thermal Comfort in an Iranian Educational Hospital Using PMV- PPD Model

    Directory of Open Access Journals (Sweden)

    Javad Sajedifar

    2017-07-01

    Full Text Available Background Considering the advancement of technology and application of various appliances in the workplace, one of the most significant current discussions in the industrial and nonindustrialized workplaces is thermal comfort. Hospital staff have a special status because of the diversity of people employed in hospitals and their crucial roles. Objectives The present study aimed at investigating the staffs’ thermal comfort in a hospital in Esfahan. Methods In this cross-sectional study, Al Zahra hospital staff working in the underground floor were recruited. The sampling method was census, and 161 staff participated in the study. Data were collected by mental assessment using a questionnaire and physical measurement using wet bulb globe temperature (WBGT machine in the summer of 2015. The predicted mean vote (PMV and predicted percentage dissatisfied (PPD were determined based on mental assessment or individual feeling of the staff about thermal comfort. Data management and analyses were performed using SPSS 23. Results The results of the data analysis revealed that kitchen, laundry, and sterilization sectors had higher temperature than other units. Moreover, the results demonstrated that the offices of educational sectors and educational classes had a standard level of thermal comfort according to ASHRAE (American society of heating, refrigerating and air-conditioning engineers Standard 55. The investigations of physical and mental PMV in every unit showed that the total index of these 2 values was 1.2 and 1.39, respectively. Conclusions Based on the results, the units located at the underground floor needed proper design and access to natural ventilation and enough air flow to provide optimum thermal comfort based on international standards.

  7. The impact of human-biometeorological factors on perceived thermal comfort in urban public places

    Directory of Open Access Journals (Sweden)

    Isabell Maras

    2016-09-01

    Full Text Available For the understanding of the impact of meteorological stressors on human perceptions of thermal comfort, it is essential to examine in detail the joint variability of atmospheric conditions and human perception. We designed an interdisciplinary experimental setup to generate data of both human-biometeorological and individual human perception at two different urban public places in the city of Aachen, Germany. Meteorological measurements at the human-biometeorological standard height of 1.1 m a.g.l. were taken during typical winter weather situations as well as extreme summer weather situations to analyze potentially seasonal effects. Pedestrians and tourists at the study site were selected as participants for face-to-face questionnaire-based interviews. We took measurements and held interviews between 10:00 h and 17:00 h (CEST/CET to record the daytime agreement/deviations at different inner urban measurement locations. Based on an overall physical approach of thermal load, UTCI (Universal Thermal Climate Index values are calculated. A maximum of +34.1 °C for summertime and a minimum of +2.6 °C for wintertime could be found. The meteorological parameters of air temperature (Ta$T_{a}$, mean radiant temperature (Tmrt$T_{\\text{mrt}}$ and vapor pressure (VP are compared with data perceived by the persons interviewed. In winter, Ta$T_{a }$ shows a significant relation to the overall weather perception (r=0.28$r = 0.28$; p<0.05$p<0.05$ while the overall comfort of the participants is significantly related to perceived solar heat (r=0.27$r = 0.27$; p<0.5$p<0.5$ as well as to perceived Ta$T_{a}$ (r=0.4$r = 0.4$; p<0.002$p<0.002$. Quite different resulting patterns occurred for the summer campaign. None of the physical variables significantly affected the weather perception. Only the perceived Ta$T_{a}$ revealed a significant relation to the overall weather perception (r=0.27$r=0.27$; p<0.002$p<0.002$.

  8. Human comfort and self-estimated performance in relation to indoor environmental parameters and building features

    DEFF Research Database (Denmark)

    Frontczak, Monika Joanna

    The main objective of the Ph.D. study was to examine occupants’ perception of comfort and self-estimated job performance in non-industrial buildings (homes and offices), in particular how building occupants understand comfort and which parameters, not necessarily related to indoor environments...... and storage, noise level and visual privacy. However, if job performance is considered, then satisfaction with the main indoor environmental parameters should be addressed first as they affected self-estimated job performance to the highest extent. The present study showed that overall satisfaction...... with personal workspace affected significantly the self-estimated job performance. Increasing overall satisfaction with the personal workspace by about 15% would correspond to an increase of self-estimated job performance by 3.7%. Among indoor environmental parameters and building features, satisfaction...

  9. Monitoring results and analysis of thermal comfort conditions in experimental buildings for different heating systems and ventilation regimes during heating and cooling seasons

    Science.gov (United States)

    Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.

    2017-10-01

    This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems - electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.

  10. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists

    Science.gov (United States)

    Rutty, Michelle; Scott, Daniel

    2015-01-01

    The largest market segment of global tourism is coastal tourism, which is strongly dependent on the destination's thermal climate. To date, outdoor bioclimatic comfort assessments have focused exclusively on local residents in open urban areas, making it unclear whether outdoor comfort is perceived differently in non-urban environments or by non-residents (i.e. tourists) with different weather expectations and activity patterns. This study provides needed insight into the perception of outdoor microclimatic conditions in a coastal environment while simultaneously identifying important psychological factors that differentiate tourists from everyday users of urban spaces. Concurrent micrometeorological measurements were taken on several Caribbean beaches in the islands of Barbados, Saint Lucia and Tobago, while a questionnaire survey was used to examine the thermal comfort of subjects ( n = 472). Universal Thermal Climate Index (UTCI) conditions of 32 to 39 °C were recorded, which were perceived as being "slightly warm" or "warm" by respondents. Most beach users (48 to 77 %) would not change the thermal conditions, with some (4 to 15 %) preferring even warmer conditions. Even at UTCI of 39 °C, 62 % of respondents voted for no change to current thermal conditions, with an additional 10 % stating that they would like to feel even warmer. These results indicate that beach users' thermal preferences are up to 18 °C warmer than the preferred thermal conditions identified in existing outdoor bioclimatic studies from urban park settings. This indicates that beach users hold fundamentally different comfort perceptions and preferences compared to people using urban spaces. Statistically significant differences ( p ≤ .05) were also recorded for demographic groups (gender, age) and place of origin (climatic region).

  11. Effect of Air Velocity on Thermal Comfort in an Automobile Cabin

    Directory of Open Access Journals (Sweden)

    Mehmet Özgün Korukçu

    2011-06-01

    Full Text Available The aim of this study is to evaluate the effect of air velocity on thermal comfort during heating period in an automobile cabin with experiments. In the evaluation of comfort in automobiles, in general temperature, humidity, air velocity and radiant temperature measurements are taken. In the study, ambient temperature, relative humidity, mean radiant temperature and mean skin temperature of the driver inside the automobile cabin during heating for different vent air mass flow rates were measured in a parked car. Subjective survey was performed during the experiments to the driver. The results for different vent air mass flow rate values were compared with answers taken from the subject and discussed.

  12. Thermal Comfort at the Street Corridor Around Public Places, Case Study Alun-Alun Malang City

    OpenAIRE

    Winansih, Erna; Antariksa, Antariksa; Surjono, Surjono; Leksono, Amin Setyo

    2015-01-01

    Malang as the second largest city in East Java province become crowded recently. The congestion almost happens everyday. The scenery of the street corridor is full of iron stacks. It is said that Malang city is less comfortable and less walkable. The decrease of this environment encourages to conduct the study (Q.S. 16:90, Q.S. 96:1-5, Q.S. 30:41). The study aimed to analyze the thermal comfort at pedestrian ways around Malang city squares, the street corridor of Merdeka Alun-Alun (MAA) and t...

  13. The improvement of thermal comfort in low cost housing in Mauritius

    Energy Technology Data Exchange (ETDEWEB)

    Dalbert, A.M.; Marrony, R. (Perpignan Univ., 66 (France)); Baguant, B.K.; Mohamedbhai, G.T.G. (Mauritius Univ. (Mauritius))

    1990-01-01

    This study aims at improving thermal comfort in low-cost housing in Mauritius. On-site experimental measurements were carried out and compared with results obtained using a computer program for modelling the thermal behaviour of houses in tropical countries. A good correlation is obtained for the evolution of daily temperatures inside the houses (a difference of the order of 1{sup o}C). However, the program does not appear to take sufficient account of the fairly high thermal inertia of the houses, causing a phase lag of about 2 hours in the calculated temperatures. From this comparison, various solutions are proposed for the comfort problems in these types of houses. (author).

  14. Experimental and CFD modelling for thermal comfort and CO2 concentration in office building

    Science.gov (United States)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Computational fluid dynamic CFD was used for simulating air flow, indoor air distribution and contamination concentration. Gases pollution and thermal discomfort affected occupational health and productivity of work place. The main objectives of this study are to investigate the impact of air change rate in CO2 concentration and to estimate the profile of CO2 concentration in the offices building. The thermal comfort and gases contamination are investigated by numerical analysis CFD which was validated by experiment. Thus the air temperature, air velocity and CO2 concentration were measured at several points in the chamber with four occupants. Comparing between experimental and numerical results showed good agreement. In addition, the CO2 concentration around human recorded high, compared to the other area. Moreover, the thermal comfort in this study is within the ASHRAE standard 55-2004.

  15. The CFD Simulation on Thermal Comfort in a library Building in the Tropics

    International Nuclear Information System (INIS)

    Yau, Y. H.; Ghazali, N. N. N.; Badarudin, A.; Goh, F. C.

    2010-01-01

    This paper presents a three-dimensional analysis for thermal comfort in a library. The room model includes library layout, equipment and peripheral positions as well as the positions of inlet and outlet air for IAQ controls. Cold clean air is supplied to the room through ceiling-mounted air grilles and exhausted through air grilles situated on the same ceiling. A commercial CFD package was used in this study to achieve solutions of the distribution of airflow velocity and temperature. Using high quality meshes is vital to the overall accuracy of the results. Simulation results show a good agreement with experimental data from the literature. This study has thoroughly analysed the indoor thermal conditions and airflow characteristics of the building. In addition, verification of the CFD program with experimental data showed that the program can provide reasonable and reliable predictions on thermal comfort performance with the help of precise boundary conditions.

  16. A correlation linking the predicted mean vote and the mean thermal vote based on an investigation on the human thermal comfort in short-haul domestic flights.

    Science.gov (United States)

    Giaconia, Carlo; Orioli, Aldo; Di Gangi, Alessandra

    2015-05-01

    The results of an experimental investigation on the human thermal comfort inside the cabin of some Airbus A319 aircrafts during 14 short-haul domestic flights, linking various Italian cities, are presented and used to define a correlation among the predicted mean vote (PMV), a procedure which is commonly used to assess the thermal comfort in inhabited environments, and the equivalent temperature and mean thermal vote (MTV), which are the parameters suggested by the European Standard EN ISO 14505-2 for the evaluation of the thermal environment in vehicles. The measurements of the radiant temperature, air temperature and relative humidity during flights were performed. The air temperature varied between 22.2 °C and 26.0 °C; the relative humidity ranged from 8.7% to 59.2%. The calculated values of the PMV varied from -0.16 to 0.90 and were confirmed by the answers of the passengers. The equivalent temperature was evaluated using the equations of Fanger or on the basis of the values of the skin temperature measured on some volunteers. The correlation linking the thermal sensation scales and zones used by the PMV and the MTV resulted quite accurate because the minimum value of the absolute difference between such environmental indexes equalled 0.0073 and the maximum difference did not exceed the value of 0.0589. Even though the equivalent temperature and the MTV were specifically proposed to evaluate the thermal sensation in vehicles, their use may be effectively extended to the assessment of the thermal comfort in airplanes or other occupied places. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Modeling Thermal Comfort and Optimizing Local Renewal Strategies—A Case Study of Dazhimen Neighborhood in Wuhan City

    Directory of Open Access Journals (Sweden)

    Chong Peng

    2015-03-01

    Full Text Available Modeling thermal comfort provides quantitative evidence and parameters for effective and efficient urban planning, design, and building construction particularly in a dense and narrow inner city, which has become one of many concerns for sustainable urban development. This paper aims to develop geometric and mathematical models of wind and thermal comfort and use them to examine the impacts of six small-scale renewal strategies on the wind and thermal environment at pedestrian level in Dazhimen neighborhood, Wuhan, which is a typical case study of urban renewal project in a mega-city. The key parameters such as the solar radiation, natural convection, relative humidity, ambient crosswind have been incorporated into the mathematical models by using user-defined-function (UDF method. Detailed temperature and velocity distributions under different strategies have been compared for the optimization of local renewal strategies. It is concluded that five rules generated from the simulation results can provide guidance for building demolition and reconstruction in a neighborhood and there is no need of large-scale demolition. Particularly, combining the local demolition and city virescence can both improve the air ventilation and decrease the temperature level in the study area.

  18. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  19. Finger temperature as a predictor of thermal comfort for sedentary passengers in a simulated aircraft cabin

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Zukowska, Daria

    2009-01-01

    that were made included finger temperature. The purpose of the present paper is to show that mean finger temperature is a good predictor of mean thermal vote (MTV) on the seven-point scale of thermal sensation. The results indicate that women and younger subjects have slightly colder fingers........1°C. A total of 68 subjects were exposed to each of the three conditions. The subjects completed questionnaires to provide subjective assessments of air quality, cabin environment, intensity of symptoms commonly experienced during flight, and thermal comfort. Objective physiological measurements...

  20. Human thermal comfort antithesis in the context of the Mediterranean tourism potential

    Science.gov (United States)

    Nastos, Panagiotis T.; Zerefos, Christos S.; Kapsomenakis, Ioannis N.; Eleftheratos, Kostas; Polychroni, Iliana

    2016-04-01

    Weather and climate information are determinative factors in the decision of a touristic destination. The evaluation of the thermal, aesthetical and physical components of the climate is considered an issue of high importance in order to assess the climatic tourism potential. Mediterranean is an endowed region with respect to its temperate climate and impressive landscapes over the coastal environment and numerous islands. However, the harmony of the natural beauty is interrupted by extreme weather phenomena, such as heat and cold waves, heavy rains and stormy conditions. Thus, it is very important to know the seasonal behavior of the climate for touristic activities and recreation. Towards this objective we evaluated the antithesis in the human thermal perception as well as the sultriness, stormy, foggy, sunny and rainy days recorded in specific Greek touristic destinations against respective competitive Mediterranean resorts. Daily meteorological parameters, such as air temperature, relative humidity, wind speed, cloudiness and precipitation, were acquired from the most well-known touristic sites over the Mediterranean for the period 1970 to present. These variables were used on one hand to estimate the human thermal burden, by means of the thermal index of Physiologically Equivalent temperature (PET) and on the other hand to interpret the physical and aesthetic components of the tourism potential, by utilizing specific thresholds of the initial and derived variables in order to quantify in a simple and friendly way the environmental footprint on desired touristic destinations. The findings of this research shed light on the climate information for tourism in Greece against Mediterranean destinations. Greek resorts, especially in the Aegean Islands appear to be more ideal with respect to thermal comfort against resorts at the western and central Mediterranean, where the heat stress within the summer season seems to be an intolerable pressure on humans. This could

  1. Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation

    International Nuclear Information System (INIS)

    Chen, Xiao; Wang, Qian; Srebric, Jelena

    2016-01-01

    Highlights: • This study evaluates an occupant-feedback driven Model Predictive Controller (MPC). • The MPC adjusts indoor temperature based on a dynamic thermal sensation (DTS) model. • A chamber model for predicting chamber air temperature is developed and validated. • Experiments show that MPC using DTS performs better than using Predicted Mean Vote. - Abstract: In current centralized building climate control, occupants do not have much opportunity to intervene the automated control system. This study explores the benefit of using thermal comfort feedback from occupants in the model predictive control (MPC) design based on a novel dynamic thermal sensation (DTS) model. This DTS model based MPC was evaluated in chamber experiments. A hierarchical structure for thermal control was adopted in the chamber experiments. At the high level, an MPC controller calculates the optimal supply air temperature of the chamber heating, ventilation, and air conditioning (HVAC) system, using the feedback of occupants’ votes on thermal sensation. At the low level, the actual supply air temperature is controlled by the chiller/heater using a PI control to achieve the optimal set point. This DTS-based MPC was also compared to an MPC designed based on the Predicted Mean Vote (PMV) model for thermal sensation. The experiment results demonstrated that the DTS-based MPC using occupant feedback allows significant energy saving while maintaining occupant thermal comfort compared to the PMV-based MPC.

  2. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.

    Science.gov (United States)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  3. A simulation model for visitors’ thermal comfort at urban public squares using non-probabilistic binary-linear classifier through soft-computing methodologies

    International Nuclear Information System (INIS)

    Kariminia, Shahab; Shamshirband, Shahaboddin; Hashim, Roslan; Saberi, Ahmadreza; Petković, Dalibor; Roy, Chandrabhushan; Motamedi, Shervin

    2016-01-01

    Sustaining outdoor life in cities is decreasing because of the recent rapid urbanisation without considering climate-responsive urban design concepts. Such inadvertent climatic modifications at the indoor level have imposed considerable demand on the urban energy resources. It is important to provide comfortable ambient climate at open urban squares. Researchers need to predict the comfortable conditions at such outdoor squares. The main objective of this study is predict the visitors' outdoor comfort indices by using a developed computational model termed as SVM-WAVELET (Support Vector Machines combined with Discrete Wavelet Transform algorithm). For data collection, the field study was conducted in downtown Isfahan, Iran (51°41′ E, 32°37′ N) with hot and arid summers. Based on different environmental elements, four separate locations were monitored across two public squares. Meteorological data were measured simultaneously by surveying the visitors' thermal sensations. According to the subjects' thermal feeling and their characteristics, their level of comfort was estimated. Further, the adapted computational model was used to estimate the visitors’ thermal sensations in terms of thermal comfort indices. The SVM-WAVELET results indicate that R 2 value for input parameters, including Thermal Sensation, PMW (The predicted mean vote), PET (physiologically equivalent temperature), SET (standard effective temperature) and T mrt were estimated at 0.482, 0.943, 0.988, 0.969 and 0.840, respectively. - Highlights: • To explore the visitors' thermal sensation at urban public squares. • This article introduces findings of outdoor comfort prediction. • The developed SVM-WAVELET soft-computing technique was used. • SVM-WAVELET estimation results are more reliable and accurate.

  4. Influence of Urban Microclimate on Air-Conditioning Energy Needs and Indoor Thermal Comfort in Houses

    Directory of Open Access Journals (Sweden)

    Feng-Chi Liao

    2015-01-01

    Full Text Available A long-term climate measurement was implemented in the third largest city of Taiwan, for the check of accuracy of morphing approach on generating the hourly data of urban local climate. Based on observed and morphed meteorological data, building energy simulation software EnergyPlus was used to simulate the cooling energy consumption of an air-conditioned typical flat and the thermal comfort level of a naturally ventilated typical flat. The simulated results were used to quantitatively discuss the effect of urban microclimate on the energy consumption as well as thermal comfort of residential buildings. The findings of this study can serve as a reference for city planning and energy management divisions to study urban sustainability strategies in the future.

  5. Use of different street trees species and their effect on human thermal comfort

    OpenAIRE

    Mariana Dias Baptista

    2014-01-01

    The continuous transformation in urban areas has brought many problems related to the loss of environmental quality, such as the lack of trees in the streets. It is commonly understood that urban forestry influences directly on thermal comfort in urban areas, and people can actually feel the different environmental conditions between a street with and without trees in a city. That is why better management of the trees can benefit local environmental quality, and, consequently, the quality of ...

  6. Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use

    OpenAIRE

    Naci Kalkan; Ihsan Dagtekin

    2016-01-01

    Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentall...

  7. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest.

    Science.gov (United States)

    Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa

    2016-12-01

    The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s -1 ), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m -2 . Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.

  8. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest

    Science.gov (United States)

    Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa

    2016-12-01

    The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s-1), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m-2. Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.

  9. Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation

    Science.gov (United States)

    Krüger, E.; Drach, P.; Broede, P.

    2017-03-01

    Aimed at climate-responsive urban design for tropical areas, the paper attempts to answer the question whether the site-related context affects in some way the perceptual assessment of the microclimate by users of outdoor spaces. Our hypothesis was that visual cues resulting from urban design are important components of the outdoor thermal perception. Monitoring was carried out alongside the administration of standard comfort questionnaires throughout summer periods in 2012-2015 in pedestrian areas of downtown Rio de Janeiro (22° 54 10 S, 43° 12 27 W), Brazil. Campaigns took place at different points, pre-defined in respect of urban geometry attributes. For the measurements, a Davis Vantage Pro2 weather station was employed to which a gray globe thermometer was attached. Two thermal indices were used for assessing the overall meteorological conditions and comfort levels in the outdoor locations: physiological equivalent temperature (PET) and universal thermal climate index (UTCI). Our results suggest that thermal sensation in Rio depends to a large extent on the thermal environment as described by air temperature, PET, or UTCI, and that urban geometry (expressed by the sky-view factor (SVF)) may modify this relationship with increased building density associated to warmer sensation votes under moderate heat stress conditions. This relationship however reverses under strong heat stress with warmer sensations in less obstructed locations, and disappears completely under still higher heat stress, where meteorological conditions, and not the site's SVF, will drive thermal sensation.

  10. Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation.

    Science.gov (United States)

    Krüger, E; Drach, P; Broede, P

    2017-03-01

    Aimed at climate-responsive urban design for tropical areas, the paper attempts to answer the question whether the site-related context affects in some way the perceptual assessment of the microclimate by users of outdoor spaces. Our hypothesis was that visual cues resulting from urban design are important components of the outdoor thermal perception. Monitoring was carried out alongside the administration of standard comfort questionnaires throughout summer periods in 2012-2015 in pedestrian areas of downtown Rio de Janeiro (22° 54 10 S, 43° 12 27 W), Brazil. Campaigns took place at different points, pre-defined in respect of urban geometry attributes. For the measurements, a Davis Vantage Pro2 weather station was employed to which a gray globe thermometer was attached. Two thermal indices were used for assessing the overall meteorological conditions and comfort levels in the outdoor locations: physiological equivalent temperature (PET) and universal thermal climate index (UTCI). Our results suggest that thermal sensation in Rio depends to a large extent on the thermal environment as described by air temperature, PET, or UTCI, and that urban geometry (expressed by the sky-view factor (SVF)) may modify this relationship with increased building density associated to warmer sensation votes under moderate heat stress conditions. This relationship however reverses under strong heat stress with warmer sensations in less obstructed locations, and disappears completely under still higher heat stress, where meteorological conditions, and not the site's SVF, will drive thermal sensation.

  11. Retrofitting of homes for people in fuel poverty: Approach based on household thermal comfort

    International Nuclear Information System (INIS)

    Vilches, Alberto; Barrios Padura, Ángela; Molina Huelva, Marta

    2017-01-01

    In a context of fuel poverty, the application of cost-effective methodology for energy retrofitting of buildings is ineffective. In these situations, there is no energy consumption reduction and thermal comfort is hardly achieved. This paper introduces a methodology to choose the most appropriate retrofit measure in a context of fuel poverty. This methodology is based on thermal comfort as the main criterion, and secondarily, it is based on the budget for paying monthly energy bills and initial costs. This study demonstrates how thermal comfort and monthly available income of households must be the first criterion for decision-making process. The methodology has been applied in four buildings. Results demonstrate why active retrofit measures are ineffective when monthly budget to pay energy bills is reduced. In conclusion, recommendations are made to promote efficient public policies in energy retrofit. The study was supported by the European Regional Development Fund (ERDF) and carried out within the research project ‘{Re} Programa. (Re)habitation +(Re)generation +(Re)programming’ during 2013–2015. - Highlights: • A methodology is proposed for energy retrofit in a fuel poverty context. • Householder's monthly budget determines the energy retrofit effectiveness. • The cost-effective methodology is not applicable in a fuel poverty context. • Energy retrofit does not reduce energy consumption in a fuel poverty context. • Energy retrofit does not produce monthly monetary savings in a fuel poverty context.

  12. An Economic Model-Based Predictive Control to Manage the Users’ Thermal Comfort in a Building

    Directory of Open Access Journals (Sweden)

    Yaser Imad Alamin

    2017-03-01

    Full Text Available The goal of maintaining users’ thermal comfort conditions in indoor environments may require complex regulation procedures and a proper energy management. This problem is being widely analyzed, since it has a direct effect on users’ productivity. This paper presents an economic model-based predictive control (MPC whose main strength is the use of the day-ahead price (DAP in order to predict the energy consumption associated with the heating, ventilation and air conditioning (HVAC. In this way, the control system is able to maintain a high thermal comfort level by optimizing the use of the HVAC system and to reduce, at the same time, the energy consumption associated with it, as much as possible. Later, the performance of the proposed control system is tested through simulations with a non-linear model of a bioclimatic building room. Several simulation scenarios are considered as a test-bed. From the obtained results, it is possible to conclude that the control system has a good behavior in several situations, i.e., it can reach the users’ thermal comfort for the analyzed situations, whereas the HVAC use is adjusted through the DAP; therefore, the energy savings associated with the HVAC is increased.

  13. Improving indoor air quality and thermal comfort in office building by using combination filters

    Science.gov (United States)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  14. Effect of ventilation on thermal comfort measured by DTS-application to a typical home in Algerian conditions

    Energy Technology Data Exchange (ETDEWEB)

    Messaoudene, N. Ait [Laboratoire des Applications Energetiques de l' Hydrogene (LApEH), Universite de Blida (Algeria); Imessad, K.; Belhamel, M. [Centre de Developpement des Energies Renouvelables, Route de l' observatoire BP 62 Bouzareah,Alger (Algeria)

    2010-03-15

    In northern Algeria, use of ventilation by ceiling fans is widespread in mosques and other public buildings during the hot season, but is seldom used in private houses. In the first part of this study, the impact of this mode of cooling on indoor thermal comfort is investigated. A thermal comfort model for transient conditions is developed in order to calculate an instantaneous thermal comfort index. In order to simulate the thermal behaviour of a human body as accurately as possible, the latter is divided into 17 segments and a heat balance equation is written for each segment. The results indicate that even during hot days, an appreciable thermal comfort can be achieved if ventilation at constant air speed is used. Moreover, it is shown that it is not necessary to increase ventilation speed beyond a given level, as thermal comfort gains become negligible. In the second part of the study, the impact of solar radiation on thermal comfort is evaluated. Thermal sensation of a human being partially exposed to direct solar radiation is calculated. The results show that a discomfort sensation is quickly felt when a person is exposed to sun fluxes, which confirms the importance of shading devices. (author)

  15. Thermal Band Analysis of Agricultural Land Use and its Effects on Bioclimatic Comfort: The Case of Pasinler

    Science.gov (United States)

    Avdan, Uǧur; Demircioglu Yildiz, Nalan; Dagliyar, Ayse; Yigit Avdan, Zehra; Yilmaz, Sevgi

    2014-05-01

    Resolving the problems that arise due to the land use are not suitable for the purpose in the rural and urban areas most suitable for land use of parameters to be determined. Unintended and unplanned developments in the use of agricultural land in our country caused increases the losses by soil erosion. In this study, Thermal Band analysis is made in Pasinler city center with the aim of identifying bioclimatic comfort values of the different agricultural area. Satellite images can be applied for assessing the thermal urban environment as well as for defining heat islands in agricultural areas. In this context, temperature map is tried to be produced with land surface temperature (LST) analysis made on Landsat TM5 satellite image. The Landsat 5 images was obtained from USGS for the study area. Using Landsat bands of the study area was mapped by supervised classification with the maximum likelihood classification algorithm of ERDAS imagine 2011 software. Normalized Difference Vegetation Index (NDVI) image was produced by using Landsat images. The digital number of the Landsat thermal infrared band (10.40 - 12.50 µm) is converted to the spectral radiance. The surface emissivity was calculated by using NDVI. The spatial pattern of land surface temperature in the study area is taken to characterize their local effects on agricultural land. Areas having bioclimatic comfort and ecologically urbanized, are interpreted with different graphical presentation technics. The obtained results are important because they create data bases for sustainable urban planning and provide a direction for planners and governors. As a result of rapid changes in land use, rural ecosystems and quality of life are deteriorated and decreased. In the presence of increased building density, for the comfortable living of people natural and cultural resources should be analyzed in detail. For that reason, optimal land use planning should be made in rural area.

  16. The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions

    Science.gov (United States)

    Lin, Tzu-Ping; Yang, Shing-Ru; Chen, Yung-Chang; Matzarakis, Andreas

    2018-02-01

    Physiologically equivalent temperature (PET) is a thermal index that is widely used in the field of human biometeorology and urban bioclimate. However, it has several limitations, including its poor ability to predict thermo-physiological parameters and its weak response to both clothing insulation and humid conditions. A modified PET (mPET) was therefore developed to address these shortcomings. To determine whether the application of mPET in hot-humid regions is more appropriate than the PET, an analysis of a thermal comfort survey database, containing 2071 questionnaires collected from participants in hot-humid Taiwan, was conducted. The results indicate that the thermal comfort range is similar (26-30 °C) when the mPET and PET are applied as thermal indices to the database. The sensitivity test for vapor pressure and clothing insulation also show that the mPET responds well to the behavior and perceptions of local people in a subtropical climate.

  17. Effects of heated seats in vehicles on thermal comfort during the initial warm-up period.

    Science.gov (United States)

    Oi, Hajime; Tabata, Koji; Naka, Yasuhito; Takeda, Akira; Tochihara, Yutaka

    2012-03-01

    Eight subjects participated in a subjective experiment of eight conditions to investigate the effects of heated seats in vehicles on skin temperature, thermal sensation and thermal comfort during the initial warm-up period. The experimental conditions were designed as a combination of air temperature in the test room (5, 10, 15, or 20 °C) and heated seat (on/off). The heated seat was effective for improving thermal comfort during the initial warm-up period when air temperature was lower than 15 °C. Use of heated seats prevented decreases in or increased toe skin temperature. Heated seats also increased foot thermal sensation at 15 and 20 °C. Optimal thermal sensation in contact with the seat was higher when air temperature was lower. Optimal skin temperature in contact with the seat back was higher than that with the seat cushion. Moreover, these optimal skin temperatures were higher when air temperature was lower. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city.

    Science.gov (United States)

    Provençal, Simon; Bergeron, Onil; Leduc, Richard; Barrette, Nathalie

    2016-04-01

    The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices' sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI's stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

  19. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI--a case study in Southern Brazil.

    Science.gov (United States)

    Bröde, Peter; Krüger, Eduardo L; Rossi, Francine A; Fiala, Dusan

    2012-05-01

    Recognising that modifications to the physical attributes of urban space are able to promote improved thermal outdoor conditions and thus positively influence the use of open spaces, a survey to define optimal thermal comfort ranges for passers-by in pedestrian streets was conducted in Curitiba, Brazil. We applied general additive models to study the impact of temperature, humidity, and wind, as well as long-wave and short-wave radiant heat fluxes as summarised by the recently developed Universal Thermal Climate Index (UTCI) on the choice of clothing insulation by fitting LOESS smoothers to observations from 944 males and 710 females aged from 13 to 91 years. We further analysed votes of thermal sensation compared to predictions of UTCI. The results showed that females chose less insulating clothing in warm conditions compared to males and that observed values of clothing insulation depended on temperature, but also on season and potentially on solar radiation. The overall pattern of clothing choice was well reflected by UTCI, which also provided for good predictions of thermal sensation votes depending on the meteorological conditions. Analysing subgroups indicated that the goodness-of-fit of the UTCI was independent of gender and age, and with only limited influence of season and body composition as assessed by body mass index. This suggests that UTCI can serve as a suitable planning tool for urban thermal comfort in sub-tropical regions.

  20. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI—a case study in Southern Brazil

    Science.gov (United States)

    Bröde, Peter; Krüger, Eduardo L.; Rossi, Francine A.; Fiala, Dusan

    2012-05-01

    Recognising that modifications to the physical attributes of urban space are able to promote improved thermal outdoor conditions and thus positively influence the use of open spaces, a survey to define optimal thermal comfort ranges for passers-by in pedestrian streets was conducted in Curitiba, Brazil. We applied general additive models to study the impact of temperature, humidity, and wind, as well as long-wave and short-wave radiant heat fluxes as summarised by the recently developed Universal Thermal Climate Index (UTCI) on the choice of clothing insulation by fitting LOESS smoothers to observations from 944 males and 710 females aged from 13 to 91 years. We further analysed votes of thermal sensation compared to predictions of UTCI. The results showed that females chose less insulating clothing in warm conditions compared to males and that observed values of clothing insulation depended on temperature, but also on season and potentially on solar radiation. The overall pattern of clothing choice was well reflected by UTCI, which also provided for good predictions of thermal sensation votes depending on the meteorological conditions. Analysing subgroups indicated that the goodness-of-fit of the UTCI was independent of gender and age, and with only limited influence of season and body composition as assessed by body mass index. This suggests that UTCI can serve as a suitable planning tool for urban thermal comfort in sub-tropical regions.

  1. Human Thermal Comfort and Heat Removal Efficiency for Ventilation Variants in Passenger Cars

    Directory of Open Access Journals (Sweden)

    Saboora Khatoon

    2017-10-01

    Full Text Available The realization of a comfortable thermal environment with low energy consumption and improved ventilation in a car has become the aim of manufacturers in recent decades. Novel ventilation concepts with more flexible cabin usage and layouts are appealing owing to their potential for improving passenger comfort and driving power. In this study, three variant ventilation concepts are investigated and their performance is compared with respect to energy efficiency and human comfort of the driver and passenger in front and a child in the rear compartment. FLUENT 16.0, a commercial three-dimensional (3D software, are used for the simulation. A surface-to-surface radiation model is applied under transient conditions for a car parked in summer conditions with its engine in the running condition. The results for the standard Fanger’s model and modified Fanger’s model are analyzed, discussed, and compared for the driver, passenger, and child. The modified Fanger’s model determines the thermal sensation on the basis of mean arterial pressure.

  2. The effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses

    OpenAIRE

    Dehghan, Habibollah; Azmoon, Hiva; Souri, Shiva; Akbari, Jafar

    2014-01-01

    Psychological problems as state anxiety (SA) in the work environment has negative effect on the employees life especially shift work nurses, i.e. negative effect on mental and physical health (sleep quality, eye fatigue and comfort thermal). The purpose of this study was determination of effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses. Methods: This cross-sectional research conducted on 82 shift-work personnel of 18 nursing workstations of Is...

  3. The Relationship between Thermal Comfort and Light Intensity with Sleep Quality and Eye Tiredness in Shift Work Nurses

    OpenAIRE

    Azmoon, Hiva; Dehghan, Habibollah; Akbari, Jafar; Souri, Shiva

    2013-01-01

    Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. Method. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT) and photometer (Hagner ...

  4. The Effects of Household Fabric Softeners on the Thermal Comfort and Flammability of Cotton and Polyester Fabrics

    OpenAIRE

    Guo, Jiangman

    2003-01-01

    This study examined the effects of household fabric softeners on the thermal comfort and flammability of 100% cotton and 100% polyester fabrics after repeated laundering. Two fabric properties related to thermal comfort, water vapor transmission and air permeability, were examined. A 3 X 2 X 3 experimental design (i.e., 18 experimental cells) was developed to conduct the research. Three independent variables were selected: fabric softener treatments (i.e., rinse cycle softener, dryer sheet so...

  5. Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review

    Directory of Open Access Journals (Sweden)

    Andre Santos Nouri

    2018-03-01

    Full Text Available Based on the Köppen Geiger (KG classification system, this review article examines existing studies and projects that have endeavoured to address local outdoor thermal comfort thresholds through Public Space Design (PSD. The review is divided into two sequential stages, whereby (1 overall existing approaches to pedestrian thermal comfort thresholds are reviewed within both quantitative and qualitative spectrums; and (2 the different techniques and measures are reviewed and framed into four Measure Review Frameworks (MRFs, in which each type of PSD measure is presented alongside its respective local scale urban specificities/conditions and their resulting thermal attenuation outcomes. The result of this review article is the assessment of how current practices of PSD within three specific subcategories of the KG ‘Temperate’ group have addressed microclimatic aggravations such as elevated urban temperatures and Urban Heat Island (UHI effects. Based upon a bottom-up approach, the interdisciplinary practice of PSD is hence approached as a means to address existing and future thermal risk factors within the urban public realm in an era of potential climate change.

  6. Thermal comfort and the integrated design of homes for older people with dementia

    Energy Technology Data Exchange (ETDEWEB)

    van Hoof, J. [Hogeschool Utrecht University of Applied Sciences, Faculty of Health Care, Research Centre for Innovation in Health Care, Bolognalaan 101, 3584 CJ Utrecht (Netherlands); Eindhoven University of Technology, Department of Architecture, Building and Planning, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Kort, H.S.M. [Hogeschool Utrecht University of Applied Sciences, Faculty of Health Care, Research Centre for Innovation in Health Care, Bolognalaan 101, 3584 CJ Utrecht (Netherlands); Vilans, Catharijnesingel 47, 3511 GC Utrecht (Netherlands); Hensen, J.L.M.; Rutten, P.G.S. [Eindhoven University of Technology, Department of Architecture, Building and Planning, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Duijnstee, M.S.H. [Hogeschool Utrecht University of Applied Sciences, Faculty of Health Care, Research Centre for Innovation in Health Care, Bolognalaan 101, 3584 CJ Utrecht (Netherlands); Academy of Health Sciences Utrecht, Universiteitsweg 98, 3584 CG Utrecht (Netherlands)

    2010-02-15

    People with dementia may have an altered sensitivity to indoor environmental conditions compared to other older adults and younger counterparts. This paper, based on literature review and qualitative research, provides an overview of needs regarding thermal comfort and the design and implementation of heating, ventilation and air conditioning systems for people with dementia and other relevant stakeholders through the combined use of the International Classification of Functioning, Disability and Health, and the Model of Integrated Building Design. In principle, older adults do not perceive thermal comfort differently from younger adults. Due to the pathology of people with dementia, as well as their altered thermoregulation, the perception of the thermal environment might be changed. Many people with dementia express their discomfort through certain behaviour that is considered a problem for both family and professional carers. Ethical concerns are raised as well in terms of who is in charge over the thermal conditions, and the protection against temperature extremes in hot summers or cold winters. When implementing heating, ventilation and air conditioning systems one should consider aspects like user-technology interaction, diverging needs and preferences within group settings, safety issues, and minimising negative behavioural reactions and draught due to suboptimal positioning of outlets. At the same time, technology puts demands on installers who need to learn how to work with customers with dementia and their family carers. (author)

  7. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    Science.gov (United States)

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The Relationship between Thermal Comfort and Light Intensity with Sleep Quality and Eye Tiredness in Shift Work Nurses

    Directory of Open Access Journals (Sweden)

    Hiva Azmoon

    2013-01-01

    Full Text Available Environmental conditions such as lighting and thermal comfort are influencing factors on sleep quality and visual tiredness. The purpose of this study was the determination of the relationship between thermal comfort and light intensity with the sleep quality and eye fatigue in shift nurses. Method. This cross-sectional research was conducted on 82 shift-work personnel of 18 nursing workstations in Isfahan Al-Zahra Hospital, Iran, in 2012. Heat stress monitoring (WBGT and photometer (Hagner Model were used for measuring the thermal conditions and illumination intensity, respectively. To measure the sleep quality, visual tiredness, and thermal comfort, Pittsburg sleep quality index, eye fatigue questionnaire, and thermal comfort questionnaire were used, respectively. The data were analyzed with descriptive statistics, Student's t-test, and Pearson correlation. Results. Correlation between thermal comfort which was perceived from the self-reporting of people with eye tiredness was −0.38 (P=0.002. Pearson correlation between thermal comfort and sleep quality showed a positive and direct relationship (r=0.241, P=0.33 but the correlation between thermal comfort, which was perceived from the self-reporting of shift nurses, and WBGT index was a weak relationship (r=0.019. Conclusion. Based on the obtained findings, it can be concluded that a defect in environmental conditions such as thermal conditions and light intensity and also lack of appropriate managerial plan for night shift-work nurses are destructive and negative factors for the physical and mental health of this group of practitioners.

  9. Measurements of thermal parameters of solar modules

    International Nuclear Information System (INIS)

    Górecki, K; Krac, E

    2016-01-01

    In the paper the methods of measuring thermal parameters of photovoltaic panels - transient thermal impedance and the absorption factor of light-radiation are presented. The manner of realising these methods is described and the results of measurements of the considered thermal parameters of selected photovoltaic panels are presented. The influence of such selected factors as a type of the investigated panel and its mounting manner on transient thermal impedance of the considered panels is also discussed. (paper)

  10. Visitors' perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne

    Science.gov (United States)

    Lam, Cho Kwong Charlie; Loughnan, Margaret; Tapper, Nigel

    2018-01-01

    Outdoor thermal comfort studies have mainly examined the perception of local residents, and there has been little work on how those conditions are perceived differently by tourists, especially tourists of diverse origins. This issue is important because it will improve the application of thermal indices in predicting the thermal perception of tourists. This study aims to compare the differences in thermal perception and preferences between local and overseas visitors to the Royal Botanic Garden (RBG) in Melbourne during summer. An 8-day survey was conducted in February 2014 at four sites in the garden ( n = 2198), including 2 days with maximum temperature exceeding 40 °C. The survey results were compared with data from four weather stations adjacent to the survey locations. One survey location, `Fern Gully', has a misting system and visitors perceived the Fern Gully to be cooler than other survey locations. As the apparent temperature exceeded 32.4 °C, visitors perceived the environment as being `warm' or `hot'. At `hot' conditions, 36.8 % of European visitors voted for no change to the thermal conditions, which is considerably higher than the response from Australian visitors (12.2 %) and Chinese visitors (7.5 %). Study results suggest that overseas tourists have different comfort perception and preferences compared to local Australians in hot weather based at least in part on expectations. Understanding the differences in visitors' thermal perception is important to improve the garden design. It can also lead to better tour planning and marketing to potential visitors from different countries.

  11. Thermal sensations and comfort investigations in transient conditions in tropical office.

    Science.gov (United States)

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p < 0.05). Sensory and affective responses as a consequence of thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that

  12. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise

    OpenAIRE

    Gueritee, Julien; Tipton, Michael J.

    2015-01-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18 °C, 22 °C or 26 °C air were exposed to increasing air velocities up to 3 m s− 1 and self-adjusted the intensity of the direct radiant heat received on the front of the body to j...

  13. Thermal comfort of seated occupants in rooms with personalized ventilation combined with mixing or displacement ventilation

    DEFF Research Database (Denmark)

    Forejt, L.; Melikov, Arsen Krikor; Cermak, Radim

    2004-01-01

    The performance of two personalized ventilation systems combined with mixing or displacement ventilation was studied under different conditions in regard to thermal comfort of seated occupants. The cooling performance of personalized ventilation was found to be independent of room air distribution....... Differences between the personalized air terminal devices were identified in terms of the cooling distribution over the manikin¿s body. The personalized ventilation supplying air from the front towards the face provided a more uniform cooling of the body than the personalized ventilation supplying air from...

  14. Prediction of air temperature for thermal comfort of people using sleeping bags: a review.

    Science.gov (United States)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  15. Thermal (dis)comfort experienced from physiological movements across indoor, transitional and outdoor spaces in Singapore: A pilot study

    Science.gov (United States)

    Li Heng, Su; Chow, Winston

    2017-04-01

    Human thermal comfort research is important as climate discomfort can adversely affect both health and work productivity in cities; however, such biometeorological work in low-latitude urban areas is still relatively unstudied hitherto. In the tropical metropolis of Singapore, a suite of policies have been implemented aimed at improving environmental sustainability via increasing car-free commutes and pedestrian movement during work/school journeys, with the consequence that individuals will likely have increased personal exposure through a variety of spaces (and climates) during typical daily activities. As such, research into exploring the thermal (dis)comfort experienced during pedestrian movements across these indoor, outdoor and transitional (semi-outdoor) spaces would yield interesting applied biometerological insights. This pilot study thus investigates how pedestrian thermal comfort varies spatially across a university campus, and how the physical intensity of pedestrian travel affects thermal comfort across these spaces. Over a 10-week period, we profiled six students for both their objective and subjective pedestrian thermal comfort during traverses across different spaces. Data were obtained through use of (a.) of a heat stress sensor, (b.) a fitness tracker, and (b.) a questionnaire survey to record traverse measurements of the microclimate, their physiological data, and their perceived microclimate comfort respectively. Measured climate and physiological data were used to derive commonly-used thermal comfort indices like wet-bulb globe temperature (WBGT) and physiological equivalent temperature (PET). Further, interviews were conducted with all six subjects at the end of the fieldwork period to ascertain details on individual acclimatization behavior and adaptation strategies. The results indicate that (a.) more than 50% of the microclimatic conditions within each indoor, semi-outdoor, and outdoor space exceeded heat stress thresholds of both PET and

  16. Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba

    Science.gov (United States)

    Rodríguez-Algeciras, José; Tablada, Abel; Matzarakis, Andreas

    2017-07-01

    Walkability and livability in cities can be enhanced by creating comfortable environments in the streets. The profile of an urban street canyon has a substantial impact on outdoor thermal conditions at pedestrian level. This paper deals with the effect of asymmetrical street canyon profiles, common in the historical centre of Camagüey, Cuba, on outdoor thermal comfort. Temporal-spatial analyses are conducted using the Heliodon2 and the RayMan model, which enable the generation of accurate predictions about solar radiation and thermal conditions of urban spaces, respectively. On these models, urban settings are represented by asymmetrical street canyons with five different height-to-width ratios and four street axis orientations (N-S, NE-SW, E-W, SE-NW). Results are evaluated for daytime hours across the street canyon, by means of the physiologically equivalent temperature (PET index) which allows the evaluation of the bioclimatic conditions of outdoor environments. Our findings revealed that high profiles (façades) located on the east-facing side of N-S streets, on the southeast-facing side of NE-SW streets, on the south-facing side of E-W street, and on the southwest-facing side of SE-NW streets, are recommended to reduce the total number of hours under thermal stress. E-W street canyons are the most thermally stressed ones, with extreme PET values around 36 °C. Deviating from this orientation ameliorates the heat stress with reductions of up to 4 h in summer. For all analysed E-W orientations, only about one fifth of the street can be comfortable, especially for high aspect ratios (H/W > 3). Optimal subzones in the street are next to the north side of the E-W street, northwest side of the NE-SW street, and southwest side of the SE-NW street. Besides, when the highest profile is located on the east side of N-S streets, then the subzone next to the east-facing façade is recommendable for pedestrians. The proposed urban guidelines enable urban planners to create

  17. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Science.gov (United States)

    Pałaszyńska, Katarzyna; Bandurski, Karol; Porowski, Mieczysław

    2017-11-01

    Thermally Activated Building Systems (TABS) are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational). The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year - a typical meteorological year. The model was prepared using a generally accepted simulation tool - TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  18. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2016-01-01

    Full Text Available The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical Comfort (OTC model was used for simulation in this study. The model output is comfort scale that refers on ASHRAE definition. The model consists of two regression equations with variables of air temperature, globe temperature, wind speed, humidity and body posture, for two types of activity: walking and seated. From the results it can be stated that there is significant role of wind speed to reduce mean radiant temperature and globe temperature, when the velocity is elevated from 0.5 m/s to 2 m/s. However, the wind has not play significant role when the speed is changed from 2 m/s to 3.5 m/s. The results of the study may inspire us to implement effectiveness of electrical-fan equipment for outdoor space in order to get optimum wind speed, coupled with optimum design of shading devices to minimize radiant temperature for thermal comfort.

  19. The effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses.

    Science.gov (United States)

    Dehghan, Habibollah; Azmoon, Hiva; Souri, Shiva; Akbari, Jafar

    2014-01-01

    Psychological problems as state anxiety (SA) in the work environment has negative effect on the employees life especially shift work nurses, i.e. negative effect on mental and physical health (sleep quality, eye fatigue and comfort thermal). The purpose of this study was determination of effects of state anxiety and thermal comfort on sleep quality and eye fatigue in shift work nurses. This cross-sectional research conducted on 82 shift-work personnel of 18 nursing workstations of Isfahan hospitals in 2012. To measure the SA, sleep quality, visual fatigue and thermal comfort, Spielberger state-trait anxiety inventory, Pittsburg sleep quality index, eye fatigue questionnaire and thermal comfort questionnaire were used respectively. The data were analyzed with descriptive statistics, student test and correlation analysis. Correlation between SA and sleep quality was -0.664(P thermal comfort was -0.276(P = 0.016) and between SA and eye fatigue was 0.57 (P thermal conditions and reduce state anxiety level can be reduce eye fatigue and increase the sleep quality in shift work nurses.

  20. Heat transfer capability of solar radiation in colored roof and influence on room thermal comfort

    Science.gov (United States)

    Syuhada, Ahmad; Maulana, Muhammad Ilham

    2018-02-01

    Colored zinc is the most widely used by people in Indonesia as the roof of the building. Each color has different heat absorption capability, the higher the absorption capacity of a roof will cause high room temperature. A high temperature in the room will cause the room is not thermally comfortable for activity. Lack of public knowledge about the ability of each color to absorb heat can cause errors in choosing the color of the roof of the building so that it becomes uncomfortable regarding thermal comfort. This study examined how big the ability of each color in influencing the heat absorption on the roof of the zinc. The purpose of this study is to examine which colors are the lowest to absorb radiation heat. This research used theexperimental method. Data collected by measuring the temperature of the environment above and below the colored tin roof, starting at 11:00 am until 15:00 pm. The zinc roofs tested in this study are zinc black, red zinc, green zinc, blue zinc, brown zinc, maroon zinc, orange zinc, zinc gray, zinc color chrome and zinc white color. The study results show that black and blackish colors will absorb more heat than other colors. While the color white or close to whitish color will absorb a slight heat.

  1. Characterization of Energy Savings and Thermal Comfort Improvements Derived from Using Interior Storm Windows

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Jake R.; Widder, Sarah H.

    2013-09-30

    This field study of a single historic home in Seattle, WA documents the performance of Indow Windows’s interior storm window inserts. Energy use and the temperature profile of the house were monitored before and after the installation of the window inserts and changes in the two recorded metrics were examined. Using the defined analysis approach, it was determined that the interior storm windows produced a 22% reduction of the HVAC energy bill and had an undetermined effect on the thermal comfort in the house. Although there was no measurable changes in the thermal comfort of the house, the occupant noted the house to be “warmer in the winter and cooler in the summer” and that the “temperatures are more even (throughout the house).” The interior storm windows were found to be not cost effective, largely due to the retrofits completed on its heating system. However, if the economic analysis was conducted based on the old heating system, a 72% efficient oil fired furnace, the Indow Windows proved to be economical and had a simple payback period of 9.0 years.

  2. A model of human physiology and comfort for assessing complex thermal environments

    Energy Technology Data Exchange (ETDEWEB)

    Huizenga, C.; Zhang Hui; Arens, E. [University of California, Berkeley, CA (United States). Center for Environmental Design Research

    2001-07-01

    The Berkeley Comfort Model is based on the Stolwijk model of human thermal regulation but includes several significant improvements. Our new model allows an unlimited body segment (compared to six in the Stolwijk model). Each segment is modeled as four body layers (core, muscle, fat, and skin tissues) and a clothing layer. Physiological mechanisms such as vasodilation, vasoconstriction, sweating, and metabolic heat production are explicitly considered. Convection, conduction (such as to a car seat or other surface in contact with any part of the body) and radiation between the body and the environment are treated independently. The model is capable of predicting human physiological response to transient, non-uniform thermal environments. This paper describes the physiological algorithms as well as the implementation of the model. (author)

  3. Model Based Predictive Control of Thermal Comfort for Integrated Building System

    Science.gov (United States)

    Georgiev, Tz.; Jonkov, T.; Yonchev, E.; Tsankov, D.

    2011-12-01

    This article deals with the indoor thermal control problem in HVAC (heating, ventilation and air conditioning) systems. Important outdoor and indoor variables in these systems are: air temperature, global and diffuse radiations, wind speed and direction, temperature, relative humidity, mean radiant temperature, and so on. The aim of this article is to obtain the thermal comfort optimisation by model based predictive control algorithms (MBPC) of an integrated building system. The control law is given by a quadratic programming problem and the obtained control action is applied to the process. The derived models and model based predictive control algorithms are investigated based on real—live data. All researches are derived in MATLAB environment. The further research will focus on synthesis of robust energy saving control algorithms.

  4. Thermal Comfort and Ventilation Criteria for low Energy Residential Buildings in Building Codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim

    2012-01-01

    of the indoor air quality in such buildings. Currently, there are no global guidelines for specifying the indoor thermal environment in such low-energy buildings. The objective of this paper is to analyse the classification of indoor thermal comfort levels and recommended ventilation rates for different low......Indoor environmental quality and energy performance of buildings are becoming more and more important in the design and construction of low energy, passive and zero energy buildings. At the same time, improved insulation and air tightness have the potential to resulting in a deterioration...... energy buildings, and propose a set of indices that would enable better quantification and comparison among low energy buildings. In this study, the building codes and voluntary guidelines have been reviewed on the basis of experience of Finland, UK, Denmark, USA and Germany. The analysis in this paper...

  5. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective.

    Science.gov (United States)

    Gao, C; Kuklane, K; Wang, F; Holmér, I

    2012-12-01

    The impact of heat waves arising from climate change on human health is predicted to be profound. It is important to be prepared with various preventive measures for such impacts on society. The objective of this study was to investigate whether personal cooling with phase change materials (PCM) could improve thermal comfort in simulated office work at 34°C. Cooling vests with PCM were measured on a thermal manikin before studies on human subjects. Eight male subjects participated in the study in a climatic chamber (T(a) = 34°C, RH = 60%, and ν(a) = 0.4 m/s). Results showed that the cooling effect on the manikin torso was 29.1 W/m(2) in the isothermal condition. The results on the manikin using a constant heating power mode reflect directly the local cooling effect on subjects. The results on the subjects showed that the torso skin temperature decreased by about 2-3°C and remained at 33.3°C. Both whole body and torso thermal sensations were improved. The findings indicate that the personal cooling with PCM can be used as an option to improve thermal comfort for office workers without air conditioning and may be used for vulnerable groups, such as elderly people, when confronted with heat waves. Wearable personal cooling integrated with phase change materials has the advantage of cooling human body's micro-environment in contrast to stationary personalized cooling and entire room or building cooling, thus providing greater mobility and helping to save energy. In places where air conditioning is not usually used, this personal cooling method can be used as a preventive measure when confronted with heat waves for office workers, vulnerable populations such as the elderly and disabled people, people with chronic diseases, and for use at home. © 2012 John Wiley & Sons A/S.

  6. Monitoring and assessment of the outdoor thermal comfort in Bucharest (Romania)

    Science.gov (United States)

    Cheval, Sorin; Ciobotaru, Ana-Maria; Andronache, Ion; Dumitrescu, Alexandru

    2017-04-01

    Bucharest is one of the European cities most at risk of being affected by meteorological hazards. Heat or cold waves, extreme temperature events, heavy rains or prolonged precipitation deficits are all-season phenomena, triggering damages, discomfort or even casualties. Temperature hazards may occur annually and challenge equally the public, local business and administration to find adequate solutions for securing the thermal comfort in the outdoor environment of the city. The accurate and fine resolution monitoring of the air temperature pledges for the comprehensive assessment of the thermal comfort in order to capture as much as possible the urban influence. This study uses sub-hourly temperature data (10-min temporal resolution) retrieved over the period November 2014 - November 2016 collected from nine sensors placed either in plain urban conditions or within the three meteorological stations of the national network which are currently monitoring the climate of Bucharest (Băneasa, Filaret, Afumați). The relative humidity was estimated based on the data available at the three stations placed in WMO standard conditions, and the 10-min values of 8 Thermal Comfort Indices were computed, namely: Heat Index, Humidex, Relative Strain Index, Scharlau, Summer Simmer Index, Physiological Equivalent Index, Temperature-Humidity Index, Thom Discomfort Index. The indices were analysed statistically, both individually and combined. Despite the short range of the available data, this study emphasizes clear spatial differentiations of the thermal comfort, in a very good agreement with the land cover and built zones of the city, while important variations were found in the temporal regime, due to large variations of the temperature values (e.g. >4 centigrade between consecutive hours or >15 centigrade between consecutive days). Ultimately, this study has revealed that the continuous monitoring of the urban climate, at fine temporal and spatial resolution, may deliver

  7. Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons

    Science.gov (United States)

    Qaid, Adeb; Lamit, Hasanuddin Bin; Ossen, Dilshan Remaz; Rasidi, Mohd Hisyam

    2018-02-01

    Poor daytime and night-time micrometeorological conditions are issues that influence the quality of environmental conditions and can undermine a comfortable human lifestyle. The sky view factor (SVF) is one of the essential physical parameters used to assess the micrometeorological conditions and thermal comfort levels within city streets. The position of the visible sky relative to the path of the sun, in the cardinal and ordinal directions, has not been widely discerned as a parameter that could have an impact on the micrometeorological conditions of urban streets. To investigate this parameter, different urban streets that have a similar SVF value but diverse positions of visible sky were proposed in different street directions intersecting with the path of the sun, namely N-S, NE-SW and NW-SE. The effects of daytime and night-time micrometeorological variables and human thermal comfort variables on the street were investigated by applying ENVI-met V3.1 Beta software. The results show that the position of the visible sky has a greater influence on the street's meteorological and human thermal comfort conditions than the SVF value. It has the ability to maximise or minimise the mean radiation temperature (Tmrt, °C) and the physiological equivalent temperature (PET, °C) at street level. However, the visible sky positioned to the zenith in a NE-SW or N-S street direction and to the SW of a NW-SE street direction achieves the best daytime micrometeorological and thermal comfort conditions. Alternatively, the visible sky positioned to the NE for a NW-SE street direction, to the NW and the zenith for a NE-SW street direction and to the zenith for a N-S street direction reduces the night-time air temperature (Ta, °C). Therefore, SVF and the position of the visible sky relative to the sun's trajectory, in the cardinal and ordinal directions, must be considered during urban street planning to better understand the resultant micrometeorological and human thermal

  8. Thermal comfort in twentieth-century architectural heritage: Two houses of Le Corbusier and André Wogenscky

    Directory of Open Access Journals (Sweden)

    Ignacio Requena-Ruiz

    2016-06-01

    This article aims to develop a balanced understanding of the approach of Modernist architecture to climate, indoor atmospheres and inhabitants׳ thermal comfort. To do so, we complement the quantitative approach of environmental assessment methods with the qualitative angle of the history of sensory and architecture. The goal is to understand the environmental performance of architecture for dealing nowadays with thermal comfort issues while respecting its cultural and historical values. Two modernist houses have been selected as case studies: the Villa Curutchet of the master Le Corbusier and the Villa Chupin of his disciple André Wogenscky. As a result, the article reveals potentialities and constraints in terms of thermal comfort when working with Modern Architecture.

  9. An Open Source “Smart Lamp” for the Optimization of Plant Systems and Thermal Comfort of Offices

    Directory of Open Access Journals (Sweden)

    Francesco Salamone

    2016-03-01

    Full Text Available The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called “Smart Lamp”, useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.

  10. Implications of climate and outdoor thermal comfort on tourism: the case of Italy.

    Science.gov (United States)

    Salata, Ferdinando; Golasi, Iacopo; Proietti, Riccardo; de Lieto Vollaro, Andrea

    2017-12-01

    Whether a journey is pleasant or not usually depends on the climatic conditions which permit to perform outdoor activities. The perception of climatic conditions, determined by physiological and psychological factors, can vary according to different adaptation phenomena related to the person involved and the weather conditions of the place where they live. Studying the bioclimatology of a country characterized by a high flux of tourism, as e.g. Italy, can provide some important information about where and when is it better to visit a place. Some differences have to be specified though, like the local tourism, which is used to that type of climate, and international tourism, which is formed by people coming from countries with different types of climates. Therefore this paper examined the climatic conditions and outdoor thermal comfort through the Mediterranean Outdoor Comfort Index (MOCI) for local tourism and through the predicted mean vote (PMV) for international tourism. The cities examined were three (Venice, Rome and Palermo located in the North, Centre and South of Italy, respectively), where average information were collected every week for an entire year. Finally, a map of the entire Italian territory reporting the seasonal average values of these indexes was also reported.

  11. The Influence of Vegetation Function towards the Langsep Street Thermal Comfort

    Science.gov (United States)

    Alfian, R.; Setyabudi, I.; Uran, R. S.

    2017-10-01

    Streetscape is an important element for character building of the environment, spatial, and visual in order to provide an urban identity, especially in Malang City protocol streets. Langsep Street is one of the protocol streets in Malang City. Langsep Street famous with central education and offices area. This study aims (1) to identify vegetation of streetscape; (2) to analyze the thermal comfort of the streetscape, and (3) to evaluate the comfort level of Langsep Street. The method used was the THI approach. THI value that obtained was analyzed using the standard of Laurie (1990). Based on observations, the THI value of Langsep Street was 27.60. This was influenced by the trees canopy density and spacing of the trees on the streetscape. It can be concluded that streetscape required (1) shaded plants that have root systems that do not damage the construction of roads, (2) the branching plants are not easily broken and easy to maintain, and (3) the combination of trees, shrubs and ground cover.

  12. Analysis and Comparison of Shading Strategies to Increase Human Thermal Comfort in Urban Areas

    Directory of Open Access Journals (Sweden)

    Ivan Lee

    2018-03-01

    Full Text Available With the expected increase in warmer conditions caused by climate change, heat-related illnesses are becoming a more pressing issue. One way that humans can protect themselves from this is to seek shade. The design of urban spaces can provide individuals with a variety of ways to obtain this shade. The objective of this study was to perform a detailed evaluation and comparison of three shading strategies that could be used in an urban environment: shade from a building, from a tree, and from an umbrella. This was done through using field measurements to calculate the impact of each strategy on a thermal comfort index (Comfort Formula (COMFA in two urban settings during sunny days of the summer of 2013 and 2014 in London, Canada. Building shade was found to be the most effective cooling strategy, followed by the tree strategy and the umbrella strategy. As expected, the main determinant of this ranking was a strategy’s ability to block incoming shortwave radiation. Further analysis indicated that changes in the convective loss of energy and in longwave radiation absorption had a smaller impact that caused variations in the strategy effectiveness between settings. This suggests that under non-sunny days, these rankings could change.

  13. Implications of climate and outdoor thermal comfort on tourism: the case of Italy

    Science.gov (United States)

    Salata, Ferdinando; Golasi, Iacopo; Proietti, Riccardo; de Lieto Vollaro, Andrea

    2017-12-01

    Whether a journey is pleasant or not usually depends on the climatic conditions which permit to perform outdoor activities. The perception of climatic conditions, determined by physiological and psychological factors, can vary according to different adaptation phenomena related to the person involved and the weather conditions of the place where they live. Studying the bioclimatology of a country characterized by a high flux of tourism, as e.g. Italy, can provide some important information about where and when is it better to visit a place. Some differences have to be specified though, like the local tourism, which is used to that type of climate, and international tourism, which is formed by people coming from countries with different types of climates. Therefore this paper examined the climatic conditions and outdoor thermal comfort through the Mediterranean Outdoor Comfort Index (MOCI) for local tourism and through the predicted mean vote (PMV) for international tourism. The cities examined were three (Venice, Rome and Palermo located in the North, Centre and South of Italy, respectively), where average information were collected every week for an entire year. Finally, a map of the entire Italian territory reporting the seasonal average values of these indexes was also reported.

  14. Numerical investigations of buoyancy-driven natural ventilation in a simple three-storey atrium building and thermal comfort evaluation

    International Nuclear Information System (INIS)

    Hussain, Shafqat; Oosthuizen, Patrick H.

    2013-01-01

    The numerical investigations of buoyancy-driven natural ventilation and thermal comfort evaluation in a simple three-storey atrium building as a part of the passive ventilation strategy was undertaken using a validated Computational Fluid Dynamic (CFD) model. The Reynolds Averaged Navier–Stokes (RANS) modeling approach with the SST-k–ω turbulence model and the discrete transfer radiation model (DTRM) was used for the numerical investigations. The steady-state governing equations were solved using a commercial solver FLUENT©. Various flow situations of the buoyancy-driven natural ventilation in the building during day and night time were examined. The numerical results obtained for the airflow rates, airflow patterns and temperature distributions inside the building are presented in this paper. Using the numerical results, the well-known thermal comfort indices PMV (predicted mean vote) and PPD (predicted percentage of dissatisfied) were calculated for the evaluation of the thermal comfort conditions in the occupied regions of the building. It was noticed that thermal conditions prevailing in the occupied areas of the building as a result of using the buoyancy-driven ventilation were mostly in comfort zone. From the study of the night time ventilation, it was found that hot water (80 °C) circulation (heated by solar collectors during daytime) along the chimney walls during night time and heat sources present in the building can be useful in inducing night ventilation airflows in the building as a part of the passive ventilation strategy. -- Highlights: • A simple three-storey atrium building. • Numerical modeling of buoyancy-driven ventilation flow in the building. • Effect of solar intensity and geographical location on ventilation. • CFD predictions were used to calculate thermal comfort indices. • Evaluation of thermal comfort conditions for the occupants

  15. Fuzzy logic-based advanced on–off control for thermal comfort in residential buildings

    International Nuclear Information System (INIS)

    Kang, Chang-Soon; Hyun, Chang-Ho; Park, Mignon

    2015-01-01

    Highlights: • Fuzzy logic-based advanced on–off control is proposed. • An anticipative control mechanism is implemented by using fuzzy theory. • Novel thermal analysis program including solar irradiation as a factor is developed. • The proposed controller solves over-heating and under-heating thermal problems. • Solar energy compensation method is applied to compensate for the solar energy. - Abstract: In this paper, an advanced on–off control method based on fuzzy logic is proposed for maintaining thermal comfort in residential buildings. Due to the time-lag of the control systems and the late building thermal response, an anticipative control mechanism is required to reduce energy loss and thermal discomfort. The proposed controller is implemented based on an on–off controller combined with a fuzzy algorithm. On–off control was chosen over other conventional control methods because of its structural simplicity. However, because conventional on–off control has a fixed operating range and a limited ability for improvements in control performance, fuzzy theory can be applied to overcome these limitations. Furthermore, a fuzzy-based solar energy compensation algorithm can be applied to the proposed controller to compensate for the energy gained from solar radiation according to the time of day. Simulations were conducted to compare the proposed controller with a conventional on–off controller under identical external conditions such as outdoor temperature and solar energy; these simulations were carried out by using a previously reported thermal analysis program that was modified to consider such external conditions. In addition, experiments were conducted in a residential building called Green Home Plus, in which hydronic radiant floor heating is used; in these experiments, the proposed system performed better than a system employing conventional on–off control methods

  16. Potential effects of urbanization on urban thermal comfort, a case study of Nairobi city, Kenya: A review

    Directory of Open Access Journals (Sweden)

    Ongoma Victor

    2016-01-01

    Full Text Available This study reviews the effect of urbanization on human thermal comfort over Nairobi city in Kenya. Urbanization alters urban center's land use and land cover, modifying the climate of the urban setting. The modification in climate affects human comfort and the environment at large. This study focuses on the recent studies conducted in Nairobi city and many other cities globally to examine modification of wind, temperature and humidity over Nairobi. There was observed reduction in wind speed and relative humidity over the city, posing threat to human and animal comfort and the environment at large. The city of Nairobi, just like other cities globally is observed to experience urban heat island (UHI. The observed increase in minimum temperature as compared to maximum temperature signifies overall warming. A combination of all these changes reduces human comfort. Borrowing lessons from developed cities, increasing the urban forest cover is thus suggested as one of the practical and effective measures that can help prevent further modification of weather and urban climates. The study recommends further research involving multi-sectoral urban stake holders, on forcing driving urban thermal comfort. In the short term, design and construction of appropriate structures can help minimize energy consumption and emissions, thus enhancing comfort.

  17. Active Participation of Air Conditioners in Power System Frequency Control Considering Users’ Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Rongxiang Zhang

    2015-09-01

    Full Text Available Air conditioners have great potential to participate in power system frequency control. This paper proposes a control strategy to facilitate the active participation of air conditioners. For each air conditioner, a decentralized control law is designed to adjust its temperature set point in response to the system frequency deviation. The decentralized control law accounts for the user’s thermal comfort that is evaluated by a fuzzy algorithm. The aggregation of air conditioners’ response is conducted by using the Monte Carlo simulation method. A structure preserving model is applied to the multi-bus power system, in which air conditioners are aggregated at certain load buses. An inner-outer iteration scheme is adopted to solve power system dynamics. An experiment is conducted on a test air conditioner to examine the performance of the proposed decentralized control law. Simulation results on a test power system verify the effectiveness of the proposed strategy for air conditioners participating in frequency control.

  18. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    International Nuclear Information System (INIS)

    Khan, M Reyasudin Basir; Jidin, Razali; Shaaya, Sharifah Azwa; Pasupuleti, Jagadeesh

    2013-01-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  19. Building automation: Photovoltaic assisted thermal comfort management system for energy saving

    Science.gov (United States)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Azwa Shaaya, Sharifah

    2013-06-01

    Building automation plays an important key role in the means to reduce building energy consumption and to provide comfort for building occupants. It is often that air conditioning system operating features ignored in building automation which can result in thermal discomfort among building occupants. Most automation system for building is expensive and incurs high maintenance cost. Such system also does not support electricity demand side management system such as load shifting. This paper discusses on centralized monitoring system for room temperature and photovoltaic (PV) output for feasibility study of PV assisted air conditioning system in small office buildings. The architecture of the system consists of PV modules and sensor nodes located at each room. Wireless sensor network technology (WSN) been used for data transmission. The data from temperature sensors and PV modules transmitted to the host personal computer (PC) wirelessly using Zigbee modules. Microcontroller based USB data acquisition device used to receive data from sensor nodes and displays the data on PC.

  20. Options of microclimate optimization in stable objects with respect to thermal comfort

    Directory of Open Access Journals (Sweden)

    Anna Šimková

    2013-05-01

    Full Text Available The study was carried out at the farm in Petrovice. Dairy cows and heifers were included in the experiment. The relative humidity, temperature, cooling value environment and flow rate in stables were measured. The flow rate was measured by the handheld anemometer. The relative humidity and the temperature were obtained by the data logger with sensors. The cooling value environment was obtained by the psychrometer. The rectal temperature was measured simultaneously as further value. It was rated 3 different groups of dairy cows and heifers in 2 stables. The aim of this work was finding how this values impact thermal comfort of the animals. The temperature is the most significant factor because it is very variable value. The animals immediately react for change of this. All these measured values are important for optimal welfare of animals. They influence the productivity of dairy cows and heifers, milk quality, reproduction and health of animals.

  1. Effect of relative humidity and temperature control on in-cabin thermal comfort state: Thermodynamic and psychometric analyses

    International Nuclear Information System (INIS)

    Alahmer, A.; Omar, M.A.; Mayyas, A.; Dongri, Shan

    2011-01-01

    This manuscript discusses the effect of manipulating the Relative Humidity RH of in-cabin environment on the thermal comfort and human occupants' thermal sensation. The study uses thermodynamic and psychometric analyses, to incorporate the effect of changing RH along with the dry bulb temperature on human comfort. Specifically, the study computes the effect of changing the relative humidity on the amount of heat rejected from the passenger compartment and the effect of relative humidity on occupants comfort zone. A practical system implementation is also discussed in terms of an evaporative cooler design. The results show that changing the RH along with dry bulb temperature inside vehicular cabins can improve the air conditioning efficiency by reducing the heat removed while improving the Human comfort sensations as measured by the Predicted Mean Value PMV and the Predicted Percentage Dissatisfied PPD indices. - Highlights: → Investigates the effect of controlling the RH and dry bulb temperature on in-cabin thermal comfort and sensation. → Conducts the thermodynamic and psychometric analyses for changing the RH and temperature for in-cabin air conditioning. → Discusses a possible system implementation through an evaporative cooler design.

  2. Use of a novel smart heating sleeping bag to improve wearers’ local thermal comfort in the feet

    Science.gov (United States)

    Song, W. F.; Zhang, C. J.; Lai, D. D.; Wang, F. M.; Kuklane, K.

    2016-01-01

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers’ local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of -0.4 °C, and for males: the limit temperature of -6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  3. The comparison of vernacular residences' thermal comfort in coastal with that in mountainous regions of tropical areas

    Science.gov (United States)

    Hermawan, Prianto, Eddy; Setyowati, Erni; Sunaryo

    2017-11-01

    Adaptive thermal comfort is the latest theory used to analyze thermal acceptability of the naturally ventilated buildings for occupants in tropical areas. Vernacular residences are considered capable to meet the thermal comfort for the occupants. The combination between adaptive and passive theory is still rarely conducted. This study aims to compare the adaptive and passive thermal comfort for occupants of vernacular residences in mountainous and coastal regions using AMV (Actual Mean Vote) and PMV (Predicted Mean Vote). This research uses a quantitative method with a statistical analysis on variables of air temperature, globe temperature, velocity, relative humidity, age, weight, and height. AMV data are collected based on questionnaires with ASHRAE (American Society of Heating, Refrigeration, Air conditioning Engineering) standards. The samples consist of 100 vernacular residences of both coastal and mountainous regions. The results show that there are AMV and PMV differences in each region. The AMV values in those vernacular residences in mountainous and coastal regions are respectively -0.4982 and 0.1673. It indicates that the occupants of vernacular residences in coastal regions accept the thermal conditions better. Thus, it can be concluded that vernacular residences in coastal areas comfort the occupants more.

  4. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Science.gov (United States)

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    Science.gov (United States)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  6. The Effects of Mean Radiant Temperature on Thermal Comfort, Energy Consumption and Control – A Critical Overview

    NARCIS (Netherlands)

    E. Halawa; J. van Hoof; V. Soebarto

    2014-01-01

    Halawa, E., van Hoof, J., Soebarto, V. (2014) The Effects of Mean Radiant Temperature on Thermal Comfort, Energy Consumption and Control – A Critical Overview. Renewable & Sustainable Energy Review 37:907-918 doi: 10.1016/j.rser.2014.05.040

  7. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    Science.gov (United States)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  8. Peran Kecepatan Angin Terhadap Peningkatan Kenyamanan Termis Manusia Di Lingkungan Beriklim Tropis Lembab (the Role of Wind Velocity on Increasing Human Thermal Comfort in Hot and Humid Environment)

    OpenAIRE

    Sangkertadi, Sangkertadi

    2006-01-01

    The most important factors which influence the condition of thermal comfort are clothing, temperature, humidity, air velocity, and types of activities. In hot and humid climate, feeling of comfort are associated with sweating. Air velocity can cool building occupants by increasing convective and evaporative heat loses. This paper intends to explore the techniques for evaluating of thermal comfort especially with introduction of PMV and DISC scales for the tropical humid environment. The study...

  9. The Effect of Geometry Parameters on Energy and Thermal Performance of School Buildings in Cold Climates of China

    NARCIS (Netherlands)

    Zhang, A.; Bokel, R.M.J.; van den Dobbelsteen, A.A.J.F.; Sun, Y.; Huang, Q; Zhang, Qi

    2017-01-01

    This paper discusses the role of geometry parameters including building shape, window to wall ratio, room depth, and orientation on the energy use and thermal comfort of school buildings in cold climates of China. The annual total energy demand and summer thermal discomfort time were compared

  10. The role of clothing in thermal comfort: how people dress in a temperate and humid climate in Brazil

    Directory of Open Access Journals (Sweden)

    Renata De Vecchi

    Full Text Available Abstract Thermal insulation from clothing is one of the most important input variables used to predict the thermal comfort of a building's occupants. This paper investigates the clothing pattern in buildings with different configurations located in a temperate and humid climate in Brazil. Occupants of two kinds of buildings (three offices and two university classrooms assessed their thermal environment through 'right-here-right-now' questionnaires, while at the same time indoor climatic measurements were carried out in situ (air temperature and radiant temperature, air speed and humidity. A total of 5,036 votes from 1,161 occupants were collected. Results suggest that the clothing values adopted by occupants inside buildings were influenced by: 1 climate and seasons of the year; 2 different configurations and indoor thermal conditions; and 3 occupants' age and gender. Significant intergenerational and gender differences were found, which might be explained by differences in metabolic rates and fashion. The results also indicate that there is a great opportunity to exceed the clothing interval of the thermal comfort zones proposed by international standards such as ASHRAE 55 (2013 - 0.5 to 1.0 clo - and thereby save energy from cooling and heating systems, without compromising the occupants' indoor thermal comfort.

  11. Sky View Factors from Synthetic Fisheye Photos for Thermal Comfort Routing—A Case Study in Phoenix, Arizona

    Directory of Open Access Journals (Sweden)

    Ariane Middel

    2017-03-01

    Full Text Available The Sky View Factor (SVF is a dimension-reduced representation of urban form and one of the major variables in radiation models that estimate outdoor thermal comfort. Common ways of retrieving SVFs in urban environments include capturing fisheye photographs or creating a digital 3D city or elevation model of the environment. Such techniques have previously been limited due to a lack of imagery or lack of full scale detailed models of urban areas. We developed a web based tool that automatically generates synthetic hemispherical fisheye views from Google Earth at arbitrary spatial resolution and calculates the corresponding SVFs through equiangular projection. SVF results were validated using Google Maps Street View and compared to results from other SVF calculation tools. We generated 5-meter resolution SVF maps for two neighborhoods in Phoenix, Arizona to illustrate fine-scale variations of intra-urban horizon limitations due to urban form and vegetation. To demonstrate the utility of our synthetic fisheye approach for heat stress applications, we automated a radiation model to generate outdoor thermal comfort maps for Arizona State University’s Tempe campus for a hot summer day using synthetic fisheye photos and on-site meteorological data. Model output was tested against mobile transect measurements of the six-directional radiant flux density. Based on the thermal comfort maps, we implemented a pedestrian routing algorithm that is optimized for distance and thermal comfort preferences. Our synthetic fisheye approach can help planners assess urban design and tree planting strategies to maximize thermal comfort outcomes and can support heat hazard mitigation in urban areas.

  12. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments

    Science.gov (United States)

    Coutts, Andrew M.; White, Emma C.; Tapper, Nigel J.; Beringer, Jason; Livesley, Stephen J.

    2016-04-01

    Urban street trees provide many environmental, social, and economic benefits for our cities. This research explored the role of street trees in Melbourne, Australia, in cooling the urban microclimate and improving human thermal comfort (HTC). Three east-west (E-W) oriented streets were studied in two contrasting street canyon forms (deep and shallow) and between contrasting tree canopy covers (high and low). These streets were instrumented with multiple microclimate monitoring stations to continuously measure air temperature, humidity, solar radiation, wind speed and mean radiant temperature so as to calculate the Universal Thermal Climate Index (UTCI) from May 2011 to June 2013, focusing on summertime conditions and heat events. Street trees supported average daytime cooling during heat events in the shallow canyon by around 0.2 to 0.6 °C and up to 0.9 °C during mid-morning (9:00-10:00). Maximum daytime cooling reached 1.5 °C in the shallow canyon. The influence of street tree canopies in the deep canyon was masked by the shading effect of the tall buildings. Trees were very effective at reducing daytime UTCI in summer largely through a reduction in mean radiant temperature from shade, lowering thermal stress from very strong (UTCI > 38 °C) down to strong (UTCI > 32 °C). The influence of street trees on canyon air temperature and HTC was highly localized and variable, depending on tree cover, geometry, and prevailing meteorological conditions. The cooling benefit of street tree canopies increases as street canyon geometry shallows and broadens. This should be recognized in the strategic placement, density of planting, and species selection of street trees.

  13. Evaluation of thermal comfort conditions in a localized radiant system placed in front and behind two students seated nearby warmed curtains

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Eusebio Z.E. [FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Lucio, M-1. Manuela J.R. [Agrupamento Vertical Professor Paula Nogueira, R. Comunidade Lusiada, 8700-000 Olhao (Portugal)

    2010-10-15

    In this work the evaluation of thermal comfort conditions, that two students are subjected, in a classroom desk equipped with a localized radiant system placed in front and behind the occupants seated nearby windows equipped with curtains subjected to solar radiation, in Winter conditions, is made. In the simulation, performed in a 2.7 x 2.4 x 2.4 m{sup 3} virtual chamber, two occupants seated in a classroom desk, equipped with two localized radiant surfaces placed in front and two localized radiant surfaces placed behind them, a window subjected to solar radiation and an internal curtain are considered. A numerical model, that allows to simulate the human body thermal, clothing thermal and thermoregulatory systems, in non-uniform environments, is used. The Mean Radiant Temperature, with and without correction, and Radiosity methods are used in the study of the influence of the localized radiant surface, the room surrounding surfaces, the lateral occupant's body, the lateral curtain surface and the lateral solar radiation, in the thermal comfort conditions. In the first part of the study three numerical methods used in the evaluation of internal radiant heat exchanges in an acceptable typical thermal situation are analysed, while in the second part the influence of four important thermal parameters in the thermal comfort level is analysed. In the first part of this work, the localized radiant surfaces and the lateral occupant's body are evaluated in the first test, the localized radiant surfaces, the lateral occupants body and the lateral curtains surface are evaluated in the second test and the localized radiant surfaces, the lateral occupants body, the lateral window glass surface and the lateral solar radiation are evaluated in the third test. In the second part of this work, the influence of air temperature, equal to the room surrounding surfaces temperature, the localized radiant system temperature, the lateral curtains temperature and the air

  14. Analysis on the impact of mean radiant temperature for the thermal comfort of underfloor air distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jae Dong [Department of Mechanical Engineering, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747 (Korea, Republic of); Hong, Hiki [Department of Mechanical Engineering, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Yoo, Hoseon [Department of Mechanical Engineering, Soongsil University, Seoul 156-743 (Korea, Republic of)

    2010-12-15

    Despite the potentially significant advantages of underfloor air distribution (UFAD) systems, the shortcomings in fundamental understanding have impeded the use of UFAD systems. A study has been carried out on the thermal stratification which is crucial to system design, energy efficient operation and comfort performance of UFAD systems with an aim of examining impact of mean radiant temperature (MRT) on thermal comfort. Clear elucidation of the benefit of UFAD systems has been shown by comparing it to the traditional overhead air distribution systems. Keeping the same level of comfortable environment in the occupied zone, UFAD systems require much higher temperature of supply air, which represents significant energy savings. The benefit of UFAD systems is more pronounced at the condition of high ceiling height building. Considerable discrepancies in thermal comfort are found on the assumption that air temperature rather than MRT is used for the evaluation of PMV. However, more rigorous analysis including the full radiation simulation does not show any significant difference in PMV distribution. The result of the full radiation simulations requires much longer simulation time but gives similar air temperature distribution and only slightly higher averaged temperature than present approaches. (author)

  15. Thermal neutron diffusion parameters in homogeneous mixtures

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Krynicka, E.

    1995-01-01

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs

  16. Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania.

    Science.gov (United States)

    Yahia, Moohammed Wasim; Johansson, Erik; Thorsson, Sofia; Lindberg, Fredrik; Rasmussen, Maria Isabel

    2018-03-01

    Due to the complexity of built environment, urban design patterns considerably affect the microclimate and outdoor thermal comfort in a given urban morphology. Variables such as building heights and orientations, spaces between buildings, plot coverage alter solar access, wind speed and direction at street level. To improve microclimate and comfort conditions urban design elements including vegetation and shading devices can be used. In warm-humid Dar es Salaam, the climate consideration in urban design has received little attention although the urban planning authorities try to develop the quality of planning and design. The main aim of this study is to investigate the relationship between urban design, urban microclimate, and outdoor comfort in four built-up areas with different morphologies including low-, medium-, and high-rise buildings. The study mainly concentrates on the warm season but a comparison with the thermal comfort conditions in the cool season is made for one of the areas. Air temperature, wind speed, mean radiant temperature (MRT), and the physiologically equivalent temperature (PET) are simulated using ENVI-met to highlight the strengths and weaknesses of the existing urban design. An analysis of the distribution of MRT in the areas showed that the area with low-rise buildings had the highest frequency of high MRTs and the lowest frequency of low MRTs. The study illustrates that areas with low-rise buildings lead to more stressful urban spaces than areas with high-rise buildings. It is also shown that the use of dense trees helps to enhance the thermal comfort conditions, i.e., reduce heat stress. However, vegetation might negatively affect the wind ventilation. Nevertheless, a sensitivity analysis shows that the provision of shade is a more efficient way to reduce PET than increases in wind speed, given the prevailing sun and wind conditions in Dar es Salaam. To mitigate heat stress in Dar es Salaam, a set of recommendations and guidelines on

  17. Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania

    Science.gov (United States)

    Yahia, Moohammed Wasim; Johansson, Erik; Thorsson, Sofia; Lindberg, Fredrik; Rasmussen, Maria Isabel

    2018-03-01

    Due to the complexity of built environment, urban design patterns considerably affect the microclimate and outdoor thermal comfort in a given urban morphology. Variables such as building heights and orientations, spaces between buildings, plot coverage alter solar access, wind speed and direction at street level. To improve microclimate and comfort conditions urban design elements including vegetation and shading devices can be used. In warm-humid Dar es Salaam, the climate consideration in urban design has received little attention although the urban planning authorities try to develop the quality of planning and design. The main aim of this study is to investigate the relationship between urban design, urban microclimate, and outdoor comfort in four built-up areas with different morphologies including low-, medium-, and high-rise buildings. The study mainly concentrates on the warm season but a comparison with the thermal comfort conditions in the cool season is made for one of the areas. Air temperature, wind speed, mean radiant temperature (MRT), and the physiologically equivalent temperature (PET) are simulated using ENVI-met to highlight the strengths and weaknesses of the existing urban design. An analysis of the distribution of MRT in the areas showed that the area with low-rise buildings had the highest frequency of high MRTs and the lowest frequency of low MRTs. The study illustrates that areas with low-rise buildings lead to more stressful urban spaces than areas with high-rise buildings. It is also shown that the use of dense trees helps to enhance the thermal comfort conditions, i.e., reduce heat stress. However, vegetation might negatively affect the wind ventilation. Nevertheless, a sensitivity analysis shows that the provision of shade is a more efficient way to reduce PET than increases in wind speed, given the prevailing sun and wind conditions in Dar es Salaam. To mitigate heat stress in Dar es Salaam, a set of recommendations and guidelines on

  18. Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania

    Science.gov (United States)

    Yahia, Moohammed Wasim; Johansson, Erik; Thorsson, Sofia; Lindberg, Fredrik; Rasmussen, Maria Isabel

    2017-06-01

    Due to the complexity of built environment, urban design patterns considerably affect the microclimate and outdoor thermal comfort in a given urban morphology. Variables such as building heights and orientations, spaces between buildings, plot coverage alter solar access, wind speed and direction at street level. To improve microclimate and comfort conditions urban design elements including vegetation and shading devices can be used. In warm-humid Dar es Salaam, the climate consideration in urban design has received little attention although the urban planning authorities try to develop the quality of planning and design. The main aim of this study is to investigate the relationship between urban design, urban microclimate, and outdoor comfort in four built-up areas with different morphologies including low-, medium-, and high-rise buildings. The study mainly concentrates on the warm season but a comparison with the thermal comfort conditions in the cool season is made for one of the areas. Air temperature, wind speed, mean radiant temperature (MRT), and the physiologically equivalent temperature (PET) are simulated using ENVI-met to highlight the strengths and weaknesses of the existing urban design. An analysis of the distribution of MRT in the areas showed that the area with low-rise buildings had the highest frequency of high MRTs and the lowest frequency of low MRTs. The study illustrates that areas with low-rise buildings lead to more stressful urban spaces than areas with high-rise buildings. It is also shown that the use of dense trees helps to enhance the thermal comfort conditions, i.e., reduce heat stress. However, vegetation might negatively affect the wind ventilation. Nevertheless, a sensitivity analysis shows that the provision of shade is a more efficient way to reduce PET than increases in wind speed, given the prevailing sun and wind conditions in Dar es Salaam. To mitigate heat stress in Dar es Salaam, a set of recommendations and guidelines on

  19. Evaluation and optimization of footwear comfort parameters using finite element analysis and a discrete optimization algorithm

    Science.gov (United States)

    Papagiannis, P.; Azariadis, P.; Papanikos, P.

    2017-10-01

    Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.

  20. An investigation into thermal comfort and residential thermal environment in an intertropical sub-Saharan Africa region: Field study report during the Harmattan season in Cameroon

    International Nuclear Information System (INIS)

    Djongyang, Noel; Tchinda, Rene

    2010-01-01

    Investigations on thermal comfort have attracted authors for years throughout the world and the most important findings are now the basis of international thermal comfort standards. There is little information available concerning occupant comfort and residential thermal environment in the intertropical sub-Saharan Africa. Thus the purpose for this study is to conduct a field study on comfort and residential thermal environments in a typical intertropical climatic region. A field survey has been conducted during the Harmattan season in two cities from the two climatic regions of Cameroon concerned by that wind. Specific study objectives were to evaluate and characterize some thermal perceptions of occupants in their residence, compare observed and predicted percent of dissatisfied, and discern differences between the study area and other climate zones where similar studies have been performed. It was found that the thermoneutral temperatures in both climatic regions range from 24.69 deg. C to 27.32 deg. C and, in traditional living room, it differs from that of modern living room with approximately 1 deg. C.

  1. Ceramics and healthy heating and cooling systems: thermal ceramic panels in buildings. Conditions of comfort and energy demand versus convective systems

    Directory of Open Access Journals (Sweden)

    V. Echarri Iribarren

    2016-12-01

    Full Text Available Porcelain stoneware is a widely used building material. In recent years, its range of uses has expanded to encompass a new spectrum of innovative and inventive applications in architecture. In this research, we analysed the patented Thermal Ceramic Panel. This consists of a thin porcelain stoneware panel that incorporates a capillary system of polypropylene tubes measuring 3.5 mm in diameter embedded in a conductive ceramic interface. The system works with hot or cold water, producing healthy heating and cooling by means of radiant surfaces. Following an initial prototype test in which panels were placed on the walls of an office, we conducted simulations at the University of Alicante Museum using wall, ceiling and baffle panels, having previously monitored the state of the building. Thermal behaviour parameters were analysed and compared with those of other standard finishing materials, obtaining results for thermal comfort and energy savings in comparison with all-air systems.

  2. Radiant Ceiling Panels Combined with Localized Methods for Improved Thermal Comfort of Both Patient and Medical Staff in Patient Room

    DEFF Research Database (Denmark)

    Mori, Sakura; Barova, Mariya; Bolashikov, Zhecho Dimitrov

    2012-01-01

    The objectives were to identify whether ceiling installed radiant heating panels can provide thermal comfort to the occupants in a patient room, and to determine a method for optimal thermal environment to both patient and medical staff simultaneously. The experiments were performed in a climate...... chamber resembling a single-bed patient room under convective air conditioning alone or combined with the ceiling installed radiant heating panels. Two thermal manikins simulated a patient lying in the bed and a doctor standing next to the patient. Conventional cotton blanket, electric blanket, electric...

  3. Investigation of Thermal Comfort Conditions in Higher Education Facilities: A Case Study for Engineering Faculty in Edirne

    Directory of Open Access Journals (Sweden)

    E. Mıhlayanlar

    2017-02-01

    Full Text Available In this study, a higher education institution in Edirne (Trakya University Engineering Faculty is investigated for indoor thermal comfort conditions of the classrooms (indoor temperature, relative humidity, average radiant temperature, “Satisfaction from thermal environment” (PMV and “Dissatisfaction from thermal environment” (PPD. The classrooms in the institution are heated by a central heating system and utilise natural ventilation system. Measurements were taken with the proper devices at the same time of the weekdays during lecture times in winter (heating season in December. The results obtained from measurements are given in graphics and compared with the values given in ASHRAE 55 and ISO 7730 standards.

  4. Application of Multi-Objective Genetic Algorithm Based Simulation for Cost-Effective Building Energy Efficiency Design and Thermal Comfort Improvement

    Directory of Open Access Journals (Sweden)

    Yaolin Lin

    2018-04-01

    Full Text Available Building design following the energy efficiency standards may not achieve the optimal performance in terms of investment cost, energy consumption and thermal comfort. In this paper, an improved multi-objective genetic algorithm (NSGA-II is combined with building simulation to assist building design optimization for five selected cities located in the hot summer and cold winter region in China. The trade-offs between the annual energy consumption (AEC and initial construction cost, as well as between life cycle cost (LCC and number of thermal discomfort hours, were explored. Sensitivity analysis of various design parameters on building energy consumption is performed. The optimizations predicted AEC reduction of 29.08% on average, as compared to a reference building designed following the standard, and 38.6% with 3.18% more cost on the initial investment. New values for a number of building design parameters are recommended for the revision of relevant building energy efficiency standard.

  5. Impact of Climate Change on Outdoor Thermal Comfort and Health in Tropical Wet and Hot Zone (Douala, Cameroon

    Directory of Open Access Journals (Sweden)

    Modeste Kameni Nematchoua

    2014-04-01

    Full Text Available Abstract Background and purpose:Climate change has an important role on the health and productivity of the occupant of the building. The objective of this study is to estimate the effects of climate change on thermal comfort in hot and wet areas, as in the case of the city of Douala. Materials and Methods:The general circulation model (CSMK3 Model, Scenario B1 was adopted for this purpose.Outdoor daily parameters of temperature, sunshine, and precipitation of last 40 years were analyzed and allowed us to make forecast on this area. The past (1990-2000, the present (2001-2011, and the future (2012-2022 were considered in the hypotheses. Results:It has been found that Douala like some large cities of Africa is already and will be severely hit of advantage by climate change if anything is not going to slow. By 2033, it is expected to have an increase of more than 0.21° C of temperature thus, a decrease of precipitation. Conclusion:In 2023, total discomfort will reign in the dry season, especially in January where humidex could reach 42.9. On the other hand, in the rainy season, humidex will increase of 0.91 compared to year 2013. This effect will have an increase of temperature. When we maintain relative humidity, and we increase temperature, humidex varies enormously and displays a maximum value, with maximum temperature.

  6. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies.

    Science.gov (United States)

    Krüger, E L; Minella, F O; Matzarakis, A

    2014-10-01

    Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature T(mrt) are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine T(mrt) is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine T(mrt) is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature T(mrt) in terms of differences to a reference condition (T(mrt) calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The T(mrt) obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for T(mrt) calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate T(mrt) when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation

  7. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies

    Science.gov (United States)

    Krüger, E. L.; Minella, F. O.; Matzarakis, A.

    2014-10-01

    Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature Tmrt are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine Tmrt is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine Tmrt is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature Tmrt in terms of differences to a reference condition (Tmrt calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The Tmrt obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for Tmrt calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate Tmrt when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation data measured at

  8. Overview of physiological principles to support thermal balance and comfort of astronauts in open space and on planetary surfaces

    Science.gov (United States)

    Koscheyev, Victor S.; Coca, Aitor; Leon, Gloria R.

    2007-02-01

    Although specialists have attempted to improve the space suit to provide better protection in open space or on planetary surfaces, there has been a relative lack of attention to features of human thermoregulatory processes that influence comfort and therefore have an impact on the effectiveness of protective equipment. Our findings showed that different body tissues transfer heat in/out of the body in a different manner. There are also individual differences in thermal transfer through body areas with different proportions of tissues; therefore, data on the thermal profile of each astronaut needs to be used to estimate the optimal body areas for heat/cold transfer in and out of the body in an individually tailored cooling/warming garment. Principles for supporting thermal comfort in space were formulated based on a series of studies to evaluate the human body's response to uniform/nonuniform thermal conditions on the body surface. We conclude that future space suit design and comfort support of astronauts can be easier and more effective if these principles are incorporated.

  9. The thermal comfort and its changes in the 31 provincial capital cities of mainland China in the past 30 years

    Science.gov (United States)

    Chi, Xiaoli; Li, Rui; Cubasch, Ulrich; Cao, Wenting

    2018-04-01

    The thermal comfort and its changes in the 31 provincial capital cities of mainland China in the past 30 years were comprehensively evaluated using the Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) indicators. The PET and UTCI values were highly correlated with each other and presented similar thermal comfort pattern, although their sensitivities might differ slightly. The results showed that these cities covered, respectively, 4-8 and 6-8 thermal comfort classes of the PET and UTCI scale. On the whole, the annual cumulative number of pleasant days was more than 160 days/year. In terms of seasonal variations in thermal comfort conditions, the 31 provincial capital cities in mainland China can be classified into 5 types, which are, respectively, characterized by pleasant summer and severe cold winter (type-I); pleasant spring, autumn, winter, and severe hot summer (type-II); pleasant spring and autumn, slightly pleasant summer, and cold winter (type-III); pleasant spring and autumn, hot stress summer, and slightly cold winter (type-IV); and pleasant spring, summer, autumn, and cool winter (type-V). Type-II cities are rare winter resorts, while type-I cities are natural summer resorts. Type-V cities are the year round pleasant resorts. In the past three decades, the cities in mainland China had experienced increasing pleasant duration in late winter and early spring and intensifying heat stress in summer. The reduction in annual cumulative number of cold stress days in higher latitude/altitude cities outweighed the increase in duration of heat stress in subtropical cities. These may provide some references for urban planning and administration in mainland China.

  10. [Fresh versus pasteurized yogurt: comparative study of the effects on microbiological and immunological parameters, and gastrointestinal comfort].

    Science.gov (United States)

    Ballesta, Sofía; Velasco, Carmen; Borobio, Ma Victoria; Argüelles, Federico; Perea, Evelio J

    2008-11-01

    To determine whether the beneficial effects of yogurt are dependent on the viability of lactic bacteria and exclusive to fresh yogurt, by comparison with the effects of yogurt that is pasteurized after fermentation. Using a double-blind design in a healthy adult population over 75 days, we compared the effects of fresh and pasteurized yogurt on microbiological (presence of viable bacteria in yogurt and DNA detection in feces) and immunological (nephelometry, hematometry, and flow cytometry) parameters. A questionnaire was used to assess gastrointestinal comfort. Differences in lactose absorption after ingestion of fresh or pasteurized yogurt were determined by breath hydrogen analysis. There were no significant differences in the results obtained for microbiological or immunological parameters, gastrointestinal comfort, or lactose test between the two types of yogurt ingested. Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) was isolated in 0.7% of the fecal samples analyzed. Streptococcus thermophilus was not found in any sample. DNA from lactic bacteria was detected in only 12.5% of the samples analyzed. Transit through the gastrointestinal tract affects survival of L. bulgaricus and S. thermophilus. No differences were found in the immunological parameters, gastrointestinal comfort, or lactose overload after intake of fresh or pasteurized yogurt.

  11. Thermal comfort and market niches for apartment buildings: impact of the current Thermal Regulation in the private real estate market in Santiago de Chile

    OpenAIRE

    Encinas Pino, Felipe; De Herde, André; Aguirre Núñez, Carlos; Marmolejo Duarte, Carlos

    2009-01-01

    Almost a decade has passed since Chile begins to implement a Thermal Regulation for dwellings, which established a minimum requirement for each building component, according to different climatic zones. This article proposes a series of dynamic simulations, in order to assess the thermal comfort (during winter and summer) of apartments in Santiago de Chile for lower and upper middle class. Some building typologies were defined by means of the two stage clustering methodology. These were built...

  12. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city.

    Science.gov (United States)

    Toy, Süleyman; Kántor, Noémi

    2017-01-01

    Human thermal comfort conditions can be evaluated using various indices based on simple empirical approaches or more complex and reliable human-biometeorological approaches. The latter is based on the energy balance model of the human body, and their calculation is supplemented with computer software. Facilitating the interpretation of results, the generally applied indices express the effects of thermal environment in the well-known temperature unit, just like in the case of the widely used index, the physiologically equivalent temperature (PET). Several studies adopting PET index for characterizing thermal components of climate preferred to organize the resulted PET values into thermal sensation categories in order to demonstrate the spatial and/or temporal characteristics of human thermal comfort conditions. The most general applied PET ranges were derived by Central European researchers, and they are valid for assumed values of internal heat production of light activity and thermal resistance of clothing representing a light business suit. Based on the example of Erzurum city, the present work demonstrates that in a city with harsh winter, the original PET ranges show almost purely discomfort and they seem to be less applicable regarding cold climate conditions. Taking into account 34-year climate data of Erzurum, the annual distribution of PET is presented together with the impact of application of different PET categorization systems, including 8°- and 7°-wide PET intervals. The demonstrated prior analyses lack any questionnaire filed surveys in Erzurum. Thus, as a next step, detailed field investigations would be required with the aim of definition of new PET categorization systems which are relevant for local residents who are adapted to this climatic background, and for tourists who may perform various kinds of winter activities in Erzurum and therefore may perceive the thermal environment more comfortable.

  13. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...... not achieve the same uniformity in space. The active chilled beam theoretically achieves the most uniform comfort conditions (when disregarding the risk of draught), followed by the radiant ceiling. The least uniform conditions were obtained with the cooled floor due to large differences between the sitting...

  14. Using a new programme (THERCOM) to predict thermal comfort as a base to design energy efficient buildings

    OpenAIRE

    Al-Khatri, Hanan; Gadi, Mohamed

    2014-01-01

    A strong relationship relates the thermal comfort and the consumption of energy, especially in the hot arid climate where the installation of HVAC systems is unavoidable. In fact, it has been reported that the HVAC systems are responsible for consuming huge amounts of the total energy used by the buildings that can globally reach up to 40% of the total primary energy requirement. The future estimations indicate that the energy consumption is likely to continue growing in the developed economi...

  15. Case study. Health hazards of automotive repair mechanics: thermal and lighting comfort, particulate matter and noise.

    Science.gov (United States)

    Loupa, G

    2013-01-01

    An indoor environmental quality survey was conducted in a small private automotive repair shop during May 2009 (hot season) and February 2010 (cold season). It was established that the detached building, which is naturally ventilated and lit, had all the advantages of the temperate local climate. It provided a satisfactory microclimatic working environment, concerning the thermal and the lighting comfort, without excessive energy consumption for air-conditioning or lighting. Indoor number concentrations of particulate matter (PM) were monitored during both seasons. Their size distributions were strongly affected by the indoor activities and the air exchange rate of the building. During working hours, the average indoor/outdoor (I/O) number concentration ratio was 31 for PM0.3-1 in the hot season and 69 for the cold season. However I/O PM1-10 number concentration ratios were similar, 33 and 32 respectively, between the two seasons. The estimated indoor mass concentration of PM10 for the two seasons was on average 0.68 mg m(-3) and 1.19 mg m(-3), i.e., 22 and 36 times higher than outdoors, during the hot and the cold seasons, respectively. This is indicative that indoor air pollution may adversely affect mechanics' health. Noise levels were highly variable and the average LEX, 8 h of 69.3 dB(A) was below the European Union exposure limit value 87db (A). Noise originated from the use of manual hammers, the revving up of engines, and the closing of car doors or hoods. Octave band analysis indicated that the prevailing noise frequencies were in the area of the maximum ear sensitivity.

  16. Assessing energy and thermal comfort of different low-energy cooling concepts for non-residential buildings

    International Nuclear Information System (INIS)

    Salvalai, Graziano; Pfafferott, Jens; Sesana, Marta Maria

    2013-01-01

    Highlights: • Impact of five cooling technologies are simulated in six European climate zones with Trnsys 17. • The ventilation strategies reduce the cooling energy need even in South Europe climate. • Constant ventilation controller can lead to a poor cooling performance. • Comparing radiant strategies with air conditioning scenario, the energy saving is predicted to within 5–35%. - Abstract: Energy consumption for cooling is growing dramatically. In the last years, electricity peak consumption grew significantly, switching from winter to summer in many EU countries. This is endangering the stability of electricity grids. This article outlines a comprehensive analysis of an office building performances in terms of energy consumption and thermal comfort (in accordance with static – ISO 7730:2005 – and adaptive thermal comfort criteria – EN 15251:2007 –) related to different cooling concepts in six different European climate zones. The work is based on a series of dynamic simulations carried out in the Trnsys 17 environment for a typical office building. The simulation study was accomplished for five cooling technologies: natural ventilation (NV), mechanical night ventilation (MV), fan-coils (FC), suspended ceiling panels (SCP), and concrete core conditioning (CCC) applied in Stockholm, Hamburg, Stuttgart, Milan, Rome, and Palermo. Under this premise, the authors propose a methodology for the evaluation of the cooling concepts taking into account both, thermal comfort and energy consumption

  17. Optimization of Vehicle Suspension Parameters for Ride Comfort Based on RSM

    Science.gov (United States)

    Mitra, A. C.; Patil, M. V.; Banerjee, N.

    2015-04-01

    Vehicle suspension design requires an investigation to determine the spring and damper settings that assure optimal ride comfort (RC) of vehicle. In the present work response surface methodology (RSM), one of the methods of design of experiment has been successfully implemented for the purpose of finding optimal setting. Design of experiment sometimes requires accurate representation of the independent variables which are usually difficult to measure or else unavailable for experimentation. This paper proposes a simulation model to analyze the ride comfort with accurate independent variables as per Box-Behnken design of RSM. A prediction model of response variable, RC is developed using regression analysis which leads to a good agreement with simulated model ( R 2 = 99.74 %). The fitted model can be effectively used to evaluate optimal setting of spring stiffness and damping coefficient with the help of response optimization of a high desirability value.

  18. Advanced thermal comfort modeling for an optimal interior design; Erweiterte thermische Komfortmodellierung fuer eine optimale Innenraumgestaltung

    Energy Technology Data Exchange (ETDEWEB)

    Streblow, Rita; Mueller, Dirk [RWTH Aachen (Germany). Lehrstuhl fuer Gebaeude- und Raumklimatechnik/E.ON Energy Research Center; Wick, Andreas [Airbus Operations GmbH, Hamburg (Germany)

    2012-05-15

    Standard comfort models, which consider the human body as one compartment, fail in the case of non-uniform environments. Clear evaluations are only possible by considering local effects. The 33 node comfort model was developed with extensive experimental data with test persons in an airplane cabin, as an example for an inhomogeneous environment. It can be flexibly adapted to other complex interior spaces for their adequate evaluation. (orig.)

  19. Parameter Uncertainty for Repository Thermal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Greenberg, Harris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dupont, Mark [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approach to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).

  20. The influence of the summer sea breeze on thermal comfort in Funchal (Madeira). A contribution to tourism and urban planning.

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Antonio; Lopes, Sergio; Joao Alcoforado, Maria [Univ. de Lisboa (Portugal). Centro der Estudos Geograficos; Matzarakis, Andreas [Freiburg Univ. (Germany). Meteorological Inst.

    2011-10-15

    Tourism plays a crucial role for the development of coastal areas. Despite the mildness of Madeira's climate, very hot days can occur during summer, a situation to which most tourists from northern Europe (the majority of foreign tourists) are poorly adapted. As sea breezes strongly contribute to moderate heat stress in urban environments, their influence on the thermal comfort on the island has been studied. Sea breezes occurred on 84 % of the days during the period under study (May to October 2006). They usually start around 09:30 h and end after 22:00 h, with an average duration of about 12:50 hours and a mean velocity of 2.9 m/s. Physiologically Equivalent Temperature (PET) was used to evaluate the thermal comfort of a sample of days during the summer of 2006. It was concluded that most of the sites in the city are ''slightly comfortable'' during normal days with sea breeze, but only shore sites and the highest green areas offer some comfort during hot days. Inside the city, the thermal perception is generally ''hot'' and strong heat stress can occur. As sea breezes are important to mitigate heat stress, some basic guidelines were presented: urban planners should take advantage of this wind system avoiding dense construction near the shoreline that would act as a barrier to the renewal of the air inside the city. In terms of tourism, planners and local authorities should provide solutions to mitigate the negative effects during hot periods, creating a system to warn and relocate more vulnerable tourists to places near the shore line, to the mountains, to gardens and air-conditioned buildings. In combination with other components (beauty of the island, gastronomy, cultural values and safety), climate information can be a factor of attractiveness to tourists. (orig.)

  1. El enfoque adaptativo del confort térmico en Sevilla = The adaptive approach to thermal comfort in Seville.

    Directory of Open Access Journals (Sweden)

    D. Sánchez

    2016-04-01

    Full Text Available Aunque los estándares de confort en los edificios de oficinas acondicionados con medios mecánicos se han estudiado ampliamente a través de la norma ISO 7730 basada en los estudios de Fanger, todavía no existe un enfoque consensuado para el confort térmico en las viviendas. Muchas de esas viviendas, que componen un bloque, se han construido antes de que se introdujeran normas de ahorro de energía, por lo que existe un alto consumo energético que tiene un efecto sobre el medio ambiente y la economía. A través de los años, el modelo de confort térmico más utilizado se basa en un modelo estático, en el que el ser humano es similar a un receptor pasivo de los estímulos térmicos, mientras que el modelo adaptativo deja en manos del ocupante hacer algunos ajustes y lograr confort a través de acciones y de la adaptación psicológica. La presente investigación tiene como objetivo estudiar los límites de confort adaptativo en una vivienda similar a la mencionada anteriormente, con el fin de regular el uso de aire acondicionado y calefacción, y además reducir el exceso de consumo de energía. Abstract Although comfort standards in mechanically conditioned office buildings have been widely studied through ISO 7730 developed by Fanger, there is not a consensual approach to thermal comfort in dwellings yet. Many of those dwellings, which compose the housing block, have been built before the energy saving regulations were introduced and are generally neglected, so there is a high energy consumption which has an effect on environment and economy. Through the years, the comfort model applied to thermal comfort is a static model, in which the human being is similar to a passive recipient of thermal stimuli, while the adaptive model let the occupant make some adjustments and achieve their comfort through behavioral and psychological adaption. The present research is aimed to study the adaptive comfort limits in a dwelling similar to the ones

  2. Experimental determination about thermal comfort conditions in buildings; Determinacion experimental de las condiciones de confort termico en edificaciones

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz Garcia, Juan Jose; Garcia Chavez, Jose Roberto; Paredes Rubio, Hernando Romero [Universidad Autonoma Metropolitana (Mexico)]. E-mail: agj@xanum.uam.mx; jgc@correo.azc.uam.mx; hrp@xanum.uam.mx

    2006-04-15

    This paper analyzes the thermal comfort importance in a building. And the influence it exerts on quality of life as well as the efficiency of people work activities. There are comments about some models which better help to estimate the recommended temperature levels. The experimental evaluation results from a Mexico City population sampler are presented. This work was done in a Controlled Environment Laboratory; the obtained outcomes proved the preferences occupants exceed the comfort zone greatest limit accepted in the reference international standards. The meaning of this conclusion is thermal comfort can be reached with higher temperatures and consequently an energy consumption and an environment impact decrease. [Spanish] En este trabajo se analiza la importancia que tiene el confort termico en la calidad de vida de las personas que ocupan una edificacion y en la eficiencia de sus actividades. Se comentan algunos modelos con los cuales se estiman los niveles de temperatura recomendados y se presentan los resultados de una evaluacion experimental realizada en un Laboratorio de Ambiente Controlado con una muestra de la poblacion del Distrito Federal. Los resultados que se obtuvieron demuestran que los ocupantes tienen preferencias que rebasan el limite superior de la zona de confort comunmente aceptada en los estandares internacionales de referencia. Esto quiere decir que el confort puede lograrse con mayores temperaturas, lo que se traduce en menor consumo de energia y menor impacto en el ambiente.

  3. Annual Energy Savings and Thermal Comfort of Autonomously Heated and Cooled Office Chairs

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chin, Justin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Doug [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Energy use in offices buildings is largely driven by air conditioning demands. But the optimal temperature is not the same for all building occupants, leading to the infamous thermostat war. And many occupants have independently overcome building comfort weaknesses with their own space heaters or fans. NREL tested is a customized office chair that automatically heats and cools the occupant along the seat and chair back according to the occupants' personal preferences. This product is shown to deliver markedly better comfort at room temperatures well above typical office cooling setpoints. Experimental subjects reported satisfaction in these elevated air temperatures, partly because the chair's cooling effect was tuned to their own individual needs. Simulation of the chair in office buildings around the U.S. shows that energy can be saved everywhere, with impacts varying due to the climate. Total building HVAC energy savings exceeded 10% in hot-dry climate zones. Due to high product cost, simple payback for the chair we studied is beyond the expected chair life. We then understood the need to establish cost-performance targets for comfort delivery packages. NREL derived several hypothetical energy/cost/comfort targets for personal comfort product systems. In some climate regions around the U.S., these show the potential for office building HVAC energy savings in excess of 20%. This report documents this research, providing an overview of the research team's methods and results while also identifying areas for future research building upon the findings.

  4. Thermal Comfort and Energy Consumption Using Different Radiant Heating/Cooling Systems in a Modern Office Building

    Science.gov (United States)

    Nemethova, Ema; Stutterecker, Werner; Schoberer, Thomas

    2017-06-01

    The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II.) for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.

  5. Thermal Comfort and Energy Consumption Using Different Radiant Heating/Cooling Systems in a Modern Office Building

    Directory of Open Access Journals (Sweden)

    Nemethova Ema

    2017-06-01

    Full Text Available The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II. for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.

  6. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    Science.gov (United States)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  7. Investigating the Influence of Light Shelf Geometry Parameters on Daylight Performance and Visual Comfort, a Case Study of Educational Space in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Moazzeni

    2016-07-01

    Full Text Available Daylight can be considered as one of the most important principles of sustainable architecture. It is unfortunate that this is neglected by designers in Tehran, a city that benefits from a significant amount of daylight and many clear sunny days during the year. Using a daylight controller system increases space natural light quality and decreases building lighting consumption by 60%. It also affects building thermal behavior, because most of them operate as shading. The light shelf is one of the passive systems for controlling daylight, mostly used with shading and installed in the upper half of the windows above eye level. The influence of light shelf parameters, such as its dimensions, shelf rotation angle and orientation on daylight efficiency and visual comfort in educational spaces is investigated in this article. Daylight simulation software and annual analysis based on climate information during space occupation hours were used. The results show that light shelf dimensions, as well as different orientations, especially in southern part, are influential in the distribution of natural light and visual comfort. At the southern orientation, increased light shelf dimensions result in an increase of the area of the work plane with suitable daylight levels by 2%–40% and a significant decrease in disturbing and intolerable glare hours.

  8. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  9. Development of a thermal control algorithm using artificial neural network models for improved thermal comfort and energy efficiency in accommodation buildings

    International Nuclear Information System (INIS)

    Moon, Jin Woo; Jung, Sung Kwon

    2016-01-01

    Highlights: • An ANN model for predicting optimal start moment of the cooling system was developed. • An ANN model for predicting the amount of cooling energy consumption was developed. • An optimal control algorithm was developed employing two ANN models. • The algorithm showed the advanced thermal comfort and energy efficiency. - Abstract: The aim of this study was to develop a control algorithm to demonstrate the improved thermal comfort and building energy efficiency of accommodation buildings in the cooling season. For this, two artificial neural network (ANN)-based predictive and adaptive models were developed and employed in the algorithm. One model predicted the cooling energy consumption during the unoccupied period for different setback temperatures and the other predicted the time required for restoring current indoor temperature to the normal set-point temperature. Using numerical simulation methods, the prediction accuracy of the two ANN models and the performance of the algorithm were tested. Through the test result analysis, the two ANN models showed their prediction accuracy with an acceptable error rate when applied in the control algorithm. In addition, the two ANN models based algorithm can be used to provide a more comfortable and energy efficient indoor thermal environment than the two conventional control methods, which respectively employed a fixed set-point temperature for the entire day and a setback temperature during the unoccupied period. Therefore, the operating range was 23–26 °C during the occupied period and 25–28 °C during the unoccupied period. Based on the analysis, it can be concluded that the optimal algorithm with two predictive and adaptive ANN models can be used to design a more comfortable and energy efficient indoor thermal environment for accommodation buildings in a comprehensive manner.

  10. Comfort and performance impact of personal control over thermal environment in summer

    DEFF Research Database (Denmark)

    Boerstra, Atze C.; te Kulve, Marije; Toftum, Jørn

    2015-01-01

    Field studies suggest that the availability of adjustable thermostats, operable windows and other controls has a positive impact on comfort, the incidence of building related symptoms and productivity. This laboratory study was designed to further investigate how having or not having control over...

  11. Thermal Comfort and HVAC Systems Operation Challenges in a Modern Office Building - Case Study

    Science.gov (United States)

    Nemethova, Ema; Stutterecker, Werner; Schoberer, Thomas

    2016-12-01

    The aim of the study is to evaluate the indoor environment conditions in the new-built office building, Energetikum, and consequently suggest the control strategies, which can lead to determination of critical areas and elimination of thermal discomfort. Representative offices have been selected and equipped with portable sensor groups for monitoring of the indoor environment parameters. Contribution is presenting the data obtained from 6 selected rooms during 3 reference weeks - heating, transition and cooling period. The measured results indicate overheating of the rooms, particularly in the ones with the large glazed areas with higher solar gains. The values of indoor air temperature during heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (the cat. II.) during 13 % - 49 % of evaluated time intervals. Consequently, the simulation model of the selected office was created and is pointing to the possibilities of the control system improvement, which can lead to an elimination of the problem with overheating.

  12. The influence of indoor microclimate on thermal comfort and conservation of artworks: the case study of the cathedral of Matera (South Italy)

    Science.gov (United States)

    Cardinale, Tiziana; Rospi, Gianluca; Cardinale, Nicola; Paterino, Lucia; Persia, Ivan

    2014-05-01

    The Matera Cathedral was built in Apulian-Romanesque style in the thirteenth century on the highest spur of the "Civita" that divides "Sassi" district in two parts. The constructive material is the calcareous stone of the Vaglia, extracted from quarries in the area of Matera. The interior is Baroque and presents several artworks, including: mortars covered with a golden patina, a wooden ceiling, painted canvas and painting frescoes, three minor altars and a major altar of precious white marble, a nativity scene made of local painted limestone. The research had to evaluate the indoor microclimate during and after the restoration works, that also concern the installation of floor heating system to heat the indoor environments. Specifically, we have analyzed the thermal comfort and the effect that the artwork and construction materials inside the Cathedral of Matera have undergone. This evaluation was carried out in two different phases: in the first one we have investigated the state of the art (history of the site, constructive typology and artworks); in the second one we have done a systematic diagnosis and an instrumental one. The analysis were carried out in a qualitative and quantitative way and have allowed us to test indoor microclimatic parameters (air temperature, relative humidity and indoor air velocity), surface temperatures of the envelope and also Fanger's comfort indices (PMV and PPD) according to the UNI EN ISO 7730. The thermal mapping of the wall surface and of the artworks, carried out through thermal imaging camera, and the instrumental measurement campaigns were made both before restoration and after installation of the heating system; in addition measurements were taken with system on and off. The analysis thus made possible to verify that the thermo-hygrometric parameters found, as a result of the recovery operations, meet the limits indicated by the regulations and international studies. In this way, we can affirm that the indoor environment

  13. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Science.gov (United States)

    Lahimer, A. A.; Alghoul, M. A.; Sopian, K.; Khrit, N. G.

    2017-11-01

    Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC) on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E) under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I): car with/ without SRC (at different measurement time); Case (II): using two identical cars concurrently (SRC versus baseline); Case (III): using two identical cars concurrently (solar reflective film (SRF) versus baseline) and Case (IV): using two identical cars concurrently (SRF versus SRC). Experimental results dedicated to case (I) revealed that the maximum cabin air temperature with SRC (39.6°C) is significantly lower than that of baseline case (57.3°C). This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C) after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  14. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Directory of Open Access Journals (Sweden)

    Lahimer A.A.

    2017-01-01

    Full Text Available Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I: car with/ without SRC (at different measurement time; Case (II: using two identical cars concurrently (SRC versus baseline; Case (III: using two identical cars concurrently (solar reflective film (SRF versus baseline and Case (IV: using two identical cars concurrently (SRF versus SRC. Experimental results dedicated to case (I revealed that the maximum cabin air temperature with SRC (39.6°C is significantly lower than that of baseline case (57.3°C. This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  15. Thermal comfort optimisation of vernacular rural buildings: passive solutions to retrofit a typical farmhouse in central Italy

    Directory of Open Access Journals (Sweden)

    Maria Elena Menconi

    2017-06-01

    Full Text Available An adequate retrofitting of traditional rural buildings requires to preserve their formal characteristics and to understand the constructive elements that compose them and which are different in different geographical areas. This paper analyses the typical farmhouses in central Italy. Starting from the definition of a vernacular building model, the paper analyses its performance in terms of thermal comfort and energy efficiency. The methodology involves the use of energy dynamic simulations coupled with optimisation techniques aimed to identify the best combinations of insulating materials in terms of choice of material and its optimal location in the envelope. The paper demonstrates the good thermal and energy performance of farmhouses in central Italy. The results of the optimisation process showed that in these buildings, with the addition of insulation materials with low conductivity the perceived discomfort in the inhabited areas of the building can be reduced by 79% and the energy consumption related to heating can be reduced by 77%. The level of insulation of the pavement that separates the ground and first floor needs to be more moderate to promote the heat flow between floors during summer. The sensitivity analysis shows that the most influential component for thermal comfort is the roof insulation.

  16. INDOOR AIR QUALITY IN HOSPITALS - Verification of the physical parameters of comfort and the concentration of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Waldir Nagel Schirmer

    2010-10-01

    Full Text Available In hospitals, the presence of pollutants in the indoor air creates conditions that may prejudice the recovery of patients and affect the productivity of employees. Thus, these places need air conditioning well designed, to provide adequate ventilation rates to ensure the comfort of its occupants and the aseptic of environments. The present study focused on evaluating the indoor air quality (IAQ in a surgical center and an intensive care unit, by checking the physical parameters of comfort and the concentrations of carbon dioxide, following the procedure recommended by Resolution No. 09 of the National Sanitary Surveillance Agency (ANVISA and to propose an air conditioning system for each of the environments evaluated. The results showed that the IAQ in those environments may be improved, since some of the parameters showed values higher than those recommended by that resolution. High concentrations of CO2 obtained, for example, can be justified by the lack of renewal of air. It is suggested that the air conditioning systems must to be substituted for that allowed the renewal of the air at rates acceptable to the current legislation.

  17. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design

    Science.gov (United States)

    Vanos, Jennifer K.; Warland, Jon S.; Gillespie, Terry J.; Kenny, Natasha A.

    2010-07-01

    This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

  18. Operative temperature and thermal comfort in the sun - Implementation and verification of a model for IDA ICE

    DEFF Research Database (Denmark)

    Karlsen, Line; Grozman, Grigori; Heiselberg, Per Kvols

    2015-01-01

    of the model is carried out by comparing simulation results with fullscale measurements of a team office located in Oslo (59N10E). The measurements were conducted during mid-March and April 2013. The results indicate that the new MRT model might contribute to considerable improvements in prediction of thermal...... comfort of persons affected by direct solar radiation. This may further have implications on the predicted energy use and design of the façade, since e.g. an enlarged need for local cooling or use of dynamic solar shading might be discovered....

  19. Modernised Portuguese schools - From IAQ and thermal comfort towards energy efficiency plans

    Science.gov (United States)

    Pereira, Luisa Maria Dias

    . The continuous monitoring period varied between schools, from a minimum of 48h monitoring up to three weeks, during the mid-season [spring - autumn period (excluding summer vacation) in 2013]. Air exchange rates (AER), more specifically infiltration rates, are quantified aiming at determining the current airtightness condition of the refurbished schools. A subjective IEQ assessment is also performed, focusing on occupants’ feedback, providing insight on the potential linkages between energy use and occupants’ satisfaction and comfort. The thesis builds on the current EEP panorama and practice, which is based only on cost/energy control, extending it to address the equilibrium between IEQ evaluation and occupants’ perceived conditions/preferences. This approach is applied in two schools - selected based on the previous study on energy and IEQ conditions of the eight schools. The EEP methodology starts by deepening the knowledge of each school, mostly focusing on crossing the schools occupancy schedule with systems operation [(mainly those controlled by the building management system (BMS)]. An analysis on recently updated legislation is also performed (in particular fresh air flow rates requirements). It is shown that some potential energy savings can be achieved and that IEQ conditions can be improved at very low or even negligible costs. Other considerations, namely addressing the thermal energy production systems of the schools (e.g., boilers scheduling), the lighting systems (e.g., lighting circuits) and non-controlled plug loads, are also mentioned. Based upon all these findings, a handbook of good practice is drafted for secondary school buildings in Portugal. This EEP is accompanied by a list of Energy Efficiency Measures (EEM). It is proposed that this document is headed by a School - Energy Performance Certificate (S-EPC) based on the billed energy consumption. This document suggests the establishment of the figure of the Energy Manager.

  20. Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons.

    Science.gov (United States)

    Schiavon, S; Yang, B; Donner, Y; Chang, V W-C; Nazaroff, W W

    2017-05-01

    In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Thermal comfort and indoor air quality in rooms with integrated personalized ventilation and under-floor air distribution systems

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar ., S. C.; Melikov, Arsen Krikor

    2011-01-01

    subjects were collected. The experiments were performed at various combinations of room air and PV air temperatures. The results reveal improved overall thermal sensation and decrease of cold feet complaints, as well as improved inhaled air quality (including perceived air quality) with PV....... The integrated PV-UFAD system, when operated at relatively high temperature of the air supplied from the UFAD system, provided comfortable cooling of the facial region, improved inhaled air quality, and decreased the risk of "cold feet," which is often reported in rooms with UFAD alone. This article explores......-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with a ceiling supply diffuser. Increase of predicted draft rating with the decrease of the local thermal sensation at the feet was identified. The manikin-based equivalent temperature determined for the face was positively correlated...

  2. Thermal Comfort and HVAC Systems Operation Challenges in a Modern Office Building – Case Study

    Directory of Open Access Journals (Sweden)

    Nemethova Ema

    2016-12-01

    Full Text Available The aim of the study is to evaluate the indoor environment conditions in the new-built office building, Energetikum, and consequently suggest the control strategies, which can lead to determination of critical areas and elimination of thermal discomfort. Representative offices have been selected and equipped with portable sensor groups for monitoring of the indoor environment parameters. Contribution is presenting the data obtained from 6 selected rooms during 3 reference weeks - heating, transition and cooling period. The measured results indicate overheating of the rooms, particularly in the ones with the large glazed areas with higher solar gains. The values of indoor air temperature during heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (the cat. II. during 13 % - 49 % of evaluated time intervals. Consequently, the simulation model of the selected office was created and is pointing to the possibilities of the control system improvement, which can lead to an elimination of the problem with overheating.

  3. Thermal comfort implications of urbanization in a warm-humid city: the Colombo Metropolitan Region (CMR), Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, R. [Moratuwa Univ., Dept. of Architecture, Moratuwa (Sri Lanka)

    2005-12-01

    In this paper we analyze the historic trends in thermal comfort (measured in terms of Temperature-Humidity Index [THI] and Relative Strain Index [RSI]) in the Sri Lankan primate city of Colombo and correlate them with land cover changes in the region. Land cover is calculated from time-series aerial photographs in terms of 'hard' cover (buildings, paved areas and roads) and 'soft' cover (trees, green areas and waterbodies). The period selected for analysis includes pre-rapid (up to 1977) and rapid urban phases (1978 onwards) in the city. Contemporary Sri Lanka's urbanization is peculiar in that mid to late 20th century urban rates (approx. 22% of the population) had remained virtually unchanged till the economy was liberalized in 1977, but have recently intensified (currently at about 35%). This offers a unique window of opportunity to look at the thermal comfort transition consequent to urbanization. Since many tropical cities are at a similar stage of demographic transition, lessons from Colombo may generally be applicable to other tropical developing cities as well. An increasing trend in thermal discomfort-particularly at night-is seen especially at the suburban station and it correlates well with hard land cover changes. The study also brings out the relative importance of land cover in city center vs. rural areas (e.g. hard cover has more effect on thermal discomfort in city center than in rural areas). Based on these findings, we postulate an outline for a climate-sensitive urban design policy for tropical cities. (Author)

  4. Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Fabrizio Ascione

    2015-08-01

    Full Text Available According to the increasing worldwide attention to energy and the environmental performance of the building sector, building energy demand should be minimized by considering all energy uses. In this regard, the development of building components characterized by proper values of thermal transmittance, thermal capacity, and radiative properties is a key strategy to reduce the annual energy need for the microclimatic control. However, the design of the thermal characteristics of the building envelope is an arduous task, especially in temperate climates where the energy demands for space heating and cooling are balanced. This study presents a novel methodology for optimizing the thermo-physical properties of the building envelope and its coatings, in terms of thermal resistance, capacity, and radiative characteristics of exposed surfaces. A multi-objective approach is adopted in order to optimize energy performance and thermal comfort. The optimization problem is solved by means of a Genetic Algorithm implemented in MATLAB®, which is coupled with EnergyPlus for performing dynamic energy simulations. For demonstration, the methodology is applied to a residential building for two different Mediterranean climates: Naples and Istanbul. The results show that for Naples, because of the higher incidence of cooling demand, cool external coatings imply significant energy savings, whereas the insulation of walls should be high but not excessive (no more than 13–14 cm. The importance of high-reflective coating is clear also in colder Mediterranean climates, like Istanbul, although the optimal thicknesses of thermal insulation are higher (around 16–18 cm. In both climates, the thermal envelope should have a significant mass, obtainable by adopting dense and/or thick masonry layers. Globally, a careful design of the thermal envelope is always necessary in order to achieve high-efficiency buildings.

  5. AN IMPACT OF THE EFFICIENT FUNCTIONING OF THE VENTILATION AND AIR-CONDITIONING SYSTEM ON THERMAL COMFORT OF THE MEDICAL STAFF IN THE OPERATING ROOM

    Directory of Open Access Journals (Sweden)

    Tomasz Jankowski

    2016-11-01

    Full Text Available Ventilation and air conditioning systems are necessary for developing proper parameters of indoor envi-ronment in operating rooms. The main task of ventilation and air conditioning in those specific areas consists in creating desirable temperature, reducing the number of microorganisms and the concen-trations of hazardous gases and substances in the air, as well as ensuring the proper direction of airflow. In Poland, indoor environment in operating rooms has to comply with the requirements set out in three regulations (Journal of Laws of 2002 No. 75, item 690, as amended, Journal of Laws of 2002 No. 217, item 1833, Journal of Laws of 2011 No. 31, item 158, as amended and the document entitled "Guidelines for the design of general hospitals". Given insufficient accuracy of the abovementioned national documents, it is a common practice to use foreign standards, i.e. ASHRAE Standard 170-2013, DIN 1946-4: 2008 and FprCEN TR 16244: 2011. When considering the conditions for thermal comfort, it is important to bear in mind a close link between air flow velocity and air temperature. Air in the zone occupied by patients and medical staff must not cause the sensation of draft. Furthermore, air velocity should be sufficient to eliminate interference caused by the presence of people and other sources of heat. It should also reduce the turbulence level in the air in the operating room. Efficient functioning of ventilation and air conditioning was tested during treatments and operations carried out on three wards of a Warsaw hospital. Tests were performed with the participation of medical staff from various surgical units. They were asked to perform minor manual tasks to simulate work on the op-erating table, and to complete a questionnaire on subjective thermal sensation. The applied methodology is widely used during testing of general and local ventilation in public buildings. Air temperature, relative humidity, air flow supply and exhaust air from the

  6. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    DEFF Research Database (Denmark)

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota

    appears to have the largest impact on thermal flexibility. The importance of window design, namely the size, U-value and orientation, is underlined due to its critical influence on solar gains and heat losses. It is eventually observed that thermal mass has a secondary influence on the evaluated......This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal...... flexibility is assessed through a parameter variation on a building model. Different building designs are subjected to heat cut-offs, and flexibility is evaluated with respect to comfort preservation and heating power peak creation. Under the conditions of this study, the thermal transmittance of the envelope...

  7. Effect of climate change on outdoor thermal comfort in humid climates.

    Science.gov (United States)

    Orosa, José A; Costa, Angel M; Rodríguez-Fernández, Angel; Roshan, Gholamreza

    2014-02-11

    Galicia, in northwest Spain, experiences warm summers and winters. However, the higher relative humidity that prevails the whole year through and the location of the summer hot points are related to real weather heat stroke in the hottest season. However, Planet Global Heating was recently analyzed for the climate in Galicia. Climate change was found to be able to trigger effects that involve a new situation with new potential regions of risk. In this paper, 50 weather stations were selected to sample the weather conditions in this humid region, over the last 10 years. From these results, new regions with a potential for heat stroke risk in the next 20 years were identified using the humidex index. Results reveal that during the last 10 years, the winter season presents more comfortable conditions, whereas the summer season presents the highest humidex value. Further, the higher relative humidity throughout the whole year reveals that the humidex index clearly depends upon the outdoor temperature. Global Planet Heating shows a definite effect on the outdoor comfort conditions reaching unbearable degrees in the really hottest zones. Therefore, this effect will clearly influence tourism and risk prevention strategies in these areas.

  8. The influence of local effects on thermal sensation under non-uniform environmental conditions — Gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling

    DEFF Research Database (Denmark)

    Schellen, L.; Loomans, M.G.L.C.; de Wit, M.H.

    2012-01-01

    of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended......Applying high temperature cooling concepts, i.e. high temperature cooling (Tsupply is 16–20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort......, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20–29years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During...

  9. Predicting the Air Quality, Thermal Comfort and Draught Risk for a Virtual Classroom with Desk-Type Personalized Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Eusébio Z. E. Conceição

    2018-02-01

    Full Text Available This paper concerns the prediction of indoor air quality (IAQ, thermal comfort (TC and draught risk (DR for a virtual classroom with desk-type personalized ventilation system (PVS. This numerical study considers a coupling of the computational fluid dynamics (CFD, human thermal comfort (HTC and building thermal behavior (BTB numerical models. The following indexes are used: the predicted percentage of dissatisfied people (PPD index is used for the evaluation of the TC level; the carbon dioxide (CO2 concentration in the breathing zone is used for the calculation of IAQ; and the DR level around the occupants is used for the evaluation of the discomfort due to draught. The air distribution index (ADI, based in the TC level, the IAQ level, the effectiveness for heat removal and the effectiveness for contaminant removal, is used for evaluating the performance of the personalized air distribution system. The numerical simulation is made for a virtual classroom with six desks. Each desk is equipped with one PVS with two air terminal devices located overhead and two air terminal devices located below the desktop. In one numerical simulation six occupants are used, while in another simulation twelve occupants are considered. For each numerical simulation an air supply temperature of 20 °C and 24 °C is applied. The results obtained show that the ADI value is higher for twelve persons than for six persons in the classroom and it is higher for an inlet air temperature of 20 °C than for an inlet air temperature of 24 °C. In future works, more combinations of upper and lower air terminal devices located around the body area and more combinations of occupants located in the desks will be analyzed.

  10. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.

    Science.gov (United States)

    Schellen, L; Loomans, M G L C; de Wit, M H; Olesen, B W; van Marken Lichtenbelt, W D

    2012-09-10

    Applying high temperature cooling concepts, i.e. high temperature cooling (T(supply) is 16-20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended for evaluating the discomfort due to non-uniform environmental conditions. In some cases, however, combinations of local and general discomfort factors, for example draught under warm conditions, may not be uncomfortable. The objective of this study was to investigate gender differences in thermophysiology, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20-29 years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more uncomfortable and dissatisfied compared to the males. For females, the local sensations and skin temperatures of the extremities have a significant influence on whole body thermal sensation and are therefore important to consider under non-uniform environmental conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Analysis of the thermal comfort and impact properties of the neoprene-spacer fabric structure for preventing the joint damages.

    Science.gov (United States)

    Ghorbani, Ehsan; Hasani, Hossein; Rafeian, Homa; Hashemibeni, Batool

    2013-07-01

    Frequent moves at the joint, plus external factors such as trauma, aging, and etc., are all reasons for joint damages. In order to protect and care of joints, the orthopedic textiles are used. To protect the joints, these textiles keep muscles warm to prevent shock. To produce orthopedic textiles, Neoprene foams have been traditionally used. These foams are flexible and resist impact, but are not comfortable enough and might cause problems for the consumer. This study introduces a new structure consisting of perforated Neoprene foam attached to the spacer fabric and also compares the properties of thermal and moisture comfort and impact properties of this structure in comparison with Neoprene foam. In order to measure the factors related to the samples lateral pressure behavior, a tensile tester was used. A uniform pressure is applied to the samples and a force - displacement curve is obtained. The test continues until the maximum compression force is reached to 50 N. The area under the curve is much greater; more energy is absorbed during the impact. In order to investigate the dynamic heat and moisture transfer of fabrics, an experimental apparatus was developed. This device made the simulation of sweating of human body possible and consisted of a controlled environmental chamber, sweating guarded hot plate, and data acquisition system. The findings show that the Neoprene-spacer fabric structure represents higher toughness values compared to other samples (P ≤ 0.001). Neoprene-spacer fabric structure (A3) has higher rate of moisture transport than conventional Neoprene foam; because of undesirable comfort characteristics in Neoprene. Results of the tests indicate full advantage of the new structure compared with the Neoprene foam for use in orthopedic textiles (P ≤ 0.001).

  12. Projection of the rural and urban human thermal comfort in the Netherlands for 2050

    NARCIS (Netherlands)

    Molenaar, R.E.; Heusinkveld, B.G.; Steeneveld, G.J.

    2016-01-01

    Hot summer days may lead to reduced thermal discomfort, labour productivity, and higher morbidity and mortality for vulnerable groups. The projected climate change may raise this thermal discomfort in the future. To implement measures to prevent adverse health conditions, robust estimates of the

  13. Impact of Demand-Side Management on Thermal Comfort and Energy Costs in a Residential nZEB

    Directory of Open Access Journals (Sweden)

    Thibault Q. Péan

    2017-05-01

    Full Text Available In this study, simulation work has been carried out to investigate the impact of a demand-side management control strategy in a residential nZEB. A refurbished apartment within a multi-family dwelling representative of Mediterranean building habits was chosen as a study case and modelled within a simulation framework. A flexibility strategy based on set-point modulation depending on the energy price was applied to the building. The impact of the control strategy on thermal comfort was studied in detail with several methods retrieved from the standards or other literature, differentiating the effects on day and night living zones. It revealed a slight decrease of comfort when implementing flexibility, although this was not prejudicial. In addition, the applied strategy caused a simultaneous increase of the electricity used for heating by up to 7% and a reduction of the corresponding energy costs by up to around 20%. The proposed control thereby constitutes a promising solution for shifting heating loads towards periods of lower prices and is able to provide benefits for both the user and the grid sides. Beyond that, the activation of energy flexibility in buildings (nZEB in the present case will participate in a more successful integration of renewable energy sources (RES in the energy mix.

  14. Combining several thermal indices to generate a unique heat comfort assessment methodology

    OpenAIRE

    Wissam EL Hachem; Joseph Khoury; Ramy Harik

    2015-01-01

    Purpose: The proposed methodology hopes to provide a systematic multi-disciplinary approach to assess the thermal environment while minimizing unneeded efforts. Design/methodology/approach: Different factors affect the perception of the human thermal experience: metabolic rate (biology), surrounding temperatures (heat balance and environmental factors) and cognitive treatment (physiology).This paper proposes a combination of different multidisciplinary variables to generate a unique heat comf...

  15. Evaluation of natural illumination and thermal comfort conditions in the Ribeirao Preto's Technological Village

    Energy Technology Data Exchange (ETDEWEB)

    Basso, A.; Caram, R.M. [Department of Architecture and Urbanism, EESC University of Sao Paulo (USP), Sao Carlos (Brazil)

    2004-07-01

    The results of post-occupancy surveys of the 11 different construction systems used in the dwellings of the Technological Village of Ribeirao Preto, Brazil are analysed. The analyses focus on evaluating the natural illumination and thermal comfort conditions in selected habitation units after 2 years of use. All systems were devised to provide living conditions to low-income families with low purchasing power and, most importantly, to disseminate construction technologies adapted to, and appropriate for, this specific region of the country. The results indicate that the methodology employed is not appropriate using only classical factors to assess the illumination conditions, i.e. illuminance level and daylight factor, for a direct quantification of the illumination. The isolated use of these factors can result in distortions. The evaluation of the environmental conditions is relevant to observe that there can be differences between theoretical thermo-physical properties and actual features of the materials and construction systems analyzed. (author)

  16. Simulation of energy use, human thermal comfort and office work performance in buildings with moderately drifting operative temperatures

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2011-01-01

    Annual primary energy use in a central module of an office building consisting of two offices separated with a corridor was estimated by means of dynamic computer simulations. The simulations were conducted for conventional all-air VAV ventilation system and thermo active building system (TABS......) supplemented with CAV ventilation. Simulations comprised moderate, hot–dry and hot–humid climate. Heavy and light wall construction and two orientations of the building (east–west and north–south) were considered. Besides the energy use, also capability of examined systems to keep a certain level of thermal...... comfort was examined. The results showed that with the moderate climate, the TABS decreased the primary energy use by about 16% as compared with the VAV. With hot–humid climate, the portion of the primary energy saved by TABS was ca. 50% even with the supply air dehumidification taken into account...

  17. Integration of eaves and shading devices for improving the thermal comfort in a multi-zone building

    Directory of Open Access Journals (Sweden)

    Haddam Muhammad Abdalkhalaq Chuayb

    2015-01-01

    Full Text Available This paper introduces a new approach to the description and modelling of multi-zone buildings in Saharan climate. Therefore, nodal method was used to apprehend thermo-aeraulic behavior of air subjected to varied solicitations. A coupling was made between equations proposed by P. Rumianowski and some equations of a building thermal energy model found in the TRNSYS user manual. Runge-Kutta fourth order numerical method was used to solve the obtained system of differential equations. Theses results show that proper design of passive houses in an arid region is based on the control of direct solar gains, temperatures and specific humidities. According to the compactness index, the insersion of solar shading and eaves can provide improved thermo-aeraulic comfort.

  18. A WSN based Environment and Parameter Monitoring System for Human Health Comfort: A Cloud Enabled Approach

    Directory of Open Access Journals (Sweden)

    Manohara Pai

    2014-05-01

    Full Text Available The number and type of sensors measuring physical and physiological parameters have seen dramatic increase due to progress in the MEMS and Nano Technology. The Wireless Sensor Networks (WSNs in turn is bringing new applications in environment monitoring and healthcare in order to improve the quality of service especially in hospitals. The adequacy of WSNs to gather critical information has provided solution but with limited storage, computation and scalability. This limitation is addressed by integrating WSN with cloud services. But, once the data enters the cloud the owner has no control over it. Hence confidentiality and integrity of the data being stored in the cloud are compromised. In this proposed work, secure sensor-cloud architecture for the applications in healthcare is implemented by integrating two different clouds. The sink node of WSN outsources data into the cloud after performing operations to secure the data. Since the SaaS and IaaS environments of Cloud Computing are provided by two different cloud service providers (CSPs, both the CSPs will not have complete information of the architecture. This provides inherent security as data storage and data processing are done on different clouds.

  19. Characteristics of Thermal Comfort Conditions in Cold Rural Areas of China: A Case study of Stone Dwellings in a Tibetan Village

    Directory of Open Access Journals (Sweden)

    Bin Cheng

    2018-03-01

    Full Text Available This paper focuses on thermal environmental conditions in the stone dwellings of a Tibetan village in Danba County, Sichuan, China, in winter. During the study, field measurements and subjective survey studies were collected, simultaneously, to provide a comprehensive understanding of the thermal comfort conditions that were experienced by residents in cold rural areas of Sichuan. Subjective surveys involved questions about thermal comfort perceptions and acceptability in cold conditions. The status of thermal comfort and characteristics of indoor environmental qualities were investigated in the study. The majority of survey participants (47% and 74% voted as “slightly cool” for temperature, and “slightly dry” for humidity in the studied typical winter days, respectively. The available adaptive opportunities for the residents were investigated through the survey studies. Adjusting clothing, drinking hot beverages, blocking air infiltration through windows, and changing activities were the most common adaptive measures. An adaptive coefficient ( λ was determined based on adaptive predicted mean votes (aPMV models using least square methods to assess the different adaptation measures in the region. Findings of this study provided a valuable reference for thermal comfort adaptations in cold climates, where limited adaptive opportunities were available due to the low standard of living.

  20. Thermal comfort and ventilation effectiveness in an office room with radiant floor cooling and displacement ventilation

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2016-01-01

    conditions, varying the nominal air change rate from 4.5h-1 down to 1.5h-1. Contaminant removal and mean-age-of-air measurements were performed to characterize the ventilation effectiveness and air velocity; air and operative temperature profiles were measured, together with thermal manikin equivalent...... temperatures, to evaluate the thermal environment. The combined system was able to achieve good ventilation effectiveness close to a heat source, so that in the occupant's breathing zone the ventilation effectiveness was significantly better than for ideal mixing, even at a nominal air change rate as low as 1......% at the highest nominal air change rate of 4.5h-1, even for an occupant sitting 1 meter in front of the supply diffuser, the local thermal discomfort occasioned by the excessive vertical temperature differences gives chilled ceilings the advantage over chilled floors for use with displacement ventilation....

  1. Transient thermal sensation and comfort resulting from adjustment of clothing insulation

    DEFF Research Database (Denmark)

    Goto, Tomonobu; Toftum, Jørn; Fanger, Povl Ole

    2003-01-01

    This study investigated the transient effects on human thermal responses of clothing adjustments. Two different levels of activity were tested, and the temperature was set to result in a warm or cool thermal sensation at each activity level. The subjects (12 females and 12 males) wore identical...... uniforms and were asked to take off or don a part of the uniform after they had adapted to the experimental conditions for more than 20 minutes. The results showed that the thermal sensation votes responded immediately to the adjustment of clothing insulation and reached a new steady-state level within 5...... minutes after both an increase and a decrease of clothing insulation, independent of the activity level....

  2. Field survey of occupants thermal comfort in rooms with displacement ventilation

    DEFF Research Database (Denmark)

    Pitchurov, G.; Naidenov, K.; Melikov, Arsen Krikor

    2002-01-01

    and feet levels was less than 3 deg.C at each visited workplace. However, almost one half (49%) of the occupants reported that they were daily bothered by uncomfortable room temperature (half of them experienced sensation of cold and the rest sensation of warm). The main conclusion of this survey......Field survey of occupants´ response to the thermal environment in eight office buildings with displacement ventilation was performed. The response of 227 occupants (94 males and 133 females) was collected and analysed. A neutral thermal sensation was reported by 37% of the occupants, and between...... slightly cool and slightly warm by more than 85% of the occupants. The occupants´ thermal sensation was close to the predictions by the PMV index. About 24% of the surveyed occupants complained that they were daily bothered by draught mainly at lower leg. Presence of draught discomfort was verified even...

  3. A scenario of human thermal comfort in Mexico City for 2CO{sub 2} conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui, Ernesto [Centro de Ciencias de la Atmosfera de la UNAM, Mexico, D.F. (Mexico); Tejeda, Adalberto [Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2001-07-01

    Applying the concept of effective temperature (ET), a scenario of human bioclimatic conditions for Mexico City is presented by using results from both GCM regional predictions for CO{sub 2} doubling and temperature trend projections from an urban station. Current and future bioclimatic maps for Mexico City and their conurbation are presented. Current environmental conditions will likely change toward a warmer atmosphere due to both the urbanization process and global greenhouse effect. The impact on the population will be more important during the warm season (March- May) when the bioclimate of the city will likely shift away from current neutrality to the next comfort scale category (ET 24-27 Celsius degrees) of warm conditions covering most of the capital city. [Spanish] A partir de la aplicacion del concepto de temperatura efectiva (ET) se presenta un escenario de las condiciones de bioclima humano para la Ciudad de Mexico y zona conurbada para la segunda mitad del proximo siglo. Se usaron resultados de predicciones regionales de modelos de circulacion general (GCM) para una duplicacion del CO{sub 2} y tambien las tendencias de temperatura de una estacion urbana. Se muestran mapas de las condiciones actuales y futuras de confort termico. La combinacion del efecto invernadero y la urbanizacion, muy probablemente impacten en la poblacion principalmente en la estacion calida (marzo a mayo), cuando se pase de la categoria de confort actual a la inmediata superior (ET 24-27 Celsius degrees) en la mayor parte de la capital del pais.

  4. Finger temperature as a predictor of thermal comfort for sedentary passengers in a simulated aircraft cabin

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Zukowska, Daria

    2009-01-01

    Experiments were carried out in a simulated aircraft cabin with 21 seats installed in a climate chamber, to determine the extent to which passengers’ perception of cabin air quality is affected by air temperature. The temperature inside the cabin was set at three different levels, 20.6, 23.3 and 26...... that were made included finger temperature. The purpose of the present paper is to show that mean finger temperature is a good predictor of mean thermal vote (MTV) on the seven-point scale of thermal sensation. The results indicate that women and younger subjects have slightly colder fingers....

  5. Contribution of garment fit and style to thermal comfort at the lower body

    Science.gov (United States)

    Mert, Emel; Böhnisch, Sonja; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2016-12-01

    The heat and mass transfer between the human body and the environment is not only affected by the properties of the fabric, but also by the size of the air gap thickness and the magnitude of the contact area between the body and garment. In this clothing-human-environment system, there is also an interaction between the clothing and the physiological response of the wearer. Therefore, the aim of this study was to evaluate the distribution of the air gap thickness and the contact area for the male lower body in relation to the garment fit and style using a three-dimensional (3D) body scanning method with a manikin. Moreover, their relation with the physiological response of the lower body was analysed using the physiological modelling. The presented study showed that the change in the air gap thickness and the contact area due to garment fit was greater for legs than the pelvis area due to regional differences of the body. Furthermore, the garment style did not have any effect on the core temperature or total water loss of the lower body, whereas the effect of garment fit on the core temperature and total water loss of lower body was observed only for 40 °C of ambient temperature. The skin temperatures were higher for especially loose garments at thigh than the tight garments. Consequently, the results of this study indicated that the comfort level of the human body for a given purpose can be adjusted by selection of fabric type and the design of ease allowances in the garment depending on the body region.

  6. Effects of nanoscale size dependent parameters on lattice thermal ...

    Indian Academy of Sciences (India)

    tice thermal conductivity to that of the reported experimental curve. ... Introduction. Determination of thermal conductivity of semiconductor nanowires plays a crucial role in ..... experimental values. In order to calculate lattice thermal conductivity for Si nanowires, the crystal size dependent parameters should be taken care of.

  7. Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Ivanova, T.; Stefanova, G.

    2012-01-01

    and 26/26 °C, respectively. Questionnaires were used to collect human responses. Personal exposure effectiveness (the portion of the clean personalized air in inhalation) of up to 99% was measured during the manikin experiments. The results suggest a dramatic improvement of inhaled air quality......The performance of personalized ventilation with seat headrest-mounted air supply terminal devices (ATD), named seat headrest personalized ventilation (SHPV), was studied. Physical measurements using a breathing thermal manikin were taken to identify its ability to provide clean air to inhalation...... depending on design, shape, size and positioning of the ATD, flow rate and temperature of personalized air, room temperature, clothing thermal insulation of the manikin, etc. Tracer gas was mixed with the room air. The air supplied by the SHPV was free of tracer gas. Tracer gas concentration in the air...

  8. Study of heating performance of radiant ceiling heating system and its impact on workers thermal comfort level of workers in typical industrial work shops

    Directory of Open Access Journals (Sweden)

    M. Aliabadi

    2013-08-01

    .Conclusion: Due to large space of these industrial units, producing appropriate heating by convection mechanism is too difficult and expensive. The results confirmed that if radiant heating system applied based on scientific design principles they could be effective in promotion of thermal comfort due to heating surrounding surface by radiant and also reducing fuel consumption.

  9. Energy-efficient and cost-effective use of district heating bypass for improving the thermal comfort in bathrooms in low-energy buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Brand, Marek; Svendsen, Svend

    2012-01-01

    , in the example considered 10-35% lower than in the traditional “intermittent bypass” case; secondly, it can be used to increase the thermal comfort outside the heating-season in bathrooms through floor heating, without causing overheating. It is important that the building design foresees the use of shading...

  10. Thermal comfort characteristics of some selected building materials in the regional setting of Ile-Ife, Nigeria

    Directory of Open Access Journals (Sweden)

    S. K. Fasogbon

    2015-07-01

    3 with cast concrete gave the most satisfactory performance in terms of thermal comfort; however, building model 1 with mud bricks also gave a satisfactory performance close to that of model 3. The study concludes that building model 1 with mud bricks roofed with Asbestos is the best building model in terms of thermal comfort and affordability. The study also concluded that developing model 1 (mud bricks in the regional setting of Ile-Ife will go a long way to developing people’s sustainably.

  11. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... in the ventilation losses (or gains). At low air-change rates (below 0.5 ACH), radiant and air-based terminals have similar energy needs. For higher air change rate, the energy consumption of radiant terminals is lower than that of air-based terminals due to the higher air temperature. At 2 ACH, the energy savings...... of a radiant wall can be estimated to around 10% compared to the active chilled beam (in terms of delivered energy). The asymmetry between air and radiant temperature, the air temperature gradient and the possible short-circuit between inlet and outlet all play a role equally important in decreasing...

  12. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    OpenAIRE

    Monika Božiková; Ľubomír Híreš; Michal Valach; Martin Malínek; Jan Mareček

    2017-01-01

    In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of ...

  13. Thermal comfort in an east-west oriented street canyon in Freiburg (Germany) under hot summer conditions

    Science.gov (United States)

    Ali-Toudert, F.; Mayer, H.

    2007-01-01

    Field-measurements were conducted in an urban street canyon with an east-west orientation, and a height-to-width ratio H/W = 1 during cloudless summer weather in 2003 in Freiburg, Germany. This experimental work adds to the knowledge available on the microclimate of an urban canyon and its impact on human comfort. Air temperature T a , air humidity VP, wind speed v and direction dd were measured continuously. All short-wave and long-wave radiation fluxes from the 3D surroundings were also measured. The degree of comfort was defined in terms of physiologically equivalent temperature (PET). Furthermore, the data gathered within the canyon were compared to data collected by a permanent urban climate station with the aim of furthering the understanding of microclimatic changes due to street geometry. Changes in the meteorological variables T a , v and dd in the canyon in comparison to an unobstructed roof level location were found to be in good agreement with previous studies, i.e., a small increase of T a in the canyon adjacent to irradiated surfaces, and a good correlation of v and dd between canyon and roof levels. The daily dynamics of canyon facet irradiances and their impacts on the heat gained by a pedestrian were strongly dependent on street geometry and orientation. Thermal stress was mostly attributable to solar exposure. Under cloudless summer weather, a standing body was found to absorb, on average, 74% of heat in the form of long-wave irradiance and 26% as short-wave irradiance. Shading the pedestrian as well as the surrounding surfaces is, hence, the first strategy in mitigating heat stress in summer under hot conditions.

  14. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in prehospital emergency care – an intervention study

    Directory of Open Access Journals (Sweden)

    Jonas Aléx

    2015-09-01

    Full Text Available Background: The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients’ exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in the prehospital emergency care. Methods: A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30 was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30 no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS, subjective comments on cold experiences, and finger, ear and air temperatures. Results: Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001 but decreased in the control group (p=0.014. A significant higher proportion (57% of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, p<0.001. At arrival, finger, ear and compartment air temperature showed no statistical significant difference between groups. Mean transport time was approximately 15 minutes. Conclusions: The use of active heat from underneath increases the patients’ thermal comfort and may prevent the negative consequences of cold stress.

  15. Investigation of Pedestrian Comfort with Wind Chill during Winter

    Directory of Open Access Journals (Sweden)

    Hyungkeun Kim

    2018-01-01

    Full Text Available Two types of methods are used to evaluate pedestrian comfort: pedestrian wind comfort and outdoor thermal comfort. To accurately ascertain the outdoor wind environment, wind speed is the only parameter considered. However, pedestrians may still feel discomfort when the perceived temperature is low, even though the wind comfort criterion has been satisfactorily fulfilled. The purpose of this study is, therefore, to investigate pedestrian comfort when the perceived temperature is low, especially in winter conditions. To achieve this, a pedestrian survey was conducted, and 588 respondents completed a questionnaire. The results show that pedestrians feel discomfort when the WCET (Wind Chill Equivalent Temperature is low, with almost 40 percent of respondents answering that they feel discomfort in these conditions. In conclusion, the threshold wind speed of the winter season could be determined to be lower than that of the existing comfort criteria by applying the WCET.

  16. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    DEFF Research Database (Denmark)

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.

    2002-01-01

    This study investigated if low air temperature, which is known to improve the perception of air quality, also can reduce the intensity of some SBS symptoms. In a low-polluting office, human subjects were exposed to air at two temperatures 23 deg.C and 18 deg.C both with and without a pollution so.......C suggested an improvement of the perceived air quality, while no systematic effect on symptom intensity was observed. The overall indoor environment was evaluated equally acceptable at both temperatures due to local thermal discomfort at the low air temperature.......This study investigated if low air temperature, which is known to improve the perception of air quality, also can reduce the intensity of some SBS symptoms. In a low-polluting office, human subjects were exposed to air at two temperatures 23 deg.C and 18 deg.C both with and without a pollution...

  17. Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: a comparative study between Melbourne and Hong Kong

    Science.gov (United States)

    Lam, Cho Kwong Charlie; Lau, Kevin Ka-Lun

    2018-04-01

    The Universal Thermal Climate Index (UTCI) is an index for assessing outdoor thermal environment which aims to be applicable universally to different climates. However, the scale of UTCI thermal stress classification can be interpreted depending on the context. Previous studies validated the UTCI in individual cities, but comparative studies between different cities are scarce. This study examines the differences in thermal perception and clothing choices between residents from two climate zones over similar UTCI ranges in summer. We compared summer thermal comfort survey data from Melbourne (n = 2162, January-February 2014) and Hong Kong (n = 414, July-August 2007). We calculated the UTCI from outdoor weather station data and used t tests to compare the differences in thermal sensation and clothing between Hong Kong and Melbourne residents. When the UTCI was between 23.0 and 45.9 °C, Melbourne residents wore significantly more clothing (0.1 clo) than Hong Kong residents. Hong Kong residents reported neutral to warm sensation at a higher UTCI range compared with the dynamic thermal sensation (DTS) model. Moreover, Melbourne residents reported warm and hot sensation at a higher UTCI range than the DTS model. Respondents in Melbourne also exhibited different responses to the mean radiant temperature under shaded and sunny conditions, while such a trend was not observed in Hong Kong. It would be advisable to define different thermal sensation thresholds for the UTCI scale according to different climate zones for better prediction of the outdoor thermal comfort of different urban populations.

  18. Differences between young adults and elderly in thermal comfort, productivity and thermal physiology in response to a moderate temperature drift

    DEFF Research Database (Denmark)

    Schellen, Lisje; Lichtenbelt, Wouter van Marken; Loomans, Marcel

    2010-01-01

    , and productivity of eight young adults (age 22–25 year) and eight older subjects (age 67–73 year) was investigated. They were exposed to two different conditions: S1-a control condition; constant temperature of 21.5C; duration: 8 h; and S2-a transient condition; temperature range: 17–25C, duration: 8 h...... of the elderly was related to air temperature only, while TS of the younger adults also was related to skin temperature. During the constant temperature session, the elderly preferred a higher temperature in comparison with the young adults.......Results from naturally ventilated buildings show that allowing the indoor temperature to drift does not necessarily result in thermal discomfort and may allow for a reduction in energy use. However, for stationary conditions, several studies indicate that the thermal neutral temperature and optimum...

  19. PERAN KECEPATAN ANGIN TERHADAP PENINGKATAN KENYAMANAN TERMIS MANUSIA DI LINGKUNGAN BERIKLIM TROPIS LEMBAB (The Role of Wind Velocity on Increasing Human Thermal Comfort in Hot and Humid Environment

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2006-07-01

    Full Text Available ABSTRAK Faktor utama yang mempengaruhi persepsi kenyamanan termis pada manusia adalah : pakaian, suhu, kelembaban dan kecepatan udara sekitar, serta jenis aktivitasnya. Di daerah beriklim panas dan lembab, rasa tidak nyaman berkaitan erat dengan keluarnya keringat. Angin dengan debit dan kecepatan tertentu dapat difungsikan untuk mendinginkan penghuni bangunan melalui proses evaporasi keringat dan proses perpindahan kalor secara konvektif. Tulisan ini menyajikan pendalaman tentang teknik mengevaluasi tingkat kenyamanan termis manusia di daerah beriklim tropis lembab khususnya dengan menggunakan skala DISC dan PMV. Studi ini difokuskan pada pengaruh kecepatan angin untuk meningkatkan kenyamanan termis manusia. Metode yang dipakai adalah simulasi numerik dengan menggunakan sejumlah persamaan praktis untuk penghitungan kenyamanan termis.   ABSTRACT The most important factors which influence the condition of thermal comfort are clothing, temperature, humidity, air velocity, and types of activities. In hot and humid climate, feeling of comfort are associated with sweating. Air velocity can cool building occupants by increasing convective and evaporative heat loses. This paper intends to explore the techniques for evaluating of thermal comfort especially with introduction of PMV and DISC scales for the tropical humid environment. The study is focused on the influence of air velocity to the scale number of both DSC and PMV. A simple numerical simulation with some of empirical correlations are used to estimate the index of thermal comfort

  20. Thermal comfort along the marathon course of the 2020 Tokyo Olympics.

    Science.gov (United States)

    Honjo, Tsuyoshi; Seo, Yuhwan; Yamasaki, Yudai; Tsunematsu, Nobumitsu; Yokoyama, Hitoshi; Yamato, Hiroaki; Mikami, Takehiko

    2018-04-17

    The Olympic Games will be held in Tokyo in 2020 and the period will be the hottest period of the year in Japan. Marathon is a sport with a large heat load, and it is said that the risk of heat stroke rises more than other sports activities. The thermal environment of the 2020 Tokyo Olympic marathon course is analyzed by using wet-bulb globe temperature (WBGT) and Universal Thermal Climate Index (UTCI) map of the center area of Tokyo. The change due to the place, the effect of the shadow of the building, and the position on the course was analyzed from the distribution of WBGT and UTCI in the short-term analysis of sunny day from August 2 to August 6, 2014. To make the distribution map, we calculated distributions of sky view factor and mean radiant temperature of the 10 km × 7.5 km analyzed area in the center of Tokyo. Distributions of air temperature and humidity are calculated from Metropolitan Environmental Temperature and Rainfall Observation System data, which is a high-resolution measurement network. It was possible to incorporate the local variation of temperature and humidity of the analyzed area. In the result, the WBGT is about 1 °C lower and the UTCI is about 4-8 °C lower in the shadow of buildings from 9:00 to 10:00 than in the sunny side. As a cooling method, making a shadow is a relatively effective method. The variation along the course considering the distribution of meteorological data within the area is about 0.5 °C WBGT and 1 °C UTCI range. If we allow the error of this range, one-point meteorological data can be applied for the estimation along the course. Passing the right side (left side in the case of return) of the course could keep the accumulated value slightly lower along the course in the morning because the marathon course roughly runs from west to east and buildings' shadow is on the relatively right side (south side). But practically, the effect of changing the position on the course was small. The long-term analysis on

  1. Thermal comfort along the marathon course of the 2020 Tokyo Olympics

    Science.gov (United States)

    Honjo, Tsuyoshi; Seo, Yuhwan; Yamasaki, Yudai; Tsunematsu, Nobumitsu; Yokoyama, Hitoshi; Yamato, Hiroaki; Mikami, Takehiko

    2018-04-01

    The Olympic Games will be held in Tokyo in 2020 and the period will be the hottest period of the year in Japan. Marathon is a sport with a large heat load, and it is said that the risk of heat stroke rises more than other sports activities. The thermal environment of the 2020 Tokyo Olympic marathon course is analyzed by using wet-bulb globe temperature (WBGT) and Universal Thermal Climate Index (UTCI) map of the center area of Tokyo. The change due to the place, the effect of the shadow of the building, and the position on the course was analyzed from the distribution of WBGT and UTCI in the short-term analysis of sunny day from August 2 to August 6, 2014. To make the distribution map, we calculated distributions of sky view factor and mean radiant temperature of the 10 km × 7.5 km analyzed area in the center of Tokyo. Distributions of air temperature and humidity are calculated from Metropolitan Environmental Temperature and Rainfall Observation System data, which is a high-resolution measurement network. It was possible to incorporate the local variation of temperature and humidity of the analyzed area. In the result, the WBGT is about 1 °C lower and the UTCI is about 4-8 °C lower in the shadow of buildings from 9:00 to 10:00 than in the sunny side. As a cooling method, making a shadow is a relatively effective method. The variation along the course considering the distribution of meteorological data within the area is about 0.5 °C WBGT and 1 °C UTCI range. If we allow the error of this range, one-point meteorological data can be applied for the estimation along the course. Passing the right side (left side in the case of return) of the course could keep the accumulated value slightly lower along the course in the morning because the marathon course roughly runs from west to east and buildings' shadow is on the relatively right side (south side). But practically, the effect of changing the position on the course was small. The long-term analysis on the

  2. Investigating Thermal Comfort and User Behaviors in Outdoor Spaces: A Seasonal and Spatial Perspective

    Directory of Open Access Journals (Sweden)

    Kuo-Tsang Huang

    2015-01-01

    Full Text Available Numerous studies have examined the correlation between the number of attendants in a given outdoor environment and thermal indices to understand how the environmental planning has an impact on the users. However, extensive observations should be conducted to examine the detailed static and dynamic behavior patterns of users. We conducted dynamic observations at a stepped plaza to perform on-site measurements of the physical environment and observations of users behaviors, including their resting positions, movements, and stay durations. The results indicated that more people rested on the steps during the cool season than hot season. Compared to neutral temperatures, people demonstrated higher heat tolerance to the hot season. The results indicated that more than 75% of users preferred to remain in shaded areas and stayed longer than in the sunlight. The people tended to engage in static activities in environments that exhibit sufficient shading. The shaded areas were conducive to static activities as the summer grew hotter. The results verified that the people of Taiwan would avoid sunlight and desire shaded spaces based on their previous climate experiences and expectations, which can serve as a reference for outdoor space design to improve the usability and quality of open urban spaces.

  3. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  4. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    Directory of Open Access Journals (Sweden)

    Monika Božiková

    2017-01-01

    Full Text Available In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of thermal parameters measurement for various foods and food raw materials as: granular materials – corn flour and wheat flour; fruits, vegetables and fruit products – grated apple, dried apple and apple juice; liquid materials – milk, beer etc. Measurements were performed in two temperature ranges according to the character of examined material. From graphical relations of thermophysical parameter is evident, that thermal conductivity and diffusivity increases with temperature and moisture content linearly, only for granular materials were obtained non‑linear dependencies. Results shows, that foods and food raw materials have different thermal properties, which are influenced by their type, structure, chemical and physical properties. From presented results is evident, that basic thermal parameters are important for material quality detection in food industry.

  5. Some implications of accurate thermal parameters for beryllium

    International Nuclear Information System (INIS)

    Collins, D.M.; Whitehurst, F.W.

    1981-01-01

    Authoritative values for the parameters of harmonic thermal motion have been used as criteria for various least-squares refinements of the structure model for beryllium metal. A change in the absolute scale of Brown [Philos. Mag. (1972), 26, 1377-1394] improves the correspondence of the associated data with the true thermal parameters. Contraction of the core-electron distribution upon bonding is a possible implication of the rescaled data. (Auth.)

  6. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  7. Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls

    Science.gov (United States)

    Lee, Hyunjung; Mayer, Helmut

    2018-03-01

    Numerical simulations based on the ENVI-met model were carried out for an E-W street canyon in the city of Stuttgart (Southwest Germany) to analyse the effect of increased albedo of building walls on outdoor human thermal comfort. It was quantified by air temperature (T a ), mean radiant temperature (T mrt ) and physiologically equivalent temperature (PET). The simulations were conducted on 4 August 2003 as a heat wave day that represents a typical scenario for future summer weather in Central Europe. The simulation results presented for 13 CET and averaged over the period 10-16 CET are focused on pedestrians on both sidewalks. For the initial situation, i.e. albedo of 0.2, human heat stress indicated by mean PET is by 26% lower on the N-facing than on the S-facing sidewalk, while this reduction amounts to 42% for mean T mrt . Mean T a does not show any spatial differentiation. The systematic albedo increment by 0.2 from 0.2 to 0.8 leads to a linear increase of outdoor human heat stress in terms of T mrt and PET. For both variables, this increase is more pronounced on the N-facing than on the S-facing sidewalk. Mean relative T a shows the tendency of a minimal increase with rising albedo. The results were achieved for the usual standardised human-biometeorological reference person. Its substitution by two other types of male and female pedestrians, respectively, which are statistically characteristic of human conditions in Germany, does not reveal any significant change in the results.

  8. Assessment Framework of Building Facade in Optimizing Indoor Thermal Comfort of Green Building Index (GBI Certified Office Building

    Directory of Open Access Journals (Sweden)

    Abdul Tharim Asniza Hamimi

    2016-01-01

    Full Text Available During the past decade, the construction industry has seen a new trend in the development of “green” or “sustainable” construction concept around the world with vast support from prominent organization, together with the introduction of sustainable building codes. The establishment of green building certification systems worldwide is seen as one of the most efforts in the emerging green building movement. In order to support the development of the “green” and “sustainable” concept in Malaysia, Green Building Index (GBI was launched by the government on 21 May 2009 that created to promote sustainability in the built environment and raise awareness of environmental issues. However, the construction industry seems to have focused only on findings the “right mechanism” for an environmentally sustainable “final result” in order for the building to be certified as green with the lacking of continuous assessment on the building performance after the certifications. This study is purposely conducted to investigate the performance of various rated Green Building Index (GBI Non-Residential New Construction office buildings and the influence on Indoor Thermal Comfort (ITC of the selected buildings. The aim is to develop an assessment framework for optimum green building architectural façade to be used for office buildings in Malaysia as well as to analyse the occupants’ perception, satisfaction and performance in the selected Green Building Index (GBI rated office indoor environment. This research is still in its infancy; therefore the paper is focused on research aims, research scope and methodology, and expected deliverables for the proposed research.

  9. Distribution of projected area factors exhibited by occupants of a tertiary institutional building in the hot-humid tropics for thermal comfort evaluation

    International Nuclear Information System (INIS)

    Ijhar Hidayat Rusli; Nor Mariah Adam; Nawal Aswan Abdul Jalil

    2009-01-01

    Full text: One of the factors that affect the thermal comfort levels of occupants of a built environment is the amount of heat exchange they engage in with the short-wave radiation originating from the sun. In quantifying this phenomenon, it is necessary to determine the projected area factors between an occupant and the geometrical location of the sun. This paper presents the projected area factors of an occupant of a tertiary institutional building exposed to short-wave radiation from the sun at different hours of a day throughout a year. It is seen that, for the current case studied, the months June and July show the highest projected area factors among all 12 months. This suggests that it is within these months that the interaction between an occupant and the radiant heat from the sun is greatest. An example of how the projected area factors can be used in thermal comfort evaluation is also presented incorporating actual measured irradiance values over a period of time. Such analysis and the information it provides allows for a more detailed investigation of the thermal comfort levels of a built environment in relation to fenestration design and can be coupled with day lighting analysis in virtue of a sustainable built environment. (author)

  10. Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation.

    Science.gov (United States)

    Cheng, Y; Lin, Z

    2016-04-01

    Room occupants' comfort and health are affected by the airflow. Nevertheless, they themselves also play an important role in indoor air distribution. This study investigated the interaction between the human body and room airflow under stratum ventilation. Simplified thermal manikin was employed to effectively resemble the human body as a flow obstacle and/or free convective heat source. Unheated and heated manikins were designed to fully evaluate the impact of the manikin at various airflow rates. Additionally, subjective human tests were conducted to evaluate thermal comfort for the occupants in two rows. The findings show that the manikin formed a local blockage effect, but the supply airflow could flow over it. With the body heat from the manikin, the air jet penetrated farther compared with that for the unheated manikin. The temperature downstream of the manikin was also higher because of the convective effect. Elevating the supply airflow rate from 7 to 15 air changes per hour varied the downstream airflow pattern dramatically, from an uprising flow induced by body heat to a jet-dominated flow. Subjective assessments indicated that stratum ventilation provided thermal comfort for the occupants in both rows. Therefore, stratum ventilation could be applied in rooms with occupants in multiple rows. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Cast-in-place concrete walls: thermal comfort evaluation of one-storey housing in São Paulo State

    Directory of Open Access Journals (Sweden)

    H. M. Sacht

    Full Text Available This paper presents a proposal of thermal performance evaluation of a one-storey housing typology (TI24A executed by CDHU - Companhia de Desenvolvimento Habitacional e Urbano do Estado de São Paulo, considering the use of cast-in-place monolithic panels of concrete, with different thicknesses panels (8, 10 and 12 cm and density between 1600 and 2400 kg/m³. In this study, the specific purpose was discussing the influence of the characteristic of concrete walls on the housing thermal performance without slab. Was defined of first parameters of study (definition of the one-storey housing typology, survey about housing users behavior and cities choose and executed computational simulation (winter and summer, for four São Paulo State cities (São Paulo, São Carlos, Santos e Presidente Prudente, with the software Arquitrop 3.0 in a one-storey housing. Was observed that in winter and summer the typologies analyzed, the panels thickness variation had more influence about results than different concrete densities. The minimum level of thermal performance (M in winter has been granted for some cities, with exception of Santos. In summer one of São Paulo city’s typology was attended the minimum level of thermal performance in agreement with standard “NBR 15575 Residential buildings up to five storied - Performance, Part 1: General requirements”.

  12. Índice fuzzy de conforto térmico para frangos de corte Thermal comfort fuzzy index for broiler chickens

    Directory of Open Access Journals (Sweden)

    Guilherme R. do Nascimento

    2011-04-01

    Full Text Available A estimativa de conforto térmico na avicultura moderna é importante para que sistemas de climatização possam ser acionados no tempo correto, diminuindo perdas e aumentando rendimentos. Embora a literatura corrente apresente alguns índices de conforto térmico, que são aplicados para essa estimativa, estes são baseados apenas em condições do ambiente térmico e não consideram fatores importantes inerentes aos animais, tais como genética e capacidade de aclimatação, provendo, geralmente, uma estimativa inadequada do conforto térmico das aves. Este trabalho desenvolveu o Índice Fuzzy de Conforto Térmico (IFCT, com o intuito de estimar o conforto térmico de frangos de corte, considerando que o mecanismo usado pelas aves para perda de calor em ambientes fora da zona termoneutra é a vasodilatação periférica, que aumenta a temperatura superficial, e que pode ser usada como indicador do estado de conforto. O IFCT foi desenvolvido a partir de dois experimentos, que proporcionaram 108 cenários ambientais diferentes. Foram usadas imagens termográficas infravermelhas, para o registro dos dados de temperaturas superficiais das penas e da pele, e o grau de empenamento das aves. Para os mesmos cenários de ambiente térmico observados nos experimentos, foram comparados os resultados obtidos usando o IFCT e o Índice de Temperatura e Umidade (ITU. Os resultados validaram o IFCT para a estimativa do conforto térmico de frangos de corte, sendo específico na estimativa de condições de perigo térmico, usual em alojamentos em países de clima tropical. Essa característica é desejável em modelos que estimem o bem-estar térmico de frangos de corte, pois situações classificadas como perigo acarretam no dispêndio de recursos para evitar perdas produtivas.Estimating thermal comfort in modern poultry production is important that acclimatization systems can be triggered at appropriate time reducing losses and increasing yield. Although

  13. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  14. Analysis of the indices of thermal comfort for the conditions of the Mexican Republic; Analisis de los indices de confort termico para las condiciones de la republica mexicana

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Freixanet, Victor; Rodriguez Viqueira, Manuel [Universidad Autonoma Metropolitana - Unidad Azcapotzalco (Mexico)

    2009-07-15

    The objective of this article is to analyze different indices of thermal comfort for the Mexican Republic. Among them the Fanger (PMV and PPD) physiological methods of comfort and the new effective temperature index are included. The standard effective temperature (SET), as well as the adaptive methods of Humphreys and Nicol, Auliciems, De Dear and Brager. A comparative analysis is done of the different indices through thematic maps determined by interpolation, using a climatic data base of 700 cities obtained from the observatories and stations of the National Meteorological Service. This article pretends to establish general criteria of the thermal comfort to later define design strategies for each one of the climatic regions of the Mexican Republic. [Spanish] El objetivo de este articulo es analizar distintos indices de confort termico para la Republica Mexicana. Entre ellos se incluyen los metodos fisiologicos de confort de Fanger (PMV y PPD), el indice de nueva temperatura efectiva. La temperatura efectiva estandar (SET), asi como los metodos adaptativos de Humphreys y Nicol, Auliciems, De Dear y Brager. Se hace un analisis comparativo de los distintos indices a traves de mapas tematicos determinados por interpolacion, usando una base de datos climaticos de 700 ciudades obtenidos de los observatorios y estaciones del Servicio Meteorologico Nacional. Este articulo presenta establecer criterios generales del confort termico para posteriormente definir estrategias de diseno para cada una de las regiones climaticas de la Republica Mexicana.

  15. Noise analysis to evaluate chick thermal comfort Análise de ruído para a avaliação do conforto térmico de pintinhos

    OpenAIRE

    Daniella Jorge de Moura; Irenilza de Alencar Nääs; Elaine Cangussu de Souza Alves; Thayla Morandi Ridolfi de Carvalho; Marcos Martinez do Vale; Karla Andrea Oliveira de Lima

    2008-01-01

    The relationship between thermal environment and chick performance has widely been evaluated, however the consideration that the assessment of the comfort may be estimated by interpreting both amplitude and frequency of bird vocalization under tropical housing conditions is a new concept. This research had as objective of estimating thermal comfort for chicks during the heating phase using this new concept. An experiment was carried out inside a climate controlled chamber (A) for establishing...

  16. Investigation of Future Thermal Comforts in a Tropical Megacity Using Coupling of Energy Balance Model and Large Eddy Simulation

    Science.gov (United States)

    Sueishi, T.; Yucel, M.; Ashie, Y.; Varquez, A. C. G.; Inagaki, A.; Darmanto, N. S.; Nakayoshi, M.; Kanda, M.

    2017-12-01

    Recently, temperature in urban areas continue to rise as an effect of climate change and urbanization. Specifically, Asian megacities are projected to expand rapidly resulting to serious in the future atmospheric environment. Thus, detailed analysis of urban meteorology for Asian megacities is needed to prescribe optimum against these negative climate modifications. A building-resolving large eddy simulation (LES) coupled with an energy balance model is conducted for a highly urbanized district in central Jakarta on typical daytime hours. Five cases were considered; case 1 utilizes present urban scenario and four cases representing different urban configurations in 2050. The future configurations were based on representative concentration pathways (RCP) and shared socio-economic pathways (SSP). Building height maps and land use maps of simulation domains are shown in the attached figure (top). Case 1 3 focuses on the difference of future scenarios. Case 1 represents current climatic and urban conditions, case 2 and 3 was an idealized future represented by RCP2.6/SSP1 and RCP8.5/SSP3, respectively. More complex urban morphology was applied in case 4, vegetation and building area were changed in case 5. Meteorological inputs and anthropogenic heat emission (AHE) were calculated using Weather Research and Forecasting (WRF) model (Varquez et al [2017]). Sensible and latent heat flux from surfaces were calculated using an energy balance model (Ashie et al [2011]), with considers multi-reflection, evapotranspiration and evaporation. The results of energy balance model (shown in the middle line of figure), in addition to WRF outputs, were used as input into the PArallelized LES Model (PALM) (Raasch et al [2001]). From standard new effective temperature (SET*) which included the effects of temperature, wind speed, humidity and radiation, thermal comfort in urban area was evaluated. SET* contours at 1 m height are shown in the bottom line of the figure. Extreme climate

  17. The effect of dynamic solar shading on energy, daylighting and thermal comfort in a nearly zero-energy loft room in Rome and Copenhagen

    DEFF Research Database (Denmark)

    Skarning, Gunnlaug Cecilie Jensen; Hviid, Christian Anker; Svendsen, Svend

    2017-01-01

    alternatives in buildings with very low space-heating demand, this study mapped and compared energy, daylighting and thermal comfort for various combinations of window size and glazing properties, with and without dynamic shading. The study considered a loft room with sloped roof windows and moderate venting......Dynamic solar shading is commonly suggested as a means of reducing the problem of overheating in well-insulated residential buildings, while at the same time letting daylight and solar irradiation in when needed. To critically investigate what dynamic shading can and cannot do compared to permanent...... options in nearly zero-energy homes in Rome and Copenhagen. The more flexible solution space with dynamic shading made it possible to either reduce the time with operative temperatures exceeding the comfort limit by 40–50 h or increase daylighting by 750–1000 h more than could be achieved without shading...

  18. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station.

    Science.gov (United States)

    Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis

    2018-04-11

    The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.

  19. Effects of nanoscale size dependent parameters on lattice thermal ...

    Indian Academy of Sciences (India)

    M S OMAR and H T TAHA. Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi ... Gruneisen parameters are successfully used to correlate the calculated values of lat- tice thermal ..... The degree of the lattice deviation is inversely proportional to the diameter of the nanowire. A large deviation is ...

  20. Experimental Determination Of Soft Wheat Flour Thermal Parameters

    Directory of Open Access Journals (Sweden)

    Božiková Monika

    2015-03-01

    Full Text Available This article focuses on temperature relations of selected thermophysical parameters for soft wheat flour. The main aim of experiment was to determine the thermal conductivity, thermal diffusivity and volume specific heat of soft wheat flour in Slovakia marked as Špeciál 00 Extra. Measurements were performed in laboratory settings. Thermal parameters were measured using the thermal analyser Isomet 2104 with two types of probes - a linear probe and plane probe. Measurement by the linear probe is based on a hot wire method, and measurement by the plane probe is based on a simplified plane source method. Both methods are described in the text. Two types of measurement method were used because of the non-homogenous structure of measured material. All thermophysical parameters were measured during the temperature stabilisation in the temperature interval 5-24 °C. Obtained graphical relations had linear increasing progresses with high values of determination coefficients in all cases. Measurement results showed that measurement method has no significant influence on thermophysical parameters values.

  1. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied...... by UFAD system and uncomfortable sensation as "warm head" can be reduced by the PV system providing cool and fresh outdoor air at the facial level. A study with 30 human subjects was conducted in a Field Environmental Chamber. The chamber was served by two dedicated systems a primary air handling unit...... of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air...

  2. Additional income with open chimneys and stove. Nostalgia, romanticism and thermal comfort; Zusatzgeschaeft mit Oefen und Kaminen. Nostalgisch-romantische Gefuehle und behagliche Waerme

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, G. [Buderus Heiztechnik GmbH, Wetzlar (Germany)

    2004-01-01

    Stoves and open fireplaces are coming into fashion again with the trend towards nostalgia and design awareness. Further, wood-fuelled chimneys and stoves are viewed as romantic, and they also provide high thermal comfort. Heating systems experts can get additional income from this trend. (orig.) [German] Kamine und Oefen sind bei vielen Hausbesitzern und Bauherrn wieder in Mode. Dieser Trend ist zum einen Teil eines gestiegenen Nostalgie- und Designbewusstseins. Zum anderen gelten vor allem holzbefeuerte Kamine und Oefen als romantisch und ihre Waerme aufgrund des hohen Strahlungsanteils als behaglich. Fuer den aktiven Heizungsfachhandwerker laesst sich aus dieser Modestroemung ein lukratives Zusatzgeschaeft ableiten. (orig.)

  3. Importance of 3-D radiant flux densities for outdoor human thermal comfort on clear-sky summer days in Freiburg, Southwest Germany

    OpenAIRE

    Hyunjung Lee; Helmut Mayer; Dirk Schindler

    2014-01-01

    This study concerns the role of short- and long-wave radiant flux densities from different directions in complex urban settings for human thermal comfort on clear-sky summer days. The aims of the investigation are to quantify the importance of the sky view factor as an urban design-dependent variable for the 3-D radiant flux densities absorbed by the standardized human-biometeorological reference person and to analyze the varying impact of the absorbed 3-D short- and long-wave radiant flux de...

  4. Thermal Model Parameter Identification of a Lithium Battery

    Directory of Open Access Journals (Sweden)

    Dirk Nissing

    2017-01-01

    Full Text Available The temperature of a Lithium battery cell is important for its performance, efficiency, safety, and capacity and is influenced by the environmental temperature and by the charging and discharging process itself. Battery Management Systems (BMS take into account this effect. As the temperature at the battery cell is difficult to measure, often the temperature is measured on or nearby the poles of the cell, although the accuracy of predicting the cell temperature with those quantities is limited. Therefore a thermal model of the battery is used in order to calculate and estimate the cell temperature. This paper uses a simple RC-network representation for the thermal model and shows how the thermal parameters are identified using input/output measurements only, where the load current of the battery represents the input while the temperatures at the poles represent the outputs of the measurement. With a single measurement the eight model parameters (thermal resistances, electric contact resistances, and heat capacities can be determined using the method of least-square. Experimental results show that the simple model with the identified parameters fits very accurately to the measurements.

  5. Comparison of parameters of modern cooled and uncooled thermal cameras

    Science.gov (United States)

    Bareła, Jarosław; Kastek, Mariusz; Firmanty, Krzysztof; Krupiński, Michał

    2017-10-01

    During the design of a system employing thermal cameras one always faces a problem of choosing the camera types best suited for the task. In many cases such a choice is far from optimal one, and there are several reasons for that. System designers often favor tried and tested solution they are used to. They do not follow the latest developments in the field of infrared technology and sometimes their choices are based on prejudice and not on facts. The paper presents the results of measurements of basic parameters of MWIR and LWIR thermal cameras, carried out in a specialized testing laboratory. The measured parameters are decisive in terms of image quality generated by thermal cameras. All measurements were conducted according to current procedures and standards. However the camera settings were not optimized for a specific test conditions or parameter measurements. Instead the real settings used in normal camera operations were applied to obtain realistic camera performance figures. For example there were significant differences between measured values of noise parameters and catalogue data provided by manufacturers, due to the application of edge detection filters to increase detection and recognition ranges. The purpose of this paper is to provide help in choosing the optimal thermal camera for particular application, answering the question whether to opt for cheaper microbolometer device or apply slightly better (in terms of specifications) yet more expensive cooled unit. Measurements and analysis were performed by qualified personnel with several dozen years of experience in both designing and testing of thermal camera systems with both cooled and uncooled focal plane arrays. Cameras of similar array sizes and optics were compared, and for each tested group the best performing devices were selected.

  6. Lumped-parameter fuel rod model for rapid thermal transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Ramshaw, J.D.

    1975-07-01

    The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company

  7. Comfortably cosmopolitan?

    African Journals Online (AJOL)

    One of the key concepts to have emerged through these various iterations of theory and research on the role of the collective is that of 'social cohesion'. Social cohesion has been a buzzword for roughly the last. Comfortably cosmopolitan? How patterns of 'social cohesion' vary with crime and fear. Anine Kriegler and Mark ...

  8. A new tool for prediction and analysis of thermal comfort in steady and transient states; Un nouvel outil pour la prediction et l'analyse du confort thermique en regime permanent et variable

    Energy Technology Data Exchange (ETDEWEB)

    Megri, A.Ch. [Illinois Institute of Technology, Civil and Architectural Engineering Dept., Chicago, Illinois (United States); Megri, A.F. [Centre Universitaire de Tebessa, Dept. d' Electronique (Algeria); El Naqa, I. [Washington Univ., School of Medicine, Dept. of Radiation Oncology, Saint Louis, Missouri (United States); Achard, G. [Universite de Savoie, Lab. Optimisation de la Conception et Ingenierie de L' Environnement (LOCIE) - ESIGEC, 73 - Le Bourget du Lac (France)

    2006-02-15

    Thermal comfort is influenced by psychological as well as physiological factors. This paper proposes the use of support vector machine (SVM) learning for automated prediction of human thermal comfort in steady and transient states. The SVM is an artificial intelligent approach that could capture the input/output mapping from the given data. Support vector machines were developed based on the Structural Risk Minimization principle. Different sets of representative experimental environmental factors that affect a homogenous person's thermal balance were used for training the SVM machine. The SVM is a very efficient, fast, and accurate technique to identify thermal comfort. This technique permits the determination of thermal comfort indices for different sub-categories of people; sick and elderly, in extreme climatic conditions, when the experimental data for such sub-category are available. The experimental data has been used for the learning and testing processes. The results show a good correlation between SVM predicted values and those obtained from conventional thermal comfort, such as Fanger and Gagge models. The 'trained machine' with representative data could be used easily and effectively in comparison with other conventional estimation methods of different indices. (author)

  9. Lattice variation and thermal parameters of gel grown KDP crystals ...

    Indian Academy of Sciences (India)

    Pure and impurity added (with NH4Cl, NH4NO3, NH4H2PO4, and (NH4)2SO4) KDP single crystals were grown by the gel method using silica gels. X-ray diffraction data were collected for powder samples and used for the estimation of lattice variation and thermal parameters like Debye–Waller factor, mean-square ...

  10. Study on thermal comfort, air quality and energy savings using bioenergy via gasification/combustion for space heating of a broiler house

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jadir Nogueira da; Zanatta, Fabio Luiz; Tinoco, Ilda de Fatima F.; Martin, Samuel [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mail: jadir@ufv.br; Scholz, Volkhard [Leibniz Institut fuer Agrartechnik- ATB, Potsdam (Germany)

    2008-07-01

    The annual production of chicken meat is increasing throughout the world and Brazil is the world leader regarding exportation, a prediction indicates about 2.7 millions tons to be exported in 2007. A key to this performance is the low production costs, however, the costs of space heating necessary during the first 3 weeks of the chick's life and is increasing significantly. For this reason, it is always necessary to search for most efficient systems for this purpose. In addition to that, the use of bioenergy is gaining importance since it is renewable and ecologically correct. A close coupled gasification/combustion system, using eucalyptus firewood (Eucalyptus grandis and/or Eucalyptus urophylla) as fuel, was tested with the objective of providing thermal comfort for the birds during their first 3 weeks after birth. An experiment was set up for this purpose in an industrial scale production facility. The results indicated that the gasification/combustion system is viable for space heating for chicks, does not alters significantly the air quality, regarding CO, CO{sub 2} and NH{sub 3} concentration inside poultry house, provides the best thermal comfort as compared to indirect fired furnaces and accounts for a 35% energy savings, leading to lower production costs. (author)

  11. Thermal nanostructure: An order parameter multiscale ensemble approach

    Science.gov (United States)

    Cheluvaraja, S.; Ortoleva, P.

    2010-02-01

    Deductive all-atom multiscale techniques imply that many nanosystems can be understood in terms of the slow dynamics of order parameters that coevolve with the quasiequilibrium probability density for rapidly fluctuating atomic configurations. The result of this multiscale analysis is a set of stochastic equations for the order parameters whose dynamics is driven by thermal-average forces. We present an efficient algorithm for sampling atomistic configurations in viruses and other supramillion atom nanosystems. This algorithm allows for sampling of a wide range of configurations without creating an excess of high-energy, improbable ones. It is implemented and used to calculate thermal-average forces. These forces are then used to search the free-energy landscape of a nanosystem for deep minima. The methodology is applied to thermal structures of Cowpea chlorotic mottle virus capsid. The method has wide applicability to other nanosystems whose properties are described by the CHARMM or other interatomic force field. Our implementation, denoted SIMNANOWORLD™, achieves calibration-free nanosystem modeling. Essential atomic-scale detail is preserved via a quasiequilibrium probability density while overall character is provided via predicted values of order parameters. Applications from virology to the computer-aided design of nanocapsules for delivery of therapeutic agents and of vaccines for nonenveloped viruses are envisioned.

  12. Noise and noise disturbances from wind power plants - Tests with interactive control of sound parameters for more comfortable and less perceptible sounds

    International Nuclear Information System (INIS)

    Persson-Waye, K.; Oehrstroem, E.; Bjoerkman, M.; Agge, A.

    2001-12-01

    In experimental pilot studies, a methodology has been worked out for interactively varying sound parameters in wind power plants. In the tests, 24 persons varied the center frequency of different band-widths, the frequency of a sinus-tone and the amplitude-modulation of a sinus-tone in order to create as comfortable a sound as possible. The variations build on the noise from the two wind turbines Bonus and Wind World. The variations were performed with a constant dba level. The results showed that the majority preferred a low-frequency tone (94 Hz and 115 Hz for Wind World and Bonus, respectively). The mean of the most comfortable amplitude-modulation varied between 18 and 22 Hz, depending on the ground frequency. The mean of the center-frequency for the different band-widths varied from 785 to 1104 Hz. In order to study the influence of the wind velocity on the acoustic character of the noise, a long-time measurement program has been performed. A remotely controlled system has been developed, where wind velocity, wind direction, temperature and humidity are registered simultaneously with the noise. Long-time registrations have been performed for four different wing turbines

  13. Adjustment of Sensor Locations During Thermal Property Parameter Estimation

    Science.gov (United States)

    Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    The temperature dependent thermal properties of a material may be evaluated from transient temperature histories using nonlinear parameter estimation techniques. The usual approach is to minimize the sum of the squared errors between measured and calculated temperatures at specific locations in the body. Temperature measurements are usually made with thermocouples and it is customary to take thermocouple locations as known and fixed during parameter estimation computations. In fact, thermocouple locations are never known exactly. Location errors on the order of the thermocouple wire diameter are intrinsic to most common instrumentation procedures (e.g., inserting a thermocouple into a drilled hole) and additional errors can be expected for delicate materials, difficult installations, large thermocouple beads, etc.. Thermocouple location errors are especially significant when estimating thermal properties of low diffusively materials which can sustain large temperature gradients during testing. In the present work, a parameter estimation formulation is presented which allows for the direct inclusion of thermocouple positions into the primary parameter estimation procedure. It is straightforward to set bounds on thermocouple locations which exclude non-physical locations and are consistent with installation tolerances. Furthermore, bounds may be tightened to an extent consistent with any independent verification of thermocouple location, such as x-raying, and so the procedure is entirely consonant with experimental information. A mathematical outline of the procedure is given and its implementation is illustrated through numerical examples characteristic of light-weight, high-temperature ceramic insulation during transient heating. The efficacy and the errors associated with the procedure are discussed.

  14. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  15. IMPACT ON THE APPLICATION OF INSULATION IN BUILDINGS TO ACHIEVE THERMAL COMFORT (A CASE STUDY: LAUSER OFFICE BUILDING IN BANDA ACEH

    Directory of Open Access Journals (Sweden)

    Nova Purnama Lisa

    2014-12-01

    Full Text Available From the results of research studies on the impact of the use of insulation in buildings, reducing solar radiation on buildings to improve indoor comfort by applying the Principles of radiation reduction in buildings naturally using insulation application that serves as an insulator against the building materials, use of thermal insulation in particular mounted on the roof of the building and the walls are located on second floor and the third floor Lauser office building, Calculate the cooling load for each room that was on second floor and the third floor based on the geographical location or position of the building, climate data, building material data , and the intensity of the spatial characteristics which include lighting, solar radiation, user activity and electrical appliances being used. The calculation is done with the help of Ecotech v.5, 2011. The location and position on the third floor of a building with a flat roof cast concrete, so that the heat absorbed by the platform, and two times greater than the amount of heat radiation is absorbed by the material in the direction of the light falling the sun is at an angle <30°C. The simulation results on the building with the addition of thermal insulation on all walls and the roof of the inside of the foam material ultrafolmadehid, without changing the model building and similar activities in accordance with the existing condition and the condition of the room using the air conditioner at a temperature of 18-26°C, indicating a decrease in cooling load signifinikan in any space reaches 40% of the total cooling load required on the lauser office building. Comparing the simulation results Ecotech temperature v.5 2011 with field measurements as a validation of the simulation results in order to achieve thermal comfort in buildings and can menggurangi use energy consumption in buildings and can be used as a reference in planning space-based conditioning systems energy efficient.

  16. Man and room climate. The importance of thermal comfort; Der Mensch und das Raumklima. Zur Bedeutung der thermischen Behaglichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Hoefte, Klaus [Uponor Academy, Ochtrup (Germany)

    2009-07-01

    Room climate has become increasingly important during the past few decades as humans spend about 90 percent of their time inside rooms. Influencing factors are acoustics, lighting, air quality and thermal room climate. The contribution focuses on thermal room climate and room air quality which are the most important of these factors. (orig.)

  17. Performance analysis of pin fins with temperature dependent thermal parameters using the variation of parameters method

    Directory of Open Access Journals (Sweden)

    Cihat Arslantürk

    2016-08-01

    Full Text Available The performance of pin fins transferring heat by convection and radiation and having variable thermal conductivity, variable emissivity and variable heat transfer coefficient was investigated in the present paper. Nondimensionalizing the fin equation, the problem parameters which affect the fin performance were obtained. Dimensionless nonlinear fin equation was solved with the variation of parameters method, which is quite new in the solution of nonlinear heat transfer problems. The solution of variation of parameters method was compared with known analytical solutions and some numerical solution. The comparisons showed that the solutions are seen to be perfectly compatible. The effects of problem parameters were investigated on the heat transfer rate and fin efficiency and results were presented graphically.

  18. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    Science.gov (United States)

    Ogoli, David Mwale

    This dissertation is based on the philosophy that architectural design should not just be a function of aesthetics, but also of energy-efficiency, advanced technologies and passive solar strategies. A lot of published literature is silent regarding buildings in equatorial highland regions. This dissertation is part of the body of knowledge that attempts to provide a study of energy in buildings using thermal mass. The objectives were to establish (1) effect of equatorial high-altitude climate on thermal mass, (2) effect of thermal mass on moderating indoor temperatures, (3) effect of thermal mass in reducing heating and cooling energy, and (4) the amount of time lag and decrement factor of thermal mass. Evidence to analyze the effect of thermal mass issues came from three sources. First, experimental physical models involving four houses were parametrically conducted in Nairobi, Kenya. Second, energy computations were made using variations in thermal mass for determining annual energy usage and costs. Third, the data gathered were observed, evaluated, and compared with currently published research. The findings showed that: (1) Equatorial high-altitude climates that have diurnal temperature ranging about 10--15°C allow thermal mass to moderate indoor temperatures; (2) Several equations were established that indicate that indoor mean radiant temperatures can be predicted from outdoor temperatures; (3) Thermal mass can reduce annual energy for heating and cooling by about 71%; (4) Time lag and decrement of 200mm thick stone and concrete thermal mass can be predicted by a new formula; (5) All windows on a building should be shaded. East and west windows when shaded save 51% of the cooling energy. North and south windows when fully shaded account for a further 26% of the cooling energy; (6) Insulation on the outside of a wall reduces energy use by about 19.6% below the levels with insulation on the inside. The basic premise of this dissertation is that decisions that

  19. Thermal comfort in low energy buildings. Pt. 2. summery conditions. Planning guides for architects and specialist planners; Thermische Behaglichkeit im Niedrigenergiehaus. T. 2. Sommerliche Verhaeltnisse. Planungsleitfaden fuer Architekten und Fachplaner

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Wolfgang; Felsmann, Clemens; Gritzki, Ralf; Perschk, Alf; Roesler, Markus; Abdel Fattah, Annina [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Hartmann, Thomas [ITG Institut fuer Technische Gebaeudeausruestung Dresden - Forschung und Anwendung GmbH, Dresden (Germany)

    2011-11-15

    Within the contribution under consideration, the German Energy Agency GmbH (Berlin, Federal Republic of Germany) reports on the thermal comfort in low energy buildings under special consideration of summary conditions. After the presentation of an overview of variants, the chapter 'Fundamentals' consists of contributions to thermal comfort, methodical remarks, boundary conditions, uncooled rooms, precooling and full cooling. Other chapters of this contribution are concerned to heat protection and masses in building materials; shading and proportion of windows area; systems engineering.

  20. Parameter estimation in multi-axial thermal diffusivity experiments

    Science.gov (United States)

    Davis, Sean Edgar

    Thermomechanical analysis requires quantifying the thermophysical properties of thermal conductivity (or diffusivity) and specific heat. The extended flash method allows simultaneous measurement of multiple components of the thermal diffusivity tensor. The locations of the temperature sensors in such an experiment have an affect on the ability to accurately estimate the desired components of the diffusivity tensor. Here, D-optimization is applied to a simulated extended flash diffusivity experiment to improve the accuracy of the experiment through optimization of the inter-sensor distance. Results indicate that the optimal inter-sensor distance increases with an increasing ratio of inplane to out-of-plane diffusivity. The analytically determined optimal sensor positioning for an isotropic material is validated via experimental measurements on AISI 304 stainless steel, where it is shown that the accuracy of the estimated parameters improves for data sampled at the optimized locations. When modeling the anisotropic thermal response of materials, the material may be rotated such that the physical axes coincide with the principal axes of the thermal diffusivity tensor, resulting in thermal orthotropy. During measurements of such a tensor, however, the principal axes may be unknown, requiring a method to determine principal values and the orientation of the principal directions while simultaneously measuring the diffusivity. An analytical study was performed where the four non-zero components of the diffusivity tensor alpha were estimated for a material possessing random in-plane anisotropy on the order of certain manufactured or mechanically loaded elastomers. Results indicate that a four-sensor array allows sufficient sampling of the material response to permit estimation of alpha to within 1% of the reference values. When orthotropy is assumed for a material exhibiting random in-plane anisotropy, the estimated values of alphaii are resolved to within 0.4% of the

  1. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruixin [Department of Building, National University of Singapore (Singapore); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark (Denmark); Sekhar, S.C. [Department of Building, National University of Singapore (Singapore); Melikov, A.K. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark (Denmark)

    2010-09-15

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied by UFAD system and uncomfortable sensation as ''warm head'' can be reduced by the PV system providing cool and fresh outdoor air at the facial level. A study with 30 human subjects was conducted in a Field Environmental Chamber. The chamber was served by two dedicated systems - a primary air handling unit (AHU) for 100% outdoor air that is supplied through the PV air terminal devices and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Responses of the subjects to the PV-UFAD system were collected at various room air and PV air temperature combinations. The analyses of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air temperature was adopted in the PV-UFAD system. (author)

  2. A multifunctional cotton fabric using TiO2 and PCMs: introducing thermal comfort and self-cleaning properties

    Science.gov (United States)

    Scacchetti, F. A. P.; Pinto, E.; Soares, G.

    2017-10-01

    The development of materials with multiple functionalities is a market imperative that places new challenges on textile processing. The purpose of this study was to establish the conditions to obtain a cotton material that is comfortable, with self-cleaning and antimicrobial properties. For this purpose, microcapsules of phase change materials (mPCM) and titanium dioxide nanoparticles (TiO2 NP) were applied. The resulting fabrics were characterized with resource to infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), contact angle and scanning electron microscopy (SEM). The self-cleaning properties of treated fabrics were also analysed based on the photocatalytic ability of coated fabrics. Therefore, the decomposition of methyl orange (MO) and the degradation of red wine and curry spots under the irradiation of a solar simulator were analysed. Thus, the incorporation of TiO2 particles into the cotton fabric promoted self-cleaning and antibacterial characteristics, but the presence of PCM combined with TiO2 increases the bioactivity of materials.

  3. Thermal comfort of outdoor spaces in Lahore Pakistan: Lessons for bioclimatic urban design in the context of global climate change

    NARCIS (Netherlands)

    Mazhar, N.; Brown, R.D.; Kenny, N.; Lenzholzer, S.

    2015-01-01

    Humans interact with urban microclimates through exchanges of energy. A surplus of energy can create thermal discomfort and be detrimental to human health. Many cities in warm regions all over the world are forecast to become very hot through global climate change. Some cities already experience

  4. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  5. Effect of Set-point Variation on Thermal Comfort and Energy Use in a Plus-energy Dwelling

    DEFF Research Database (Denmark)

    Toftum, Jørn; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2016-01-01

    are allowed to drift, and it also allows the occupants to benefit from adaptive opportunities.This study presents the results of thermal environment measurements and energy use in a single-family dwelling during a one year period. A radiant floor heating and cooling system was used to condition the indoor...

  6. Thermophoresis and Its Thermal Parameters for Aerosol Collection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Apte, Michael; Gundel, Lara

    2007-08-01

    The particle collection efficiency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler's heating element was made of three sets of thermophoretic (TP) wires 25mu m in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  7. THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Apte, M.; Gundel, L.

    2007-01-01

    The particle collection effi ciency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler’s heating element was made of three sets of thermophoretic (TP) wires 25μm in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  8. Incorporating engineering intuition for parameter estimation in thermal sciences

    Science.gov (United States)

    Balaji, C.; Reddy, B. Konda; Herwig, H.

    2013-12-01

    This paper proposes a new method of incorporating priors based on engineering intuition for solving inverse problems. The thesis of this paper is that if an asymptote can be found to a problem in applied sciences or engineering, estimation of parameters can be first done for this asymptotic variant, which in principle should be simpler, since one or more parameters of the original problem may vanish for the asymptotic variant. Even so, by solving the inverse problem associated with the asymptotic variant, estimates of key parameters of the full problem can be obtained. This information can then be quantitatively incorporated as priors in the estimation of parameters for the full version of the problem which we call as prior generation through asymptotic variant. The goal is to see if this methodology will significantly reduce the uncertainties in the resulting estimates. To demonstrate this methodology, the classic problem of unsteady heat transfer from a one dimensional fin is chosen. The inverse problem is posed as the simultaneous estimation of the temperature dependent transfer coefficient (h θ ) and the thermal diffusivity ( α) of the fin material, given experimentally measured temperature-time histories at various locations along the fin. The asymptotic variant θ ( x, t) is the steady state problem where the influence of thermal diffusivity vanishes. Using surrogate temperature data generated from assumed values of h θ , first the asymptotic variant of the problem is solved using the Markov Chain Monte Carlo method in a Bayesian framework to generate an estimate of h θ . The estimate of h θ is then used as an informative prior for solving the inverse problem of determining h θ and α from θ ( x, t), and the effect of prior is quantitatively assessed by performing estimation with and without the prior. Finally, for purposes of validation, in-house experiments have been done where θ ( x, t) is generated using liquid crystal thermography and these data

  9. Development of sodium acetate trihydrate-ethylene glycol composite phase change materials with enhanced thermophysical properties for thermal comfort and therapeutic applications.

    Science.gov (United States)

    Kumar, Rohitash; Vyas, Sumita; Kumar, Ravindra; Dixit, Ambesh

    2017-07-12

    The heat packs using phase change materials (PCMs) are designed for possible applications such as body comfort and medical applications under adverse situations. The development and performance of such heat packs rely on thermophysical properties of PCMs such as latent heat, suitable heat releasing temperature, degree of supercooling, effective heat releasing time, crystallite size, stability against spontaneous nucleation in metastable supercooled liquid state and thermal stability during heating and cooling cycles. Such PCMs are rare and the available PCMs do not exhibit such properties simultaneously to meet the desired requirements. The present work reports a facile approach for the design and development of ethylene glycol (EG) and aqueous sodium acetate trihydrate (SAT) based composite phase change materials, showing these properties simultaneously. The addition of 2-3 wt% EG in aqueous SAT enhances the softness of SAT crystallites, its degree of supercooling and most importantly the effective heat releasing time by ~10% with respect to aqueous SAT material. In addition, the maximum heat releasing temperature of aqueous SAT has been tailored from 56.5 °C to 55 °C, 54.9 °C, 53.5 °C, 51.8 °C and 43.2 °C using 2%, 3%, 5%, 7% and 10 wt% EG respectively, making the aqueous SAT-EG composite PCMs suitable for desired thermal applications.

  10. Perceived Indoor Environment and Occupants' Comfort in European "Modern" Office Buildings: The OFFICAIR Study.

    Science.gov (United States)

    Sakellaris, Ioannis A; Saraga, Dikaia E; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G; Bluyssen, Philomena M

    2016-04-25

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers' comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants' comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 "modern" office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants' comfort. The highest association with occupants' overall comfort was found for "noise", followed by "air quality", "light" and "thermal" satisfaction. Analysis of detailed parameters revealed that "noise inside the buildings" was highly associated with occupants' overall comfort. "Layout of the offices" was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building's location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  11. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia

    Science.gov (United States)

    Putri, Widya A.; Fahmi, Zulfikar; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    The high consumption of electric energy for room air conditioning (AC) system in Indonesia has driven the research of potential thermal energy storage system as a passive temperature controller. The application of coconut oil (CO) as the potential candidate for this purpose has been motivated since its working temperature just around the human thermal comfort zone in the tropical area as Indonesia. In this research we report the time-dependent temperature data of CO, which is adopting the T-history method. The analysis of the data revealed a set of thermophysical parameters, consist of the mean specific heats of the solid and liquid, as well as the latent heat of fusion for the phase change transition. The performance of CO to decrease the air temperature was measured in the thermal chamber. From the results it is shown that the latent phase of CO related to the solid-liquid phase transition show the highest capability in heat absorption, directly showing the potential application of CO as thermal energy storage system in Indonesia.

  12. Importance of 3-D radiant flux densities for outdoor human thermal comfort on clear-sky summer days in Freiburg, Southwest Germany

    Directory of Open Access Journals (Sweden)

    Hyunjung Lee

    2014-09-01

    Full Text Available This study concerns the role of short- and long-wave radiant flux densities from different directions in complex urban settings for human thermal comfort on clear-sky summer days. The aims of the investigation are to quantify the importance of the sky view factor as an urban design-dependent variable for the 3-D radiant flux densities absorbed by the standardized human-biometeorological reference person and to analyze the varying impact of the absorbed 3-D short- and long-wave radiant flux densities on the mean radiant temperature (Tmrt$T_{\\text{mrt}}$, near-surface air temperature (Ta$T_{\\text{a}}$ and physiologically equivalent temperature (PET.The results obtained by measuring campaigns and numerical simulations point to the different importance of the absorbed 3-D radiant flux densities for human thermal comfort characterized by Ta$T_{\\text{a}}$, Tmrt$T_{\\text{mrt}}$ and PET. The magnitude of Tmrt$T_{\\text{mrt}}$ is mainly determined by the total of the absorbed 3-D long-wave radiant flux densities. However, the fluctuations of Tmrt$T_{\\text{mrt}}$ are mainly governed by the total of the absorbed 3-D short-wave radiant flux densities. Their variance can be well explained by the variance of the sky view factor related to the southern part of the upper half space. Taking account of the different impact of the 3-D radiant flux densities, Tmrt$T_{\\text{mrt}}$ can be quite well estimated by a multiple regression using the total of the absorbed 3-D short-wave radiant flux densities and the absorbed long-wave radiant flux density from the lower half space as independent variables. PET can be well estimated by a multiple regression showing Tmrt$T_{\\text{mrt}}$ and Ta$T_{\\text{a}}$ as independent variables. On a hot summer day, the increase of the albedo of vertical building walls within a simple E-W oriented street canyon leads to a decrease of the surface temperature of the S-facing wall, but to an increase of Tmrt$T_{\\text{mrt}}$ and PET

  13. Design methodology and criteria for daylight and thermal comfort in nearly-zero energy office buildings in Nordic climate

    DEFF Research Database (Denmark)

    Karlsen, Line Røseth

    be improved by considering the location in the room, accounting for both long and short-wave radiation and that daylighting should be modelled in a dynamic manner. Full-scale measurements have been conducted to verify improved models for MRT and climate-based daylighting and their implementation...... into the simulation tool IDA ICE. Furthermore, the control of solar shading is given attention, since it is a crucial link between the thermal and daylighting performance. The thesis presents results of an occupant survey with 46 subjects, which was carried out to investigate occupants’ preferences towards......’ perception of glare was indicated. Based on these results and findings in the literature, a shading strategy was proposed. Its performance is verified by full-scale measurements and annual simulations....

  14. The comfort triangles : A new tool for bioclimatic design

    NARCIS (Netherlands)

    Evans, J.M.

    2007-01-01

    This thesis presents a new graphic tool to identify and select bioclimatic strategies according to climate conditions and comfort requirements. The Comfort Triangle relates outdoor daily temperature variations with the modification of thermal performance achieved indoors, using two key variables,

  15. Study of Climate Responsive Passive Design Features in Traditional Hill Architecture of Khyah Village in Hamirpur, Himachal Pradesh, India for Indoor Thermal Comfort

    Science.gov (United States)

    Sarkar, A.

    2013-03-01

    Vernacular architecture of any settlement is characterized by architecture and construction methods developed by the wisdom of the local masons and builders, often the inhabitants themselves, to provide thermal comfort to users in extreme outdoor uncomfortable climatic conditions, by using locally available building materials and by adopting construction technology which both were more responsive to their climatic and geographic condition. This paper will highlight the climate-responsiveness in the traditional architecture of Khyah village in Hamirpur district of Himachal Pradesh, having sub-tropical climatic condition. The plan of individual house, the cluster of houses and the overall settlement itself has been evolved from a process of understanding the local geo-climatic conditions which causes discomfort in both cold winter and hot summer months. Hence, the house plans were kept compact, thick adobe bricks were used for walls, pitched roof with attic and roof-covering of slate were employed and small window openings were provided with heavy timber shutter—all as a mean to retain indoor heat during cold winter months and also to prevent excessive heat-loss and heat-gains. The paper will also attempt to bring out the adaptive synchronized dynamic interactions between the various activities of inhabitants and their spatial environment, as a response to the local climatic conditions, from the physical survey of this traditional hill settlement.

  16. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study

    Directory of Open Access Journals (Sweden)

    Ioannis A. Sakellaris

    2016-04-01

    Full Text Available Indoor environmental conditions (thermal, noise, light, and indoor air quality may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 “modern” office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain. Occupants assessed indoor environmental quality (IEQ using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality, and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants’ comfort. The highest association with occupants’ overall comfort was found for “noise”, followed by “air quality”, “light” and “thermal” satisfaction. Analysis of detailed parameters revealed that “noise inside the buildings” was highly associated with occupants’ overall comfort. “Layout of the offices” was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index, and building characteristics (office type and building’s location. Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  17. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study

    Science.gov (United States)

    Sakellaris, Ioannis A.; Saraga, Dikaia E.; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G.; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G.; Bluyssen, Philomena M.

    2016-01-01

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 “modern” office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants’ comfort. The highest association with occupants’ overall comfort was found for “noise”, followed by “air quality”, “light” and “thermal” satisfaction. Analysis of detailed parameters revealed that “noise inside the buildings” was highly associated with occupants’ overall comfort. “Layout of the offices” was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building’s location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants. PMID:27120608

  18. Thermal storage in a heat pump heated living room floor for urban district power balancing - effects on thermal comfort, energy loss and costs for residents

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria

    2014-01-01

    For the Dutch smart grid demonstration project Meppelenergie, the effects of controlled thermal energy storage within the floor heating structure of a living room by a heat pump are investigated. Storage possibilities are constrained by room operative and floor temperatures. Simulations indicate

  19. HUMAN COMFORT AND THE MICROCLIMATIC DRIVERS ...

    African Journals Online (AJOL)

    Osondu

    Abstract. The study identified spatially differentiated thermal human comfort conditions based on heat stress and microclimate data for specific urban built-up land use classes; and examined the influence of certain microclimatic elements on the observed human comfort levels within the coastal milieu of Port Harcourt.

  20. Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes

    Science.gov (United States)

    Wilson, Adam A.; Borca-Tasciuc, Theodorian

    2017-07-01

    Simplified heat-transfer models are widely employed by heated probe scanning thermal microscopy techniques for determining thermal conductivity of test samples. These parameters have generally been assumed to be independent of sample properties; however, there has been little investigation of this assumption in non-contact mode, and the impact calibration procedures have on sample thermal conductivity results has not been explored. However, there has been little investigation of the commonly used assumption that thermal exchange parameters are sample independent in non-contact mode, or of the impact calibration procedures have on sample thermal conductivity results. This article establishes conditions under which quantitative, localized, non-contact measurements using scanning thermal microscopy with heated microprobes may be most accurately performed. The work employs a three-dimensional finite element (3DFE) model validated using experimental results and no fitting parameters, to determine the dependence of a heated microprobe thermal resistance as a function of sample thermal conductivity at several values of probe-to-sample clearance. The two unknown thermal exchange parameters were determined by fitting the 3DFE simulated probe thermal resistance with the predictions of a simplified probe heat transfer model, for two samples with different thermal conductivities. This calibration procedure known in experiments as the intersection method was simulated for sample thermal conductivities in the range of 0.1-50 W m-1 K-1 and clearance values in the 260-1010 nm range. For a typical Wollaston wire microprobe geometry as simulated here, both the thermal exchange radius and thermal contact resistance were found to increase with the sample thermal conductivity in the low thermal conductivity range while they remained approximately constant for thermal conductivities >1 W m-1 K-1, with similar trends reported for all clearance values investigated. It is shown that

  1. Summer comfort for deep renovated dwellings: Control of a delicate balance

    NARCIS (Netherlands)

    Bakker, L.G.; Borsboom, W.A.; Sijs, J.; Fransman, J.E.

    2013-01-01

    A model based indoor climate control concept is developed which improves the indoor comfort while saving energy. The controller developed within the EU-FP7 HERB project will automatically quantify key parameters describing the thermal balance of the building using a limited number of sensors and an

  2. Stochastic analysis of uncertain thermal parameters for random thermal regime of frozen soil around a single freezing pipe

    Science.gov (United States)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhou, Lei

    2018-03-01

    The artificial ground freezing method (AGF) is widely used in civil and mining engineering, and the thermal regime of frozen soil around the freezing pipe affects the safety of design and construction. The thermal parameters can be truly random due to heterogeneity of the soil properties, which lead to the randomness of thermal regime of frozen soil around the freezing pipe. The purpose of this paper is to study the one-dimensional (1D) random thermal regime problem on the basis of a stochastic analysis model and the Monte Carlo (MC) method. Considering the uncertain thermal parameters of frozen soil as random variables, stochastic processes and random fields, the corresponding stochastic thermal regime of frozen soil around a single freezing pipe are obtained and analyzed. Taking the variability of each stochastic parameter into account individually, the influences of each stochastic thermal parameter on stochastic thermal regime are investigated. The results show that the mean temperatures of frozen soil around the single freezing pipe with three analogy method are the same while the standard deviations are different. The distributions of standard deviation have a great difference at different radial coordinate location and the larger standard deviations are mainly at the phase change area. The computed data with random variable method and stochastic process method have a great difference from the measured data while the computed data with random field method well agree with the measured data. Each uncertain thermal parameter has a different effect on the standard deviation of frozen soil temperature around the single freezing pipe. These results can provide a theoretical basis for the design and construction of AGF.

  3. Synthesis and evaluation of effective parameters in thermal ...

    Indian Academy of Sciences (India)

    In solid oxide fuel cells (SOFCs) the cathode functions as the site for thee lectrochemical reduction of oxygen. There- fore, thec athode must have high electronic conductivity, ade- quate porosity, stability under an oxidizing atmosphere and high catalytic activity. In addition, it is crucial for the cathode to have matched thermal ...

  4. A comparison of experimental thermal stratification parameters for an oil/pebble-bed thermal energy storage (TES) system during charging

    International Nuclear Information System (INIS)

    Mawire, Ashmore; Taole, Simeon H.

    2011-01-01

    Highlights: → Six experimental thermal stratification parameters are evaluated in a TES system. → Stratification number and temperature difference evaluate stratification adequately. → Exergy efficiency and Reynolds number evaluate stratification qualitatively. → Richardson number and energy efficiency not clearly related with stratification. -- Abstract: Six different experimental thermal stratification evaluation parameters during charging for an oil/pebble-bed TES system are presented. The six parameters are the temperature distribution along the height of the storage tank at different time intervals, the charging energy efficiency, the charging exergy efficiency, the stratification number, the Reynolds number and the Richardson number. These parameters are evaluated under six different experimental charging conditions. Temperature distribution along the height of the storage tank at different time intervals and the stratification number are parameters found to describe thermal stratification quantitatively adequately. On the other-hand, the charging exergy efficiency and the Reynolds number give important information about describing thermal stratification qualitatively and should be used with care. The charging energy efficiency and the Richardson number have no clear relationship with thermal stratification.

  5. Synthesis and evaluation of effective parameters in thermal ...

    Indian Academy of Sciences (India)

    Abstract. In this study, oxides Ln0.6Sr0.4Co0.2M0.8O3−δ (Ln = La,Nd and M = Mn,Fe) have been prepared and characterized to study the influence of the different cations on thermal expansion coefficient (TEC). TEC decreases favourably with replacement of Nd3+ and Mn3+ ions in the lattice. Nd3+ leads to decreasing ...

  6. Poultry rearing on perforated plastic floors and the effect on air quality, growth performance, and carcass injuries-Experiment 1: Thermal Comfort.

    Science.gov (United States)

    de Almeida, Eduardo Alves; Arantes de Souza, Lilian Francisco; Sant'Anna, Aline Cristina; Bahiense, Raphael Nogueira; Macari, Marcos; Furlan, Renato Luis

    2017-09-01

    The present study investigated the use of perforated plastic floors in the rearing of male and female poultry under thermal comfort conditions. The study was conducted in 2 climate chambers, in one was conventional poultry litter (wood shavings) and in the other was a perforated plastic floor. The experimental design was a completely randomized design with the factors wood shavings and plastic floor. In each chamber, the animals were divided into 16 experimental pens (8 with males and 8 with females) with a density of 12 birds/m2. The poultry rearing effect was evaluated in terms of air quality (% concentration of ammonia [NH3] and carbon dioxide [CO2]); broiler performance, e.g., weight gain (kg), feed intake (kg), feed conversion, carcass yield and parts (%), meat production (kg/m2), and viability (% of live birds at d 42); scores of hygiene and mobility; and injuries in the chest, hocks, and footpads. Treatments affected air quality, with higher concentrations of NH3 on d 42 (25 ppm vs. 2 ppm) and CO2 (1,400 ppm vs. 1,000 ppm) for wood shavings than for perforated plastic floor, respectively. Males showed a better performance (weight gain, feed intake and feed conversion) than females on d 42 in both floor types (wood shavings and plastic floor). Males reared on wood shavings showed a higher meet production (35.992 kg/m2) than females (32.257 kg/m2). On the plastic floor, males showed a better viability (100%) than females (94.05%), as well better meet production for males (38.55 kg·m-2) than females (31.64 kg/m2). There was no incidence of breast lesions in any of the studied systems. The birds reared on the plastic floor had better hygiene scores and lower hock injury rates than birds reared in the wood shavings chambers. The results of the present study show that the use of perforated plastic floors in chicken farming is an efficient method, which promotes a better-quality environment, superior production rates, and reduced incidence of injuries.

  7. Kinetic Parameters of Thermal Decomposition Process Analyzed using a Mathematical Model

    Science.gov (United States)

    Nandiyanto, A. B. D.; Ekawati, R.; Wibawa, S. C.

    2018-01-01

    The purpose of this study was to show a mathematical analysis model for understanding kinetic parameters of thermal decomposition process. The mathematical model was derived based on phenomena happen during the thermal-related reaction. To get the kinetic parameters (i.e. reaction order, activation energy, and Arrhenius constant), the model was combined with the thermal characteristics of material gained from the thermal gravity (TG) and differential thermal analysis (DTA) curves. As an example, the model was used for analyzing the kinetic properties of trinitrotoluene. Interestingly, identical results gained from the present model with current literatures were obtained; in which these were because the present model was derived directly from the analysis of stoichiometrical and thermal analysis of the ideal chemical reaction. Since the present model confirmed to have a good agreement with current theories, further derivation from the present mathematical model can be useful for further development.

  8. Investigations of the possibility of determination of thermal parameters of Si and SiGe samples based on the Photo Thermal Radiometry technique

    Science.gov (United States)

    Chrobak, Ł.; Maliński, M.

    2018-03-01

    This paper presents results of investigations of the possibility of determination of thermal parameters (thermal conductivity, thermal diffusivity) of silicon and silicon germanium crystals from the frequency characteristics of the Photo Thermal Radiometry (PTR) signal. The theoretical analysis of the influence of the mentioned parameters on the PTR signal has been presented and discussed. The values of the thermal and recombination parameters have been extracted from the fittings of the theoretical to experimental data. The presented approach uses the reference Si sample whose thermal and recombination parameters are known.

  9. Synthesis and evaluation of effective parameters in thermal ...

    Indian Academy of Sciences (India)

    Variations of lattice parameters of compounds have been monitored by in-situ XRD at different temperatures in order to study the thermo-chemical expansivity. Concentration of oxide ion vacancy has been determined by high temperature gravimetry. The results show more stability of Mn4+ ions in high temperature in ...

  10. Air humidity requirements for human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole

    1999-01-01

    Upper humidity limits for the comfort zone determined from two recently presented models for predicting discomfort due to skin humidity and insufficient respiratory cooling are proposed. The proposed limits are compared with the maximum permissible humidity level prescribed in existing standards...... for the thermal indoor environment. The skin humidity model predicts discomfort as a function of the relative humidity of the skin, which is determined by existing models for human heat and moisture transfer based on environmental parameters, clothing characteristics and activity level. The respiratory model...... predicts discomfort as a function of the driving forces for heat loss from the respiratory tract, namely the air temperature and humidity of the surrounding air. An upper humidity limit based on a relative skin humidity of 0.54, corresponding to 20% dissatisfied, results in a maximum permissible humidity...

  11. House thermal model parameter estimation method for Model Predictive Control applications

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria

    In this paper we investigate thermal network models with different model orders applied to various Dutch low-energy house types with high and low interior thermal mass and containing floor heating. Parameter estimations are performed by using data from TRNSYS simulations. The paper discusses results

  12. Influence of buildings geometrical and physical parameters on thermal cooling load

    International Nuclear Information System (INIS)

    Melo, C.

    1980-09-01

    A more accurate method to evaluate the thermal cooling load in buildings and to analyze the influence of geometrical and physical parameters on air conditioning calculations is presented. The sensitivity of the cooling load, considering the thermal capacity of the materials, was simulated in a computer for several different situations. (Author) [pt

  13. Sensitivity Study on Thermal Hydraulic Parameters of Research Reactor with Plate Type Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Hee Taek; Park, Jong Hark; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    This paper presents the preliminary core thermal hydraulic characteristics and safety margins for various core flow rates, core pressures, core inlet temperatures and fuel channel powers for a plate type fuel core with 47 MW power. These sensitivity studies were performed to determine the design values for the thermal hydraulic parameters.

  14. Physiological parameters for thermal stress in dairy cattle

    Directory of Open Access Journals (Sweden)

    Vanessa Calderaro Dalcin

    Full Text Available ABSTRACT The objective of this study was to investigate changes in physiological parameters of dairy cows and understand which physiological parameters show greater reliability for verification of heat stress. Blood samples were collected for analysis and included hematocrit (Ht, erythrocyte count (ERY, and hemoglobin count (HEMO. In addition, physiological variables, including rectal temperature (RT, heart rate (HR, respiratory rate (RR, and panting score (PS were recorded in 38 lactating cows. These varied according to genetic group (1/2, 3/4, and pure bred Holstein (HO. Analysis of variance considering the effects of genetic group, days, and their interaction as well as linear and quadratic effect of the black globe humidity index (BGHI was performed, as well as broken-line regression. These values were higher in pure HO than in 3/4 and 1/2 groups. The average BGHI during the morning was 74, when 70, 43, and 13% of pure HO, 3/4, and 1/2, respectively, presented RR above reference value. The RR was the best indicator of heat stress and its critical value was 116 breaths/min for 1/2, 140 for 3/4, and 168 breaths/min for pure HO cows. In the HO group, physiological variables increased linearly with BGHI, without presenting inflection in the regression. The inflection point occurred at a higher BGHI for the 1/2 group compared with the other groups. Hematocrit and HEMO were different among genetic groups and did not vary with BGHI, showing that stress was not sufficient to alter these hematological parameters. The 1/2 HO group was capable of maintaining normal physiological parameters for at least 3 BGHI units above that of HO and 1 to 3 units higher than 3/4 HO for RR and RT, respectively. Respiratory rate is the physiological parameter that best predicts heat stress in dairy cattle, and the 1/2 Holstein group is the best adapted to heat stress.

  15. Evaluation of Perfusion and Thermal Parameters of Skin Tissue Using Cold Provocation and Thermographic Measurements

    Directory of Open Access Journals (Sweden)

    Strąkowska Maria

    2016-09-01

    Full Text Available Measurement of the perfusion coefficient and thermal parameters of skin tissue using dynamic thermography is presented in this paper. A novel approach based on cold provocation and thermal modelling of skin tissue is presented. The measurement was performed on a person’s forearm using a special cooling device equipped with the Peltier module. The proposed method first cools the skin, and then measures the changes of its temperature matching the measurement results with a heat transfer model to estimate the skin perfusion and other thermal parameters. In order to assess correctness of the proposed approach, the uncertainty analysis was performed.

  16. Análise do conforto térmico em galpões avícolas com diferentes sistemas de acondicionamento Thermal comfort analysis in poultry houses with different acclimatization systems

    Directory of Open Access Journals (Sweden)

    Dermeval A. Furtado

    2003-12-01

    Full Text Available A base deste trabalho foi a análise da influência da tipologia e das condições de conforto térmico ambiental em sete sistemas de acondicionamento de aviários de frangos de corte, localizados na mesorregião do Agreste paraibano. Os sistemas foram os seguintes: telha de amianto sem ventilação artificial; telha de barro sem ventilação artificial; telha de amianto com ventilação artificial; telha de barro com ventilação artificial; telha de amianto com ventilação artificial e nebulização; telha de barro com ventilação artificial e nebulização e telha de amianto com ventilação artificial e aspersão sobre a cobertura. A avaliação foi feita com base na temperatura do ar (TA, na umidade relativa (UR, no índice de temperatura de globo negro e umidade (ITGU e na carga térmica de radiação (CTR em diferentes horários, durante o período de verão. Constatou-se influência da tipologia nas condições de conforto térmico e que em todos os sistemas os índices de conforto variaram ao longo do dia, sendo que a TA, o ITGU e a CTR, apresentaram valores considerados acima do ideal, enquanto a UR ficou dentro da zona de conforto térmico.The study had the objective of analyzing the influence of seven types of roofs on thermal comfort in poultry-house, in the region of "Paraíba Agreste’. The systems were: asbestos tiles and clay tiles without forced ventilation, asbestos tiles and clay tiles with forced ventilation, asbestos tiles and clay tiles with artificial ventilation and fogging and asbestos tiles with forced ventilation, fogging and sprinkling on the roof. The evaluation was based on the results of air temperature (AT, relative humidity (RH, black globe temperature (BGT and the radiation thermal charge (RTC, measured at different diurnal times during the summer. Influence of the roof types on the thermal comfort was observed. In all systems the comfort index evaluated varied during the day and that AT, BGT and RTC showed

  17. The phenomenology of comfort.

    Science.gov (United States)

    Morse, J M; Bottorff, J L; Hutchinson, S

    1994-07-01

    From patient narratives, the phenomenological literature and reflection of patients' autobiographical accounts of illness, nine themes reflecting the phenomenological concept of corporeality were used to identify the ways patients achieve comfort. The themes were: the dis-eased body, the disobedient body, the vulnerable body, the violated body, the resigned body, the enduring body, the betraying body and the betraying (neurotic) mind. The process of achieving comfort is based on the patients' needs to live with illness or injury without being dominated by their bodies. The authors argue that while the role of nursing is to provide comfort to the sick, the goal of total comfort is unattainable in patient care. However, if the goal is to enhance comfort, to ease and to relieve distress, comfort remains central to the role of nursing.

  18. Comparação de vários materiais de cobertura através de índices de conforto térmico Comparison of various roof coating materials through thermal comfort indexes

    Directory of Open Access Journals (Sweden)

    K.B. Sevegnani

    1994-04-01

    Full Text Available O comportamento térmico de diferentes materiais de cobertura foi estudado através dos índices de conforto. Para as condições de verão, estudou-se o efeito do índice de Temperatura de Globo e Umidade (ITGU e da Carga Térmica Radiante (CTR no interior de abrigos. As telhas de fibra transparente, alumínio e zinco foram os mais recentes materiais inseridos neste projeto. Além delas, foram estudados os comportamentos das telhas de barro, cimento amianto e térmica. Para a avaliação dos índices de conforto foram registrados: temperatura máxima e mínima, velocidade do vento, umidade relativa e temperatura de globo negro. Concluiu-se que: a telha de barro continuou sendo a mais eficiente e a telha de fibra transparente a de menor eficiência térmica e as demais apresentaram um comportamento intermediário.The thermal behaviour of different roof coating materials was studied through the thermal comfort index. For summer condictions the effect of the Globe and Humidity Index (ITGU and the Radiant Thermal Load (CTR were used to study the interior of shelters. Fiberglass, aluminum and zinc tiles were more recently introduced in this project. Other tested materials were clay, asbestos, cement and thermal tiles. To evaluate the comfort index the following measurements were performed: maximum and minimum temperatures, wind velocity, relative humidity and "black globe" temperature. The conclusions were: clay tiles continue being the most efficient and fiberglass tiles the least thermal efficient, and other tiles had an intermediate behaviour.

  19. Development of a method for rating climate seat comfort

    Science.gov (United States)

    Scheffelmeier, M.; Classen, E.

    2017-10-01

    The comfort aspect in the vehicle interior is becoming increasingly important. A high comfort level offers the driver a good and secure feeling and has a strong influence on passive traffic safety. One important part of comfort is the climate aspect, especially the microclimate that emerges between passenger and seat. In this research, different combinations of typical seat materials are used. Fourteen woven and knitted fabrics and eight leathers and its substitutes for the face fabric layer, one foam, one non-woven and one 3D spacer for the plus pad layer and for the support layer three foam types with variations in structure and raw material as well as one rubber hair structure were investigated. To characterise this sample set by thermo-physiological aspects (e.g. water vapour resistance Ret, thermal resistance Rct, buffering capacity of water vapour Fd) regular and modified sweating guarded hotplates were used according to DIN EN ISO 11092. The results of the material characterisation confirm the common knowledge that seat covers out of textiles have better water vapour resistance values than leathers and its substitutes. Subject trials in a driving simulator were executed to rate the subjective sensation while driving in a vehicle seat. With a thermal, sweating Manikin (Newton Type, Thermetrics) objective product measurements were carried out on the same seat. Indeed the subject trials show that every test subject has his or her own subjective perception concerning the climate comfort. The results of the subject trials offered the parameters for the Newton measuring method. Respectively the sweating rate, sit-in procedure, ambient conditions and sensor positions on and between the seat layers must be comparable with the subject trials. By taking care of all these parameters it is possible to get repeatable and reliable results with the Newton Manikin. The subjective feelings of the test subjects, concerning the microclimate between seat and passenger, provide

  20. Parameters affecting the thermal behaviour of emulsion explosives

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.E.G.; Feng, H.; Mintz, K.J.; Augsten, R.A. [Natural Resources Canada, Ottawa, ON (Canada). Canadian Explosives Research Laboratory

    1999-07-01

    Accelerating rate calorimetry (ARC) and heat flux calorimetry (HFC) were used to study the sensitivity of ammonium nitrate (AN) and emulsion explosives to pressure and various other parameters. The explosives were evaluated in a series of experiments that examined the influence of pressure in both Argon and air environments at 5.4 MPa. Results of the study demonstrated that significantly lower onset temperatures were observed when the ammonium nitrate (AN) explosive was used in air. Results of the ARC study suggested that lower initial temperatures resulted in an elevated onset temperature. Lower onset temperatures observed in the study were attributed to oxidation of the oil phase in the emulsion. Onset temperatures for the AN explosive were lower than rates observed for the emulsion explosives. The size of the samples also influenced onset temperatures in both the ARC and HFC analyses. At heating rates of 0.1 degrees C per minute, the results of heat flux calorimetry revealed a complex exotherm pattern for the emulsion explosive in both Argon and in air. The high pressure of inert gas inhibited and delayed the exothermic reactions for the emulsion explosives. It was concluded that air-oxidative decomposition results in lower onset temperatures that are influenced by higher pressure rates. 8 refs., 3 tabs., 8 figs.

  1. Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm

    International Nuclear Information System (INIS)

    Wang Shengwei; Xu Xinhua

    2006-01-01

    Building thermal transfer models are essential to predict transient cooling or heating requirements for performance monitoring, diagnosis and control strategy analysis. Detailed physical models are time consuming and often not cost effective. Black box models require a significant amount of training data and may not always reflect the physical behaviors. In this study, a building is described using a simplified thermal network model. For the building envelope, the model parameters can be determined using easily available physical details. For building internal mass having thermal capacitance, including components such as furniture, partitions etc., it is very difficult to obtain detailed physical properties. To overcome this problem, this paper proposes to present the building internal mass with a thermal network structure of lumped thermal mass and estimate the lumped parameters using operation data. A genetic algorithm estimator is developed to estimate the lumped internal thermal parameters of the building thermal network model using the operation data collected from site monitoring. The simplified dynamic model of building internal mass is validated in different weather conditions

  2. Comfort-box controls individual level of comfort. Domotica home network for indoor climate management; Comfort-box regelt individueel comfort-niveau. Domotica-huisnetwerk voor beheer binnenklimaat

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, I.G; Warmer, C.J.; Bakker, E.J. [ECN Duurzame Energie in de Gebouwde Omgeving DEGO, Petten (Netherlands)

    2005-03-01

    The Comfort-Box (or C-Box) project is an automatic and continuous control system for energy efficient and cost-effective thermal comfort in houses. In this article detailed information is given of the design and performance of the C-Box. [Dutch] De huidige regelsystemen voor het binnenklimaat in woningen zijn voor verbetering vatbaar. Met het Comfort-boxconcept is een regeling ontwikkeld die automatisch en continu het individuele comfortniveau regelt in woningen, waarbij afwegingen worden gemaakt tussen kosten en comfort. De Comfort-box blijkt in staat te zijn het binnencomfort op energie- en kostenefficiente wijze te beheren.

  3. Impact of seasonal thermal stress on physiological and blood biochemical parameters in pigs under different dietary energy levels.

    Science.gov (United States)

    Pathak, P K; Roychoudhury, R; Saharia, J; Borah, M C; Dutta, D J; Bhuyan, R; Kalita, D

    2018-02-13

    The present study was formulated to find out the status of important season related thermal stress biomarkers of pure-bred (Hampshire) and crossbred (50% Hampshire × 50% local) pigs under the agro-climatic condition of Assam State, India. The experiment was also aimed to study the role of different level of energy ration (110, 100, and 90% energy of NRC feeding standard for pig) in variation of physiological and biochemical parameters in two genetic groups of pigs in different seasons. The metabolizable energy value were 3260, 2936.5, and 3585.8 kcal/kg in grower ration and 3260.2, 2936.6, and 3587 kcal/kg in finisher ration for normal energy (NE), low energy (LE) and high energy (HE), respectively. Both the genetic group of animals were housed separately under intensive system of management. Each pen was measuring 10' × 12' along with an outer enclosure. Six weaned piglets (almost similar body weight of average 10.55 kg) of each group were kept in a separate pen. However, after attainment of 35 kg body weight, the animals of a group were divided in two pens of three animals each. The present experiment indicated that average ambient temperature during summer months (27.33-29.51 °C) was above the comfort zone for pigs (22 °C). The significantly (P energy (HE) ration during summer season. Serum triiodothyronine (T 3 ) and thyroxine (T 4 ) concentrations were significantly (P energy level of the ration might be helpful to minimize the effects of thermal stress during summer.

  4. A comfort-based, energy-aware HVAC agent and its applications in the smart grid

    OpenAIRE

    Auffenberg, Frederik

    2017-01-01

    In this thesis, we introduce a novel heating, ventilation and air conditioning (HVAC) agent that maintains a comfortable thermal environmant for its users while minimising energy consumption of the HVAC system and incorporating demand side management (DSM) signals to shift HVAC loads towards achieving more desirable overall load profiles. To do so, the agent needs to be able to accurately predict user comfort, for example by using a thermal comfort model. Existing thermal comfort models are u...

  5. Influence of groundwater flow on the estimation of subsurface thermal parameters

    Science.gov (United States)

    Verdoya, Massimo; Chiozzi, Paolo

    2018-01-01

    We investigated the influence of groundwater flow on the thermal tests performed in borehole heat exchangers to infer the underground thermal properties. Temperature-time signals were simulated with a moving line source (MLS) model under different hypotheses of Darcy velocity. Periodic and random noise was included in the synthetic data obtained with this model in order to mimic high-frequency disturbances caused by several possible sources (e.g. equipment instability and changes in environmental conditions during the experiment) that often occur in real signals. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root-mean-square error between the synthetic dataset and the model. The calculated thermal and hydraulic parameters were consistent with the "a priori" values. The optimisation procedure results were then tested with the infinite line source (ILS) model. For a Darcy velocity exceeding 10-7 m s-1, ILS largely overestimates thermal conductivity. The approach relying on the MLS model was finally tested with real temperature-time data and produced reliable estimates of thermal conductivity, Darcy velocity and borehole thermal resistance. The inferred groundwater flow was cross checked by means of an independent method based on the analysis of temperature-depth logs recorded under thermal equilibrium conditions. Such a test validates the Darcy velocity inferred with the MLS approach.

  6. Avaliação do conforto térmico e desempenho de frangos de corte sob regime de criação diferenciado Evaluation of thermal comfort and performance of broiler chickens under different housing systems

    Directory of Open Access Journals (Sweden)

    Aérica C. Nazareno

    2009-12-01

    Full Text Available Esta pesquisa foi conduzida com o objetivo de avaliar três sistemas de criação para frangos de corte industrial, visando caracterizar o ambiente térmico e o desempenho animal. O experimento foi realizado no decorrer de 42 dias, desenvolvido em módulos de produção, divididos em 15 boxes com 10 aves por box, submetidas a três sistemas de criação: semi-confinado com 3 m² por ave de área de piquete (SC 3, semi-confinado com 6 m² por ave de área de piquete (SC 6 e confinamento total (CONF. O delineamento experimental foi inteiramente casualizado (DIC em parcelas subdivididas e médias comparadas pelo teste Tukey (P This research was conducted to evaluate three housing systems for broiler chicken production, aiming to characterize thermal environment and animal performance. The experiment was conducted over 42 days, developed in production modules, divided in 15 boxes with 10 birds per box, and submitted to three housing systems: semi-confined with 3 m² per broiler of paddock area (SC 3, semi-confined with 6 m² per broiler of paddock area (SC 6 and total confinement (CONF. The experimental design was completely randomized (CRD, in split plots, with the means compared through the Tukey test (p < 0.05. The meteorological variables and comfort indices indicated the system of accommodation SC 3 as the one that allowed the better natural conditioning heat to the birds, presenting the average values of 25.4 °C, 69.9 kJ kg-1 and 75.7 for dry bulb temperature (Tbs, enthalpy (h and black globe humidity index (ITGU, respectively. Physiological parameters respiratory rate (mov min-1 and cloacal temperature (°C had mean values more appropriate to birds subjected to the accommodation system SC 3. The housing systems promote significant changes in performance of broiler chicken in relation to feed consumption (CR and body weight (PC in housing systems SC 3 and CONF, compared with SC 6, which presented performance losses.

  7. Noise and noise disturbances from wind power plants - Tests with interactive control of sound parameters for more comfortable and less perceptible sounds; Buller och bullerstoerningar fraan vindkraftverk - Foersoek med interaktiv styrning av ljudparametrar foer behagligare och mindre maerkbara ljud

    Energy Technology Data Exchange (ETDEWEB)

    Persson-Waye, K.; Oehrstroem, E.; Bjoerkman, M.; Agge, A. [Goeteborg Univ. (Sweden). Dept. of Environmental Medicine

    2001-12-01

    In experimental pilot studies, a methodology has been worked out for interactively varying sound parameters in wind power plants. In the tests, 24 persons varied the center frequency of different band-widths, the frequency of a sinus-tone and the amplitude-modulation of a sinus-tone in order to create as comfortable a sound as possible. The variations build on the noise from the two wind turbines Bonus and Wind World. The variations were performed with a constant dba level. The results showed that the majority preferred a low-frequency tone (94 Hz and 115 Hz for Wind World and Bonus, respectively). The mean of the most comfortable amplitude-modulation varied between 18 and 22 Hz, depending on the ground frequency. The mean of the center-frequency for the different band-widths varied from 785 to 1104 Hz. In order to study the influence of the wind velocity on the acoustic character of the noise, a long-time measurement program has been performed. A remotely controlled system has been developed, where wind velocity, wind direction, temperature and humidity are registered simultaneously with the noise. Long-time registrations have been performed for four different wing turbines.

  8. Thermal conductivity of unconventional superconductors: a probe of the order parameter symmetry

    International Nuclear Information System (INIS)

    Ausloos, M.; Houssa, M.

    1999-01-01

    Experimental data and theoretical aspects of the thermal conductivity κ and magneto-thermal conductivity κ(B) of high-T c superconductors and heavy fermions are reviewed in the very-low-temperature region in order to sort out features and convincing arguments for deciding on the order parameter symmetry. In the case of high-T c cuprates, the analysis of experimental results in YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 samples is not consistent with an isotropic s-wave energy gap parameter but can be well described by considering an anisotropic d x 2 -y 2 -wave energy gap parameter, i.e. with nodes in the gap. Furthermore, the field dependence of the thermal conductivity of e.g. YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 can be explained by assuming that electrons are mainly scattered by the vortex cores like those of a d-wave superconductor. In the case of the heavy fermion superconductor UPt 3 , the κ anisotropy found for the field-free and field dependence of the thermal conductivity allows us to discriminate the symmetry of the energy gap parameter. The latter is consistent with a gap parameter of E 2u type, i.e. with lines of nodes along the basal plane and quadratic point nodes along the c-axis. (author)

  9. An Investigation On Air and Thermal Transmission Through Knitted Fabric Structures Using the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Ghosh Anindya

    2017-06-01

    Full Text Available Knitted fabrics have excellent comfort properties because of their typical porous structure. Different comfort properties of knitted fabrics such as air permeability, thermal absorptivity, and thermal conductivity depend on the properties of raw material and knitting parameters. In this paper, an investigation was done to observe the effect of yarn count, loop length, knitting speed, and yarn input tension in the presence of two uncontrollable noise factors on selected comfort properties of single jersey and 1×1 rib knitted fabrics using the Taguchi experimental design. The results show that yarn count and loop length have significant influence on the thermo-physiological comfort properties of knitted fabrics.

  10. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    International Nuclear Information System (INIS)

    Mamand, S.M.; Omar, M.S.; Muhammad, A.J.

    2012-01-01

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: ► A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. ► A direct method is used to calculate phonon group velocity for these nanowires. ► 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. ► Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2–300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10 14 m −2 the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10 14 m −2 , lattice thermal conductivity would be independent of that.

  11. Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Mamand, S.M., E-mail: soran.mamand@univsul.net [Department of Physics, College of Science, University of Sulaimani, Sulaimanyah, Iraqi Kurdistan (Iraq); Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Muhammad, A.J. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)

    2012-05-15

    Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

  12. Estimativa das condições de conforto térmico para avicultura de postura usando a teoria dos conjuntos Fuzzy Estimated thermal comfort condition for layers according to Fuzzy theory

    Directory of Open Access Journals (Sweden)

    Henrique L. de Oliveira

    2005-08-01

    Full Text Available Neste trabalho, foi utilizada uma ferramenta matemática promissora na análise de sistemas e/ou processos, particularmente na área de produção animal. Essa ferramenta é a desenvolvida segundo a abordagem da teoria dos Conjuntos Fuzzy e, neste caso específico, permitiu a análise da composição das variáveis climáticas independentes, como temperatura de bulbo seco e umidade relativa do ar, que influenciam na variável dependente denominada conforto térmico das aves. Foi realizada a construção de regras baseadas na intuição humana, segundo o conhecimento de especialistas da área, a partir do que é possível simular cenários distintos para o suporte à decisão de construção de galpões para abrigo a animais. Neste trabalho, foi estimado o conforto térmico para alojamento de aves poedeiras em produção. Os resultados foram analisados, usando-se o ambiente de computação científica MATLAB 6.5, o que pode ser realizado iterativamente a cada cenário gerado. Com base nos resultados obtidos, pode-se analisar as condições de conforto para distintas composições das variáveis de entrada.In this research a promising mathematical tool in system's analysis and/or process particularly in the area of Animal Production was used. Such tool was developed according to Fuzzy theory which in this specific case allows analyzing the composition of independent climatic variables, such as temperature and humidity that may influence the dependent variable named bird's thermal comfort. It was necessary to build up rules based on human intuition according to experts in this area, from which was possible to simulate distinct scenarios for supporting the decision of the construction of animal's housing. In this research thermal comfort for layer's housing in production were considered. The results were analyzed using the scientific computer environment of MATLAB 6.5, which could be done iteratively for each generated scenario. Based on the results

  13. Thermal comfort in reduced models of broilers' houses, under different types of roofing materials Conforto térmico em modelos reduzidos de galpões para frangos de corte, utilizando-se de diferentes tipos de coberturas

    Directory of Open Access Journals (Sweden)

    Eduardo A. de Almeida

    2013-02-01

    Full Text Available The research was developed to evaluate the use of different types of roofing materials regularly used in poultry houses. Measurements of thermal comfort were made through the use of techniques such as the Black Globe and Humidity Index (BGHI, the Thermal Heat Load (THL and Enthalpy (H. Conducted in the State University of Goiás, during the months of April and May, 2011, the experiment was composed of five different treatments: AC - Asbestos cement tiles, BA -Bamboo tiles, BAP - Bamboo tiles painted in white, FB -Vegetable fiber tiles and bitumen, FBP -Vegetable fiber tiles and bitumen painted in white. The experiment consisted in 15 repetitions, which were considered the different days of measurements taken. Throughout the studied period, the time of the day considered the least comfortable was the one observed at 2:00pm, and the coverage of vegetable fiber and bitumen showed the highest value of BGHI (84.1 when compared to other types of coverage, characterizing a situation of lower thermal comfort, and no difference was found for THL and H on treatments in the studied region.Esta pesquisa foi conduzida com o objetivo de avaliar diferentes tipos de coberturas em instalações para aves, por meio do Índice de Temperatura de Globo Negro e Umidade (ITGU, Carga Térmica de Radiação (CTR e Entalpia (H. O experimento foi conduzido na Universidade Estadual de Goiás, entre os meses de abril e maio de 2011, sendo composto por cinco tratamentos (coberturas: CA -Telha de cimento-amianto; BA -Telha de bambu; BAP -Telha de bambu pintada de branco; FB -Telha de fibra vegetal e betume; FBP -Telha de fibra vegetal e betume pintada de branco, com 15 repetições, sendo as repetições os dias de medição. Dentre os horários estudados, o considerado menos confortável foi às 14h, sendo que a cobertura de fibra vegetal e betume foi a que apresentou maior valor de ITGU (84,1 quando comparada às demais coberturas, caracterizando uma situação de menor

  14. Investigation on the effectiveness of various methods of information dissemination aiming at a change of occupant behaviour related to thermal comfort and exergy consumption

    International Nuclear Information System (INIS)

    Schweiker, Marcel; Shukuya, Masanori

    2011-01-01

    These days the number of projects trying to urge a change in the occupant's behaviour towards a sustainable one is increasing. However, still less is known about the effect of such measures. This paper describes the findings of two investigations, a field measurement and an Internet-based survey, both including the dissemination of information about strategies for a high level of comfort without much energy usage. The focus was on the ability to quantify the effect of such measures on the heating and cooling behaviour. As a result, those who participated in a workshop were more likely to change their behaviour than those who received an information brochure only; whether this was due to the method employed or the type of participants could not be ascertained. However, the workshop participants reduced their cooling device usage by up to 16%. The concept of exergy was used to show how this reduction affects the exergy consumption of the cooling device, because it enables us to consider the qualitative aspect of energy as a quantity to be calculated. This showed that the exergy consumed by the workshop group was reduced by up to 20% comparing their behaviour before and after the information dissemination. - Research Highlights: → Data collection through field measurement and an Internet-based survey. → Both surveys included the distribution of information about strategies for a high level of comfort without much energy usage. → Logistic regression analysis in order to quantify the effect of such knowledge transfer measures on the heating and cooling behaviour. → Those participating in the workshop reduced their cooling device usage by up to 20% compared to a control group. → As constraints, time limitations and tediousness are identified.

  15. Lab determination of soil thermal Conductivity. Fundamentals, geothermal applications and relationship with other soil parameters

    International Nuclear Information System (INIS)

    Nope Gomez, F. I.; Santiago, C. de

    2014-01-01

    Shallow geothermal energy application in buildings and civil engineering works (tunnels, diaphragm walls, bridge decks, roads, and train/metro stations) are spreading rapidly all around the world. the dual role of these energy geostructures makes their design challenging and more complex with respect to conventional projects. Besides the geotechnical parameters, thermal behavior parameters are needed in the design and dimensioning to warrantee the thermo-mechanical stability of the geothermal structural element. As for obtaining any soil thermal parameter, both in situ and laboratory methods can be used. The present study focuses on a lab test known the need ke method to measure the thermal conductivity of soils (λ). Through this research work, different variables inherent to the test procedure, as well as external factors that may have an impact on thermal conductivity measurements were studied. Samples extracted from the cores obtained from a geothermal drilling conducted on the campus of the Polytechnic University of Valencia, showing different mineralogical and nature composition (granular and clayey) were studied different (moisture and density) compacting conditions. 550 thermal conductivity measurements were performed, from which the influence of factors such as the degree of saturation-moisture, dry density and type of material was verified. Finally, a stratigraphic profile with thermal conductivities ranges of each geologic level was drawn, considering the degree of saturation ranges evaluated in lab tests, in order to be compared and related to thermal response test, currently in progress. Finally, a test protocol is set and proposed, for both remolded and undisturbed samples, under different saturation conditions. Together with this test protocol, a set of recommendations regarding the configuration of the measuring equipment, treatment of samples and other variables, are posed in order to reduce errors in the final results. (Author)

  16. POWER-SAVING PROCEDURES AND ANIMAL THERMAL COMFORT AT A GROWING/FINISHING SWINE PRODUCTION UNIT/USO RACIONAL DE ENERGIA ELÉTRICA E CONFORTO TÉRMICO EM INSTALAÇÕES PARA SUÍNOS EM CRESCIMENTO E TERMINAÇÃO

    Directory of Open Access Journals (Sweden)

    JULIANA SARUBBI

    2008-11-01

    Full Text Available ABSTRACTClimate control systems are one alternative for minimizing losses due to high temperature and large thermal variations in swine production units. However, because of the possibility of increase the productions cost, the benefits of climate control systems should be assessed before they areimplemented. This research aims to assess the efficiency of different swine growing and finishing facilities regarding the animal thermal comfort, and the use of electric energy. The treatments are the following: S1 – two old automatic started fans + constructively inappropriate, S2 – two newautomatic started + constructively inappropriate fans, S3 – one old manual started fan + constructively inappropriate, S4 - no one acclimatization system + constructively appropriate. The variables used in comparing these constructions were dry-bulb temperature, relative humidity, enthalpy and the thermal control index (ITH, as well as the electric variables and electric energy efficiency indexes. The use of two new fans and a sprayer system, both automatically started, provided animals with better thermal comfort, than compared wit h old ones. The use of automatic climate control equipment improves thermal comfort conditions as well as the use of electric energy.Keywords: Swine Production, Thermal Comfort, Energy Conservation and Rational Use.

  17. Thermal neutron diffusion parameters dependent on the flux energy distribution in finite hydrogenous media

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1999-01-01

    Macroscopic parameters for a description of the thermal neutron transport in finite volumes are considered. A very good correspondence between the theoretical and experimental parameters of hydrogenous media is attained. Thermal neutrons in the medium possess an energy distribution, which is dependent on the size (characterized by the geometric buckling) and on the neutron transport properties of the medium. In a hydrogenous material the thermal neutron transport is dominated by the scattering cross section which is strongly dependent on energy. A monoenergetic treatment of the thermal neutron group (admissible for other materials) leads in this case to a discrepancy between theoretical and experimental results. In the present paper the theoretical definitions of the pulsed thermal neutron parameters (the absorption rate, the diffusion coefficient, and the diffusion cooling coefficient) are based on Nelkin's analysis of the decay of a neutron pulse. Problems of the experimental determination of these parameters for a hydrogenous medium are discussed. A theoretical calculation of the pulsed parameters requires knowledge of the scattering kernel. For thermal neutrons it is individual for each hydrogenous material because neutron scattering on hydrogen nuclei bound in a molecule is affected by the molecular dynamics (characterized with internal energy modes which are comparable to the incident neutron energy). Granada's synthetic model for slow-neutron scattering is used. The complete up-dated formalism of calculation of the energy transfer scattering kernel after this model is presented in the paper. An influence of some minor variants within the model on the calculated differential and integral neutron parameters is shown. The theoretical energy-dependent scattering cross section (of Plexiglas) is compared to experimental results. A particular attention is paid to the calculation of the diffusion cooling coefficient. A solution of an equation, which determines the

  18. Thermal parameter identification for non-Fourier heat transfer from molecular dynamics

    Science.gov (United States)

    Singh, Amit; Tadmor, Ellad B.

    2015-10-01

    Fourier's law leads to a diffusive model of heat transfer in which a thermal signal propagates infinitely fast and the only material parameter is the thermal conductivity. In micro- and nano-scale systems, non-Fourier effects involving coupled diffusion and wavelike propagation of heat can become important. An extension of Fourier's law to account for such effects leads to a Jeffreys-type model for heat transfer with two relaxation times. We propose a new Thermal Parameter Identification (TPI) method for obtaining the Jeffreys-type thermal parameters from molecular dynamics simulations. The TPI method makes use of a nonlinear regression-based approach for obtaining the coefficients in analytical expressions for cosine and sine-weighted averages of temperature and heat flux over the length of the system. The method is applied to argon nanobeams over a range of temperature and system sizes. The results for thermal conductivity are found to be in good agreement with standard Green-Kubo and direct method calculations. The TPI method is more efficient for systems with high diffusivity and has the advantage, that unlike the direct method, it is free from the influence of thermostats. In addition, the method provides the thermal relaxation times for argon. Using the determined parameters, the Jeffreys-type model is able to reproduce the molecular dynamics results for a short-duration heat pulse where wavelike propagation of heat is observed thereby confirming the existence of second sound in argon. An implementation of the TPI method in MATLAB is available as part of the online supplementary material.

  19. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  20. Development of thermal response spectroscopy technique for determination of defect parameters

    Science.gov (United States)

    Sakagami, Takahide; Imanishi, Daisuke; Kubo, Shiro

    2007-04-01

    Thermal response spectroscopy method was newly developed for quantitative measurement of size and depth of the defects. In this method, sequential thermal response data observed on the surface of objective body under active step heating were processed by lock-in analysis scheme based on the Fourier series expansion, in which Fourier coefficients synchronizing with sine and cosine waves were calculated. Phase and amplitude were calculated using these coefficients for different thermal fluctuation periods and different defect parameters, such as size and depth of the defects. Obtained phase and amplitude were represented in spectroscopic diagram. It was found that plotted phase and amplitude data of certain defect depth obtained for various thermal fluctuation periods showed characteristic curves in the diagram. An inverse analysis method for the thermal response spectroscopy was proposed for quantitative measurement of size and depth of the defects. The least-squares residual inverse analysis scheme was applied to the defect parameter determination based on the Fourier coefficient values in the spectroscopic diagram. It was found that defect depth and size can be quantitatively determined by the inverse analyses.

  1. The paradox of comfort.

    Science.gov (United States)

    Morse, J M; Bottorff, J L; Hutchinson, S

    1995-01-01

    Patients who had experienced major illness, surgery, or trauma were asked to "tell their stories." Using a phenomenological method, eight themes emerged that reflected the experience of the lived body (corporeality) associated with discomfort. These were the dis-eased body, the disobedient body, the deceiving body, the vulnerable body, the violated body, the resigned body, the enduring body, and the betraying body. To patients, comfort is not an ultimate state of peace and serenity, but rather the relief, even temporary relief, from the most demanding discomfort. Illness and injury place patients' bodies into the foreground, dominating their attention and disrupting their accustomed orientation to the world. Thus, an understanding of patient comfort that is linked with discomfort and empowers or strengthens patients in relation to their bodies provides important insight. The authors argue that attaining comfort is a paradox best understood by reflecting not on the concept of comfort per se, but on its converse. This supports, rather than negates, the construct of comfort as the goal of nursing care.

  2. The Influence of Injection Molding Parameter on Properties of Thermally Conductive Plastic

    Science.gov (United States)

    Hafizah Azis, N.; Zulafif Rahim, M.; Sa'ude, Nasuha; Rafai, N.; Yusof, M. S.; Tobi, ALM; Sharif, ZM; Rasidi Ibrahim, M.; Ismail, A. E.

    2017-05-01

    Thermally conductive plastic is the composite between metal-plastic material that is becoming popular because if it special characteristic. Injection moulding was regarded as the best process for mass manufacturing of the plastic composite due to its low production cost. The objective of this research is to find the best combination of the injection parameter setting and to find the most significant factor that effect the strength and thermal conductivity of the composite. Several parameter such as the volume percentage of copper powder, nozzle temperature and injection pressure of injection moulding machine were investigated. The analysis was done using Design Expert Software by implementing design of experiment method. From the analysis, the significant effects were determined and mathematical models of only significant effect were established. In order to ensure the validity of the model, confirmation run was done and percentage errors were calculated. It was found that the best combination parameter setting to maximize the value of tensile strength is volume percentage of copper powder of 3.00%, the nozzle temperature of 195°C and the injection pressure of 65%, and the best combination parameter settings to maximize the value of thermal conductivity is volume percentage of copper powder of 7.00%, the nozzle temperature of 195°C and the injection pressure of 65% as recommended..

  3. Supplementary data of “Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ”

    Directory of Open Access Journals (Sweden)

    Jiyun Song

    2015-12-01

    Full Text Available An advanced Markov-Chain Monte Carlo approach called Subset Simulation is described in Au and Beck (2001 [1] was used to quantify parameter uncertainty and model sensitivity of the urban land-atmospheric framework, viz. the coupled urban canopy model-single column model (UCM-SCM. The results show that the atmospheric dynamics are sensitive to land surface conditions. The most sensitive parameters are dimensional parameters, i.e. roof width, aspect ratio, roughness length of heat and momentum, since these parameters control the magnitude of sensible heat flux. The relative insensitive parameters are hydrological parameters since the lawns or green roofs in urban areas are regularly irrigated so that the water availability for evaporation is never constrained.

  4. TOPICAL REVIEW: Thermal conductivity of unconventional superconductors: a probe of the order parameter symmetry

    Science.gov (United States)

    Ausloos, M.; Houssa, M.

    1999-07-01

    Experimental data and theoretical aspects of the thermal conductivity icons/Journals/Common/kappa" ALT="kappa" ALIGN="TOP"/> and magneto-thermal conductivity icons/Journals/Common/kappa" ALT="kappa" ALIGN="TOP"/>(B) of high-Tc superconductors and heavy fermions are reviewed in the very-low-temperature region in order to sort out features and convincing arguments for deciding on the order parameter symmetry. In the case of high-Tc cuprates, the analysis of experimental results in YBa2Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> and Bi2Sr2CaCu2O8 samples is not consistent with an isotropic s-wave energy gap parameter but can be well described by considering an anisotropic dx2-y2-wave energy gap parameter, i.e. with nodes in the gap. Furthermore, the field dependence of the thermal conductivity of e.g. YBa2Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> and Bi2Sr2CaCu2O8 can be explained by assuming that electrons are mainly scattered by the vortex cores like those of a d-wave superconductor. In the case of the heavy fermion superconductor UPt3, the icons/Journals/Common/kappa" ALT="kappa" ALIGN="TOP"/> anisotropy found for the field-free and field dependence of the thermal conductivity allows us to discriminate the symmetry of the energy gap parameter. The latter is consistent with a gap parameter of E2u type, i.e. with lines of nodes along the basal plane and quadratic point nodes along the c-axis.

  5. Challenging the assumptions for thermal sensation scales

    DEFF Research Database (Denmark)

    Schweiker, Marcel; Fuchs, Xaver; Becker, Susanne

    2016-01-01

    Scales are widely used to assess the personal experience of thermal conditions in built environments. Most commonly, thermal sensation is assessed, mainly to determine whether a particular thermal condition is comfortable for individuals. A seven-point thermal sensation scale has been used...... extensively, which is suitable for describing a one-dimensional relationship between physical parameters of indoor environments and subjective thermal sensation. However, human thermal comfort is not merely a physiological but also a psychological phenomenon. Thus, it should be investigated how scales for its...... assessment could benefit from a multidimensional conceptualization. The common assumptions related to the usage of thermal sensation scales are challenged, empirically supported by two analyses. These analyses show that the relationship between temperature and subjective thermal sensation is non...

  6. The Effects of Set-Points and Dead-Bands of the HVAC System on the Energy Consumption and Occupant Thermal Comfort

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2013-01-01

    with a ground heat exchanger, a ground coupled heat pump, embedded pipes in the floor and in the ceiling, a ventilation system (mechanical and natural), a domestic hot water tank and photovoltaic/thermal panels on the roof. Preliminary evaluations showed that for Madrid, change of indoor set-point in cooling...

  7. Comfort Foods and Mood

    Science.gov (United States)

    2008-07-01

    eating : • Overweight /Obese or Weight status • Emotional Eaters • Dieting Status/Restrained Eaters • Gender may differ • Binge Eaters QuickTime™ and a...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Overview • Stress & eating • Does food improve mood? • Emotional eating • Comfort Foods...regularly QuickTime™ and a decompressor are needed to see this picture. Stress & Eating • Comfort foods may be turned to in times of stress • Stress

  8. Parameter estimation of breast tumour using dynamic neural network from thermal pattern

    Directory of Open Access Journals (Sweden)

    Elham Saniei

    2016-11-01

    Full Text Available This article presents a new approach for estimating the depth, size, and metabolic heat generation rate of a tumour. For this purpose, the surface temperature distribution of a breast thermal image and the dynamic neural network was used. The research consisted of two steps: forward and inverse. For the forward section, a finite element model was created. The Pennes bio-heat equation was solved to find surface and depth temperature distributions. Data from the analysis, then, were used to train the dynamic neural network model (DNN. Results from the DNN training/testing confirmed those of the finite element model. For the inverse section, the trained neural network was applied to estimate the depth temperature distribution (tumour position from the surface temperature profile, extracted from the thermal image. Finally, tumour parameters were obtained from the depth temperature distribution. Experimental findings (20 patients were promising in terms of the model’s potential for retrieving tumour parameters.

  9. Lattice parameters and thermal expansion of delta-VNsub(1-x) from 298-1000 K

    International Nuclear Information System (INIS)

    Lengauer, W.; Ettmayer, P.

    1986-01-01

    The thermal expansion of VNsub(1-x) was determined from measurements of the lattice parameters in the temperature range of 298-1000 K and in the composition range of VNsub(0.707) - VNsub(0.996). Within the accuracy of the results the expansion of the lattice parameter with temperature is not dependent on the composition. The lattice parameter as a function of composition ([N]/[V] = 0.707-0.996) and temperature (198-1000 K) is given by a([N]/[V], T) = 0.38872+0.02488 ([N]/[V]) - (1.083+-0.021) x 10 -4 Tsup(1/2) + (6.2+-0.1) x 10 - sup6T. The coefficient of linear thermal expansion as a function of temperature (in the same range) is given by α(T) = a([N]/[V], T) -1 [(-5.04+-0.01) x 10 -5 Tsup(1/2) + (6.2+-0.1) x 10 -6 ]. The average linear thermal expansion coefficient is αsub(av) = 9.70 +- 0.15 x 10 -6 K -1 (298-1000 K). The data are compared with those of several fcc transition metal nitrides collected and evaluated from the literature. (Author)

  10. Conforto térmico e desempenho de pintos de corte submetidos a diferentes sistemas de aquecimento no período de inverno Thermal comfort and performance of chicks submitted to different heating systems during winter

    Directory of Open Access Journals (Sweden)

    Marcelo Bastos Cordeiro

    2010-01-01

    Full Text Available Avaliou-se o efeito de três sistemas de aquecimento de aviários no conforto térmico e no desempenho de pintos de corte criados no inverno na Região Sul do Brasil. Utilizaram-se três galpões avícolas com 17.700 aves (Cobb por galpão, em dois lotes de criação. Os sistemas de aquecimento avaliados foram: fornalha a lenha (aquecimento indireto do ar; campânulas infravermelhas a gás; e tambores de aquecimento por radiação com aquecimento suplementar de campânulas infravermelhas a gás. Para avaliação do ambiente térmico e do desempenho animal, foi utilizado delineamento em blocos casualizados, com três sistemas de aquecimento, em dois lotes de criação. Nas duas primeiras semanas de vida das aves, o sistema de tambor + campânulas é o mais eficiente em manter a temperatura e umidade relativa do ar na condição de conforto térmico das aves. Consequentemente, propicia melhores ganho de peso, conversão alimentar e eficiência produtiva.The objective of this study was to evaluate the effect of different poultry house heating systems on the thermal comfort and performance of broiler chicks during the winter period, in the southern region of Brazil. Three buildings were used, each containing 17,700 broiler chickens (Cobb, during two complete productive cycles. Three heating systems were evaluated: furnace with indirect air heating; infrared heater and radiant experimental "drum" system with an infrared supplemental heating system. In order to evaluate the thermal environment and animal performance, a randomized block experimental design with three heating system was used, in two complete productive cycles. In the first two weeks after birth, the radiant experimental "drum" system is the most efficient in maintaining the air temperature and relative humidity in thermal comfort condition of the broiler chicks and, consequently, result in the best results of weigh gain, dietary conversion and efficient production.

  11. Noise analysis to evaluate chick thermal comfort Análise de ruído para a avaliação do conforto térmico de pintinhos

    Directory of Open Access Journals (Sweden)

    Daniella Jorge de Moura

    2008-01-01

    Full Text Available The relationship between thermal environment and chick performance has widely been evaluated, however the consideration that the assessment of the comfort may be estimated by interpreting both amplitude and frequency of bird vocalization under tropical housing conditions is a new concept. This research had as objective of estimating thermal comfort for chicks during the heating phase using this new concept. An experiment was carried out inside a climate controlled chamber (A for establishing the behavioral pattern related to environmental temperature limits. Forty five chicks were reared inside a 2.3 m² box. A video camera was placed 2.0 m above the birds and the images were captured and registered in a computer. From the pattern determined in the controlled chamber an evaluation of the results was proceeded in a commercial broiler farm (experiment B using similar bird density in order to validate the data. Environmental temperature, and both amplitude and frequency of the vocalizations of the chick group reared under heating were continuously recorded in both experiments. A correlation between group behavioral pattern and their vocalization, was found, evaluated not only by the noise amplitude but also by the noise frequency spectrum. When the thermal inertia is maintained by adequate use of curtains the birds vocalized less which is coincident with the low sudden variation of the temperature of the environmental. It was possible to estimate the thermal comfort for chicks at the heating stage by recording the amplitude and the frequency of the noise emitted by the reared group.A relação entre o ambiente térmico e o desempenho de pintinhos tem sido estudada, entretanto a consideração de que a medida de conforto térmico possa ser estimada pela interpretação da amplitude e da freqüência da vocalização, em condições tropicais de alojamento é um conceito novo. Esta pesquisa teve como objetivo estimar uma medida de bem-estar t

  12. Everyday Comfort Practice

    DEFF Research Database (Denmark)

    Jaffari, Svenja

    , environmental psychology or architectural theory, have been theoretically and conceptually challenging this conventional notion of indoor comfort being controlled by a building. What these are mainly concerned with are aspects of sustainability in terms of energy costs, and applicability in terms of people...

  13. Sensitivity analysis of hydraulic and thermal parameters inducing anomalous heat flow in the Lower Yarmouk Gorge

    Science.gov (United States)

    Goretzki, Nora; Inbar, Nimrod; Kühn, Michael; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Siebert, Christian; Magri, Fabien

    2016-04-01

    The Lower Yarmouk Gorge, at the border between Israel and Jordan, is characterized by an anomalous temperature gradient of 46 °C/km. Numerical simulations of thermally-driven flow show that ascending thermal waters are the result of mixed convection, i.e. the interaction between the regional flow from the surrounding heights and buoyant flow within permeable faults [1]. Those models were calibrated against available temperature logs by running several forward problems (FP), with a classic "trial and error" method. In the present study, inverse problems (IP) are applied to find alternative parameter distributions that also lead to the observed thermal anomalies. The investigated physical parameters are hydraulic conductivity and thermal conductivity. To solve the IP, the PEST® code [2] is applied via the graphical interface FEPEST® in FEFLOW® [3]. The results show that both hydraulic and thermal conductivity are consistent with the values determined with the trial and error calibrations, which precede this study. However, the IP indicates that the hydraulic conductivity of the Senonian Paleocene aquitard can be 8.54*10-3 m/d, which is three times lower than the originally estimated value in [1]. Moreover, the IP suggests that the hydraulic conductivity in the faults can increase locally up to 0.17 m/d. These highly permeable areas can be interpreted as local damage zones at the faults/units intersections. They can act as lateral pathways in the deep aquifers that allow deep outflow of thermal water. This presentation provides an example about the application of FP and IP to infer a wide range of parameter values that reproduce observed environmental issues. [1] Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520, 342-355 [2] Doherty J (2010) PEST: Model-Independent Parameter Estimation. user

  14. Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state

    Science.gov (United States)

    Kawamura, Taichi; Lognonné, Philippe; Nishikawa, Yasuhiro; Tanaka, Satoshi

    2017-07-01

    While deep moonquakes are seismic events commonly observed on the Moon, their source mechanism is still unexplained. The two main issues are poorly constrained source parameters and incompatibilities between the thermal profiles suggested by many studies and the apparent need for brittle properties at these depths. In this study, we reinvestigated the deep moonquake data to reestimate its source parameters and uncover the characteristics of deep moonquake faults that differ from those on Earth. We first improve the estimation of source parameters through spectral analysis using "new" broadband seismic records made by combining those of the Apollo long- and short-period seismometers. We use the broader frequency band of the combined spectra to estimate corner frequencies and DC values of spectra, which are important parameters to constrain the source parameters. We further use the spectral features to estimate seismic moments and stress drops for more than 100 deep moonquake events from three different source regions. This study revealed that deep moonquake faults are extremely smooth compared to terrestrial faults. Second, we reevaluate the brittle-ductile transition temperature that is consistent with the obtained source parameters. We show that the source parameters imply that the tidal stress is the main source of the stress glut causing deep moonquakes and the large strain rate from tides makes the brittle-ductile transition temperature higher. Higher transition temperatures open a new possibility to construct a thermal model that is consistent with deep moonquake occurrence and pressure condition and thereby improve our understandings of the deep moonquake source mechanism.

  15. Estimation of thermal contact parameters at the interface of two sliding bodies

    Energy Technology Data Exchange (ETDEWEB)

    Bauzin, J G; Laraqi, N; Bairi, A [University of Paris 10, Thermique-Interfaces-Environnement, TIE, 50 rue de Sevres, 92410 Ville d' Avray (France)], E-mail: jbauzin@u-paris10.fr

    2008-11-01

    The knowledge of heat transfer between sliding solids has determinant applications in many industrial sectors (motor, railway, space...). The heat flux generated by friction increases the temperatures, which can create an excessive deformation of these solids, leading to the damaging of surfaces. The thermal coupling at the interface of two solids can be described either by a model of 'perfect contact' which assumes the equality of surface temperatures of solids, or by a model of 'imperfect contact' where a difference of temperatures is introduced at the interface due to surfaces irregularities. The modelling of heat transfer between two sliding solids introduces three macroscopic parameters: h{sub cg} (the thermal conductance), a (the local heat partition coefficient) and {phi}{sub g} (the generated flux). Some numerical approaches of the simultaneous identification of these parameters have been developed with an assumption of constant parameters. This article presents the first estimation of the three parameters for the dry real sliding contact.

  16. Analysis of imaging quality under the systematic parameters for thermal imaging system

    Science.gov (United States)

    Liu, Bin; Jin, Weiqi

    2009-07-01

    The integration of thermal imaging system and radar system could increase the range of target identification as well as strengthen the accuracy and reliability of detection, which is a state-of-the-art and mainstream integrated system to search any invasive target and guard homeland security. When it works, there is, however, one defect existing of what the thermal imaging system would produce affected images which could cause serious consequences when searching and detecting. In this paper, we study and reveal the reason why and how the affected images would occur utilizing the principle of lightwave before establishing mathematical imaging model which could meet the course of ray transmitting. In the further analysis, we give special attentions to the systematic parameters of the model, and analyse in detail all parameters which could possibly affect the imaging process and the function how it does respectively. With comprehensive research, we obtain detailed information about the regulation of diffractive phenomena shaped by these parameters. Analytical results have been convinced through the comparison between experimental images and MATLAB simulated images, while simulated images based on the parameters we revised to judge our expectation have good comparability with images acquired in reality.

  17. Comfort measures: a concept analysis.

    Science.gov (United States)

    Oliveira, Irene

    2013-01-01

    Reference to the concept of comfort measures is growing in the nursing and medical literature; however, the concept of comfort measures is rarely defined. For the comfort work of nurses to be recognized, nurses must be able to identify and delineate the key attributes of comfort measures. A concept analysis using Rodgers' evolutionary method (2000) was undertaken with the goal of identifying the core attributes of comfort measures and thereby clarifying this concept. Health care literature was accessed from the CINAHL and PubMed databases. No restrictions were placed on publication dates. Four main themes of attributes for comfort measures were identified during the analysis. Comfort measures involve an active, strategic process including elements of "stepping in" and "stepping back," are both simple and complex, move from a physical to a holistic perspective and are a part of supportive care. The antecedents to comfort measures are comfort needs and the most common consequence of comfort measures is enhanced comfort. Although the concept of comfort measures is often associated with end-of-life care, this analysis suggests that comfort measures are appropriate for nursing care in all settings and should be increasingly considered in the clinical management of patients who are living with multiple, chronic comorbidities.

  18. Thermal parameters changes in males of Rhinella arenarum (Anura:Bufonidae related to reproductive periods

    Directory of Open Access Journals (Sweden)

    Eduardo Alfredo Sanabria

    2011-03-01

    Full Text Available The regulation of body temperature in ectotherms has a major impact in their physiological and behavioral processes. Observing changes in thermal parameters related with reproduction allows us to better understand how Rhinella arenarum optimizes a thermal resource. The aim of this study was to compare the thermal parameters of this species between breeding and non-breeding periods. In the field, we recorded the body temperature from captured animals, the air temperature, and the temperature of the substrate. In the laboratory, we measured the temperature R. arenarum selected on a thermal gradient and the critical extreme temperatures. The results of our study show variations in thermal parameters between the two situations studied. This species makes efficient use of thermal resources during the breeding period by basking to significantly increase body temperature. Because calling is energetically costly for males, this behavior results in increased efficiency to callers during the breeding period. Rev. Biol. Trop. 59 (1: 347-353. Epub 2011 March 01.La regulación de la temperatura en ectotérmos tiene gran importancia en los procesos fisiológicos y comportamentales. Los cambios en los parámetros térmicos relacionados con la reproducción nos permiten entender de qué manera Rhinella arenarum optimiza el recurso térmico. El objetivo del presente trabajo fue comparar los parámetros térmicos de la especie entre el periodo reproductivo y no reproductivo. En el campo se registraron la temperatura corporal de los animales capturados, la temperatura del aire y del sustrato. Además, en laboratorio se registro la temperatura selecta en un gradiente térmico. Como así también las temperaturas criticas máxima y mínima. Los resultados de nuestro estudio muestran variaciones de los parámetros térmicos entre ambas situaciones estudiadas. Aparentemente esta especie hace un uso eficiente del recurso térmico durante el periodo reproductivo ya que

  19. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  20. On the Influence of Operational and Control Parameters in Thermal Response Testing of Borehole Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Borja Badenes

    2017-09-01

    Full Text Available Thermal response test (TRT is a common procedure for characterization of ground and borehole thermal properties needed for the design of a shallow geothermal heat pump system. In order to investigate and to develop more accurate and robust procedures for TRT control, modelling, and evaluation in semi-permeable soils with large water content, a pilot borehole heat exchanger was built in the main campus of the Universitat Politècnica de València. The present work shows the results of the experiments performed at the site, analysing the improvements that have been introduced both in the control of the heat injected during TRTs and in the methods to infer the ground thermal parameter. Three models are compared: two based on the infinite-line source theory and one based on the finite-line source scheme. The models were tested under two possible configurations of the equipment, i.e., with and without strict control of injected heat. Our results show the importance of heat injection control for a robust parameter assessment and the existence of additional heat transfer processes that the used models cannot completely characterize and that are related to the presence of significant groundwater flow at the site. In addition, our experience with the current installation and the knowledge about its strengths and weaknesses have allowed us to design a new and more complete test-site to help in the analysis and validation of new ground heat exchanger geometries.

  1. Zona de conforto térmico de ovinos da raça Santa Inês com base nas respostas fisiológicas Thermal comfort zone of Santa Ines sheep based on physiological responses

    Directory of Open Access Journals (Sweden)

    Antônio Eustáquio Filho

    2011-08-01

    Full Text Available Objetivou-se estabelecer a zona de conforto térmico para ovinos da raça Santa Inês por meio da comparação das respostas fisiológicas em diferentes opções de temperatura em câmara bioclimática. O experimento teve duração de 71 dias e foi conduzido utilizando-se sete borregas da raça Santa Inês por tratamento. Os tratamentos foram as faixas de temperatura de 10, 15, 20, 25, 30, 35 e 40°C, com três repetições (dias de exposição e cinco dias de intervalo. O delineamento experimental utilizado foi o inteiramente casualizado. Os dados meteorológicos coletados foram temperatura de bulbo seco, temperatura de bulbo úmido e temperatura de globo negro e os fisiológicos, frequência respiratória, frequência cardíaca, temperatura retal, temperatura timpânica, taxa de sudação e pressão arterial. Os mecanismos fisiológicos de dissipação de calor mostraram-se eficientes em manter a homeotermia dos animais em todas as temperaturas avaliadas. A temperatura de 25°C pode ser considerada a zona de conforto térmico para borregas da raça Santa Inês em ambiente com umidade relativa de 65%.The objective was to establish the thermal comfort zone for Santa Ines sheep by comparing the physiological responses at different options of temperatures in bioclimatic chamber. The experiment lasted 71 days and was conducted with the use of seven Santa Ines lambs per treatment. The treatments were temperature ranges of 10, 15, 20, 25, 30, 35 and 40ºC with tree replicates (exposure days and a five-day interval. The experimental design was completely randomized. Meteorological data collected were: dry bulb temperature; wet bulb temperature and black globe temperature. Physiological data analyzed were: respiratory rate, heart rate, rectal temperature, tympanic temperature, sweating rate and blood pressure. The physiological mechanisms of heat dissipation are shown to be effective in maintaining the homeothermy of the animals studied at all

  2. The impact of tree species selection on the thermal comfort of urban canyons in arid zones: The case of Mendoza, Argentina

    Directory of Open Access Journals (Sweden)

    María Angélica Ruiz

    2016-01-01

    Full Text Available Increasing urban vegetation is known worldwide to be a strategy for mitigating urban heat islands. This study evaluates how the energy balance of an urban canyon is affected by different combinations of urban morphology, tree species features, and building density. The thermal behaviors of 16 urban canyons, 16, 20 and 30m in width, located in areas of high and low building density, with three predominant types of tree species in the city were monitored in summer, in addition to one tree-free case. The COMFA energy balance model was used to assess the degree of habitability of open spaces. The results show that the appropriate selection of tree species is the key to maximizing the energy efficiency and habitability of urban spaces in areas of low building density in the city.

  3. Features of determining the nonmanufacturing premises comfort level by the integrated microclimate quality criteria

    Science.gov (United States)

    Buhmirov, V. V.; Prorokova, M. V.

    2015-01-01

    The method of determining a microclimate comfort level have been developed, taking into account the main parameters influencing the microclimate in residential, public and administration buildings, their mutual influence on the comfort level, and air quality.

  4. Features of determining the nonmanufacturing premises comfort level by the integrated microclimate quality criteria

    Directory of Open Access Journals (Sweden)

    Buhmirov V.V.

    2015-01-01

    Full Text Available The method of determining a microclimate comfort level have been developed, taking into account the main parameters influencing the microclimate in residential, public and administration buildings, their mutual influence on the comfort level, and air quality.

  5. Improving the comfort of garments

    CSIR Research Space (South Africa)

    Hunter, L

    2014-11-01

    Full Text Available ; therefore comfort is a contented enjoyment in physical or mental well-being’. Slater (1986) defined comfort as a pleasant state of physiological, psychological and physical harmony between a human being and his or her environment. Physiological comfort...

  6. Improving comfort and health with personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    microenvironment. Furthermore, HVAC systems should be designed to protect occupants from airborne transmission of infectious agents that may be present in exhaled air. Personalized ventilation is a new development in the field of HVAC and has the potential to fulfil the above requirements. This paper reviews......The thermal environment and air quality in buildings affects occupants¿ health, comfort and performance. The heating, ventilating and air-conditioning (HVAC) of buildings today is designed to provide a uniform room environment. However, large individual differences exist between occupants in regard...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analysed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  7. Determination of dispersion parameters of thermally deposited CdTe thin film

    Science.gov (United States)

    Dhimmar, J. M.; Desai, H. N.; Modi, B. P.

    2016-05-01

    Cadmium Telluride (CdTe) thin film was deposited onto glass substrates under a vacuum of 5 × 10-6 torr by using thermal evaporation technique. The prepared film was characterized for dispersion analysis from reflectance spectra within the wavelength range of 300 nm - 1100 nm which was recorded by using UV-Visible spectrophotometer. The dispersion parameters (oscillator strength, oscillator wavelength, high frequency dielectric constant, long wavelength refractive index, lattice dielectric constant and plasma resonance frequency) of CdTe thin film were investigated using single sellimeir oscillator model.

  8. Determination of dispersion parameters of thermally deposited CdTe thin film

    Energy Technology Data Exchange (ETDEWEB)

    Dhimmar, J. M., E-mail: bharatpmodi@gmail.com; Desai, H. N.; Modi, B. P. [Department of Physics, Veer Narmad South Gujarat University, Surat, Gujarat (India)

    2016-05-23

    Cadmium Telluride (CdTe) thin film was deposited onto glass substrates under a vacuum of 5 × 10{sup −6} torr by using thermal evaporation technique. The prepared film was characterized for dispersion analysis from reflectance spectra within the wavelength range of 300 nm – 1100 nm which was recorded by using UV-Visible spectrophotometer. The dispersion parameters (oscillator strength, oscillator wavelength, high frequency dielectric constant, long wavelength refractive index, lattice dielectric constant and plasma resonance frequency) of CdTe thin film were investigated using single sellimeir oscillator model.

  9. Determination of dispersion parameters of thermally deposited CdTe thin film

    International Nuclear Information System (INIS)

    Dhimmar, J. M.; Desai, H. N.; Modi, B. P.

    2016-01-01

    Cadmium Telluride (CdTe) thin film was deposited onto glass substrates under a vacuum of 5 × 10 −6 torr by using thermal evaporation technique. The prepared film was characterized for dispersion analysis from reflectance spectra within the wavelength range of 300 nm – 1100 nm which was recorded by using UV-Visible spectrophotometer. The dispersion parameters (oscillator strength, oscillator wavelength, high frequency dielectric constant, long wavelength refractive index, lattice dielectric constant and plasma resonance frequency) of CdTe thin film were investigated using single sellimeir oscillator model.

  10. Children's exposure to indoor air in urban nurseries-part I: CO2 and comfort assessment

    International Nuclear Information System (INIS)

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-01-01

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO 2 ), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO 2 concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO 2 concentrations found could indicate accumulation of other air pollutants

  11. The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland

    Directory of Open Access Journals (Sweden)

    Jan K. Kazak

    2018-04-01

    Full Text Available The increasing level of antropopression has a negative impact on environmental resources and has reached the level of our planetary boundaries. One limitation is land use change caused by urbanization. Global policies prove the need to undertake action in order to develop more sustainable human settlements, which would be adapted better to potential future climate change effects. Among such changes are the increase of average temperatures and extreme events like heat waves. Those changes are more severe in urban areas due to lan