Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-31
This conference day was jointly organized by the `university group of thermal engineering (GUT)` and the French association of thermal engineers. This book of proceedings contains 7 papers entitled: `energy spectra of a passive scalar undergoing advection by a chaotic flow`; `analysis of chaotic behaviours: from topological characterization to modeling`; `temperature homogeneity by Lagrangian chaos in a direct current flow heat exchanger: numerical approach`; ` thermal instabilities in a mixed convection phenomenon: nonlinear dynamics`; `experimental characterization study of the 3-D Lagrangian chaos by thermal analogy`; `influence of coherent structures on the mixing of a passive scalar`; `evaluation of the performance index of a chaotic advection effect heat exchanger for a wide range of Reynolds numbers`. (J.S.)
Cryptography with chaotic mixing
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Luiz P.L. de [Programa Interdisciplinar de Pos-Graduacao em Computacao Aplicada - PIPCA, Universidade do Vale do Rio dos Sinos - UNISINOS, Av. Unisinos 950, 93022-000 Sao Leopoldo, RS (Brazil)], E-mail: lpluna@unisinos.br; Sobottka, Marcelo [Centro de Modelamiento Matematico, Universidad de Chile, Blanco Encalada 2120, 7o piso Casilla 170/3, Correo 3, Santiago (Chile)], E-mail: sobottka@dim.uchile.cl
2008-02-15
We propose a cryptosystem based on one-dimensional chaotic maps of the form H{sub p}(x)=r{sub p}{sup -1}0G0r{sub p}(x) defined in the interval [0, 10{sup p}) for a positive integer parameter p, where G(x)=10x(mod10) and r{sub p}(x)={sup p}{radical}(x), which is a topological conjugacy between G and the shift map {sigma} on the space {sigma} of the sequences with 10 symbols. There are three advantages in comparison with the recently proposed cryptosystem based on chaotic logistic maps F{sub {mu}}(x)={mu}x(1-x) with 3 < {mu} {<=} 4: (a) H{sub p} is always chaotic for all parameters p, (b) the knowledge of an ergodic measure allows assignments of the alphabetic symbols to equiprobable sites of H{sub p}'s domain and (c) for each p, the security of the cryptosystem is manageable against brute force attacks.
Chaotic mixing and mixing efficiency in a short time
Funakoshi, Mitsuaki
2008-01-01
Several studies of the chaotic motion of fluid particles by two-dimensional time-periodic flows or three-dimensional steady flows, called Lagrangian chaos, are first introduced. Secondly, some of the studies on efficient mixing caused by Lagrangian chaos, called chaotic mixing, are reviewed with discussion of several indices for the estimation of mixing efficiency. Finally, several indices to estimate the efficiency of mixing in a short time, such as those related to transport matrices, stable and unstable manifolds of hyperbolic periodic points of Poincaré maps, and lines of separation, are explained by showing examples of mixing by two-dimensional time-periodic flows between eccentric rotating cylinders and mixing by three-dimensional steady flows in a model of static mixers.
Chaotic mixing by microswimmers moving on quasiperiodic orbits
Jalali, Mir Abbas; Khoshnood, Atefeh; Alam, Mohammad-Reza
2015-11-01
Life on the Earth is strongly dependent upon mixing across a vast range of scales. For example, mixing distributes nutrients for microorganisms in aquatic environments, and balances the spatial energy distribution in the oceans and the atmosphere. From industrial point of view, mixing is essential in many microfluidic processes and lab-on-a-chip operations, polymer engineering, pharmaceutics, food engineering, petroleum engineering, and biotechnology. Efficient mixing, typically characterized by chaotic advection, is hard to achieve in low Reynolds number conditions because of the linear nature of the Stokes equation that governs the motion. We report the first demonstration of chaotic mixing induced by a microswimmer that strokes on quasiperiodic orbits with multi-loop turning paths. Our findings can be utilized to understand the interactions of microorganisms with their environments, and to design autonomous robotic mixers that can sweep and mix an entire volume of complex-geometry containers.
Chaos and chaotic phase mixing in cuspy triaxial potentials
Kandrup, Henry E.; Siopis, Christos
2003-11-01
This paper continues an investigation of chaos and chaotic phase mixing in triaxial generalizations of the Dehnen potential which have been proposed to describe realistic elliptical galaxies that have a strong density cusp and manifest significant deviations from axisymmetry. Earlier work is extended in three important ways, namely by exploring systematically the effects of (1) variable axis ratios, (2) `graininess' associated, for example, with stars and bound substructures, idealized as friction and white noise, and (3) large-scale organized motions within a galaxy and a dense cluster environment, each presumed to induce near-random forces idealized as coloured noise with a finite autocorrelation time. The effects of varying the axis ratio were studied in detail by considering two sequences of models with cusp exponent γ= 1 and, respectively, axis ratios a: b: c= 1.00: 1.00 -Δ: 0.50 and a: b: c= 1.00: 1.00 -Δ: 1.00 - 2Δ for variable Δ. Three important conclusions are that (1) not all the chaos can be attributed to the presence of the cusp, (2) significant chaos can persist even for axisymmetric systems, and (3) the introduction of a supermassive black hole can induce both moderate increases in the relative number of chaotic orbits and substantial increases in the size of the largest Lyapunov exponent. In the absence of any perturbations, the coarse-grained distribution function associated with an initially localized ensemble of chaotic orbits evolves exponentially towards a nearly time-independent form at a rate Λ that correlates with the typical values of the finite-time Lyapunov exponents χ associated with the evolving orbits. Allowing for discreteness effects and/or an external environment accelerates phase-space transport both by increasing the rate at which orbits spread out within a given phase-space region and by facilitating diffusion along the Arnold web that connects different phase-space regions, so as to facilitate an approach towards a true
Rossi, Stefano; Morgavi, Daniele; Vetere, Francesco; Petrelli, Maurizio; Perugini, Diego
2017-04-01
keywords: Magma mixing, chaotic dynamics, time series experiments Magma mixing is a petrologic phenomenon which is recognized as potential trigger of highly explosive eruptions and its evidence is commonly observable in natural rocks. Here we tried to replicate the dynamic conditions of mixing performing a set of chaotic mixing experiments between shoshonitic and rhyolitic magmas from Vulcano island. Vulcano is the southernmost island of the Aeolian Archipelago (Aeolian Islands, Italy); it is completely built by volcanic rocks with variable degree of evolution ranging from basalt to rhyolite (e.g. Keller 1980; Ellam et al. 1988; De Astis 1995; De Astis et al. 2013) and its magmatic activity dates back to about 120 ky. Last eruption occurred in 1888-1890. The chaotic mixing experiments were performed by using the new ChaOtic Magma Mixing Apparatus (COMMA), held at the Department of Physics and Geology, University of Perugia. This new experimental device allows to track the evolution of the mixing process and the associated modulation of chemical composition between different magmas. Experiments were performed at 1200°C and atmospheric pressure with a viscosity ratio higher than three orders of magnitude. The experimental protocol was chosen to ensure the occurrence of chaotic dynamics in the system and the run duration was progressively increased (e.g. 10.5 h, 21 h, 42 h). The products of each experiment are crystal-free glasses in which the variation of major elements was investigated along different profiles using electron microprobe (EMPA) at Institute für Mineralogie, Leibniz Universität of Hannover (Germany). The efficiency of the mixing process is estimated by calculating the decrease of concentration variance in time and it is shown that the variance of major elements exponentially decays. Our results confirm and quantify how different chemical elements homogenize in the melt at differing rates. It is also observable that the mixing structures generated
Pollen, water, and wind: Chaotic mixing in a puddle of water
DEFF Research Database (Denmark)
Jensen, Kaare Hartvig
2016-01-01
This paper talks about how pine pollen grains dispersedin an approximately 1 m wide and 1 cm deep water puddle. The pollen has mixed due to wind blowing across the liquid surface, revealing a strikingly complex flow pattern. The flows revealed by nature’s tracer particles may influence circulation...... and nutrient distribution in puddles and small ponds.The flow patterns are generated by wind blowing across the puddle surface. This causes a shear stress at the atmospheric interface, which drives a flow in the liquid below. Chaotic mixing can occur if the wind direction changes over time. A fluid patch...
High-temperature apparatus for chaotic mixing of natural silicate melts
Energy Technology Data Exchange (ETDEWEB)
Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D., E-mail: diego.perugini@unipg.it [Department of Physics and Geology, Petro-Volcanology Research Group (PVRG), University of Perugia, Piazza Università, Perugia 06100 (Italy)
2015-10-15
A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10{sup 6} Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.
Quantifying Mixing and Scales of Heterogeneity in 2-D Numerical Models of Chaotic Mantle Mixing
Harris, A. C.; Naliboff, J.; Prytulak, J.; Vanacore, E.; Cooper, K. M.; Hart, S.; Kellogg, L. H.
2006-12-01
Fundamental to our understanding of geochemical reservoirs within the Earth's mantle is the concept of the scale and distribution of heterogeneity. Although many studies approach this concept qualitatively few have attempted a quantitative assessment. Through a collaborative effort at the CIDER (Cooperative Institute for Deep Earth Research) 2006 summer workshop, we applied a 2-D/1-D power spectral and statistical analysis, respectively, to the temperature field and passive tracer distribution within a 2-D numerical model of mantle convection. The resultant data provides a means to objectively describe the scales of mixing and heterogeneity within various model scenarios. The dynamic models used had a 1x10 aspect ratio, included temperature- and pressure-dependent viscosity, had a Rayleigh number of 10^7, and had both internal and basal heating. One end member case includes a layered structure for viscosity and thermal conductivity, with a sharp increase in the mid-mantle. Spectral analysis of the temperature fields indicates that power near the upper and lower boundary layers is concentrated in long-wavelength structures while in the mid-mantle the spectrum is broader. Layering the viscosity structure enhances this dichotomy, but does not isolate the upper from the lower mantle and does not necessarily lead to decreased mixing rates or efficiency. Preliminary results demonstrate that the overall particle distribution, measured as a function of the distance between particles, is not necessarily unimodal. Furthermore, at a given time step this distribution may become multimodal.
Thermal and chaotic distributions of plasma in laser driven Coulomb explosions of deuterium clusters
Barbarino, M; Bonasera, A; Lattuada, D; Bang, W; Quevedo, H J; Consoli, F; De Angelis, R; Andreoli, P; Kimura, S; Dyer, G; Bernstein, A C; Hagel, K; Barbui, M; Schmidt, K; Gaul, E; Donovan, M E; Natowitz, J B; Ditmire, T
2015-01-01
In this work we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is chaotic enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is nearly isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell- Boltzmann (MB) distribution, a shifted MB distribution (sMB) and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise be...
Directory of Open Access Journals (Sweden)
Cao Jinde
2011-01-01
Full Text Available Abstract In this paper, an integral sliding mode control approach is presented to investigate synchronization of nonidentical chaotic neural networks with discrete and distributed time-varying delays as well as leakage delay. By considering a proper sliding surface and constructing Lyapunov-Krasovskii functional, as well as employing a combination of the free-weighting matrix method, Newton-Leibniz formulation and inequality technique, a sliding mode controller is designed to achieve the asymptotical synchronization of the addressed nonidentical neural networks. Moreover, a sliding mode control law is also synthesized to guarantee the reachability of the specified sliding surface. The provided conditions are expressed in terms of linear matrix inequalities, and are dependent on the discrete and distributed time delays as well as leakage delay. A simulation example is given to verify the theoretical results.
Horio, Yoshihiko; Aihara, Kazuyuki
This chapter describes mixed analog/digital circuit implementations of a chaotic neuro-computer system. The chaotic neuron model is implemented with a switched-capacitor (SC) integrated circuit technique. The analog SC circuit can handle real numbers electrically in the sense that the state variables of the analog circuits are continuous. Therefore, chaotic dynamics can be faithfully replicated with the SC chaotic neuron circuit. The synaptic connections, on the other hand, are realized with digital circuits to accommodate a vast number of synapses. We propose a memory-based digital synapse circuit architecture that draws upon the table look-up method to achieve rapid calculation of a large number of weighted summations. The first generation chaotic neuro-computer with 16 SC neurons and 256 synapses is reviewed. Finally, a large-scale system with 10000 neurons and 100002 synapses is described.
The Effect of Inertia on the Flow and Mixing Characteristics of a Chaotic Serpentine Mixer
Directory of Open Access Journals (Sweden)
Tae Gon Kang
2014-11-01
Full Text Available As an extension of our previous study, the flow and mixing characteristics of a serpentine mixer in non-creeping flow conditions are investigated numerically. A periodic velocity field is obtained for each spatially periodic channel with the Reynolds number (Re ranging from 0.1 to 70 and the channel aspect ratio from 0.25 to one. The flow kinematics is visualized by plotting the manifold of the deforming interface between two fluids. The progress of mixing affected by the Reynolds number and the channel geometry is characterized by a measure of mixing, the intensity of segregation, calculated using the concentration distribution. A mixer with a lower aspect ratio, which is a poor mixer in the creeping flow regime, turns out to be an efficient one above a threshold value of the Reynolds number, Re = 50. This is due to the combined effect of the enhanced rotational motion of fluid particles and back flows near the bends of the channel driven by inertia. As for a mixer with a higher aspect ratio, the intensity of segregation has its maximum around Re = 30, implying that inertia does not always have a positive influence on mixing in this mixer.
Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock
Energy Technology Data Exchange (ETDEWEB)
Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)
1998-12-31
Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)
Energy Technology Data Exchange (ETDEWEB)
Papantonopoulos, E.; Uematsu, T.; Yanagida, T.
1987-01-15
We present a chaotic inflationary model, in which nonlinear interactions of dilaton and axion fields in the context of the superconformal theory can dynamically give rise to initial conditions for the inflation of the universe and a flat potential that can produce enough inflation. Our model is free from dangerous thermal effects and large energy density fluctuations.
Eigenfunctions in chaotic quantum systems
Energy Technology Data Exchange (ETDEWEB)
Baecker, Arnd
2007-07-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Thermal Hazard Evaluation of Lauroyl Peroxide Mixed with Nitric Acid
Directory of Open Access Journals (Sweden)
Chi-Min Shu
2012-07-01
Full Text Available Many thermal runaway incidents have been caused by organic peroxides due to the peroxy group, –O–O–, which is essentially unstable and active. Lauroyl peroxide (LPO is also sensitive to thermal sources and is incompatible with many materials, such as acids, bases, metals, and ions. From the thermal decomposition reaction of various concentrations of nitric acid (HNO_{3} (from lower to higher concentrations with LPO, experimental data were obtained as to its exothermic onset temperature (T_{0}, heat of decomposition (ΔH_{d}, isothermal time to maximum rate (TMR_{iso}, and other safety parameters exclusively for loss prevention of runaway reactions and thermal explosions. As a novel finding, LPO mixed with HNO_{3} can produce the detonation product of 1-nitrododecane. We used differential scanning calorimetry (DSC, thermal activity monitor III (TAM III, and gas chromatography/mass spectrometer (GC/MS analyses of the reactivity for LPO and itself mixed with HNO_{3} to corroborate the decomposition reactions and reaction mechanisms in these investigations.
Low level mixed waste thermal treatment technical basis report
Energy Technology Data Exchange (ETDEWEB)
Place, B.G.
1994-12-01
Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.
Bildirici, Melike; Sonustun, Fulya Ozaksoy; Sonustun, Bahri
2018-01-01
In the regards of chaos theory, new concepts such as complexity, determinism, quantum mechanics, relativity, multiple equilibrium, complexity, (continuously) instability, nonlinearity, heterogeneous agents, irregularity were widely questioned in economics. It is noticed that linear models are insufficient for analyzing unpredictable, irregular and noncyclical oscillations of economies, and for predicting bubbles, financial crisis, business cycles in financial markets. Therefore, economists gave great consequence to use appropriate tools for modelling non-linear dynamical structures and chaotic behaviors of the economies especially in macro and the financial economy. In this paper, we aim to model the chaotic structure of exchange rates (USD-TL and EUR-TL). To determine non-linear patterns of the selected time series, daily returns of the exchange rates were tested by BDS during the period from January 01, 2002 to May 11, 2017 which covers after the era of the 2001 financial crisis. After specifying the non-linear structure of the selected time series, it was aimed to examine the chaotic characteristic for the selected time period by Lyapunov Exponents. The findings verify the existence of the chaotic structure of the exchange rate returns in the analyzed time period.
Mixed Convection in Technological Reservoir of Thermal Power Station
Directory of Open Access Journals (Sweden)
Kuznetsov Geniy V.
2014-01-01
Full Text Available The problem of mixed convection of a viscous incompressible fluid in an open rectangular reservoir with inlet and outlet of mass with considering nonuniform heat sink at the external borders of the solution domain is solved. The region of the solution was limited by two vertical and by one horizontal walls of finite thickness and one free surface. The flat nonstationary mixed convection within the framework of Navier-Stokes model is examined for liquid and thermal conductivity for solid walls. Distributions of hydrodynamic parameters and temperatures with different intensity of heat sink on the outer contour of the cavity show a change in the intensity of heat sink on the region boundaries of the solution leads to scale changes in the structure of flow and temperature fields of the liquids.
Mantle mixing and thermal evolution during Pangaea assembly and breakup
Rudolph, M. L.; Li, M.; Zhong, S.; Manga, M.
2016-12-01
Continents insulate the underlying mantle, and it has been suggested that the arrangement of the continents can have a significant effect on sub-continental mantle temperatures. Additionally, the dispersal or agglomeration of continents may affect the efficacy of continental insulation, with some studies suggesting warming of 100K beneath supercontinents. During the most recent supercontinent cycle, Pangaea was encircled by subduction, potentially creating a `curtain' of subducted material that may have prevented mixing of the sub-Pangaea mantle with the sub-Panthalassa mantle. Using 3D spherical shell geometry mantle convection simulations, we quantify the effect of insulation by continents and supercontinents. We explore the differences in model predictions for purely thermal vs. thermochemical convection, and we use tracers to quantify the exchange of material between the sub-oceanic to the sub-continental mantle.
VAC*TRAX - thermal desorption for mixed wastes
Energy Technology Data Exchange (ETDEWEB)
McElwee, M.J.; Palmer, C.R. [RUST-Clemson Technical Center, Anderson, SC (United States)
1995-10-01
The patented VAC*TRAX process was designed in response to the need to remove organic constituents from mixed waste, waste that contains both a hazardous (RCRA or TSCA regulated) component and a radioactive component. Separation of the mixed waste into its hazardous and radioactive components allows for ultimate disposal of the material at existing, permitted facilities. The VAC*TRAX technology consists of a jacketed vacuum dryer followed by a condensing train. Solids are placed in the dryer and indirectly heated to temperatures as high as 2600{degrees}C, while a strong vacuum (down to 50 mm Hg absolute pressure) is applied to the system and the dryer is purged with a nitrogen carrier gas. The organic contaminants in the solids are thermally desorbed, swept up in the carrier gas and into the condensing train where they are cooled and recovered. The dryer is fitted with a filtration system that keeps the radioactive constituents from migrating to the condensate. As such, the waste is separated into hazardous liquid and radioactive solid components, allowing for disposal of these streams at a permitted incinerator or a radioactive materials landfill, respectively. The VAC*TRAX system is designed to be highly mobile, while minimizing the operational costs with a simple, robust process. These factors allow for treatment of small waste streams at a reasonable cost.
Chaotic vibrations of heated plates
Fermen-Coker, Muge
1998-12-01
In recent years, the investigation of dynamical behavior of plates under thermal loads has become important due to the high temperatures reached on external skin panels of hypersonic vehicles. It has been shown by other researchers that the skin panels may encounter chaotic vibrations about their thermally buckled positions. In this research, the chaotic vibrations of simply supported plates under thermal and sinusoidal excitation is studied in order to predict the vibratory behavior of a representative class of such skin panels. A method for the development of equations of motion, that forms a foundation for further investigation of the response of elastic panels under general thermal, mechanical and aerodynamic loading and various boundary conditions, is presented and discussed. The boundaries of regular and chaotic regions of motion are defined and the sensitivity of these boundaries to changes in design parameters is explored for the purpose of developing useful design criteria. The onset of chaos is predicted through the computation of Lyapunov exponents. The sensitivity of Lyapunov exponent calculations to the choice of numerical method of integration, numerical precision and the magnitude of coefficients as functions of design variables, is discussed. The effects of thermal moment, thermal buckling, amplitude and frequency of excitation, damping, thickness and length to width ratio of panels on the onset of chaos is studied. The results of the research are presented as a contribution to the panel design of hypersonic vehicles.
Thermal gelation of mixed egg yolk/kappa-carrageenan dispersions.
Aguilar, J M; Cordobés, F; Raymundo, A; Guerrero, A
2017-04-01
This study aims to evaluate the effect of gum content and pH on the thermal gelation of mixed egg yolk/κ-carrageenan (EY/κC) dispersions, monitored by linear viscoelastic measurements. Heat processing induces dramatic changes in the microstructure and viscoelastic properties of EY/κC systems, which may be attributed to a multistage mechanism that yields an interparticle gel network. An increase in κC content generally induces an enhancement in viscoelasticity. A reduction in pH hinders this enhancement and causes an anticipation of the multistage process, which confirms the importance of the electrostatic interactions of EY/κC dispersions. The viscoelastic properties of EY/κC gels generally fit a master mechanical spectrum, which suggests that the protein matrix generally dominates the microstructure of EY/κC gels. However, SEM images reveal formation of a κC network at low pH, at which some κC autohydrolysis may also play a role. Electrostatic attractions seem to favour interactions among EY aggregates and κC into the carrageenan network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.
Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David
2017-01-01
Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO.
Directory of Open Access Journals (Sweden)
Camelia Stanciu
2017-01-01
Full Text Available A simple effect one stage ammonia-water absorption cooling system fueled by solar energy is analyzed. The considered system is composed by a parabolic trough collector concentrating solar energy into a tubular receiver for heating water. This is stored in a fully mixed thermal storage tank and used in the vapor generator of the absorption cooling system. Time dependent cooling load is considered for the air conditioning of a residential two-storey house. A parametric study is performed to analyze the operation stability of the cooling system with respect to solar collector and storage tank dimensions. The results emphasized that there is a specific storage tank dimension associated to a specific solar collector dimension that could ensure the longest continuous startup operation of the cooling system when constant mass flow rates inside the system are assumed.
Directory of Open Access Journals (Sweden)
Jianwei Dong
2005-11-01
Full Text Available We show the existence of solutions for mixed boundary-value problems that model quantum hydrodynamics in thermal equilibrium. Also we find the semi-classical limit of the solutions.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-07-01
This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.
Directory of Open Access Journals (Sweden)
Seswoya Roslinda
2016-01-01
Full Text Available In practice, primary and secondary sludge are fed into anaerobic digestion. However, the microbial cell exists in secondary sludge are an unfavorable substrate for biodegradation. Thermal pretreatment is proved to increase the bioavailability of organic and improve the biodegradation subsequently. During low thermal pretreatment, both intracellular (within the microbial cell and extracellular (within the polymeric network materials were extracted. This process increases the bioavailability meaning that organic compounds are accessible to the microorganisms for their degradation. This research aims to investigate the effect of thermal pretreatment on domestic mixed sludge disintegration. Domestic mixed sludge was thermally treated at 70°C for various holding times. The pre-thermally treated domestic mixed sludge was measured for protein and carbohydrates following the Lowry Method, and Phenol-Sulphuric Acid Method respectively. DR 6000 UV-Vis spectrophotometer, DRB200 Reactor (digester and COD vial (TNT plus 822 were used for COD determination, based on Reactor Digestion Method approved by USEPA. The results showed that the organic matter in domestic mixed sludge is efficiently solubilised during thermal treatment organic matter. The higher soluble yield for each monitored parameter determined in this study indicated that low thermal pretreatment improve bioavailability.
Chaotic travelling rolls in Rayleigh–Bénard convection
Indian Academy of Sciences (India)
convective flow or flow reversal of the convective motion. The chaotic travelling waves are also ... expansion coefficient α, kinematic viscosity ν, thermal diffusivity κ that is enclosed between two flat conducting .... Since the temporal change in the phase of the critical mode is chaotic, the movement of the rolls would also be.
Localized chaoticity in two linearly coupled inverted double-well ...
African Journals Online (AJOL)
Two linearly coupled inverted double-well oscillators for a fixed energy and varying coupling strength were studied. The dynamics yielded a chaotic system in which the Poincare surface was characterised by two non-mixing regions, one of regular motion and the other region that became chaotic as the coupling increased.
Mercury emissions control technologies for mixed waste thermal treatment
Energy Technology Data Exchange (ETDEWEB)
Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Roberts, D.; Broderick, T. [ADA Technologies, Englewood, CO (United States)
1997-12-31
EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.
Lee, Junggil
2012-10-01
Urea-selective catalytic reduction (SCR) has been reported as the most promising technique for adherence to NOX emissions regulations. In the urea-SCR process, NH3 is generated by urea thermal decomposition and hydrolysis and is then used as a reductant of NOX in the SCR catalyst. Therefore, improving the NOX conversion efficiency of urea-SCR requires enhancement of thermal decomposition upstream of the SCR catalyst. In the present work, two types of mixing chambers were designed and fabricated to improve urea thermal decomposition, and experiments with and without a mixing chamber were carried out to analyze thermal-decomposition characteristics of urea in the exhaust pipe with respect to inlet velocity (4-12μm/s) and temperature (350°C-500°C). Urea thermal decomposition is greatly enhanced at higher gas temperatures. At an inlet velocity of 6μm/s in the A-type mixing chamber, NH3 concentrations generated along the exhaust pipe were about 171% and 157% greater than those without the mixing chamber for inlet temperatures of 400°C and 500°C, respectively. In the case of the B-type mixing chamber, NH3 concentrations generated at inlet temperatures of 400°C and 500°C were about 147% and 179% greater than those without the mixing chamber, respectively. Note that the implementation of mixing chambers significantly enhanced conversion of urea to NH3 because it increased the residence time of urea in the exhaust pipe and improved mixing between urea and exhaust gas. © 2012, Mary Ann Liebert, Inc.
Energy Technology Data Exchange (ETDEWEB)
Doi, Yoshihiro; Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1997-07-01
Thermal stratification phenomena are observed in an upper plenum of liquid metal fast breeder reactors (LMFBRs) under reactor scram conditions, which give rise to thermal stress on in-vessel structural components. Therefore it is important to evaluate characteristics of the phenomena in the design of components in an LMFBR plenum. The phenomena are a stable stratified flow and shear layers are formed due to the velocity difference between upper and lower flows. In this study, to evaluate numerical models and constants used in the model for the thermal stratification phenomena, numerical analyses were carried out for a shear flow water test in rectangular duct. In the analyses, a direct numerical simulation code was used. The numerical results could indicate the large spanwise coherent structures with the growing and the pairing of vortexes. The analyses for different Richardson (Ri) number conditions were carried out and then calculated distributions of time-averaged velocities, velocity fluctuations, Reynolds stresses, time-averaged temperatures and temperature fluctuations were compared with the measured results. Through the comparisons, the calculated time-averaged velocities and velocity fluctuations in the main flow direction were agreed well with measured value and the velocity fluctuations decreased with increasing of the Ri number. Though calculated time-averaged temperature distributions and temperature fluctuations had three different temperature gradient regions, those were not found in the measured value. The region of Ri numbers observed the vortexes pairing is in good agreement with the calculated results and the vortexes pairing would cause large Reynolds stresses. (J.P.N.)
Thermal performance of direct contact heat exchangers for mixed hydrocarbons
Energy Technology Data Exchange (ETDEWEB)
Sharpe, L. Jr.; Coswami, D.Y.; Demuth, O.J.; Mines, G.
1985-01-01
This paper describes a physical and a mathematical model for evaluating the tray efficiencies for a direct contact heat exchanger (DCHX). The model is then used to determine the efficiencies for tests conducted on a 60kW sieve tray DCHX as heat is transferred from a geofluid (brine) to a working fluid (mixed hydrocarbons). It is assumed that there are three distinct regions in the column based on the state of the working fluid, as follows: Region I - Preheating with no vaporization; Region II - Preheating with moderate vaporization; and Region III - Major vaporization. The boundaries of these regions can be determined from the experimental data. In the model, mass balance and energy balance is written for a tray ''N'' in each of these regions. Finally, the ''tray efficiency'' or ''heat transfer'' effectiveness of the tray is calculated based on the definition that it is the ratio of the actual heat transfer to the maximum possible, thermodynamically.
Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets
Energy Technology Data Exchange (ETDEWEB)
Ridouane, El Hassan [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2011-09-01
Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The objective of the study outlined in this report is to resolve the issue that the flow rates that are required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space.and maintain uniform temperatures within future homes. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes.
Empirically characteristic analysis of chaotic PID controlling particle swarm optimization
Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David
2017-01-01
Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles’ search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles’ premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO. PMID:28472050
Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.
Directory of Open Access Journals (Sweden)
Danping Yan
Full Text Available Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO, we herein propose a chaotic proportional integral derivative (PID controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA and PSO.
Thermal destratification in small standard solar tanks due to mixing during tapping
DEFF Research Database (Denmark)
Andersen, Elsa; Furbo, Simon
1999-01-01
The aim of the project is to investigate the thermal destratification in small standard solar tanks due to mixing during tapping. Three different cold water inlet designs are tested. A model of the tested solar tank is verified. Based on the measurements and the calculations it is elucidated how...
Thermal destratification in small standard solar tanks due to mixing during tapping
DEFF Research Database (Denmark)
Andersen, Elsa; Furbo, Simon
1999-01-01
performance caused by mixing during draw-offs can be as high as 23 % if a marketed cold water inlet design is used. Other tested inlet designs result in a decrease of 2-3 % of the yearly thermal performance caused by mixing. Based on the investigations recommendations on the design of the cold water inlet......-off is relatively long. In order to reduce this waiting time to an acceptable level, the flow rate during draw-off is often very large - typically about 20 l/min - at least at the start of the draw-off. As long as the flow rate during draw-off is small, the mixing rate inside the tank is small. However, if the flow...... rate is large, as mentioned above, the mixing rate can be relatively large if the cold water inlet design is poor. Mixing results in destratification in the solar tank and with that reduced thermal performance of the SDHW system. Investigations indicate that the decrease of the yearly thermal...
Chaotic inflation in supergravity
Kawasaki, M
2001-01-01
It is shown that chaotic inflation naturally takes place in the framework of supergravity if we assume hat the Kahler potential has a shift symmetry of the inflaton chiral multiplet and introduce a small breaking parameter.
Heats of Mixing Using an Isothermal Titration Calorimeter: Associated Thermal Effects
Directory of Open Access Journals (Sweden)
Fabiola Socorro
2009-06-01
Full Text Available The correct determination of the energy generated or absorbed in the sample cell of an Isothermal Titration Calorimeter (ITC requires a thorough analysis of the calorimetric signal. This means the identification and quantification of any thermal effect inherent to the working method. In this work, it is carried out a review on several thermal effects, studied by us in previous work, and which appear when an ITC is used for measuring the heats of mixing of liquids in a continuous mode. These effects are due to: (i the difference between the temperature of the injected liquid and the temperature of the mixture during the mixing process, (ii the increase of the liquid volume located in the mixing cell and (iii the stirring velocity. Besides, methods for the identification and quantification of the mentioned effects are suggested.
Energy Technology Data Exchange (ETDEWEB)
Munmuangsaen, Buncha [Sirindhorn International Institute of Technology (SIIT), Thammasat University, 131 M5, Tivanont Road, Bangkadi, Muang, Pathum-Thani 12000 (Thailand); Srisuchinwong, Banlue, E-mail: banlue@siit.tu.ac.th [Sirindhorn International Institute of Technology (SIIT), Thammasat University, 131 M5, Tivanont Road, Bangkadi, Muang, Pathum-Thani 12000 (Thailand)
2011-11-15
Highlights: > Five new elementary chaotic snap flows and a generalization of an existing chaotic snap flow have been presented. > Three of all are conservative systems whilst three others are dissipative systems. > Four cases need only a single control parameter and a single nonlinearity. > A cubic case in a jerk representation requires only two terms and a single nonlinearity. - Abstract: Hyperjerk systems with 4th-order derivative of the form x{sup ....}=f(x{sup ...},x{sup ..},x{sup .},x) have been referred to as snap systems. Five new elementary chaotic snap flows and a generalization of an existing flow are presented through an extensive numerical search. Four of these flows demonstrate elegant simplicity of a single control parameter based on a single nonlinearity of a quadratic, a piecewise-linear or an exponential type. Two others demonstrate elegant simplicity of all unity-in-magnitude parameters based on either a single cubic nonlinearity or three cubic nonlinearities. The chaotic snap flow with a single cubic nonlinearity requires only two terms and can be transformed to its equivalent dynamical form of only five terms which have a single nonlinearity. An advantage is that such a chaotic flow offers only five terms even though the (four) dimension is high. Three of the chaotic snap flows are characterized as conservative systems whilst three others are dissipative systems. Basic dynamical properties are described.
Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets
Energy Technology Data Exchange (ETDEWEB)
Ridouane, E. H.
2011-09-01
Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The higher the supply flow rates the easier to reach good mixing in the space. In high performance homes, however, the flow rates required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space. The objective of this study is to resolve this issue and maintain uniform temperatures within future homes. We used computational fluid dynamics modeling to evaluate the performance of high sidewall air supply for residential applications in heating and cooling modes. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions, and room dimensions. Laboratory experiments supported the study of thermal mixing in heating mode; we used the results to develop a correlation to predict high sidewall diffuser performance. For cooling mode, numerical analysis is presented. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes. It is proven that these systems can achieve good mixing and provide acceptable comfort levels. Recommendations are given on the operating conditions to guarantee occupant comfort.
Thermal remote sensing of estuarine spatial dynamics: Effects of bottom-generated vertical mixing
Marmorino, G. O.; Smith, G. B.
2008-07-01
In a recent paper, Hedger, R.D., Malthus, T.J., Folkard, A.M., Atkinson, P.M. [2007. Spatial dynamics of estuarine water surface temperature from airborne remote sensing. Estuarine, Coastal and Shelf Science 71, 608-615] demonstrate that airborne thermal remote sensing shows great potential for monitoring estuarine dynamics and surface currents. One aspect needing further attention is the impact of bottom-generated vertical mixing as this can create both stationary thermal features as well as thermal patterns that advect with the flow. This dual effect is illustrated using airborne infrared imagery of a mixing front having an embedded pattern of thermal boils. The boils are several meters in diameter (in water less than 4 m deep) and are ˜0.2 °C cooler than the ambient water surface. Time sequential imagery that captures the movement of individual boils as well as their growth rate can be used to deduce both the near-surface current and the intensity of turbulent mixing.
Evaluation of thermal conductivity of heat-cured acrylic resin mixed with A1203
Directory of Open Access Journals (Sweden)
Ebadian B.
2002-08-01
Full Text Available One of the most important characteristics of denture base is thermal conductivity. This property has a major role in secretions of salivary glands and their enzymes, taste of the food and gustatory response. Polymethyl methacrylate used in prosthodontics is relatively an insulator. Different materials such as metal fillers and ceramics have been used to solve this problem. The aim of this study was the evaluation of AI2O3 effect on thermal conductivity of heat-cured acrylic resin. Acrylic resin was mixed with AI2O3 in two different weight rates (15 and 20 % of weight. So, group 1 and 2 were divided on this basis. Samples with pure acrylic resin were considered as control group. 18 cylindrical patterns were made in 9x9 mm dimensions and thermocouple wires embedded in each sample to act as conductor. The specimens were put in water with 70±1°C thermal range for 10 minutes. Then, thermal conductivity was measured. The results were analyzed with variance analysis and Dunken test. There was significant difference between thermal conductivity of all groups in all period times. It the first seconds, thermal conductivity in groups 1 and 2 were more than control group. Therefore, for developing of thermal conductivity of acrylic resin, A1203 can be used. Certainly, other characteristic of new resin should be evaluated.
Secure Image Encryption Based On a Chua Chaotic Noise Generator
Directory of Open Access Journals (Sweden)
A. S. Andreatos
2013-10-01
Full Text Available This paper presents a secure image cryptography telecom system based on a Chua's circuit chaotic noise generator. A chaotic system based on synchronised Master–Slave Chua's circuits has been used as a chaotic true random number generator (CTRNG. Chaotic systems present unpredictable and complex behaviour. This characteristic, together with the dependence on the initial conditions as well as the tolerance of the circuit components, make CTRNGs ideal for cryptography. In the proposed system, the transmitter mixes an input image with chaotic noise produced by a CTRNG. Using thresholding techniques, the chaotic signal is converted to a true random bit sequence. The receiver must be able to reproduce exactly the same chaotic noise in order to subtract it from the received signal. This becomes possible with synchronisation between the two Chua's circuits: through the use of specific techniques, the trajectory of the Slave chaotic system can be bound to that of the Master circuit producing (almost identical behaviour. Additional blocks have been used in order to make the system highly parameterisable and robust against common attacks. The whole system is simulated in Matlab. Simulation results demonstrate satisfactory performance, as well as, robustness against cryptanalysis. The system works with both greyscale and colour jpg images.
Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste
Energy Technology Data Exchange (ETDEWEB)
Salmon, R.; Loghry, S.L.; Hermes, W.H.
1994-11-01
This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs.
Mixed thermal convection: fundamental issues and analysis of the planar case
Directory of Open Access Journals (Sweden)
JACQUES PADET
2015-09-01
Full Text Available This paper aims to renew interest on mixed thermal convection research and to emphasize three issues that arise from the present analysis: (i a clear definition of the reference temperature in the Boussinesq approximation; (ii a practical delimitation of the three convective modes, which are the forced convection (FC, mixed convection (MC and natural (or free convection (NC; (iii and, finally, a uniform description of the set FC/MC/NC in the similarity framework. The planar case, for which analytical solutions are available, allows a detailed illustration of the answers here advanced to the above issues.
Zhu, Dongming; Choi, Sung R.; Ghosn, Louis L.
2008-01-01
The combined mode I-mode II fracture behavior of anisotropic ZrO2-8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behavior of the microsplat coating material was modeled using Finite Element approach to account for anisotropy and micro cracked structures, and predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.
Application of chaotic noise reduction techniques to chaotic data ...
Indian Academy of Sciences (India)
We propose a novel method of combining artiﬁcial neural networks (ANNs) with chaotic noise reduction techniques that captures the metric and dynamic invariants of a chaotic time series, e.g. a time series obtained by iterating the logistic map in chaotic regimes. Our results indicate that while the feedforward neural network ...
Optimizing homogenization by chaotic unmixing?
Weijs, Joost; Bartolo, Denis
2016-11-01
A number of industrial processes rely on the homogeneous dispersion of non-brownian particles in a viscous fluid. An ideal mixing would yield a so-called hyperuniform particle distribution. Such configurations are characterized by density fluctuations that grow slower than the standard √{ N}-fluctuations. Even though such distributions have been found in several natural structures, e.g. retina receptors in birds, they have remained out of experimental reach until very recently. Over the last 5 years independent experiments and numerical simulations have shown that periodically driven suspensions can self-assemble hyperuniformally. Simple as the recipe may be, it has one important disadvantage. The emergence of hyperuniform states co-occurs with a critical phase transition from reversible to non reversible particle dynamics. As a consequence the homogenization dynamics occurs over a time that diverges with the system size (critical slowing down). Here, we discuss how this process can be sped up by exploiting the stirring properties of chaotic advection. Among the questions that we answer are: What are the physical mechanisms in a chaotic flow that are relevant for hyperuniformity? How can we tune the flow parameters such to obtain optimal hyperuniformity in the fastest way? JW acknowledges funding by NWO (Netherlands Organisation for Scientific Research) through a Rubicon Grant.
Dynamic nuclear polarisation by thermal mixing: quantum theory and macroscopic simulations.
Karabanov, Alexander; Kwiatkowski, Grzegorz; Perotto, Carlo U; Wiśniewski, Daniel; McMaster, Jonathan; Lesanovsky, Igor; Köckenberger, Walter
2016-11-02
A theory of dynamic nuclear polarisation (DNP) by thermal mixing is suggested based on purely quantum considerations. A minimal 6-level microscopic model is developed to test the theory and link it to the well-known thermodynamic model. Optimal conditions for the nuclear polarization enhancement and effects of inhomogeneous broadening of the electron resonance are discussed. Macroscopic simulations of nuclear polarization spectra displaying good agreement with experiments, involving BDPA and trityl free radicals, are presented.
Hypogenetic chaotic jerk flows
Energy Technology Data Exchange (ETDEWEB)
Li, Chunbiao, E-mail: goontry@126.com [Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & Technology, Nanjing 210044 (China); School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Sprott, Julien Clinton [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Xing, Hongyan [Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & Technology, Nanjing 210044 (China); School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China)
2016-03-11
Removing the amplitude or polarity information in the feedback loop of a jerk structure shows that special nonlinearities with partial information in the variable can also lead to chaos. Some striking properties are found for this kind of hypogenetic chaotic jerk flow, including multistability of symmetric coexisting attractors from an asymmetric structure, hidden attractors with respect to equilibria but with global attraction, easy amplitude control, and phase reversal which is convenient for chaos applications. - Highlights: • Hypogenetic chaotic jerk flows with incomplete feedback of amplitude or polarity are obtained. • Multistability of symmetric coexisting attractors from an asymmetric structure is found. • Some jerk systems have hidden attractors with respect to equilibria but have global attraction. • These chaotic jerk flows have the properties of amplitude control and phase reversal.
Energy Technology Data Exchange (ETDEWEB)
Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Lee, H.T. [Oak Ridge Associated Universities, TN (United States)
1994-01-01
The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are {sup 239}Pu, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 103}Ru, {sup 99}Tc, and {sup 90}Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium.
Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab
2014-01-01
The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.
Effect of DVI nozzle location on the thermal mixing in the RVDC
Energy Technology Data Exchange (ETDEWEB)
Kang, Hyung Seok; Cho, Bong Hyun; Kim, Hwan Yeol; Bae, Yoon Yeong; Park, Jong Gun [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-08-01
In the Korea Next Generation Reactor (KNGR), Direct Vessel Injection (DVI) concepts has been introduced as Safety Injection System (SIS) for the increase of reliability and safety. Five DVI nozzle locations are carefully selected to determine optimum location view point of reactor vessel Pressurized Thermal Shock (PTS) and thermal hydraulics. The computational fluid dynamic code CFX is used for this study. The analysis results are as follows. (1) Since the vessel beltline temperature of all cases is well above RT{sub PTS} (89 deg F), all case satisfy PTS concern. The vessel beltline temperature distribution of case 4 is most uniform. (2) With regard to temperature distribution, case 3 and 4 show more even distribution. Case 1 and 5 show very low locally temperature, evidencing poor thermal mixing. Therefore, it is recommended that the nozzle location should be right above the cold leg nozzle if circumstance permits. (author). 12 refs., 40 figs., 1 tab.
Thermal properties of some pyrimidine, purine, amino-acid and mixed ligand complexes
Energy Technology Data Exchange (ETDEWEB)
Masoud, Mamdouh S. [Department of Chemistry, Faculty of Science, Alexandria University, Alexandria (Egypt); Ramadan, Ahmed M., E-mail: dramramadan@yahoo.com [Department of Chemistry, Faculty of Science, Alexandria University, Alexandria (Egypt); Chemistry Department, Faculty of Science, King Khalid University (Saudi Arabia); El-Ashry, Ghada M. [Central Laboratory for Food and Feed, Agriculture Research Centre, Ministry of Agriculture (Egypt)
2013-01-10
Highlights: Black-Right-Pointing-Pointer Synthesis of novel complexes from barbital, thiouracil, adenine, amino acids. Black-Right-Pointing-Pointer We examine their thermal stability using DTA and TG techniques. Black-Right-Pointing-Pointer The thermodynamic parameters of the decomposition reaction were evaluated. Black-Right-Pointing-Pointer We proposed mechanisms for the decomposition processes. - Abstract: Mn(II), Fe(III), Co(II), Ni(II), Zn(II) and Cd(II) complexes of barbital, thiouracil, adenine, amino acids, beside mixed metals and mixed ligands were prepared. The structures of the complexes are of Oh, distorted Oh, Td and distorted Td geometries. Differential thermal (DTA) and thermogravimetric analysis (TG) of the complexes pointed to their stability. The change of entropy values, {Delta}S{sup numbersign}, showed that the transition states are more ordered than the reacting complexes. The fractions appeared in the calculated order of the thermal reactions, n, confirmed that the thermal reactions proceed in complicated mechanisms where the bond between the central metal ion and the ligands dissociates after losing small molecules such as H{sub 2}O. In most cases, the free radical species of the ligands are assigned to exist through decomposition mechanisms.
Mixing and electronic entropy contributions to thermal energy storage in low melting point alloys
Shamberger, Patrick J.; Mizuno, Yasushi; Talapatra, Anjana A.
2017-07-01
Melting of crystalline solids is associated with an increase in entropy due to an increase in configurational, rotational, and other degrees of freedom of a system. However, the magnitude of chemical mixing and electronic degrees of freedom, two significant contributions to the entropy of fusion, remain poorly constrained, even in simple 2 and 3 component systems. Here, we present experimentally measured entropies of fusion in the Sn-Pb-Bi and In-Sn-Bi ternary systems, and decouple mixing and electronic contributions. We demonstrate that electronic effects remain the dominant contribution to the entropy of fusion in multi-component post-transition metal and metalloid systems, and that excess entropy of mixing terms can be equal in magnitude to ideal mixing terms, causing regular solution approximations to be inadequate in the general case. Finally, we explore binary eutectic systems using mature thermodynamic databases, identifying eutectics containing at least one semiconducting intermetallic phase as promising candidates to exceed the entropy of fusion of monatomic endmembers, while simultaneously maintaining low melting points. These results have significant implications for engineering high-thermal conductivity metallic phase change materials to store thermal energy.
Directory of Open Access Journals (Sweden)
Qibin Li
2017-01-01
Full Text Available Paraffin based nanofluids are widely used as thermal energy storage materials and hold many applications in the energy industry. In this work, equilibrium and nonequilibrium molecular dynamics simulations are employed to study the thermal properties of the mixed nanofluids of n-octadecane and Cu nanoparticles during phase transition. Four different nanofluids systems with different mass ratios between the n-octadecane and Cu nanoparticles have been studied and the results show that Cu nanoparticles can improve the thermal properties of n-octadecane. The melting point, heat capacity and thermal conductivity of the mixed systems are decreased with the increasing of the mass ratio of n-octadecane.
Effect of noise in open chaotic billiards
Altmann, Eduardo G.; Leitão, Jorge C.; Lopes, João Viana
2012-01-01
We investigate the effect of white-noise perturbations on chaotic trajectories in open billiards. We focus on the temporal decay of the survival probability for generic mixed-phase-space billiards. The survival probability has a total of five different decay regimes that prevail for different intermediate times. We combine new calculations and recent results on noise perturbed Hamiltonian systems to characterize the origin of these regimes, and to compute how the parameters scale with noise i...
Characterization and recognition of mixed emotional expressions in thermal face image
Saha, Priya; Bhattacharjee, Debotosh; De, Barin K.; Nasipuri, Mita
2016-05-01
Facial expressions in infrared imaging have been introduced to solve the problem of illumination, which is an integral constituent of visual imagery. The paper investigates facial skin temperature distribution on mixed thermal facial expressions of our created face database where six are basic expressions and rest 12 are a mixture of those basic expressions. Temperature analysis has been performed on three facial regions of interest (ROIs); periorbital, supraorbital and mouth. Temperature variability of the ROIs in different expressions has been measured using statistical parameters. The temperature variation measurement in ROIs of a particular expression corresponds to a vector, which is later used in recognition of mixed facial expressions. Investigations show that facial features in mixed facial expressions can be characterized by positive emotion induced facial features and negative emotion induced facial features. Supraorbital is a useful facial region that can differentiate basic expressions from mixed expressions. Analysis and interpretation of mixed expressions have been conducted with the help of box and whisker plot. Facial region containing mixture of two expressions is generally less temperature inducing than corresponding facial region containing basic expressions.
DEFF Research Database (Denmark)
Pu, Minhao; Chen, Yaohui; Hu, Hao
2014-01-01
An on-chip wavelength switch is proposed based on discrete four-wave mixing in a silicon waveguide. Switching operation can be realized by thermal tuning the waveguide dispersion. We also discuss optimal dimension design concerning device performances.......An on-chip wavelength switch is proposed based on discrete four-wave mixing in a silicon waveguide. Switching operation can be realized by thermal tuning the waveguide dispersion. We also discuss optimal dimension design concerning device performances....
Directory of Open Access Journals (Sweden)
J.C. Umavathi
2014-01-01
Full Text Available Fully developed laminar mixed convection in a corrugated vertical channel filled with two immiscible viscous fluids has been investigated. By using a perturbation technique, the coupled nonlinear equations governing the flow and heat transfer are solved. The fluids are assumed to have different viscosities and thermal conductivities. Separate solutions are matched at the interface using suitable matching conditions. The velocity, the temperature, the Nusselt number and the shear stress are analyzed for variations of the governing parameters such as Grashof number, viscosity ratio, width ratio, conductivity ratio, frequency parameter, traveling thermal temperature and are shown graphically. It is found that the Grashof number, viscosity ratio, width ratio and conductivity ratio enhance the velocity parallel to the flow direction and reduce the velocity perpendicular to the flow direction.
Mixed Convection Flow along a Stretching Cylinder in a Thermally Stratified Medium
Directory of Open Access Journals (Sweden)
Swati Mukhopadhyay
2012-01-01
Full Text Available An analysis for the axisymmetric laminar boundary layer mixed convection flow of a viscous and incompressible fluid towards a stretching cylinder immersed in a thermally stratified medium is presented in this paper. Similarity transformation is employed to convert the governing partial differential equations into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by a shooting method. It is found that the heat transfer rate at the surface is lower for flow in a thermally stratified medium compared to that of an unstratified medium. Moreover, both the skin friction coefficient and the heat transfer rate at the surface are larger for a cylinder compared to that for a flat plate.
Energy Technology Data Exchange (ETDEWEB)
Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)
1994-01-01
This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.
Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel Problem
Directory of Open Access Journals (Sweden)
Hamlyn G. Jones
2014-07-01
Full Text Available The consequences of changes in spatial resolution for application of thermal imagery in plant phenotyping in the field are discussed. Where image pixels are significantly smaller than the objects of interest (e.g., leaves, accurate estimates of leaf temperature are possible, but when pixels reach the same scale or larger than the objects of interest, the observed temperatures become significantly biased by the background temperature as a result of the presence of mixed pixels. Approaches to the estimation of the true leaf temperature that apply both at the whole-pixel level and at the sub-pixel level are reviewed and discussed.
DEFF Research Database (Denmark)
Forejt, L.; Melikov, Arsen Krikor; Cermak, Radim
2004-01-01
The performance of two personalized ventilation systems combined with mixing or displacement ventilation was studied under different conditions in regard to thermal comfort of seated occupants. The cooling performance of personalized ventilation was found to be independent of room air distribution....... Differences between the personalized air terminal devices were identified in terms of the cooling distribution over the manikin¿s body. The personalized ventilation supplying air from the front towards the face provided a more uniform cooling of the body than the personalized ventilation supplying air from...
Yang, Haifeng; Zhang, Jincheng; Chang, Jingjing; Lin, Zhenhua; Chen, Dazheng; Xi, He; Hao, Yue
2017-01-01
In this work, efficient mixed organic cation and mixed halide (MA0.7FA0.3Pb(I0.9Br0.1)3) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with VOC of 1.02 V, JSC of 21.55 mA/cm2 and FF of 76.27%. More importantly, the mixed lead halide perovskite MA0.7FA0.3Pb(I0.9Br0.1)3 can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA0.7FA0.3Pb(I0.9Br0.1)3 device still remains at 70.00% of its initial value, which is much better than the control MAPbI3 device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates. PMID:28773199
Energy Technology Data Exchange (ETDEWEB)
Hu, R. [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-09-01
This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.
Chaotic convection in a rotating fluid layer
Directory of Open Access Journals (Sweden)
Vinod K. Gupta
2015-12-01
Full Text Available A study of thermal convection in a rotating fluid layer is investigated based on the dynamical systems approach. A system of differential equation like Lorenz model has been obtained by using Galerkin-truncated approximation. The chaotic convection is investigated in a rotating fluid layer. A low-dimensional, Lorenz-like model was obtained using Galerkin truncated approximation. The fourth-order Runge–Kutta method is employed to obtain the numerical solution of Lorenz-like system of equations. We found that there is proportional relation between Taylor number and the scaled Rayleigh number R. This means that chaotic behavior can be delayed (for increasing value of R when we increase the scaled Taylor number. We conclude that the transition from steady convection to chaos depends on the level of Taylor number.
Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-09-01
DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).
Lavrič, Lea; Cerar, Ana; Fanedl, Lijana; Lazar, Borut; Žitnik, Miha; Logar, Romana Marinšek
2017-08-01
Liquid fraction produced in anaerobic digestion (AD) of biodegradable waste can be treated on-site with microalgae, which can be recycled back as substrate to the biogas plant. For this research, a pilot high rate algal pond (HRAP) was set with connections to a full scale biogas plant that enabled the use of waste heat and CO2 from a combined heat and power gen-set (CHP). The microalgal mix produced in the thermophilic anaerobic digestate supernatant was tested as a substrate for biogas production in the thermophilic AD (i.e. untreated, bioaugmented with anaerobic bacteria Clostridium thermocellum, and thermally pretreated, respectively). The methane potential of the untreated microalgal mix was low (157.5 ± 18.7 mL CH4/g VS). However, after the thermal pretreatment of the microalgae, methane production increased by 62%, while in the bioaugmentation with C. thermocellum under thermophilic conditions (T = 55 °C) it was elevated by 12%. The outcome of our pilot trial suggests that microalgae produced in the thermophilic biogas digestate represent a prospective alternative AD feedstock. At the same time, microalgae reduce the digestate nitrogen and COD to the level sufficient for the outflow to meet the quality required by the sewage system (ammonia-nitrogen max 200 mg/L, nitrite max 10 mg/L). Copyright © 2017 Elsevier Ltd. All rights reserved.
Reducing of thermal power energy-intensive pro-cesses costs in the mixed fodders technology
Directory of Open Access Journals (Sweden)
L. I. Lytkina
2016-01-01
Full Text Available Methodological approach to the creation of energy-efficient processes with direct involvement in the produc-tion process of heat pump technology for the preparation of of energy resources in obtaining of mixed fodders of the given particle size distribution was formed. Completed experimental and analytical studies paved the way for the development of energy efficient technolo-gies of mixed fodders with a vapor compression connection (VCHP and steam ejector (SEHP heat pumps on the closed thermody-namic schemes. It was shown that the strategy of the operational management of process parameters in the allowable technological properties of the resulting mixed fodder production does not allow a compromise between the conflicting technical and economic param-eters and let the main technical contradiction between productivity and power consumption. The control problem becomes much more complicated when there is no practical possibility of a detailed description of thermal processes occurring in the closed thermodynamic recycles based on the phenomenological laws of thermodynamics considering a balance of material and energy flows in the technologi-cal system. There is a need for adaptive control systems based on the extreme characteristics of the controlled object. The adaptation effect is achieved by obtaining information about the processes occurring in the conditions of technological line of mixed fodders pro-duction equalized particle size distribution, which allows to generate a control signal for the extreme value of the objective function. The scheme of automatic optimization ensuring continuous monitoring of the minimum value of the specific heat energy costs is proposed. It provides optimal consumption of the starting loose mixed fodder and rational strain on the line equipment.
Dynamic control of chaotic resonators
Di Falco, A.
2016-02-16
We report on the all-optical control of chaotic optical resonators based on silicon on insulator (SOI) platform. We show that simple non-chaotic cavities can be tuned to exhibit chaotic behavior via intense optical pump- ing, inducing a local change of refractive index. To this extent we have fabricated a number of devices and demonstrated experimentally and theoretically that chaos can be triggered on demand on an optical chip. © 2016 SPIE.
An approach to chaotic synchronization
Hramov, Alexander E.; Koronovskii, Alexey A.
2005-01-01
This paper deals with the chaotic oscillator synchronization. A new approach to the synchronization of chaotic oscillators has been proposed. This approach is based on the analysis of different time scales in the time series generated by the coupled chaotic oscillators. It has been shown that complete synchronization, phase synchronization, lag synchronization and generalized synchronization are the particular cases of the synchronized behavior called as "time-scale synchronization". The quan...
A hydro-thermo-mechanics analyze of the thermal fatigue in the mixing tee junction
Energy Technology Data Exchange (ETDEWEB)
Gourdin, C.; Chapuliot, S. [CEA Saclay, Dir. de l' Energie Nucleaire, (DEN/DM2S/SEMT/LISN), 91 - Gif sur Yvette (France); Magnaud, J.P. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN/DM2S/SFME/LTMF), 91 - Gif sur Yvette (France); Payen, T. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DES/SAMS), 92 - 92 - Fontenay aux Roses (France)
2003-07-01
Work presented here, has been achieved at Cea, and is related to the comprehension of the mechanisms leading to cracking under thermal loading in the zones of mixing. The main objective of this work is to analyze, by computation, the thermal loading induced by the turbulent mixing following a tee junction and to explain how it can create cracking, from the internal skin of the component to a leakage, as it was observed in Civaux Power Plant in 1998. The phenomenon is still today not completely understood. One of the principal reasons to this partial incomprehension undoubtedly resides in the multi-field aspect of the loading and of the associated damage, utilizing three different and complementary scientific disciplines: thermohydraulics, thermomechanics and material science. The presentation proposed here, consists in connecting the analyses resulting from these various fields. The first part concentrates on thermohydraulics simulations. The choice of an adequate modeling is discussed on the basis of observed cracking in order to highlight phenomena of large scale beats, which are supposed one of the major causes leading to the failure of the structures. The second part deals with the use of the temperature fields obtained in the first part in order to carry out thermomechanical simulations. All these simulations are 3-dimensional and represent the complex geometry of Civaux RRA piping line, including a tee junction and elbows, water flow velocity. Mean and temperatures variations, mean and stresses variations are also presented. As final results make it possible to determine a map of the damage associated with these complex thermal loading. (authors)
Study of Thermal Properties of Mixed (PP/EPR/ABS with Five Model Compatibilizers
Directory of Open Access Journals (Sweden)
Pierre Marcel Anicet Noah
2016-01-01
Full Text Available The influences of incorporating compatibilizers E-EA-MAH, E-MA-GMA, E-AM, SEBS KRATON G, or PP-g-MAH on the thermal properties of mixed (polypropylene/ethylene propylene rubber/acrylonitrile butadiene styrene (PP/EPR/ABS have been investigated. DSC investigations have revealed that the incorporation of 5% of ABS in the copolymer (PP/EPR does not fundamentally affect the thermal properties of the basic copolymer; additionally, the addition of 1.5% of each of the compatibilizers in the basic mixture does not significantly alter the crystallization temperature values and the melting of the -P- sequences. There is a variation of melting enthalpy values of the -P- sequences of 18.23% using SEBS KRATON G and of 10.38% using E-AM-GMA. When the rate of each of the compatibilizers increases to 5%, overall crystallization enthalpies of -P- sequences are almost kept unchanged, except for the case of using the compatibilizer E-AM-GMA with a variation of 8.42%. There is a minor variation of the melting enthalpy of -P- sequences with higher levels of compatibilizer. The incorporation of 5% ABS copolymer in the PP/EPR does not significantly alter the thermal properties of the basic structure of (PP/EPR/ABS.
A Mixed-dimensional Model for the Simulation of Soil Thermal Hydrology in Polygonal Tundra
Painter, S. L.; Jan, A.; Coon, E.
2016-12-01
Permafrost soils store massive amount of frozen organic carbon and are warming at a rate significantly larger than the rest of the planet. Simulation techniques are essential tools for studying the Arctic's complex hydrological environment. However, simulating permafrost dynamics is challenging because of strong coupling among thermal and hydrologic processes on the surface and in the subsurface. We present a novel mixed-dimensional model, motivated by fine-scale simulations, to simulate the soil thermal hydrology in degrading permafrost regions and make these process-rich simulations tractable at watershed scales. The approach indirectly couples 1D subsurface columns with a 2D surface system, and has two fundamental steps. Step 1 solves overland thermal hydrology system with no sources, mainly act as a spatial distributor of the mass and energy, and updates the subsurface system before it advances in time. Step 2 implicitly solves the subsurface system with surface ponding but no surface lateral flow, and use the output of that half-step to update the pressure and temperature of Step 1 for the next iteration. We have implemented this novel structure in the Arctic Terrestrial Simulator (ATS) to simulate the thermal hydrology of thawing polygonal tundra near Barrow, Alaska in warming climate. This is a first attempt to couple state-of-the-art representation of freezing soil physics with overland flow and surface energy balance at scales of 100s of meters. We demonstrate the accuracy and efficiency of our scheme. Our scheme is highly scalable, supports subcycling of different processes, and compares well with fully 3D representation, but is computationally less expensive. Further, it allows for efficient tracking of thaw-induced subsidence and avoids any mesh tangling that can result from representing dynamic topography in a 3D simulation. Although we focus on permafrost thermal hydrology, the model structure is applicable to many integrated surface and subsurface
Gupta, Diksha; Kumar, Lokendra; Bég, O. Anwar; Singh, Bani
2017-10-01
The objective of this paper is to study theoretically and numerically the effect of thermal radiation on mixed convection boundary layer flow of a dissipative micropolar non-Newtonian fluid from a continuously moving vertical porous sheet. The governing partial differential equations are transformed into a set of non-linear differential equations by using similarity transformations. These equations are solved iteratively with the Bellman-Kalaba quasi-linearization algorithm. This method converges quadratically and the solution is valid for a large range of parameters. The effects of transpiration (suction or injection) parameter, buoyancy parameter, radiation parameter and Eckert number on velocity, microrotation and temperature functions have been studied. Under a special case comparison of the present numerical results is made with the results available in the literature and an excellent agreement is found. Additionally skin friction and rate of heat transfer have also been computed. The study has applications in polymer processing.
Directory of Open Access Journals (Sweden)
Mohd Hafizi Mat Yasin
2013-01-01
Full Text Available We present the numerical investigation of the steady mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium saturated by a nanofluid. The governing partial differential equations are reduced to the ordinary differential equations, using the similarity transformations. The similarity equations are solved numerically for three types of metallic or nonmetallic nanoparticles, namely, copper (Cu, alumina (Al2O3, and titania (TiO2, in a water-based fluid to investigate the effect of the solid volume fraction or nanoparticle volume fraction parameter φ of the nanofluid on the flow and heat transfer characteristics. The skin friction coefficient and the velocity and temperature profiles are presented and discussed.
This research was initiated to investigate the association between flour breadmaking traits and mixing characteristics and empirical dough rheological property under thermal stress. Flour samples from 30 hard spring wheat were analyzed by a mixolab standard procedure at optimum water absorptions. Mi...
Aydiner, Ekrem
2018-01-15
In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de >-1, w dm ≥ 0, w m ≥ 0 and w r ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.
Response of six neutron survey meters in mixed fields of fast and thermal neutrons.
Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S
2013-10-01
Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.
A thermal subtidal model for a well-mixed estuary based on field data
Padilla, Enrique M.; Díez-Minguito, Manuel; Ortega-Sánchez, Miguel; Genua-Olmedo, Ana; Losada, Miguel A.
2013-04-01
In this meeting, we will present a predictive model for the spatio-temporal variability of the temperature in a well-mixed estuary: The Guadalquivir river estuary, which is located in SW Spain and flows into the northern Gulf of Cádiz (Atlantic Ocean). It is a convergent, relatively narrow, navigable and positive estuary normally subjected to low freshwater discharges mainly released from the Alcalá del Río head dam, located 110 km inland. The tidally- and cross-sectionally averaged advection-diffusion equation for the thermal energy balance was integrated numerically by stretches defined by the moorings' locations. The model operates at the momentum-conveying part of the cross-section at subtidal scale, and is based on a data set from a comprehensive monitoring campaign carried out during 2008-2011 (Navarro et al., Ocean Dynamics 61 (6) 753-765, 2011). The thermal energy transport model is forced by radiative, atmospheric, tidal and fluvial data series. In particular, the time evolution of short and longwave radiation, and latent and sensible heat were obtained at different locations along channel (Pawlowicz et al. Eos Trans. AGU 82 (1), 2, 2001). Hindcast water surface temperature resulted in close agreement with observations in all locations, reaching a correlation higher than 0.99. The most important contributions to temperature variability, which exhibits evident subtidal and seasonal modulations, are radiation and advection. This is in agreement with recent results near the estuary mouth (García-Lafuente et al. Estuarine, Coastal and Shelf Science 111, 60-66, 2012). Results of the model indicate that water surface temperature along the main channel is weakly dependent on dispersion and freshwater discharges. Sea water temperature is a crucial factor that affects density, oxygen solubility, nutrients distribution and plankton migrations. Thus, present and future works focus on investigating the primary and secondary production evolution along the
Energy Technology Data Exchange (ETDEWEB)
Roche, J.M.; Padet, C.; Padet, J.P. [Faculte des Sciences de Reims, 51 (France). Laboratoire de Thermomecanique
1996-12-31
This workshop day was jointly organized by the French society of thermal engineers (SFT) and the university group of thermal engineers (GUT). This compilation of proceedings comprises 8 papers dealing with: tendencies and ultimate tendencies of a non-linear phenomenon - scale of observation; quantification of the chaotic regime using the estimation of the information dimension; chaotic mixing and heat transfer between concentric confocal ellipses: experimental and numerical results; development of thermal instabilities in a mixed convection horizontal flow: the Lagrangian point of view; non-linear dynamics of surface instabilities: droplets and liquid columns; on the validity of global criterion when characterizing chaotic behaviour in two-dimensional flows; study of the hydrodynamical instabilities of natural convection flows in cavities partially filled with a porous medium; analytical study of induced instabilities at the nucleated ebullition - film ebullition transition. (J.S.)
Effect of noise in open chaotic billiards.
Altmann, Eduardo G; Leitão, Jorge C; Lopes, João Viana
2012-06-01
We investigate the effect of white-noise perturbations on chaotic trajectories in open billiards. We focus on the temporal decay of the survival probability for generic mixed-phase-space billiards. The survival probability has a total of five different decay regimes that prevail for different intermediate times. We combine new calculations and recent results on noise perturbed Hamiltonian systems to characterize the origin of these regimes and to compute how the parameters scale with noise intensity and billiard openness. Numerical simulations in the annular billiard support and illustrate our results.
The adaptive synchronization of fractional-order Liu chaotic system ...
Indian Academy of Sciences (India)
in the world, such as circuits, mathematics, power systems, medicine, electrochemical biology, etc. [1,2]. Thus, chaos is one of the .... tronic circuit model of mixed shape unit. The components of the realization of chaotic .... Analysis of stability against noise having master system of eq. (4) and slave system are as follows: D q.
Thermal stratification and mixing conditions in ice-covered lakes of Tibetan Plateau
Kirillin, Georgiy; Wen, Lijuan
2017-04-01
The Tibetan Plateau is covered by thousands of lakes, which play a crucial role in the hydrological regime and climate interactions within the Asian monsoon system. However, the thermal regime of the Tibetan lakes remains largely unknown to date making difficult estimation of their contribution into the regional-scale energy and mass exchange between land and the atmosphere. The lakes are covered by ice during 4-5 months of the year. We present first information on the heat storage by the Tibetan lakes during the ice season. The temperature data were collected in Lake Ngoring—the largest freshwater lake of Tibet— and cover the entire ice-covered season 2015-2016. The observations revealed a temperature and mixing regime cardinally different from that in temperate and polar seasonally ice-covered lakes. The high amount of the solar radiation at the surface and the low snow amount ensured strong radiative heating of the water column under ice immediately after ice cover formation. As a result, free convection had mixed the entire 25 m deep water column already in mid-February, 2 months after ice-on. Only 2 weeks later, in early March, the water temperature achieved the maximum density value that cancelled free convection and produced stable vertical stratification in the bulk of the water column with an inversion layer adjoining the ice-water interface. The stable conditions lasted until the ice breakup in mid-April, with temperatures right beneath the ice cover grown up to 6°C. The new findings demonstrate that all freshwater (and apparently the majority of brackish) lakes on Tibet encounter full mixing under ice, so that the convenient concept of winter stagnation, as known from traditional lake science, is inapplicable for these lakes. The direct consequences of the deep convective mixing are aeration of the deep lake waters and upward supply of nutrients to the upper photic layer, both suggesting versatile biogeochemical and ecological interactions specific
Nishikawa, Daiki; Nakajima, Tsuyoshi; Ohzawa, Yoshimi; Koh, Meiten; Yamauchi, Akiyoshi; Kagawa, Michiru; Aoyama, Hirokazu
2013-12-01
Thermal and oxidation stability of fluorine compound-mixed electrolyte solutions have been investigated. Charge/discharge behavior of natural graphite electrode has been also examined in the same electrolyte solutions. Fluorine compounds demonstrate much lower reactivity with metallic Li than ethylene carbonate/dimethyl carbonate. Fluorine compound-mixed electrolyte solutions show the lower reactivity with LiC6 and the smaller exothermic peaks due to decomposition of electrolyte solutions and surface films than original solutions without fluorine compound. Oxidation currents are also smaller in fluorine compound-mixed electrolyte solutions than in original ones. First coulombic efficiencies in fluorine compound-mixed electrolyte solutions are similar to those in original ethylene carbonate-based solutions except one case. Mixing of fluorine compounds highly increase first coulombic efficiencies of natural graphite electrode in propylene carbonate-containing solution.
Spilkera, Linda J.; Pilorz, Stuart H.; Wallis, Brad D.; Pearl, John C.; Cuzzi, Jeffrey N.; Brooks, Shawn M.; Altobelli, Nicolas; Edgington, Scott G.; Showalter, Mark; Flasar, F. Michael;
2006-01-01
In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, (alpha), on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with (alpha), and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes. The temperatures of the A and B rings are correlated with their optical depth, (tau), when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest (tau), these temperatures are also the same at both low and high a, suggesting that little sunlight is penetrating these regions. The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.
Directory of Open Access Journals (Sweden)
Pau Baya
2011-05-01
Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.
Energy Technology Data Exchange (ETDEWEB)
Place, B.G., Westinghouse Hanford
1996-09-24
The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.
Cryptosystems based on chaotic dynamics
Energy Technology Data Exchange (ETDEWEB)
McNees, R.A.; Protopopescu, V.; Santoro, R.T.; Tolliver, J.S.
1993-08-01
An encryption scheme based on chaotic dynamics is presented. This scheme makes use of the efficient and reproducible generation of cryptographically secure pseudo random numbers from chaotic maps. The result is a system which encrypts quickly and possesses a large keyspace, even in small precision implementations. This system offers an excellent solution to several problems including the dissemination of key material, over the air rekeying, and other situations requiring the secure management of information.
Zhou, Ping; Cheng, Yuan-Ming; Kuang, Fei
2010-09-01
Based on the idea of tracking control and stability theory of fractional-order systems, a controller is designed to synchronize the fractional-order chaotic system with chaotic systems of integer orders, and synchronize the different fractional-order chaotic systems. The proposed synchronization approach in this paper shows that the synchronization between fractional-order chaotic systems and chaotic systems of integer orders can be achieved, and the synchronization between different fractional-order chaotic systems can also be realized. Numerical experiments show that the present method works very well.
Energy Technology Data Exchange (ETDEWEB)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developed at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.
Kamata, Shunichi
2018-01-01
Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection, for a bottom-heated convective layer. Adopting this new definition of l, I investigate the thermal evolution of Saturnian icy satellites, Dione and Enceladus, under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a thick global subsurface ocean suggested from geophysical analyses. Dynamical tides may be able to account for such an amount of heat, though the reference viscosity of Dione's ice and the ammonia content of Dione's ocean need to be very high. Otherwise, a thick global ocean in Dione cannot be maintained, implying that its shell is not in a minimum stress state.
Li, Hai; Zhao, Yuan Yuan
2017-11-01
In the framework of the Bogoliubov–de Gennes equation, we investigate the thermal transport properties in topological-insulator-based superconducting hybrid structures with mixed spin-singlet and spin-triplet pairing states, and emphasize the different manifestations of the spin-singlet and spin-triplet pairing states in the thermal transport signatures. It is revealed that the temperature-dependent differential thermal conductance strongly depends on the components of the pairing state, and the negative differential thermal conductance only occurs in the spin-singlet pairing state dominated regime. It is also found that the thermal conductance is profoundly sensitive to the components of the pairing state. In the spin-singlet pairing state controlled regime, the thermal conductance obviously oscillates with the phase difference and junction length. With increasing the proportion of the spin-triplet pairing state, the oscillating characteristic of the thermal conductance fades out distinctly. These results suggest an alternative route for distinguishing the components of pairing states in topological-insulator-based superconducting hybrid structures.
Studies in Chaotic adiabatic dynamics
Energy Technology Data Exchange (ETDEWEB)
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).
Compound Synchronization of Four Chaotic Complex Systems
Directory of Open Access Journals (Sweden)
Junwei Sun
2015-01-01
Full Text Available The chaotic complex system is designed from the start of the chaotic real system. Dynamical properties of a chaotic complex system in complex space are investigated. In this paper, a compound synchronization scheme is achieved for four chaotic complex systems. According to Lyapunov stability theory and the adaptive control method, four chaotic complex systems are considered and the corresponding controllers are designed to realize the compound synchronization scheme. Four novel design chaotic complex systems are given as an example to verify the validity and feasibility of the proposed control scheme.
Wu, Bi-cheng; McClements, David Julian
2015-11-01
Biopolymer hydrogel particles formed by electrostatic complexation of proteins and polysaccharides have various applications within the food and other industries, including as delivery systems for bioactive compounds, as texture modifiers, and as fat replacers. The functional attributes of these electrostatic complexes are strongly influenced by their morphology, which is determined by the molecular interactions between the biopolymer molecules. In this study, electrostatic complexes were formed using an amphoteric protein (gelatin) and an anionic polysaccharide (pectin). Gelatin undergoes a helix-to-coil transition when heated above a critical temperature, which impacts its molecular interactions and hydrogel formation. The aim of this research was to study the influence of thermal annealing on the properties of hydrogel particles formed by electrostatic complexation of gelatin and pectin. Hydrogel particles were fabricated by mixing 0.5 wt% gelatin and 0.01 wt% pectin at pH 10 (where both were negatively charged) at various temperatures, followed by acidification to pH 5 (where they have opposite charges) with controlled acidification and stirring. The gelation ({{T}\\text{g}} ) and melting temperature ({{T}\\text{m}} ) of the electrostatic complexes were measuring using a small amplitude oscillation test: {{T}\\text{g}}=26.3 °C and {{T}\\text{m}}=32.3 °C. Three annealing temperatures (5, 30 and 50 °C) corresponding to different regimes (T{{T}\\text{m}} ) were selected to control the configuration of the gelatin chain. The effects of formation temperature, annealing temperature, and incubation time on the morphology of the hydrogel particles were characterized by turbidity, static light scattering, and microscopy. The results of this study will facilitate the rational design of hydrogel particles with specific particle dimensions and morphologies, which has important implications for tailoring their functionality for various applications.
Energy Technology Data Exchange (ETDEWEB)
Haihua Zhao; Per F. Peterson
2010-10-01
Thermal mixing and stratification phenomena play major roles in the safety of reactor systems with large enclosures, such as containment safety in current fleet of LWRs, long-term passive containment cooling in Gen III+ plants including AP-1000 and ESBWR, the cold and hot pool mixing in pool type sodium cooled fast reactor systems (SFR), and reactor cavity cooling system behavior in high temperature gas cooled reactors (HTGR), etc. Depending on the fidelity requirement and computational resources, 0-D steady state models (heat transfer correlations), 0-D lumped parameter based transient models, 1-D physical-based coarse grain models, and 3-D CFD models are available. Current major system analysis codes either have no models or only 0-D models for thermal stratification and mixing, which can only give highly approximate results for simple cases. While 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries. Due to prohibitive computational expenses for long transients in very large volumes, 3-D CFD simulations remain impractical for system analyses. For mixing in stably stratified large enclosures, UC Berkeley developed 1-D models basing on Zuber’s hierarchical two-tiered scaling analysis (HTTSA) method where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. This paper will present an overview on important thermal mixing and stratification phenomena in large enclosures for different reactors, major modeling methods and their advantages and limits, potential paths to improve simulation capability and reduce analysis uncertainty in this area for advanced reactor system analysis tools.
Intermittent chaotic chimeras for coupled rotators
DEFF Research Database (Denmark)
Olmi, Simona; Martens, Erik Andreas; Thutupalli, Shashi
2015-01-01
Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence of intermittent chaotic chimeras, where one population is synchronized and the other...
On the Design of Chaotic Oscillators
DEFF Research Database (Denmark)
Lindberg, Erik; Tamasevicius, A; Cenys, A.
1998-01-01
A discussion of the chaotic oscillator concept from a design methodology pointof view. The attributes of some chaoticoscillators are discussed and a systematicdesign method based on eigenvalue investigation is proposed. The method isillustrated with a chaotic Wien-bridgeoscillator design....
Chaotic eigenfunctions in phase space
Nonnenmacher, S
1997-01-01
We study individual eigenstates of quantized area-preserving maps on the 2-torus which are classically chaotic. In order to analyze their semiclassical behavior, we use the Bargmann-Husimi representations for quantum states, as well as their stellar parametrization, which encodes states through a minimal set of points in phase space (the constellation of zeros of the Husimi density). We rigorously prove that a semiclassical uniform distribution of Husimi densities on the torus entails a similar equidistribution for the corresponding constellations. We deduce from this property a universal behavior for the phase patterns of chaotic Bargmann eigenfunctions, which reminds of the WKB approximation for eigenstates of integrable systems (though in a weaker sense). In order to obtain more precise information on ``chaotic eigenconstellations", we then model their properties by ensembles of random states, generalizing former results on the 2-sphere to the torus geometry. This approach yields statistical predictions fo...
The Statistics of Chaotic Tunnelling
Creagh, S C; Creagh, Stephen C.; Whelan, Niall D.
2000-01-01
We discuss the statistics of tunnelling rates in the presence of chaotic classical dynamics. This applies to resonance widths in chaotic metastable wells and to tunnelling splittings in chaotic symmetric double wells. The theory is based on using the properties of a semiclassical tunnelling operator together with random matrix theory arguments about wave function overlaps. The resulting distribution depends on the stability of a specific tunnelling orbit and is therefore not universal. However it does reduce to the universal Porter-Thomas form as the orbit becomes very unstable. For some choices of system parameters there are systematic deviations which we explain in terms of scarring of certain real periodic orbits. The theory is tested in a model symmetric double well problem and possible experimental realisations are discussed.
Energy Technology Data Exchange (ETDEWEB)
Kim, S.; Choi, H. S.; Choi, S. R.; Kim, H. M.; Bae, H.; Chang, S. K.; Euh, D. J.; Lee, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
The Nuclear Power Committee has established the objectives of the construction and the operation of the 4th generation LMFBR (Liquid Metal Fast Breed Reactor). To meet these goals, one of the subjects which is performing the production of the experimental data and also is estimating the uncertainties of the results of the CFD analysis should be undertaken. In other words, it is important to evaluate the accuracy of the model and the thermal hydraulic analysis code used to evaluate the safety of the SFR reactor core and quantify uncertainty. For the preliminary test before the 127 pin model test, the test loop for the wire wrapped 37 pin fuel assembly (FIFFA, Flow Identification for Fast reactor Fuel Assembly) was constructed to establish measurement technique. The heat transfer associated with the flow exchange between rod bundles was related with the diffusion coefficient. To identify a mixing characteristics among rod bundles, the optical measurement technique was adopted. To visualize and quantify the mixing characteristics between each rod bundle, the laser induced fluorescence (LIF) technique is one of suitable measurement technique. The CFD-grade experimental results will contribute to provide the benchmark data for validating the CFD analysis. LIF technique is adopted to visualize and quantify the mixing characteristics between each rod bundle in this study. The mixing characteristics data of reactor flow distribution will be utilized to evaluate and to validate the thermal margin analysis of the SFR reactor.
Chaotic signals in digital communications
Eisencraft, Marcio; Suyama, Ricardo
2013-01-01
Chaotic Signals in Digital Communications combines fundamental background knowledge with state-of-the-art methods for using chaotic signals and systems in digital communications. The book builds a bridge between theoretical works and practical implementation to help researchers attain consistent performance in realistic environments. It shows the possible shortcomings of the chaos-based communication systems proposed in the literature, particularly when they are subjected to non-ideal conditions. It also presents a toolbox of techniques for researchers working to actually implement such system
Lectures on chaotic dynamical systems
Afraimovich, Valentin
2002-01-01
This book is devoted to chaotic nonlinear dynamics. It presents a consistent, up-to-date introduction to the field of strange attractors, hyperbolic repellers, and nonlocal bifurcations. The authors keep the highest possible level of "physical" intuition while staying mathematically rigorous. In addition, they explain a variety of important nonstandard algorithms and problems involving the computation of chaotic dynamics. The book will help readers who are not familiar with nonlinear dynamics to understand and appreciate sophisticated modern dynamical systems and chaos. Intended for courses in either mathematics, physics, or engineering, prerequisites are calculus, differential equations, and functional analysis.
Planktonic communities and chaotic advection in dynamical models of Langmuir circulation
Bees, M. A.
1998-01-01
A deterministic mechanism for the production of plankton patches within a typical medium scale oceanic structure is proposed and investigated. By direct numerical simulation of a simple model of Langmuir circulation we quantify the effects of unsteady flows on planktonic communities and demonstrate their importance. Two qualitatively different zones within the flow are identified: chaotic regions that help to spread plankton and locally coherent regions, that do not mix with the chaotic regio...
Energy Technology Data Exchange (ETDEWEB)
Sonoya, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Yokohama (Japan); Tobe, S. [Ashikaga Inst. of Tech., Ashikaga-shi, Tochigi-ken (Japan)
2000-07-01
Recent trends of turbine blades of advanced aircraft gas turbine engines are to increase output power of the engines, to increase engine efficiency and to reduce environmental emission, and thus, higher operating temperatures of the engines are required. One of the technologies for increasing the operating temperature is a thermal barrier splayed coating [1,2]. The coating usually consists of a bonding coating layer of an alloy of NiCrAlY on the turbine blade and a top layer of ZrO{sub 2}-Y{sub 2}O{sub 3}, namely, partially stabilized zirconia (PSZ). However, conventional coating systems deteriorate during turbine operation due to thermal and mechanical stresses imposed and corrosion actions by combustion gas coming from combustion chambers. Thus, the main issue is to develop measures against high oxidation rate and low fatigue life of the bonding coating layer. An idea for enhancing oxidation resistance and fatigue life as well of thermal barrier coatings consisting of a zirconia-based coating is to provide with a self-healing capability to the coating by diffusing a suitable substance to fatigue crack surfaces formed in the coating. Excessive oxidation of the NiCrAlY layer beneath is prevented for extending fatigue life of the splayed barrier coating. Several investigations have been conducted on the matter, and a research paper [3] claims that MoSi{sub 2} in a splayed coating has a self-healing capability for cracks formed in the coating by embedding the cracks with SiO{sub 2} formed from MoSi{sub 2} at high temperatures. Thus, a new coating system containing NiCrAlY, MoSi{sub 2}, and PSZ is expected to be developed instead of a two-layer coating system of NiCrAlY and PSZ.
Statistical Distance For Chaotic Maps
Johal, R S
1998-01-01
The purpose of this letter is to define a distance on the underlying phase space of a chaotic map, based on natural invariant density of the map. It is observed that for logistic map this distance is equivalent to Wootters' statistical distance. This distance becomes the Euclidean distance for a map with constant invariant density.
Energy Technology Data Exchange (ETDEWEB)
Utanohara, Yoichi, E-mail: utanohara@inss.co.jp [Institute of Nuclear Safety System, Inc., 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan); Nakamura, Akira, E-mail: a-naka@inss.co.jp [Institute of Nuclear Safety System, Inc., 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan); Miyoshi, Koji, E-mail: miyoshi.koji@inss.co.jp [Institute of Nuclear Safety System, Inc., 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan); Kasahara, Naoto, E-mail: kasahara@n.t.u-tokyo.ac.jp [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2016-08-15
Highlights: • A large eddy simulation of a mixing tee was carried out. • Fluid temperature fluctuation could be predicted qualitatively. • Grid convergence was almost attained and the simulation continued until 100 s. • A longer-period temperature fluctuation than the well-known St = 0.2 appeared. • Prediction of long-period temperature fluctuations improves the thermal fatigue assessment. - Abstract: Thermal fatigue cracks may be initiated at mixing tees where high and low temperature fluids flow in and mix. According to a previous study, damage by thermal fatigue depends on the frequency of the fluid temperature fluctuation near the wall surface. Structures have the time constant of structural response that depends on physical properties of the structure and the gain of the frequency response tends to become maximum at the frequency lower than the typical frequency of fluid temperature fluctuation. Hence the effect of the lower frequency, that is, long-period temperature fluctuation is important for the thermal fatigue assessment. The typical frequency of fluid temperature fluctuation is about St = 0.2 (nearly 6 Hz), where St is Strouhal number and means non-dimensional frequency. In the experimental study by Miyoshi et al. (2014), a longer-period fluctuation than St = 0.2 was also observed. Results of a fluid–structure coupled analysis by Kamaya et al. (2011) showed this long-period temperature fluctuation causes severer damage to piping. In the present study, a large eddy simulation was carried out to investigate the predictive performance of the long-period fluid temperature fluctuation more quantitatively. Numerical simulation was conducted for the WATLON experiment which was the water experiment of a mixing tee performed at the Japan Atomic Energy Agency. Four computational grids were used to confirm grid convergence. In the short time (9 s) simulations, tendencies of time-averaged and fluctuated velocities could be followed. Time
Applications of Chaotic Dynamics in Robotics
Directory of Open Access Journals (Sweden)
Xizhe Zang
2016-03-01
Full Text Available This article presents a summary of applications of chaos and fractals in robotics. Firstly, basic concepts of deterministic chaos and fractals are discussed. Then, fundamental tools of chaos theory used for identifying and quantifying chaotic dynamics will be shared. Principal applications of chaos and fractal structures in robotics research, such as chaotic mobile robots, chaotic behaviour exhibited by mobile robots interacting with the environment, chaotic optimization algorithms, chaotic dynamics in bipedal locomotion and fractal mechanisms in modular robots will be presented. A brief survey is reported and an analysis of the reviewed publications is also presented.
Advances and applications in chaotic systems
Volos, Christos
2016-01-01
This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.
A novel image encryption algorithm based on a 3D chaotic map
Kanso, A.; Ghebleh, M.
2012-07-01
Recently [Solak E, Çokal C, Yildiz OT Biyikoǧlu T. Cryptanalysis of Fridrich's chaotic image encryption. Int J Bifur Chaos 2010;20:1405-1413] cryptanalyzed the chaotic image encryption algorithm of [Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259-1284], which was considered a benchmark for measuring security of many image encryption algorithms. This attack can also be applied to other encryption algorithms that have a structure similar to Fridrich's algorithm, such as that of [Chen G, Mao Y, Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749-761]. In this paper, we suggest a novel image encryption algorithm based on a three dimensional (3D) chaotic map that can defeat the aforementioned attack among other existing attacks. The design of the proposed algorithm is simple and efficient, and based on three phases which provide the necessary properties for a secure image encryption algorithm including the confusion and diffusion properties. In phase I, the image pixels are shuffled according to a search rule based on the 3D chaotic map. In phases II and III, 3D chaotic maps are used to scramble shuffled pixels through mixing and masking rules, respectively. Simulation results show that the suggested algorithm satisfies the required performance tests such as high level security, large key space and acceptable encryption speed. These characteristics make it a suitable candidate for use in cryptographic applications.
Wang, Duanyi; Shi, Jicun
2017-06-01
In order to non-destructive test (NDT) the permeability coefficient of hot mix asphalt (HMA) pavements fast, A methodology for assessing the permeability coefficient was proposed by infrared differential thermal testing of pavement after rain. The relationship between permeability coefficient and air voids of HMA specimen deter-mined. Finite element method (FEM) models were built to calculate the surface temperature difference with different exposure time after precipitation. Simulated solar radiation source and fully saturated plate specimens were set in laboratory, tests verify that the different exposure time the specimen surface temperature difference. Infrared differential thermal detection permeable pavement hardware and corresponding software developed. Based on many test results, the evaluation index and criteria of permeability coefficient of HMA pavements tested by infrared differential thermal were developed. The results showed that: There is correlation between air voids and permeability coefficient of HMA specimen. Permeability coefficient of HMA pavements can be determined by different surface temperature at different exposure time. 9:00 am - 14:00 pm is the best time to detect permeability coefficient by infrared differential thermal NDT. Permeable asphalt pavement permeability can be achieved by infrared detector quickly and continuously, a lane testing; Per the permeable assessment criteria, in-place pavements permeability coefficients can be accurately evaluated.
Directory of Open Access Journals (Sweden)
Prasad K.V.
2017-02-01
Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.
Prasad, K. V.; Mallikarjun, P.; Vaidya, H.
2017-02-01
The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux). The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM) and regular perturbation method (PM). The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM) and regular perturbation method (PM) methods shows the versatility of the Differential Transform Method (DTM). The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.
Hussanan, Abid; Salleh, Mohd Zuki; Tahar, Razman Mat; Khan, Ilyas
2015-02-01
Thermal-diffusion and chemical reaction effects on mixed convection heat and mass transfer flow past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a system of linear partial differential equations using appropriate non-dimensional variables. Using Laplace transform method the resulting equations are solved analytically and the expression for velocity, temperature and concentration are obtained. They satisfy all imposed initial and boundary conditions. Numerical results for temperature and concentration are shown in various graphs for embedded flow parameters and discussed in details.
Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin
2015-03-18
The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.
Energy Technology Data Exchange (ETDEWEB)
Gradecka, Malwina Joanna, E-mail: malgrad@gmail.com; Woods, Brian G., E-mail: brian.woods@oregonstate.edu
2016-08-15
Highlights: • Coolant mixing in lower plenum might be insufficient and pose operational issues. • Two mixing methods were developed to lower the coolant temperature variation. • The methods resulted with reduction of the temperature variation by 60% and 71%. - Abstract: The High Temperature Gas-cooled Reactor (HTGR) is one of the most mature Gen IV reactor concepts under development today. The High Temperature Test Facility (HTTF) at Oregon State University is a test facility that supports the R&D needs for HTGRs. This study focuses on the issue of helium mixing after the core section in the HTTF, the results of which are generally applicable in HTGRs. In the HTTF, hot helium jets at different temperatures are supposed to uniformly mix in the lower plenum (LP) chamber. However, the level of mixing is not sufficient to reduce the peak helium temperature before the hot jet impinges the LP structure, which can cause issues with structural materials and operational issues in the heat exchanger downstream. The maximum allowable temperature variation in the outlet duct connected to the lower plenum is defined as 40 K (±20 K from the average temperature), while the CFD simulations of this study indicate that the reference design suffers temperature variations in the duct as high as 100 K. To solve this issue, the installation of mixing-enhancing structures within the outlet duct were proposed and analyzed using CFD modeling. We show that using either an optimized “Kwiat” structure (developed in this study) or a motionless mixer installed in the outlet duct, the temperature variations can be brought dramatically, with acceptable increases in pressure drop. The optimal solution appears to be to install double motionless mixers with long blades in the outlet duct, which brings the temperature variation into the acceptable range (from 100 K down to 18 K), with a resulting pressure drop increase in the HTTF loop of 0.73 kPa (6% of total pressure drop).
Combined effect of magnetic field and thermal dispersion on a non-darcy mixed convection
El-Amin, Mohamed
2011-05-21
This paper is devoted to investigate the influences of thermal dispersion and magnetic field on a hot semi-infinite vertical porous plate embedded in a saturated Darcy-Forchheimer-Brinkman porous medium. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The effects of transverse magnetic field parameter (Hartmann number Ha), Reynolds number Re (different velocities), Prandtl number Pr (different types of fluids) and dispersion parameter on the wall shear stress and the heat transfer rate are discussed. © 2011 Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag Berlin Heidelberg.
Sneutrino chaotic inflation and landscape
Directory of Open Access Journals (Sweden)
Hitoshi Murayama
2014-11-01
Full Text Available The most naive interpretation of the BICEP2 data is the chaotic inflation by an inflaton with a quadratic potential. When combined with supersymmetry, we argue that the inflaton plays the role of right-handed scalar neutrino based on rather general considerations. The framework suggests that the right-handed sneutrino tunneled from a false vacuum in a landscape to our vacuum with a small negative curvature and suppressed scalar perturbations at large scales.
Kuusela, Tom A.
2017-09-01
A He-Ne laser is an example of a class A laser, which can be described by a single nonlinear differential equation of the complex electric field. This laser system has only one degree of freedom and is thus inherently stable. A He-Ne laser can be driven to the chaotic condition when a large fraction of the output beam is injected back to the laser. In practice, this can be done simply by adding an external mirror. In this situation, the laser system has infinite degrees of freedom and therefore it can have a chaotic attractor. We show the fundamental laser equations and perform elementary stability analysis. In experiments, the laser intensity variations are measured by a simple photodiode circuit. The laser output intensity time series is studied using nonlinear analysis tools which can be found freely on the internet. The results show that the laser system with feedback has an attractor of a reasonably high dimension and that the maximal Lyapunov exponent is positive, which is clear evidence of chaotic behaviour. The experimental setup and analysis steps are so simple that the studies can even be implemented in the undergraduate physics laboratory.
Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste
Energy Technology Data Exchange (ETDEWEB)
N/A
1999-05-06
The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.
Thermal IR radiative properties of mixed mineral dust and biomass aerosol during SAMUM-2
Koehler, Claas H.; Trautmann, Thomas; Lindermeir, Erwin; Vreeling, Willem; Lieke, Kirsten; Kandler, Konrad; Weinzierl, Bernadett; Gross, Silke; Tesche, Matthias; Wendisch, Manfred
Ground-based high spectral resolution measurements of downwelling radiances from 800 to 1200 cm(-1) were conducted between 20 January and 6 February 2008 within the scope of the SAMUM-2 field experiment. We infer the spectral signature of mixed biomass burning/mineral dust aerosols at the surface
Directory of Open Access Journals (Sweden)
Mudasir Mudasir
2010-06-01
Full Text Available A research about base-pair specificity of the DNA binding of [Fe(phen3]2+, [Fe(phen2(dip]2+ and [Fe(phen(dip2]2+ complexes and the effect of calf-thymus DNA (ct-DNA binding of these metal complexes on thermal denaturation of ct-DNA has been carried out. This research is intended to evaluate the preferential binding of the complexes to the sequence of DNA (A-T or G-C sequence and to investigate the binding strength and mode upon their interaction with DNA. Base-pair specificity of the DNA binding of the complexes was determined by comparing the equilibrium binding constant (Kb of each complex to polysynthetic DNA that contain only A-T or G-C sequence. The Kb value of the interaction was determined by spectrophotometric titration and thermal denaturation temperature (Tm was determined by monitoring the absorbance of the mixture solution of each complex and ct-DNA at λ =260 nm as temperature was elevated in the range of 25 - 100 oC. Results of the study show that in general all iron(II complexes studied exhibit a base-pair specificity in their DNA binding to prefer the relatively facile A-T sequence as compared to the G-C one. The thermal denaturation experiments have demonstrated that Fe(phen3]2+ and [Fe(phen2(dip]2+ interact weakly with double helical DNA via electrostatic interaction as indicated by insignificant changes in melting temperature, whereas [Fe(phen2(dip]2+ most probably binds to DNA in mixed modes of interaction, i.e.: intercalation and electrostatic interaction. This conclusion is based on the fact that the binding of [Fe(phen2(dip]2+ to ct-DNA moderately increase the Tm value of ct- DNA Keywords: DNA Binding, mixed-ligand complexes
Robust synchronization of chaotic systems via feedback
Energy Technology Data Exchange (ETDEWEB)
Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion
2008-07-01
This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)
Relativistic field theory and chaotic dynamics
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Yosuke
2005-01-01
We have studied the relativistic equations and chaotic motions of gravitational field on the basis of the theory of relativity and chaos. Friedmann equation (the space component) shows the chaotic behaviours in case of the inflation universe (G/G>0) and shows the non-chaotic behaviours in case of the flat and contraction universe (G/G {<=} 0). With the use of Kerr metric, we have discussed the non-diagonal tensor effect on gravitational field and chaotic dynamics. We have also discussed the dimension of the universe on the basis of E infinity theory.
DYNAMICS OF FRACTIONAL ORDER CHAOTIC SYSTEM
Directory of Open Access Journals (Sweden)
M. Jana
2017-02-01
Full Text Available This paper deals with the dynamics of chaos and synchronization for fractional order chaotic system. For fractional order derivative Captuo definition is used here and numerical simulations are done using Predictor-Correctors scheme by Diethlm based on the Adams-Baseforth-Moulton algorithm. Stability analysis is discussed here for non linear fractional order chaotic system and synchronization is achieved between two non identical fractional order chaotic systems: Finance chaotic system(driving systemand Lorenz system(response systemvia active control.Numerical simulations are performed to show the effectiveness of these approaches.
Free Space Ranging Utilizing Chaotic Light
Directory of Open Access Journals (Sweden)
Tong Zhao
2013-01-01
Full Text Available We report our recent works on free space ranging with chaotic light. Using a laser diode with optical feedback as chaotic source, a prototype of chaotic lidar has been developed and it can achieve a range-independent resolution of 18 cm and measurable distance of 130 m at least. And its antijamming performance is presented experimentally and numerically. Finally, we, respectively, employ the wavelet denoising method and the correlation average discrete-component elimination algorithm to detect the chaotic signal in noisy environment and suppress the side-lobe noise of the correlation trace.
TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR
DEFF Research Database (Denmark)
Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis
2007-01-01
A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...
Teeta, Suminya; Nachaisin, Mali; Wanish, Suchana
2017-09-01
The objective of this research was to produce green fuel briquettes from corncobs by adding macadamia shell charcoal powder. The study was sectioned into 3 parts: 1) Quality improvement of green fuel briquettes by adding macadamia; 2) Fuel property analysis based on ASTM standards and thermal fuel efficiency; and 3) Economics appropriateness in producing green fuel briquettes. This research produced green fuel briquettes using the ratio of corncobs weight and macadamia shell charcoal powder in 100:0 90:10 80:20 70:30 60:40 and 50:50 and pressing in the cold briquette machine. Fuel property analysis showed that green fuel briquettes at the ratio 50:50 produced maximum heating values at 21.06 Megajoule per kilogram and briquette density of 725.18 kilograms per cubic meter, but the percent of moisture content, volatile matter, ash, and fixed carbon were 10.09, 83.02, 2.17 and 4.72 respectively. The thermal efficiency of green fuel briquettes averaged 20.22%. Economics appropriateness was most effective where the ratio of corncobs weight to macadamia shell charcoal powder was at 50:50 which accounted for the cost per kilogram at 5.75 Baht. The net present value was at 1,791.25 Baht. Internal rate of return was at 8.62 and durations for a payback period of investment was at 1.9 years which was suitable for investment.
Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics
Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal
2017-12-01
Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.
Space-Group Symmetries Generate Chaotic Fluid Advection in Crystalline Granular Media
Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.
2018-01-01
The classical connection between symmetry breaking and the onset of chaos in dynamical systems harks back to the seminal theory of Noether [Transp. Theory Statist. Phys. 1, 186 (1918), 10.1080/00411457108231446]. We study the Lagrangian kinematics of steady 3D Stokes flow through simple cubic and body-centered cubic (bcc) crystalline lattices of close-packed spheres, and uncover an important exception. While breaking of point-group symmetries is a necessary condition for chaotic mixing in both lattices, a further space-group (glide) symmetry of the bcc lattice generates a transition from globally regular to globally chaotic dynamics. This finding provides new insights into chaotic mixing in porous media and has significant implications for understanding the impact of symmetries upon generic dynamical systems.
Chaotic fluctuations in mathematical economics
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Hiroyuki, E-mail: yoshida.hiroyuki@nihon-u.ac.jp [College of Economics, Nihon University, Chiyoda-ku, Tokyo 101-8360 (Japan)
2011-03-01
In this paper we examine a Cournot duopoly model, which expresses the strategic interaction between two firms. We formulate the dynamic adjustment process and investigate the dynamic properties of the stationary point. By introducing a memory mechanism characterized by distributed lag functions, we presuppose that each firm makes production decisions in a cautious manner. This implies that we have to deal with the system of integro-differential equations. By means of numerical simulations we show the occurrence of chaotic fluctuations in the case of fixed delays.
Chaotic Patterns in Aeroelastic Signals
Directory of Open Access Journals (Sweden)
F. D. Marques
2009-01-01
patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincaré mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents.
Ramzan, Muhammad; Bilal, Muhammad
2015-01-01
The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile.
Projective synchronization of chaotic systems with bidirectional ...
Indian Academy of Sciences (India)
This paper presents a new scheme for constructing bidirectional nonlinear coupled chaotic systems which synchronize projectively. Conditions necessary for projective synchronization (PS) of two bidirectionally coupled chaotic systems are derived using Lyapunov stability theory. The proposed PS scheme is discussed by ...
Theory and practice of chaotic cryptography
Energy Technology Data Exchange (ETDEWEB)
Amigo, J.M. [Centro de Investigacion Operativa, Universidad Miguel Hernandez, Avda. de la Universidad, 03202 Elche (Spain)]. E-mail: jm.amigo@umh.es; Kocarev, L. [Institute for Nonlinear Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0402 (United States)]. E-mail: lkocarev@ucsd.edu; Szczepanski, J. [Institute of Fundamental Technological Research, Polish Academy of Science, Swietokrzyska 21, 00-049 Warsaw (Poland)]. E-mail: jszczepa@ippt.gov.pl
2007-06-25
In this Letter we address some basic questions about chaotic cryptography, not least the very definition of chaos in discrete systems. We propose a conceptual framework and illustrate it with different examples from private and public key cryptography. We elaborate also on possible limits of chaotic cryptography.
Projective synchronization of chaotic systems with bidirectional ...
Indian Academy of Sciences (India)
a coupled chaotic system composed of identical chaotic oscillators was first reported by. Fujisaka and Yamada [1,2] and later by Pecora and Carroll [3]. Synchronization is a uni- versal phenomenon in a variety of natural and engineering systems [4]. Over the past two decades, chaos synchronization has received much ...
Influence of magnetic field on the thermal conductivity of the water based mixed Fe3O4/CuO nanofluid
Ebrahimi, Samaneh; Saghravani, Seyed Fazlolah
2017-11-01
Mixed Fe3O4/CuO nanofluid was selected and the role of external magnetic field with strength up to 0.2 T was studied on the thermal conductivity of the considered nanofluid with different basic parameters such as nanoparticle concentration and temperature of the base fluid. Thermal conductivity was measured using hot wire technique. Also the magnetic field applied uniformly to the nanofluid system regarding to the different situations of the field strength and weight percent of the both containing Fe3O4 and CuO nanoparticles. We found that the thermal conductivity of the pure and mixed Fe3O4 with CuO nanoparticle has significant enhancement at presence of the external magnetic field. However the rate of the thermal conductivity growth is strongly correlated with the magnetic field strength which is applied uniformly to the system. More results including measurement technique and conclusions are described in details at the context.
Okumuş, Mustafa
2017-11-01
In this study, the thermal and optical properties of quartet mixtures formed at different weight ratios (1:1:1:1 and 1.5:1:1:1) from liquid crystals 4-octyloxy-4‧-cyanobiphenyl (8OCB), 4-hexylbenzoic acid, 4-(octyloxy)benzoic acid and 4-(decyloxy)benzoic acid were investigated by differential scanning calorimeter (DSC) and polarized optic microscopy (POM). The phase transition temperatures of the novel quartet mixtures measured in the DSC experiments are in line with the POM experiments. The experimental results clearly show that the novel liquid crystal mixtures have displayed pure liquid crystalline properties. According to the phase diagram drawn from DSC results, the nematic range of the novel mixture at the eutectic point is larger than the nematic ranges of the components. The mesomorphic structures of produced homolog complex mixtures are found to be smectic and nematic phases. But the smectic phase cannot be observed in the novel complex 1.5:1:1:1 mixture during continuous cooling. The nematic range of the novel complex 1.5:1:1:1 mixture is bigger than the nematic range of the novel complex 1:1:1:1 mixture with increasing 8OCB. Also, the nematic-to-isotropic phase transition temperature decreases with increasing the weight ratio of 8OCB in the complex quartet mixture. Another interesting result is that the produced mixtures are to be like a medical cream at room temperatures. Furthermore, order parameter and thermal stability factor of the transitions are also calculated.
Directory of Open Access Journals (Sweden)
Hua Li
2014-01-01
Full Text Available The Effective Heat Source (EHS and Effective Momentum Source (EMS models have been proposed to predict the development of thermal stratification and mixing during a steam injection into a large pool of water. These effective models are implemented in GOTHIC software and validated against the POOLEX STB-20 and STB-21 tests and the PPOOLEX MIX-01 test. First, the EHS model is validated against STB-20 test which shows the development of thermal stratification. Different numerical schemes and grid resolutions have been tested. A 48×114 grid with second order scheme is sufficient to capture the vertical temperature distribution in the pool. Next, the EHS and EMS models are validated against STB-21 test. Effective momentum is estimated based on the water level oscillations in the blowdown pipe. An effective momentum selected within the experimental measurement uncertainty can reproduce the mixing details. Finally, the EHS-EMS models are validated against MIX-01 test which has improved space and time resolution of temperature measurements inside the blowdown pipe. Excellent agreement in averaged pool temperature and water level in the pool between the experiment and simulation has been achieved. The development of thermal stratification in the pool is also well captured in the simulation as well as the thermal behavior of the pool during the mixing phase.
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form...... and enhance the global search ability. A large number of tests show that the proposed algorithm has higher convergence speed and better optimizing ability than quantum evolutionary algorithm, real-coded quantum evolutionary algorithm and hybrid quantum genetic algorithm. Tests also show that when chaos...... is introduced to quantum evolutionary algorithm, the hybrid chaotic search strategy is superior to the carrier chaotic strategy, and has better comprehensive performance than the chaotic mutation strategy in most of cases. Especially, the proposed algorithm is the only one that has 100% convergence rate in all...
Energy Technology Data Exchange (ETDEWEB)
Enqvist, Kari [Physics Department, University of Helsinki, and Helsinki Institute of Physics, FIN-00014 Helsinki (Finland); Koivisto, Tomi [Institute for Theoretical Physics and Spinoza Institute, Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Rigopoulos, Gerasimos, E-mail: kari.enqvist@helsinki.fi, E-mail: T.S.Koivisto@astro.uio.no, E-mail: rigopoulos@physik.rwth-aachen.de [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen (Germany)
2012-05-01
We consider inflation within the context of what is arguably the simplest non-metric extension of Einstein gravity. There non-metricity is described by a single graviscalar field with a non-minimal kinetic coupling to the inflaton field Ψ, parameterized by a single parameter γ. There is a simple equivalent description in terms of a massless field and an inflaton with a modified potential. We discuss the implications of non-metricity for chaotic inflation and find that it significantly alters the inflaton dynamics for field values Ψ∼>M{sub P}/γ, dramatically changing the qualitative behaviour in this regime. In the equivalent single-field description this is described as a cuspy potential that forms of barrier beyond which the inflation becomes a ghost field. This imposes an upper bound on the possible number of e-folds. For the simplest chaotic inflation models, the spectral index and the tensor-to-scalar ratio receive small corrections dependent on the non-metricity parameter. We also argue that significant post-inflationary non-metricity may be generated.
Energy Technology Data Exchange (ETDEWEB)
Mahjoub, Ahmed; Poston, Michael J.; Hand, Kevin P.; Hodyss, Robert; Blacksberg, Jordana; Carlson, Robert W.; Ehlmann, Bethany L.; Choukroun, Mathieu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Brown, Michael E.; Eiler, John M., E-mail: Mahjoub.Ahmed@jpl.nasa.gov [California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA 91125 (United States)
2016-04-01
In this work we explore the chemistry that occurs during the irradiation of ice mixtures on planetary surfaces, with the goal of linking the presence of specific chemical compounds to their formation locations in the solar system and subsequent processing by later migration inward. We focus on the outer solar system and the chemical differences for ice mixtures inside and outside the stability line for H{sub 2}S. We perform a set of experiments to explore the hypothesis advanced by Wong and Brown that links the color bimodality in Jupiter's Trojans to the presence of H{sub 2}S in the surface of their precursors. Non-thermal (10 keV electron irradiation) and thermally driven chemistry of CH{sub 3}OH–NH{sub 3}–H{sub 2}O (“without H{sub 2}S”) and H{sub 2}S–CH{sub 3}OH–NH{sub 3}–H{sub 2}O (“with H{sub 2}S”) ices were examined. Mid-IR analyses of ice and mass spectrometry monitoring of the volatiles released during heating show a rich chemistry in both of the ice mixtures. The “with H{sub 2}S” mixture experiment shows a rapid consumption of H{sub 2}S molecules and production of OCS molecules after a few hours of irradiation. The heating of the irradiated “with H{sub 2}S” mixture to temperatures above 120 K leads to the appearance of new infrared bands that we provisionally assign to SO{sub 2}and CS. We show that radiolysis products are stable under the temperature and irradiation conditions of Jupiter Trojan asteroids. This makes them suitable target molecules for potential future missions as well as telescope observations with a high signal-to-noise ratio. We also suggest the consideration of sulfur chemistry in the theoretical modeling aimed at understanding the chemical composition of Trojans and KOBs.
Augmenting the thermal flux experiment: A mixed reality approach with the HoloLens
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-09-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted displays, which allow one to embed virtual objects into the real surroundings, leading to a Mixed Reality (MR) experience. In such an environment, digital and real objects do not only coexist, but moreover are also able to interact with each other in real time. These concepts can be used to merge human perception of reality with digitally visualized sensor data, thereby making the invisible visible. As a first example, in this paper we introduce alongside the basic idea of this column an MR experiment in thermodynamics for a laboratory course for freshman students in physics or other science and engineering subjects that uses physical data from mobile devices for analyzing and displaying physical phenomena to students.
Thermal IR radiative properties of mixed mineral dust and biomass aerosol during SAMUM-2
Energy Technology Data Exchange (ETDEWEB)
Koehler, Claas H.; Trautmann, Thomas; Lindermeir, Erwin (Deutsches Zentrum fur Luft- und Raumfahrt (DLR), Institut fur Methodik der Fernerkundung, Oberpfaffenhofen (Germany)), e-mail: claas.koehler@dlr.de; Vreeling, Willem (Netherlands Inst. for Space Research (SRON), Groningen, (Netherlands)); Lieke, Kirsten; Kandler, Konrad (Institut fur Angewandte Geowissenschaften, Technische Universitaet Darmstadt, Darmstadt (Germany)); Weinzierl, Bernadett (Deutsches Zentrum fur Luft- und Raumfahrt (DLR) Institut fur Physik der Atmosphaere, Oberpfaffenhofen (Germany)); Gross, Silke (Ludwig-Maximilians-Universitaet Munchen, Meteorologisches Institut, Munchen (Germany)); Tesche, Matthias (Leibniz-Institut fur Troposphaerenforschung (IfT), Leipzig (Germany)); Wendisch, Manfred (Universitaet Leipzig, Leipziger Institut fur Meteorologie, Leipzig (Germany))
2011-09-15
Ground-based high spectral resolution measurements of downwelling radiances from 800 to 1200 cm-1 were conducted between 20 January and 6 February 2008 within the scope of the SAMUM-2 field experiment. We infer the spectral signature of mixed biomass burning/mineral dust aerosols at the surface from these measurements and at top of the atmosphere from IASI observations. In a case study for a day characterized by the presence of high loads of both dust and biomass we attempt a closure with radiative transfer simulations assuming spherical particles. A detailed sensitivity analysis is performed to investigate the effect of uncertainties in the measurements ingested into the simulation on the simulated radiances. Distinct deviations between modelled and observed radiances are limited to a spectral region characterized by resonance bands in the refractive index. A comparison with results obtained during recent laboratory studies and field experiments reveals, that the deviations could be caused by the aerosol particles' non-sphericity, although an unequivocal discrimination from measurement uncertainties is not possible. Based on radiative transfer simulations we estimate the aerosol's direct radiative effect in the atmospheric window region to be 8 W m-2 at the surface and 1 W m-2 at top of the atmosphere
The thermal conductivity of mixed fuel U_{x}Pu_{1-x}O_{2}: molecular dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-16
Mixed oxides (MOX), in the context of nuclear fuels, are a mixture of the oxides of heavy actinide elements such as uranium, plutonium and thorium. The interest in the UO_{2}-PuO_{2} system arises from the fact that these oxides are used both in fast breeder reactors (FBRs) as well as in pressurized water reactors (PWRs). The thermal conductivity of UO_{2} fuel is an important material property that affects fuel performance since it is the key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. For this reason it is important to understand the thermal conductivity of MOX fuel and how it differs from UO_{2}. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of mixing on the thermal conductivity of U_{x}Pu_{1-x}O_{2}, as a function of PuO_{2} concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel.
Multiple channel secure communication using chaotic system encoding
Energy Technology Data Exchange (ETDEWEB)
Miller, S.L.
1996-12-31
fA new method to encrypt signals using chaotic systems has been developed that offers benefits over conventional chaotic encryption methods. The method simultaneously encodes multiple plaintext streams using a chaotic system; a key is required to extract the plaintext from the chaotic cipertext. A working prototype demonstrates feasibility of the method by simultaneously encoding and decoding multiple audio signals using electrical circuits.
Energy Technology Data Exchange (ETDEWEB)
Kang, H. S.; Kim, Y. S.; Jun, H. G.; Youn, Y. J.; Song, C. H
2005-06-15
A CFD benchmark calculation for the test results was performed for 30 seconds to develop the methodology of numerical analysis for the thermal mixing between the steam and the subcooled water and to apply it into the APR1400 IRWST. In the CFD analysis, the grid model simulating the test facility was developed by the axisymmetric condition and the steam condensation phenomena by the direct contact was modelled by the steam condensation region model. Thermal mixing phenomenon was treated as an incompressible flow, a free surface flow, a turbulent flow, and a buoyancy flow. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. The CFD results at some locations showed a higher temperature value and the increasing speed than those of the test results. This difference may have arisen from the fact the temperature and velocity of the calculated condensed water were higher than the real values. However, this CFD analysis methodology can surely simulate the thermal mixing behavior in the subcooled water tank with the minor limit. We can anticipate that the numerical model for the thermal mixing taking place for a long time in the IRWST of APR1400 can be developed by this methodology.
Chaotic neurodynamics for autonomous agents.
Harter, Derek; Kozma, Robert
2005-05-01
Mesoscopic level neurodynamics study the collective dynamical behavior of neural populations. Such models are becoming increasingly important in understanding large-scale brain processes. Brains exhibit aperiodic oscillations with a much more rich dynamical behavior than fixed-point and limit-cycle approximation allow. Here we present a discretized model inspired by Freeman's K-set mesoscopic level population model. We show that this version is capable of replicating the important principles of aperiodic/chaotic neurodynamics while being fast enough for use in real-time autonomous agent applications. This simplification of the K model provides many advantages not only in terms of efficiency but in simplicity and its ability to be analyzed in terms of its dynamical properties. We study the discrete version using a multilayer, highly recurrent model of the neural architecture of perceptual brain areas. We use this architecture to develop example action selection mechanisms in an autonomous agent.
Chaotic eigenfunctions in momentum space
Bäcker, A; Bäcker, Arnd; Schubert, Roman
1999-01-01
We study eigenstates of chaotic billiards in the momentum representation and propose the radially integrated momentum distribution as useful measure to detect localization effects. For the momentum distribution, the radially integrated momentum distribution, and the angular integrated momentum distribution explicit formulae in terms of the normal derivative along the billiard boundary are derived. We present a detailed numerical study for the stadium and the cardioid billiard, which shows in several cases that the radially integrated momentum distribution is a good indicator of localized eigenstates, such as scars, or bouncing ball modes. We also find examples, where the localization is more strongly pronounced in position space than in momentum space, which we discuss in detail. Finally applications and generalizations are discussed.
Gaussian fluctuations in chaotic eigenstates
Srednicki, M A; Srednicki, Mark; Stiernelof, Frank
1996-01-01
We study the fluctuations that are predicted in the autocorrelation function of an energy eigenstate of a chaotic, two-dimensional billiard by the conjecture (due to Berry) that the eigenfunction is a gaussian random variable. We find an explicit formula for the root-mean-square amplitude of the expected fluctuations in the autocorrelation function. These fluctuations turn out to be O(\\hbar^{1/2}) in the small \\hbar (high energy) limit. For comparison, any corrections due to scars from isolated periodic orbits would also be O(\\hbar^{1/2}). The fluctuations take on a particularly simple form if the autocorrelation function is averaged over the direction of the separation vector. We compare our various predictions with recent numerical computations of Li and Robnik for the Robnik billiard, and find good agreement. We indicate how our results generalize to higher dimensions.
Chaotic dynamics in nonlinear theory
Burra, Lakshmi
2014-01-01
Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In dynamical systems, complex behavior in a map can be indicated by showing the existence of a Smale-horseshoe-like structure, either for the map itself or its iterates. This usually requires some assumptions about the map, such as a diffeomorphism and some hyperbolicity conditions. In this text, less stringent definitions of a horseshoe have been suggested so as to reproduce some geometrical features typical of the Smale horseshoe, while leaving out the hyperbolicity conditions associated with it. This leads to the study of the so-called topological horseshoes. The presence of chaos-like dynamics in a vertically driven planar pendulum, a pendulum of variable length, and in other more general related equations is also proved.
Chaotic behaviour in speculative markets
Directory of Open Access Journals (Sweden)
García Artiles, María Dolores
2001-01-01
Full Text Available An asset price model of speculative financial market with fundamentalists and chartists is analyzed. Our model explains bursts of volatility in financial markets, which are not well explained by the traditional finance paradigms, as we will show. Depending on the time lag in the formation of chartists' expectations, the system evolves through several dynamic regimes finishing in a strange attractor. Chaos provides a self-sustained motion around the rationally expected equilibrium that corresponds to a speculative bubble. In order to explain the role of Chartism, chaotic motion is a very interesting theoretical feature for a speculative financial market model. It provides a complex non-linear dynamic behaviour around the Walrasian equilibrium price produced by deterministic interactions between fundamentalists and chartists
Energy Technology Data Exchange (ETDEWEB)
Kusumi, Koji [Department of Nuclear Engineering, Kyoto University, C3-d2S06, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8540 (Japan); Kunugi, Tomoaki, E-mail: kunugi@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, C3-d2S06, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8540 (Japan); Yokomine, Takehiko; Kawara, Zensaku [Department of Nuclear Engineering, Kyoto University, C3-d2S06, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8540 (Japan); Hinojosa, Jesus A.; Kolemen, Egemen; Ji, Hantao; Gilson, Erik [Princeton Plasma Physics Laboratory, 100 Stellarator Rd., Princeton, NJ 08540 (United States)
2016-11-01
Highlights: • Experiments of thermal mixing in liquid metal film-flow by obstacles were performed. • Delta-wing obstacle showed good thermal mixing performance. - Abstract: One of the key challenges of the liquid divertor concepts in fusion reactors is the heat removal from the surface of liquid metal film-flow to the bottom wall, because thermal radiation and particle fluxes from the fusion core are deposited on the free-surface. This study investigates the possibility of the enhancement of heat removal by using various obstacles installed at the bottom of the liquid metal free-surface flow. Cubic and delta-wing obstacles are examined in this study. The obstacles installed at the center of the flow channel, upstream of the free-surface heat source. The experiments were conducted in the range of Re from 2000 to 18,000 under constant heating. The temperature on the bottom wall increased with increase of flow rate. The delta-wing obstacle showed the better thermal performance compared to the cubic obstacle and without obstacle case. Since the delta-wing obstacle generated the strong vortex with increasing Re, thermal mixing of liquid-film enhanced, and eventually led to highly localized heat fluxes at the bottom wall. Therefore, it is possible to remove the high heat flux locally from the wall.
Bitwise efficiency in chaotic models
Jeffress, Stephen; Düben, Peter; Palmer, Tim
2017-09-01
Motivated by the increasing energy consumption of supercomputing for weather and climate simulations, we introduce a framework for investigating the bit-level information efficiency of chaotic models. In comparison with previous explorations of inexactness in climate modelling, the proposed and tested information metric has three specific advantages: (i) it requires only a single high-precision time series; (ii) information does not grow indefinitely for decreasing time step; and (iii) information is more sensitive to the dynamics and uncertainties of the model rather than to the implementation details. We demonstrate the notion of bit-level information efficiency in two of Edward Lorenz's prototypical chaotic models: Lorenz 1963 (L63) and Lorenz 1996 (L96). Although L63 is typically integrated in 64-bit `double' floating point precision, we show that only 16 bits have significant information content, given an initial condition uncertainty of approximately 1% of the size of the attractor. This result is sensitive to the size of the uncertainty but not to the time step of the model. We then apply the metric to the L96 model and find that a 16-bit scaled integer model would suffice given the uncertainty of the unresolved sub-grid-scale dynamics. We then show that, by dedicating computational resources to spatial resolution rather than numeric precision in a field programmable gate array (FPGA), we see up to 28.6% improvement in forecast accuracy, an approximately fivefold reduction in the number of logical computing elements required and an approximately 10-fold reduction in energy consumed by the FPGA, for the L96 model.
Urey Prize Lecture - Chaotic dynamics in the solar system
Wisdom, Jack
1987-01-01
Attention is given to solar system cases in which chaotic solutions of Newton's equations are important, as in chaotic rotation and orbital evolution. Hyperion is noted to be tumbling chaotically; chaotic orbital evolution is suggested to be of fundamental importance to an accounting for the Kirkwood gaps in asteroid distribution and for the phase space boundary of the chaotic zone at the 3/1 mean-motion commensurability with Jupiter. In addition, chaotic trajectories in the 2/1 chaotic zone reach very high eccentricities by a route that carries them to high inclinations temporarily.
Synchronization Techniques for Chaotic Communication Systems
Jovic, Branislav
2011-01-01
Since the early 1990s, when synchronization of chaotic communication systems became a popular research subject, a vast number of scientific papers have been published. However, most of today's books on chaotic communication systems deal exclusively with the systems where perfect synchronization is assumed, an assumption which separates theoretical from practical, real world, systems. This book is the first of its kind dealing exclusively with the synchronization techniques for chaotic communication systems. It describes a number of novel robust synchronization techniques, which there is a lack
Chaotic inflation with curvaton induced running
DEFF Research Database (Denmark)
Sloth, Martin Snoager
2014-01-01
of the apparent tension, but which would be in conflict with prediction of the simplest model of chaotic inflation. The large field chaotic model is sensitive to UV physics, and the nontrivial running of the spectral index suggested by the BICEP2 collaboration could therefore, if true, be telling us some...... additional new information about the UV completion of inflation. However, before we would be able to draw such strong conclusions with confidence, we would first have to also carefully exclude all the alternatives. Assuming monomial chaotic inflation is the right theory of inflation, we therefore explore...
Regular and Chaotic Dynamics of Flexible Plates
Directory of Open Access Journals (Sweden)
J. Awrejcewicz
2014-01-01
Full Text Available Nonlinear dynamics of flexible rectangular plates subjected to the action of longitudinal and time periodic load distributed on the plate perimeter is investigated. Applying both the classical Fourier and wavelet analysis we illustrate three different Feigenbaum type scenarios of transition from a regular to chaotic dynamics. We show that the system vibrations change with respect not only to the change of control parameters, but also to all fixed parameters (system dynamics changes when the independent variable, time, increases. In addition, we show that chaotic dynamics may appear also after the second Hopf bifurcation. Curves of equal deflections (isoclines lose their previous symmetry while transiting into chaotic vibrations.
Approximating hidden chaotic attractors via parameter switching
Danca, Marius-F.; Kuznetsov, Nikolay V.; Chen, Guanrong
2018-01-01
In this paper, the problem of approximating hidden chaotic attractors of a general class of nonlinear systems is investigated. The parameter switching (PS) algorithm is utilized, which switches the control parameter within a given set of values with the initial value problem numerically solved. The PS-generated attractor approximates the attractor obtained by averaging the control parameter with the switched values, which represents the hidden chaotic attractor. The hidden chaotic attractors of a generalized Lorenz system and the Rabinovich-Fabrikant system are simulated for illustration.
Energy Technology Data Exchange (ETDEWEB)
Kageji, T. E-mail: kageji@clin.med.tokushima-u.ac.jp; Nagahiro, S.; Mizobuchi, Y.; Toi, H.; Nakagawa, Y.; Kumada, H
2004-11-01
The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n=8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n=4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n=6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4{+-}4.2 Gy, 15.7{+-}1.2 and 13.9{+-}3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8{+-}1.3 Gy in positive and was 12.6{+-}4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8{+-}3.8 Gy in positive and was 13.6{+-}4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor
Secondary chaotic terrain formation in the higher outflow channels of southern circum-Chryse, Mars
Rodriguez, J.A.P.; Kargel, J.S.; Tanaka, K.L.; Crown, D.A.; Berman, D.C.; Fairen, A.G.; Baker, V.R.; Furfaro, R.; Candelaria, P.; Sasaki, S.
2011-01-01
. Within relatively warm upper crustal materials in volcanic settings, or within highly saline crustal materials where cryopegs developed, lenses of volatiles in liquid form within the cryolithosphere could have formed, and/or remained stable.In addition, our numerical simulations suggest that low thermal conductivity, dry fine-grained porous geologic materials just a few tens of meters in thickness (e.g., dunes, sand sheets, some types of regolith materials), could have produced high thermal anomalies resulting in subsurface melting. The existence of a global layer of dry geologic materials overlying the cryolithosphere would suggest that widespread lenses of fluids existed (and may still exist) at shallow depths wherever these materials are fine-grained and porous. The surface ages of the investigated outflow channels and chaotic terrains span a full 500 to 700. Myr. Chaotic terrains similar in dimensions and morphology to secondary chaotic terrains are not observed conspicuously throughout the surface of Mars, suggesting that intra-cryolithospheric fluid lenses may form relatively stable systems. The existence of widespread groundwater lenses at shallow depths of burial has tremendous implications for exobiological studies and future human exploration. We find that the clear geomorphologic anomaly that the chaotic terrains and outflow channels of southern Chryse form within the Martian landscape could have been a consequence of large-scale resurfacing resulting from anomalously extensive subsurface melt in this region of the planet produced by high concentrations of salts within the regional upper crust. Crater count statistics reveal that secondary chaotic terrains and the outflow channels within which they occur have overlapping ages, suggesting that the instabilities leading to their formation rapidly dissipated, perhaps as the thickness of the cryolithosphere was reset following the disruption of the upper crustal thermal structure produced during outflow channel ex
Chaotic Zones around Rotating Small Bodies
Energy Technology Data Exchange (ETDEWEB)
Lages, José; Shevchenko, Ivan I. [Institut UTINAM, Observatoire des Sciences de l’Univers THETA, CNRS, Université de Franche-Comté, Besançon F-25030 (France); Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr [Laboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, UPS, Toulouse F-31062 (France)
2017-06-01
Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples of the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.
Compressive Sensing with Tent Chaotic Sequence
Directory of Open Access Journals (Sweden)
Li Liu
2014-02-01
Full Text Available Compressive sensing is a new sampling theory to capture signals at sub-Nyquist rate. To guarantee exact recovery from sparse measurements, specific sensing matrix, which satisfies the Restricted Isometry Property, should be well chosen. Random matrix has been proved to meet the property with high probability; however, the practical implementation is expensive in hardware design. Chaotic matrices which generated by Logistic sequence, Chua and Lorenz dynamical systems have been verified to be Toeplitz-structured and sufficient to satisfy the property. In this paper, we propose that another chaotic sequence - Tent map can also be used to construct the sensing matrix. By numerical performance, we show that, the proposed Tent chaotic sensing matrix has similar performance to random matrix or Logistic chaotic matrix for exact reconstructing compressible signals and images from fewer measurements.
Encryption in Chaotic Systems with Sinusoidal Excitations
Directory of Open Access Journals (Sweden)
G. Obregón-Pulido
2014-01-01
Full Text Available In this contribution an encryption method using a chaotic oscillator, excited by “n” sinusoidal signals, is presented. The chaotic oscillator is excited by a sum of “n” sinusoidal signals and a message. The objective is to encrypt such a message using the chaotic behavior and transmit it, and, as the chaotic system is perturbed by the sinusoidal signal, the transmission security could be increased due to the effect of such a perturbation. The procedure is based on the regulation theory and consider that the receiver knows the frequencies of the perturbing signal, with this considerations the algorithm estimates the excitation in such a way that the receiver can cancel out the perturbation and all the undesirable dynamics in order to produce only the message. In this way we consider that the security level is increased.
A concise guide to chaotic electronic circuits
Buscarino, Arturo; Frasca, Mattia; Sciuto, Gregorio
2014-01-01
This brief provides a source of instruction from which students can be taught about the practicalities of designing and using chaotic circuits. The text provides information on suitable materials, circuit design and schemes for design realization. Readers are then shown how to reproduce experiments on chaos and to design new ones. The text guides the reader easily from the basic idea of chaos to the laboratory test providing an experimental basis that can be developed for such applications as secure communications. This brief provides introductory information on sample chaotic circuits, includes coverage of their development, and the “gallery” section provides information on a wide range of circuits. Concise Guide to Chaotic Electronic Circuits will be useful to anyone running a laboratory class involving chaotic circuits and to students wishing to learn about them.
Correlations of electromagnetic fields in chaotic cavities
Eckhardt, B; Kühl, T; Stöckmann, H J
1999-01-01
We consider the fluctuations of electromagnetic fields in chaotic microwave cavities. We calculate the transversal and longitudinal correlation function based on a random wave assumption and compare the predictions with measurements on two- and three-dimensional microwave cavities.
Nonlinear chaotic model for predicting storm surges
Directory of Open Access Journals (Sweden)
M. Siek
2010-09-01
Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.
Hierarchy in chaotic scattering in Hill's problem
Kovács, Z
1997-01-01
Hierarchic properties of chaotic scattering in a model of satellite encounters, studied first by Petit and Henon, are examined by decomposing the dwell time function and comparing scattering trajectories. The analysis reveals an (approximate) ternary organization in the chaotic set of bounded orbits and the presence of a stable island. The results can open the way for a calculation of global quantities characterizing the scattering process by using tools of the thermodynamic formalism.
On the timbre of chaotic algorithmic sounds
Sotiropoulos, Dimitrios A.; Sotiropoulos, Anastasios D.; Sotiropoulos, Vaggelis D.
Chaotic sound waveforms generated algorithmically are considered to study their timbre characteristics of harmonic and inharmonic overtones, loudness and onset time. Algorithms employed in the present work come from different first order iterative maps with parameters that generate chaotic sound waveforms. The generated chaotic sounds are compared with each other in respect of their waveforms' energy over the same time interval. Interest is focused in the logistic, double logistic and elliptic iterative maps. For these maps, the energy of the algorithmically synthesized sounds is obtained numerically in the chaotic region. The results show that for a specific parameter value in the chaotic region for each one of the first two maps, the calculated sound energy is the same. The energy, though, produced by the elliptic iterative map is higher than that of the other two maps everywhere in the chaotic region. Under the criterion of equal energy, the discrete Fourier transform is employed to compute for the logistic and double logistic iterative maps, a) the generated chaotic sound's power spectral density over frequency revealing the location (frequency) and relative loudness of the overtones which can be associated with fundamental frequencies of musical notes, and b) the generated chaotic sound's frequency dependent phase, which together with the overtones' frequency, yields the overtones' onset time. It is found that the synthesized overtones' loudness, frequency and onset time are totally different for the two generating algorithms (iterative maps) even though the sound's total generated power is equal. It is also demonstrated that, within each one of the iterative maps considered, the overtone characteristics are strongly affected by the choice of initial loudness.
Universal chaotic scattering on quantum graphs.
Pluhař, Z; Weidenmüller, H A
2013-01-18
We calculate the S-matrix correlation function for chaotic scattering on quantum graphs and show that it agrees with that of random-matrix theory. We also calculate all higher S-matrix correlation functions in the Ericson regime. These, too, agree with random-matrix theory results as far as the latter are known. We conjecture that our results give a universal description of chaotic scattering.
Formulation of statistical mechanics for chaotic systems
Indian Academy of Sciences (India)
Since the trajectory of a chaotic system is almost ergodic in .... phase-space trajectory is almost ergodic in the whole or some region of the phase- space. In those chaotic regions we may have .... where T is the temperature and β = 1/T and K(z) is the complete elliptical integral of the first kind. From the partition function Q one ...
Kal, S.; Kasko, I.; Ryssel, H.
1995-10-01
The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.
Cros, Anne; Castillo Flores, Fernando; Le Gal, Patrice
2008-11-01
We present the experimental study of a collapsible tube conveying an ascending air flow. An extreme of the membrane tube is mounted on the air blower exit, while the other extreme is free. The flow velocity can be varied. For low speeds -- and tubes short enough -- the cylinder stands up (stable state). As the velocity is increased, the system presents sporadic turbulent fluctuations, when the tube bends and rises again. As the air speed is increased again, the intermittent events become more and more frequent. Films realized in front of the system permit to observe waves that propagate in the tube. We measure that these waves have a sonic speed, confirming previous results. Moreover, films taken from the top of the system allow a quantitative characterization of the transition to chaos. By processing the images, we can reduce the evolution of the system to two states: stable (when it is raised) and chaotic (when the tube fluctuates). The histograms of unstable / stable states are coherent with an intermittent transition in the theory of chaos.
Composing chaotic music from the letter m
Sotiropoulos, Anastasios D.
Chaotic music is composed from a proposed iterative map depicting the letter m, relating the pitch, duration and loudness of successive steps. Each of the two curves of the letter m is based on the classical logistic map. Thus, the generating map is xn+1 = r xn(1/2 - xn) for xn between 0 and 1/2 defining the first curve, and xn+1 = r (xn - 1/2)(1 - xn) for xn between 1/2 and 1 representing the second curve. The parameter r which determines the height(s) of the letter m varies from 2 to 16, the latter value ensuring fully developed chaotic solutions for the whole letter m; r = 8 yielding full chaotic solutions only for its first curve. The m-model yields fixed points, bifurcation points and chaotic regions for each separate curve, as well as values of the parameter r greater than 8 which produce inter-fixed points, inter-bifurcation points and inter-chaotic regions from the interplay of the two curves. Based on this, music is composed from mapping the m- recurrence model solutions onto actual notes. The resulting musical score strongly depends on the sequence of notes chosen by the composer to define the musical range corresponding to the range of the chaotic mathematical solutions x from 0 to 1. Here, two musical ranges are used; one is the middle chromatic scale and the other is the seven- octaves range. At the composer's will and, for aesthetics, within the same composition, notes can be the outcome of different values of r and/or shifted in any octave. Compositions with endings of non-repeating note patterns result from values of r in the m-model that do not produce bifurcations. Scores of chaotic music composed from the m-model and the classical logistic model are presented.
Khalil-Ur-Rehman; Malik, M. Y.
2017-04-01
An analysis is made to examine the magnetohydrodynamic mixed convection boundary layer flow of Eyring-Powell fluid brought by an inclined stretching cylinder. Flow field analysis is accounted by thermal stratification phenomena. The temperature is assumed to be higher across the surface of cylinder as compared to ambient fluid. The arising mathematical model regarding Eyring-Powell fluid is governed by interesting physical parameters which includes mixed convection parameter, thermal stratification parameter, heat generation/absorption parameter, curvature parameter, fluid parameters, magnetic field parameter and Prandtl number. The numerical solutions are computed through the application of shooting technique conjunction with fifth order Runge-Kutta algorithm. In addition, numeric values for two unlike geometries namely, plate and cylinder for skin friction coefficient and Nusselt number are presented with the aid graphs and some particular cases are discussed. The present study is validated by establishing comparison with previously published works, which sets a benchmark of quality of shooting method.
Istrate, A. G.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.
2016-10-01
A large number of extremely low-mass helium white dwarfs (ELM WDs) have been discovered in recent years. The majority of them are found in close binary systems suggesting they are formed either through a common-envelope phase or via stable mass transfer in a low-mass X-ray binary (LMXB) or a cataclysmic variable (CV) system. Here, we investigate the formation of these objects through the LMXB channel with emphasis on the proto-WD evolution in environments with different metallicities. We study for the first time the combined effects of rotational mixing and element diffusion (e.g. gravitational settling, thermal and chemical diffusion) on the evolution of proto-WDs and on the cooling properties of the resulting WDs. We present state-of-the-art binary stellar evolution models computed with MESA for metallicities of Z = 0.02, 0.01, 0.001 and 0.0002, producing WDs with masses between 0.16-0.45 M⊙. Our results confirm that element diffusion plays a significant role in the evolution of proto-WDs that experience hydrogen shell flashes. The occurrence of these flashes produces a clear dichotomy in the cooling timescales of ELM WDs, which has important consequences e.g. for the age determination of binary millisecond pulsars. In addition, we confirm that the threshold mass at which this dichotomy occurs depends on metallicity. Rotational mixing is found to counteract the effect of gravitational settling in the surface layers of young, bloated ELM proto-WDs and therefore plays a key role in determining their surface chemical abundances, I.e. the observed presence of metals in their atmospheres. We predict that these proto-WDs have helium-rich envelopes through a significant part of their lifetime. This is of great importance as helium is a crucial ingredient in the driving of the κ-mechanism suggested for the newly observed ELM proto-WD pulsators. However, we find that the number of hydrogen shell flashes and, as a result, the hydrogen envelope mass at the beginning of
Directory of Open Access Journals (Sweden)
Tasawar Hayat
2017-12-01
Full Text Available This investigation explores the thermally stratified stretchable flow of an Oldroyd-B material bounded by a linear stretched surface. Heat transfer characteristics are addressed through thermal stratification and heat generation/absorption. Formulation is arranged for mixed convection. Application of suitable transformations provides ordinary differential systems through partial differential systems. The homotopy concept is adopted for the solution of nonlinear differential systems. The influence of several arising variables on velocity and temperature is addressed. Besides this, the rate of heat transfer is calculated and presented in tabular form. It is noticed that velocity and Nusselt number increase when the thermal buoyancy parameter is enhanced. Moreover, temperature is found to decrease for larger values of Prandtl number and heat absorption parameter. Comparative analysis for limiting study is performed and excellent agreement is found.
Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing
Kumar, Suhas; Strachan, John Paul; Williams, R. Stanley
2017-08-01
At present, machine learning systems use simplified neuron models that lack the rich nonlinear phenomena observed in biological systems, which display spatio-temporal cooperative dynamics. There is evidence that neurons operate in a regime called the edge of chaos that may be central to complexity, learning efficiency, adaptability and analogue (non-Boolean) computation in brains. Neural networks have exhibited enhanced computational complexity when operated at the edge of chaos, and networks of chaotic elements have been proposed for solving combinatorial or global optimization problems. Thus, a source of controllable chaotic behaviour that can be incorporated into a neural-inspired circuit may be an essential component of future computational systems. Such chaotic elements have been simulated using elaborate transistor circuits that simulate known equations of chaos, but an experimental realization of chaotic dynamics from a single scalable electronic device has been lacking. Here we describe niobium dioxide (NbO2) Mott memristors each less than 100 nanometres across that exhibit both a nonlinear-transport-driven current-controlled negative differential resistance and a Mott-transition-driven temperature-controlled negative differential resistance. Mott materials have a temperature-dependent metal-insulator transition that acts as an electronic switch, which introduces a history-dependent resistance into the device. We incorporate these memristors into a relaxation oscillator and observe a tunable range of periodic and chaotic self-oscillations. We show that the nonlinear current transport coupled with thermal fluctuations at the nanoscale generates chaotic oscillations. Such memristors could be useful in certain types of neural-inspired computation by introducing a pseudo-random signal that prevents global synchronization and could also assist in finding a global minimum during a constrained search. We specifically demonstrate that incorporating such
Pei, Yan
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.
Synchronization of Time-Continuous Chaotic Oscillators
DEFF Research Database (Denmark)
Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik
2003-01-01
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...... in the fully synchronized state lose their transverse stability, and the appearance of globally and locally riddled basins of attraction is discussed, respectively, in terms of the subcritical, supercritical nature of the riddling bifurcations. We show how the introduction of a small parameter mismatch between...... the interacting chaotic oscillators causes a shift of the synchronization manifold. The presence of a coupling asymmetry is found to lead to further modifications of the destabilization process. Finally, the paper considers the problem of partial synchronization in a system of four coupled Rossler oscillators...
A Chaotic Attractor in Delayed Memristive System
Directory of Open Access Journals (Sweden)
Lidan Wang
2012-01-01
Full Text Available Over the last three decades, theoretical design and circuitry implementation of various chaotic generators by simple electronic circuits have been a key subject of nonlinear science. In 2008, the successful development of memristor brings new activity for this research. Memristor is a new nanometre-scale passive circuit element, which possesses memory and nonlinear characteristics. This makes it have a unique charm to attract many researchers’ interests. In this paper, memristor, for the first time, is introduced in a delayed system to design a signal generator to produce chaotic behaviour. By replacing the nonlinear function with memristors in parallel, the memristor oscillator exhibits a chaotic attractor. The simulated results demonstrate that the performance is well predicted by the mathematical analysis and supports the viability of the design.
Secure key distribution applications of chaotic lasers
Jiang, Ning; Xue, Chenpeng; Lv, Yunxin; Qiu, Kun
2016-11-01
Chaotic semiconductor laser is a good candidate for secure communication and high-speed true random bit generator, for its characteristics of broad bandwidth and prominent unpredictability. Based on the synchronization property and true random bit generation characteristic of chaotic semiconductor lasers, physical secure key distribution is available. In this work, we majorly show three key distribution schemes stemming from synchronized chaotic semiconductor lasers or chaos-based key exchange protocol. The numerical results demonstrate that the security of the chaos-synchronization-based key distribution scheme can be physically enhanced by adopting dynamic synchronization scheme or encrypted key generation, and that of key distribution with chaos-based key exchange protocol is dependent on the security of the exchange protocol and finally determined by the difficulty of regeneration the chaos system accurately.
Will quantum cosmology resurrect chaotic inflation model?
Kim, Sang Pyo
2016-01-01
The single field chaotic inflation model with a monomial power greater than one seems to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model with a higher curvature term seems to be a viable model. Higher curvature terms being originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges from quantum cosmology with fluctuations of spacetimes and matter when the wave function is peaked around the semiclassical trajectory with quantum corrections a la the de Broglie-Bohm pilot theory.
Searching of Chaotic Elements in Hydrology
Directory of Open Access Journals (Sweden)
Sorin VLAD
2014-03-01
Full Text Available Chaos theory offers new means of understanding and prediction of phenomena otherwise considered random and unpredictable. The signatures of chaos can be isolated by performing nonlinear analysis of the time series available. The paper presents the results obtained by conducting a nonlinear analysis of the time series of daily Siret river flow (located in the North-Eastern part of Romania. The time series analysis is recorded starting with January 1999 to July 2009. The attractor is embedded in the reconstructed phase space then the chaotic dynamics is revealed computing the chaotic invariants - correlation dimension and the maximum Lyapunov Exponent.
Chaotic Maps Dynamics, Fractals, and Rapid Fluctuations
Chen, Goong
2011-01-01
This book consists of lecture notes for a semester-long introductory graduate course on dynamical systems and chaos taught by the authors at Texas A&M University and Zhongshan University, China. There are ten chapters in the main body of the book, covering an elementary theory of chaotic maps in finite-dimensional spaces. The topics include one-dimensional dynamical systems (interval maps), bifurcations, general topological, symbolic dynamical systems, fractals and a class of infinite-dimensional dynamical systems which are induced by interval maps, plus rapid fluctuations of chaotic maps as a
Chaotic inflation in supergravity with Heisenberg symmetry
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany); Bastero-Gil, Mar [Departamento de Fisica Teorica y del Cosmos and Centro Andaluz de Fisica de Particulas Elementales, Universidad de Granada, 19071 Granada (Spain); Dutta, Koushik [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany)], E-mail: koushik@mppmu.mpg.de; King, Steve F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Kostka, Philipp M. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany)
2009-09-07
We propose the introduction of a Heisenberg symmetry of the Kaehler potential to solve the problems with chaotic inflation in supergravity, as a viable alternative to the use of shift symmetry. The slope of the inflaton potential emerges from a small Heisenberg symmetry breaking term in the superpotential. The modulus field of the Heisenberg symmetry is stabilized and made heavy with the help of the large vacuum energy density during inflation. The observable predictions are indistinguishable from those of typical chaotic inflation models, however the form of the inflationary superpotential considered here may be interpreted in terms of sneutrino inflation arising from certain classes of string theory.
Chaotic inflation in supergravity with Heisenberg symmetry
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany); Bastero-Gil, Mar [Departamento de Fisica Teorica y del Cosmos, Centro Andaluz de Fisica de Particulas Elementales, Universidad de Granada, 19071 Granada (Spain); King, Steve F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom)
2010-07-01
We propose the introduction of a Heisenberg symmetry of the Kaehler potential to solve the problems with chaotic inflation in supergravity, as a viable alternative to the use of shift symmetry. The slope of the inflaton potential emerges from a small Heisenberg symmetry breaking term in the superpotential. The modulus field of the Heisenberg symmetry is stabilized and made heavy with the help of the large vacuum energy density during inflation. The observable predictions are indistinguishable from those of typical chaotic inflation models, however the form of the inflationary superpotential considered here may be interpreted in terms of sneutrino inflation.
Fuzzy adaptive synchronization of uncertain chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae-Hun [Department of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-dong, Sudaemoon-gu, Seoul 120-749 (Korea, Republic of)]. E-mail: jhkim@yeics.yonsei.ac.kr; Park, Chang-Woo [Precision Machinery Research Center, Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-dong, Wonmi-gu, Puchon-si, Kyunggi-do 420-140 (Korea, Republic of); Kim, Euntai [Department of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-dong, Sudaemoon-gu, Seoul 120-749 (Korea, Republic of); Park, Mignon [Department of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-dong, Sudaemoon-gu, Seoul 120-749 (Korea, Republic of)
2005-01-17
This Letter presents an adaptive approach for synchronization of Takagi-Sugeno (T-S) fuzzy chaotic systems. Since the parameters of chaotic system are assumed unknown, the adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. The control law to be designed consists of two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.
Homoclinic Bifurcation as a Mechanism of Chaotic Phase Synchronization
DEFF Research Database (Denmark)
Postnov, D.E.; Balanov, A.G.; Janson, N.B.
1999-01-01
This paper demonstrates a mechanism of chaotic phase synchronization in which the transition from asynchronous to synchronous chaos is associated with the collision of the asynchronous chaotic attractor with an unstable periodic orbit. This gives rise to a hysteretic transition with the two chaotic...
Lag synchronization of chaotic systems with time-delayed linear ...
Indian Academy of Sciences (India)
chaotic systems, which include nonlinear observer approach [4,5], self-adaptive control method [6,7], parameter control [8], impulsive control [9–11], etc. Recently, impulsive control has been widely used to stabilize and synchronize chaotic systems, because it allows the stabilization and synchronization of chaotic systems ...
A time-delayed method for controlling chaotic maps
Energy Technology Data Exchange (ETDEWEB)
Chen Maoyin [Department of Automation, Tsinghua University, Beijing 100084 (China)]. E-mail: maoyinchen@163.com; Zhou Donghua [Department of Automation, Tsinghua University, Beijing 100084 (China); Shang Yun [College of Mathematics and Information Science, Shaanxi Normal University, Xi' an 710062 (China)
2005-12-19
Combining the repetitive learning strategy and the optimality principle, this Letter proposes a time-delayed method to control chaotic maps. This method can effectively stabilize unstable periodic orbits within chaotic attractors in the sense of least mean square. Numerical simulations of some chaotic maps verify the effectiveness of this method.
Directory of Open Access Journals (Sweden)
Li Mei
2017-06-01
Full Text Available Calcium and zinc salts of dimer fatty acids (DFA-Ca and DFA-Zn were synthesized using direct neutralization and metathesis technologies, respectively. The adduct of maleic anhydride and methyl eleostearate (MAME was also converted to the corresponding zinc soap (C22TA-Zn and calcium soap (C22TA-Ca by the two different synthetic routes. Mixed Ca/Zn salts between DFA-Ca and DFA-Zn, and between C22TA-Zn and C22TA-Ca were used as thermal stabilizers for poly(vinyl chloride (PVC. The PVC thermal stability was determined using Congo red test, discoloration test, torque rheological analysis and TGA. Dynamic mechanical properties were also tested. Results indicated that the DFA-Ca/DFA-Zn thermal stabilizer from direct neutralization technology was found to be superior to that of the metathesis product. The C22TA-Ca/C22TA-Zn thermal stabilizer from direct neutralization method had overall superior thermal stability, and displayed modulus and glass transition comparable to that of metathesis product. Direct neutralization method was more excellent and convenient than metathesis technology.
Pietrowicz, S; Jones, S; Canfer, S; Baudouy, B
2012-01-01
In the framework of the European Union FP7 project EuCARD, two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber have been thermally tested as possible candidates to be the electrical insulation of 13 T Nb3Sn high field magnets under development for this program. Since it is expected to be operated in pressurized superfluid helium at 1.9 K and 1 atm, the thermal conductivity and the Kapitza resistance are the most important input parameters for the thermal design of this type of magnet and have been determined in this study. For determining these thermal properties, three sheets of each material with different thicknesses varying from 245 μm to 598 μm have been tested in steady-state condition in the temperature range of 1.6 K - 2.0 K. The thermal conductivity for the tri-functional epoxy (TGPAP-DETDA) epoxy resin insulation is found to be k=[(34.2±5.5).T-(16.4±8.2)]×10-3 Wm-1K-1 and for the cyanate ester epoxy k=[(26.8±4.8).T- (9.6±5...
Petkovic, K; Metcalfe, G; Chen, H; Gao, Y; Best, M; Lester, D; Zhu, Y
2016-12-20
Current diagnosis of infectious diseases such as Hendra virus (HeV) relies mostly on laboratory-based tests. There is an urgent demand for rapid diagnosis technology to detect and identify these diseases in humans and animals so that disease spread can be controlled. In this study, an integrated lab-on-a-chip device using a magnetic nanoparticle immunoassay is developed. The key features of the device are the chaotic fluid mixing, achieved by magnetically driven motion of nanoparticles with the optimal mixing protocol developed using chaotic transport theory, and the automatic liquid handling system for loading reagents and samples. The device has been demonstrated to detect Hendra virus antibodies in dilute horse serum samples within a short time of 15 minutes and the limit of detection is about 0.48 ng ml -1 . The device platform can potentially be used for field detection of viruses and other biological and chemical substances.
Spike-train bifurcation scaling in two coupled chaotic neurons
Energy Technology Data Exchange (ETDEWEB)
Huerta, R.; Rabinovich, M.I. [Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402 (United States); Abarbanel, H.D. [Department of Physics and Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0402 (United States); Bazhenov, M. [Howard Hughes Medical Institute, The Salk Institute, Computational Neurobiology Laboratory, La Jolla, California 92037 (United States)
1997-03-01
We investigate the variation of the out-of-phase periodic rhythm produced by two chaotic neurons {bold (}Hindmarsh-Rose neurons [J. L. Hindmarsh and R. M. Rose, Proc. R. Soc. London B {bold 221}, 87 (1984)]{bold )} coupled by electrical and reciprocally synaptic connections. The exploration of a two-parametric bifurcation diagram, as a function of the strength of the electrical and inhibitory coupling, reveals that the periodic rhythms associated to the limit cycles bounded by saddle-node bifurcations, undergo a strong variation as a function of small changes of electrical coupling. We found that there is a scaling law for the bifurcations of the limit cycles as a function of the strength of both couplings. From the functional point of view of this mixed typed of coupling, the small variation of electrical coupling provides a high sensitivity for period regulation inside the regime of out-of-phase synchronization. {copyright} {ital 1997} {ital The American Physical Society}
The role of the environment in chaotic quantum dynamics
Helmkamp, B S
1996-01-01
We study how the interaction with an external incoherent environment induces a crossover from quantum to classical behavior for a particle whose classical motion is chaotic. Posing the problem in the semiclassical regime, we find that noise produced by the bath coupling rather than dissipation is primarily responsible for the dephasing that results in the ``classicalization'' of the particle. We find that the bath directly alters the phase space structures that signal the onset of classical chaos. This dephasing is shown to have a semiclassical interpretation: the noise renders the interfering paths indistinguishable and therefore incoherent. The noise is also shown to contribute to the quantum inhibition of mixing by creating new paths that interfere coherently.
Cryptanalysis of a spatiotemporal chaotic image/video cryptosystem
Energy Technology Data Exchange (ETDEWEB)
Rhouma, Rhouma [6' com laboratory, Ecole Nationale d' Ingenieurs de Tunis (ENIT) (Tunisia)], E-mail: rhoouma@yahoo.fr; Belghith, Safya [6' com laboratory, Ecole Nationale d' Ingenieurs de Tunis (ENIT) (Tunisia)
2008-09-01
This Letter proposes two different attacks on a recently proposed chaotic cryptosystem for images and videos in [S. Lian, Chaos Solitons Fractals (2007), (doi: 10.1016/j.chaos.2007.10.054)]. The cryptosystem under study displays weakness in the generation of the keystream. The encryption is made by generating a keystream mixed with blocks generated from the plaintext and the ciphertext in a CBC mode design. The so obtained keystream remains unchanged for every encryption procedure. Guessing the keystream leads to guessing the key. Two possible attacks are then able to break the whole cryptosystem based on this drawback in generating the keystream. We propose also to change the description of the cryptosystem to be robust against the described attacks by making it in a PCBC mode design.
Kiani-B, Arman; Fallahi, Kia; Pariz, Naser; Leung, Henry
2009-03-01
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.
Chaotic motif sampler: detecting motifs from biological sequences by using chaotic neurodynamics
Matsuura, Takafumi; Ikeguchi, Tohru
Identification of a region in biological sequences, motif extraction problem (MEP) is solved in bioinformatics. However, the MEP is an NP-hard problem. Therefore, it is almost impossible to obtain an optimal solution within a reasonable time frame. To find near optimal solutions for NP-hard combinatorial optimization problems such as traveling salesman problems, quadratic assignment problems, and vehicle routing problems, chaotic search, which is one of the deterministic approaches, has been proposed and exhibits better performance than stochastic approaches. In this paper, we propose a new alignment method that employs chaotic dynamics to solve the MEPs. It is called the Chaotic Motif Sampler. We show that the performance of the Chaotic Motif Sampler is considerably better than that of the conventional methods such as the Gibbs Site Sampler and the Neighborhood Optimization for Multiple Alignment Discovery.
Chaotic behaviour of photonic crystals resonators
Di Falco, A.
2015-02-08
We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Quantum Statistical Operator and Classically Chaotic Hamiltonian ...
African Journals Online (AJOL)
Quantum Statistical Operator and Classically Chaotic Hamiltonian System. ... Journal of the Nigerian Association of Mathematical Physics ... In a Hamiltonian system von Neumann Statistical Operator is used to tease out the quantum consequence of (classical) chaos engendered by the nonlinear coupling of system to its ...
Control of partial synchronization in chaotic oscillators
Indian Academy of Sciences (India)
2015-02-07
Feb 7, 2015 ... Abstract. A design of coupling is proposed to control partial synchronization in two chaotic oscil- lators in a driver–response mode. A control of synchrony between one response variables is made possible (a transition from a complete synchronization to antisynchronization via amplitude death and vice ...
Entanglement production in quantized chaotic systems
Indian Academy of Sciences (India)
in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked ... Entanglement is a unique quantum phenomenon which can be observed in a system consisting of at least two ...... break permutation symmetry by taking two non-identical tops with k = 6.0 for the first top and k = 6.1 for ...
Resonance eigenfunctions in chaotic scattering systems
Indian Academy of Sciences (India)
PRAMANA c Indian Academy of Sciences. Vol. 73, No. 3. — journal of. September 2009 physics pp. 543–551. Resonance eigenfunctions in chaotic scattering systems ... particularly convenient model is the baker map because its backward and forward ... One time step of the triadic baker map consists of stretching in.
Multiswitching compound antisynchronization of four chaotic systems
Indian Academy of Sciences (India)
... suitable choice of scaling factors. Using suitable controllers and Lyapunov stability theory, sufficient condition is obtained to achieve MSCoAS between four chaotic systems and the corresponding theoretical proof is given.Numerical simulations are performed using Lorenz system in MATLAB to demonstrate the validity of ...
Resonance eigenfunctions in chaotic scattering systems
Indian Academy of Sciences (India)
We study the semiclassical structure of resonance eigenstates of open chaotic systems. We obtain semiclassical estimates for the weight of these states on different regions in phase space. These results imply that the long-lived right (left) eigenstates of the non-unitary propagator are concentrated in the semiclassical limit ħ ...
Multiswitching combination–combination synchronization of chaotic ...
Indian Academy of Sciences (India)
In this paper, a novel synchronization scheme is investigated for a class of chaotic systems. Themultiswitching synchronization scheme is extended to the combination–combination synchronization scheme such that the combination of state variables of two drive systems synchronize with different combination of state ...
Entanglement production in quantized chaotic systems
Indian Academy of Sciences (India)
Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies.
Control of partial synchronization in chaotic oscillators
Indian Academy of Sciences (India)
2015-02-07
Feb 7, 2015 ... A design of coupling is proposed to control partial synchronization in two chaotic oscillators in a driver–response mode. ... Department of Mathematics, University of Technology and Management, Shillong 793 003, India; Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Kolkata ...
CHAOTIC DUFFING TYPE OSCILLATOR WITH INERTIAL DAMPING
DEFF Research Database (Denmark)
Tamaševicius, Arunas; Mykolaitis, Gytis; Kirvaitis, Raimundas
2009-01-01
A novel Duffing-Holmes type autonomous chaotic oscillator is described. In comparison with the well-known non-autonomous Duffing-Holmes circuit it lacks the external periodic drive, but includes two extra linear feedback sub-circuits, namely a direct positive feedback loop, and an inertial negative...... feedback loop. SPICE simulation and hardware experimental results are presented....
Bidirectional communication using delay coupled chaotic directly ...
Indian Academy of Sciences (India)
Abstract. Chaotic synchronization of two directly modulated semiconductor lasers with negative delayed optoelectronic feedback is investigated and this scheme is found to be useful for efficient bidirectional communication between the lasers. A symmetric bidirec- tional coupling is identified as a suitable method for ...
Cryptanalysis of a chaotic secure communication system
Energy Technology Data Exchange (ETDEWEB)
Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G
2003-01-06
Recently a chaotic encryption system has been proposed by P. Garcia et al. It represents an improvement over an algorithm previously presented by some of the same authors. In this Letter, several weaknesses of the new cryptosystem are pointed out and four successful cryptanalytic attacks are described.
Learning chaotic attractors by neural networks
Bakker, R; Schouten, JC; Giles, CL; Takens, F; van den Bleek, CM
2000-01-01
An algorithm is introduced that trains a neural network to identify chaotic dynamics from a single measured time series. During training, the algorithm learns to short-term predict the time series. At the same time a criterion, developed by Diks, van Zwet, Takens, and de Goede (1996) is monitored
Design of Threshold Controller Based Chaotic Circuits
DEFF Research Database (Denmark)
Mohamed, I. Raja; Murali, K.; Sinha, Sudeshna
2010-01-01
We propose a very simple implementation of a second-order nonautonomous chaotic oscillator, using a threshold controller as the only source of nonlinearity. We demonstrate the efficacy and simplicity of our design through numerical and experimental results. Further, we show that this approach...
Multiswitching compound antisynchronization of four chaotic systems
Indian Academy of Sciences (India)
Ayub Khan
2017-11-28
Nov 28, 2017 ... The poten- tial interdisciplinary applications in physics, biological systems, electrical engineering, information process- ing, communication theory and many other fields have been extensively explored in the literature on chaos synchronization [6–10]. Due to the diverse nature of the chaotic systems, many ...
Observation of Chua Corsage and Chaotic Behavior in a Nanoscale NbO2 Mott Memristor
Kumar, Suhas; Strachan, John Paul; Williams, R. Stanley
Networks containing locally active circuit elements have the potential to be `poised at the edge of chaos' and/or to express chaotic behavior, which could be a powerful non-Boolean computing primitive. Such an element has not been realized within a compact electronic device. Here we built sub-100 nm NbO2 memristors that exhibited two distinct regions of negative differential resistance in their quasi-DC i-v characteristics: current controlled and temperature controlled. We identify the latter as a `Chua Corsage' generated by the Joule-heating-driven Mott transition. We constructed a Pearson-Anson-like oscillator using these devices and observed a range of distinctly accessible sinusoidal and highly chaotic oscillations generated by applying a variable DC voltage. We show that the nanoscale device dimensions, coupled with the non-linear transport mechanism, generated chaotic oscillations that were driven by ambient thermal noise. The voltage-tunable locally active behavior of this device provides a new route to chaotic and emergent behavior in transistorless electronic circuits.
Applications of chaotic neurodynamics in pattern recognition
Baird, Bill; Freeman, Walter J.; Eeckman, Frank H.; Yao, Yong
1991-08-01
Network algorithms and architectures for pattern recognition derived from neural models of the olfactory system are reviewed. These span a range from highly abstract to physiologically detailed, and employ the kind of dynamical complexity observed in olfactory cortex, ranging from oscillation to chaos. A simple architecture and algorithm for analytically guaranteed associative memory storage of analog patterns, continuous sequences, and chaotic attractors in the same network is described. A matrix inversion determines network weights, given prototype patterns to be stored. There are N units of capacity in an N node network with 3N2 weights. It costs one unit per static attractor, two per Fourier component of each sequence, and three to four per chaotic attractor. There are no spurious attractors, and for sequences there is a Liapunov function in a special coordinate system which governs the approach of transient states to stored trajectories. Unsupervised or supervised incremental learning algorithms for pattern classification, such as competitive learning or bootstrap Widrow-Hoff can easily be implemented. The architecture can be ''folded'' into a recurrent network with higher order weights that can be used as a model of cortex that stores oscillatory and chaotic attractors by a Hebb rule. Network performance is demonstrated by application to the problem of real-time handwritten digit recognition. An effective system with on-line learning has been written by Eeckman and Baird for the Macintosh. It utilizes static, oscillatory, and/or chaotic attractors of two kinds--Lorenze attractors, or attractors resulting from chaotically interacting oscillatory modes. The successful application to an industrial pattern recognition problem of a network architecture of considerable physiological and dynamical complexity, developed by Freeman and Yao, is described. The data sets of the problem come in three classes of difficulty, and performance of the biological network is
Energy Technology Data Exchange (ETDEWEB)
Xu, Songchen [Ames Laboratory; Manna, Kuntal [Ames Laboratory; Ellern, Arkady [Ames Laboratory; Sadow, Aaron D [Ames Laboratory
2014-12-08
In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes'CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes'CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis
Chaotic and fractal patterns for interacting nonlinear waves
Energy Technology Data Exchange (ETDEWEB)
Maccari, Attilio, E-mail: solitone@yahoo.i [Via Alfredo Casella 3, 00013 Mentana, Rome (Italy)
2010-12-15
Research highlights: Chaotic and fractal solutions for nonlinear partial differential equations. Soliton and dromion solutions for nonlinear partial differential equations. Elastic interactions between solitons and dromions. - Abstract: Using an appropriate reduction method, a quite general new integrable system of equations 2 + 1 dimensions can be derived from the dispersive long-wave equation. Various soliton and dromion solutions are obtaining by selecting some types of solutions appropriately. The interaction between the localized solutions is completely elastic, because they pass through each other and preserve their shapes and velocities, the only change being a phase shift. The arbitrariness of the functions included in the general solution implies that approximate lower dimensional chaotic patterns such as chaotic-chaotic patterns, periodic-chaotic patterns, chaotic line soliton patterns and chaotic dromion patterns can appear in the solution. In a similar way, fractal dromion patterns and stochastic fractal excitations also exist for appropriate choices of the boundary conditions and/or initial conditions.
Energy Technology Data Exchange (ETDEWEB)
Berret, J. (Laboratoire de Sciences des Materiaux Vitreux, Universite de Montpellier IL, F-34000 Montpellier CEDEX, France (FR)); Meissner, M. (Hahn-Meitner Institut Berlin, Neutronenstreuung 2, D-1000 Berlin 39, Federal Republic of Germany (DE) Institut fuer Festkoerperphysik, Technische Universitaet Berlin, D-1000 Berlin 12, Federal Republic of Germany (DE)); Watson, S.K.; Pohl, R.O. (Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501 (US)); Courtens, E. (IBM Research Division, Zurich Research Laboratory, 8803 Rueschlikon, (Switzerland))
1991-07-01
Low-temperature thermal conductivity and time-dependent specific heat have been measured on mixed crystals of Rb{sub 1{minus}{ital x}}(NH{sub 4}){sub {ital z}}H{sub 2}PO{sub 4} ({ital x}=0.35,0.72), in the composition range in which an electric dipole glass state forms below {similar to}100 K. Glasslike excitations have been observed. In the fully deuterated isomorph with {ital x}=0.62, however, the thermal conductivity is that of a crystal, and glasslike excitations are only seen in the specific heat at very long times. This striking isotope effect shows that the low-energy excitations in these crystals relate to tunneling of protons or deuterons, respectively.
Santos, Lea F; Rigol, Marcos
2010-09-01
We study how the proximity to an integrable point or to localization as one approaches the atomic limit, as well as the mixing of symmetries in the chaotic domain, may affect the onset of thermalization in finite one-dimensional systems. We consider systems of hard-core bosons at half-filling with nearest-neighbor hopping and interaction, and next-nearest-neighbor interaction. The latter breaks integrability and induces a ground-state superfluid to insulator transition. By full exact diagonalization, we study chaos indicators and few-body observables. We show that when different symmetry sectors are mixed, chaos indicators associated with the eigenvectors, contrary to those related to the eigenvalues, capture the onset of chaos. The results for the complexity of the eigenvectors and for the expectation values of few-body observables confirm the validity of the eigenstate thermalization hypothesis in the chaotic regime, and therefore the occurrence of thermalization. We also study the properties of the off-diagonal matrix elements of few-body observables in relation to the transition from integrability to chaos and from chaos to localization.
Directory of Open Access Journals (Sweden)
D. Lourdu Immaculate
2015-06-01
Full Text Available The present paper deals with the influence of thermophoretic particle deposition on the MHD mixed convective heat and mass transfer flow in a vertical channel in the presence of radiative heat flux with thermal-diffusion and diffusion-thermo effects. The resulting nonlinear coupled equations are solved under appropriate boundary conditions using the homotopy analysis method. The influence of involved parameters on heat and mass transfer characteristics of the fluid flow is presented graphically. It is noted that fluid velocity is an increasing function of radiation parameter, Dufour number, Buoyancy ratio parameter and mixed convection parameter whereas the magnetic parameter, thermophoresis constant, Soret number and Schimidt number lead to suppress the velocity. The fluid temperature increases with increasing radiation parameter and Dufour number. The convergence of homotopy analysis method (HAM solutions is discussed and a good agreement is found between the analytical and the numerical solution.
Das, Utpal Jyoti
2016-01-01
The purpose of the study is to investigate the steady, two-dimensional, hydromagnetic, mixed convection heat and mass transfer of a conducting, optically thin, incompressible, elastico-viscous fluid (characterized by the Walters' B' model) past a permeable, stationary, vertical, infinite plate in the presence of thermal radiation and chemical reaction with account for an induced magnetic field. The governing equations of the flow are solved by the series method, and expressions for the velocity field, induced magnetic field, temperature field, and the skin friction are obtained.
Energy Technology Data Exchange (ETDEWEB)
Cooper, J.F.
1998-01-01
Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput.
Energy Technology Data Exchange (ETDEWEB)
Frank J Spera; David A. Yuen; Grace Giles
2007-04-01
The discovery of a phase-transition in Mg-rich perovskite (Pv) to a post-perovskite (pPv) phase at lower mantle depths and its relationship to D", lower mantle heterogeneity and iron content prompted an investigation of the relative importance of lower mantle compositional and temperature fluctuations in creating topographic undulations on mixed phase regions. Above the transition, Mg-rich Pv makes up ~ 70 per cent by mass of the lower mantle. Using results from experimental phase equilibria, first-principles computations and empirical scaling relations for Fe2+-Mg mixing in silicates, a preliminary thermodynamic model for the Pv to pPv phase transition in the divariant system MgSiO3-FeSiO3 is developed. Complexities associated with components Fe2O3 and Al2O3 and other phases (Ca-Pv, magnesiowustite) are neglected. The model predicts phase transition pressures are sensitive to the FeSiO3 content of perovskite (~ -1.5 GPa per one mole percent FeSiO3). This leads to considerable topography along the top boundary of the mixed phase region. The Clapeyron slope for the Pv→pPv transition at XFeSiO3= 0.1 is +11 MPa/K about 20% higher than for pure Mg-Pv. Increasing bulk concentration of iron elevates the mixed (two-phase) layer above the core–mantle boundary (CMB); increasing temperature acts to push the mixed layer deeper in the lower mantle perhaps into the D” thermal-compositional boundary layer resting upon the CMB. For various lower mantle geotherms and CMB temperatures, a single mixed layer of thickness ~300 km lies within the bottom 40% of the lower mantle. For low iron contents (XFeSiO3 ~ 5 mole percent or less), two (perched) mixed phase layers are found. This is the divariant analog to the univariant double-crosser of Hernlund, et al., 2005. The hotter the mantle, the deeper the mixed phase layer; the more iron-rich the lower mantle, the shallower the mixed phase layer. In a younger and hotter Hadean Earth with interior temperatures everywhere 200-500 K
Directory of Open Access Journals (Sweden)
Vincenzo Spallina
2015-03-01
Full Text Available The integration of mixed ionic electronic conducting (MIEC membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650–850 Nm3/h via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%. Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%–70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%–78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.
Directory of Open Access Journals (Sweden)
B. Qi
2014-07-01
Full Text Available Graphene oxide (GO sheets were chemically grafted with thermotropic liquid crystalline epoxy (TLCP. Then we fabricated composites using TLCP-g-GO as reinforcing filler. The mechanical properties and thermal properties of composites were systematically investigated. It is found that the thermal and mechanical properties of the composites are enhanced effectively by the addition of fillers. For instance, the composites containing 1.0 wt% of TLCP-g-GO present impact strength of 51.43 kJ/m2, the tensile strength of composites increase from 55.43 to 80.85 MPa, the flexural modulus of the composites increase by more than 48%. Furthermore, the incorporation of fillers is effective to improve the glass transition temperature and thermal stability of the composites. Therefore, the presence of the TLCP-g-GO in the epoxy matrix could make epoxy not only stronger but also tougher.
Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S.-J.; Nagler, P. C.; Smith, S. J.
2015-01-01
We report on measurements of the detected signal pulses in a molybdenum-gold Magnetic Penetration Thermometer (MPT) in response to absorption of one or more 3 eV photons. We designed and used this MPT sensor for x-ray microcalorimetry. In this device, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons, and responsivity is enhanced by a Meissner transition in which the magnetic flux penetrating the sensor changes rapidly to minimize free energy in a mixed superconducting normal state. We have previously reported on use of our MPT to study a thermal phonon energy loss to the substrate when absorbing x-rays. We now describe results of extracting heat capacity C and thermal conductance G values from pulse height and decay time of MPT pulses generated by 3 eV photons. The variation in C and G at temperatures near the Meissner transition temperature (set by an internal magnetic bias field) allow us to probe the behavior in superconducting normal mixed state of the condensation energy and the electron cooling power resulting from quasi-particle recombination and phonon emission. The information gained on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.
Revisiting the minimal chaotic inflation model
Energy Technology Data Exchange (ETDEWEB)
Harigaya, Keisuke, E-mail: keisukeharigaya@berkeley.edu [ICRR, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Ibe, Masahiro; Kawasaki, Masahiro [ICRR, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Kavli IPMU (WPI), UTIAS, University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Yanagida, Tsutomu T. [Kavli IPMU (WPI), UTIAS, University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)
2016-05-10
We point out that the prediction of the minimal chaotic inflation model is altered if a scalar field takes a large field value close to the Planck scale during inflation due to a negative Hubble induced mass. In particular, we show that the inflaton potential is effectively flattened at a large inflaton field value in the presence of such a scalar field. The scalar field may be identified with the standard model Higgs field or super partners of standard model fermions. With such Hubble-induced flattening, we find that the minimal chaotic inflation model, especially the model with a quadratic potential, is consistent with recent observations of the cosmic microwave background fluctuation without modifying the inflation model itself.
Chaotic behavior in bubble formation dynamics
Tufaile, A.; Sartorelli, J. C.
2000-01-01
We constructed an experimental apparatus to study the dynamics of the formation of air bubbles in a submerged nozzle in a water/glycerin solution inside a cylindrical tube. The delay time between successive bubbles was measured with a laser-photodiode system. It was observed bifurcations, chaotic behavior, and sudden changes in a periodic regime as a function of the decreasing air pressure in a reservoir. We also observed dynamical effects by applying a sound wave tuned to the fundamental frequency of the air column above the solution. As a function of the sound wave amplitude, we obtained a limit cycle, a flip bifurcation, chaotic behavior, and the synchronization of the bubbling with sound wave frequency. We related some of the different dynamical behaviors to coalescent effects and bubble sizes.
Delusions, superstitious conditioning and chaotic dopamine neurodynamics.
Shaner, A
1999-02-01
Excessive mesolimbic dopaminergic neurotransmission is closely related to the psychotic symptoms of schizophrenia. A mathematical model of dopamine neuron firing rates, developed by King and others, suggests a mechanism by which excessive dopaminergic transmission could produce psychotic symptoms, especially delusions. In this model, firing rates varied chaotically when the efficacy of dopaminergic transmission was enhanced. Such non-contingent changes in firing rates in mesolimbic reward pathways could produce delusions by distorting thinking in the same way that non-contingent reinforcement produces superstitious conditioning. Though difficult to test in humans, the hypothesis is testable as an explanation for a common animal model of psychosis--amphetamine stereotypy in rats. The hypothesis predicts that: (1) amphetamine will cause chaotic firing rates in mesolimbic dopamine neurons; (2) non-contingent brain stimulation reward will produce stereotypy; (3) non-contingent microdialysis of dopamine into reward areas will produce stereotypy; and (4) dopamine antagonists will block all three effects.
The transition to chaotic phase synchronization
DEFF Research Database (Denmark)
Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.
2012-01-01
The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system......, this paper describes how these saddle-node bifurcations arise and how their characteristic cyclic organisation develops. We identify the cycles that are involved in the various saddle-node bifurcations and describe how the formation of multi-layered resonance cycles in the synchronization domain is related...... to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically...
Bearing Health Assessment Based on Chaotic Characteristics
Directory of Open Access Journals (Sweden)
Chen Lu
2013-01-01
Full Text Available Vibration signals extracted from rotating parts of machinery carry a lot of useful information about the condition of operating machine. Due to the strong non-linear, complex and non-stationary characteristics of vibration signals from working bearings, an accurate and reliable health assessment method for bearing is necessary. This paper proposes to utilize the selected chaotic characteristics of vibration signal for health assessment of a bearing by using self-organizing map (SOM. Both Grassberger-Procaccia algorithm and Takens' theory are employed to calculate the characteristic vector which includes three chaotic characteristics, such as correlation dimension, largest Lyapunov exponent and Kolmogorov entropy. After that, SOM is used to map the three corresponding characteristics into a confidence value (CV which represents the health state of the bearing. Finally, a case study based on vibration datasets of a group of testing bearings was conducted to demonstrate that the proposed method can reliably assess the health state of bearing.
Revisiting the minimal chaotic inflation model
Directory of Open Access Journals (Sweden)
Keisuke Harigaya
2016-05-01
Full Text Available We point out that the prediction of the minimal chaotic inflation model is altered if a scalar field takes a large field value close to the Planck scale during inflation due to a negative Hubble induced mass. In particular, we show that the inflaton potential is effectively flattened at a large inflaton field value in the presence of such a scalar field. The scalar field may be identified with the standard model Higgs field or super partners of standard model fermions. With such Hubble-induced flattening, we find that the minimal chaotic inflation model, especially the model with a quadratic potential, is consistent with recent observations of the cosmic microwave background fluctuation without modifying the inflation model itself.
Enhanced energy storage in chaotic optical resonators
Liu, Changxu
2013-05-05
Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres. © 2013 Macmillan Publishers Limited. All rights reserved.
Spice Modeling of the Vilnius Chaotic Oscillator
Peters, Randall D.
2005-01-01
``A simple chaotic oscillator for educational purposes'' was recently described in the literature [1]. In addition to their hardware description, the authors of this paper generated a bifurcation diagram from the model equations presented in their paper. In the present treatment of their circuit the `simulation program for integrated circuit engineering' (Spice) has been used to generate some insightful graphs that were not shown by the Lithuania group.
Extreme value distributions in chaotic dynamics
Balakrishnan, V.; Nicolis, C.; Nicolis, G.
1995-07-01
A theory of extremes is developed for chaotic dynamical systems and illustrated on representative models of fully developed chaos and intermitent chaos. The cumulative distribution and its associated density for the largest value occurring in a data set, for monotonically increasing (or decreasing) sequences, and for local maxima are evaluated both analytically and numerically. Substantial differences from the classical statistical theory of extremes are found, arising from the deterministic origin of the underlying dynamics.
Chaotic behaviour of photonic crystals resonators
Di Falco, A.; Liu, C.; Krauss, T.F.; Fratalocchi, A.
2015-01-01
We acknowledge support from the EPSRC (ADF, Fellowships No. EP/I004602/1 and No. EP/J004200/1) and KAUST (AF, Grant No. CRG-1-2012-FRA-005). We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. Publisher PDF
Chaotic Behavior in a Switched Dynamical System
Hassane Bouzahir; Fatima El Guezar
2008-01-01
We present a numerical study of an example of piecewise linear systems that constitute a class of hybrid systems. Precisely, we study the chaotic dynamics of the voltage-mode controlled buck converter circuit in an open loop. By considering the voltage input as a bifurcation parameter, we observe that the obtained simulations show that the buck converter is prone to have subharmonic behavior and chaos. We also present the corresponding bifurcation diagram. Our modeling techniques are based on...
Chaotic Phenomena in Technical Control Systems
DEFF Research Database (Denmark)
Mosekilde, Erik
1997-01-01
The paper discusses a number of examples of technical control systems that can exhibit deterministic chaos and other forms of complex nonlinear behavior. These examples include thermostatically regulated radiators, closely placed refrigirators, and industrial cooling compressors. The paper...... continues to describe the possible perspective in driving our technical systems to operate in a chaotic regime. An example of a technical system capable of operating under unstable conditions is the F/A-18 fighter....
Correlations and chaotic motion in nuclear masses
Energy Technology Data Exchange (ETDEWEB)
Olofsson, H.; Aaberg, S. [Lund Univ. (Sweden). Div. of Mathematical Physics; Bohigas, O.; Leboeuf, P. [Univ. de Paris-Sud, Orsay (France). Laboratoire de Physique Theorique et Modeles Statistiques
2006-07-15
Correlations of the difference between the measured and calculated mass of neighbouring nuclei obtained from different nuclear compilations are studied. The autocorrelation function is found to be, to a good approximation, model independent. The result is well described by a semiclassical theory that assumes the existence of a contribution to the nuclear mass associated with a chaotic motion of the nucleons (Olofsson et al 2006 Phys. Rev. Lett. 96 042502). Recent developments in this direction are reviewed and some complementary aspects are studied.
Child allowances, fertility, and chaotic dynamics
Chen, Hung-Ju; Li, Ming-Chia
2013-06-01
This paper analyzes the dynamics in an overlapping generations model with the provision of child allowances. Fertility is an increasing function of child allowances and there exists a threshold effect of the marginal effect of child allowances on fertility. We show that if the effectiveness of child allowances is sufficiently high, an intermediate-sized tax rate will be enough to generate chaotic dynamics. Besides, a decrease in the inter-temporal elasticity of substitution will prevent the occurrence of irregular cycles.
Autonomous Duffing-Holmes Type Chaotic Oscillator
DEFF Research Database (Denmark)
Tamaševičius, A.; Bumelienė, S.; Kirvaitis, R.
2009-01-01
We have designed and built a novel Duffing type autonomous 3rd-order chaotic oscillator. In comparison with the common non-autonomous DuffingHolmes type oscillator the autonomous circuit has an internal positive feedback loop instead of an external periodic drive source. In addition......, it is supplemented with an RC inertial damping loop providing negative feedback. The circuit has been investigated both numerically and experimentally....
Cryptanalysis of an ergodic chaotic cipher
Energy Technology Data Exchange (ETDEWEB)
Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G
2003-05-12
In recent years, a growing number of cryptosystems based on chaos have been proposed, many of them fundamentally flawed by a lack of robustness and security. In this Letter, we offer our results after having studied the security and possible attacks on a very interesting cipher algorithm based on the logistic map's ergodicity property. This algorithm has become very popular recently, as it has been taken as the development basis of new chaotic cryptosystems.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Y.; Lu, T., E-mail: likesurge@sina.com
2016-12-01
Highlights: • Two characteristic parameters of the temperature fluctuations are used for qualitative analysis. • A quantitative assessment method for high-cycle thermal fatigue of a T-pipe is proposed. • The time-dependent curves for the temperature and thermal stress are not always “in-phase”. • Large magnitude of thermal stresses may not mean large number of fatigue cycles. • The normalized fatigue damage rate and normalized RMS temperature are positively related. - Abstract: With the development of nuclear power and nuclear power safety, high-cycle thermal fatigue of the pipe structures induced by the flow and heat transfer of the fluid in pipes have aroused more and more attentions. Turbulent mixing of hot and cold flows in a T-pipe is a well-recognized source of thermal fatigue in piping system, and thermal fatigue is a significant long-term degradation mechanism. It is not an easy work to evaluate thermal fatigue of a T-pipe under turbulent flow mixing because of the thermal loads acting at fluid–structure interface of the pipe are so complex and changeful. In this paper, a one-way Computational Fluid Dynamics-Finite Element Method (CFD-FEM method) coupling based on the ANSYS Workbench 15.0 software has been developed to calculate transient thermal stresses with the temperature fields of turbulent flow mixing, and thermal fatigue assessment has been carried out with this obtained fluctuating thermal stresses by programming in the software platform of Matlab based on the rainflow counting method. In the thermal analysis, the normalized mean temperatures and the normalized root mean square (RMS) temperatures are obtained and compared with the experiment of the test case from the Vattenfall benchmark facility to verify the accuracy of the CFD calculation and to determine the position which thermal fatigue is most likely to occur in the T-junction. Besides, more insights have been obtained in the coupled CFD-FEM analysis and the thermal fatigue
Synchronization of mobile chaotic oscillator networks
Energy Technology Data Exchange (ETDEWEB)
Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)
2016-09-15
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
Exact Eigenfunctions of a Chaotic System
Ausländer, O M
1997-01-01
The interest in the properties of quantum systems, whose classical dynamics are chaotic, derives from their abundance in nature. The spectrum of such systems can be related, in the semiclassical approximation (SCA), to the unstable classical periodic orbits, through Gutzwiller's trace formula. The class of systems studied in this work, tiling billiards on the pseudo-sphere, is special in this correspondence being exact, via Selberg's trace formula. In this work, an exact expression for Green's function (GF) and the eigenfunctions (EF) of tiling billiards on the pseudo-sphere, whose classical dynamics are chaotic, is derived. GF is shown to be equal to the quotient of two infinite sums over periodic orbits, where the denominator is the spectral determinant. Such a result is known to be true for typical chaotic systems, in the leading SCA. From the exact expression for GF, individual EF can be identified. In order to obtain a SCA by finite series for the infinite sums encountered, resummation by analytic contin...
Transient chaotic transport in dissipative drift motion
Energy Technology Data Exchange (ETDEWEB)
Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)
2016-04-22
Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.
Charge fluctuations in open chaotic cavities
Büttiker, M.; Polianski, M. L.
2005-12-01
We present a discussion of the charge response and the charge fluctuations of mesoscopic chaotic cavities in terms of a generalized Wigner-Smith matrix. The Wigner-Smith matrix is well known in investigations of time-delay of quantum scattering. It is expressed in terms of the scattering matrix and its derivatives with energy. We consider a similar matrix but instead of an energy derivative, we investigate the derivative with regard to the electric potential. The resulting matrix is then the operator of charge. If this charge operator is combined with a self-consistent treatment of Coulomb interaction, the charge operator determines the capacitance of the system, the non-dissipative ac-linear response, the RC-time with a novel charge relaxation resistance, and in the presence of transport a resistance that governs the displacement currents induced into a nearby conductor. In particular, these capacitances and resistances determine the relaxation rate and dephasing rate of a nearby qubit (a double quantum dot). We discuss the role of screening of mesoscopic chaotic detectors. Coulomb interaction effects in quantum pumping and in photon assisted electron-hole shot noise are treated similarly. For the latter, we present novel results for chaotic cavities with non-ideal leads.
Banknote authentication using chaotic elements technology
Ambadiyil, Sajan; P. S., Krishnendu; Mahadevan Pillai, V. P.; Prabhu, Radhakrishna
2017-10-01
The counterfeit banknote is a growing threat to the society since the advancements in the field of computers, scanners and photocopiers, as they have made the duplication process for banknote much simpler. The fake note detection systems developed so far have many drawbacks such as high cost, poor accuracy, unavailability, lack of user-friendliness and lower effectiveness. One possible solution to this problem could be the use of a system uniquely linked to the banknote itself. In this paper, we present a unique identification and authentication process for the banknote using chaotic elements embedded in it. A chaotic element means that the physical elements are formed from a random process independent from human intervention. The chaotic elements used in this paper are the random distribution patterns of such security fibres set into the paper pulp. A unique ID is generated from the fibre pattern obtained from UV image of the note, which can be verified by any person who receives the banknote to decide whether the banknote is authentic or not. Performance analysis of the system is also studied in this paper.
Lester, D. R.; Trefry, M. G.; Metcalfe, G.
2016-11-01
The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.
Chaotic spiking induced by variable delayed optoelectronic feedback in a model of class B laser
Grigorieva, E. V.; Kaschenko, S. A.
2018-01-01
We analyze the dynamics of a class B laser with optoelectronic delayed feedback and periodic modulation of the delay time. For the delay-differential model, we describe asymptotically spike regimes with various properties, namely, with inter-spikes intervals greater than delay, less delay, and a mixed type. Sets of initial conditions in an infinite-dimensional phase space are determined for each type of pulsed solutions. The dynamics of each regime is described by the dynamics of a certain finite-dimensional mapping. By computing the maps we obtain the modulation parameters at which the chaotic spiking of desired structure is realized. We demonstrate bistability of chaotic spiking, their intermittence and merge.
Crisis-induced intermittency in two coupled chaotic maps: towards understanding chaotic itinerancy.
Tanaka, G; Sanjuán, M A F; Aihara, K
2005-01-01
The present paper considers crisis-induced intermittency in a system composed of two coupled logistic maps. Its purpose is to clarify a bifurcation scenario generating such intermittent behaviors that can be regarded as a simple example of chaotic itinerancy. The intermittent dynamics appears immediately after an attractor-merging crisis of two off-diagonal chaotic attractors in a symmetrically coupled system. The scenario for the crisis is investigated through analyses of sequential bifurcations leading to the two chaotic attractors and successive changes in basin structures with variation of a system parameter. The successive changes of the basins are also characterized by variation of a dimension of a fractal basin boundary. A numerical analysis shows that simultaneous contacts between the attractors and the fractal basin boundary bring about the crisis and a snap-back repeller generated at the crisis produces the intermittent transitions. Furthermore, a modified scenario for intermittent behaviors in an asymmetrically coupled system is also discussed.
Fractional order control and synchronization of chaotic systems
Vaidyanathan, Sundarapandian; Ouannas, Adel
2017-01-01
The book reports on the latest advances in and applications of fractional order control and synchronization of chaotic systems, explaining the concepts involved in a clear, matter-of-fact style. It consists of 30 original contributions written by eminent scientists and active researchers in the field that address theories, methods and applications in a number of research areas related to fractional order control and synchronization of chaotic systems, such as: fractional chaotic systems, hyperchaotic systems, complex systems, fractional order discrete chaotic systems, chaos control, chaos synchronization, jerk circuits, fractional chaotic systems with hidden attractors, neural network, fuzzy logic controllers, behavioral modeling, robust and adaptive control, sliding mode control, different types of synchronization, circuit realization of chaotic systems, etc. In addition to providing readers extensive information on chaos fundamentals, fractional calculus, fractional differential equations, fractional contro...
Collar, Concha; Jiménez, Teresa; Conte, Paola; Piga, Antonio
2015-05-20
The impact of wheat (WT) flour replacement up to 45% (weight basis) by incorporation of ternary blends of teff (T), green pea (GP) and buckwheat (BW) flours on the thermal profiles of quaternary blended dough matrices have been investigated by simulating baking, cooling, and storage in differential scanning calorimeter (DSC) pans. Endothermal transitions related to suitable patterns for low and slow starch hydrolysis, softer crumb and retarded firming kinetics in blended breads include delayed temperatures for starch gelatinization, and for the dissociation of amylose-lipid complex. In addition, (a) higher stability for the amylose-lipid inclusion complex, (b) lower energy for starch gelatinization, (c) lower limiting melting enthalpy and (d) slower rate for amylopectin retrogradation meet thermal requirements for achieving suitable textural and starch digestibility features in blended breads, fulfilled by adding T/GP/BW to replace 45% of WT flour in blended dough formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kobayashi, Kazuya U; Kurita, Rei
2017-10-11
The formation of a transient stagnant domain in the presence of thermal convection was previously reported near the sol-gel transition temperature of a gelatin solution. The transient stagnant domain is observed near a critical Rayleigh number where a "roll" pattern is usually stable. It is important to understand the origin of the transient stagnant domain formation since it induces a large deformation of convection patterns; the nature of the formation of the transient stagnant domain remains unclear. Here, we observe thermal convection using several different fluids and find that stagnant domain formation is ubiquitous in two component mixtures. In addition, we find that difference in viscosity between the two components is crucial for transient stagnant domain formation, more so than the concentration gradient induced by the temperature gradient.
A chaotic heat-exchanger for PEMFC cooling applications
Lasbet, Yahia; Auvity, Bruno; Castelain, Cathy; Peerhossaini, Hassan
High-efficiency cooling systems are key points in PEMFC transport applications, as the volume constraints force the reduction of the stack size while increasing the power density. Moreover, to ensure an optimal electrochemical reaction over the whole polymer membrane surface and hence a maximum efficiency, the temperature field in the cell must be uniform and stay in a narrow range, around 80-90 °C. This study focuses on improving the thermal performance of heat-exchangers integrated in the bipolar plates of PEMFCs. The current design of the heat-exchangers in these applications is quite simple; cooling liquid (water) flows in straight channels or serpentines in the rear of the plates. The flow regime is laminar with a Reynolds number around 200. In order to enhance convective heat transfer, we propose here to promote three-dimensional flow inside cooling channels using a novel channel geometry that generates chaotic advection flow. However, to limit the size and the electric resistance of the bipolar plates, the thickness must be severely limited. This work concentrates on developing and characterizing heat-exchangers that can be easily reduced in size while preserving high thermal performance.
A Chaotic Pulse-Time Modulation Method for Digital Communication
Nguyen Xuan Quyen; Vu Van Yem; Thang Manh Hoang
2012-01-01
We present and investigate a method of chaotic pulse-time modulation (PTM) named chaotic pulse-width-position modulation (CPWPM) which is the combination of pulse-position-modulation (PPM) and pulse-width modulation (PWM) with the inclusion of chaos technique for digital communications. CPWPM signal is in the pulse train format, in which binary information is modulated onto chaotically-varied intervals of position and width of pulses, and therefore two bits are encoded on a single pulse. The ...
Projective synchronization in fractional order chaotic systems and its control
Li, Chunguang
2006-01-01
The chaotic dynamics of fractional (non-integer) order systems have begun to attract much attention in recent years. In this paper, we study the projective synchronization in two coupled fractional order chaotic oscillators. It is shown that projective synchronization can also exist in coupled fractional order chaotic systems. A simple feedback control method for controlling the scaling factor onto a desired value is also presented.
Projective Synchronization in Fractional Order Chaotic Systems and Its Control
Chunguang, Li; Centre for Nonlinear and Complex Systems, School of Electronic Engineering, University of Electronic Science and Technology of China
2006-01-01
The chaotic dynamics of fractional (non-integer) order systems has begun to attract much attention in recent years. In this paper, we study the projective synchronization in two coupled fractional order chaotic oscillators. It is shown that projective synchronization can also exist in coupled fractional order chaotic systems. A simple feedback control method for controlling the scaling factor onto a desired value is also presented.
Synchronization of different fractional order chaotic systems using active control
Bhalekar, Sachin; Daftardar-Gejji, Varsha
2010-11-01
Synchronization of fractional order chaotic dynamical systems is receiving increasing attention owing to its interesting applications in secure communications of analog and digital signals and cryptographic systems. In this article we utilize active control technique to synchronize different fractional order chaotic dynamical systems. Further we investigate the interrelationship between the (fractional) order and synchronization in different chaotic dynamical systems. It is observed that synchronization is faster as the order tends to one.
A new five-term simple chaotic attractor
Energy Technology Data Exchange (ETDEWEB)
Munmuangsaen, Buncha [Sirindhorn International Institute of Technology, Thammasat University, 131 M.5, Tivanont Road, Bangkadi, Muang, Pathum-Thani, 12000 (Thailand); Srisuchinwong, Banlue, E-mail: banlue@siit.tu.ac.t [Sirindhorn International Institute of Technology, Thammasat University, 131 M.5, Tivanont Road, Bangkadi, Muang, Pathum-Thani, 12000 (Thailand)
2009-10-26
A new chaotic attractor is presented with only five terms in three simple differential equations having fewer terms and simpler than those of existing seven-term or six-term chaotic attractors. Basic dynamical properties of the new attractor are demonstrated in terms of equilibria, Jacobian matrices, non-generalized Lorenz systems, Lyapunov exponents, a dissipative system, a chaotic waveform in time domain, a continuous frequency spectrum, Poincare maps, bifurcations and forming mechanisms of its compound structures.
Synchronization in driven versus autonomous coupled chaotic maps
Pineda, M.; Cosenza, M. G.
2005-01-01
The phenomenon of synchronization occurring in a locally coupled map lattice subject to an external drive is compared to the synchronization process in an autonomous coupled map system with similar local couplings plus a global interaction. It is shown that chaotic synchronized states in both systems are equivalent, but the collective states arising after the chaotic synchronized state becomes unstable can be different in these two systems. It is found that the external drive induces chaotic ...
Underwater Chaotic Lidar using Blue Laser Diodes
Rumbaugh, Luke K.
The thesis proposes and explores an underwater lidar system architecture based on chaotic modulation of recently introduced, commercially available, low cost blue laser diodes. This approach is experimentally shown to allow accurate underwater impulse response measurements while eliminating the need for several major components typically found in high-performance underwater lidar systems. The proposed approach is to: 1. Generate wideband, noise-like intensity modulation signals using optical chaotic modulation of blue-green laser diodes, and then 2. Use this signal source to develop an underwater chaotic lidar system that uses no electrical signal generator, no electro-optic modulator, no optical frequency doubler, and no large-aperture photodetector. The outcome of this thesis is the demonstration of a new underwater lidar system architecture that could allow high resolution ranging, imaging, and water profiling measurements in turbid water, at a reduced size, weight, power and cost relative to state-of-the-art high-performance underwater lidar sensors. This work also makes contributions to the state of the art in optics, nonlinear dynamics, and underwater sensing by demonstrating for the first time: 1. Wideband noise-like intensity modulation of a blue laser diode using no electrical signal generator or electro-optic modulator. Optical chaotic modulation of a 462 nm blue InGaN laser diode by self-feedback is explored for the first time. The usefulness of the signal to chaotic lidar is evaluated in terms of bandwidth, modulation depth, and autocorrelation peak-to-sidelobe-ratio (PSLR) using both computer and laboratory experiments. In laboratory experiments, the optical feedback technique is shown to be effective in generating wideband, noise-like chaotic signals with strong modulation depth when the diode is operated in an external-cavity dominated state. The modulation signal strength is shown to be limited by the onset of lasing within the diode's internal
Adaptive Synchronization of Memristor-based Chaotic Neural Systems
Directory of Open Access Journals (Sweden)
Xiaofang Hu
2014-11-01
Full Text Available Chaotic neural networks consisting of a great number of chaotic neurons are able to reproduce the rich dynamics observed in biological nervous systems. In recent years, the memristor has attracted much interest in the efficient implementation of artificial synapses and neurons. This work addresses adaptive synchronization of a class of memristor-based neural chaotic systems using a novel adaptive backstepping approach. A systematic design procedure is presented. Simulation results have demonstrated the effectiveness of the proposed adaptive synchronization method and its potential in practical application of memristive chaotic oscillators in secure communication.
Colpitts Chaotic Oscillator Coupling with a Generalized Memristor
Directory of Open Access Journals (Sweden)
Ling Lu
2015-01-01
Full Text Available By introducing a generalized memristor into a fourth-order Colpitts chaotic oscillator, a new memristive Colpitts chaotic oscillator is proposed in this paper. The generalized memristor is equivalent to a diode bridge cascaded with a first-order parallel RC filter. Chaotic attractors of the oscillator are numerically revealed from the mathematical model and experimentally captured from the physical circuit. The dynamics of the memristive Colpitts chaotic oscillator is investigated both theoretically and numerically, from which it can be found that the oscillator has a unique equilibrium point and displays complex nonlinear phenomena.
Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.
2017-10-01
A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.
Thermal phase stability and catalytic properties of Nanostructured TiO2-MgO sol-gel mixed oxides.
Lopez, T; Hernandez-Ventura, J; Aguilar, D H; Quintana, P
2008-12-01
Several compositions in the system TiO2-MgO were prepared via sol-gel method. The structural evolution of the samples was followed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermal analysis (DTA/TG). In order to study the crystalline phase stability over time, the amorphous fresh gels were subjected to successive thermal treatments from 100 to 1100 degrees C, with a total annealing time of 442 h. Below 350 degrees C, magnesium acetates and oxalates phases were detected; at higher temperatures the binary compounds MgTi2O5, MgTiO3 and Mg2TiO4 appeared over a wide range of compositions. In the titania rich end, brookite, anatase and rutile were detected, these phases easily reacted to form the binary oxides; in contrast, on the rich-end magnesia, periclase showed an overall high stability. The successive thermal treatments over an extended period of time allowed a better control of nanosized crystallite growth; for anatase was 30 nm, below 850 degrees C, and for rutile was 45 nm, between 600 degrees C and 1000 degrees C. Magnesia showed a constant value of 22 nm on the overall studied temperatures. The best catalytic performance for 2-propanol decomposition was achieved by 90Ti/10Mg, annealed at 400 degrees C; this indicates that when magnesium is added to titania, the catalytic activity improves due to the introduction of structural defects and charge deficiencies. For 2-butanol decomposition, the formation of cis and trans isomers indicates the presence of high acidity sites.
Directory of Open Access Journals (Sweden)
Khilap Singh
2016-01-01
Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.
Directory of Open Access Journals (Sweden)
Sameh E. Ahmed
2016-03-01
Full Text Available This paper discusses the problem of mixed convection in two-sided lid-driven enclosures saturated non-Darcy porous medium. The vertical walls of the cavity were kept thermally insulated. The bottom wall is cooled while the top wall is uniformly heated. The bottom and the top walls are moving in opposite direction. The governing equations were solved using finite volume method with SIMPLE algorithm. A new form for the heat function was derived. The obtained results were presented in contours maps for the streamlines, the isotherms and the heat function. The profiles of the horizontal velocity component and the maximum values of vertical velocity components as well as the mean Nusselt number were presented graphically. It is found that, for the low values of the Richardson number, the forced convection plays a dominant role in the flow region. The increase in inverse Darcy number leads to decrease the mean Nusselt number.
Zaib, A.; Bhattacharyya, K.; Khalid, M.; Shafie, S.
2017-05-01
The thermal radiation effect on a steady mixed convective flow with heat transfer of a nonlinear (non-Newtonian) Williamson fluid past an exponentially shrinking porous sheet with a convective boundary condition is investigated numerically. In this study, both an assisting flow and an opposing flow are considered. The governing equations are converted into nonlinear ordinary differential equations by using a suitable transformation. A numerical solution of the problem is obtained by using the Matlab software package for different values of the governing parameters. The results show that dual nonsimilar solutions exist for the opposing flow, whereas the solution for the assisting flow is unique. It is also observed that the dual nonsimilar solutions exist only if a certain amount of mass suction is applied through the porous sheet, which depends on the Williamson parameter, convective parameter, and radiation parameter.
Dueri, Sibylle; Castro-Jiménez, Javier; Zaldívar, José-Manuel
2009-05-01
A 1D coupled hydrodynamic and contaminant fate model was applied to simulate the distribution of polychlorinated biphenyls (PCBs) in the Ispra Bay located in the southern part of Lake Maggiore (Italy). The model succeeded in representing the hydrodynamic processes occurring in the lake such as thermal stratification during summer 2005 followed by the complete mixing of the water column in February 2006. The results of the PCB fate model highlighted that these processes play a key role for the settling of particles and consequently for the distribution of PCBs in the water column as well as for the contaminant flux at the sediment-water interface. On the air-water front, the simulations emphasised that the net atmospheric PCB input fluxes are generally more important during the cold season and show peaks during periods of high wet deposition. Finally, the seasonal variability of the distribution of PCB in the water column was assessed.
Dynamical thermalization of disordered nonlinear lattices
Mulansky, Mario; Ahnert, Karsten; Pikovsky, Arkady; Shepelyansky, Dima L.
2009-11-01
We study numerically how the energy spreads over a finite disordered nonlinear one-dimensional lattice, where all linear modes are exponentially localized by disorder. We establish emergence of dynamical thermalization characterized as an ergodic chaotic dynamical state with a Gibbs distribution over the modes. Our results show that the fraction of thermalizing modes is finite and grows with the nonlinearity strength.
Lorenz, HW; Nusse, HE
Goodwin's nonlinear accelerator model with periodic investment outlays is reconsidered and used as an economic example of the emergence of complex motion in nonlinear dynamical systems. In addition to chaotic attractors, the model can possess coexisting attracting periodic orbits or simple
Synchronization of chaotic modulated travelling waves in coupled rotating annuli
Castrejon-Pita, Alfonso A.; Read, Peter L.
2010-05-01
Synchronization is now well established as a phenomenon where coherent behaviour between two or more otherwise autonomous nonlinear systems subject to some degree of coupling is developed and maintained. Such behaviour has mostly been studied to date, however, in relatively low-dimensional discrete numerical systems or networks, and very simple laboratory experiments. But the possibility of similar kinds of behaviour in continuous or extended spatiotemporal systems has many potential practical implications, especially in geophysics. Recent investigations have found that some atmospheric teleconnections of oscillatory climate phenomena can be better understood and analysed via chaos synchronization theory. The use of well-controlled laboratory analogues may therefore have an important role to play in the study of natural systems that can only be observed and for which controlled and repeatable experiments are impossible. The laboratory experiment that we use in our research is the thermally driven, rotating baroclinic annulus. The combined effect of differential heating in the horizontal direction and uniform background rotation leads to the formation of a zonally-symmetric jet flow around the annulus that may become unstable to travelling baroclinic waves and exhibit a wide range of flow regimes including steady amplitude travelling waves, periodic amplitude modulated waves and a range of more complex spatiotemporal flows, culminating in forms of geostrophic turbulence. Motivated in part by studies of quasi-periodic and chaotic ‘index cycles' in previous laboratory experiments using the baroclinic annulus, we have investigated synchronization effects in a pair of baroclinically unstable flows in both periodic and chaotic regimes, thermally coupled via their (zonally symmetric) boundary conditions. When the coupling strength and the de-tuning were systematically varied, the experiment showed clear signs of phase synchronization. By increasing or decreasing the
Feature Selection via Chaotic Antlion Optimization.
Zawbaa, Hossam M; Emary, E; Grosan, Crina
2016-01-01
Selecting a subset of relevant properties from a large set of features that describe a dataset is a challenging machine learning task. In biology, for instance, the advances in the available technologies enable the generation of a very large number of biomarkers that describe the data. Choosing the more informative markers along with performing a high-accuracy classification over the data can be a daunting task, particularly if the data are high dimensional. An often adopted approach is to formulate the feature selection problem as a biobjective optimization problem, with the aim of maximizing the performance of the data analysis model (the quality of the data training fitting) while minimizing the number of features used. We propose an optimization approach for the feature selection problem that considers a "chaotic" version of the antlion optimizer method, a nature-inspired algorithm that mimics the hunting mechanism of antlions in nature. The balance between exploration of the search space and exploitation of the best solutions is a challenge in multi-objective optimization. The exploration/exploitation rate is controlled by the parameter I that limits the random walk range of the ants/prey. This variable is increased iteratively in a quasi-linear manner to decrease the exploration rate as the optimization progresses. The quasi-linear decrease in the variable I may lead to immature convergence in some cases and trapping in local minima in other cases. The chaotic system proposed here attempts to improve the tradeoff between exploration and exploitation. The methodology is evaluated using different chaotic maps on a number of feature selection datasets. To ensure generality, we used ten biological datasets, but we also used other types of data from various sources. The results are compared with the particle swarm optimizer and with genetic algorithm variants for feature selection using a set of quality metrics.
Feature Selection via Chaotic Antlion Optimization.
Directory of Open Access Journals (Sweden)
Hossam M Zawbaa
Full Text Available Selecting a subset of relevant properties from a large set of features that describe a dataset is a challenging machine learning task. In biology, for instance, the advances in the available technologies enable the generation of a very large number of biomarkers that describe the data. Choosing the more informative markers along with performing a high-accuracy classification over the data can be a daunting task, particularly if the data are high dimensional. An often adopted approach is to formulate the feature selection problem as a biobjective optimization problem, with the aim of maximizing the performance of the data analysis model (the quality of the data training fitting while minimizing the number of features used.We propose an optimization approach for the feature selection problem that considers a "chaotic" version of the antlion optimizer method, a nature-inspired algorithm that mimics the hunting mechanism of antlions in nature. The balance between exploration of the search space and exploitation of the best solutions is a challenge in multi-objective optimization. The exploration/exploitation rate is controlled by the parameter I that limits the random walk range of the ants/prey. This variable is increased iteratively in a quasi-linear manner to decrease the exploration rate as the optimization progresses. The quasi-linear decrease in the variable I may lead to immature convergence in some cases and trapping in local minima in other cases. The chaotic system proposed here attempts to improve the tradeoff between exploration and exploitation. The methodology is evaluated using different chaotic maps on a number of feature selection datasets. To ensure generality, we used ten biological datasets, but we also used other types of data from various sources. The results are compared with the particle swarm optimizer and with genetic algorithm variants for feature selection using a set of quality metrics.
Chaotic inflation of the Universe in supergravity
Energy Technology Data Exchange (ETDEWEB)
Goncharov, A.S.; Linde, A.D.
1984-05-01
A new realization of the chaotic inflation scenario of the Universe is suggested in the context of the models based on N=1 supergravity. In this scenario one can obtain sufficiently large inflation of the Universe and the necessary magnitude of density inhomogeneities, which appear after inflation and give rise to the galaxy formation. In the models under consideration the superpotential of matter fields can be made negligibly small in the absolute minimum of the effective potential, which is necessary in order to solve the interaction hierarchy problem in these models.
Resonance distribution in open quantum chaotic systems
Nonnenmacher, Stéphane; Schenck, Emmanuel
2008-01-01
4 pages. Compared with version 2, we have slightly modified the figures, corrected some misprints, and added the values for the fits in figure 3.; International audience; In order to study the resonance spectra of chaotic cavities subject to some damping (which can be due to absorption or partial reflection at the boundaries), we use a model of damped quantum maps. In the high-frequency limit, the distribution of (quantum) decay rates is shown to cluster near a ``typical'' value, which is lar...
Resonance distribution in open quantum chaotic systems
Nonnenmacher, S.; Schenck, E.
2008-10-01
In order to study the resonance spectra of chaotic cavities subject to some damping (which can be due to absorption or partial reflection at the boundaries), we use a model of damped quantum maps. In the high-frequency limit, the distribution of (quantum) decay rates is shown to cluster near a “typical” value, which is larger than the classical decay rate of the corresponding damped ray dynamics. The speed of this clustering may be quite slow, which could explain why it has not been detected in previous numerical data.
Fractal boundaries in chaotic hamiltonian systems
Viana, R. L.; Mathias, A. C.; Marcus, F. A.; Kroetz, T.; Caldas, I. L.
2017-10-01
Fractal structures are typically present in the dynamics of chaotic orbits in non-integrable open Hamiltonian systems and result from the extremely complicated nature of the invariant manifolds of unstable periodic orbits. Exit basins, the set of initial conditions leading to orbits escaping through a given exit, have very frequently fractal boundaries. In this work we analyze exit basin boundaries in a dynamical system of physical interest, namely the motion of charged particles in a magnetized plasma subjected to electrostatic drift waves, and characterize in a quantitative way the fractality of these structures and their observable consequences, as the final-state uncertainty.
Gutierrez-Cirlos, A.; Torres-Rodriguez, V.
2009-12-01
The Acoculco Caldera, of Pliocenic age, is located within the limits of the Transmexican Volcanic Belt (CVT) and the Sierra Madre Oriental (SMOr). The Acoculco geothermal zone consists of a 790m thick igneous sequence, related to a volcanic complex formed by andesites and rhyolitic domes emplaced in an 18 Km diameter annular fracture. It unconformably overlies a 5000 m thick section of folded and faulted Jurassic-Cretaceous carbonate rocks. The Chignahuapan Spring, located in the extreme eastern part of the Geothermal Zone of the Acoculco Caldera, yields temperatures of 49°C and discharges an estimated of 98 lps from the karstified Lower Cretaceous limestone. Both major and trace element geochemical analysis were carried out, and results were interpreted using Piper and Stiff diagrams, as well as geothermometry. The results indicate that water belongs to the calcium-bicarbonate type and yield temperatures in a range of 70-80°C at depth, which suggest an extensive lateral flow from the main reservoir and mixing with shallow groundwaters. The spring suffers significant variations in its temperature throughout the year, especially during the rainy season, when water temperature decreases up to 10°C. Analyzing the hot spring water temperature data from of the last 10 years and comparing it with the precipitation and air temperature curves of the region, we expect to develop a dynamic mixing model which depicts the relation between these factors and the importance of each one in the water temperature variation. We also look forward to be able to forecast water temperature trends for the next several years and correlate it with climate change in the area.
Rodríguez-Escales, P.; FernÃ ndez-Garcia, D.; Drechsel, J.; Folch, A.; Sanchez-Vila, X.
2017-05-01
Improving degradation rates of emerging organic compounds (EOCs) in groundwater is still a challenge. Although their degradation is not fully understood, it has been observed that some substances are preferably degraded under specific redox conditions. The coupling of Managed Aquifer Recharge with soil aquifer remediation treatment, by placing a reactive layer containing organic matter at the bottom of the infiltration pond, is a promising technology to improve the rate of degradation of EOCs. Its success is based on assuming that recharged water and groundwater get well mixed, which is not always true. It has been demonstrated that mixing can be enhanced by inducing chaotic advection through extraction-injection-engineering. In this work, we analyze how chaotic advection might enhance the spreading of redox conditions with the final aim of improving degradation of a mix of benzotriazoles: benzotriazole, 5-methyl-benzotriazole, and 5-chloro-benzotriazole. The degradation of the first two compounds was fastest under aerobic conditions whereas the third compound was best degraded under denitrification conditions. We developed a reactive transport model that describes how a recharged water rich in organic matter mixes with groundwater, how this organic matter is oxidized by different electron acceptors, and how the benzotriazoles are degraded attending for the redox state. The model was tested in different scenarios of recharge, both in homogenous and in heterogenous media. It was found that chaotic flow increases the spreading of the plume of recharged water. Consequently, different redox conditions coexist at a given time, facilitating the degradation of EOCs.
Smadi, Hanan; Sargeant, Jan M; Shannon, Harry S; Raina, Parminder
2012-12-01
Growth and inactivation regression equations were developed to describe the effects of temperature on Salmonella concentration on chicken meat for refrigerated temperatures (⩽10°C) and for thermal treatment temperatures (55-70°C). The main objectives were: (i) to compare Salmonella growth/inactivation in chicken meat versus laboratory media; (ii) to create regression equations to estimate Salmonella growth in chicken meat that can be used in quantitative risk assessment (QRA) modeling; and (iii) to create regression equations to estimate D-values needed to inactivate Salmonella in chicken meat. A systematic approach was used to identify the articles, critically appraise them, and pool outcomes across studies. Growth represented in density (Log10CFU/g) and D-values (min) as a function of temperature were modeled using hierarchical mixed effects regression models. The current meta-analysis analysis found a significant difference (P⩽0.05) between the two matrices - chicken meat and laboratory media - for both growth at refrigerated temperatures and inactivation by thermal treatment. Growth and inactivation were significantly influenced by temperature after controlling for other variables; however, no consistent pattern in growth was found. Validation of growth and inactivation equations against data not used in their development is needed. Copyright © 2012 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Garching (Germany); Chen, Yuming; Ilić, Milica; Schwab, Florian [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sieglin, Bernhard [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Wenninger, Ronald [EUROfusion – Programme Management Unit, Garching (Germany)
2016-11-01
Highlights: • Existing first wall designs and expected plasma heat loads are reviewed. • Heat transfer enhancement methods are investigated by CFD. • The results for heat transfer and friction are given, compared and explained. • Relations for needed pumping power and gained thermal heat are shown. • A range for the maximum permissible heat loads from the plasma is estimated. - Abstract: The first wall (FW) of DEMO is a component with high thermal loads. The cooling of the FW has to comply with the material's upper and lower temperature limits and requirements from stress assessment, like low temperature gradients. Also, the cooling has to be integrated into the balance-of-plant, in a sense to deliver exergy to the power cycle and require a limited pumping power for coolant circulation. This paper deals with the basics of FW cooling and proposes optimization approaches. The effectiveness of several heat transfer enhancement techniques is investigated for the use in helium cooled FW designs for DEMO. Among these are wall-mounted ribs, large scale mixing devices and modified hydraulic diameter. Their performance is assessed by computational fluid dynamics (CFD), and heat transfer coefficients and pressure drop are compared. Based on the results, an extrapolation to high heat fluxes is tried to estimate the higher limits of cooling capabilities.
Energy Technology Data Exchange (ETDEWEB)
Escobar, Jose; Cortes, Maria A. [Instituto Mexicano del Petroleo, Prog. de Ing. Molecular, Eje Central Lazaro Cardenas 152, Col. San Bartolo Atepehuacan, Gustavo A. Madero, Mexico, D.F. 07730 (Mexico); Barrera, Maria C. [Instituto Mexicano del Petroleo, Prog. de Ing. Molecular, Eje Central Lazaro Cardenas 152, Col. San Bartolo Atepehuacan, Gustavo A. Madero, Mexico, D.F. 07730 (Mexico); Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Mexico, D.F. 09340 (Mexico); Reyes, Jose A. De Los [Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Mexico, D.F. 09340 (Mexico); Santes, Victor [CIIEMAD-IPN, Calle 30 de Junio de 1520, Col. Barrio la Laguna Ticoman, Gustavo A. Madero, Mexico, D.F. 07340 (Mexico); Gomez, Elizabeth [Instituto de Quimica-UNAM, Circuito Exterior, Ciudad Universitaria, Mexico, D.F. 04510 (Mexico); Pacheco, Jose G. [Division Academica de Ciencias Basicas, Universidad Juarez Autonoma de Tabasco, Km. 1, Carretera Cunduacan-Jalpa de Mendez, Cunduacan, Tabasco (Mexico)
2008-04-15
Molybdenum (at 2.8, 3.3, 4.0 and 4.7 atoms nm{sup -2}) and cobalt (Co/(Co + Mo) ratios of 0.3, 0.4 and 0.5) were impregnated on wide-pore ZrO{sub 2}-TiO{sub 2} mixed oxides (30-70) prepared with solvo-thermal treatment (80 C, 1 day). Materials characterization comprised N{sub 2} physisorption, XRD, thermal analyses, and UV-vis DRS, Raman, and IR spectroscopies. For impregnated dried materials (non-calcined) at concentrations beyond 3.3 atom nm{sup -2} and activated by sulfiding (H{sub 2}S/H{sub 2}, 400 C) no further improvement in activity in dibenzothiophene (DBT) hydrodesulfurization (HDS) (at 5.59 MPa, T = 320 C) was observed. Thus, monolayer Mo dispersion was assumed at that content. The aforementioned formulation was chosen to be promoted by Co at different concentrations, the maximum HDS activity being found for sulfided catalyst with Co/(Co + Mo) = 0.4. Nevertheless, the promotion observed by Co addition was small (by a factor of {proportional_to}3.2). The activity trends observed in the DBT HDS were well confirmed in the hydrotreatment of a real feedstock (straight-run gasoil). Dibenzothiophene reliably represented the behavior of organo-sulfur compounds present in the middle distillate, at the reaction conditions used in this study where sterically hindered compounds remained unreacted in the hydrotreated gasoil. (author)
Synchronization of two different chaotic systems via nonlinear ...
African Journals Online (AJOL)
ADOWIE PERE
Int, J. Bifurcation and Chaos. 9:1465. Ho MC, Hung YC (2002). Synchronization of two different chaotic systems using generalized active network. Phys. Lett. A. 301:6424-8. Idowu BA, Vincent UE (2013). Synchronization and stabilization of chaotic dynamics in a quasi-1D. Bose-Einstein condensate. Journal of Chaos. 2013: ...
Scaling Features of Multimode Motions in Coupled Chaotic Oscillators
DEFF Research Database (Denmark)
Pavlov, A.N.; Sosnovtseva, Olga; Mosekilde, Erik
2003-01-01
Two different methods (the WTMM- and DFA-approaches) are applied to investigate the scaling properties in the return-time sequences generated by a system of two coupled chaotic oscillators. Transitions from twomode asynchronous dynamics (torus or torus-Chaos) to different states of chaotic phase...
Lag synchronization of chaotic systems with time-delayed linear ...
Indian Academy of Sciences (India)
... delayed chaotic systems. Numerical simulations on time-delayed Lorenz and hyperchaotic Chen systems are also carried out to show the effectiveness of the proposed scheme. Note that under the scheme the chaotic system is controlled only at discrete time instants, and so it reduces the control cost in real applications.
The Smallest Transistor-Based Nonautonomous Chaotic Circuit
DEFF Research Database (Denmark)
Lindberg, Erik; Murali, K.; Tamasevicius, Arunas
2005-01-01
A nonautonomous chaotic circuit based on one transistor, two capacitors, and two resistors is described. The mechanism behind the chaotic performance is based on “disturbance of integration.” The forward part and the reverse part of the bipolar transistor are “fighting” about the charging...
Regular and Chaotic Regimes in Scalar Field Cosmology
Directory of Open Access Journals (Sweden)
Alexey V. Toporensky
2006-03-01
Full Text Available A transient chaos in a closed FRW cosmological model with a scalar field is studied. We describe two different chaotic regimes and show that the type of chaos in this model depends on the scalar field potential. We have found also that for sufficiently steep potentials or for potentials with large cosmological constant the chaotic behavior disappears.
Asynchronous updating of threshold-coupled chaotic neurons
Indian Academy of Sciences (India)
Abstract. We study a network of chaotic model neurons incorporating threshold- activated coupling. We obtain a wide range of spatiotemporal patterns under varying degrees of asynchronicity in the evolution of the neuronal components. For instance, we find that sequential updating of threshold-coupled chaotic neurons ...
Asynchronous updating of threshold-coupled chaotic neurons
Indian Academy of Sciences (India)
We study a network of chaotic model neurons incorporating threshold activated coupling. We obtain a wide range of spatiotemporal patterns under varying degrees of asynchronicity in the evolution of the neuronal components. For instance, we find that sequential updating of threshold-coupled chaotic neurons can yield ...
Some Maps and their Chaoticity | Olusa | Journal of the Nigerian ...
African Journals Online (AJOL)
The work shows the determinant of the standard map and logistic map with their chaoticity. The equations of the maps were iterated at various different values for parameters k (stochascity for standard map) and r (stochascity for logistic map) at different values. It was noticed that the chaoticity of the standard depend on the ...
Analysis of Chaotic Resonance in Izhikevich Neuron Model.
Directory of Open Access Journals (Sweden)
Sou Nobukawa
Full Text Available In stochastic resonance (SR, the presence of noise helps a nonlinear system amplify a weak (sub-threshold signal. Chaotic resonance (CR is a phenomenon similar to SR but without stochastic noise, which has been observed in neural systems. However, no study to date has investigated and compared the characteristics and performance of the signal responses of a spiking neural system in some chaotic states in CR. In this paper, we focus on the Izhikevich neuron model, which can reproduce major spike patterns that have been experimentally observed. We examine and classify the chaotic characteristics of this model by using Lyapunov exponents with a saltation matrix and Poincaré section methods in order to address the measurement challenge posed by the state-dependent jump in the resetting process. We found the existence of two distinctive states, a chaotic state involving primarily turbulent movement and an intermittent chaotic state. In order to assess the signal responses of CR in these classified states, we introduced an extended Izhikevich neuron model by considering weak periodic signals, and defined the cycle histogram of neuron spikes as well as the corresponding mutual correlation and information. Through computer simulations, we confirmed that both chaotic states in CR can sensitively respond to weak signals. Moreover, we found that the intermittent chaotic state exhibited a prompter response than the chaotic state with primarily turbulent movement.
Analysis of Chaotic Resonance in Izhikevich Neuron Model.
Nobukawa, Sou; Nishimura, Haruhiko; Yamanishi, Teruya; Liu, Jian-Qin
2015-01-01
In stochastic resonance (SR), the presence of noise helps a nonlinear system amplify a weak (sub-threshold) signal. Chaotic resonance (CR) is a phenomenon similar to SR but without stochastic noise, which has been observed in neural systems. However, no study to date has investigated and compared the characteristics and performance of the signal responses of a spiking neural system in some chaotic states in CR. In this paper, we focus on the Izhikevich neuron model, which can reproduce major spike patterns that have been experimentally observed. We examine and classify the chaotic characteristics of this model by using Lyapunov exponents with a saltation matrix and Poincaré section methods in order to address the measurement challenge posed by the state-dependent jump in the resetting process. We found the existence of two distinctive states, a chaotic state involving primarily turbulent movement and an intermittent chaotic state. In order to assess the signal responses of CR in these classified states, we introduced an extended Izhikevich neuron model by considering weak periodic signals, and defined the cycle histogram of neuron spikes as well as the corresponding mutual correlation and information. Through computer simulations, we confirmed that both chaotic states in CR can sensitively respond to weak signals. Moreover, we found that the intermittent chaotic state exhibited a prompter response than the chaotic state with primarily turbulent movement.
Chaotic Motion of Nonlinearly Coupled Quintic Oscillators | Adeloye ...
African Journals Online (AJOL)
With a fixed energy, we investigate the motion of two nonlinearly coupled quintic oscillators for various values of the coupling strength with the aid of the Poincare surface of section. It is observed that chaotic motion sets in for coupling strength as low as 0.001. The degree of chaoticity generally increases as the coupling ...
Hybrid synchronization of two independent chaotic systems on ...
Indian Academy of Sciences (India)
Keywords. Hybrid synchronization; complex network; information source; chaotic system. PACS Nos 05.45.−a; 05.45.Gg; 05.45.Xt. 1. Introduction. In the past several decades, synchronization has attracted increasing attention in the field of complex network. The chaotic synchronization on a complex network has been inves-.
Towards generalized synchronization of strictly different chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Femat, R. [Matematicas Aplicadas y Sistemas Computacionales, IPICYT, Apdo. Postal 3-90, 78291 Tangamanga, San Luis Potosi S.L.P. (Mexico)]. E-mail: rfemat@ipicyt.edu.mx; Kocarev, L. [Institute for Nonlinear Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0402 (United States)]. E-mail: lkocarev@ucsd.edu; Gerven, L. van [Department of Mechanical Engineering, Technische Universiteit Eindhoven (Netherlands); Monsivais-Perez, M.E. [Matematicas Aplicadas y Sistemas Computacionales, IPICYT, Camino a la Presa San Jose 2055, 78216 Lomas 4a Sec., San Luis Potosi S.L.P. (Mexico)
2005-07-11
This contribution addresses the problem of the generalized synchronization (GS) in different chaotic systems, and departs from chaotic systems in a triangular from, which can be derived from Lie derivatives. A state-feedback (full knowledge of both master and slave systems) scheme is designed, which achieves GS. The work includes illustrative examples; moreover an experimental setup is used to corroborate the obtained results.
Schwarzian derivative as a proof of the chaotic behaviour
Indian Academy of Sciences (India)
temperature. In all calculations, the Schwarzian derivatives have been found to be negative at both Tc and TPME which are in agreement with the chaotic behaviour of the system. Keywords. Mercury cuprate superconductors; nonlinear dynamics and chaotic behaviour; Schwarzian derivative; paramagnetic Meissner effect.
Selecting 3D Chaotic Flow States for Accelerated DNA Replication in Micro Scale Convective PCR
Priye, Aashish; Hassan, Yassin; Ugaz, Victor
2016-01-01
Micro-scale flow in cylindrical geometries can harness chaotic advection to perform complex thermally activated biochemical reactions such as the polymerase chain reaction (PCR). We have applied a 3D computational fluid dynamics model to resolve the complex flow patterns in such geometries. The resulting 3D flow trajectories are then used as input to a kinetic model to resolve the time evolution of DNA replication process. A simple mass action kinetic model was developed to couple these biochemical reactions with the intricate flow. Residence time analysis of virtual particles in the flow revealed that the flow has a strong chaotic component in wider geometries in comparison with taller geometries (quasi periodic motion). This work shows, for the first time that the chaotic aspect of the flow field plays a key role in determining the strength of the coupling between the reactions and the flow. Our model can quantify the doubling times of these reactions capturing the lag, exponential and plateau phases of PCR...
A Novel Audio Cryptosystem Using Chaotic Maps and DNA Encoding
Directory of Open Access Journals (Sweden)
S. J. Sheela
2017-01-01
Full Text Available Chaotic maps have good potential in security applications due to their inherent characteristics relevant to cryptography. This paper introduces a new audio cryptosystem based on chaotic maps, hybrid chaotic shift transform (HCST, and deoxyribonucleic acid (DNA encoding rules. The scheme uses chaotic maps such as two-dimensional modified Henon map (2D-MHM and standard map. The 2D-MHM which has sophisticated chaotic behavior for an extensive range of control parameters is used to perform HCST. DNA encoding technology is used as an auxiliary tool which enhances the security of the cryptosystem. The performance of the algorithm is evaluated for various speech signals using different encryption/decryption quality metrics. The simulation and comparison results show that the algorithm can achieve good encryption results and is able to resist several cryptographic attacks. The various types of analysis revealed that the algorithm is suitable for narrow band radio communication and real-time speech encryption applications.
Design of the Chaotic Signal Generator Based on LABVIEW
Directory of Open Access Journals (Sweden)
Jian-Guo Zhang
2014-01-01
Full Text Available We introduces a new method that can achieve the generation of Colpitts chaotic signal The system is based on virtual instrument platform and combined with MATLAB calculation to achieve the generation of Colpitts chaotic signal and making it analysis with autocorrelation and power spectrum at the same time. Signal channel output of chaotic signal was realized through USB-6009 acquisition module extending DA5405 high-speed DAC (Digital-to-Analog Converter chip. The system can adjust parameters based on customers’ requirements to achieve different frequency chaotic signal generation. Compared with the traditional autonomy Colpitts chaotic signal generator, this generator is simple and clear in structure, simple to operate, strong stability, easy to achieve etc.
Diverse Structure Synchronization of Fractional Order Hyper-Chaotic Systems
Wang, Xing-Yuan; Zhao, Guo-Bin; Yang, Yu-Hong
2013-04-01
This paper studied the dynamic behavior of the fractional order hyper-chaotic Lorenz system and the fractional order hyper-chaotic Rössler system, then numerical analysis of the different fractional orders hyper-chaotic systems are carried out under the predictor-corrector method. We proved the two systems are in hyper-chaos when the maximum and the second largest Lyapunov exponential are calculated. Also the smallest orders of the systems are proved when they are in hyper-chaos. The diverse structure synchronization of the fractional order hyper-chaotic Lorenz system and the fractional order hyper-chaotic Rössler system is realized using active control method. Numerical simulations indicated that the scheme was always effective and efficient.
Active control technique of fractional-order chaotic complex systems
Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.
2016-06-01
Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.
Light matter interaction in chaotic resonators
Liu, Changxu
2016-05-11
Chaos is a complex dynamics with exponential sensitivity to the initial conditions. Since the study of three-body problem by Henri Poincare, chaos has been extensively studied in many systems, ranging from electronics to fluids, brains and more recently photonics. Chaos is a ubiquitous phenomenon in Nature, from the gigantic oceanic waves to the disordered scales of white beetles at nanoscale. The presence of chaos is often unwanted in applications, as it introduces unpredictability,which makes it difficult to predict or explain experimental results. Inspired by how chaos permeates the natural world, this thesis investigates on how the interaction between light and chaotic structure can enhance the performance of photonics devices. With a proper design of the lighter-mater interaction in chaotic resonators, I illustrate how chaos can be used to enhance the ability of an optical cavity to store electromagnetic energy, realize a blackbody system composed of gold nanoparticles, localize light beyond the diffraction limit and control the phase transition of super-radiance.
General relativity in hyperextended chaotic inflation
Susperregi, M
1999-01-01
We address the question of whether general relativity (GR) is an 'attractor' in a universe governed by hyperextended chaotic inflation (HCI). HCI results from the combination of chaotic inflation and a theory of gravity that is equivalent to Brans-Dicke (BD) gravity within the horizon scale. Globally it differs from BD gravity in that omega is a dynamical parameter that depends on the BD field PHI. As is well known, GR is recovered from BD gravity in the limit omega -> infinity and large values of PHI. A substantial difficulty in studying HCI is to find and adequate model for the functional dependence of omega. In this paper we employ the analogy between the BD field in HCI and the dilaton field in string theory to construct an ansatz for omega(PHI). The string theory analogy is based on the principle of least coupling of Polyakov and Damour which states that the dilaton and metric fields decouple asymptotically. Based on this principle, we investigate the question of whether a large value of omega is predomi...
Generalization of the simplest autonomous chaotic system
Energy Technology Data Exchange (ETDEWEB)
Munmuangsaen, Buncha [Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum-Thani 12000 (Thailand); Srisuchinwong, Banlue, E-mail: banlue@siit.tu.ac.t [Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum-Thani 12000 (Thailand); Sprott, J.C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)
2011-03-21
An extensive numerical search of jerk systems of the form x{sup -}+x-double dot+x=f(x{sup .}) revealed many cases with chaotic solutions in addition to the one with f(x{sup .})={+-}x{sup .2} that has long been known. Particularly simple is the piecewise-linear case with f(x{sup .})={alpha}(1-x{sup .}) for x{sup .{>=}}1 and zero otherwise, which produces chaos even in the limit of {alpha}{yields}{infinity}. The dynamics in this limit can be calculated exactly, leading to a two-dimensional map. Such a nonlinearity suggests an elegant electronic circuit implementation using a single diode. - Research highlights: Several simple chaotic systems of the form x{sup -}+x-double dot+x=f(x{sup .}) have been studied Particularly simple is the case of f(x{sup .})={alpha}(1-x{sup .}) for x{sup .{>=}}1 and zero otherwise with {alpha}{yields}{infinity} The dynamics in this case can be calculated exactly, leading to a 2-D map It suggests an elegant electronic circuit implementation.
Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso
2017-06-01
The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.
Energy Technology Data Exchange (ETDEWEB)
Chiang, J.M.; Bostick, W.D.; Hoffman, D.P.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)
1994-01-01
The plasma hearth process (PHP) presented in this report has been tested at a facility at Ukiah, California, in a cooperative effort between the Department of Energy (DOE), Science Applications International Corporation, Inc., and ReTech, Inc. The electrically heated plasma gas is used to destroy organic materials and bind radionuclides and Resource Conservation and Recovery Act (RCRA) metals in the glassy slag. Proof-of-principle tests were conducted successfully using nonhazardous and non-radioactive materials placed in 30-gal steel drums. On-line analyses of the gaseous effluents indicated complete combustion; emissions of CO, NO{sub x}, and particulates were low. The process also produced highly stable solid waste forms. The experiments for the next phase have been planned employing surrogates for the hazardous and radioactive components of the simulated waste streams. Natural cerium oxide is selected to simulate the behavior of radioactive actinide and transuranium elements, while natural cesium chloride is simulated for the study of relatively volatile radioactive fission products. For RCRA organics, naphthalene and 1,2-dichlorobenzene are semivolatile compounds selected to represent significant challenges to thermal destruction, whereas chlorobenzene is selected for the study of relatively volatile organics. Salts of chromium, nickel, lead, and cadmium are chosen to represent the twelve regulated toxic metals for emission and partitioning studies. The simulated waste packages presented in the text do not necessarily represent an individual waste stream within the DOE complex; rather, they were formulated to represent the most probable components in generic waste stream categories.
Energy Technology Data Exchange (ETDEWEB)
Tingey, Joel M.; Jones, Susan A.
2005-07-01
Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at
A theory of nonequilibrium steady states in quantum chaotic systems
Wang, Pei
2017-09-01
Nonequilibrium steady state (NESS) is a quasistationary state, in which exist currents that continuously produce entropy, but the local observables are stationary everywhere. We propose a theory of NESS under the framework of quantum chaos. In an isolated quantum system whose density matrix follows a unitary evolution, there exist initial states for which the thermodynamic limit and the long-time limit are noncommutative. The density matrix \\hat ρ of these states displays a universal structure. Suppose that \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketα and \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketβ are different eigenstates of the Hamiltonian with energies E_α and E_β , respectively. \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ behaves as a random number which has zero mean. In thermodynamic limit, the variance of \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ is a smooth function of ≤ft\\vert E_α-E_β\\right\\vert , scaling as 1/≤ft\\vert E_α-E_β\\right\\vert 2 in the limit ≤ft\\vert E_α-E_β\\right\\vert \\to 0 . If and only if this scaling law is obeyed, the initial state evolves into NESS in the long time limit. We present numerical evidence of our hypothesis in a few chaotic models. Furthermore, we find that our hypothesis indicates the eigenstate thermalization hypothesis (ETH) for current operators in a bipartite system.
Chen, Diyi; Zhang, Runfan; Sprott, J C; Chen, Haitao; Ma, Xiaoyi
2012-06-01
In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. More importantly, the vector controller is one-dimensional less than the system. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order Chen chaotic system and an integer-order T chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order hyperchaotic system, and the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order Lorenz chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis.
Chen, Diyi; Zhang, Runfan; Sprott, J. C.; Chen, Haitao; Ma, Xiaoyi
2012-06-01
In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. More importantly, the vector controller is one-dimensional less than the system. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order Chen chaotic system and an integer-order T chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order hyperchaotic system, and the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order Lorenz chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis.
Chaotic features of nuclear structure and dynamics: selected topics
Zelevinsky, Vladimir; Volya, Alexander
2016-03-01
Quantum chaos has become an important element of our knowledge about physics of complex systems. In typical mesoscopic systems of interacting particles the dynamics invariably become chaotic when the level density, growing by combinatorial reasons, leads to the increasing probability of mixing simple mean-field (particle-hole) configurations. The resulting stationary states have exceedingly complicated structures that are comparable to those in random matrix theory. We discuss the main properties of mesoscopic quantum chaos and show that it can serve as a justification for application of statistical mechanics to mesoscopic systems. We show that quantum chaos becomes a powerful instrument for experimental, theoretical and computational work. The generalization to open systems and effects in the continuum are discussed with the help of the effective non-Hermitian Hamiltonian; it is shown how to formulate this approach for numerous problems of quantum signal transmission. The artificially introduced randomness can also be helpful for a deeper understanding of physics. We indicate the problems that require more investigation so as to be understood further.
Tang, X.; Jones, A.; Lachgar, A.; Gross, B. J.; Yarger, J. L.
1999-12-27
The hydrothermal synthesis, single-crystal structure analysis, spectroscopic studies, and thermal stability of the compounds Ca(2)(In(1)(-)(x)()Fe(x)())(PO(4))(HPO(4))(2).H(2)O (0
Chaotic Rotation of Nix and Hydra
Showalter, Mark R.
2014-05-01
Disk-integrated photometry of Hydra and Nix from HST during 2010-2012 show large variations, which can be attributed to a combination of the phase function and the rotational light curves of the moons. After dividing out a model phase curve, variations by more than a factor of two remain, indicating that both Nix and Hydra are distinctly irregular in shape. Unexpectedly, Nix and Hydra's variations show no correlation with orbital longitude, as one would expect for bodies in synchronous rotation. In fact, Fourier analysis of the measurements does not reveal any fixed rotation periods compatible with the data. Compounding the mystery, Nix increased in absolute brightness by about 30% between 2010 and 2012, whereas Hydra was stable.I have developed a numeric integrator that tracks the position, velocity, orientation and rotation state of a moon as it orbits the Pluto-Charon "binary planet". The moons are represented by triaxial ellipsoids with arbitrary axial ratios. Pluto and Charon follow circular orbits about their common barycenter. I have run simulations for periods of up to 1000 years and for a variety of axial ratios and starting conditions. If an object is started in synchronous rotation with its long axis pointed toward the system barycenter, then it remains synchronously locked for the duration of the integrations. However, other initial conditions commonly lead to chaotic rotation, with Lyupanov times as brief as 30 days. Moons will sometimes temporarily lock into a nearly fixed rotation state, but commonly break out again within ~ 500 days. Depending on the axial ratios, polar flips are also commonly observed; this polar wander provides a plausible explanation for the year-by-year change in the observed brightness of Nix.Chaotic rotation is rare in the solar system, having previously been noted only for Hyperion and possibly Nereid. However, both photometry and dynamical simulations support the notion that chaotic rotation is a natural state for
Hierarchy of rational order families of chaotic maps with an invariant ...
Indian Academy of Sciences (India)
In the present paper, we introduce the rational order families of chaotic maps as a new hierarchy of chaotic map with an invariant measure. The Kolmogorov–. Sinai entropy of these chaotic maps can be calculated analytically by using their invariant measure. An interesting property of these chaotic maps is their ability.
Periodic and Chaotic Flapping of Insectile Wings
Huang, Yangyang
2015-01-01
Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. The maximum power output of these flight muscles is insufficient to maintain such wing oscillations unless there is good elastic storage of energy in the insect flight system. Here, we explore the intrinsic self-oscillatory behavior of an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring. We study the wings behavior as a function of the total energy and spring stiffness. Three types of behavior are identified: end-over-end rotation, chaotic motion, and periodic flapping. Interestingly, the region of periodic flapping decreases as energy increases but is favored as stiffness increases. These findings are consistent with the fact that insect wings and flight muscles are stiff. They further imply that, by adjusting their muscle stiffness to the desired energy level, insects can maintain periodic flapping mechanically for a range of operating condit...
Chaotic Behavior in a Switched Dynamical System
Directory of Open Access Journals (Sweden)
Hassane Bouzahir
2008-05-01
Full Text Available We present a numerical study of an example of piecewise linear systems that constitute a class of hybrid systems. Precisely, we study the chaotic dynamics of the voltage-mode controlled buck converter circuit in an open loop. By considering the voltage input as a bifurcation parameter, we observe that the obtained simulations show that the buck converter is prone to have subharmonic behavior and chaos. We also present the corresponding bifurcation diagram. Our modeling techniques are based on the new French native modeler and simulator for hybrid systems called Scicos (Scilab connected object simulator which is a Scilab (scientific laboratory package. The followed approach takes into account the hybrid nature of the circuit.
Emergent hybrid synchronization in coupled chaotic systems.
Padmanaban, E; Boccaletti, Stefano; Dana, S K
2015-02-01
We evidence an interesting kind of hybrid synchronization in coupled chaotic systems where complete synchronization is restricted to only a subset of variables of two systems while other subset of variables may be in a phase synchronized state or desynchronized. Such hybrid synchronization is a generic emergent feature of coupled systems when a controller based coupling, designed by the Lyapunov function stability, is first engineered to induce complete synchronization in the identical case, and then a large parameter mismatch is introduced. We distinguish between two different hybrid synchronization regimes that emerge with parameter perturbation. The first, called hard hybrid synchronization, occurs when the coupled systems display global phase synchronization, while the second, called soft hybrid synchronization, corresponds to a situation where, instead, the global synchronization feature no longer exists. We verify the existence of both classes of hybrid synchronization in numerical examples of the Rössler system, a Lorenz-like system, and also in electronic experiment.
Study of chaos in chaotic satellite systems
Khan, Ayub; Kumar, Sanjay
2018-01-01
In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan-Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system.
Advection of vector fields by chaotic flows
Balmforth, N J; Spiegel, E A
1993-01-01
We have introduced a new transfer operator for chaotic flows whose leading eigenvalue yields the dynamo rate of the fast kinematic dynamo and applied cycle expansion of the Fredholm determinant of the new operator to evaluation of its spectrum. The theory hs been tested on a normal form model of the vector advecting dynamical flow. If the model is a simple map with constant time between two iterations, the dynamo rate is the same as the escape rate of scalar quantties. However, a spread in Poincaré section return times lifts the degeneracy of the vector and scalar advection rates, and leads to dynamo rates that dominate over the scalar advection rates. For sufficiently large time spreads we have even found repellers for which the magnetic field grows exponentially, even though the scalar densities are decaying exponentially.
Signals of chaotic behavior in PMMA
Hacinliyan, A; Sahin, G; Akin, G
2003-01-01
The time evolution of the current passing through PMMA polymer thin films under 10 V at 23 deg. C (296 K) was sampled at intervals ranging from 1 to 20 s. The data showed chaotic behavior in the context of pinned charge density waves [Phys. Rev. B 41 (1990) 11522]. The resultant time series has been analyzed by means of TISEAN, time series analysis software [The TISEAN package CHAOS 9 (1999) 413]. The analysis has revealed a positive maximal Lyapunov exponent. This is also corroborated by a calculation of the fractal dimension and application of the Kaplan-Yorke conjecture. In the analysis two widely separated time scales have been observed; the first zero crossing of the correlation function at 8380 s and the first marked minimum of the average mutual information at 40 s.
Flights in a pseudo-chaotic system.
Lowenstein, J H; Vivaldi, F
2011-09-01
We consider the problem of transport in a one-parameter family of piecewise rotations of the torus, for rotation number approaching 1∕4. This is a zero-entropy system which in this limit exhibits a divided phase space, with island chains immersed in a "pseudo-chaotic" region. We identify a novel mechanism for long-range transport, namely the adiabatic destruction of accelerator-mode islands. This process originates from the approximate translational invariance of the phase space and leads to long flights of linear motion, for a significant measure of initial conditions. We show that the asymptotic probability distribution of the flight lengths is determined by the geometric properties of a partition of the accelerator-mode island associated with the flight. We establish the existence of flights travelling distances of order O(1) in phase space. We provide evidence for the existence of a scattering process that connects flights travelling in opposite directions.
Chaotic motions of a tethered satellite system in circular orbit
Jin, D. P.; PANG, Z. J.; Wen, H.; Yu, B. S.
2016-09-01
This paper studies the chaotic motions of a tethered satellite system by utilizing a ground-based experimental system. Based on dynamics similarity principle, a dynamical equivalent model between the on-orbit tethered satellite and its ground physical model is obtained. As a result, the space dynamics environment of the tethered satellite can be simulated via the thrust forces and the torque of a momentum wheel on the satellite simulator. The numerical results of the on-orbit tethered satellite show the chaotic motions of the attitude motion of mother satellite. The experiment shows that the torque of momentum wheel as a negative damping is able to suppress the chaotic motion.
Chaotic itinerancy and its roles in cognitive neurodynamics.
Tsuda, Ichiro
2015-04-01
Chaotic itinerancy is an autonomously excited trajectory through high-dimensional state space of cortical neural activity that causes the appearance of a temporal sequence of quasi-attractors. A quasi-attractor is a local region of weakly convergent flows that represent ordered activity, yet connected to divergent flows representing disordered, chaotic activity between the regions. In a cognitive neurodynamic aspect, quasi-attractors represent perceptions, thoughts and memories, chaotic trajectories between them with intelligent searches, such as history-dependent trial-and-error via exploration, and itinerancy with history-dependent sequences in thinking, speaking and writing. Copyright © 2014 Elsevier Ltd. All rights reserved.
A chaotic circuit based on Hewlett-Packard memristor
Buscarino, Arturo; Fortuna, Luigi; Frasca, Mattia; Valentina Gambuzza, Lucia
2012-06-01
Memristors are gaining increasing attention as next generation electronic devices. They are also becoming commonly used as fundamental blocks for building chaotic circuits, although often arbitrary (typically piece-wise linear or cubic) flux-charge characteristics are assumed. In this paper, a chaotic circuit based on the mathematical realistic model of the HP memristor is introduced. The circuit makes use of two HP memristors in antiparallel. Numerical results showing some of the chaotic attractors generated by this circuit and the behavior with respect to changes in its component values are described.
An optical CDMA system based on chaotic sequences
Liu, Xiao-lei; En, De; Wang, Li-guo
2014-03-01
In this paper, a coherent asynchronous optical code division multiple access (OCDMA) system is proposed, whose encoder/decoder is an all-optical generator. This all-optical generator can generate analog and bipolar chaotic sequences satisfying the logistic maps. The formula of bit error rate (BER) is derived, and the relationship of BER and the number of simultaneous transmissions is analyzed. Due to the good property of correlation, this coherent OCDMA system based on these bipolar chaotic sequences can support a large number of simultaneous users, which shows that these chaotic sequences are suitable for asynchronous OCDMA system.
Stabilization and Synchronization of Memristive Chaotic Circuits by Impulsive Control
Directory of Open Access Journals (Sweden)
Limin Zou
2017-01-01
Full Text Available The purpose of this note is to study impulsive control and synchronization of memristor based chaotic circuits shown by Muthuswamy. We first establish a less conservative sufficient condition for the stability of memristor based chaotic circuits. After that, we discuss the effect of errors on stability. Meanwhile, we also discuss impulsive synchronization of two memristor based chaotic systems. Our results are more general and more applicable than the ones shown by Yang, Li, and Huang. Finally, several numerical examples are given to show the effectiveness of our methods.
Parameter estimation for chaotic systems using improved bird swarm algorithm
Xu, Chuangbiao; Yang, Renhuan
2017-12-01
Parameter estimation of chaotic systems is an important problem in nonlinear science and has aroused increasing interest of many research fields, which can be basically reduced to a multidimensional optimization problem. In this paper, an improved boundary bird swarm algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the good global convergence and robustness of the bird swarm algorithm and the exploitation capability of improved boundary learning strategy. Experiments are conducted on the Lorenz system and the coupling motor system. Numerical simulation results reveal the effectiveness and with desirable performance of IBBSA for parameter estimation of chaotic systems.
Detecting unstable periodic orbits in chaotic time series using synchronization
Olyaei, Ali Azimi; Wu, Christine; Kinsner, Witold
2017-07-01
An alternative approach of detecting unstable periodic orbits in chaotic time series is proposed using synchronization techniques. A master-slave synchronization scheme is developed, in which the chaotic system drives a system of harmonic oscillators through a proper coupling condition. The proposed scheme is designed so that the power of the coupling signal exhibits notches that drop to zero once the system approaches an unstable orbit yielding an explicit indication of the presence of a periodic motion. The results shows that the proposed approach is particularly suitable in practical situations, where the time series is short and noisy, or it is obtained from high-dimensional chaotic systems.
Modeling and control of chaotic multi-scroll Jerk system in LabView
V. B. Rusyn; A. STANCU; STOLERIU L.
2015-01-01
Introduction. In this paper is presented a theoretical basis of multi-scroll chaotic attractors. Modeling of Chaotic Multi-Scroll Jerk System in LabView. Submitted programming interface that has been developed in LabView software environment. It allows generating and researching chaotic multi-scroll Jerk system. Submitted by time distribution of three chaotic coordinates and 3D graph. Control of Chaotic Multi-Scroll Jerk System. Submitted values of coefficients in which generated controlled c...
Solving large scale traveling salesman problems by chaotic neurodynamics.
Hasegawa, Mikio; Ikeguch, Tohru; Aihara, Kazuyuki
2002-03-01
We propose a novel approach for solving large scale traveling salesman problems (TSPs) by chaotic dynamics. First, we realize the tabu search on a neural network, by utilizing the refractory effects as the tabu effects. Then, we extend it to a chaotic neural network version. We propose two types of chaotic searching methods, which are based on two different tabu searches. While the first one requires neurons of the order of n2 for an n-city TSP, the second one requires only n neurons. Moreover, an automatic parameter tuning method of our chaotic neural network is presented for easy application to various problems. Last, we show that our method with n neurons is applicable to large TSPs such as an 85,900-city problem and exhibits better performance than the conventional stochastic searches and the tabu searches.
Attractor switching by neural control of chaotic neurodynamics.
Pasemann, F; Stollenwerk, N
1998-11-01
Chaotic attractors of discrete-time neural networks include infinitely many unstable periodic orbits, which can be stabilized by small parameter changes in a feedback control. Here we explore the control of unstable periodic orbits in a chaotic neural network with only two neurons. Analytically, a local control algorithm is derived on the basis of least squares minimization of the future deviations between actual system states and the desired orbit. This delayed control allows a consistent neural implementation, i.e. the same types of neurons are used for chaotic and controlling modules. The control signal is realized with one layer of neurons, allowing selective switching between different stabilized periodic orbits. For chaotic modules with noise, random switching between different periodic orbits is observed.
A Simple Secure Hash Function Scheme Using Multiple Chaotic Maps
Ahmad, Musheer; Khurana, Shruti; Singh, Sushmita; AlSharari, Hamed D.
2017-06-01
The chaotic maps posses high parameter sensitivity, random-like behavior and one-way computations, which favor the construction of cryptographic hash functions. In this paper, we propose to present a novel hash function scheme which uses multiple chaotic maps to generate efficient variable-sized hash functions. The message is divided into four parts, each part is processed by a different 1D chaotic map unit yielding intermediate hash code. The four codes are concatenated to two blocks, then each block is processed through 2D chaotic map unit separately. The final hash value is generated by combining the two partial hash codes. The simulation analyses such as distribution of hashes, statistical properties of confusion and diffusion, message and key sensitivity, collision resistance and flexibility are performed. The results reveal that the proposed anticipated hash scheme is simple, efficient and holds comparable capabilities when compared with some recent chaos-based hash algorithms.
Robust Synchronisation of Uncertain Fractional-Order Chaotic Unified Systems
Directory of Open Access Journals (Sweden)
Noghredani Naeimadeen
2017-04-01
Full Text Available Fractional-order chaotic unified systems include a variety of fractional-order chaotic systems such as Chen, Lorenz, Lu, Liu, and financial systems. This paper describes a sliding mode controller for synchronisation of fractional-order chaotic unified systems in the presence of uncertainties and external disturbances, and affirms the stability of the controller (which is composed of error dynamics. Moreover, the synchronisation of two separate fractional-order chaotic systems is studied. For this aim, fractional integral sliding surface is defined. Then the sliding mode control rule for stability of error dynamic is presented based on the Lyapunov stability theorem. Simulation results, obtained by using MATLAB, show that the proposed sliding mode has employed an appropriate approach against uncertainties and to reduce the chattering phenomenon that often occurs with sliding mode controllers.
Adaptive control and synchronization of a fractional-order chaotic ...
Indian Academy of Sciences (India)
order chaotic system based on the stability theory of fractional-order dynamic ... of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, China; School of Information and Communication Engineering, Hunan ...
Cluster synchronization modes in an ensemble of coupled chaotic oscillators
DEFF Research Database (Denmark)
Belykh, Vladimir N.; Belykh, Igor V.; Mosekilde, Erik
2001-01-01
Considering systems of diffusively coupled identical chaotic oscillators, an effective method to determine the possible states of cluster synchronization and ensure their stability is presented. The method, which may find applications in communication engineering and other fields of science...
Chaotic States Induced By Resetting Process In Izhikevich Neuron Model
National Research Council Canada - National Science Library
Sou Nobukawa; Haruhiko Nishimura; Teruya Yamanishi; Jian-Qin Liu
2015-01-01
... potential between spike and hyperpolarization. As one of the hybrid spiking neuron models, Izhikevich neuron model can reproduce major spike patterns observed in the cerebral cortex only by tuning a few parameters and also exhibit chaotic states...
Hyperchaos generated from 3D chaotic systems using PI controller
Devi, V. R.; Farooq, Farsana; Gopakumar, K.
2017-07-01
Hyperchaotic systems have chaotic behavior with at least two positive Lyapunov exponents and the minimum required system dimension is four. In this paper, a 3D chaotic system is converted into hyperchaotic system using PI controller in the feedback path. Integral controller is responsible for increase in order of the system. The hyperchaotic nature is verified by the existence of two positive Lyapunov exponents and using bifurcation diagrams. The system is hyperchaotic in several different regions of the parameters. The result shows that this method can not only enhance or suppress chaotic behavior, but also induces chaos in non-chaotic parameter ranges. The proposed method is applied to a secure communication system by means of encryption and decryption of a message using hyperchaotic system.
Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems
Blonigan, Patrick J.; Wang, Qiqi
2018-02-01
Sensitivity analysis methods are important tools for research and design with simulations. Many important simulations exhibit chaotic dynamics, including scale-resolving turbulent fluid flow simulations. Unfortunately, conventional sensitivity analysis methods are unable to compute useful gradient information for long-time-averaged quantities in chaotic dynamical systems. Sensitivity analysis with least squares shadowing (LSS) can compute useful gradient information for a number of chaotic systems, including simulations of chaotic vortex shedding and homogeneous isotropic turbulence. However, this gradient information comes at a very high computational cost. This paper presents multiple shooting shadowing (MSS), a more computationally efficient shadowing approach than the original LSS approach. Through an analysis of the convergence rate of MSS, it is shown that MSS can have lower memory usage and run time than LSS.
The benefits of multibit chaotic sigma delta modulation.
Reiss, J. D.; Sandler, M. B.
2001-06-01
Sigma delta modulation is a popular technique for high-resolution analog-to-digital conversion and digital-to-analog conversion. We investigate chaotic phenomena in multibit first-order sigma-delta modulators. Particular attention is placed on the occurrence of periodic orbits or limit cycles. These may result in idle tones audible to the listener when sigma-delta modulation is used for audio signal processing. One suggested method of eliminating idle tones is the operation of a sigma delta modulator in the chaotic regime. Unfortunately, chaotic modulation of a first order sigma delta modulator is a poor system for signal processing. We show that minor variations on a traditional first order sigma-delta modulator, together with a multibit implementation, may be used to produce an effective, stable chaotic modulator that accurately encodes the input and helps remove the presence of idle tones. (c) 2001 American Institute of Physics.
Parameter identification and synchronization of fractional-order chaotic systems
Yuan, Li-Guo; Yang, Qi-Gui
2012-01-01
The knowledge about parameters and order is very important for synchronization of fractional-order chaotic systems. In this article, identification of parameters and order of fractional-order chaotic systems is converted to an optimization problem. Particle swarm optimization algorithm is used to solve this optimization problem. Based on the above parameter identification, synchronization of the fractional-order Lorenz, Chen and a novel system (commensurate or incommensurate order) is derived using active control method. The new fractional-order chaotic system has four-scroll chaotic attractors. The existence and uniqueness of solutions for the new fractional-order system are also investigated theoretically. Simulation results signify the performance of the work.
Cryptanalysis of a discrete-time synchronous chaotic encryption system
Energy Technology Data Exchange (ETDEWEB)
Arroyo, David [Instituto de Fisica Aplicada, Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain)], E-mail: david.arroyo@iec.csic.es; Alvarez, Gonzalo [Instituto de Fisica Aplicada, Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain)], E-mail: gonzalo@iec.csic.es; Li Shujun [FernUniversitaet in Hagen, Lehrgebiet Informationstechnik, Universitaetsstrasse 27, 58084 Hagen (Germany); Li Chengqing [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong (China); Nunez, Juana [Instituto de Fisica Aplicada, Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain)
2008-02-11
Recently a chaotic cryptosystem based on discrete-time synchronization has been proposed. Some weaknesses of that new encryption system are addressed and exploited in order to successfully cryptanalyze the system.
HASHING ALGORITHM BASED ON TWO-DIMENSIONAL CHAOTIC MAPPINGS
National Research Council Canada - National Science Library
A. V. Sidorenko; I. V. Shakinko
2017-01-01
A new hashing algorithm based on dynamic chaos is proposed. Owing to the use of chaotic mappings, this algorithm is irreversible and a search for two messages with identical hash-values becomes computationally difficult...
Quasiperiodic Route to Chaotic Dynamics of Internet Transport Protocols
Gao, Jian-Bo; Rao, Nageswara S.; Hu, Jing; Ai, Jing
2005-05-01
We show that the dynamics of transmission control protocol (TCP) may often be chaotic via a quasiperiodic route consisting of more than two independent frequencies, by employing a commonly used ns-2 network simulator. To capture the essence of the additive increase and multiplicative decrease mechanism of TCP congestion control, and to qualitatively describe why and when chaos may occur in TCP dynamics, we develop a 1D discrete map. The relevance of these chaotic transport dynamics to real Internet connections is discussed.
A microwave photonic generator of chaotic and noise signals
Ustinov, A. B.; Kondrashov, A. V.; Kalinikos, B. A.
2016-04-01
The transition to chaos in a microwave photonic generator has been experimentally studied for the first time, and the generated broadband chaotic microwave signal has been analyzed. The generator represented a ring circuit with the microwave tract containing a low-pass filter and a microwave amplifier. The optical tract comprised a fiber delay line. The possibility of generating chaotic oscillations with uniform spectral power density in a 3-8 GHz range is demonstrated.
Impulsive Control of Memristive Chaotic Systems with Impulsive Time Window
Directory of Open Access Journals (Sweden)
FuLi Chen
2015-01-01
Full Text Available The problem of impulsive control for memristor-based chaotic circuit systems with impulsive time windows is investigated. Based on comparison principle, several novel criteria which guarantee the asymptotic stabilization of the memristor-based chaotic circuit systems are obtained. In comparison with previous results, the present results are easily verified. Numerical simulations are given to further illustrate the effectiveness of the theoretical results.
Dynamic Long-Term Anticipation of Chaotic States
Energy Technology Data Exchange (ETDEWEB)
Voss, Henning U.
2001-07-02
Introducing a short time delay into the coupling of two synchronizing chaotic systems, it was shown recently that the driven system may anticipate the driving system in real time. Augmenting the phase space of the driven system, we accomplish anticipation times that are multiples of the coupling delay time and exceed characteristic time scales of the chaotic dynamics. The stability properties of the associated anticipatory synchronization manifold in certain cases turn out to be the same as for identically synchronizing oscillators.
Superposition of chaotic process with convergence to Levy's stable law
Umeno, K
1998-01-01
We construct a family of chaotic dynamical systems with explicit broad distributions, which always violate the central limit theorem. In particular, we show that the superposition of many statistically independent, identical random variables obeying such chaotic process converge in density to Levy's stable laws in a full range of the index parameters. The theory related to the connection between deterministic chaos and non-Gaussian distributions gives us a systematic view of the purely mechanical generation of Levy's stable laws.
ON THE PREDICTION OF CHAOTIC DYNAMICS WITH ARTIFICIAL INTELLIGENCE TECHNIQUES
Directory of Open Access Journals (Sweden)
CIOBANU DUMITRU
2012-12-01
Full Text Available Because of sensitive dependence on initial conditions (SDIC, characteristic to chaotic systems, the predictionof such system can be made with an accepted accuracy only for relatively small number of steps ahead. Using artificialtechniques like neural networks and support vector machine to predict chaotic dynamics present advantages overtraditional methods and usually they offers better results. In this paper, I highlight some of these advantages.
ON THE PREDICTION OF CHAOTIC DYNAMICS WITH ARTIFICIAL INTELLIGENCE TECHNIQUES
CIOBANU DUMITRU
2012-01-01
Because of sensitive dependence on initial conditions (SDIC), characteristic to chaotic systems, the prediction of such system can be made with an accepted accuracy only for relatively small number of steps ahead. Using artificial techniques like neural networks and support vector machine to predict chaotic dynamics present advantages over traditional methods and usually they offers better results. In this paper, I highlight some of these advantages.
Chaotic fractional-order Coullet system: Synchronization and control approach
Shahiri, M.; Ghaderi, R.; Ranjbar N., A.; Hosseinnia, S. H.; Momani, S.
2010-03-01
The main objective of this study is to investigate and control the chaotic behaviour of fractional-order Coullet system, including the necessary condition for appearance of chaos. An active control technique, in a master-slave structure for synchronization is suggested to control this chaotic system. The stability condition is obtained in both of theoretical analysis and simulation manner. The numerical simulation verifies the performance of the proposed controller.
Synchronization of chaotic fractional-order systems via linear control
Odibat, Zaid,; Corson, Nathalie; Aziz-Alaoui, Moulay; Bertelle, Cyrille
2010-01-01
International audience; The chaotic dynamics of fractional-order systems has attracted much attention recently. Chaotic synchronization of fractional-order systems is further studied in this paper. We investigate the chaos synchronization of two identical systems via a suitable linear controller applied to the response system. Based on the stability results of linear fractional-order systems, sufficient conditions for chaos synchronization of these systems are given. Control laws are derived ...
Experimental Synchronization of two Integrated Multi-scroll Chaotic Oscillators
Directory of Open Access Journals (Sweden)
J.M. Muñoz-Pacheco
2014-06-01
Full Text Available Chaotic oscillators have been implemented with a wide variety of discrete electronic devices and quite few realizations using integrated circuit technology. This article describes the synchronization of two chaotic oscillators already fabricated with complementary metal-oxide-semiconductor (CMOS integrated circuit technology of 0.5um and generating 3- and 5-scrolls. In order to attain the synchronization, we use a master-slave topology with unidirectional coupling. Within this context, a system parameter iterates until the correlation coefficient computed between the chaotic signals generated by the master and slave systems approximates to unity. For the following parameter, its value depends on the standard deviations from the individual signals contrary to previous one. By combining those statistical relationships according to the number of system parameters, we can synchronize integrated chaotic oscillators. Theoretical model simulations of two chaotic oscillators generating 3- and 5-scrolls, and experimental results for two integrated 3-scroll chaotic oscillators validate this approach. Stability and error analysis are also included.
Chaotic Modes in Scale Free Opinion Networks
Kusmartsev, Feo V.; Kürten, Karl E.
2010-12-01
In this paper, we investigate processes associated with formation of public opinion in varies directed random, scale free and small-world social networks. The important factor of the opinion formation is the existence of contrarians which were discovered by Granovetter in various social psychology experiments1,2,3 long ago and later introduced in sociophysics by Galam.4 When the density of contrarians increases the system behavior drastically changes at some critical value. At high density of contrarians the system can never arrive to a consensus state and periodically oscillates with different periods depending on specific structure of the network. At small density of the contrarians the behavior is manifold. It depends primary on the initial state of the system. If initially the majority of the population agrees with each other a state of stable majority may be easily reached. However when originally the population is divided in nearly equal parts consensus can never be reached. We model the emergence of collective decision making by considering N interacting agents, whose opinions are described by two state Ising spin variable associated with YES and NO. We show that the dynamical behaviors are very sensitive not only to the density of the contrarians but also to the network topology. We find that a phase of social chaos may arise in various dynamical processes of opinion formation in many realistic models. We compare the prediction of the theory with data describing the dynamics of the average opinion of the USA population collected on a day-by-day basis by varies media sources during the last six month before the final Obama-McCain election. The qualitative ouctome is in reasonable agreement with the prediction of our theory. In fact, the analyses of these data made within the paradigm of our theory indicates that even in this campaign there were chaotic elements where the public opinion migrated in an unpredictable chaotic way. The existence of such a phase
Swaidan, Raja
2013-11-01
Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO2/CH4 transport properties are investigated for a complete series of thermally-rearranged (TR) (440°C) and carbon molecular sieve (CMS) membranes (600, 630 and 800°C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30bar for 1:1, CO2:CH4 mixed-gas feeds at 35°C. The TR membrane exhibited ~15% higher CO2/CH4 selectivity relative to pure-gas feeds due to reductions in mixed-gas CH4 permeability reaching 27% at 30bar. This is attributed to increased hindrance of CH4 transport by co-permeation of CO2. Interestingly, unusual increases in mixed-gas CH4 permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range. © 2013 Elsevier B.V.
A Fast Enhanced Secure Image Chaotic Cryptosystem Based on Hybrid Chaotic Magic Transform
Directory of Open Access Journals (Sweden)
Srinivas Koppu
2017-01-01
Full Text Available An enhanced secure image chaotic cryptosystem has been proposed based on hybrid CMT-Lanczos algorithm. We have achieved fast encryption and decryption along with privacy of images. The pseudorandom generator has been used along with Lanczos algorithm to generate root characteristics and eigenvectors. Using hybrid CMT image, pixels are shuffled to accomplish excellent randomness. Compared with existing methods, the proposed method had more robustness to various attacks: brute-force attack, known cipher plaintext, chosen-plaintext, security key space, key sensitivity, correlation analysis and information entropy, and differential attacks. Simulation results show that the proposed methods give better result in protecting images with low-time complexity.
CHAOTIC DISINTEGRATION OF THE INNER SOLAR SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Morbidelli, Alessandro [Department Lagrange, Observatoire de la Côte d' Azur, F-06304 Nice (France); Holman, Mathew J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2015-02-01
On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short-term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e., the dynamical lifetime of the solar system as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interactions. These results constitute a significant advancement in our understanding of the processes responsible for sculpting of the dynamical structures of generic planetary systems.
Neutrino CP phases from sneutrino chaotic inflation
Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.
2017-10-01
We study if the minimal sneutrino chaotic inflation is consistent with a flavor symmetry of the Froggatt-Nielsen type, to derive testable predictions on the Dirac and Majorana CP violating phases, δ and α. For successful inflation, the two right-handed neutrinos, i.e., the inflaton and stabilizer fields, must be degenerate in mass. First we find that the lepton flavor symmetry structure becomes less manifest in the light neutrino masses in the seesaw mechanism, and this tendency becomes most prominent when right-handed neutrinos are degenerate. Secondly, the Dirac CP phase turns out to be sensitive to whether the shift symmetry breaking depends on the lepton flavor symmetry. When the flavor symmetry is imposed only on the stabilizer Yukawa couplings, distributions of the CP phases are peaked at δ ≃ ± π / 4 , ± 3 π / 4 and α = 0, while the vanishing and maximal Dirac CP phases are disfavored. On the other hand, when the flavor symmetry is imposed on both the inflaton and stabilizer Yukawa couplings, it is rather difficult to explain the observed neutrino data, and those parameters consistent with the observation prefer the vanishing CP phases δ = 0 , π and α = 0.
Chaotic Disintegration of the Inner Solar System
Batygin, Konstantin; Morbidelli, Alessandro; Holman, Matthew J.
2015-02-01
On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short-term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e., the dynamical lifetime of the solar system as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interactions. These results constitute a significant advancement in our understanding of the processes responsible for sculpting of the dynamical structures of generic planetary systems.
Chaotic radiation/turbulence interactions in flames
Energy Technology Data Exchange (ETDEWEB)
Menguec, M.P.; McDonough, J.M.
1998-11-01
In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.
Clustering of periodic orbits in chaotic systems
Gutkin, Boris; Osipov, Vladimir Al
2013-01-01
In the framework of the semiclassical approach, the universal spectral correlations in Hamiltonian systems with classical chaotic dynamics can be attributed to the systematic correlations between the actions of periodic orbits which (up to the switch in the momentum direction) pass through approximately the same points of the phase space. By considering symbolic dynamics of the system one can introduce a natural ultrametric distance between periodic orbits and organize them into clusters of orbits approaching each other in the phase space. We study the distribution of cluster sizes for the baker's map in the asymptotic limit of long trajectories. This problem is equivalent to the one of counting degeneracies in the length spectrum of the de Bruijn graphs. Based on this fact, we derive the probability P_k that k randomly chosen periodic orbits belong to the same cluster. Furthermore, we find asymptotic behaviour of the largest cluster size |C_{\\max}| and derive the probability P(t) that a random periodic orbit belongs to a cluster smaller than t|C_{\\max}| , t ∈ [0, 1].
Pressure, Chaotic Magnetic Fields and MHD Equilibria
Energy Technology Data Exchange (ETDEWEB)
S.R. Hudson & N. Nakajima
2010-05-12
Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ∇p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ∇p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.
Influence of colored noise on chaotic systems.
Redaelli, Stefano; Plewczyński, Dariusz; Macek, Wiesław M
2002-09-01
We focus on classical chaotic systems corrupted by white and colored noise. We study the dependence of the correlation dimension and the Kolmogorov entropy on the noise level and its spectral exponent. As is well known, white noise strongly reduces the width of the scaling region for the correlation dimension and entropy. On the contrary, we demonstrate that colored noise does not basically obscure the scaling region, changing only the shape of the correlation sum for length scales smaller than the noise level. The numerical results show that, even for a noise level as high as approximately 5%, a reasonably wide plateau for the correlation sum is still obtained, but the value of the calculated dimension is somewhat increased. The calculated correlation dimension is a bilinear function of the noise level and the dimension of the noise, which depends on the spectral exponent of the noise. On the other hand, the width of the scaling region for the correlation entropy depends on this spectral exponent, but the value of the plateau does not change substantially.
CHAOTIC VIBRATION OF BUCKLED BEAMS AND PLATES
Directory of Open Access Journals (Sweden)
Daniela BARAN
2009-12-01
Full Text Available The great developing of numerical analysis of the dynamic systems emphasizes the existence of astrong dependence of the initial conditions, described in the phase plane by attractors with acomplicated geometrical structure. The Lyapunov exponents are used to determine if there is a realstrong dependence on the initial conditions: there is at least a positive exponent if the system has achaotic evolution and all the Lyapunov exponents are negative if the system has not such anevolution. Determining the largest Lyapunov exponent , which is easier to calculate, is sufficient todraw such conclusions. In this paper we shall use the greatest Lyapunov exponent to study twowell-known problems who leads to chaotic motions: the problem of the buckled beam and the panelflutter problem. In the problem of the buckled beam we verify the results obtained with theMelnikov theorem with the maximum Lyapunov exponent [1]. The flutter of a buckled plate is alsoa problem characterized by strong dependence of the initial conditions, existence of attractors withcomplicated structure existence of periodic unstable motions with very long periods (sometimesinfinite periods.
Multicarrier chaotic communications in multipath fading channels without channel estimation
Directory of Open Access Journals (Sweden)
Shilian Wang
2015-01-01
Full Text Available A multi-carrier chaotic shift keying(MC-CSK communication scheme with low probability of interception(LPI is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.
Multicarrier chaotic communications in multipath fading channels without channel estimation
Energy Technology Data Exchange (ETDEWEB)
Wang, Shilian, E-mail: wangsl@nudt.edu.cn; Zhang, Zhili [College of Electrical Science and Engineering, National University of Defense Technology, Changsha, 410073, P R China (China)
2015-01-15
A multi-carrier chaotic shift keying(MC-CSK) communication scheme with low probability of interception(LPI) is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM) subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK) in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.
Multicarrier chaotic communications in multipath fading channels without channel estimation
Wang, Shilian; Zhang, Zhili
2015-01-01
A multi-carrier chaotic shift keying(MC-CSK) communication scheme with low probability of interception(LPI) is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM) subcarrier. In each block size of M OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK) in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.
Counting statistics of chaotic resonances at optical frequencies: Theory and experiments
Lippolis, Domenico; Wang, Li; Xiao, Yun-Feng
2017-07-01
A deformed dielectric microcavity is used as an experimental platform for the analysis of the statistics of chaotic resonances, in the perspective of testing fractal Weyl laws at optical frequencies. In order to surmount the difficulties that arise from reading strongly overlapping spectra, we exploit the mixed nature of the phase space at hand, and only count the high-Q whispering-gallery modes (WGMs) directly. That enables us to draw statistical information on the more lossy chaotic resonances, coupled to the high-Q regular modes via dynamical tunneling. Three different models [classical, Random-Matrix-Theory (RMT) based, semiclassical] to interpret the experimental data are discussed. On the basis of least-squares analysis, theoretical estimates of Ehrenfest time, and independent measurements, we find that a semiclassically modified RMT-based expression best describes the experiment in all its realizations, particularly when the resonator is coupled to visible light, while RMT alone still works quite well in the infrared. In this work we reexamine and substantially extend the results of a short paper published earlier [L. Wang et al., Phys. Rev. E 93, 040201(R) (2016), 10.1103/PhysRevE.93.040201].
Chaotic Resonance in Typical Routes to Chaos in the Izhikevich Neuron Model.
Nobukawa, Sou; Nishimura, Haruhiko; Yamanishi, Teruya
2017-05-02
Chaotic resonance (CR), in which a system responds to a weak signal through the effects of chaotic activities, is a known function of chaos in neural systems. The current belief suggests that chaotic states are induced by different routes to chaos in spiking neural systems. However, few studies have compared the efficiency of signal responses in CR across the different chaotic states in spiking neural systems. We focused herein on the Izhikevich neuron model, comparing the characteristics of CR in the chaotic states arising through the period-doubling or tangent bifurcation routes. We found that the signal response in CR had a unimodal maximum with respect to the stability of chaotic orbits in the tested chaotic states. Furthermore, the efficiency of signal responses at the edge of chaos became especially high as a result of synchronization between the input signal and the periodic component in chaotic spiking activity.
Energy Technology Data Exchange (ETDEWEB)
Saiki, Yoshitaka, E-mail: yoshi.saiki@r.hit-u.ac.jp [Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601 (Japan); Yamada, Michio [Research Institute for Mathematical Sciences (RIMS), Kyoto University, Kyoto 606-8502 (Japan); Chian, Abraham C.-L. [Paris Observatory, LESIA, CNRS, 92195 Meudon (France); National Institute for Space Research (INPE), P.O. Box 515, São José dos Campos, São Paulo 12227-010 (Brazil); Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), São José dos Campos, São Paulo 12228-900 (Brazil); School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005 (Australia); Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Miranda, Rodrigo A. [Faculty UnB-Gama, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Rempel, Erico L. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), São José dos Campos, São Paulo 12228-900 (Brazil)
2015-10-15
The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs.
Directory of Open Access Journals (Sweden)
Liping Chen
2012-01-01
between the fractional-order chaotic Chen system and the fractional-order chaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.
A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control
National Research Council Canada - National Science Library
Sundarapandian Vaidyanathan
2016-01-01
.... The Kaplan-Yorke dimension of the novel jerk chaotic system is derived as D = 2.17026. Next, an adaptive controller is designed via backstepping control method to globally stabilize the novel jerk chaotic system with unknown parameters...
Chaotic neural network for learnable associative memory recall
Hsu, Charles C.; Szu, Harold H.
2003-04-01
We show that the Fuzzy Membership Function (FMF) is learnable with underlying chaotic neural networks for the open set probability. A sigmoid N-shaped function is used to generate chaotic signals. We postulate that such a chaotic set of innumerable realization forms a FMF exemplified by fuzzy feature maps of eyes, nose, etc., for the invariant face classification. The CNN with FMF plays an important role for fast pattern recognition capability in examples of both habituation and novelty detections. In order to reduce the computation complexity, the nearest-neighborhood weight connection is proposed. In addition, a novel timing-sequence weight-learning algorithm is introduced to increase the capacity and recall of the associative memory. For simplicity, a piece-wise-linear (PWL) N-shaped function was designed and implemented and fabricated in a CMOS chip.
Chaotic, fractional, and complex dynamics new insights and perspectives
Macau, Elbert; Sanjuan, Miguel
2018-01-01
The book presents nonlinear, chaotic and fractional dynamics, complex systems and networks, together with cutting-edge research on related topics. The fifteen chapters – written by leading scientists working in the areas of nonlinear, chaotic and fractional dynamics, as well as complex systems and networks – offer an extensive overview of cutting-edge research on a range of topics, including fundamental and applied research. These include but are not limited to aspects of synchronization in complex dynamical systems, universality features in systems with specific fractional dynamics, and chaotic scattering. As such, the book provides an excellent and timely snapshot of the current state of research, blending the insights and experiences of many prominent researchers.
Chaotic Multiquenching Annealing Applied to the Protein Folding Problem
Directory of Open Access Journals (Sweden)
Juan Frausto-Solis
2014-01-01
Full Text Available The Chaotic Multiquenching Annealing algorithm (CMQA is proposed. CMQA is a new algorithm, which is applied to protein folding problem (PFP. This algorithm is divided into three phases: (i multiquenching phase (MQP, (ii annealing phase (AP, and (iii dynamical equilibrium phase (DEP. MQP enforces several stages of quick quenching processes that include chaotic functions. The chaotic functions can increase the exploration potential of solutions space of PFP. AP phase implements a simulated annealing algorithm (SA with an exponential cooling function. MQP and AP are delimited by different ranges of temperatures; MQP is applied for a range of temperatures which goes from extremely high values to very high values; AP searches for solutions in a range of temperatures from high values to extremely low values. DEP phase finds the equilibrium in a dynamic way by applying least squares method. CMQA is tested with several instances of PFP.
The chaotic marriage of physics and financial economics
Gilmore, Claire
2013-01-01
By the early 1980s interest in chaos theory was spreading from mathematics and the sciences to other fields, including economics and finance. Initial results, based on the metric approach to testing for chaos in time series data, appeared to lend support to the presence of chaotic behavior in a variety of economic phenomena and in financial markets. Subsequently, a topological approach to the analysis of chaos was developed which led to tests for chaotic behavior more suited to the relatively small, noisy data sets typically available in these fields. This close returns test is demonstrated here and is applied to data from several financial markets. The qualitative topological test does not support evidence of a chaotic generating mechanism in these series. The quantitative form of the close returns test indicates nonchaotic nonlinear behavior that cannot be fully explained by current financial models.
Fully Digital Chaotic Differential Equation-based Systems And Methods
Radwan, Ahmed Gomaa Ahmed
2012-09-06
Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.
Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems
Chen, Liping; Chai, Yi; Wu, Ranchao
2011-05-01
In this Letter, a new lag projective synchronization for fractional-order chaotic (hyperchaotic) systems is proposed, which includes complete synchronization, anti-synchronization, lag synchronization, generalized projective synchronization. It is shown that the slave system synchronizes the past state of the driver up to a scaling factor. A suitable controller for achieving the lag projective synchronization is designed based on the stability theory of linear fractional-order systems and the pole placement technique. Two examples are given to illustrate effectiveness of the scheme, in which the lag projective synchronizations between fractional-order chaotic Rössler system and fractional-order chaotic Lü system, between fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system, respectively, are successfully achieved. Corresponding numerical simulations are also given to verify the analytical results.
Importance sampling of rare events in chaotic systems
Leitão, Jorge C.; Parente Lopes, João M. Viana; Altmann, Eduardo G.
2017-10-01
Finding and sampling rare trajectories in dynamical systems is a difficult computational task underlying numerous problems and applications. In this paper we show how to construct Metropolis-Hastings Monte-Carlo methods that can efficiently sample rare trajectories in the (extremely rough) phase space of chaotic systems. As examples of our general framework we compute the distribution of finite-time Lyapunov exponents (in different chaotic maps) and the distribution of escape times (in transient-chaos problems). Our methods sample exponentially rare states in polynomial number of samples (in both low- and high-dimensional systems). An open-source software that implements our algorithms and reproduces our results can be found in reference [J. Leitao, A library to sample chaotic systems, 2017, https://github.com/jorgecarleitao/chaospp].
Generating multi-scroll chaotic attractors by thresholding
Energy Technology Data Exchange (ETDEWEB)
Lue Jinhu [Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: jhlu@iss.ac.cn; Murali, K. [Department of Physics, Anna University, Chennai 600 025 (India)], E-mail: kmurali@annauniv.edu; Sinha, Sudeshna [Institute of Mathematical Sciences, Taramani, Chennai 600 113 (India)], E-mail: sudeshna@imsc.res.in; Leung, Henry [Department of Electrical and Computer Engineering, University of Calgary, Calgary, T2N 1N4 (Canada); Aziz-Alaoui, M.A. [Applied Mathematics Laboratory, University of Le Havre, BP 540, 76058 Le Havre Cedex (France)
2008-04-28
This Letter proposes a novel thresholding approach for creating multi-scroll chaotic attractors. The general jerk circuit and Chua's circuit with sine nonlinearity are then used as two representative examples to show the working principle of this method. The controlled jerk circuit can generate various limit cycles and multi-scroll chaotic attractors by tuning the thresholds and the width of inner threshold plateau. The dynamic mechanism of threshold control is further explored by analyzing the system dynamical behaviors. In particular, this approach is effective and easy to be implemented since we only need to monitor the threshold variables or their functions and then reset them if they exceed the desired thresholds. Furthermore, two simple block circuit diagrams with threshold controllers are designed for the implementations of 1, 2, 3-scroll chaotic attractors. It indicates the potential engineering applications for various chaos-based information systems.
Generating multi-scroll chaotic attractors by thresholding
Lü, Jinhu; Murali, K.; Sinha, Sudeshna; Leung, Henry; Aziz-Alaoui, M. A.
2008-04-01
This Letter proposes a novel thresholding approach for creating multi-scroll chaotic attractors. The general jerk circuit and Chua's circuit with sine nonlinearity are then used as two representative examples to show the working principle of this method. The controlled jerk circuit can generate various limit cycles and multi-scroll chaotic attractors by tuning the thresholds and the width of inner threshold plateau. The dynamic mechanism of threshold control is further explored by analyzing the system dynamical behaviors. In particular, this approach is effective and easy to be implemented since we only need to monitor the threshold variables or their functions and then reset them if they exceed the desired thresholds. Furthermore, two simple block circuit diagrams with threshold controllers are designed for the implementations of 1, 2, 3-scroll chaotic attractors. It indicates the potential engineering applications for various chaos-based information systems.
Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.
Ma, Chao; Meyers, Stephen R; Sageman, Bradley B
2017-02-22
Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.
A Review on Mixing in Microfluidics
Directory of Open Access Journals (Sweden)
Sangmo Kang
2010-09-01
Full Text Available Small-scale mixing is of uttermost importance in bio- and chemical analyses using micro TAS (total analysis systems or lab-on-chips. Many microfluidic applications involve chemical reactions where, most often, the fluid diffusivity is very low so that without the help of chaotic advection the reaction time can be extremely long. In this article, we will review various kinds of mixers developed for use in microfluidic devices. Our review starts by defining the terminology necessary to understand the fundamental concept of mixing and by introducing quantities for evaluating the mixing performance, such as mixing index and residence time. In particular, we will review the concept of chaotic advection and the mathematical terms, Poincare section and Lyapunov exponent. Since these concepts are developed from nonlinear dynamical systems, they should play important roles in devising microfluidic devices with enhanced mixing performance. Following, we review the various designs of mixers that are employed in applications. We will classify the designs in terms of the driving forces, including mechanical, electrical and magnetic forces, used to control fluid flow upon mixing. The advantages and disadvantages of each design will also be addressed. Finally, we will briefly touch on the expected future development regarding mixer design and related issues for the further enhancement of mixing performance.
Chaotic Resonance in Typical Routes to Chaos in the Izhikevich Neuron Model
Sou Nobukawa; Haruhiko Nishimura; Teruya Yamanishi
2017-01-01
Chaotic resonance (CR), in which a system responds to a weak signal through the effects of chaotic activities, is a known function of chaos in neural systems. The current belief suggests that chaotic states are induced by different routes to chaos in spiking neural systems. However, few studies have compared the efficiency of signal responses in CR across the different chaotic states in spiking neural systems. We focused herein on the Izhikevich neuron model, comparing the characteristics of ...
A note on synchronization between two different chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Park, Ju H. [Robust Control and Nonlinear Dynamics Laboratory, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749 (Korea, Republic of)], E-mail: jessie@ynu.ac.kr
2009-05-15
In this paper, a new control method based on the Lyapunov method and linear matrix inequality framework is proposed to design a stabilizing controller for synchronizing two different chaotic systems. The feedback controller is consisted of two parts: linear dynamic control law and nonlinear control one. By this control law, the exponential stability for synchronization between two different chaotic systems is guaranteed. As applications of proposed method, synchronization problem between Genesio-Tesi system and Chen system has been investigated, and then the similar approach is applied to the synchronization problem between Roessler system and Lorenz system.
Improved numerical solutions for chaotic-cancer-model
Directory of Open Access Journals (Sweden)
Muhammad Yasir
2017-01-01
Full Text Available In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
T-S Fuzzy Control of Uncertain Chaotic Vibration
Directory of Open Access Journals (Sweden)
Abdelkrim Boukabou
2012-01-01
Full Text Available We present in this paper a novel and unified control approach that combines intelligent fuzzy logic methodology with predictive method for controlling chaotic vibration of a class of uncertain chaotic systems. We first introduce prediction into each subsystem of Takagi Sugeno (T-S fuzzy IF-THEN rules and then present a unified T-S predictive fuzzy model for chaos control. The proposed controller can successfully stabilize the chaos and track the desired targets. The simulation results illustrate its effectiveness.
Localized Structures Embedded in the Eigenfunctions of Chaotic Hamiltonian Systems
Vergini, E G
1998-01-01
We study quantum localization phenomena in chaotic systems with a parameter. The parametric motion of energy levels proceeds without crossing any other and the defined avoided crossings quantify the interaction between states. We propose the elimination of avoided crossings as the natural mechanism to uncover localized structures. We describe an efficient method for the elimination of avoided crossings in chaotic billiards and apply it to the stadium billiard. We find many scars of short periodic orbits revealing the skeleton on which quantum mechanics is built. Moreover, we have observed strong interaction between similar localized structures.
Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation
Mansingka, Abhinav S.
2012-05-01
This thesis presents a generalized approach for the fully digital design and implementation of chaos generators through the numerical solution of chaotic ordinary differential equations. In particular, implementations use the Euler approximation with a fixed-point twos complement number representation system for optimal hardware and performance. In general, digital design enables significant benefits in terms of power, area, throughput, reliability, repeatability and portability over analog implementations of chaos due to lower process, voltage and temperature sensitivities and easy compatibility with other digital systems such as microprocessors, digital signal processing units, communication systems and encryption systems. Furthermore, this thesis introduces the idea of implementing multidimensional chaotic systems rather than 1-D chaotic maps to enable wider throughputs and multiplier-free architectures that provide significant performance and area benefits. This work focuses efforts on the well-understood family of autonomous 3rd order "jerk" chaotic systems. The effect of implementation precision, internal delay cycles and external delay cycles on the chaotic response are assessed. Multiplexing of parameters is implemented to enable switching between chaotic and periodic modes of operation. Enhanced chaos generators that exploit long-term divergence in two identical systems of different precision are also explored. Digital design is shown to enable real-time controllability of 1D multiscroll systems and 4th order hyperchaotic systems, essentially creating non-autonomous chaos that has thus far been difficult to implement in the analog domain. Seven different systems are mathematically assessed for chaotic properties, implemented at the register transfer level in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA. The statistical properties of the output are rigorously studied using the NIST SP. 800-22 statistical testing suite. The output is
Loss of lag synchronization in coupled chaotic systems
DEFF Research Database (Denmark)
Sosnovtseva, Olga; Balanov, A G; Vadivasova, T E
1999-01-01
Lag synchronization denotes a particular form of synchronization in which the amplitudes of two interacting, nonidentical chaotic oscillators are correlated but there is a characteristic time delay between them. We study transitions to and between different forms of synchronization...... for the attractors defined as "in-phase" and "out-of-phase" and investigate the processes by which lag synchronization is lost in two coupled Rössler systems. With a small frequency mismatch between the two systems, these processes are related to the occurrence of a peculiar form of basin structure as more and more...... periodic orbits embedded into the synchronized chaotic state become unstable in a transverse direction....
Experimental chaotic quantification in bistable vortex induced vibration systems
Huynh, B. H.; Tjahjowidodo, T.
2017-02-01
The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear
Synchronization of Chaotic Nonlinear Circuits via a Memristor
Directory of Open Access Journals (Sweden)
Ch. K. Volos
2014-10-01
Full Text Available In this work, the case of coupling between chaotic nonlinear circuits via a memristor, is studied. As a circuit, the most well-known nonlinear circuit, the circuit of Chua oscillator, is chosen. The two identical circuits are coupled unidirectionally via the HP’s memristor, by using a recently new proposed window function. The simulation results show a variety of dynamical phenomena, such as chaotic synchronization and on-off intermittency, depending on memristor’s initial state and the parameters of the chosen window function.
One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures
DEFF Research Database (Denmark)
Belykh, Vladimir N.; Mosekilde, Erik
1996-01-01
The paper presents a qualitative analysis of coupled map lattices (CMLs) for the case of arbitrary nonlinearity of the local map and with space-shift as well as diffusion coupling. The effect of synchronization where, independently of the initial conditions, all elements of a CML acquire uniform...... dynamics is investigated and stable chaotic time behaviors, steady structures, and traveling waves are described. Finally, the bifurcations occurring under the transition from spatiotemporal chaos to chaotic synchronization and the peculiarities of CMLs with specific symmetries are discussed....
Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers
Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos
2017-01-01
We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.
Chaotic scattering of two identical point vortex pairs revisited
DEFF Research Database (Denmark)
Tophøj, Laust Emil Hjerrild; Aref, Hassan
2008-01-01
A new numerical exploration suggests that the motion of two vortex pairs, with constituent vortices all of the same absolute circulation, displays chaotic scattering regimes. The mechanisms leading to chaotic scattering are different from the “slingshot effect” identified by Price [Phys. Fluids A 5...... unstable periodic solutions similar to those seen in the thereby associated three-vortex problems. The integrals of motion, linear impulse and Hamiltonian are recast in a form appropriate for vortex pair scattering interactions that provides constraints on the parameters characterizing the outgoing vortex...
Self-organized periodic lattices of chaotic defects
Willeboordse, F H; Frederick H Willeboordse; Kunihiko Kaneko
1994-01-01
A novel type of self-organized lattice in which chaotic defects are arranged periodically is reported for a coupled map model of open flow. We find that temporally chaotic defects are followed by spatial relaxation to an almost periodic state when suddenly a next defect appears. The distance between successive defects is found to be generally predetermined and diverging logarithmically when approaching a certain critical point. The phenomena are analyzed and shown to be explicable as the results of a boundary crisis for the spatially extended system.
Autonomous third-order duffing-holmes type chaotic oscillator
DEFF Research Database (Denmark)
Lindberg, Erik; Tamaseviciute, E; Mykolaitis, G
2009-01-01
A novel Duffing-Holmes type autonomous chaotic oscillator is described. In comparison with the well-known nonautonomous Duffing-Holmes circuit it lacks the external periodic drive, but includes two extra linear feedback subcircuits, namely a direct positive feedback loop, and an inertial negative...... feedback loop. In contrast to many other autonomous chaotic oscillators, including linear unstable resonators and nonlinear damping loops, the novel circuit is based on nonlinear resonator and linear damping loop in the negative feedback. SPICE simulation and hardware experimental investigations...
Optimal Control for a Class of Chaotic Systems
Directory of Open Access Journals (Sweden)
Jianxiong Zhang
2012-01-01
Full Text Available This paper proposes the optimal control methods for a class of chaotic systems via state feedback. By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal control method of piecewise linear systems, which is cast as an optimization problem under constraints of bilinear matrix inequalities (BMIs. In addition, the lower bound on cost function can be achieved by solving a semidefinite programming (SDP. Finally, numerical examples are given to illustrate the results.
Chaotic Colpitts Oscillator for the Ultrahigh Frequency Range
DEFF Research Database (Denmark)
Tamasevicius, A.; Mykolaitis, G.; Bumeliene, S.
2006-01-01
. Simulations indicate that chaotic oscillations observed experimentally at higher frequencies, e.g., at about 1000MHz are caused by parasites, like wiring inductances, loss resistance appearing due to skin effect, and collector-emitter capacitance of the transistor. Reliable and reproducible chaos can......PSpice simulation and experimental results demonstrating chaotic performance of the Colpitts oscillator in the ultrahigh frequency (300–1000 MHz) range are presented.Various combinations of the resonance tank parameters are considered to achieve a fundamental frequency as high as possible...... be generated at fundamental frequencies up to about 500MHz with the single-stage Colpitts oscillator using the microwave 9 GHz bipolar junction transistors....
Hierarchy of rational order families of chaotic maps with an invariant ...
Indian Academy of Sciences (India)
We introduce an interesting hierarchy of rational order chaotic maps that possess an invariant measure. In contrast to the previously introduced hierarchy of chaotic maps [1–5], with merely entropy production, the rational order chaotic maps can simultaneously produce and consume entropy. We compute the ...
Lag Full State Hybrid Projective Synchronization in Different Fractional-Order Chaotic Systems
Tang, Yang; Fang, Jian-An; Chen, Liang
In this paper, lag full state hybrid projective synchronization (LFSHPS) in fractional-order chaotic systems is first studied. We show that LFSHPS does exist in fractional-order chaotic systems. Based on active control theory, synchronization schemes for LFSHPS of the fractional-order chaotic systems are given. Numerical simulations are provided to illustrate and verify the effectiveness of the proposed methods.
Drifter dispersion in the Adriatic Sea: Lagrangian data and chaotic model
Directory of Open Access Journals (Sweden)
G. Lacorata
2001-01-01
Full Text Available We analyze characteristics of drifter trajectories from the Adriatic Sea with recently introduced nonlinear dynamics techniques. We discuss how in quasi-enclosed basins, relative dispersion as a function of time, a standard analysis tool in this context, may give a distorted picture of the dynamics. We further show that useful information may be obtained by using two related non-asymptotic indicators, the Finite-Scale Lyapunov Exponent (FSLE and the Lagrangian Structure Function (LSF, which both describe intrinsic physical properties at a given scale. We introduce a simple chaotic model for drifter motion in this system, and show by comparison with the model that Lagrangian dispersion is mainly driven by advection at sub-basin scales until saturation sets in.Key words. Oceanography: General (marginal and semi-closed seas – Oceanography: Physical (turbulence, diffusion, and mixing processes; upper ocean processes
Application of a MEMS-Based TRNG in a Chaotic Stream Cipher
Directory of Open Access Journals (Sweden)
Miguel Garcia-Bosque
2017-03-01
Full Text Available In this work, we used a sensor-based True Random Number Generator in order to generate keys for a stream cipher based on a recently published hybrid algorithm mixing Skew Tent Map and a Linear Feedback Shift Register. The stream cipher was implemented and tested in a Field Programmable Gate Array (FPGA and was able to generate 8-bit width data streams at a clock frequency of 134 MHz, which is fast enough for Gigabit Ethernet applications. An exhaustive cryptanalysis was completed, allowing us to conclude that the system is secure. The stream cipher was compared with other chaotic stream ciphers implemented on similar platforms in terms of area, power consumption, and throughput.
A fast image encryption system based on chaotic maps with finite precision representation
Energy Technology Data Exchange (ETDEWEB)
Kwok, H.S. [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (China)]. E-mail: hskwok@ee.cityu.edu.hk; Tang, Wallace K.S. [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (China)]. E-mail: kstang@ee.cityu.edu.hk
2007-05-15
In this paper, a fast chaos-based image encryption system with stream cipher structure is proposed. In order to achieve a fast throughput and facilitate hardware realization, 32-bit precision representation with fixed point arithmetic is assumed. The major core of the encryption system is a pseudo-random keystream generator based on a cascade of chaotic maps, serving the purpose of sequence generation and random mixing. Unlike the other existing chaos-based pseudo-random number generators, the proposed keystream generator not only achieves a very fast throughput, but also passes the statistical tests of up-to-date test suite even under quantization. The overall design of the image encryption system is to be explained while detail cryptanalysis is given and compared with some existing schemes.
Application of a MEMS-Based TRNG in a Chaotic Stream Cipher.
Garcia-Bosque, Miguel; Pérez, Adrián; Sánchez-Azqueta, Carlos; Celma, Santiago
2017-03-21
In this work, we used a sensor-based True Random Number Generator in order to generate keys for a stream cipher based on a recently published hybrid algorithm mixing Skew Tent Map and a Linear Feedback Shift Register. The stream cipher was implemented and tested in a Field Programmable Gate Array (FPGA) and was able to generate 8-bit width data streams at a clock frequency of 134 MHz, which is fast enough for Gigabit Ethernet applications. An exhaustive cryptanalysis was completed, allowing us to conclude that the system is secure. The stream cipher was compared with other chaotic stream ciphers implemented on similar platforms in terms of area, power consumption, and throughput.
Ustinov, E.
1999-01-01
Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.
Chaotic Homes and School Achievement: A Twin Study
Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Jaffee, Sara R.; Plomin, Robert
2011-01-01
Background: Chaotic homes predict poor school performance. Given that it is known that genes affect both children's experience of household chaos and their school achievement, to what extent is the relationship between high levels of noise and environmental confusion in the home, and children's school performance, mediated by heritable child…
Classification of periodic, chaotic and random sequences using ...
Indian Academy of Sciences (India)
ities of different datasets. Entropy cannot differentiate between chaotic and random sequences while ApEn and LZ cannot distinguish between weak and strong chaos. Figure 1. 95% confidence interval for mean LZ complexity of 50 samples of length. 20 using four bins. Pramana – J. Phys., Vol. 84, No. 3, March 2015. 367 ...
Planktonic interactions and chaotic advection in Langmuir circulation
DEFF Research Database (Denmark)
Bees, Martin Alan; Mezic, I.; McGlade, J.
1998-01-01
The role of unsteady laminar flows for planktonic communities is investigated. Langmuir circulation is used, as a typical medium-scale structure, to illustrate mechanisms for the generation of plankton patches. Two behaviours are evident: chaotic regions that help to spread plankton and locally...
Analytical-Algebraic Approach to Solving Chaotic System
Beran, Zdeněk; Čelikovský, Sergej
The aim of this paper is to present the application of the analytical series technique to study properties of the nonlinear chaotic dynamical systems. More specifically, Laplace-Adomian decomposition method is applied to Rössler system and the so-called generalized Lorenz system. Some advantages and possible applications of this approach are discussed. Results are illustrated by numerical computations.
Neural network model to control an experimental chaotic pendulum
Bakker, R; Schouten, JC; Takens, F; vandenBleek, CM
1996-01-01
A feedforward neural network was trained to predict the motion of an experimental, driven, and damped pendulum operating in a chaotic regime. The network learned the behavior of the pendulum from a time series of the pendulum's angle, the single measured variable. The validity of the neural
Study on chaotic behaviors of RCLSJ model Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Hu, Y-T; Zhou, T-g; Gu, J; Yan, S-l; Fang, L; Zhao, X-J [College of Information Technical Science, Nankai University, Tianjin, 300071 (China)], E-mail: huytnankai@yahoo.com.cn
2008-02-15
Chaotic behaviors of the dc-biased resistively-capacitively-inductively shunted Josephson junctions are studied numerically. The existence of the chaos is proved by the spectrum and strange attractor. We also find out the route to chaos is intermittence. The parameter space in which chaos exits is obtained, and different features of the chaos in different parameter range are also given.
RBF neural network based H∞ synchronization for unknown chaotic ...
Indian Academy of Sciences (India)
MS received 9 February 2010; accepted 24 May 2010. Abstract. In this paper, we propose a new H∞ synchronization strategy, called a. Radial Basis Function Neural Network H∞ synchronization (RBFNNHS) strategy, for unknown chaotic systems in the presence of external disturbance. In the pro- posed framework, a ...
Working Towards Führer: A Chaotic View
Cakar, Ulas
Leadership is a concept that has been discussed since the beginning of history. Even though there have been many theories in the field accepting leadership's role in bringing order, chaotic aspects of leadership are generally neglected. This chapter aims to examine the leadership beyond an orderly interpretation of universe. For this purpose, Third Reich period and leadership during this period will be examined. Ian Kershaw's "Working Towards Führer" concept provides a unique understanding of leadership concept. It goes beyond the dualist depiction of Third Reich, it does not state Adolf Hitler as an all powerful dictator, or a weak one. Rather, he expresses that due to the conditions in the Third Reich, Adolf Hitler was both of this. This complex situation can be understood deeper when it is examined through the lens of chaos theory. This study contributes to the field by being the first in using chaos theory for examining "Working Towards Führer" concept and its development. Seemingly orderly nature of synchronization process and its vortex will be shown. Adolf Hitler's storm spot position in the chaotic system and its dynamics are explained. War's entropic power and its effect on the downfall of the system is crucial in understanding this unique chaotic system. The chaotic pattern of "Working Towards Führer" offers an opportunity to analyze the complexities of the leadership concept.
Classically induced suppression of energy growth in a chaotic ...
Indian Academy of Sciences (India)
contrast with the well-known localization phenomena that originate due to quantum interferences. We show that classically ... (1) to study the classical and quantum dynamics of a chaotic system in which the period- ically kicked .... would break away from one such quasiperiodic orbit to join another at each encounter with.
Chaotic behaviour of nonlinear coupled reaction–diffusion system in ...
Indian Academy of Sciences (India)
In recent years, nonlinear coupled reaction–diffusion (CRD) system has been widely investigated by coupled map lattice method. Previously, nonlinear behaviour was observed dynamically when one or two of the three variables in the discrete system change. In this paper, we consider the chaotic behaviour when three ...
Adaptive control and synchronization of a fractional-order chaotic ...
Indian Academy of Sciences (India)
journal of. April 2013 physics pp. 583–592. Adaptive control and synchronization of a fractional-order chaotic system. CHUNLAI LI1,∗ and YAONAN TONG2. 1College of Physics and Electronics; 2School of Information and Communication Engineering,. Hunan Institute of Science and Technology, Yueyang 414006, China.
FPGA implementation of fractional-order discrete memristor chaotic ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 90; Issue 1. FPGA implementation of fractional-order discrete memristor chaotic system and its commensurate and incommensurate synchronisations. ANITHA KARTHIKEYAN KARTHIKEYAN RAJAGOPAL. Research Article Volume 90 Issue 1 January 2018 Article ID ...
Nonstationary and Chaotic Dynamics in Age-Structured Population Models
Directory of Open Access Journals (Sweden)
Arild Wikan
2017-01-01
Full Text Available The dynamics from nonlinear discrete age-structured population models is under consideration. Focus is on bifurcations, as well as nonstationary and chaotic dynamics. We also explore different mechanisms which may lead to periodic phenomena. Some new results are also presented, in particular from models where both fecundity and survival terms contain nonlinear elements.
Neuro-fuzzy system for chaotic time series forecasting
Masulli, Francesco; Studer, Leonard
1997-10-01
We report on an on-going study to assess potential benefits using soft computing methods in forecasting problems. Our goal is to forecast natural phenomena represented by time series that show chaotic features. We use a neuro-fuzzy system for its ability to adapt to numerical data and for the possibility to input and extract expert knowledge expressed in words. We present results of experiments designed to study how to shape a neuro-fuzzy systems to forecast chaotic time series. Our main conclusions are: (1) The neuro-fuzzy system is able to forecast a synthetic chaotic time series with high accuracy if the number of inputs and the time delay between them are chosen adequately. (2) The Takens-Mane theorem from chaos theory gives a useful lower bound on the minimal number of inputs. (3) The time delay between the inputs can not be set a priori. It has to be tuned for every different times series. (4) The number of fuzzy rules seems related to the size of the learning set and not to the structure of the chaotic dynamical system. We tentatively try to interpret the rules that the neuro-fuzzy system has learned. Finally we discuss the adequacy of the whole set of fuzzy rules to forecast locally the dynamical system.
The adaptive synchronization of fractional-order Liu chaotic system ...
Indian Academy of Sciences (India)
In this paper, the chaos control and the synchronization of two fractional-order Liu chaotic systems with unknown parameters are studied. According to the Lyapunov stabilization theory and the adaptive control theorem, the adaptive control rule is obtained for the described error dynamic stabilization. Using the adaptive rule ...
Robust dynamical effects in traffic and chaotic maps on trees
Indian Academy of Sciences (India)
Abstract. In the dynamic processes on networks collective effects emerge due to the couplings between nodes, where the network structure may play an important role. In- teraction along many network links in the nonlinear dynamics may lead to a kind of chaotic collective behavior. Here we study two types of well-defined ...
Constructive interference II: Semi-chaotic multigrid methods
Energy Technology Data Exchange (ETDEWEB)
Douglas, C.C. [Yale Univ., New Haven, CT (United States)
1994-12-31
Parallel computer vendors have mostly decided to move towards multi-user, multi-tasking per node machines. A number of these machines already exist today. Self load balancing on these machines is not an option to the users except when the user can convince someone to boot the entire machine in single user mode, which may have to be done node by node. Chaotic relaxation schemes were considered for situations like this as far back as the middle 1960`s. However, very little convergence theory exists. Further, what exists indicates that this is not really a good method. Besides chaotic relaxation, chaotic conjugate direction and minimum residual methods are explored as smoothers for symmetric and nonsymmetric problems. While having each processor potentially going off in a different direction from the rest is not what one would strive for in a unigrid situation, the change of grid procedures in multigrid provide a natural way of aiming all of the processors in the right direction. The author presents some new results for multigrid methods in which synchronization of the calculations on one or more levels is not assumed. However, he assumes that he knows how far out of synch neighboring subdomains are with respect to each other. Thus the author can show that the combination of a limited chaotic smoother and coarse level corrections produces a better algorithm than would be expected.
Self Control of Chaotic Dynamics using LTI Filters
Mitra, P
1997-01-01
In this brief, an algorithm for controlling chaotic systems using small, continuous time perturbations is presented. Stabilisation is achieved by self controlling feedback using low order LTI filters. The algorithm alleviates the need of complex calculati ons or costly delay elements, and can be implemented in a wide variety of systems using simple circuit elments only.
Hybrid synchronization of two independent chaotic systems on ...
Indian Academy of Sciences (India)
Keywords. Hybrid synchronization; complex network; information source; chaotic system. ... One is how the same network node of the complex network was affected by different information sources. Another is how to achieve hybrid synchronization on the network. In this paper, the theoretical analysis andnumerical ...
Is the normal heart rate ``chaotic'' due to respiration?
Wessel, Niels; Riedl, Maik; Kurths, Jürgen
2009-06-01
The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: "Is the normal heart rate `chaotic' due to respiration?"
Performance Analysis of Chaotic Encryption Using a Shared Image ...
African Journals Online (AJOL)
Most of the secret key encryption algorithms in use today are designed based on either the feistel structure or the substitution-permutation structure. This paper focuses on data encryption technique using multi-scroll chaotic natures and a publicly shared image as a key. A key is generated from the shared image using a full ...
Anti-synchronization of the rigid body exhibiting chaotic dynamics ...
African Journals Online (AJOL)
Anti-synchronization of the rigid body exhibiting chaotic dynamics. ... Journal of the Nigerian Association of Mathematical Physics ... Global asymptotic stability and convergence of the sum of the dynamical variables representing the Eulerian state space of the two rigid bodies was verified by numerical simulations. JONAMP ...
Control of chaotic patterns in a Josephson junction model
DEFF Research Database (Denmark)
Olsen, Ole Hvilsted; Samuelsen, Mogens Rugholm
2000-01-01
The effect of an applied rf signal on the dynamics of a large-area Josephson junction is examined. The problem of controlling spatiotemporal chaotic patterns induced by the external magnetic field is addressed. Chaos control is conducted by a weak spatially distributed force. (C) 2000 Elsevier...
Multigroup Synchronization in 1D-Bernoulli Chaotic Collaborative CDMA
Directory of Open Access Journals (Sweden)
Sumith Babu Suresh Babu
2017-01-01
Full Text Available Code-division multiple access (CDMA has played a remarkable role in the field of wireless communication systems, and its capacity and security requirements are still being addressed. Collaborative multiuser transmission and detection are a contemporary technique used in CDMA systems. The performance of these systems is governed by the proper accommodation of the users and by proper synchronization schemes. The major research concerns in the existing multiuser overloaded CDMA schemes are (i statistically uncorrelated PN sequences that cause multiple-access interference (MAI and (ii the security of the user’s data. In this paper, a novel grouped CDMA scheme, the 1D-Bernoulli chaotic collaborative CDMA (BCC-CDMA, is introduced, in which mutually orthogonal chaotic sequences spread the users’ data within a group. The synchronization of multiple groups in this scheme has been analyzed under MAI limited environments and the results are presented. This increases the user capacity and also provides sufficient security as a result of the correlation properties possessed by the chaotic codes. Multigroup synchronization is achieved using a 1D chaotic pilot sequence generated by the Bernoulli Map. The mathematical model of the proposed system is described and compared with the theoretical model of the synchronization in CDMA, the simulation results of which are presented.
Role of the Absorbing Area in Chaotic Synchronization
DEFF Research Database (Denmark)
Maistrenko, Yu.L.; Maistrenko, V.L.; Popovich, A.
1998-01-01
When two identical chaotic oscillators interact, one or more intervals of coupling parameters generally exist in which the synchronized state is weakly stable, and its basin of attraction is riddled with holes that are repelled from it. The paper discusses the role of the absorbing area...... for the emergence of local vs global riddling and for controlling the dynamics, once synchronization breaks down....
Synchronization in driven chaotic systems: Diagnostics and bifurcations
DEFF Research Database (Denmark)
Vadivasova, T.E.; Balanov, A.G.; Sosnovtseva, O.V.
1999-01-01
We investigate generic aspects of chaos synchronization in an externally forced Rössler system. By comparing different diagnostic methods, we show the existence of a well-defined cut-off of synchronization associated with the transition from weak to fully developed chaos. Two types of chaotic...... behavior, differing by the number of vanishing Lyapunov exponents, are observed outside the synchronization regime....
Multiscality in the Dynamics of Coupled Chaotic Systems
DEFF Research Database (Denmark)
Pavlov, A.N.; Sosnovtseva, Olga; Ziganshin, A.R.
2002-01-01
We investigate the scaling features of complex motions in systems of two coupled chaotic oscillators by means of the wavelet-transform modulus maxima method and the detrended fluctuation analysis. We show that the transition from asynchronous to synchronous dynamics typically reduces the degree o...
Schwarzian derivative as a proof of the chaotic behaviour
Indian Academy of Sciences (India)
In recent years, a sufﬁcient condition for determining chaotic behaviours of the nonlinear systems has been characterized by the negative Schwarzian derivative (Hacıbekiroğlu et al, Nonlinear Anal.: Real World Appl. 10, 1270 (2009)). In this work, the Schwarzian derivative has been calculated for investigating the quantum ...
Chaotic control of a piezomagnetoelastic beam for improved energy harvesting
Geiyer, Daniel; Kauffman, Jeffrey L.
2015-04-01
Linear cantilevered piezoelectric energy harvesters do not typically operate efficiently through a large span of excitation frequencies. Beam theory dictates optimum displacement at resonance excitation; however, typical environments evolve and vary over time with no clear dominant frequency. Nonlinear, non-resonant harvesting techniques have been implemented, but none so far have embraced chaotic behavior as a desirable property of the system. This work aims to benefit from chaotic phenomena by stabilizing high energy periodic orbits located within a chaotic attractor to improve operating bandwidth. Delay coordinate embedding is used to reconstruct the system states from a single time series measurement of displacement. Orbit selection, local linearization, and control perturbation are all computed from the single time series independent of an explicit system model. Although chaos in non-autonomous systems is typically associated with harmonic inputs, chaotic attractor motion can also exist throughout other excitation sources. Accelerometer data from inside a commercial vehicle and a stochastic excitation signal are used to illustrate the existence of chaos in dynamic environments, allowing such environments to be likely candidates for the proposed bandwidth improving energy harvesting technique.
The Rescue Mission: Assigning Guilt to a Chaotic Scene.
Procter, David E.
1987-01-01
Seeks to identify rhetorical distinctiveness of the rescue mission as a form of belligerency--examining presidential discourse justifying the 1985 Lebanon intervention, the 1965 Dominican intervention, and the 1983 Grenada intervention. Argues that the distinction is in guilt narrowly assigned to a chaotic scene and the concomitant call for…
Learning to simulate and predict chaotic dynamical systems
Bakker, R.
2007-01-01
With precise knowledge of the rules which govern a deterministic chaotic system, it is possible to interact with the system and change its dynamics. This research is part of a larger project, in which chaos control is used to improve the bubbling behavior of multi-phase chemical reactors. Chaos
Chaotic Dynamics and Transport in Classical and Quantum Systems
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations.
Pattern formations in chaotic spatio-temporal systems
Indian Academy of Sciences (India)
4Institute of Applied Physics and Computational Mathematics, Beijing 100088, China. 5Beijing–Hong Kong–Singapore Joint Center of Nonlinear and Complex Systems,. Beijing Normal University Branch, Beijing, China. *Corresponding author. E-mail: ganghu@bnu.edu.cn. Abstract. Pattern formations in chaotic ...
Increased-order generalized synchronization of chaotic and ...
Indian Academy of Sciences (India)
PACS Nos 05.45.Pq; 05.45.Gg; 05.45.Ac. 1. Introduction. Chaos synchronization has gained a lot of attention over the last two decades [1] due to its potential applications in vast areas of physics and engineering sciences. Synchroniza- tion of chaotic dynamical systems has received considerable interest among scientists in.
Soskin, S M; Yevtushenko, O M; Mannella, R
2005-11-25
We show for the first time that a weak perturbation in a Hamiltonian system may lead to an arbitrarily wide chaotic layer and fast chaotic transport. This generic effect occurs in any spatially periodic Hamiltonian system subject to a sufficiently slow ac force. We explain it and develop an explicit theory for the layer width, verified in simulations. Chaotic spatial transport as well as applications to the diffusion of particles on surfaces, threshold devices, and others are discussed.
Finite-Time Synchronizing Fractional-Order Chaotic Volta System with Nonidentical Orders
Directory of Open Access Journals (Sweden)
Jian-Bing Hu
2013-01-01
Full Text Available We investigate synchronizing fractional-order Volta chaotic systems with nonidentical orders in finite time. Firstly, the fractional chaotic system with the same structure and different orders is changed to the chaotic systems with identical orders and different structure according to the property of fractional differentiation. Secondly, based on the lemmas of fractional calculus, a controller is designed according to the changed fractional chaotic system to synchronize fractional chaotic with nonidentical order in finite time. Numerical simulations are performed to demonstrate the effectiveness of the method.
Directory of Open Access Journals (Sweden)
Ping Zhou
2017-01-01
Full Text Available Based on the 3D autonomous continuous Lü chaotic system, a new 3D autonomous continuous chaotic system is proposed in this paper, and there are coexisting chaotic attractors in the 3D autonomous continuous chaotic system. Moreover, there are no overlaps between the coexisting chaotic attractors; that is, there are two isolated chaotic attractors (in this paper, named “positive attractor” and “negative attractor,” resp.. The “positive attractor” and “negative attractor” depend on the distance between the initial points (initial conditions and the unstable equilibrium points. Furthermore, by means of topological horseshoes theory and numerical computation, the topological horseshoes in this 3D autonomous continuous system is found, and the topological entropy is obtained. These results indicate that the chaotic attractor emerges in the new 3D autonomous continuous system.
Chaotic dynamics of a three-phase clock-driven oscillator with dual voltage controllability
Zhou, Ji Chao; Song, Han Jung
2012-10-01
In this work, we study a novel dual-voltage-controlled chaotic oscillator by using a three-phase clock. The chaotic oscillator is based on two nonlinear functions, which are needed for chaotic signal generation. The proposed chaotic circuit consists of three non-overlapping clock-driven MOS (metal oxide semiconductor) switches for S/H (sample and hold), a level shifter, and two nonlinear functions for nonlinearity in the feedback. After nonlinear functions for chaotic signal generation had been optimized, the proposed circuit was simulated with SPICE (Simulation Program with Integrated Circuit Emphasis) program using a 0.6 µm CMOS (complementary metal oxide semiconductor) process parameter. For various control voltages, its chaotic dynamics, such as time waveform, bifurcation diagram and state transition diagram were analyzed. We confirmed that the circuit could generate discrete chaotic signals in specific control voltages. This circuit is expected to be utilized for various chaos applications.
Compound Generalized Function Projective Synchronization for Fractional-Order Chaotic Systems
Directory of Open Access Journals (Sweden)
Chunde Yang
2016-01-01
Full Text Available A modified function projective synchronization for fractional-order chaotic system, called compound generalized function projective synchronization (CGFPS, is proposed theoretically in this paper. There are one scaling-drive system, more than one base-drive system, and one response system in the scheme of CGFPS, and the scaling function matrices come from multidrive systems. The proposed CGFPS technique is based on the stability theory of fractional-order system. Moreover, we achieve the CGFPS between three-driver chaotic systems, that is, the fractional-order Arneodo chaotic system, the fractional-order Chen chaotic system, and the fractional-order Lu chaotic system, and one response chaotic system, that is, the fractional-order Lorenz chaotic system. Numerical experiments are demonstrated to verify the effectiveness of the CGFPS scheme.
Generation and control of multi-scroll chaotic attractors in fractional order systems
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Wajdi M. [Department of Electrical and Computer Engineering, University of Sharjah, P.O. Box 27272, Sharjah (United Arab Emirates)] e-mail: wajdi@sharjah.ac.ae
2005-08-01
The objective of this paper is twofold: on one hand we demonstrate the generation of multi-scroll attractors in fractional order chaotic systems. Then, we design state feedback controllers to eliminate chaos from the system trajectories. It is demonstrated that modifying the underlying nonlinearity of the fractional chaotic system results in the birth of multiple chaotic attractors, thus forming the so called multi-scroll attractors. The presence of chaotic behavior is evidenced by a positive largest Lyapunov exponent computed for the output time series. We investigate generation and control of multi-scroll attractors in two different models, both of which are fractional order and chaotic: an electronic oscillator, and a mechanical 'jerk' model. The current findings extend previously reported results on generation of n-scroll attractors from the domain of integer order to the domain of fractional order chaotic systems, and addresses the issue of controlling such chaotic behaviors. Our investigations are validated through numerical simulations.
Gas and aerosol mixing in the acinus.
Tsuda, Akira; Henry, Frank S; Butler, James P
2008-11-30
This review is concerned with mixing and transport in the human pulmonary acinus. We first examine the current understanding of the anatomy of the acinus and introduce elements of fluid mechanics used to characterize the transport of momentum, gas and aerosol particles. We then review gas transport in more detail and highlight some areas of current research. Next we turn our attention to aerosol transport and in particular to mixing within the alveoli. We examine the factors influencing the level of mixing, review the concept of chaotic convective mixing, and make some brief comments on how mixing affects particle deposition. We end with a few comments on some issues unique to the neonatal and developing lung.
Directory of Open Access Journals (Sweden)
Roman Senkerik
2014-01-01
Full Text Available Evolutionary technique differential evolution (DE is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions.
Inertio-elastic mixing in a straight microchannel with side wells
Energy Technology Data Exchange (ETDEWEB)
Hong, Sun Ok [Department of Energy Systems Research, Ajou University, Suwon 443-749 (Korea, Republic of); Cooper-White, Justin J. [Tissue Engineering and Microfluidics Laboratory, The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, 4072 QLD (Australia); School of Chemical Engineering, University of Queensland, St Lucia, 4072 QLD (Australia); CSIRO, Manufacturing Flagship, Clayton, 3169 Victoria (Australia); Kim, Ju Min, E-mail: jumin@ajou.ac.kr [Department of Energy Systems Research, Ajou University, Suwon 443-749 (Korea, Republic of); Department of Chemical Engineering, Ajou University, Suwon 443-749 (Korea, Republic of)
2016-01-04
Mixing remains a challenging task in microfluidic channels because of their inherently small length scale. In this work, we propose an efficient microfluidic mixer based on the chaotic vortex dynamics of a viscoelastic flow in a straight channel with side wells. When the inertia and elasticity of a dilute polymer solution are balanced (i.e., the Reynolds number Re and Weissenberg number Wi are both on the order of 10{sup 1}), chaotic vortices appear in the side wells (inertio-elastic flow instability), enhancing the mixing of adjacent fluid streams. However, there is no chaotic vortex motion in Newtonian flows for any flow rate. Efficient mixing by such an inertio-elastic instability is found to be relevant for a wide range of Re values.
Subsystem eigenstate thermalization hypothesis
Dymarsky, Anatoly; Lashkari, Nima; Liu, Hong
2018-01-01
Motivated by the qualitative picture of canonical typicality, we propose a refined formulation of the eigenstate thermalization hypothesis (ETH) for chaotic quantum systems. This formulation, which we refer to as subsystem ETH, is in terms of the reduced density matrix of subsystems. This strong form of ETH outlines the set of observables defined within the subsystem for which it guarantees eigenstate thermalization. We discuss the limits when the size of the subsystem is small or comparable to its complement. In the latter case we outline the way to calculate the leading volume-proportional contribution to the von Neumann and Renyi entanglment entropies. Finally, we provide numerical evidence for the proposal in the case of a one-dimensional Ising spin chain.
A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control
Directory of Open Access Journals (Sweden)
Vaidyanathan Sundarapandian
2016-03-01
Full Text Available This paper announces an eight-term novel 3-D jerk chaotic system with three quadratic nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative properties of the jerk system are described. The novel jerk chaotic system has two equilibrium points, which are saddle-foci and unstable. The Lyapunov exponents of the novel jerk chaotic system are obtained as L1 = 0.20572,L2 = 0 and L3 = −1.20824. Since the sum of the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The Kaplan-Yorke dimension of the novel jerk chaotic system is derived as DKY = 2.17026. Next, an adaptive controller is designed via backstepping control method to globally stabilize the novel jerk chaotic system with unknown parameters. Moreover, an adaptive controller is also designed via backstepping control method to achieve global chaos synchronization of the identical jerk chaotic systems with unknown parameters. The backstepping control method is a recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of strict feedback systems. MATLAB simulations have been depicted to illustrate the phase portraits of the novel jerk chaotic system and also the adaptive backstepping control results.
Chaotic time series. Part II. System Identification and Prediction
Directory of Open Access Journals (Sweden)
Bjørn Lillekjendlie
1994-10-01
Full Text Available This paper is the second in a series of two, and describes the current state of the art in modeling and prediction of chaotic time series. Sample data from deterministic non-linear systems may look stochastic when analysed with linear methods. However, the deterministic structure may be uncovered and non-linear models constructed that allow improved prediction. We give the background for such methods from a geometrical point of view, and briefly describe the following types of methods: global polynomials, local polynomials, multilayer perceptrons and semi-local methods including radial basis functions. Some illustrative examples from known chaotic systems are presented, emphasising the increase in prediction error with time. We compare some of the algorithms with respect to prediction accuracy and storage requirements, and list applications of these methods to real data from widely different areas.
Entanglement Entropy of Eigenstates of Quantum Chaotic Hamiltonians.
Vidmar, Lev; Rigol, Marcos
2017-12-01
In quantum statistical mechanics, it is of fundamental interest to understand how close the bipartite entanglement entropy of eigenstates of quantum chaotic Hamiltonians is to maximal. For random pure states in the Hilbert space, the average entanglement entropy is known to be nearly maximal, with a deviation that is, at most, a constant. Here we prove that, in a system that is away from half filling and divided in two equal halves, an upper bound for the average entanglement entropy of random pure states with a fixed particle number and normally distributed real coefficients exhibits a deviation from the maximal value that grows with the square root of the volume of the system. Exact numerical results for highly excited eigenstates of a particle number conserving quantum chaotic model indicate that the bound is saturated with increasing system size.
An Enhanced Differential Evolution with Elite Chaotic Local Search
Directory of Open Access Journals (Sweden)
Zhaolu Guo
2015-01-01
Full Text Available Differential evolution (DE is a simple yet efficient evolutionary algorithm for real-world engineering problems. However, its search ability should be further enhanced to obtain better solutions when DE is applied to solve complex optimization problems. This paper presents an enhanced differential evolution with elite chaotic local search (DEECL. In DEECL, it utilizes a chaotic search strategy based on the heuristic information from the elite individuals to promote the exploitation power. Moreover, DEECL employs a simple and effective parameter adaptation mechanism to enhance the robustness. Experiments are conducted on a set of classical test functions. The experimental results show that DEECL is very competitive on the majority of the test functions.
Discriminating chaotic and stochastic dynamics through the permutation spectrum test
Energy Technology Data Exchange (ETDEWEB)
Kulp, C. W., E-mail: Kulp@lycoming.edu [Department of Astronomy and Physics, Lycoming College, Williamsport, Pennsylvania 17701 (United States); Zunino, L., E-mail: lucianoz@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CONICET La Plata—CIC), C.C. 3, 1897 Gonnet (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata (Argentina)
2014-09-01
In this paper, we propose a new heuristic symbolic tool for unveiling chaotic and stochastic dynamics: the permutation spectrum test. Several numerical examples allow us to confirm the usefulness of the introduced methodology. Indeed, we show that it is robust in situations in which other techniques fail (intermittent chaos, hyperchaotic dynamics, stochastic linear and nonlinear correlated dynamics, and deterministic non-chaotic noise-driven dynamics). We illustrate the applicability and reliability of this pragmatic method by examining real complex time series from diverse scientific fields. Taking into account that the proposed test has the advantages of being conceptually simple and computationally fast, we think that it can be of practical utility as an alternative test for determinism.
A Retrospection of Chaotic Phenomena in Electrical Systems
Directory of Open Access Journals (Sweden)
Umesh Kumar
1998-01-01
Full Text Available In the last decade new phenomena have been observed in all areas of non linear dynamics, principal among these being ‘Chaotic phenomena’. Chaos has been reported virtually from every scientific discipline. This paper summarizes a study of the chaotic phenomena in electrical systems and attempts to translate the mathematical ideas and techniques into language that engineers and applied scientists can use to study ‘Chaos’. Towards this end, the paper has summarized the study of chaos in several examples like Chua’s circuit family; Folded Torus circuit; non-autonomous circuits; switched capacitor circuits and hyper-chaos circuits. As observed in power systems, control systems and digital filters, chaos has been exhibited and shown on examples.
NATO Advanced Study Institute on Chaotic Dynamics : Theory and Practice
1992-01-01
Many conferences, meetings, workshops, summer schools and symposia on nonlinear dynamical systems are being organized these days, dealing with a great variety of topics and themes -classical and quantum, theoretical and experimental. Some focus on integrability, or discuss the mathematical foundations of chaos. Others explore the beauty of fractals, or examine endless possibilities of applications to problems of physics, chemistry, biology and other sciences. A new scientific discipline has thus emerged, with its own distinct philosophical viewpoint and an impressive arsenal of new methods and techniques, which may be called Chaotic Dynamics. Perhaps its most outstanding achievement so far has been to shed new light on many long standing issues involving complicated, irregular or "chaotic" nonlinear phenomena. The concepts of randomness, complexity and unpredictability have been critically re-examined and the fundamental importance of scaling, self-similarity and sensitive dependence on parameters a...
Prescribed performance synchronization for fractional-order chaotic systems
Liu, Heng; Li, Sheng-Gang; Sun, Ye-Guo; Wang, Hong-Xing
2015-09-01
In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error, are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11401243 and 61403157), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201504002), and the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (Grant No. KJ2015A256).
Generalized Synchronization of Nonidentical Fractional-Order Chaotic Systems
Wang, Xing-Yuan; Hu, Zun-Wen; Luo, Chao
2013-10-01
In this paper, a chaotic synchronization scheme is proposed to achieve the generalized synchronization between two different fractional-order chaotic systems. Based on the stability theory of fractional-order systems and the pole placement technique, a controller is designed and theoretical proof is given. Two groups of examples are shown to verify the effectiveness of the proposed scheme, the first one is to realize the generalized synchronization between the fractional-order Chen system and the fractional-order Rössler system, the second one is between the fractional-order Lü system and the fractional-order hyperchaotic Lorenz system. The corresponding numerical simulations verify the effectiveness of the proposed scheme.
Constructive effects of noise in homoclinic chaotic systems.
Zhou, C S; Kurths, J; Allaria, E; Boccaletti, S; Meucci, R; Arecchi, F T
2003-06-01
Many chaotic oscillators have coherent phase dynamics but strong fluctuations in the amplitudes. At variance with such a behavior, homoclinic chaos is characterized by quite regular spikes but strong fluctuation in their time intervals due to the chaotic recurrence to a saddle point. We study influences of noise on homoclinic chaos. We demonstrate both numerically and experimentally on a CO2 laser various constructive effects of noise, including coherence resonance, noise-induced synchronization in uncoupled systems and noise-enhanced phase synchronization, deterministic resonance with respect to signal frequency, and stochastic resonance versus noise intensity in response to weak signals. The peculiar sensitivity of the system along the weak unstable manifold of the saddle point underlines the unified mechanism of these nontrivial and constructive noise-induced phenomena.
Fuzzy Sliding Mode Control for Hyper Chaotic Chen System
Directory of Open Access Journals (Sweden)
SARAILOO, M.
2012-02-01
Full Text Available In this paper, a fuzzy sliding mode control method is proposed for stabilizing hyper chaotic Chen system. The main objective of the control scheme is to stabilize unstable equilibrium point of the system by controlling the states of the system so that they converge to a pre-defined sliding surface and remain on it. A fuzzy control technique is also utilized in order to overcome the main disadvantage of sliding mode control methods, i.e. chattering problem. It is shown that the equilibrium point of the system is stabilized by using the proposed method. A stability analysis is also performed to prove that the states of the system converge to the sliding surface and remain on it. Simulations show that the control method can be effectively applied to Chen system when it performs hyper chaotic behavior.
A new kind of metal detector based on chaotic oscillator
Hu, Wenjing
2017-12-01
The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.
Chaotic Microcavity Laser with Low threshold and Unidirectional Output
Song, Q H; Liu, B Y; Ho, S T; Fang, W; Solomon, G s
2015-01-01
Here we report lasing action in lima\\c{c}on-shaped GaAs microdisks with quantum dots (QDs) embedded. Although the intracavity ray dynamics is predominantly chaotic, high-$Q$ modes are concentrated in the region $\\chi > \\chi_c$ as a result of wave localization. Strong optical confinement by total internal reflection leads to very low lasing threshold. Our measurements show that all the lasing modes have output in the same direction, regardless of their wavelengths and intracavity mode structures. This universal emission direction is determined by directed phase space flow of optical rays in the open chaotic cavity. The divergence angle of output beam is less than 40 degree. The unidirectionality proves to be robust against small deviations of the real cavity shape and size from the designed values.
Chaotic Traveling Waves in a Coupled Map Lattice
Kaneko, K
1993-01-01
Abstract: Traveling waves triggered by a phase slip in coupled map lattices are studied. A local phase slip affects globally the system, which is in strong contrast with kink propagation. Attractors with different velocities coexist, and form quantized bands determined by the number of phase slips. The mechanism and statistical and dynamical characters are studied with the use of spatial asymmetry, basin volume ratio, Lyapunov spectra, and mutual information. If the system size is not far from an integer multiple of the selected wavelength, attractors are tori, while weak chaos remains otherwise, which induces chaotic modulation of waves or a chaotic itinerancy of traveling states. In the itinerancy, the residence time distribution obeys the power law distribution, implying the existence of a long-ranged correlation. Supertransients before the formation of traveling waves are noted in the high nonlinearity regime. In the weaker nonlinearity regime corresponding to the frozen random pattern, we have found fluc...
On the Integrability and Chaotic behaviour of an ecological model
Joy, M P
1996-01-01
A three species food chain model is studied analytically as well as numerically. Integrability of the model is studied using Painleve analysis while chaotic behaviour is studied using numerical techniques, such as calculation of Lyapunov exponents, plotting the bifurcation diagram and phase plots. We correct and critically comment on the wrong results reported recently on this ecological model, in a paper by Rai ([1995] ``Modelling ecological systems'', Int. J. Bifurcation and Chaos 5, 537-543).
Chaotic spin precession in anisotropic universes and fermionic dark matter
Kamenshchik, A Yu
2015-01-01
We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. In the Bianchi-IX universe it acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early Universe may produce the sterile particles contributing to dark matter.
Proving Chaotic Behavior of CBC Mode of Operation
Abidi, Abdessalem; Wang, Qianxue; Bouallegue, Belgacem; Machhout, Mohsen; Guyeux, Christophe
2016-06-01
The cipher block chaining (CBC) mode of operation was invented by IBM (International Business Machine) in 1976. It presents a very popular way of encrypting that is used in various applications. In this paper, we have mathematically proven that, under some conditions, the CBC mode of operation can admit a chaotic behavior according to Devaney. Some cases will be properly studied in order to provide evidence for this idea.
Adaptive Control of the Chaotic System via Singular System Approach
Directory of Open Access Journals (Sweden)
Yudong Li
2014-01-01
Full Text Available This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method.
Chaotic gas bubble oscillations in a viscoelastic fluid
Jiménez-Fernández, Javier
2008-05-01
Regular and chaotic radial oscillations of an acoustically driven gas bubble in a viscoelastic fluid have been theoretically analyzed. For parameter values usually found in diagnostic ultrasound period-doubling routes to chaos have been identified. Thresholds values of the external pressure amplitude for a first bifurcation in terms of the elasticity and the shear viscosity of the host fluid have also been evaluated. To cite this article: J. Jiménez-Fernández, C. R. Mecanique 336 (2008).
Chaotic behaviour of nonlinear coupled reaction–diffusion system in ...
Indian Academy of Sciences (India)
f(φ(x),ψ(x)) and g(φ(x),ψ(x)) mean all kinds of noises in reality. As the behaviour of coupled .... ψm,n(s) represents the parasite density in generations s and s + 1, μ is the increasing rate of the host population and β ..... two increasing effects on the chaotic behaviour of system (3) in three-dimensional space, respectively. 5.
Chaotic behavior for the secrete key of cryptographic system
Energy Technology Data Exchange (ETDEWEB)
Ali pacha, A. E-mail: alipacha@yahoo.com; Hadj-said, N.; Belmeki, B.; Belgoraf, A
2005-03-01
In this article we want to prove that the cryptographic systems produce cryptograms that have a chaotic behavior. We can then, deduce that it is possible to put the chaos theory at the disposal of cryptology. This enables us to cipher the data and do a cryptanalysis on the basis of chaos. In other words, can we assume that cryptography is a particular case of the chaos?.
HASHING ALGORITHM BASED ON TWO-DIMENSIONAL CHAOTIC MAPPINGS
Directory of Open Access Journals (Sweden)
A. V. Sidorenko
2017-01-01
Full Text Available A new hashing algorithm based on dynamic chaos is proposed. Owing to the use of chaotic mappings, this algorithm is irreversible and a search for two messages with identical hash-values becomes computationally difficult. The proposed algorithm consists of the stages: selection of the variables and of the parameters of two-dimensional chaotic mappings; realization of iterations of the chaotic mappings with the addition of the original-message elements to the variables; realization of iterations of the chaotic mappings without the addition of the original-message elements to the variables; the hash-value formation. The formation of the two hash-values h1 and h2realized with different orders of the variables. The resultant hash-value is obtained by the modulo-2 addition operation applied to the hash-values h1 and h2. The proposed algorithm has been tested. It has been found that this algorithm is characterized by the avalanche effect. The statistical characteristics of the sequence formed of hash-values are identical to those of the sequence with the randomly obtained values of the elements, pointing to the adequate performance of this algorithm. The computational experiment has been realized using the Chirikov, «Arnold’s cat» and Henon maps. It is demonstrated that, with the use of Henon and «Arnold’s cat» maps for the messages exceeding 4 KB, the proposed algorithm outperforms «Keccak» algorithm, being faster by 20% and more.The proposed hashing algorithm may be used in solving the problems of data integrity in modern telecommunication systems.
Directory of Open Access Journals (Sweden)
Mohamad Yaghoub Abdollahzadeh Jamalabadi
2015-02-01
Full Text Available Investigation of the effect of thermal radiation on a fully developed magnetohydrodynamic (MHD convective flow of a Newtonian, incompressible and electrically conducting fluid in a vertical microchannel bounded by two infinite vertical parallel plates with constant temperature walls through a lateral magnetic field of uniform strength is presented. The Rosseland model for the conduction radiation heat transfer in an absorbing medium and two plates with slip-flow and no-slip conditions are assumed. In addition, the induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The non-dimensional governing equations are solved numerically using Runge–Kutta–Fehlberg method with a shooting technique. The channel is optimized based on the Second Law of Thermodynamics by changing various parameters such as the thermal radiation parameter, the temperature parameter, Hartmann number, Grashof to Reynolds ratio, velocity slip length, and temperature jump.
Kyômen, Tôru; Asaka, Yoshinori; Itoh, Mitsuru
2005-01-01
Magnetic susceptibility and heat capacity due to the spin-state transition in LaCoO3 were calculated by a molecular-field model in which the energy-level diagram of high-spin state reported by Ropka and Radwanski [Phys. Rev. B 67, 172401 (2003)] is assumed for the excited state, and the energy and entropy of mixing of high-spin Co ions and low-spin Co ions are introduced phenomenologically. The experimental data below 300K were well reproduced by this model, which proposes that the high-spin excited state can be populated even if the energy of high-spin state is much larger than that of low-spin state, because the negatively large energy of mixing reduces the net excitation energy. The stability of each spin state including the intermediate-spin state is discussed based on the present results and other reports.
Ustinov, E. A.
1999-01-01
Evaluation of weighting functions in the atmospheric remote sensing is usually the most computer-intensive part of the inversion algorithms. We present an analytic approach to computations of temperature and mixing ratio weighting functions that is based on our previous results but the resulting expressions use the intermediate variables that are generated in computations of observable radiances themselves. Upwelling radiances at the given level in the atmosphere and atmospheric transmittances from space to the given level are combined with local values of the total absorption coefficient and its components due to absorption of atmospheric constituents under study. This makes it possible to evaluate the temperature and mixing ratio weighting functions in parallel with evaluation of radiances. This substantially decreases the computer time required for evaluation of weighting functions. Implications for the nadir and limb viewing geometries are discussed.
Light Management in Optoelectronic Devices with Disordered and Chaotic Structures
Khan, Yasser
2012-07-01
With experimental realization, energy harvesting capabilities of chaotic microstructures were explored. Incident photons falling into chaotic trajectories resulted in energy buildup for certain frequencies. As a consequence, many fold enhancement in light trapping was observed. These ellipsoid like chaotic microstructures demonstrated 25% enhancement in light trapping at 450nm excitation and 15% enhancement at 550nm excitation. Optimization of these structures can drive novel chaos-assisted energy harvesting systems. In subsequent sections of the thesis, prospect of broadband light extraction from white light emitting diodes were investigated, which is an unchallenged but quintessential problem in solid-state lighting. Size dependent scattering allows microstructures to interact strongly with narrow-band light. If disorder is introduced in spread and sizes of microstructures, broadband light extraction is possible. A novel scheme with Voronoi tessellation to quantify disorder in physical systems was also introduced, and a link between voronoi disorder and state disorder of statistical mechanics was established. Overall, in this thesis some nascent concepts regarding disorder and chaos were investigated to efficiently manage electromagnetic waves in optoelectronic devices.
Digital noise generators using one-dimensional chaotic maps
Energy Technology Data Exchange (ETDEWEB)
Martínez-Ñonthe, J. A; Palacios-Luengas, L.; Cruz-Irisson, M.; Vazquez Medina, R. [Instituto Politécnico Nacional, ESIME-Culhuacan, Santa Ana 1000, 04430, D.F. (Mexico); Díaz Méndez, J. A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla, Puebla (Mexico)
2014-05-15
This work shows how to improve the statistical distribution of signals produced by digital noise generators designed with one-dimensional (1-D) chaotic maps. It also shows that in a digital electronic design the piecewise linear chaotic maps (PWLCM) should be considered because they do not have stability islands in its chaotic behavior region, as it occurs in the case of the logistic map, which is commonly used to build noise generators. The design and implementation problems of the digital noise generators are analyzed and a solution is proposed. This solution relates the output of PWLCM, usually defined in the real numbers' domain, with a codebook of S elements, previously defined. The proposed solution scheme produces digital noise signals with a statistical distribution close to a uniform distribution. Finally, this work shows that it is possible to have control over the statistical distribution of the noise signal by selecting the control parameter of the PWLCM and using, as a design criterion, the bifurcation diagram.
Emergence of Chaotic Scattering in Ultracold Er and Dy
Directory of Open Access Journals (Sweden)
T. Maier
2015-11-01
Full Text Available We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach-resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory-inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant nonzero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate.
A chaotic spread spectrum system for underwater acoustic communication
Ren, Hai-Peng; Bai, Chao; Kong, Qingju; Baptista, Murilo S.; Grebogi, Celso
2017-07-01
Acoustic communication is a key technology to exchange information underwater, which is of great significance to explore marine resources and to marine defense. The underwater acoustic channel is a time-space-frequency varying channel characterized by serious multipath effect, limited frequency band, complex environmental noises and significant Doppler frequency shift phenomenon, which makes underwater acoustic communication with low Bit Error Rate (BER) to be a challenging task. A novel chaotic spread spectrum acoustic communication method with low BER is proposed in this paper. A chaotic signal, generated by a hybrid dynamical system, is used as a spread spectrum sequence at the transmitter end. At the receiver end, a corresponding chaotic matched filter is used to offset the effect of multipath propagation and noise. The proposed method does not require the complicated equalization and modulation-demodulation technologies that are necessary for conventional acoustic communication. Simulation results show that the proposed method has good anti-interference ability and lower BER as compared to other traditional methods.
Chaotic dynamics in erbium-doped fiber ring lasers
Abarbanel, Henry D. I.; Kennel, Matthew B.; Buhl, Michael; Tureman Lewis, Clifford
1999-09-01
Chaotically oscillating rare-earth-doped fiber ring lasers (DFRLs) may provide an attractive way to exploit the broad bandwidth available in an optical communications system. Recent theoretical and experimental investigations have successfully shown techniques to modulate information onto the wide-band chaotic oscillations, transmit that signal along an optical fiber, and demodulate the information at the receiver. We develop a theoretical model of a DFRL and discuss an efficient numerical simulation which includes intrinsic linear and nonlinear induced birefringence, both transverse polarizations, group velocity dispersion, and a finite gain bandwidth. We analyze first a configuration with a single loop of optical fiber containing the doped fiber amplifier, and then, as suggested by Roy and VanWiggeren, we investigate a system with two rings of optical fiber-one made of passive fiber alone. The typical round-trip time for the passive optical ring connecting the erbium-doped amplifier to itself is 200 ns, so ~105 round-trips are required to see the slow effects of the population inversion dynamics in this laser system. Over this large number of round-trips, physical effects like GVD and the Kerr nonlinearity, which may appear small at our frequencies and laser powers via conventional estimates, may accumulate and dominate the dynamics. We demonstrate from our model that chaotic oscillations of the ring laser with parameters relevant to erbium-doped fibers arises from the nonlinear Kerr effect and not from interplay between the atomic population inversion and radiation dynamics.
Organizational Knowledge Conversion and Creation Processes in a Chaotic Environment
Directory of Open Access Journals (Sweden)
Andrei Ștefan NESTIAN
2013-05-01
Full Text Available This is an explorative and conceptual paper, based on the analysis and comparison of relevant literature. the purpose of the article is to clarify the differences between knowledge creating processes and knowledge conversion processes, by analysing them when confronted with a chaotic environment. the way the knowledge conversion and creation processes are presented by Ikujiro Nonaka and his co-workers suggests the necessary existence of a Ba in order to generate the spiral of knowledge creation. this implies the acceptance of a relationship between the environment and the knowledge conversion process, in which the environment influences the knowledge creation. the article is based on the hypothesis that a chaotic environment, characterized by unpredictability, non-linearity and crisis, will lead to specific ways of functioning of the knowledge creation and conversion process that highlight the relations between the two different types of processes. Starting from the general concept of resilience, herein one proposes and explains the concept of resilience of the knowledge conversion system. the role of the attractors from the chaotic environment in the creation of new knowledge is identified and explained
Chaotic orbits of a pendulum with variable length
Directory of Open Access Journals (Sweden)
Massimo Furi
2004-03-01
Full Text Available The main purpose of this investigation is to show that a pendulum, whose pivot oscillates vertically in a periodic fashion, has uncountably many chaotic orbits. The attribute chaotic is given according to the criterion we now describe. First, we associate to any orbit a finite or infinite sequence as follows. We write 1 or $-1$ every time the pendulum crosses the position of unstable equilibrium with positive (counterclockwise or negative (clockwise velocity, respectively. We write 0 whenever we find a pair of consecutive zero's of the velocity separated only by a crossing of the stable equilibrium, and with the understanding that different pairs cannot share a common time of zero velocity. Finally, the symbol $omega$, that is used only as the ending symbol of a finite sequence, indicates that the orbit tends asymptotically to the position of unstable equilibrium. Every infinite sequence of the three symbols ${1,-1,0}$ represents a real number of the interval $[0,1]$ written in base 3 when $-1$ is replaced with 2. An orbit is considered chaotic whenever the associated sequence of the three symbols ${1,2,0}$ is an irrational number of $[0,1]$. Our main goal is to show that there are uncountably many orbits of this type.
A Simple Hybrid Synchronization for a Class of Chaotic Financial Systems
Directory of Open Access Journals (Sweden)
Jiming Zheng
2017-01-01
Full Text Available It is an important to achieve the hybrid synchronization of the chaotic financial system. Chaos synchronization is equivalent to the error system which is asymptotically stable. The hybrid synchronization for a class of finance chaotic systems is discussed. First, a simple single variable controller is obtained to synchronize two identical chaotic financial systems with different initial conditions. Second, a novel algorithm is proposed to determine the variables of the master system that should antisynchronize with corresponding variables of the slave system and use this algorithm to determine the corresponding variables in the chaotic financial systems. The hybrid synchronization of the chaotic financial systems is realized by a simple controller. At the same time, different controllers can implement the chaotic financial system hybrid synchronization. In comparison with the existing results, the obtained controllers in this paper are simpler than those of the existing results. Finally, numerical simulations show the effectiveness of the proposed results.
NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach
Energy Technology Data Exchange (ETDEWEB)
Goudarzi, Sobhan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Jafari, Sajad, E-mail: sajadjafari@aut.ac.ir [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Moradi, Mohammad Hassan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Sprott, J.C. [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States)
2016-02-15
The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.
Directory of Open Access Journals (Sweden)
Junwei Sun
2014-01-01
Full Text Available Some important dynamical properties of the memristor chaotic oscillator system have been studied in the paper. A novel hybrid dislocated control method and a general hybrid projective dislocated synchronization scheme have been realized for memristor chaotic oscillator system. The paper firstly presents hybrid dislocated control method for stabilizing chaos to the unstable equilibrium point. Based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization has been studied for the drive memristor chaotic oscillator system and the same response memristor chaotic oscillator system. For the different dimensions, the memristor chaotic oscillator system and the other chaotic system have realized general hybrid projective dislocated synchronization. Numerical simulations are given to show the effectiveness of these methods.
Lu, Jia; Zhang, Xiaoxing; Xiong, Hao
The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.
Mixing Ventilation. Guide on mixing air distribution design
DEFF Research Database (Denmark)
Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor
In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...... of air diffusers and exhaust openings....
Mixing ventilation guide on mixing air distribution design
Kandzia, Claudia; Kosonen, Risto; Krikor Melikov, Arsen; Nielsen, Peter Vilhelm
2013-01-01
In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection of air diffusers and exhaust openings.
深谷, 義勝; 朱, 伯銘; 紫藤, 進; 鈴木, 郊宇
1991-01-01
Many studies on the chaotic phenomena in nonlinear dynamical systems has appaeared recentry. In these research works, the double scroll chaotic attractor be well-known to electronic circuit which has been experimentally observed on oscillating with a negative resistance circuit synthesized by using an Op・Amp. Now, this chaotic behavior aries from complicated interactions between the instantaneous electric energy stored in the capacitors and the instantaneous magnetic energy stored in the indu...
A Digital Image Encryption Algorithm Based On Chaotic Logistic Maps Using A Fuzzy Controller
Mouad HAMRI; Jilali Mikram; Fouad Zinoun
2011-01-01
In this paper we will present a digital image encryption algorithm based on chaotic logistic maps and using fuzzy logic (FL-CM-EA). Many papers was published in the recent years about encryption algorithm using chaotic dynamical systems thanks to the set of very interesting properties guaranteed by these chaotic dynamical systems: high sensitivity to initial conditions, ergodicity, simplicity of implementation..., that can be used to conceive efficient cryptosystems. The main idea of this pap...
Investigation of chaotic and regular dynamics of the asteroids – Venus companions
Galushina, T. Yu; Letner, O. N.
2017-11-01
The paper deals with the investigation of regular and chaotic dynamics of near-Earth asteroids (NEAs) in the vicinity of resonance 1:1 with Venus. The degree of chaoticity of NEA orbits is determined by analyzing the behavior of parameters MEGNO and OMEGNO. It is shown that the asteroid motion in the resonance vicinity and/or multiple close approaches of NEAs with planets lead to the appearance of dynamical chaoticity.