Johnson noise and the thermal Casimir effect
International Nuclear Information System (INIS)
Bimonte, Giuseppe
2007-01-01
We study the thermal interaction between two nearby thin metallic wires, at finite temperature. It is shown that the Johnson currents in the wires give rise, via inductive coupling, to a repulsive force between them. This thermal interaction exhibits all the puzzling features found recently in the thermal Casimir effect for lossy metallic plates, suggesting that the physical origin of the difficulties encountered in the Casimir problem resides in the inductive coupling between the Johnson currents inside the plates. We show that in our simple model all puzzles are resolved if account is taken of capacitive effects associated with the end points of the wires. Our findings suggest that capacitive finite-size effects may play an important role in the resolution of the analogous problems met in the thermal Casimir effect
Effective field theory of thermal Casimir interactions between anisotropic particles.
Haussman, Robert C; Deserno, Markus
2014-06-01
We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.
National Research Council Canada - National Science Library
Homes, Christopher
1997-01-01
...). When the indirect manifestations of the ZPF are interpreted as due to radiation pressure, acoustic noise can provide an excellent analog to investigate the Casimir effect as well as other effects due to the ZPF...
The field theory of symmetrical layered electrolytic systems and the thermal Casimir effect
International Nuclear Information System (INIS)
Dean, D S; Horgan, R R
2005-01-01
We present a general extension of a field-theoretic approach developed in earlier papers to the calculation of the free energy of symmetrically layered electrolytic systems which is based on the sine-Gordon field theory for the Coulomb gas. The method is to construct the partition function in terms of the Feynman evolution kernel in the Euclidean time variable associated with the coordinate normal to the surfaces defining the layered structure. The theory is applicable to cylindrical systems and its development is motivated by the possibility that a static van der Waals or thermal Casimir force could provide an attractive force stabilizing a dielectric tube formed from a lipid bilayer, an example of which is provided by the t-tubules occurring in certain muscle cells. In this context, we apply the theory to the calculation of the thermal Casimir effect for a dielectric tube of radius R and thickness δ formed from such a membrane in water. In a grand canonical approach we find that the leading contribution to the Casimir energy behaves like -k B TLκ C /R which gives rise to an attractive force which tends to contract the tube radius. We find that κ C ∼0.3 for the case of typical lipid membrane t-tubules. We conclude that except in the case of a very soft membrane this force is insufficient to stabilize such tubes against the bending stress which tends to increase the radius. We briefly discuss the role of the lipid membrane reservoir implicit in the approach and whether its nature in biological systems may possibly lead to a stabilizing mechanism for such lipid tubes
Microscopic dynamical Casimir effect
Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia
2018-03-01
We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs, which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating macroscopic metallic mirror.
Thermal Casimir effect in Kerr spacetime with quintessence and massive gravitons
Energy Technology Data Exchange (ETDEWEB)
Bezerra, V.B. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Christiansen, H.R. [Ciencia e Tecnologia do Ceara (IFCE), Departamento de Fisica, Instituto Federal de Educacao, Sobral, CE (Brazil); Cunha, M.S. [Universidade Estadual do Ceara, Grupo de Fisica Teorica (GFT), Fortaleza, CE (Brazil); Muniz, C.R.; Tahim, M.O. [Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras do Sertao Central, Quixada, CE (Brazil)
2017-11-15
Starting from an analytical expression for the Helmholtz free energy we calculate the thermal corrections to the Casimir energy density and entropy within nearby ideal parallel plates in the vacuum of a massless scalar field. Our framework is the Kerr spacetime in the presence of quintessence and massive gravitons. The high and low temperature regimes are especially analyzed in order to distinguish the main contributions. For instance, in the high temperature regime, we show that the force between the plates is repulsive and grows with both the quintessence and the massive gravitons. Regarding the Casimir entropy, our results are in agreement with the Nernst heat theorem and therefore confirm the third law of thermodynamics in the present scenario. (orig.)
Nonmonotonic Thermal Casimir Force from Geometry-Temperature Interplay
International Nuclear Information System (INIS)
Weber, Alexej; Gies, Holger
2010-01-01
The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a nonmonotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by a reweighting of relevant fluctuations on the scale of the thermal wavelength. The essence of the phenomenon becomes transparent within the worldline picture of the Casimir effect.
Casimir effect: The classical limit
International Nuclear Information System (INIS)
Feinberg, J.; Mann, A.; Revzen, M.
2001-01-01
We analyze the high temperature (or classical) limit of the Casimir effect. A useful quantity which arises naturally in our discussion is the 'relative Casimir energy', which we define for a configuration of disjoint conducting boundaries of arbitrary shapes, as the difference of Casimir energies between the given configuration and a configuration with the same boundaries infinitely far apart. Using path integration techniques, we show that the relative Casimir energy vanishes exponentially fast in temperature. This is consistent with a simple physical argument based on Kirchhoff's law. As a result the 'relative Casimir entropy', which we define in an obviously analogous manner, tends, in the classical limit, to a finite asymptotic value which depends only on the geometry of the boundaries. Thus the Casimir force between disjoint pieces of the boundary, in the classical limit, is entropy driven and is governed by a dimensionless number characterizing the geometry of the cavity. Contributions to the Casimir thermodynamical quantities due to each individual connected component of the boundary exhibit logarithmic deviations in temperature from the behavior just described. These logarithmic deviations seem to arise due to our difficulty to separate the Casimir energy (and the other thermodynamical quantities) from the 'electromagnetic' self-energy of each of the connected components of the boundary in a well defined manner. Our approach to the Casimir effect is not to impose sharp boundary conditions on the fluctuating field, but rather take into consideration its interaction with the plasma of 'charge carriers' in the boundary, with the plasma frequency playing the role of a physical UV cutoff. This also allows us to analyze deviations from a perfect conductor behavior
International Nuclear Information System (INIS)
Flachi, Antonino; Tanaka, Takahiro
2009-01-01
We consider the Casimir effect between two parallel plates localized on a brane. We argue that in order to properly compute the contribution to the Casimir energy due to any higher dimensional field, it is necessary to take into account the localization properties of the Kaluza-Klein modes. When the bulk field configuration is such that no massless mode appears in the spectrum, as, for instance, when the higher dimensional field obeys twisted boundary conditions across the branes, the correction to the Casimir energy is exponentially suppressed. When a massless mode is present in the spectrum, the correction to the Casimir energy can be, in principle, sizeable. However, when the bulk field is massless and strongly coupled to brane matter, the model is already excluded without resorting to any Casimir force experiment. The case which is in principle interesting is when the massless mode is not localized on the visible brane. We illustrate a method to compute the Casimir energy between two parallel plates, localized on the visible brane, approximating the Kaluza-Klein spectrum by truncation at the first excited mode. We treat this case by considering a pistonlike configuration and introduce a small parameter, ε, that takes into account the relative amplitude of the zero-mode wave function on the visible brane with respect to the massive excitation. We find that the Casimir energy is suppressed by two factors: at lowest order in ε, the correction to the Casimir energy comes entirely from the massive mode and turns out to be exponentially suppressed; the next-to-leading order correction in ε follows, instead, a power-law suppression due to the small wave-function overlap of the zero mode with matter confined on the visible brane. Generic comments on the constraints on new physics that may arise from Casimir force experiments are also made.
Thermal Fluctuations in Casimir Pistons
Lomnitz, M.; Villarreal, C.
2012-07-01
We present analytical and simple expressions to determine the free energy, internal energy, entropy, as well as the pressure acting at the interface of a perfectly conducting rectangular Casimir piston. We show that infrared divergencies linear in temperature become cancelled within the piston configuration, and show a continuous behavior consistent with intuitive expectations.
Experiment, theory and the Casimir effect
International Nuclear Information System (INIS)
Mostepanenko, V M
2009-01-01
Several problems at the interface between the field-theoretical description of the Casimir effect and experiments on measuring the Casimir force are discussed. One of these problems is connected with the definition of the Casimir free energy in ideal metal rectangular boxes satisfying the general physical requirements. It is shown that the consideration of rectangular boxes with a partition (piston) does not negate the previously known results obtained for boxes without a piston. Both sets of results are found to be in mutual agreement. Another problem is related to the use of the proximity force approximation for the interpretation of the experimental data and to the search of analytical results beyond the PFA based on the first principles of quantum field theory. Next, we discuss concepts of experimental precision and of the measure of agreement between experiment and theory. The fundamental difference between these two concepts is clarified. Finally, recent approach to the thermal Casimir force taking screening effects into account is applied to real metals. It is shown that this approach is thermodynamically and experimentally inconsistent. The physical reasons of this inconsistency are connected with the violation of thermal equilibrium which is the basic applicability condition of the Lifshitz theory.
Casimir effect for interacting fields
International Nuclear Information System (INIS)
Kay, B.S.
1982-01-01
The author discusses some recent work on the Casimir effect: that is the problem of renormalizing Tsub(μγ) on locally-flat space-times. That is on space-times which, while topologically non-trivial are locally Minkowskian - with vanishing local curvature. The author has developed a systematic method for calculating this Casimir effect for interacting fields to arbitrary order in perturbation theory - and for arbitrary components of Tsub(μγ) which he describes in general and then illustrates it by describing first order perturbation theory calculations for a lambdaphi 4 theory for the two models: the cylinder space-time and the parallel plates. (Auth.)
Casimir Effect on the Worldline
Gies, Holger; Moyaerts, L; Gies, Holger; Langfeld, Kurt; Moyaerts, Laurent
2003-01-01
We develop a method to compute the Casimir effect for arbitrary geometries. The method is based on the string-inspired worldline approach to quantum field theory and its numerical realization with Monte-Carlo techniques. Concentrating on Casimir forces between rigid bodies induced by a fluctuating scalar field, we test our method with the parallel-plate configuration. For the experimentally relevant sphere-plate configuration, we study curvature effects quantitatively and perform a comparison with the ``proximity force approximation'', which is the standard approximation technique. Sizable curvature effects are found for a distance-to-curvature-radius ratio of a/R >~ 0.02. Our method is embedded in renormalizable quantum field theory with a controlled treatment of the UV divergencies. As a technical by-product, we develop various efficient algorithms for generating closed-loop ensembles with Gaussian distribution.
Casimir effect and the quantum vacuum
International Nuclear Information System (INIS)
Jaffe, R.L.
2005-01-01
In discussions of the cosmological constant, the Casimir effect is often invoked as decisive evidence that the zero-point energies of quantum fields are ''real.'' On the contrary, Casimir effects can be formulated and Casimir forces can be computed without reference to zero-point energies. They are relativistic, quantum forces between charges and currents. The Casimir force (per unit area) between parallel plates vanishes as α, the fine structure constant, goes to zero, and the standard result, which appears to be independent of α, corresponds to the α→∞ limit
Casimir effect in the presence of metamaterials
Energy Technology Data Exchange (ETDEWEB)
Kort-Kamp, W.J.M.; Pinheiro, F.A.; Maia Neto, P.A.; Farina, C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Rosa, F.S.S. [Universite Paris-Sud (France). Lab. Charles Fabry
2011-07-01
Full text: The Casimir effect was theoretically predicted in 1948 by H. G. B. Casimir. In its original form, it is the attraction between two parallel plates made of perfectly conductors in vacuum. The novelty in the Casimir result was the method used and not the fact that two neutral bodies attract each other, since the force between two neutral, but polarizable, atoms was previously treated by London in 1930. Casimir demonstrated that the force between the plates could be calculated from the variation in the zero-point energy of the quantized electromagnetic field caused by the presence of the plates. Nowadays there is no doubt about the existence of this effect, which has been observed in the last decade in experiments of great precision. Casimir forces play an important role in nanotechnology, in particular in the study of micro- and nano-electromechanical systems, because these forces become dominant in the nanoscopic scale. Casimir forces are responsible for an attraction of individual parts of these devices, making them eventually to stick together. As a result, attractive Casimir forces constitute a nuisance for practical applications. Therefore the investigation of a repulsive Casimir force is of great current interest. It has been recently argued that Casimir repulsion could be obtained by an adequate choice of artificial materials, the so-called metamaterials, with engineered electromagnetic properties [R. Zhao et al, PRL 103, 103602 (2009)]. In this work we investigate the interaction between an atom and a chiral metamaterial plate. Using realistic parameters, obtained from recent experiments and computer simulations, we show that state-of-the-art chiral metamaterials are not able generate Casimir repulsive forces. We also investigate the possibility of magneto-optical metamaterials to exhibit a repulsive Casimir force. To accomplish this, we discuss the dispersive interaction between a magneto-optical sphere and a chiral surface or a magneto
The Casimir effect: medium and geometry
International Nuclear Information System (INIS)
Marachevsky, Valery N
2012-01-01
Theory of the Casimir effect is presented in several examples. Casimir–Polder-type formulas, Lifshitz theory and theory of the Casimir effect for two gratings separated by a vacuum slit are derived. Equations for the electromagnetic field in the presence of a medium and dispersion are discussed. The Casimir effect for systems with a layer of 2 + 1 fermions is studied. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)
The Casimir effect: a force from nothing
International Nuclear Information System (INIS)
Lambrecht, Astrid
2003-01-01
The attractive force between two surfaces in a vacuum - first predicted by Hendrik Casimir over 50 years ago - could affect everything from micro machines to unified theories of nature. What happens if you take two mirrors and arrange them so that they are facing each other in empty space? Your first reaction might be 'nothing at all'. In fact, both mirrors are mutually attracted to each other by the simple presence of the vacuum. This startling phenomenon was first predicted in 1948 by the Dutch theoretical physicist Hendrik Casimir while he was working at Philips Research Laboratories in Eindhoven on - of all things - colloidal solutions (see box). The phenomenon is now dubbed the Casimir effect, while the force between the mirrors is known as the Casimir force. For many years the Casimir effect was little more than a theoretical curiosity. But interest in the phenomenon has blossomed in recent years. Experimental physicists have realized that the Casimir force affects the workings of micro machined devices, while advances in instrumentation have enabled the force to be measured with ever-greater accuracy. The new enthusiasm has also been fired by fundamental physics. Many theorists have predicted the existence of 'large' extra dimensions in 10- and 11-dimensional unified field theories of the fundamental forces. These dimensions, they say, could modify classical Newtonian gravitation at sub-millimetre distances. Measuring the Casimir effect could therefore help physicists to test the validity of such radical ideas. (U.K.)
Fermionic Casimir effect with helix boundary condition
International Nuclear Information System (INIS)
Zhai, Xiang-hua; Li, Xin-zhou; Feng, Chao-Jun
2011-01-01
In this paper, we consider the fermionic Casimir effect under a new type of space-time topology using the concept of quotient topology. The relation between the new topology and that in Feng and Li (Phys. Lett. B 691:167, 2010), Zhai et al. (Mod. Phys. Lett. A 26:669, 2011) is something like that between a Moebius strip and a cylindric. We obtain the exact results of the Casimir energy and force for the massless and massive Dirac fields in the (D+1)-dimensional space-time. For both massless and massive cases, there is a Z 2 symmetry for the Casimir energy. To see the effect of the mass, we compare the result with that of the massless one and we found that the Casimir force approaches the result of the force in the massless case when the mass tends to zero and vanishes when the mass tends to infinity. (orig.)
Thermofield dynamics and Casimir effect for fermions
International Nuclear Information System (INIS)
Queiroz, H.; Silva, J.C. da; Khanna, F.C.; Malbouisson, J.M.C.; Revzen, M.; Santana, A.E.
2005-01-01
A generalization of the Bogoliubov transformation is developed to describe a space compactified fermionic field. The method is the fermionic counterpart of the formalism introduced earlier for bosons [Phys. Rev. A 66 (2002) 052101], and is based on the thermofield dynamics approach. We analyze the energy-momentum tensor for the Casimir effect of a free massless fermion field in a d-dimensional box at finite temperature. As a particular case the Casimir energy and pressure for the field confined in a three-dimensional parallelepiped box are calculated. It is found that the attractive or repulsive nature of the Casimir pressure on opposite faces changes depending on the relative magnitude of the edges. We also determine the temperature at which the Casimir pressure in a cubic box changes sign and estimate its value when the edge of the cube is of the order of the confining lengths for baryons
Interplay between geometry and temperature in the Casimir effect
Energy Technology Data Exchange (ETDEWEB)
Weber, Alexej
2010-06-23
In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)
Interplay between geometry and temperature in the Casimir effect
International Nuclear Information System (INIS)
Weber, Alexej
2010-01-01
In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)
Casimir effect in spherical shells
International Nuclear Information System (INIS)
Ruggiero, J.R.
1985-01-01
The analytic regularization method is applied to study the Casimir effect for spherical cavities. Although many works have been presented in the past few years, problems related to the elimination of the regulator parameter still remain. A way to calculate the zero point energy of a perfectly conducting spherical shell which is a miscellaneous of those presented early is here proposed, How a cancelation of divergent terms occurs and how a finite parte is obtained after the elimination of the regulator parameter is shown. As a by-product the zero point energy of the interior vibration modes is obtained and this has some relevance to the quarks bag model. This relev ance is also discussed. The calculation of the energy fom the density view is also discussed. Some works in this field are criticized. The logarithmic divergent terms in the zero point energy are studied when the interior and exterior of the sphere are considered as a medium not dispersive and characterized by a dielectric constants ε 1 and ε 2 and peermeability constants μ 1 and μ 2 respectivelly. The logarithmic divergent terms are not present in the case of ε i μ i =K, with K some constant and i=1,2. (author) [pt
Casimir effect in hyperbolic polygons
International Nuclear Information System (INIS)
Ahmedov, H
2007-01-01
Using the point splitting regularization method and the trace formula for the spectra of quantum-mechanical systems in hyperbolic polygons which are the fundamental domains of discrete isometry groups acting in the two-dimensional hyperboloid we calculate the Casimir energy for massless scalar fields in hyperbolic polygons. The dependence of the vacuum energy on the number of vertices is established
Present status of controversies regarding the thermal Casimir force
International Nuclear Information System (INIS)
Mostepanenko, V M; Bezerra, V B; Decca, R S; Geyer, B; Fischbach, E; Klimchitskaya, G L; Krause, D E; Lopez, D; Romero, C
2006-01-01
It is well known that, beginning in 2000, the behaviour of the thermal correction to the Casimir force between real metals has been hotly debated. As was shown by several research groups, the Lifshitz theory, which provides the theoretical foundation for the calculation of both the van der Waals and Casimir forces, leads to different results depending on the model of metal conductivity used. To resolve these controversies, theoretical considerations based on the principles of thermodynamics and new experimental tests were invoked. We analyse the present status of the problem (in particular, the advantages and disadvantages of the approaches based on the surface impedance and on the Drude model dielectric function) using rigorous analytical calculations of the entropy of a fluctuating field. We also discuss the results of a new precise experiment on the determination of the Casimir pressure between two parallel plates by means of a micromechanical torsional oscillator
Casimir-Lifshitz force out of thermal equilibrium
Antezza, M.; Pitaevskii, L.P.; Stringari, S.; Svetovoy, Vitaly
We study the Casimir-Lifshitz interaction out of thermal equilibrium, when the interacting objects are at different temperatures. The analysis is focused on the surface-surface, surface-rarefied body, and surface-atom configurations. A systematic investigation of the contributions to the force
Optical and Casimir effects in topological materials
Wilson, Justin H.
Two major electromagnetic phenomena, magneto-optical effects and the Casimir effect, have seen much theoretical and experimental use for many years. On the other hand, recently there has been an explosion of theoretical and experimental work on so-called topological materials, and a natural question to ask is how such electromagnetic phenomena change with these novel materials. Specifically, we will consider are topological insulators and Weyl semimetals. When Dirac electrons on the surface of a topological insulator are gapped or Weyl fermions in the bulk of a Weyl semimetal appear due to time-reversal symmetry breaking, there is a resulting quantum anomalous Hall effect (2D in one case and bulk 3D in the other, respectively). For topological insulators, we investigate the role of localized in-gap states which can leave their own fingerprints on the magneto-optics and can therefore be probed. We have shown that these states resonantly contribute to the Hall conductivity and are magneto-optically active. For Weyl semimetals we investigate the Casimir force and show that with thickness, chemical potential, and magnetic field, a repulsive and tunable Casimir force can be obtained. Additionally, various values of the parameters can give various combinations of traps and antitraps. We additionally probe the topological transition called a Lifshitz transition in the band structure of a material and show that in a Casimir experiment, one can observe a non-analytic "kink'' in the Casimir force across such a transition. The material we propose is a spin-orbit coupled semiconductor with large g-factor that can be magnetically tuned through such a transition. Additionally, we propose an experiment with a two-dimensional metal where weak localization is tuned with an applied field in order to definitively test the effect of diffusive electrons on the Casimir force---an issue that is surprisingly unresolved to this day. Lastly, we show how the time-continuous coherent state
Maxwell-Chern-Simons Casimir effect
International Nuclear Information System (INIS)
Milton, K.A.; Ng, Y.J.
1990-01-01
The topology of (2+1)-dimensional space permits the construction of quantum electrodynamics with the usual Maxwell action augmented by a gauge-invariant, but P- and T-violating, Chern-Simons mass term. We discuss the Casimir effect between parallel lines in such a theory. The effect of finite temperature is also considered. In principle, our results provide a way to measure the topological mass of the photon
The Casimir Effect Upon A Single Plate
Hoodbhoy, Pervez
2004-01-01
In the presence of an external field, the imposition of specific boundary conditions can lead to interesting new manifestations of the Casimir effect. In particular, it is shown here that even a single conducting plate may experience a non-zero force due to vacuum fluctuations. The origins of this force lie in the change induced by the external potential in the density of available quantum states.
Dynamical Casimir effect with semi-transparent mirrors, and cosmology
International Nuclear Information System (INIS)
Elizalde, Emilio
2008-01-01
After reviewing some essential features of the Casimir effect and, specifically, of its regularization by zeta function and Hadamard methods, we consider the dynamical Casimir effect (or Fulling-Davies theory), where related regularization problems appear, with a view to an experimental verification of this theory. We finish with a discussion of the possible contribution of vacuum fluctuations to dark energy, in a Casimir-like fashion, that might involve the dynamical version
Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.
2018-03-01
It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.
Maxwell-Chern-Simons Casimir effect. II. Circular boundary conditions
International Nuclear Information System (INIS)
Milton, K.A.; Ng, Y.J.
1992-01-01
In odd-dimensional spaces, gauge invariance permits a Chern-Simons mass term for the gauge fields in addition to the usual Maxwell-Yang-Mills kinetic energy term. We study the Casimir effect in such a (2+1)-dimensional Abelian theory. The case of parallel conducting lines was considered by us in a previous paper. Here we discuss the Casimir effect for a circle and examine the effect of finite temperature. The Casimir stress is found to be attractive at both low and high temperatures
Mode Contributions to the Casimir Effect
Intravaia, F.; Henkel, C.
2010-04-01
Applying a sum-over-modes approach to the Casimir interaction between two plates with finite conductivity, we isolate and study the contributions of surface plasmons and Foucault (eddy current) modes. We show in particular that for the TE-polarization eddy currents provide a repulsive force that cancels, at high temperatures, the Casimir free energy calculated with the plasma model.
Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings
Directory of Open Access Journals (Sweden)
Vincenzo Macrì
2018-02-01
Full Text Available We study the dynamical Casimir effect using a fully quantum-mechanical description of both the cavity field and the oscillating mirror. We do not linearize the dynamics, nor do we adopt any parametric or perturbative approximation. By numerically diagonalizing the full optomechanical Hamiltonian, we show that the resonant generation of photons from the vacuum is determined by a ladder of mirror-field vacuum Rabi splittings. We find that vacuum emission can originate from the free evolution of an initial pure mechanical excited state, in analogy with the spontaneous emission from excited atoms. By considering a coherent drive of the mirror, using a master-equation approach to take losses into account, we are able to study the dynamical Casimir effect for optomechanical coupling strengths ranging from weak to ultrastrong. We find that a resonant production of photons out of the vacuum can be observed even for mechanical frequencies lower than the cavity-mode frequency. Since high mechanical frequencies, which are hard to achieve experimentally, were thought to be imperative for realizing the dynamical Casimir effect, this result removes one of the major obstacles for the observation of this long-sought effect. We also find that the dynamical Casimir effect can create entanglement between the oscillating mirror and the radiation produced by its motion in the vacuum field, and that vacuum Casimir-Rabi oscillations can occur. Finally, we also show that all these findings apply not only to optomechanical systems, but also to parametric amplifiers operating in the fully quantum regime.
The Casimir effect for pistons with transmittal boundary conditions
Fucci, Guglielmo
2017-11-01
This work focuses on the analysis of the Casimir effect for pistons subject to transmittal boundary conditions. In particular we consider, as piston configuration, a direct product manifold of the type I × N where I is a closed interval of the real line and N is a smooth compact Riemannian manifold. By utilizing the spectral zeta function regularization technique, we compute the Casimir energy of the system and the Casimir force acting on the piston. Explicit results for the force are provided when the manifold N is a d-dimensional sphere.
An ``Anatomic approach" to study the Casimir effect
Intravaia, Francesco; Haakh, Harald; Henkel, Carsten
2010-03-01
The Casimir effect, in its simplest definition, is a quantum mechanical force between two objects placed in vacuum. In recent years the Casimir force has been the object of an exponentially growing attention both from theorists and experimentalists. A new generation of experiments paved the way for new challenges and spotted some shadows in the comparison to theory. Here we are going to isolate different contributions to the Casimir interaction and perform a detailed study to shine new light on this phenomenon. As an example, the contributions of Foucault (eddy current) modes will be discussed in different configurations. This ``anatomic approach'' allows to clearly put into evidence special features and to explain unusual behaviors. This brings new physical understanding on the undergoing physical mechanisms and suggests new ways to engineer the Casimir effect.
Casimir Effect and Black Hole Radiation
Rahbardehghan, S.
2018-03-01
The gravitational field of a black hole intrinsically creates a potential barrier consisted of two reflecting boundaries; the first one far from the hole and the second one in the vicinity of its horizon. With respect to this fact and assuming the boundaries as good conductors (in view of an observer near the horizon just outside the second boundary), in a series of papers, R.M. Nugayev by considering a conformally coupled massless scalar field and based on the calculations of Candelas and Deutsch (the accelerated-mirror results) has claimed that " ...the existence of the potential barrier is as crucial for Hawking evaporation as the existence of the horizon". In this paper, by taking the same assumptions, through straightforward reasonings, we explicitly show that contrary to this claim, the effects of the first boundary on the black hole radiation are quite negligible. Moreover, the inclusion of the second boundary makes the situation more complicated, because the induced Casimir energy-momentum tensor by this boundary in its vicinity is divergent of order δ ^{-4} ( δ is the distance to the boundary).
Casimir effect and thermodynamics of horizon instabilities
International Nuclear Information System (INIS)
Hartnoll, Sean A.
2004-01-01
We propose a dual thermodynamic description of a classical instability of generalized black hole spacetimes. From a thermodynamic perspective, the instability is due to negative compressibility in regions where the Casimir pressure is large. The argument indicates how the correspondence between thermodynamic and classical instability for horizons may be extended to cases without translational invariance
Zhou, Wenting; Yu, Hongwei
2014-09-01
We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982), 10.1051/jphys:0198200430110161700; J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular, we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete region where this behavior holds.
International Nuclear Information System (INIS)
Decca, R.S.; Fischbach, E.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Krause, D.E.; Lopez, D.
2003-01-01
We report new constraints on extra-dimensional models and other physics beyond the standard model based on measurements of the Casimir force between two dissimilar metals for separations in the range 0.2-1.2 μm. The Casimir force between a Au-coated sphere and a Cu-coated plate of a microelectromechanical torsional oscillator was measured statically with an absolute error of 0.3 pN. In addition, the Casimir pressure between two parallel plates was determined dynamically with an absolute error of ≅0.6 mPa. Within the limits of experimental and theoretical errors, the results are in agreement with a theory that takes into account the finite conductivity and roughness of the two metals. The level of agreement between experiment and theory was then used to set limits on the predictions of extra-dimensional physics and thermal quantum field theory. It is shown that two theoretical approaches to the thermal Casimir force which predict effects linear in temperature are ruled out by these experiments. Finally, constraints on Yukawa corrections to Newton's law of gravity are strengthened by more than an order of magnitude in the range 56-330 nm
Evanescent radiation, quantum mechanics and the Casimir effect
Schatten, Kenneth H.
1989-01-01
An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.
Is zero-point energy physical? A toy model for Casimir-like effect
International Nuclear Information System (INIS)
Nikolić, Hrvoje
2017-01-01
Zero-point energy is generally known to be unphysical. Casimir effect, however, is often presented as a counterexample, giving rise to a conceptual confusion. To resolve the confusion we study foundational aspects of Casimir effect at a qualitative level, but also at a quantitative level within a simple toy model with only 3 degrees of freedom. In particular, we point out that Casimir vacuum is not a state without photons, and not a ground state for a Hamiltonian that can describe Casimir force. Instead, Casimir vacuum can be related to the photon vacuum by a non-trivial Bogoliubov transformation, and it is a ground state only for an effective Hamiltonian describing Casimir plates at a fixed distance. At the fundamental microscopic level, Casimir force is best viewed as a manifestation of van der Waals forces. - Highlights: • A toy model for Casimir-like effect with only 3 degrees of freedom is constructed. • Casimir vacuum can be related to the photon vacuum by a non-trivial Bogoliubov transformation. • Casimir vacuum is a ground state only for an effective Hamiltonian describing Casimir plates at a fixed distance. • At the fundamental microscopic level, Casimir force is best viewed as a manifestation of van der Waals forces.
Casimir-lifshitz force out of thermal equilibrium and asymptotic nonadditivity
Antezza, Mauro; Pitaevskii, Lev P.; Stringari, Sandro; Svetovoy, Vitaly
2006-01-01
We investigate the force acting between two parallel plates held at different temperatures. The force reproduces, as limiting cases, the well-known Casimir-Lifshitz surface-surface force at thermal equilibrium and the surface-atom force out of thermal equilibrium recently derived by M. Antezza et
Vector Casimir effect for a D-dimensional sphere
International Nuclear Information System (INIS)
Milton, K.A.
1997-01-01
The Casimir energy or stress due to modes in a D-dimensional volume subject to TM (mixed) boundary conditions on a bounding spherical surface is calculated. Both interior and exterior modes are included. Together with earlier results found for scalar modes (TE modes), this gives the Casimir effect for fluctuating open-quotes electromagneticclose quotes (vector) fields inside and outside a spherical shell. Known results for three dimensions, first found by Boyer, are reproduced. Qualitatively, the results for TM modes are similar to those for scalar modes: Poles occur in the stress at positive even dimensions, and cusps (logarithmic singularities) occur for integer dimensions D≤1. Particular attention is given the interesting case of D=2. copyright 1997 The American Physical Society
Dynamical Casimir effect on a cavity with mixed boundary conditions
International Nuclear Information System (INIS)
Alves, Danilo T.; Farina, Carlos; Maia Neto, Paulo Americo
2002-01-01
The most well-known mechanical effect related to the quantum vacuum is the Casimir force between two mirrors at rest. A new effect appears when the mirrors are set to move. In this case, the vacuum field may exert a dissipative force, damping the motion. As a consequence of energy conservation, there will be creation of real particles. If the motion is non-relativistic and has a small amplitude, the dynamical Casimir force can be found via a perturbative method proposed by Ford and Vilenkin. Using their technique, the electromagnetic dynamical Casimir problem, considered when the oscillating cavity is formed by two parallel plates of the same nature (perfectly conducting or perfectly permeable), can be divided into two separated boundary condition problems, namely: one involving Dirichlet BC, related to the transverse electric polarization and the other involving a Neumann BC, related to the transverse magnetic mode. The case of conducting plates can be found in the literature. However, another interesting case, the mixed oscillating cavity where the plates are of different nature, namely, a perfectly conducting plate and a perfectly permeable one (Boyer plates), has not been studied yet. We show that,for this case, the transverse electric models will be related to mixed boundary conditions: Dirichlet-like BC at the conducting plate and Neumann-like BC at the permeable plate. Analogously, the magnetic modes are related to a Neumann BC at the conducting plate and to a Dirichlet BC at the permeable one. As a first step before attacking the three-dimensional electromagnetic problem with mixed BC, we present here a simpler model: a one-dimensional cavity, where a massless scalar field is submitted to mixed (Dirichlet-Neumann) BC. For simplicity, we consider a non-relativistic motion for the conducting wall (Dirichlet BC) and suppose that the perfectly permeable wall (Neumann BC) is at rest. From this model we can extract insights about the dynamical Casimir
PREFACE: International Workshop '60 Years of the Casimir Effect'
Barton, Gabriel; Carugno, Giovanni; Dodonov, Victor; Man'ko, Margarita
2009-07-01
In 1948 Hendrick Casimir published a short article predicting that (neutral) ideal metallic plates attract each other. This attraction is widely ascribed to the quantum vacuum fluctuations of the electromagnetic field (even though away from the limit of ideal metals it depends demonstrably on the physics of the charge carriers vanishing when they cease to carry). Casimir's remarkable discovery, nowadays called the Casimir effect, has charmed several generations of physicists. In the last decade alone, more than a thousand publications have addressed its many consequences, generalizations, and possible applications in different areas from particle physics to cosmology. Interest in the field is still growing driven by impressive progress in experimental skills and its importance for the recently opened-up area of micro- and nano-electromechanical systems: according to the Thompson ISI Web of Science database, in 2005 the number of papers related to the Casimir effect or to Casimir forces jumped to over 125, compared to approximately 60 in 2000 and 30 in 1995. The increase continues, with more than 170 papers in 2008. The International Workshop '60 Years of the Casimir Effect' took place on 23-27June 2008, in Brasilia (Brazil) organized by the International Center for Condensed Matter Physics (ICCMP). The purpose was to celebrate this anniversary of Casimir's pioneering paper by inviting the leading specialists in the area, both theorists and experimentalists, together with young researchers and post-graduate students interested in hearing about the most recent achievements in the field. The Workshop was attended by 65 participants from 14 countries, who presented 41 talks and 12 posters. These Proceedings contain extended versions of almost all the talks and some posters, plus several papers by authors who had planned to attend but for various reasons could not. The contributions are divided (with some inevitable arbitrariness) into four groups. The largest one
Thermal Casimir-Polder forces on a V-type three-level atom
Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping
2017-09-01
We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.
Vortex loops in the critical Casimir effect in superfluid and superconducting films
International Nuclear Information System (INIS)
Williams, Gary A.
2004-01-01
Vortex-loop renormalization techniques are used to calculate the magnitude of the critical Casimir forces in superfluid and superconducting thin films. The force is found to become appreciable when the size of the thermally excited vortex loops is comparable to the film thickness, and the results for T c are found to match very well with perturbative renormalization-group theories that can only be carried out for T>T c . In helium films the Casimir force leads to a change in the film thickness close to T c that has been observed experimentally. A similar effect is predicted to occur near the transition temperature of high-T c superconducting films, which is also a vortex-loop phase transition. In this case the Casimir force takes the form of a voltage difference that will appear at the junction between a thin film and a bulk sample. Estimates show that this voltage can be appreciable (tens of microvolts), and it may be possible to observe the effect by measuring the voltage across two Josephson tunnel junctions to the film and to the bulk, using a SQUID voltmeter
Attractive Casimir effect in an infrared modified gluon bag model
International Nuclear Information System (INIS)
Oxman, L.E.; Amaral, R.L.P.G.; Svaiter, N.F.
2005-01-01
In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy
The Casimir effect physical manifestations of zero-point energy
Milton, K A
2001-01-01
In its simplest manifestation, the Casimir effect is a quantum force of attraction between two parallel uncharged conducting plates. More generally, it refers to the interaction - which may be either attractive or repulsive - between material bodies due to quantum fluctuations in whatever fields are relevant. It is a local version of the van der Waals force between molecules. Its sweep ranges from perhaps its being the origin of the cosmological constant to its being responsible for the confinement of quarks. This monograph develops the theory of such forces, based primarily on physically tran
International Nuclear Information System (INIS)
Elizalde, Emilio
2009-01-01
When the number and importance of the applications of the Casimir effect are flourishing, and on the occasion of the 60th anniversary of his beautiful discovery, as a tribute to the memory of Hendrik Brugt Gerhard Casimir I discuss here some fundamental issues related with the effect that need to be recalled from time to time, as well as on some of my personal impressions of Prof. Casimir. This article may also serve as an easy introduction for the non-specialist willing to learn something about the quantum vacuum.
Universality for shape dependence of Casimir effects from Weyl anomaly
Miao, Rong-Xin; Chu, Chong-Sun
2018-03-01
We reveal elegant relations between the shape dependence of the Casimir effects and Weyl anomaly in boundary conformal field theories (BCFT). We show that for any BCFT which has a description in terms of an effective action, the near boundary divergent behavior of the renormalized stress tensor is completely determined by the central charges of the theory. These relations are verified by free BCFTs. We also test them with holographic models of BCFT and find exact agreement. We propose that these relations between Casimir coefficients and central charges hold for any BCFT. With the holographic models, we reproduce not only the precise form of the near boundary divergent behavior of the stress tensor, but also the surface counter term that is needed to make the total energy finite. As they are proportional to the central charges, the near boundary divergence of the stress tensor must be physical and cannot be dropped by further artificial renormalization. Our results thus provide affirmative support on the physical nature of the divergent energy density near the boundary, whose reality has been a long-standing controversy in the literature.
The Casimir effect as a candidate of dark energy
Matsumoto, Jiro
2013-01-01
It is known that the simply evaluated value of the zero point energy of quantum fields is extremely deviated from the observed value of dark energy density. In this paper, we consider whether the Casimir energy, which is the zero point energy brought from boundary conditions, can cause the accelerating expansion of the Universe by using proper renormalization method and introducing the fermions of finite temperature living in $3+n+1$ space-time. We show that the zero temperature Casimir energ...
International Nuclear Information System (INIS)
Khanna, F C; Malbouisson, J M C; Santana, A E
2009-01-01
A Bogoliubov transformation accounting simultaneously for spatial compactifica-tion and thermal effects is introduced. The fields are described in a Γ D d = S 1 1 x ... x S 1 d x R D-d topology, and the Bogoliubov transformation is derived by a generalization of the thermofield dynamics formalism, a real-time finite-temperature quantum field theory. We consider the Casimir effect for Maxwell and Dirac fields and for a non-interacting massless QCD at finite temperature. For the fermion sector in a cubic box, we analyze the temperature at which the Casimir pressure changes its sign from attractive to repulsive. This critical temperature is approximately 200 MeV when the edge of the cube is of the order of the confining lengths (∼ 1 : fm) for quarks in baryons.
Detecting Casimir torque with an optically levitated nanorod
Xu, Zhujing; Li, Tongcang
2017-09-01
The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively, the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir torque under realistic conditions, and will be an important tool in precision measurements.
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Felix
2014-07-16
When macroscopic bodies are immersed in fluctuating media, long-range forces between these bodies may occur. The fluctuation's spectrum is modified resulting in a dependence of the system's energy on the separation between the objects, straightforwardly leading to the existence of a force between the bodies. This work is dedicated to the analysis of how boundary conditions affect the thermodynamic Casimir effect where thermal fluctuations near a critical point induce these forces. O(n) symmetric φ 4 theories in d-dimensional slab geometries of thickness L are considered. When symmetry breaking external fields are present as well, the generic boundary conditions of these theories read ∂{sub n}φ-c{sub j}φ=-h{sub j} where the coefficients c{sub j} are surface couplings, serving as linearly extrapolated penetration depths into the surfaces in Landau theory, and h{sub j} are surface fields. The influence of the surface couplings c{sub j} on the Casimir force is investigated by means of the renormalization-group-improved perturbation theory in d=4-ε dimensions to two-loop order at the bulk critical point. Special attention is paid to the case of critical enhancement of the surface interactions which results in the existence of a zero mode leading to a breakdown of the usual loop expansion of the free energy and implicating the emergence of non-integer powers of ε in the ε expansion. These perturbative methods are restricted to the disordered phase with T≥T{sub c,∞}, c{sub j}≥c{sub sp}, and h{sub j}=0. In order to extend the analysis to the whole temperature axis, the exactly treatable limit n → ∞ of the three-dimensional φ 4 model is investigated. A set of self-consistent equations for the free energy is derived that can be solved numerically exact. Considering Dirichlet boundary conditions and vanishing external fields, one finds a temperature dependence of the Casimir force that exhibits the qualitative features of the experimentally
International Nuclear Information System (INIS)
Buescher, R.
2005-01-01
Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the
Casimir effect in rugby-ball type flux compactifications
International Nuclear Information System (INIS)
Elizalde, Emilio; Minamitsuji, Masato; Naylor, Wade
2007-01-01
As a continuation of the work by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys. 12 (2006) 079], we discuss the Casimir effect for a massless bulk scalar field in a 4D toy model of a 6D warped flux compactification model, to stabilize the volume modulus. The one-loop effective potential for the volume modulus has a form similar to the Coleman-Weinberg potential. The stability of the volume modulus against quantum corrections is related to an appropriate heat kernel coefficient. However, to make any physical predictions after volume stabilization, knowledge of the derivative of the zeta function, ζ ' (0) (in a conformally related spacetime) is also required. By adding up the exact mass spectrum using zeta-function regularization, we present a revised analysis of the effective potential. Finally, we discuss some physical implications, especially concerning the degree of the hierarchy between the fundamental energy scales on the branes. For a larger degree of warping our new results are very similar to the ones given by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys. 12 (2006) 079] and imply a larger hierarchy. In the nonwarped (rugby ball) limit the ratio tends to converge to the same value, independently of the bulk dilaton coupling
Generalized Ford-Vilenkin approach for the dynamical Casimir effect
International Nuclear Information System (INIS)
Rego, Andreson L.C.; Alves, Danilo Teixeira; Alves, Joao Paulo da Silva
2012-01-01
Full text: In the 70s decade the first works investigating the quantum problem of the radiation emitted by moving mirrors in vacuum were published by Moore, DeWitt, Fulling and Davies. This effect, usually named dynamical Casimir effect (DCE). The DCE is also related to several other problems like particle creation in cosmological models and radiation emitted by collapsing black holes, decoherence, entanglement the Unruh effect. The DCE has been subject to experimental investigations: few months ago, Wilson and collaborators have announced the first experimental observation of the DCE. The theory of the DCE has been investigated by many authors, among them Ford and Vilenkin [L.H. Ford and A. Vilenkin, Phys. Rev. D 25, 2569 (1982)] who developed a perturbative method, which can be applied to moving mirrors in small displacements δq(t) = εF (t) and with nonrelativistic velocities. The usual application of the Ford-Vilenkin approach to the calculation of the spectrum of the created particles, results in the spectral distribution proportional to ε 2 . In the present paper, we consider a real massless scalar field and a moving mirror in a two-dimensional spacetime, satisfying Dirichlet boundary condition at the instantaneous position of the mirror, for large displacements and relativistic velocities. We generalize the Ford-Vilenkin approach to the calculation of the spectral density of the created particles, obtaining formulas for the spectrum up to order ε n . (author)
Scalar Casimir effect for a D-dimensional sphere
International Nuclear Information System (INIS)
Bender, C.M.; Milton, K.A.
1994-01-01
The Casimir stress on a D-dimensional sphere (the stress on a sphere is equal to the Casimir force per unit area multiplied by the area of the sphere) due to the confinement of a massless scalar field is computed as a function of D, where D is a continuous variable that ranges from -∞ to ∞. The dependence of the stress on the dimension is obtained using a simple and straightforward Green's function technique. We find that the Casimir stress vanishes as D→+∞ (D is a noneven integer) and also vanishes when D is a negative even integer. The stress has simple poles at positive even integer values of D
A Toy Cosmology Using a Hubble-Scale Casimir Effect
Directory of Open Access Journals (Sweden)
Michael E. McCulloch
2014-02-01
Full Text Available The visible mass of the observable universe agrees with that needed for a flat cosmos, and the reason for this is not known. It is shown that this can be explained by modelling the Hubble volume as a black hole that emits Hawking radiation inwards, disallowing wavelengths that do not fit exactly into the Hubble diameter, since partial waves would allow an inference of what lies outside the horizon. This model of “horizon wave censorship” is equivalent to a Hubble-scale Casimir effect. This incomplete toy model is presented to stimulate discussion. It predicts a minimum mass and acceleration for the observable universe which are in agreement with the observed mass and acceleration, and predicts that the observable universe gains mass as it expands and was hotter in the past. It also predicts a suppression of variation on the largest cosmic scales that agrees with the low-l cosmic microwave background anomaly seen by the Planck satellite.
Topological Casimir effect in compactified cosmic string spacetime
International Nuclear Information System (INIS)
De Mello, E R Bezerra; Saharian, A A
2012-01-01
We investigate the Wightman function, the vacuum expectation values of the field squared and the energy-momentum tensor for a massive scalar field with general curvature coupling in the generalized cosmic string geometry with a compact dimension along its axis. The boundary condition along the compactified dimension is taken in general form with an arbitrary phase. The vacuum expectation values are decomposed into two parts. The first one corresponds to the uncompactified cosmic string geometry and the second one is the correction induced by the compactification. The asymptotic behavior of the vacuum expectation values of the field squared, energy density and stresses is investigated near the string and at large distances. We show that the nontrivial topology due to the cosmic string enhances the vacuum polarization effects induced by the compactness of spatial dimension for both the field squared and the vacuum energy density. A simple formula is given for the part of the integrated topological Casimir energy induced by the planar angle deficit. The results are generalized for a charged scalar field in the presence of a constant gauge field. In this case, the vacuum expectation values are periodic functions of the component of the vector potential along the compact dimension. (paper)
On the dynamical Casimir effect in 1 + 1 dimensions
International Nuclear Information System (INIS)
Alves, D.T.; Farina, C.; Maia Neto, P.A.; Tort, A.C.
2000-01-01
Full text follows: Vacuum field fluctuations exert radiation pressure on boundaries placed in empty space. If we take only one boundary at rest in vacuum, the total pressure exerted by the vacuum on the boundary is null. For two boundaries at rest in vacuum there is a net pressure exerted on the boundaries known as the Casimir effect. It has also been recognized that the dynamical counterparts of this static force appear for moving boundaries. In the dynamical case the existence of a net vacuum radiation pressure does not require the presence of two boundaries as in static case. Vacuum pressure already exists for a single boundary moving with a nonuniform acceleration. For that type of motion, the field does not remain in the vacuum state, but the quanta of the field are produced through nonadiabatic processes. In 1982 Ford and Vilenkin developed a perturbation method based on the static solution to calculate in first approximation the vacuum pressure exerted on a non-relativistic moving boundary. Using the method of Ford-Vilenkin we compute in the two dimensional quantum theory of a real massless scalar field the pressure exerted by the vacuum on a perfectly reflecting boundary moving with nonuniform acceleration around the coordinate x = 0 , having another boundary fixed at x = L. This simple model can provide insight into more sophisticated processes, such as photon production by moving mirrors and particle production in cosmological models and exploding black holes. (author)
The Casimir effect in rugby-ball type flux compactifications
International Nuclear Information System (INIS)
Minamitsuji, M
2008-01-01
We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a 6 ) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique
The Casimir effect in rugby-ball type flux compactifications
Energy Technology Data Exchange (ETDEWEB)
Minamitsuji, M [ASC, LMU, Theresienst. 37, 80333 Munich (Germany)], E-mail: Masato.Minamitsuji@physik.uni-muenchen.de
2008-04-25
We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a{sub 6}) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique.
Standard Model Extension and Casimir effect for fermions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso (Brazil); Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC (Canada); Khanna, Faqir C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC (Canada); Department of Physics, University of Alberta, T6J 2J1, Edmonton, Alberta (Canada)
2016-11-10
Lorentz and CPT symmetries are foundations for important processes in particle physics. Recent studies in Standard Model Extension (SME) at high energy indicate that these symmetries may be violated. Modifications in the lagrangian are necessary to achieve a hermitian hamiltonian. The fermion sector of the standard model extension is used to calculate the effects of the Lorentz and CPT violation on the Casimir effect at zero and finite temperature. The Casimir effect and Stefan–Boltzmann law at finite temperature are calculated using the thermo field dynamics formalism.
Casimir effect in a d-dimensional flat spacetime and the cut-off method
International Nuclear Information System (INIS)
Svaiter, N.F.; Svaiter, B.F.
1989-01-01
The CasiMir efeect in a D-dimensional spacetime produced by a Hermitian massless scalar field in the presence of a pair of perfectly reflecting parallel flat plates is discussed. The exponential cut-off regularization method is employed. The regularized vacuum energy and the Casimir energy of this field are evaluated and a detailed analysis of the divergent terms in the regularized vacuum energy is carried out. The two-dimensional version of the Casimir effect is discussed by means of the same cut-off method. A comparison between the above method and the zeta function regularization procedure is presented in a way which gives the unification between these two methods in the present case. (author) [pt
International Nuclear Information System (INIS)
Eab, C. H.; Lim, S. C.; Teo, L. P.
2007-01-01
This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed
International Nuclear Information System (INIS)
Geyer, B.; Klimchitskaya, G.L.; Mostepanenko, V.M.
2004-01-01
The preceding Comment discusses in detail the main idea of our paper [Phys. Rev. A 67, 062102 (2003)], namely that one cannot substitute the Drude dielectric function into the Lifshitz formula for the thermal Casimir force in the frequency region where a real current of conduction electrons leads to Joule heating in the metal. In that Comment, it is claimed that this idea would be in contradiction to the fluctuation-dissipation theorem. In this Reply we present an explicit explanation why there is no contradiction. In the second part of the Comment an alternative method is suggested, different from the one used in our paper, to calculate the thermal Casimir force in the framework of the impedance approach. This method is in support of a previous prediction by Svetovoy and Lokhanin, criticized by us, that there exists a relatively large thermal correction to the Casimir force between real metals at small separations. Here we present strong quantitative arguments in favor of the statement that the method of the Comment is in violation of the Nernst heat theorem. We also demonstrate that it is in contradiction with experiment. The approach of our paper is shown to be in agreement with both thermodynamics and experimental data
On the static Casimir effect with parity-breaking mirrors
Energy Technology Data Exchange (ETDEWEB)
Fosco, C.D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina); Remaggi, M.L. [Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza (Argentina)
2017-03-15
We study the Casimir interaction energy due to the vacuum fluctuations of the electromagnetic (EM) field in the presence of two mirrors, described by 2+1-dimensional, generally nonlocal actions, which may contain both parity-conserving and parity-breaking terms. We compare the results with the ones corresponding to Chern-Simons boundary conditions and evaluate the interaction energy for several particular situations. (orig.)
Casimir effect for a semitransparent wedge and an annular piston
International Nuclear Information System (INIS)
Milton, Kimball A.; Wagner, Jef; Kirsten, Klaus
2009-01-01
We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed by a Dirichlet circular cylinder, where the wedge is formed by δ-function potentials, so-called semitransparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions. Numerical results are obtained which are closely analogous to those recently found for a magnetodielectric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods are developed for annular regions with radial semitransparent potentials, based on reduced Green's functions for the angular dependence, which allows calculations using the multiple-scattering formalism. Numerical results corresponding to the torque on the radial plates are likewise computed, which generalize those for the wedge geometry. Generally useful formulas for calculating Casimir energies in separable geometries are derived.
The supersymmetric Casimir effect and quantum creation of the universe with nontrivial topology
International Nuclear Information System (INIS)
Goncharov, Yu.P.; Bytsenko, A.A.
1985-01-01
We estimate the probability of quantum creation of the universe, having the spatial topology (S 1 ) 3 , and filled with the fields of minimal N=1 supergravity, in the semiclassical approximation. After creation, inflation of the universe occurs due to the topological Casimir effect. Creation of the universe with an isotropic topology is found to be the most preferable. (orig.)
Guo, Hongyu; Stan, Gheorghe; Liu, Yun
2018-02-21
Nanoparticles typically have an inherent wide size distribution that may affect the performance and reliability of many nanomaterials. Because the synthesis and purification of nanoparticles with desirable sizes are crucial to the applications of nanoparticles in various fields including medicine, biology, health care, and energy, there is a great need to search for more efficient and generic methods for size-selective nanoparticle purification/separation. Here we propose and conclusively demonstrate the effectiveness of a size-selective particle purification/separation method based on the critical Casimir force. The critical Casimir force is a generic interaction between colloidal particles near the solvent critical point and has been extensively studied in the past several decades due to its importance in reversibly controlling the aggregation and stability of colloidal particles. Combining multiple experimental techniques, we found that the critical Casimir force-induced aggregation depends on relative particle sizes in a system with larger ones aggregating first and the smaller ones remaining in solution. Based on this observation, a new size-dependent nanoparticle purification/separation method is proposed and demonstrated to be very efficient in purifying commercial silica nanoparticles in the lutidine/water binary solvent. Due to the ubiquity of the critical Casimir force for many colloidal particles in binary solvents, this method might be applicable to many types of colloidal particles.
Neumann Casimir effect: A singular boundary-interaction approach
International Nuclear Information System (INIS)
Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D.
2010-01-01
Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the nonzero 'width' of a nonlocal term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions.
Messina, Riccardo; Antezza, Mauro
2014-05-01
We study the Casimir-Lifshitz force and the radiative heat transfer in a system consisting of three bodies held at three independent temperatures and immersed in a thermal environment, the whole system being in a stationary configuration out of thermal equilibrium. The theory we develop is valid for arbitrary bodies, i.e., for any set of temperatures, dielectric, and geometrical properties, and describes each body by means of its scattering operators. For the three-body system we provide a closed-form unified expression of the radiative heat transfer and of the Casimir-Lifshitz force (both in and out of thermal equilibrium). This expression is thus first applied to the case of three planar parallel slabs. In this context we discuss the nonadditivity of the force at thermal equilibrium, as well as the equilibrium temperature of the intermediate slab as a function of its position between two external slabs having different temperatures. Finally, we consider the force acting on an atom inside a planar cavity. We show that, differently from the equilibrium configuration, the absence of thermal equilibrium admits one or more positions of minima for the atomic potential. While the corresponding atomic potential depths are very small for typical ground-state atoms, they may become particularly relevant for Rydberg atoms, becoming a promising tool to produce an atomic trap.
Resolution of an apparent inconsistency in the electromagnetic Casimir effect
International Nuclear Information System (INIS)
Alnes, H; Olaussen, K; Ravndal, F; Wehus, I K
2007-01-01
The vacuum expectation value of the electromagnetic energy-momentum tensor between two parallel plates in spacetime dimensions D > 4 is calculated in the axial gauge. While the pressure between the plates agrees with the global Casimir force, the energy density is divergent at the plates and not compatible with the total energy which follows from the force. However, subtracting the divergent self-energies of the plates, the resulting energy is finite and consistent with the force. In analogy with the corresponding scalar case for spacetime dimensions D > 2, the divergent self-energy of a single plate can be related to the lack of conformal invariance of the electromagnetic Lagrangian for dimensions D > 4. (fast track communication)
International Nuclear Information System (INIS)
Chaichian, M.; Tureanu, A.; Demichev, A.; Presnajder, P.; Sheikh-Jabbari, M.M.
2001-02-01
After discussing the peculiarities of quantum systems on noncommutative (NC) spaces with nontrivial topology and the operator representation of the *-product on them, we consider the Aharonov-Bohm and Casimir effects for such spaces. For the case of the Aharonov-Bohm effect, we have obtained an explicit expression for the shift of the phase, which is gauge invariant in the NC sense. The Casimir energy of a field theory on a NC cylinder is divergent, while it becomes finite on a torus, when the dimensionless parameter of noncommutativity is a rational number. The latter corresponds to a well-defined physical picture. Certain distinctions from other treatments based on a different way of taking the noncommutativity into account are also discussed. (author)
Determination of the Contact Angle Based on the Casimir Effect
Mazuruk, Konstantin; Volz, Martin P.
2015-01-01
On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.
Particle creation by a black hole as a consequence of the Casimir effect
International Nuclear Information System (INIS)
Nugayev, R.M.
1987-01-01
Particle creation by a blackhole is investigated in terms of temperature corrections to the Casimir effect. The reduction of the Hawking effect to more familiar effects observed in the laboratory enables us to reveal the mechanism of particle creation. The blackbody nature of the Hawking radiation is due to the interaction of virtual particles with the surface of a ''cavity'' formed by the Schwarzschild gravitational field potential barrier. These particles are ''squeezed out'' by the contraction of the potential barrier and appear to an observer at J + as the real blackbody ones. (orig.)
Mokhtari, J.; Farrokhabadi, A.; Rach, R.; Abadyan, M.
2015-04-01
The presence of the quantum vacuum fluctuations, i.e. the Casimir attraction, can strongly affect the performance of ultra-small actuators. The strength of the Casimir force is significantly influenced by the geometries of interacting bodies. Previous research has exclusively studied the impact of the vacuum fluctuations on the instability of nanoactuators with planar geometries. However, no work has yet considered this phenomenon in actuators fabricated from nanowires/nanotubes with cylindrical geometries. In our present work, the influence of the Casimir attraction on the electrostatic stability of nanoactuators fabricated from cylindrical conductive nanowire/nanotube is investigated. The Dirichlet mode is considered and an asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The size-dependent modified couple stress theory is employed to derive the constitutive equation of the actuator. The governing nonlinear equations are solved by two different approaches, i.e. the finite difference method and modified Adomian-Padé method. Various aspects of the problem, i.e. comparison with the van der Waals force regime, the variation of instability parameters, effect of geometry and coupling between the Casimir force and size dependency are discussed. This work is beneficial to determine the impact of Casimir force on nanowire/nanotube-fabricated actuators.
Nori, Franco
2012-02-01
This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).
Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution
Elizalde, Emilio
2012-07-01
A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.
Casimir effect at finite temperature for pure-photon sector of the minimal Standard Model Extension
Energy Technology Data Exchange (ETDEWEB)
Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso (Brazil); Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC (Canada); Khanna, Faqir C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC (Canada)
2016-12-15
Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.
International Nuclear Information System (INIS)
Celeri, L.C.; Pascoal, F.; Ponte, M.A. de; Moussa, M.H.Y.
2009-01-01
In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation.
Stronger constraints on non-Newtonian gravity from the Casimir effect
Energy Technology Data Exchange (ETDEWEB)
Mostepanenko, V M; Klimchitskaya, G L [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, D-04009, Leipzig (Germany); Decca, R S [Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Fischbach, E; Krause, D E [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Lopez, D [Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (United States)
2008-04-25
We review new constraints on the Yukawa-type corrections to Newtonian gravity obtained recently from gravitational experiments and from the measurements of the Casimir force. Special attention is paid to the constraints following from the most precise dynamic determination of the Casimir pressure between the two parallel plates by means of a micromechanical torsional oscillator. The possibility of setting limits on the predictions of chameleon field theories using the results of gravitational experiments and Casimir force measurements is discussed.
The generalized Abel-Plana formula. Applications to Bessel functions and Casimir effect
International Nuclear Information System (INIS)
Saharian, A.A.; Institute of Applied Problems in Physics NAS RA, Yerevan; Abdus Salam International Centre for Theoretical Physics, Trieste
2000-02-01
One of the most efficient methods to obtain the vacuum expectation values for the physical observables in the Casimir effect is based on using the Abel-Plana summation formula. This allows us to derive the regularized quantities in a manifestly cutoff independent way and present them in the form of strongly convergent integrals. However, the application of Abel-Plana formula, in its usual form, is restricted by simple geometries when the eigenmodes have a simple dependence on quantum numbers. The author generalized the Abel-Plana formula which essentially enlarges its application range. Based on this generalization, formulae have been obtained for various types of series over the zeros of some combinations of Bessel functions and for integrals involving these functions. It has been shown that these results generalize the special cases existing in literature. Further, the derived summation formulae have been used to summarize series arising in the mode summation approach to the Casimir effect for spherically and cylindrically symmetric boundaries. This allows us to extract the divergent parts from the vacuum expectation values for the local physical observables in a manifestly cutoff independent way. The present paper reviews these results. Some new considerations are also added. (author)
Singular perturbations with boundary conditions and the Casimir effect in the half space
Albeverio, S.; Cognola, G.; Spreafico, M.; Zerbini, S.
2010-06-01
We study the self-adjoint extensions of a class of nonmaximal multiplication operators with boundary conditions. We show that these extensions correspond to singular rank 1 perturbations (in the sense of Albeverio and Kurasov [Singular Perturbations of Differential Operaters (Cambridge University Press, Cambridge, 2000)]) of the Laplace operator, namely, the formal Laplacian with a singular delta potential, on the half space. This construction is the appropriate setting to describe the Casimir effect related to a massless scalar field in the flat space-time with an infinite conducting plate and in the presence of a pointlike "impurity." We use the relative zeta determinant (as defined in the works of Müller ["Relative zeta functions, relative determinants and scattering theory," Commun. Math. Phys. 192, 309 (1998)] and Spreafico and Zerbini ["Finite temperature quantum field theory on noncompact domains and application to delta interactions," Rep. Math. Phys. 63, 163 (2009)]) in order to regularize the partition function of this model. We study the analytic extension of the associated relative zeta function, and we present explicit results for the partition function and for the Casimir force.
Critical Casimir effect in a polymer chain in supercritical solvents.
Sumi, Tomonari; Imazaki, Nobuyuki; Sekino, Hideo
2009-03-01
Density fluctuation effects on the conformation of a polymer chain in a supercritical solvent were investigated by performing a multiscale simulation based on the density-functional theory. We found (a) a universal swelling of the polymer chain near the critical point, irrespective of whether the polymer chain is solvophilic or solvophobic, and (b) a characteristic collapse of the polymer chain having a strong solvophilicity at a temperature slightly higher than the critical point, where the isothermal compressibility becomes less than the ideal one.
Casimir Interaction from Magnetically Coupled Eddy Currents
Intravaia, Francesco; Henkel, Carsten
2009-09-01
We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.
EDITORIAL: The nonstationary Casimir effect and quantum systems with moving boundaries
Barton, Gabriel; Dodonov, Victor V.; Man'ko, Vladimir I.
2005-03-01
This topical issue of Journal of Optics B: Quantum and Semiclassical Optics contains 16 contributions devoted to quantum systems with moving boundaries. In a broad sense, the papers continue the studies opened exactly 100 years ago by Einstein in his seminal work on the electrodynamics of moving bodies and the quantum nature of light. Another jubilee which we wish to celebrate by launching this issue is the 80th anniversary of the publication of two papers, where the first solutions of the classical Maxwell equations in a one-dimensional cavity with moving boundaries were obtained, by T H Havelock (1924 Some dynamical illustrations of the pressure of radiation and of adiabatic invariance Phil. Mag. 47 754-71) and by E L Nicolai (1925 On a dynamical illustration of the pressure of radiation Phil. Mag. 49 171-7). As was shown by Einstein, studying the fluctuations of the electromagnetic field inevitably leads one to its quantum (corpuscular) nature. Many papers in this issue deal with problems where moving boundaries produce parametric excitation of vacuum fluctuations of the field, which could result in several different observable effects, like the modification of the famous Casimir force, or the creation of real quanta from the vacuum. It is worth emphasizing that these phenomena, frequently referred to as nonstationary (or dynamical) Casimir effects, are no longer the province only of pure theorists: some experimental groups have already started long-term work aimed at observing such effects in the laboratory. Of course, many difficult problems remain to be resolved before this dream becomes reality. Several papers here show both important progress in this direction, and possible difficulties still to be tackled. Problems that have been considered include, in particular, decoherence, entanglement, and the roles of geometry and polarization. Other papers deal with fundamental problems like the Unruh effect, the interaction of accelerated relativistic atoms with
The generalized Abel-Plana formula with applications to Bessel functions and casimir effect
International Nuclear Information System (INIS)
Saharian, Aram A.
2007-08-01
One of the most efficient methods for the evaluation of the vacuum expectation values for physical observables in the Casimir effect is based on using the Abel-Plana summation formula. This enables to derive the renormalized quantities in a manifestly cutoff independent way and to present them in the form of strongly convergent integrals. However, applications of the Abel- Plana formula, in its usual form, are restricted by simple geometries when the eigenmodes have a simple dependence on quantum numbers. The author generalized the Abel-Plana formula which essentially enlarges its application range. Based on this generalization, formulae have been obtained for various types of series over the zeros of combinations of Bessel functions and for integrals involving these functions. It has been shown that these results generalize the special cases existing in literature. Further, the derived summation formulae have been used to summarize series arising in the direct mode summation approach to the Casimir effect for spherically and cylindrically symmetric boundaries, for boundaries moving with uniform proper acceleration, and in various braneworld scenarios. This allows to extract from the vacuum expectation values of local physical observables the parts corresponding to the geometry without boundaries and to present the boundary-induced parts in terms of integrals strongly convergent for the points away from the boundaries. As a result, the renormalization procedure for these observables is reduced to the corresponding procedure for bulks without boundaries. The present paper reviews these results. We also aim to collect the results on vacuum expectation values for local physical observables such as the field square and the energy-momentum tensor in manifolds with boundaries for various bulk and boundary geometries. (author)
Casimir-Polder interaction in second quantization
Energy Technology Data Exchange (ETDEWEB)
Schiefele, Juergen
2011-03-21
The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC. (orig.)
Casimir-Polder interaction in second quantization
International Nuclear Information System (INIS)
Schiefele, Juergen
2011-01-01
The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC. (orig.)
Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.
2008-09-01
We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.
Reply to 'Comment on 'Temperature dependence of the Casimir force for lossy bulk media''
Energy Technology Data Exchange (ETDEWEB)
Yampol' skii, V. A.; Maizelis, Z. A.; Apostolov, S. S. [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); A. Ya. Usikov Institute for Radiophysics and Electronics, NASU, 61085 Kharkov (Ukraine); Savel' ev, Sergey [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Nori, Franco [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2011-09-15
Here, we present an estimate of the characteristic wavelengths of the evanescent modes, which define the main contribution to the thermal part of the Casimir force. This estimate is more precise than the one in the preceding Comment by Bimonte et al.[Phys. Rev. A 84, 036501 (2011)]. The wavelengths we derive are indeed smaller than the sizes of the interacting bodies. We also discuss the results of several experiments on the thermal effects in the Casimir force.
International Nuclear Information System (INIS)
Bellucci, S.; Saharian, A. A.
2009-01-01
We evaluate the Casimir energy and force for a massive fermionic field in the geometry of two parallel plates on background of Minkowski spacetime with an arbitrary number of toroidally compactified spatial dimensions. The bag boundary conditions are imposed on the plates and periodicity conditions with arbitrary phases are considered along the compact dimensions. The Casimir energy is decomposed into purely topological, single plate and interaction parts. With independence of the lengths of the compact dimensions and the phases in the periodicity conditions, the interaction part of the Casimir energy is always negative. In order to obtain the resulting force, the contributions from both sides of the plates must be taken into account. Then, the forces coming from the topological parts of the vacuum energy cancel out and only the interaction term contributes to the Casimir force. Applications of the general formulae to Kaluza-Klein-type models and carbon nanotubes are given. In particular, we show that for finite-length metallic nanotubes, the Casimir forces acting on the tube edges are always attractive, whereas for semiconducting-type ones, they are attractive for small lengths of the nanotube and repulsive for large lengths.
Casimir stress in an inhomogeneous medium
International Nuclear Information System (INIS)
Philbin, T.G.; Xiong, C.; Leonhardt, U.
2010-01-01
The Casimir effect in an inhomogeneous dielectric is investigated using Lifshitz's theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous dielectrics. The result for the Casimir stress is infinite everywhere inside the inhomogeneous region, a divergence that does not occur for piece-wise homogeneous dielectrics with planar boundaries. A Casimir force per unit volume can be extracted from the infinite stress but it diverges on the boundaries between the inhomogeneous medium and the homogeneous dielectrics. An alternative regularization of the vacuum stress is considered that removes the contribution of the inhomogeneity over small distances, where macroscopic electromagnetism is invalid. The alternative regularization yields a finite Casimir stress inside the inhomogeneous region, but the stress and force per unit volume diverge on the boundaries with the homogeneous dielectrics. The case of inhomogeneous dielectrics with planar boundaries thus falls outside the current understanding of the Casimir effect.
Energy Technology Data Exchange (ETDEWEB)
Grueneberg, Daniel
2008-02-15
To study how the behavior of the thermodynamic Casimir force changes qualitatively and quantitatively due to the presence of such interactions - compared to systems with purely short-range interactions - is the aim of this work. Considering d-dimensional models belonging to the universality class of the O(n)-symmetrical systems, the thermodynamic Casimir force and its leading corrections are derived for temperatures at and above the transition temperature (T{>=}T{sub c,{infinity}}). The underlying pair potential is assumed to be isotropic and long-ranged, decaying asymptotically proportional to x{sup -(d+{sigma}}{sup )} for large separations x, where the value of the parameter {sigma} is restricted to the interval 2<{sigma}<4. By solving an appropriate spherical model in 2
Energy Technology Data Exchange (ETDEWEB)
Fosco, César D. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, R8402AGP, Bariloche (Argentina); Lombardo, Fernando C., E-mail: lombardo@df.uba.ar [Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)
2015-12-17
We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation.
Energy Technology Data Exchange (ETDEWEB)
Fosco, Cesar D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Instituto Balseiro, Bariloche (Argentina); Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA y IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-12-15
We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)
International Nuclear Information System (INIS)
Fosco, Cesar D.; Lombardo, Fernando C.
2015-01-01
We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)
Casimir-type effects for scalar fields interacting with material slabs
International Nuclear Information System (INIS)
Fialkovsky, I V; Pis'mak, Yu M; Markov, V N
2010-01-01
We study the field theoretical model of a scalar field in the presence of spacial inhomogeneities in the form of one and two finite-width mirrors (material slabs). The interaction of the scalar field with the defect is described with a position-dependent mass term. For a single-layer system we develop a rigorous calculation method and derive explicitly the propagator of the theory, the S-matrix elements and the Casimir self-energy of the slab. Detailed investigation of particular limits of self-energy is presented, and the connection to known cases is discussed. The calculation method is also found applicable to the two-mirror case. With its help we derive the corresponding Casimir energy and analyze it. For particular values of parameters of the model an obtained result recovers the Lifshitz formula. We also propose a procedure to unambiguously obtain the finite Casimir self-energy of a single slab without reference to any renormalization conditions. We hope that our approach can be applied to the calculation of Casimir self-energies in other demanded cases (such as a dielectric ball, etc).
The Casimir Effect from the Point of View of Algebraic Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio, E-mail: claudio.dappiaggi@unipv.it; Nosari, Gabriele [Università degli Studi di Pavia, Dipartimento di Fisica (Italy); Pinamonti, Nicola [Università di Genova, Dipartimento di Matematica (Italy)
2016-06-15
We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.
The analytic regularization ζ function method and the cut-off method in Casimir effect
International Nuclear Information System (INIS)
Svaiter, N.F.; Svaiter, B.F.
1990-01-01
The zero point energy associated to a hermitian massless scalar field in the presence of perfectly reflecting plates in a three dimensional flat space-time is discussed. A new technique to unify two different methods - the ζ function and a variant of the cut-off method - used to obtain the so called Casimir energy is presented, and the proof of the analytic equivalence between both methods is given. (author)
Additional signature of the dynamical Casimir effect in a superconducting circuit
International Nuclear Information System (INIS)
Rego, Andreson L.C.; Farina, C.; Silva, Hector O.; Alves, Danilo T.
2013-01-01
Full text: The dynamical Casimir effect (DCE) is one of the most fascinating quantum vacuum effects that consists, essentially, on the particle creation as a result of the interaction between a quantized field and a moving mirror. In this sense, particle creation due to external time-dependent potentials or backgrounds, or even time dependent electromagnetic properties of a material medium can also be included in a general definition of DCE. For simplicity, this interaction is simulated, in general, by means of idealized boundary conditions (BC). As a consequence of the particle creation, the moving mirror experiences a dissipative radiation reaction force acting on it. In order to generate an appreciable number of photons to be observed, the DCE was investigated in other contexts, as for example, in the circuit quantum electrodynamics. This theory predicted high photon creation rate by the modulation of the length of an open transmission line coupled to a superconducting quantum interference device (SQUID), an extremely sensitive magnetometer (J.R. Johansson et al, 2009/2010). A time dependent magnetic flux can be applied to the SQUID changing its inductance, leading to a time-dependent BC which simulates a moving boundary It was in the last scenario that the first observation of the DCE was announced by Wilson and collaborators (Wilson et al, 2011). Taking as motivation the experiment that observed the DCE, we investigate the influence of the generalized time-dependent Robin BC, that presents an extra term involving the second order time derivative of the field, in the particle creation via DCE. This kind of BC may appear quite naturally in the context of circuit quantum electrodynamics and the extra term was neglected in the theoretical aspects of the first observation of the DCE. Appropriate adjustments of this new parameter can not only enhance the total number of created particles but also give rise to a non-parabolic shape of the particle creation spectral
Casimir stress inside planar materials
Griniasty, Itay; Leonhardt, Ulf
2017-09-01
The Casimir force between macroscopic bodies is well understood, but not the Casimir force inside bodies. Guided by a physically intuitive picture, we develop the macroscopic theory of the renormalized Casimir stress inside planar materials (where the electromagnetic properties vary in one direction). Our theory may be applied in predicting how inhomogeneous fluids respond to Casimir forces.
Casimir force in the presence of a medium
International Nuclear Information System (INIS)
Kheirandish, Fardin; Soltani, Morteza; Sarabadani, Jalal
2010-01-01
We investigate the Casimir effect in the presence of a medium by quantizing the electromagnetic field in the presence of a magnetodielectric medium using the path-integral technique. For a given medium with definite electric and magnetic susceptibilities, explicit expressions for the Casimir force are obtained. The Lifshitz formula is recovered and in the absence of a medium the results tend to the original Casimir force between two conducting parallel plates immersed in the quantum electromagnetic vacuum.
Casimir effect at finite temperature for the Kalb-Ramond field
International Nuclear Information System (INIS)
Belich, H.; Silva, L. M.; Helayeel-Neto, J. A.; Santana, A. E.
2011-01-01
We use the thermofield dynamics formalism to obtain the energy-momentum tensor for the Kalb-Ramond field in a topology S 1 xS 1 xR 2 . The compactification is carried out by a generalized thermofield dynamics-Bogoliubov transformation that is used to define a renormalized energy-momentum tensor. The expressions for the Casimir energy and pressure at finite temperature are then derived. A comparative analysis with the electromagnetic case is developed, and the results may be important for applications, as in cuprate superconductivity, for instance.
Repulsive Casimir force in Bose–Einstein Condensate
Mehedi Faruk, Mir; Biswas, Shovon
2018-04-01
We study the Casimir effect for a three dimensional system of ideal free massive Bose gas in a slab geometry with Zaremba and anti-periodic boundary conditions. It is found that for these type of boundary conditions the resulting Casimir force is repulsive in nature, in contrast with usual periodic, Dirichlet or Neumann boundary condition where the Casimir force is attractive (Martin and Zagrebnov 2006 Europhys. Lett. 73 15). Casimir forces in these boundary conditions also maintain a power law decay function below condensation temperature and exponential decay function above the condensation temperature albeit with a positive sign, identifying the repulsive nature of the force.
Implications of the Babinet Principle for Casimir interactions
International Nuclear Information System (INIS)
Maghrebi, Mohammad F.; Jaffe, Robert L.; Abravanel, Ronen
2011-01-01
We formulate the Babinet Principle (BP) as a relation between scattering amplitudes and combine it with multiple scattering techniques to derive new properties of electromagnetic Casimir forces. We show that the Casimir force exerted by a planar conductor or dielectric on a self-complementary perforated planar mirror is approximately half that on a uniform mirror independent of the distance between them. Also, the BP suggests that Casimir edge effects are generically anomalously small. Furthermore, the BP can be used to relate any planar object to its complementary geometry, a relation we use to estimate Casimir forces between two screens with apertures.
Implications of the Babinet Principle for Casimir interactions
Maghrebi, Mohammad F.; Jaffe, Robert L.; Abravanel, Ronen
2011-09-01
We formulate the Babinet Principle (BP) as a relation between scattering amplitudes and combine it with multiple scattering techniques to derive new properties of electromagnetic Casimir forces. We show that the Casimir force exerted by a planar conductor or dielectric on a self-complementary perforated planar mirror is approximately half that on a uniform mirror independent of the distance between them. Also, the BP suggests that Casimir edge effects are generically anomalously small. Furthermore, the BP can be used to relate any planar object to its complementary geometry, a relation we use to estimate Casimir forces between two screens with apertures.
A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy
Directory of Open Access Journals (Sweden)
Yi Zheng
2015-01-01
Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.
Nonlinear (Anharmonic Casimir Oscillator
Directory of Open Access Journals (Sweden)
Habibollah Razmi
2011-01-01
Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.
International Nuclear Information System (INIS)
Brevik, I.
1983-01-01
The canonical quantum theory for an electromagnetic field within an isotropic nondispersive medium, whose permittivity, epsilon, and permeability μ satisfy the condition epsilonμ=1, is developed. This condition is found to simplify the electromagnetic formalism considerably and is of interest not only to quantum electrodynamics (QED) but also to quantum chromodynamics (QDC) in view of the formal analogy existing between these two theories to the zero-order in the gauge coupling constant. After giving a survey of the general formalism, this paper discusses appropriate modifications of known experiments in optics: the Ashkin-Dziedzic pressure experiment (1973), the Barlow experiment (1912), and the levitation experiment of Ashkin (1970) and others. Finally, a calculation is given of Casimir (i.e., zero-point) surface force acting on one of two spherical interfaces separating three media from each other, under certain simplifying conditions
Casimir effect of two conducting parallel plates in a general weak gravitational field
Energy Technology Data Exchange (ETDEWEB)
Nazari, Borzoo [University of Tehran, Faculty of Engineering Science, College of Engineering, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)
2015-10-15
We calculate the finite vacuum energy density of the scalar and electromagnetic fields inside a Casimir apparatus made up of two conducting parallel plates in a general weak gravitational field. The metric of the weak gravitational field has a small deviation from flat spacetime inside the apparatus, and we find it by expanding the metric in terms of small parameters of the weak background. We show that the metric found can be transformed via a gauge transformation to the Fermi metric. We solve the Klein-Gordon equation exactly and find mode frequencies in Fermi spacetime. Using the fact that the electromagnetic field can be represented by two scalar fields in the Fermi spacetime, we find general formulas for the energy density and mode frequencies of the electromagnetic field. Some well-known weak backgrounds are examined and consistency of the results with the literature is shown. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ellingsen, Simen Andreas Aadnoey
2011-01-15
The present thesis focuses on several topics within three separate but related branches of the overall field of dispersion forces. The three branches are: temperature corrections to the Casimir force between real materials (Part 1), explicit calculation of Casimir energy in wedge geometries (Part 2), and Casimir-Polder forces on particles out of thermal equilibrium (Part 3). Part 1 deals primarily with analysis of a previously purported thermodynamic inconsistency in the Casimir-Lifshitz free energy of the interaction of two plane mirrors - violation of the third law of thermodynamics - when the latter's dielectric response is described with dissipative models. It is shown analytically and numerically that the Casimir entropy of the interaction between two metallic mirrors described by the Drude model does tend to zero at zero temperature, provided electronic relaxation does not vanish. The leading order terms at low temperature are found. A similar calculation is carried out for the interaction of semiconductors with small but non-zero DC conductivity. In a generalisation, it is shown that a violation of the third law can only occur for permittivities whose low-frequency behaviour is temperature dependent near zero temperature. A calculation using path integral methods shows that the low temperature behaviour of the interaction of fluctuating Foucault currents in two mirrors of Drude metal is identical to that of the full Casimir-Lifshitz free energy, reasserting a previous finding by Intravaia and Henkel that such fluctuating bulk currents are the physical reason for the anomalous entropy behaviour. In a related effort, an analysis of the frequency dependence of the Casimir force by Ford is generalised to imperfectly reflecting mirrors. A paradox is pointed out, in that the effects of a perturbation of the reflecting properties of the mirrors in a finite frequency window can be calculated in two ways giving different results. It is concluded that optimistic
Three-dimensional Casimir piston for massive scalar fields
International Nuclear Information System (INIS)
Lim, S.C.; Teo, L.P.
2009-01-01
We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a 4 when a→0 + and decays exponentially when a→∞. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.
Ambrosetti, Alberto; Silvestrelli, Pier Luigi
2018-04-01
Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ˜10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.
Johnson-Nyquist noise and the Casimir force between real metals at nonzero temperature
International Nuclear Information System (INIS)
Bimonte, Giuseppe
2008-01-01
It has been well known for a long time that all lossy conductors at finite temperature display an electronic noise, the Johnson-Nyquist noise, arising from the thermal agitation of electric charges inside the conductor. The existence of this noise implies that two nearby discharged conductors at finite temperature should repel each other, as a result of the electrodynamic interaction between the Johnson-Nyquist currents in either conductor and the eddy currents they induce in the other. It is suggested that this force is at the origin of the recently discovered large repulsive correction to the thermal Casimir force between two lossy metallic plates. Further support for this physical picture is obtained by studying a simple system of two linear noisy antennas. Using elementary concepts from circuit theory, we show that the repulsive force engendered by the Johnson-Nyquist noise results in the same kind of thermodynamic inconsistencies found in the Casimir problem. We show that all inconsistencies are however resolved if account is taken of capacitive effects associated with the end points of the antennas. Our findings therefore suggest that capacitive effects resulting from the finite size of the plates may be essential for a resolution of the analogous problems met in the thermal Casimir effect
Casimir interactions for anisotropic magnetodielectric metamaterials
Energy Technology Data Exchange (ETDEWEB)
Da Rosa, Felipe S [Los Alamos National Laboratory; Dalvit, Diego A [Los Alamos National Laboratory; Milonni, Peter W [Los Alamos National Laboratory
2008-01-01
We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.
CasimirSim - A Tool to Compute Casimir Polder Forces for Nontrivial 3D Geometries
International Nuclear Information System (INIS)
Sedmik, Rene; Tajmar, Martin
2007-01-01
The so-called Casimir effect is one of the most interesting macro-quantum effects. Being negligible on the macro-scale it becomes a governing factor below structure sizes of 1 μm where it accounts for typically 100 kN m-2. The force does not depend on gravity, or electric charge but solely on the materials properties, and geometrical shape. This makes the effect a strong candidate for micro(nano)-mechanical devices M(N)EMS. Despite a long history of research the theory lacks a uniform description valid for arbitrary geometries which retards technical application. We present an advanced state-of-the-art numerical tool overcoming all the usual geometrical restrictions, capable of calculating arbitrary 3D geometries by utilizing the Casimir Polder approximation for the Casimir force
Casimir energy and the possibility of higher dimensional manipulation
Obousy, R. K.; Saharian, A. A.
2009-01-01
It is well known that the Casimir effect is an excellent candidate for the stabilization of the extra dimensions. It has also been suggested that the Casimir effect in higher dimensions may be the underlying phenomenon that is responsible for the dark energy which is currently driving the accelerated expansion of the universe. In this paper we suggest that, in principle, it may be possible to directly manipulate the size of an extra dimension locally using Standard Model fields in the next ge...
Directory of Open Access Journals (Sweden)
Valchev Galin
2018-01-01
Full Text Available Here we study the interplay between the van der Waals (vdWF and critical Casimir forces (CCF, as well as the total force (TF between a conical colloid particle and a thick planar slab. We do that using general scaling arguments and mean-field type calculations utilizing the so-called “surface integration approach”, a generalization of the well known Derjaguin approximation. Its usage in the present research, requires knowledge on the forces between two parallel slabs, confining in between some fluctuating fluid medium characterized by its temperature T and chemical potential μ. The surfaces of the colloid particle and the slab are assumed coated by thin layers exerting strong preference to the liquid phase of a simple fluid, or one of the components of a binary mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+ boundary conditions. On the other hand, the core region of the slab and the particle, influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloid-fluid, slab-fluid, and fluid-fluid coupling parameters the competition between the effects due to the coatings and the core regions of the objects, result, when one changes T or μ, in sign change of the Casimir force (CF and the TF acting between the colloid and the slab. Such an effect can provide a strategy for solving problems with handling, feeding, trapping and fixing of microparts in nanotechnology.
Calculating Casimir energies in renormalizable quantum field theory
International Nuclear Information System (INIS)
Milton, Kimball A.
2003-01-01
Quantum vacuum energy has been known to have observable consequences since 1948 when Casimir calculated the force of attraction between parallel uncharged plates, a phenomenon confirmed experimentally with ever increasing precision. Casimir himself suggested that a similar attractive self-stress existed for a conducting spherical shell, but Boyer obtained a repulsive stress. Other geometries and higher dimensions have been considered over the years. Local effects, and divergences associated with surfaces and edges were studied by several authors. Quite recently, Graham et al. have reexamined such calculations, using conventional techniques of perturbative quantum field theory to remove divergences, and have suggested that previous self-stress results may be suspect. Here we show that the examples considered in their work are misleading; in particular, it is well known that in two space dimensions a circular boundary has a divergence in the Casimir energy for massless fields, while for general spatial dimension D not equal to an even integer the corresponding Casimir energy arising from massless fields interior and exterior to a hyperspherical shell is finite. It has also long been recognized that the Casimir energy for massive fields is divergent for curved boundaries. These conclusions are reinforced by a calculation of the relevant leading Feynman diagram in D and in three dimensions. There is therefore no doubt of the validity of the conventional finite Casimir calculations
Casimir Energy, Extra Dimensions and Exotic Propulsion
Obousy, R.; Saharian, A.
It is well known that the Casimir effect is an excellent candidate for the stabilization of the extra dimensions. It has also been suggested that the Casimir effect in higher dimensions may be the underlying phenomenon that is responsible for the dark energy which is currently driving the accelerated expansion of the universe. In this paper we suggest that, in principle, it may be possible to directly manipulate the size of an extra dimension locally using Standard Model fields in the next generation of particle accelerators. This adjustment of the size of the higher dimension could serve as a technological mechanism to locally adjust the dark energy density and change the local expansion of spacetime. This idea holds tantalizing possibilities in the context of exotic spacecraft propulsion.
Casimir interactions between graphene sheets and metamaterials
International Nuclear Information System (INIS)
Drosdoff, D.; Woods, Lilia M.
2011-01-01
The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.
Graphene cantilever under Casimir force
Derras-Chouk, Amel; Chudnovsky, Eugene M.; Garanin, Dmitry A.; Jaafar, Reem
2018-05-01
The stability of graphene cantilever under Casimir attraction to an underlying conductor is investigated. The dependence of the instability threshold on temperature and flexural rigidity is obtained. Analytical work is supplemented by numerical computation of the critical temperature above which the graphene cantilever irreversibly bends down and attaches to the conductor. The geometry of the attachment and exfoliation of the graphene sheet is discussed. It is argued that graphene cantilever can be an excellent tool for precision measurements of the Casimir force.
Casimir effects for a flat plasma sheet: II. Fields and stresses
International Nuclear Information System (INIS)
Barton, G
2005-01-01
We study the self-stresses experienced by the single plasma sheet modelled in the preceding paper, and determine the exact mean-squared Maxwell fields in vacuum around it. These are effects that probe the physics of such systems further than do the ground-state eigenvalues responsible for the cohesive energy β; in particular, unlike β they depend not only on the collective properties but also on the self-fields of the charge carriers. The classical part of the interaction between the sheet and a slowly moving charged particle follows as a byproduct. The main object is to illustrate, in simple closed or almost closed form, the consequences of imperfect (dispersive) reflectivity. The largely artificial limit of perfect reflection reduces all the results to those long familiar outside a half-space taken to reflect perfectly from the outset; but a careful examination of the approach to this limit is needed in order to resolve paradoxes associated with the surface energy, and with the mechanism which, in the limit, disjoins the two flanking half-spaces both electromagnetically and quantally
Casimir Force Between Quantum Plasmas
International Nuclear Information System (INIS)
Buenzli, P.
2005-01-01
Field fluctuations are responsible for an attractive force - the Casimir force - between two parallel (globally neutral) metallic plates separated by a distance d. At high temperature, or equivalently large d, this force is known to exhibit a classical and universal character (independent of the material constitution of the plates). In a recent work, we have displayed the microscopic mechanisms responsible for this universality within a classical model. The plates consist of slabs containing classical charged particles in fluid phase and thermal equilibrium (plasmas). The universality of the force proves to originate from screening sum rules satisfied by the charge correlations. Here we show how this result is altered when the quantum-mechanical nature of the particles is taken into account. It turns out that in addition to the classical result, the asymptotic force for large d comprises a non-universal quantum correction, which is, however, small at high temperature. The method relies on an exact representation of the charge correlations by quantum Mayer graphs, based on the Feynman-Kac path integral formalism. (author)
Finite difference computation of Casimir forces
International Nuclear Information System (INIS)
Pinto, Fabrizio
2016-01-01
In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing
On convergence generation in computing the electro-magnetic Casimir force
International Nuclear Information System (INIS)
Schuller, F.
2008-01-01
We tackle the very fundamental problem of zero-point energy divergence in the context of the Casimir effect. We calculate the Casimir force due to field fluctuations by using standard cavity radiation modes. The validity of convergence generation by means of an exponential energy cut-off factor is discussed in detail. (orig.)
Precision measurement of the Casimir-Lifshitz force in a fluid
International Nuclear Information System (INIS)
Munday, J. N.; Capasso, Federico
2007-01-01
The Casimir force, which results from the confinement of the quantum-mechanical zero-point fluctuations of electromagnetic fields, has received significant attention in recent years for its effect on micro- and nanoscale mechanical systems. With few exceptions, experimental observations have been limited to interacting conductive bodies separated by vacuum or air. However, interesting phenomena, including repulsive forces, are expected to exist in certain circumstances between metals and dielectrics when the intervening medium is not vacuum. In order to better understand the effect of the Casimir force in such situations and to test the robustness of the generalized Casimir-Lifshitz theory, we have performed precision measurements of the Casimir force between two metals immersed in a fluid. For this situation, the measured force is attractive and is approximately 80% smaller than the force predicted by Casimir for ideal metals in vacuum. We present experimental results and find them to be consistent with Lifshitz's theory
Interplay between geometry and temperature for inclined Casimir plates
International Nuclear Information System (INIS)
Weber, Alexej; Gies, Holger
2009-01-01
We provide further evidence for the nontrivial interplay between geometry and temperature in the Casimir effect. We investigate the temperature dependence of the Casimir force between an inclined semi-infinite plate above an infinite plate in D dimensions using the worldline formalism. Whereas the high-temperature behavior is always found to be linear in T in accordance with dimensional-reduction arguments, different power-law behaviors at small temperatures emerge. Unlike the case of infinite parallel plates, which shows the well-known T D behavior of the force, we find a T D-1 behavior for inclined plates, and a ∼T D-0.3 behavior for the edge effect in the limit where the plates become parallel. The strongest temperature dependence ∼T D-2 occurs for the Casimir torque of inclined plates. Numerical as well as analytical worldline results are presented.
Energy Technology Data Exchange (ETDEWEB)
Dowker, J S, E-mail: dowker@man.ac.uk [Theory Group, School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)
2011-08-07
A piston is introduced into a spherical lune Casimir cavity turning it into two adjacent lunes separated by the (hemispherical) piston. On the basis of zeta-function regularization, the vacuum energy of the arrangement is finite for conformal propagation in spacetime. For even spheres this energy is independent of the angle of the lune. For odd dimensions it is shown that for all Neumann, or all Dirichlet, boundary conditions the piston is repelled or attracted by the nearest wall if d = 3, 7, ... or if d = 1, 5, ... , respectively. For hybrid N-D conditions these requirements are switched. If a mass is added, divergences arise which render the model suspect. The analysis, however, is relatively straightforward and involves the Barnes zeta function. The extension to finite temperatures is made and it is shown that for the 3, 7, ... series of odd spheres, the repulsion by the walls continues but that, above a certain temperature, the free energy acquires two minima symmetrically placed about the midpoint.
International Nuclear Information System (INIS)
Dowker, J S
2011-01-01
A piston is introduced into a spherical lune Casimir cavity turning it into two adjacent lunes separated by the (hemispherical) piston. On the basis of zeta-function regularization, the vacuum energy of the arrangement is finite for conformal propagation in spacetime. For even spheres this energy is independent of the angle of the lune. For odd dimensions it is shown that for all Neumann, or all Dirichlet, boundary conditions the piston is repelled or attracted by the nearest wall if d = 3, 7, ... or if d = 1, 5, ... , respectively. For hybrid N-D conditions these requirements are switched. If a mass is added, divergences arise which render the model suspect. The analysis, however, is relatively straightforward and involves the Barnes zeta function. The extension to finite temperatures is made and it is shown that for the 3, 7, ... series of odd spheres, the repulsion by the walls continues but that, above a certain temperature, the free energy acquires two minima symmetrically placed about the midpoint.
Casimir rack and pinion as a miniaturized kinetic energy harvester
Miri, MirFaez; Etesami, Zahra
2016-08-01
We study a nanoscale machine composed of a rack and a pinion with no contact, but intermeshed via the lateral Casimir force. We adopt a simple model for the random velocity of the rack subject to external random forces, namely, a dichotomous noise with zero mean value. We show that the pinion, even when it experiences random thermal torque, can do work against a load. The device thus converts the kinetic energy of the random motions of the rack into useful work.
International Nuclear Information System (INIS)
Reid, M. T. Homer; White, Jacob; Johnson, Steven G.
2011-01-01
We extend a recently introduced method for computing Casimir forces between arbitrarily shaped metallic objects [M. T. H. Reid et al., Phys. Rev. Lett. 103 040401 (2009)] to allow treatment of objects with arbitrary material properties, including imperfect conductors, dielectrics, and magnetic materials. Our original method considered electric currents on the surfaces of the interacting objects; the extended method considers both electric and magnetic surface current distributions, and obtains the Casimir energy of a configuration of objects in terms of the interactions of these effective surface currents. Using this new technique, we present the first predictions of Casimir interactions in several experimentally relevant geometries that would be difficult to treat with any existing method. In particular, we investigate Casimir interactions between dielectric nanodisks embedded in a dielectric fluid; we identify the threshold surface-surface separation at which finite-size effects become relevant, and we map the rotational energy landscape of bound nanoparticle diclusters.
Casimir energy of a BEC: from moderate interactions to the ideal gas
International Nuclear Information System (INIS)
Schiefele, J; Henkel, C
2009-01-01
Considering the Casimir effect due to phononic excitations of a weakly interacting dilute Bose-Einstein condensate (BEC), we derive a renormalized expression for the zero-temperature Casimir energy E C of a BEC confined to a parallel plate geometry with periodic boundary conditions. Our expression is formally equivalent to the free energy of a bosonic field at finite temperature, with a nontrivial density of modes that we compute analytically. As a function of the interaction strength, E C smoothly describes the transition from the weakly interacting Bogoliubov regime to the non-interacting ideal BEC. For the weakly interacting case, E C reduces to leading order to the Casimir energy due to zero-point fluctuations of massless phonon modes. In the limit of an ideal Bose gas, our result correctly describes the Casimir energy going to zero
Controlling Casimir force via coherent driving field
Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid
2016-04-01
A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.
Supersymmetry Breaking Casimir Warp Drive
Obousy, Richard K.; Cleaver, Gerald
2007-01-01
This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead of general relativity.
Tuning the Mass of Chameleon Fields in Casimir Force Experiments
Brax, Ph; Davis, A C; Shaw, D J; Iannuzzi, D
2010-01-01
We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long range Casimir force experiments.
Casimir force between two Aharonov-Bohm selenoids
International Nuclear Information System (INIS)
Duru, I.H.
1989-06-01
We show that a force of Casimir type case be associated with the Aharonov-Bohm effect. We consider two parallel, infinitely long and thin selenoids confining the quantized fluxes n 1 and n 2 within them. Using the Green function method, the vacuum expectation value of the system's energy which includes ''self interaction'' terms and a finite ''mutual interaction'' term is calculated. 8 refs
Casimir energy of rotating string - indirect approach
International Nuclear Information System (INIS)
Hadasz, L.
1999-01-01
Methods of calculating the Casimir energy which do not require the explicit knowledge of the oscillation frequencies are developed and applied to the model of the Nambu-Goto string with the Gauss-Bonnet term in the action. (author)
Casimir Energy of Rotating String --- Indirect Approach
Hadasz, Leszek
1999-04-01
Methods of calculating the Casimir energy which do not require the explicit knowledge of the oscillation frequencies are developed and applied to the model of the Nambu--Goto string with the Gauss--Bonnet term in the action.
Thermal diffusivity effect in opto-thermal skin measurements
International Nuclear Information System (INIS)
Xiao, P; Imhof, R E; Cui, Y; Ciortea, L I; Berg, E P
2010-01-01
We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.
Casimir-Foucault interaction: Free energy and entropy at low temperature
Intravaia, Francesco; Ellingsen, Simen Å.; Henkel, Carsten
2010-09-01
It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.130405 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.
Casimir-Foucault interaction: Free energy and entropy at low temperature
International Nuclear Information System (INIS)
Intravaia, Francesco; Ellingsen, Simen A.; Henkel, Carsten
2010-01-01
It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett. 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.
Detecting chameleons through Casimir force measurements
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.
2007-01-01
The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models
Casimir energy density for spherical universes in n-dimensional spacetime
International Nuclear Information System (INIS)
Oezcan, Mustafa
2006-01-01
We consider the Casimir effect for the massless conformal scalar field in an n-dimensional, closed, static universe. We calculate the renormalized vacuum energy density using the covariant point-splitting method, the mode-sum regularization and the renormalized vacuum energy with the zeta-function regularization. We observe that all odd spacetime dimensions give us the zero renormalized vacuum energy density. For even spacetime dimensions the renormalized vacuum energy density oscillates in sign. The result agrees with three regularization techniques. The Casimir energy density for spherical universes in n-dimensional spacetime is regarded as interesting both to understand the correspondence between the sign of the effect and the dimension of manifold in topology and as a key to confirming the Casimir energy for half spherical universes (manifold with boundary) in n-dimensional spacetime
Oscillating Casimir force between two slabs in a Fermi sea
DEFF Research Database (Denmark)
Li-Wei, Chen; Guo-Zhen, Su; Jin-Can, Chen
2012-01-01
that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively on the magnitude...... of L. In addition, it is found that the amplitude of the Casimir force in a Fermi gas decreases with the increase of the temperature, which also is contrary to the case in a Bose gas, since the bosonic Casimir force increases linearly with the increase of the temperature in the region T
Casimir forces in the time domain: Theory
International Nuclear Information System (INIS)
Rodriguez, Alejandro W.; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.
2009-01-01
We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain (FDTD) scheme. The method involves the time evolution of electric and magnetic fields in response to a set of current sources, in a modified medium with frequency-independent conductivity. The advantage of this approach is that it allows one to exploit existing FDTD software, without modification, to compute Casimir forces. In this paper, we focus on the derivation, implementation choices, and essential properties of the time-domain algorithm, both considered analytically and illustrated in the simplest parallel-plate geometry.
Casimir elements of epsilon Lie algebras
International Nuclear Information System (INIS)
Scheunert, M.
1982-10-01
The classical framework for investigating the Casimir elements of a Lie algebra is generalized to the case of an epsilon Lie algebra L. We construct the standard L-module isomorphism of the epsilon-symmetric algebra of L onto its enveloping algebra and we introduce the Harish-Chandra homomorphism. In case the generators of L can be written in a canonical two-index form, we construct the associated standard sequence of Casimir elements and derive a formula for their eigenvalues in an arbitrary highest weight module. (orig.)
Casimir free energy of dielectric films: classical limit, low-temperature behavior and control.
Klimchitskaya, G L; Mostepanenko, V M
2017-07-12
The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO 2 and Al 2 O 3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO 2 , Al 2 O 3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.
Casimir free energy of dielectric films: classical limit, low-temperature behavior and control
Klimchitskaya, G. L.; Mostepanenko, V. M.
2017-07-01
The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO2 and Al2O3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO2, Al2O3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.
Scattering theory approach to electrodynamic Casimir forces
International Nuclear Information System (INIS)
Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten; Graham, Noah; Jaffe, Robert L.
2009-01-01
We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, nonzero temperatures, and spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. The method is illustrated by rederiving the Lifshitz formula for infinite half-spaces, by demonstrating the Casimir-Polder to van der Waals crossover, and by computing the Casimir interaction energy of two infinite, parallel, perfect metal cylinders either inside or outside one another. Furthermore, it is used to obtain new results, namely, the Casimir energies of a sphere or a cylinder opposite a plate, all with finite permittivity and permeability, to leading order at large separation.
Casimir energy of rotating string - indirect approach
Energy Technology Data Exchange (ETDEWEB)
Hadasz, L. [Smoluchowski Institute of Physics, Jagiellonian University, Cracow (Poland)
1999-04-01
Methods of calculating the Casimir energy which do not require the explicit knowledge of the oscillation frequencies are developed and applied to the model of the Nambu-Goto string with the Gauss-Bonnet term in the action. (author) 17 refs, 1 fig
Casimir energy of a nonuniform string
Hadasz, L.; Lambiase, G.; Nesterenko, V. V.
2000-07-01
The Casimir energy of a nonuniform string built up from two pieces with different speeds of sound is calculated. A standard procedure of subtracting the energy of an infinite uniform string is applied, the subtraction being interpreted as the renormalization of the string tension. It is shown that in the case of a homogeneous string this method is completely equivalent to zeta renormalization.
Roughness corrections to the Casimir force : The importance of local surface slope
van Zwol, P. J.; Palasantzas, G.; De Hosson, J. Th. M.
2007-01-01
This paper concentrates on a study where finite conductivity corrections are included in the theoretical description of the effects of roughness on the Casimir force. The roughness data were taken from gold films evaporated onto silicon and polysterene spheres. We conclude that for a detailed
Constraints on Stable Equilibria with Fluctuation-Induced (Casimir) Forces
International Nuclear Information System (INIS)
Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten
2010-01-01
We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir or van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium, the former being the generic case for ordinary materials in vacuum.
Constraints on stable equilibria with fluctuation-induced (Casimir) forces.
Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten
2010-08-13
We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir or van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium, the former being the generic case for ordinary materials in vacuum.
Farrokhabadi, Amin; Mokhtari, Javad; Rach, Randolph; Abadyan, Mohamadreza
2015-09-01
The Casimir force can strongly interfere with the pull-in performance of ultra-small structures. The strength of the Casimir force is significantly affected by the geometries of interacting bodies. Previous investigators have exclusively studied the effect of the Casimir force on the electromechanical instability of nanostructures with planar geometries. However no work has yet considered this effect on the pull-in instability of systems with cylindrical geometries such as nanotweezers fabricated from nanotube/nanowires. In our present work, the influence of the Casimir attraction on the electrostatic response and pull-in instability of nanotweezers fabricated from cylindrical conductive nanowires/nanotubes is theoretically investigated. An asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The Euler-Bernoulli beam model is employed, in conjunction with the size-dependent modified couple stress continuum theory, to derive the governing equation of the nanotweezers. The governing nonlinear equations are solved by two different approaches, i.e., the modified Adomian-Padé method (MAD-Padé) and a numerical solution. Various aspects of the problem, i.e., the variation of pull-in parameters, effect of geometry, coupling between the Casimir force and size dependency effects and comparison with the van der Waals force regime are discussed.
Selective decay by Casimir dissipation in inviscid fluids
International Nuclear Information System (INIS)
Gay-Balmaz, François; Holm, Darryl D
2013-01-01
The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional (2D) incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in three-dimensional flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in Sadourny and Basdevant (1981 C. R. Acad. Sci. Paris 292 1061–4, 1985 J. Atm. Sci. 42 1353–63). Several examples are given and a general theory of selective decay is developed that uses the Lie–Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parametrizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies. (paper)
Measured long-range repulsive Casimir-Lifshitz forces.
Munday, J N; Capasso, Federico; Parsegian, V Adrian
2009-01-08
Quantum fluctuations create intermolecular forces that pervade macroscopic bodies. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces. However, as recognized in the theories of Casimir, Polder and Lifshitz, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies. Here we show experimentally that, in accord with theoretical prediction, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir-Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction.
Surface contact potential patches and Casimir force measurements
International Nuclear Information System (INIS)
Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.
2010-01-01
We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.
Casimir apparatuses in a weak gravitational field
DEFF Research Database (Denmark)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero
2009-01-01
We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...
Casimir energy for a piecewise uniform string
International Nuclear Information System (INIS)
Brevik, I.; Nielsen, H.B.
1989-07-01
The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculated. The string consists of two parts I and II, endowed in general with different tensions and mass densities, although adjusted in such a way that the velocity of sound always equals the velocity of light. The dispersion equation is worked out under general conditions, and the frequency spectrum is determined in special cases. When the ratio L II /L I between the string lengths is an integer, it is in principle possible to determine the frequency spectrum through solving algebraic equations of increasingly high degree. The Casimir energy relative to the uniform string is in general found to be negative, although in the special case L I =L II the energy is equal to zero. Delicate points in the regularization procedure are discussed; they point toward an anomaly in the theory. (orig.)
Extended Analysis of the Casimir Force
Directory of Open Access Journals (Sweden)
Lehnert B.
2014-04-01
Full Text Available There are several arguments for the conventional form of the Zero Point Energy fre- quency spectrum to be put in doubt. It has thus to be revised in to that of a self-consistent system in statistical equilibrium where the total energy de nsity and the equivalent pres- sure become finite. An extended form of the Casimir force is th ereby proposed to be used as a tool for determining the local magnitude of the same pressure. This can be done in terms of measurements on the force between a pair po lished plane plates consisting of different metals, the plates having very small or zero air gaps. T his corre- sponds to the largest possible Casimir force. Even then, the re may arise problems with other adhering forces, possibly to be clarified in further experiments.
Casimir pistons with general boundary conditions
Directory of Open Access Journals (Sweden)
Guglielmo Fucci
2015-02-01
Full Text Available In this work we analyze the Casimir energy and force for a scalar field endowed with general self-adjoint boundary conditions propagating in a higher dimensional piston configuration. The piston is constructed as a direct product I×N, with I=[0,L]⊂R and N a smooth, compact Riemannian manifold with or without boundary. The study of the Casimir energy and force for this configuration is performed by employing the spectral zeta function regularization technique. The obtained analytic results depend explicitly on the spectral zeta function associated with the manifold N and the parameters describing the general boundary conditions imposed. These results are then specialized to the case in which the manifold N is a d-dimensional sphere.
Thermal effects in supercapacitors
Xiong, Guoping; Fisher, Timothy S
2015-01-01
This Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems.
Casimir Repulsion between Metallic Objects in Vacuum
International Nuclear Information System (INIS)
Levin, Michael; McCauley, Alexander P.; Rodriguez, Alejandro W.; Reid, M. T. Homer; Johnson, Steven G.
2010-01-01
We give an example of a geometry in which two metallic objects in vacuum experience a repulsive Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with numerical calculations for both perfect and realistic metals. The system does not support stable levitation, as the particle is unstable to displacements away from the symmetry axis.
Cook, Eryn C.
Casimir and Casimir-Polder effects are forces between electrically neutral bodies and particles in vacuum, arising entirely from quantum fluctuations. The modification to the vacuum electromagnetic-field modes imposed by the presence of any particle or surface can result in these mechanical forces, which are often the dominant interaction at small separations. These effects play an increasingly critical role in the operation of micro- and nano-mechanical systems as well as miniaturized atomic traps for precision sensors and quantum-information devices. Despite their fundamental importance, calculations present theoretical and numeric challenges, and precise atom-surface potential measurements are lacking in many geometric and distance regimes. The spectroscopic measurement of Casimir-Polder-induced energy level shifts in optical-lattice trapped atoms offers a new experimental method to probe atom-surface interactions. Strontium, the current front-runner among optical frequency metrology systems, has demonstrated characteristics ideal for such precision measurements. An alkaline earth atom possessing ultra-narrow intercombination transitions, strontium can be loaded into an optical lattice at the "magic" wavelength where the probe transition is unperturbed by the trap light. Translation of the lattice will permit controlled transport of tightly-confined atomic samples to well-calibrated atom-surface separations, while optical transition shifts serve as a direct probe of the Casimir-Polder potential. We have constructed a strontium magneto-optical trap (MOT) for future Casimir-Polder experiments. This thesis will describe the strontium apparatus, initial trap performance, and some details of the proposed measurement procedure.
Energy Technology Data Exchange (ETDEWEB)
Adamcova, J.; Kolaoikova, I. [Prague Univ., Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles (Czech Republic); Adamcova, J. [Czech Geological Survey, Geologicka 6, Prague (Czech Republic); Kaufhold, S.; Dohrmann, R. [BGR, Federal Institute for Geoscience and Natural Resources, Hannover (Germany); Dohrmann, R. [LBEG, State Authority for Mining, Energy, and Geology, Hannover (Germany); Craen, M. de; Van Geet, M.; Honty, M.; Wang, L.; Weetjens, E. [CK-CEN - Belgian Nuclear Research Centre - Environment, Healt and Safety Institute, Mol (Belgium); Van Geet, M. [ONDRAF/NIRAS - Belgian Agency for Radioactive Waste and Enriched Fissile Materials, Brussel (Belgium); Pozzi, J.P.; Janots, D. [Ecole Normale Paris, CNRS Lab. de Geologie, 75 - Paris (France); Aubourg, C. [Universite Cergy Pontoise, CNRS Lab. de Tectonique, 95 (France); Cathelineau, M.; Rousset, D.; Ruck, R. [Nancy-1 Univ. Henri Poincare, CNRS G2R, 54 (France); Clauer, N. [Strasbourg-1 Univ., CNRS CGS, 67 (France); Liewig, N. [Institut Pluridisciplinaire Hubert Curien, CNRS, 67 - Strasbourg (France); Techer, I. [Nimes Univ., CNRS Cerege, 30 (France)
2007-07-01
This session gathers 4 articles dealing with: the alteration processes in bentonites: mineralogical and structural changes during long-term and short-term experiments (J. Adamcov, I. Kolarikova); the implications from the lot experiment regarding the selection of an optimum HLRW bentonite (S. Kaufhold, R. Dohrmann); the extent of oxidation in Boom clay as a result of excavation and ventilation of the HADES URF: Experimental and modelling assessments (M. De Craen, M. Van Geet, M. Honty, L. Wang, E. Weetjens); and the magnetic and mineralogical alterations under thermal stress at 95 deg. C of Callovo-Oxfordian clay-stones (Bure, France) and lower Dogger Mont Terri clay-stones, Switzerland (J.P. Pozzi, C. Aubourg, D. Janots, M. Cathelineau, N. Clauer, D. Rousset, R. Ruck, N. Liewig, I. Techer)
Casimir energy for twisted piecewise uniform bosonic strings
International Nuclear Information System (INIS)
Lu, J.; Huang, B.; Shanghai, Teachers Univ.
1998-01-01
The Casimir energy for the transverse oscillations of piecewise uniform bosonic strings with either untwisted or twisted continuous conditions is discussed. After calculating the analytic values of zeros of the dispersion function under certain conditions, is obtained the Casimir energy for both open and closed bosonic strings composed of two or three segments
Efficient Computation of Casimir Interactions between Arbitrary 3D Objects
International Nuclear Information System (INIS)
Reid, M. T. Homer; Rodriguez, Alejandro W.; White, Jacob; Johnson, Steven G.
2009-01-01
We introduce an efficient technique for computing Casimir energies and forces between objects of arbitrarily complex 3D geometries. In contrast to other recently developed methods, our technique easily handles nonspheroidal, nonaxisymmetric objects, and objects with sharp corners. Using our new technique, we obtain the first predictions of Casimir interactions in a number of experimentally relevant geometries, including crossed cylinders and tetrahedral nanoparticles.
Thermal effects in concrete members
International Nuclear Information System (INIS)
Kar, A.K.
1977-01-01
When subjected to temperature changes and restrained from free movement, a member develops stresses. Restrained members are sometimes assumed to act independently of other members. A method of analysis and design for thermal stresses in such members is provided. The method of analysis, based on the ultimate strength concept, greatly reduces the computational efforts for determining thermal effects in concrete members. Available charts and tables and the recommendations given herein simplify the design. (Auth.)
Controlling the Casimir force via the electromagnetic properties of materials
International Nuclear Information System (INIS)
Yang Yaping; Chen Hong; Zeng Ran; Zhu Shiyao; Zubairy, M. Suhail
2010-01-01
The control of the Casimir force between two parallel plates can be achieved through adjusting the frequency-dependent electromagnetic properties of materials of the two plates. We show that, for different plate separations, the main contribution to the Casimir force comes from different frequency regions: For smaller (larger) separation, it comes from the higher (lower) frequency region. When the separation of the plates increases, the Casimir force can vary from attractive to repulsive and/or vice versa, by selecting the two plates with suitable electromagnetic properties. We discuss how a restoring Casimir force, which varies from repulsive to attractive by increasing the separation, can be realized and that the stable equilibrium is formed at zero Casimir force.
Repulsive Casimir force at zero and finite temperature
International Nuclear Information System (INIS)
Lim, S C; Teo, L P
2009-01-01
We study the zero and finite temperature Casimir force acting on a perfectly conducting piston with arbitrary cross section moving inside a closed cylinder with infinitely permeable walls. We show that at any temperature, the Casimir force always tends to move the piston away from the walls and toward its equilibrium position. In the case of a rectangular piston, exact expressions for the Casimir force are derived. In the high-temperature regime, we show that the leading term of the Casimir force is linear in temperature and therefore the Casimir force has a classical limit. Due to duality, all these results also hold for an infinitely permeable piston moving inside a closed cylinder with perfectly conducting walls.
Special problems: LBB, thermal effects
International Nuclear Information System (INIS)
Lin Chiwen
2001-01-01
This section presents the discussion of special problems in the reactor coolant system design, including LBB and thermal effects. First, the categories of fracture mechanics technology applicable to LBB is discussed. Two categories of fracture mechanics, namely: linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM) are discussed specifically. Next, basic concepts of LEFM are discussed. This will be followed by a discussion of EPFM, with more specific discussion of the methodology currently acceptable to NRC, with the emphasis on the J-integral approach. This is followed by a discussion of the NRC position and recommendations and basic requirements laid out by NRC. A specific example of LBB application to WPWR piping is used to identify the key steps to be followed, in order to satisfy the recommendations and requirements of NRC. An application of LBB to the WPWR reactor coolant loop piping is provided as further illustration of the methodology. This section focuses on the thermal effects which have not been addressed earlier, and the thermal effects which have caused particular concerns on potential reactor degradations, such as pressurized thermal shocks. The organization of this section is divided into the following subsections: linear-elastic fracture mechanics (LEFM); elastic-plastic fracture mechanics (EPFM); J concepts; NRC recommendations and requirements on the application of LBB; two specific applications of LBB to WPWR piping; PWR internals degradation; thermal fatigue considerations; a case study of pressurized thermal shock
Zeta-function approach to Casimir energy with singular potentials
International Nuclear Information System (INIS)
Khusnutdinov, Nail R.
2006-01-01
In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials are analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit, and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated, and it is shown that the surface contribution appears. The renormalization of the effective action is discussed
Membrane actuation by Casimir force manipulation
International Nuclear Information System (INIS)
Pinto, Fabrizio
2008-01-01
In our laboratory, we have been developing a practical demonstration of actuation by means of the Casimir force inspired by the capacitive detection approach originally described by Arnold, Hunklinger and Dransfeld (1972 Rev. Sci. Instrum. 43 584-7). In this paper, we first describe the mathematical challenges pertaining to the electrostatic calibration of our measuring device, which has been enhanced by our recently published results regarding the computation of electrostatic fields in axial systems, such as the long-standing classical circular capacitor problem. We also discuss our computational approach to the calculation of the Casimir force in our system, including our adoption of analytical descriptions of the dielectric functions of semiconductors extended to the case of axial geometries. We will illustrate how the original AHD apparatus has been drastically improved upon, for instance by means of modern nanopositioner technology, and we shall discuss our published experimental results on the dynamics of a vibrating membrane with a central disc, which have provided the first direct verification of the mechanical resonances of such a system. The emphasis of our effort is not exclusively directed to fundamental physics research but is focused on, and ultimately motivated by, our goal of identifying viable industrial applications leading to commercially marketable products based on Casimir force actuation. Therefore we conclude this paper by briefly discussing the contribution we believe these results will offer to some current technological problems, in particular in nanotechnology, including some thoughts on the possibility that dispersion forces may enable a new and rapidly expanding industry to develop in the near future
The stochastic energy-Casimir method
Arnaudon, Alexis; Ganaba, Nader; Holm, Darryl D.
2018-04-01
In this paper, we extend the energy-Casimir stability method for deterministic Lie-Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems. xml:lang="fr"
Geometry and spectrum of Casimir forces
International Nuclear Information System (INIS)
Buescher, Rauno; Emig, Thorsten
2005-01-01
We present a new approach to the Helmholtz spectrum for arbitrarily shaped boundaries and general boundary conditions. We derive the boundary induced change of the density of states in terms of the free Green's function from which we obtain nonperturbative results for the Casimir interaction between rigid surfaces. As an example, we compute the lateral electrodynamic force between two corrugated surfaces over a wide parameter range. Universal behavior, fixed only by the largest wavelength component of the surface shape, is identified at large surface separations, complementing known short distance expansions which we also reproduce with high precision
Sign and other aspects of semiclassical Casimir energies
International Nuclear Information System (INIS)
Schaden, Martin
2006-01-01
The Casimir energy of a massless scalar field is semiclassically given by contributions due to classical periodic rays. The required subtractions in the spectral density are determined explicitly. The semiclassical Casimir energies so defined coincide with those of zeta function regularization in the cases studied. Poles in the analytic continuation of zeta function regularization are related to nonuniversal subtractions in the spectral density. The sign of the Casimir energy of a scalar field on a smooth manifold is estimated by the sign of the contribution due to the shortest periodic rays only. Demanding continuity of the Casimir energy under small deformations of the manifold, the method is extended to integrable systems. The Casimir energy of a massless scalar field on a manifold with boundaries includes contributions due to periodic rays that lie entirely within the boundaries. These contributions in general depend on the boundary conditions. Although the Casimir energy due to a massless scalar field may be sensitive to the physical dimensions of manifolds with boundary. In favorable cases its sign can, contrary to conventional wisdom, be inferred without calculation of the Casimir energy
Invert Effective Thermal Conductivity Calculation
International Nuclear Information System (INIS)
M.J. Anderson; H.M. Wade; T.L. Mitchell
2000-01-01
The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m · K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations
Casimir forces in multilayer magnetodielectrics with both gain and loss
DEFF Research Database (Denmark)
Amooghorban, Ehsan; Wubs, Martijn; Mortensen, N. Asger
2011-01-01
of the amplifying medium, with negative imaginary parts in finite frequency intervals, are identified and their relationships to microscopic coupling functions are determined. By carefully relating the two-point functions of the field theory to the optical Green functions, we calculate the Casimir energy...... and Casimir forces for a multilayer magnetodielectric medium with both gain and loss. We point out the essential differences with a purely passive layered medium. For a single layer, we find different bounds on the Casimir force for fully amplifying and for lossy media. The force is attractive in both cases...
Thermal effects in concrete members
International Nuclear Information System (INIS)
Kar, A.K.
1977-01-01
The proposed method of analysis for concrete members subjected to temperature changes is consistent with the requirements of ultimate strength design. This also facilitates the provision of the same safety margin as for other loads. Due to cracks and creep in concrete, thermal stresses are nonlinear; they are dependent on the effective member stiffness, which in turn vary with the magnitude of loading. Therefore it is inconsistent to have an ultimate strength design in conjunction with an analysis based on the linear elastic theory. It is proposed that when the requirements of serviceability are met, the neutral axis corresponding to the ultimate load capacity conditions be considered for temperature-induced loadings. This conforms with the fact that the thermal load, because of creep and formation of cracks in the member, can be self-relieving as the failure load condition or ultimate capacity is approached. The maximum thermal load that can develop in dependent on the effective cross section of the member. Recommendations are made for determining the average effective member stiffness, which lies between the stiffness corresponding to the cracked (at ultimate condition) and the uncracked sections. In the proposed method, thermal stresses are not considered completely self-relieving. The stresses are considered simultaneously with stresses resulting from other causes. A step-by-step approach is presented for analysis and design of concrete members subjected to temperature changes
Repulsive Casimir and Casimir–Polder forces
International Nuclear Information System (INIS)
Milton, Kimball A; Abalo, E K; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen Å
2012-01-01
Casimir and Casimir–Polder repulsions have been known for more than 50 years. The general ‘Lifshitz’ configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capasso’s group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on some recent developments will be surveyed. Here, stress will be placed on analytic developments, especially on Casimir–Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, either because of anisotropic constituents, or because of geometry. Repulsion occurs for wedge-shaped and cylindrical conductors, provided the geometry is sufficiently asymmetric, that is, either the wedge is sufficiently sharp or the atom is sufficiently far from the cylinder. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)
Casimir amplitudes in topological quantum phase transitions.
Griffith, M A; Continentino, M A
2018-01-01
Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.
Edge corrections to electromagnetic Casimir energies from general-purpose Mathieu-function routines
Blose, Elizabeth Noelle; Ghimire, Biswash; Graham, Noah; Stratton-Smith, Jeremy
2015-01-01
Scattering theory methods make it possible to calculate the Casimir energy of a perfectly conducting elliptic cylinder opposite a perfectly conducting plane in terms of Mathieu functions. In the limit of zero radius, the elliptic cylinder becomes a finite-width strip, which allows for the study of edge effects. However, existing packages for computing Mathieu functions are insufficient for this calculation because none can compute Mathieu functions of both the first and second kind for complex arguments. To address this shortcoming, we have written a general-purpose Mathieu-function package, based on algorithms developed by Alhargan. We use these routines to find edge corrections to the proximity force approximation for the Casimir energy of a perfectly conducting strip opposite a perfectly conducting plane.
Characterization of FGM micro-switches under electrostatic and Casimir forces
International Nuclear Information System (INIS)
Jia, X L; Kitipornchai, S; Yang, J
2010-01-01
This paper aims to investigate the nonlinear pull-in characteristics of the micro-switches made of either homogeneous material or non-homogeneous functionally graded material (FGM) with two material phases under the combined electrostatic and intermolecular Casimir force. Principle of virtual work is used to derive the governing differential equation which is then solved using differential quadrature method (DQM). Pull-in voltage and pull-in deflection are obtained for micro-switches with three different boundary conditions (i.e. fixed-fixed, simple-fixed, and simply supported). The present solutions are validated through direct comparisons with experimental and other existing results reported in previous studies. A parametric study is conducted to show the significant effects of material composition, gap ratio, slenderness ratio, Casimir force, axial residual stress on the pull-in instability.
Casimir energy between two parallel plates and projective representation of the Poincaré group
Akita, Takamaru; Matsunaga, Mamoru
2016-06-01
The Casimir effect is a physical manifestation of zero point energy of quantum vacuum. In a relativistic quantum field theory, Poincaré symmetry of the theory seems, at first sight, to imply that nonzero vacuum energy is inconsistent with translational invariance of the vacuum. In the setting of two uniform boundary plates at rest, quantum fields outside the plates have (1 +2 )-dimensional Poincaré symmetry. Taking a massless scalar field as an example, we have examined the consistency between the Poincaré symmetry and the existence of the vacuum energy. We note that, in quantum theory, symmetries are represented projectively in general and show that the Casimir energy is connected to central charges appearing in the algebra of generators in the projective representations.
Rigorous approach to the comparison between experiment and theory in Casimir force measurements
International Nuclear Information System (INIS)
Klimchitskaya, G L; Chen, F; Decca, R S; Fischbach, E; Krause, D E; Lopez, D; Mohideen, U; Mostepanenko, V M
2006-01-01
In most experiments on the Casimir force the comparison between measurement data and theory was done using the concept of the root-mean-square deviation, a procedure that has been criticized in the literature. Here we propose a special statistical analysis which should be performed separately for the experimental data and for the results of the theoretical computations. In so doing, the random, systematic and total experimental errors are found as functions of separation, taking into account the distribution laws for each error at 95% confidence. Independently, all theoretical errors are combined to obtain the total theoretical error at the same confidence. Finally, the confidence interval for the differences between theoretical and experimental values is obtained as a function of separation. This rigorous approach is applied to two recent experiments on the Casimir effect
Casimir-Polder shifts on quantum levitation states
Crépin, P.-P.; Dufour, G.; Guérout, R.; Lambrecht, A.; Reynaud, S.
2017-03-01
An ultracold atom above a horizontal mirror experiences quantum reflection from the attractive Casimir-Polder interaction, which holds it against gravity and leads to quantum levitation states. We analyze this system by using a Liouville transformation of the Schrödinger equation and a Langer coordinate adapted to problems with a classical turning point. Reflection on the Casimir-Polder attractive well is replaced by reflection on a repulsive wall, and the problem is then viewed as an ultracold atom trapped inside a cavity with gravity and Casimir-Polder potentials acting, respectively, as top and bottom mirrors. We calculate numerically Casimir-Polder shifts of the energies of the cavity resonances and propose an approximate treatment which is precise enough to discuss spectroscopy experiments aimed at tests of the weak-equivalence principle on antihydrogen. We also discuss the lifetimes by calculating complex energies associated with cavity resonances.
Symmetries and casimir of an extended classical long wave system
Indian Academy of Sciences (India)
Keywords. Dispersionless equations; symmetries; casimir; conserved quantities. ... Application of Lie symmetry analysis to integro-differential equations or infinite systems ..... The financial support in the form of Senior Research Fellowship.
Casimir stress in materials: Hard divergency at soft walls
Griniasty, Itay; Leonhardt, Ulf
2017-11-01
The Casimir force between macroscopic bodies is well understood, but not the Casimir stress inside bodies. Suppose empty space or a uniform medium meets a soft wall where the refractive index is continuous but its derivative jumps. For this situation we predict a characteristic power law for the stress inside the soft wall and close to its edges. Our result shows that such edges are not tolerated in the aggregation of liquids at surfaces, regardless whether the liquid is attracted or repelled.
Quantum mechanical effects of topological origin
Duru, I. H.
1993-01-01
Following a brief review of the original Casimir and Aharonov-Bohm effects, some other effects of similar natures are mentioned. A Casimir interaction between AB fluxes is presented. Possible realizations of the Casimir effects for massive charged fields in solid state structures and a new AB effect for photons are suggested.
Casimir Energies for Isorefractive or Diaphanous Balls
Directory of Open Access Journals (Sweden)
Kimball A. Milton
2018-03-01
Full Text Available It is known that the Casimir self-energy of a homogeneous dielectric ball is divergent, although a finite self-energy can be extracted through second order in the deviation of the permittivity from the vacuum value. The exception occurs when the speed of light inside the spherical boundary is the same as that outside, so the self-energy of a perfectly conducting spherical shell is finite, as is the energy of a dielectric-diamagnetic sphere with ε μ = 1 , a so-called isorefractive or diaphanous ball. Here we re-examine that example and attempt to extend it to an electromagnetic δ -function sphere, where the electric and magnetic couplings are equal and opposite. Unfortunately, although the energy expression is superficially ultraviolet finite, additional divergences appear that render it difficult to extract a meaningful result in general, but some limited results are presented.
Casimir energy and a cosmological bounce
International Nuclear Information System (INIS)
Herdeiro, Carlos A R; Sampaio, Marco
2006-01-01
We review different computation methods for the renormalized energy-momentum tensor of a quantized scalar field in an Einstein static universe. For the extensively studied conformally coupled case, we check their equivalence; for different couplings, we discuss violation of different energy conditions. In particular, there is a family of masses and couplings which violate the weak and strong energy conditions but do not lead to spacelike propagation. Amongst these cases is that of a minimally coupled massless scalar field with no potential. We also point out a particular coupling for which a massless scalar field has vanishing renormalized energy-momentum tensor. We discuss the backreaction problem and in particular the possibility that this Casimir energy could both source a short inflationary epoch and avoid the big bang singularity through a bounce
Thermal effects in radiation processing
International Nuclear Information System (INIS)
Zagorski, Z.P.
1985-01-01
The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The csub(p) of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation. (author)
Thermal effects in radiation processing
International Nuclear Information System (INIS)
Zagorski, Z.P.
1984-01-01
The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation
Thermal effects on beryllium mirrors
International Nuclear Information System (INIS)
Weinswig, S.
1989-01-01
Beryllium is probably the most frequently used material for spaceborne system scan mirrors. Beryllium's properties include lightweightedness, high Young's modulus, high stiffness value, high resonance value. As an optical surface, beryllium is usually nickel plated in order to produce a higher quality surface. This process leads to the beryllium mirror acting like a bimetallic device. The mirror's deformation due to the bimetallic property can possibly degrade the performance of the associated optical system. As large space borne systems are designed and as temperature considerations become more crucial in the instruments, the concern about temporal deformation of the scan mirrors becomes a prime consideration. Therefore, two sets of tests have been conducted in order to ascertain the thermal effects on nickel plated beryllium mirrors. These tests are categorized. The purpose of this paper is to present the values of the bimetallic effect on typical nickel plated beryllium mirrors
Repulsive Casimir force from fractional Neumann boundary conditions
International Nuclear Information System (INIS)
Lim, S.C.; Teo, L.P.
2009-01-01
This Letter studies the finite temperature Casimir force acting on a rectangular piston associated with a massless fractional Klein-Gordon field at finite temperature. Dirichlet boundary conditions are imposed on the walls of a d-dimensional rectangular cavity, and a fractional Neumann condition is imposed on the piston that moves freely inside the cavity. The fractional Neumann condition gives an interpolation between the Dirichlet and Neumann conditions, where the Casimir force is known to be always attractive and always repulsive respectively. For the fractional Neumann boundary condition, the attractive or repulsive nature of the Casimir force is governed by the fractional order which takes values from zero (Dirichlet) to one (Neumann). When the fractional order is larger than 1/2, the Casimir force is always repulsive. For some fractional orders that are less than but close to 1/2, it is shown that the Casimir force can be either attractive or repulsive depending on the aspect ratio of the cavity and the temperature.
Eerkens, H.J.
2017-01-01
This thesis consists of two subjects, that are both a consequence of radiation pressure. In optomechanics, light is used to influence the motion of a trampoline resonator. It is possible to slow down this motion, cooling it from room temperature to an effective temperature of several milllikelvins,
Casimir forces between compact objects: The scalar case
International Nuclear Information System (INIS)
Emig, T.; Graham, N.; Jaffe, R. L.; Kardar, M.
2008-01-01
We have developed an exact, general method to compute Casimir interactions between a finite number of compact objects of arbitrary shape and separation. Here, we present details of the method for a scalar field to illustrate our approach in its most simple form; the generalization to electromagnetic fields is outlined in Ref. [T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Phys. Rev. Lett. 99, 170403 (2007).]. The interaction between the objects is attributed to quantum fluctuations of source distributions on their surfaces, which we decompose in terms of multipoles. A functional integral over the effective action of multipoles gives the resulting interaction. Each object's shape and boundary conditions enter the effective action only through its scattering matrix. Their relative positions enter through universal translation matrices that depend only on field type and spatial dimension. The distinction of our method from the pairwise summation of two-body potentials is elucidated in terms of the scattering processes between three objects. To illustrate the power of the technique, we consider Robin boundary conditions φ-λ∂ n φ=0, which interpolate between Dirichlet and Neumann cases as λ is varied. We obtain the interaction between two such spheres analytically in a large separation expansion, and numerically for all separations. The cases of unequal radii and unequal λ are studied. We find sign changes in the force as a function of separation in certain ranges of λ and see deviations from the proximity force approximation even at short separations, most notably for Neumann boundary conditions
Repulsive Casimir-Polder potential by a negative reflecting surface
Yuan, Qi-Zhang
2015-07-01
We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.
Tunable Stable Levitation Based on Casimir Interaction between Nanostructures
Liu, Xianglei; Zhang, Zhuomin M.
2016-03-01
Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.
The mathematics of the Casimir effect
International Nuclear Information System (INIS)
Dowling, J.P.
1987-02-01
We show how a famous problem in theoretical physics leads to two classical formulas which allow one to compute the difference between a definite integral and an infinite sum of the same functional form f. (author). 5 refs, 3 figs
Materials perspective on Casimir and van der Waals interactions
Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R.
2016-10-01
Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.
Repulsive Casimir-Polder forces from cosmic strings
International Nuclear Information System (INIS)
Saharian, A.A.; Kotanjyan, A.S.
2011-01-01
We investigate the Casimir-Polder force acting on a polarizable microparticle in the geometry of a straight cosmic string. In order to develop this analysis we evaluate the electromagnetic field Green tensor on the imaginary frequency axis. The expression for the Casimir-Polder force is derived in the general case of anisotropic polarizability. In dependence on the eigenvalues for the polarizability tensor and of the orientation of its principal axes, the Casimir-Polder force can be either repulsive or attractive. Moreover, there are situations where the force changes the sign with separation. We show that for an isotropic polarizability tensor the force is always repulsive. At large separations between the microparticle and the string, the force varies inversely with the fifth power of the distance. In the non-retarded regime, corresponding to separations smaller than the relevant transition wavelengths, the force decays with the inverse fourth power of the distance. In the case of anisotropic polarizability, the dependence of the Casimir-Polder potential on the orientation of the polarizability tensor principal axes also leads to a moment of force acting on the particle. (orig.)
Higher-order conductivity corrections to the Casimir force
International Nuclear Information System (INIS)
Bezerra, Valdir Barbosa; Klimchitskaya, Galina; Mostepanenko, Vladimir
2000-01-01
Full text follows: Considerable recent attention has been focused on the new experiments on measuring the Casimir force. To be confident that experimental data fit theory at a level of several percent, a variety of corrections to the ideal expression for the Casimir force should be taken into account. One of the main corrections at small separations between interacting bodies is the one due to finite conductivity of the boundary metal. This correction has its origin in non-zero penetration depth δ 0 of electromagnetic vacuum oscillations into the metal (for a perfect metal of infinitely large conductivity δ 0 = 0). The other quantity of the dimension of length is the space separation a between two plates or a plate and a sphere. Their relation δ 0 /a is the natural perturbation parameter in which powers the corrections to the Casimir force due to finite conductivity can be expanded. Such an expansion works good for all separations a >> δ 0 (i.e. for separations larger than 100-150 nm). The first-order term of this expansion was calculated almost forty years ago, and the second-order one in 1985 [1]. These two terms are not sufficient for the comparison of the theory with precision modern experiments. In this talk we report the results of paper [2] where the third- and fourth-order terms in δ 0 /a expansion of the Casimir force were calculated first. They gave the possibility to achieve an excellent agreement of a theory and experiment. (author)
Thermal Bridge Effects in Walls Separating Rowhouses
DEFF Research Database (Denmark)
Rose, Jørgen
1997-01-01
In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures.......In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures....
Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces
International Nuclear Information System (INIS)
Jia, X L; Kitipornchai, S; Lim, C W; Yang, J
2010-01-01
This paper investigates the free vibration characteristics of micro-switches under combined electrostatic, intermolecular forces and axial residual stress, with an emphasis on the effect of geometric nonlinear deformation due to mid-plane stretching and the influence of Casimir force. The micro-switch considered in this study is made of either homogeneous material or non-homogeneous functionally graded material with two material phases. The Euler–Bernoulli beam theory with von Karman type nonlinear kinematics is applied in the theoretical formulation. The principle of virtual work is used to derive the nonlinear governing differential equation. The eigenvalue problem which describes free vibration of the micro-beam at its statically deflected state is then solved using the differential quadrature method. The natural frequencies and mode shapes of micro-switches for four different boundary conditions (i.e. clamped–clamped, clamped–simply supported, simply supported and clamped–free) are obtained. The solutions are validated through direct comparisons with experimental and other existing results reported in previous studies. A parametric study is conducted to show the significant effects of geometric nonlinearity, Casimir force, axial residual stress and material composition for the natural frequencies
Numerical calculation of the Casimir forces between a gold sphere and a nanocomposite sheet
International Nuclear Information System (INIS)
Inui, Norio; Miura, Kouji; Akamatsu, Kensuke; Ishikawa, Makoto
2010-01-01
The repulsive Casimir force is expected as a force which enables to levitate small objects such as machine parts used in Micro Electro Mechanical Systems (MEMS), and superlubricity in MEMS may be realized by this levitation. We study the Casimir force between a gold sphere and a nanocomposite sheet containing many nickel nanoparticles. In particular, we focus on the dependence of the Casimir force on the separation between the gold sphere and the surface of the nanocomposite sheet. The Casimir force changes from the attractive force to the repulsive force as the separation increases. The strength of the repulsive force is, however, too small to levitate MEMS parts.
Numerical calculation of the Casimir forces between a gold sphere and a nanocomposite sheet
Energy Technology Data Exchange (ETDEWEB)
Inui, Norio; Miura, Kouji; Akamatsu, Kensuke; Ishikawa, Makoto, E-mail: inui@eng.u-hyogo.ac.j, E-mail: kmiura@auecc.aichi-edu.ac.j, E-mail: akamatsu@center.konan-u.ac.j, E-mail: makoishi@auecc.aichi-edu.ac.j
2010-11-01
The repulsive Casimir force is expected as a force which enables to levitate small objects such as machine parts used in Micro Electro Mechanical Systems (MEMS), and superlubricity in MEMS may be realized by this levitation. We study the Casimir force between a gold sphere and a nanocomposite sheet containing many nickel nanoparticles. In particular, we focus on the dependence of the Casimir force on the separation between the gold sphere and the surface of the nanocomposite sheet. The Casimir force changes from the attractive force to the repulsive force as the separation increases. The strength of the repulsive force is, however, too small to levitate MEMS parts.
Development of a Strontium Magneto-Optical Trap for Probing Casimir-Polder Potentials
Martin, Paul J.
In recent years, cold atoms have been the centerpiece of many remarkably sensitive measurements, and much effort has been made to devise miniaturized quantum sensors and quantum information processing devices. At small distances, however, mechanical effects of the quantum vacuum begin to significantly impact the behavior of the cold-atom systems. A better understanding of how surface composition and geometry affect Casimir and Casimir-Polder potentials would benefit future engineering of small-scale devices. Unfortunately, theoretical solutions are limited and the number of experimental techniques that can accurately detect such short-range forces is relatively small. We believe the exemplary properties of atomic strontium--which have enabled unprecedented frequency metrology in optical lattice clocks--make it an ideal candidate for probing slight spectroscopic perturbations caused by vacuum fluctuations. To that end, we have constructed a magneto-optical trap for strontium to enable future study of atom-surface potentials, and the apparatus and proposed detection scheme are discussed herein. Of special note is a passively stable external-cavity diode laser we developed that is both affordable and competitive with high-end commercial options.
Attractive electromagnetic Casimir stress on a spherical dielectric shell
International Nuclear Information System (INIS)
Graham, N.; Quandt, M.; Weigel, H.
2013-01-01
Based on calculations involving an idealized boundary condition, it has long been assumed that the stress on a spherical conducting shell is repulsive. We use the more realistic case of a Drude dielectric to show that the stress is attractive, matching the generic behavior of Casimir forces in electromagnetism. We trace the discrepancy between these two cases to interactions between the electromagnetic quantum fluctuations and the dielectric material
Spatial dispersion in Casimir forces: a brief review
Energy Technology Data Exchange (ETDEWEB)
Esquivel-Sirvent, R [Instituto de FIsica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000 Distrito Federal (Mexico); Villarreal, C [Instituto de FIsica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000 Distrito Federal (Mexico); Mochan, W L [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Contreras-Reyes, A M [Department of Physics and Astronomy, University of Sussex, Brighton, East Sussex BN1 9QH (United Kingdom); Svetovoy, V B [MESA Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)
2006-05-26
We present the basic principles of non-local optics in connection with the calculation of the Casimir force between half-spaces and thin films. At currently accessible distances L, non-local corrections amount to about half a per cent, but they increase roughly as 1/L at smaller separations. Self-consistent models lead to corrections with the opposite sign as models with abrupt surfaces.
Stability and the proximity theorem in Casimir actuated nano devices
Esquivel-Sirvent, R.; Reyes, L.; Bárcenas, J.
2006-10-01
A brief description of the stability problem in micro and nano electromechanical devices (MEMS/NEMS) actuated by Casimir forces is given. To enhance the stability, we propose the use of curved surfaces and recalculate the stability conditions by means of the proximity force approximation. The use of curved surfaces changes the bifurcation point, and the radius of curvature becomes a control parameter, allowing a rescaling of the elastic restitution constant and/or of the typical dimensions of the device.
Quest for Casimir repulsion between Chern-Simons surfaces
Fialkovsky, Ignat; Khusnutdinov, Nail; Vassilevich, Dmitri
2018-04-01
In this paper we critically reconsider the Casimir repulsion between surfaces that carry the Chern-Simons interaction (corresponding to the Hall-type conductivity). We present a derivation of the Lifshitz formula valid for arbitrary planar geometries and discuss its properties. This analysis allows us to resolve some contradictions in the previous literature. We compute the Casimir energy for two surfaces that have constant longitudinal and Hall conductivities. The repulsion is possible only if both surfaces have Hall conductivities of the same sign. However, there is a critical value of the longitudinal conductivity above which the repulsion disappears. We also consider a model where both parity odd and parity even terms in the conductivity are produced by the polarization tensor of surface modes. In contrast to the previous publications [L. Chen and S.-L. Wan, Phys. Rev. B 84, 075149 (2011), 10.1103/PhysRevB.84.075149; Phys. Rev. B 85, 115102 (2012), 10.1103/PhysRevB.85.115102], we include the parity anomaly term. This term ensures that the conductivities vanish for infinitely massive surface modes. We find that at least for a single mode, regardless of the sign and value of its mass, there is no Casimir repulsion.
Optical properties of gold films and the Casimir force
International Nuclear Information System (INIS)
Svetovoy, V. B.; Zwol, P. J. van; Palasantzas, G.; De Hosson, J. Th. M.
2008-01-01
Precise optical properties of metals are very important for accurate prediction of the Casimir force acting between two metallic plates. Therefore we measured ellipsometrically the optical responses of Au films in a wide range of wavelengths from 0.14 to 33 μm. The films at various thicknesses were deposited at different conditions on silicon or mica substrates. Considerable variation of the frequency dependent dielectric function from sample to sample was found. Detailed analysis of the dielectric functions was performed to check the Kramers-Kronig consistency, and extract the Drude parameters of the films. It was found that the plasma frequency varies in the range from 6.8 to 8.4 eV. It is suggested that this variation is related with the film density. X-ray reflectivity measurements support qualitatively this conclusion. The Casimir force is evaluated for the dielectric functions corresponding to our samples, and for that typically used in the precise prediction of the force. The force for our films was found to be 5%-14% smaller at a distance of 100 nm between the plates. Noise in the optical data is responsible for the force variation within 1%. It is concluded that prediction of the Casimir force between metals with a precision better than 10% must be based on the material optical response measured from visible to mid-infrared range
Thermal limiting effects in optical plasmonic waveguides
International Nuclear Information System (INIS)
Ershov, A.E.; Gerasimov, V.S.; Gavrilyuk, A.P.; Karpov, S.V.; Zakomirnyi, V.I.; Rasskazov, I.L.; Polyutov, S.P.
2017-01-01
We have studied thermal effects occurring during excitation of optical plasmonic waveguide (OPW) in the form of linear chain of spherical Ag nanoparticles by pulsed laser radiation. It was shown that heating and subsequent melting of the first irradiated particle in a chain can significantly deteriorate the transmission efficiency of OPW that is the crucial and limiting factor and continuous operation of OPW requires cooling devices. This effect is caused by suppression of particle's surface plasmon resonance due to reaching the melting point temperature. We have determined optimal excitation parameters which do not significantly affect the transmission efficiency of OPW. - Highlights: • The thermodynamic model was developed to study thermal effects at nanoscale. • Developed model considers temperature-dependent permittivity of the nanoparticles. • Thermal effects significantly suppress transmission efficiency of plasmonic chains. • Optimal parameters for stable operation of plasmonic chains were defined.
Effects of thermal pollution on marine life
International Nuclear Information System (INIS)
Peres, J.M.
1976-01-01
After a short review of the conditions and importance of the releases of heated water from fossil- or nuclear- fueled power plants, the two-fold consequences of thermal pollution are stated: consequences from the transit damaging, by thermal stress and/or mechanical effects, planctonic organisms attracted in the stream, and consequences from heating of the receiving environment. Other related effect on marine populations should not be neglected: effects of antifouling (chlorine mostly) and anticorrosion products; synergic action of raised temperature and chemical pollutants. In the present state of knowledge, the hazards of thermal pollution in the marine environment should not be overestimated so far as effluent dilution and diffusion are sufficient, which implies that the site be selected in an area where coastal circulation is strong enough and the disposal procedures be improved [fr
International Nuclear Information System (INIS)
Scheunert, M.
1982-10-01
The generators of the algebras under consideration can be written in a canonical two-index form and hence the associated standard seuqence of Casimir elements can be constructed. Following the classical approach by Perelomov and Popov, we obtain the eigenvalues of these Casimir elements in an arbitrary highest weight module by calculating the corresponding generating functions. (orig.)
Towards measurement of the Casimir force between parallel plates separated at sub-mircon distance
Syed Nawazuddin, M.B.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Berenschot, Johan W.; de Boer, Meint J.; Elwenspoek, Michael Curt
2011-01-01
Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however measurement of the Casimir force between parallel plates with sub-micron
Thermal Bridge Effects in Window Grooves
DEFF Research Database (Denmark)
Rose, Jørgen
1997-01-01
In this report thermal bridge effects in window grooves are analyzed. The analysis is performed using different thicknesses of the window groove insulation, to evaluate what the optimal solution is.All analysis in the report is performed using both 2- and 3-dimensional numerical analysis....
Thermal effects in concrete containment analysis
International Nuclear Information System (INIS)
Pfeiffer, P.A.; Kennedy, J.M.; Marchertas, A.H.
1988-01-01
Analyses of the thermo-mechanical response of the 1:6-scale reinforced concrete containment are presented. Three temperature- pressure scenarios are analyzed to complete loss of the pressure integrity. These results are compared to the analysis of pressure alone, to assess the importance of thermal effects. 19 refs., 9 figs., 8 tabs
Thermal imaging of spin Peltier effect
Daimon, Shunsuke; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji; Uchida, Ken-Ichi
2016-12-01
The Peltier effect modulates the temperature of a junction comprising two different conductors in response to charge currents across the junction, which is used in solid-state heat pumps and temperature controllers in electronics. Recently, in spintronics, a spin counterpart of the Peltier effect was observed. The `spin Peltier effect' modulates the temperature of a magnetic junction in response to spin currents. Here we report thermal imaging of the spin Peltier effect; using active thermography technique, we visualize the temperature modulation induced by spin currents injected into a magnetic insulator from an adjacent metal. The thermal images reveal characteristic distribution of spin-current-induced heat sources, resulting in the temperature change confined only in the vicinity of the metal/insulator interface. This finding allows us to estimate the actual magnitude of the temperature modulation induced by the spin Peltier effect, which is more than one order of magnitude greater than previously believed.
Thermal effects of divertor sweeping in ITER
International Nuclear Information System (INIS)
Wesley, J.C.
1992-01-01
In this paper, thermal effects of magnetically sweeping the separatrix strike point on the outer divertor target of the International Thermonuclear Fusion Reactor (ITER) are calculated. For the 0. 2 Hz x ± 12 cm sweep scenario proposed for ITER operations, the thermal capability of a generic target design is found to be slightly inadequate (by ∼ 5%) to accommodate the full degree of plasma scrape-off peaking postulated as a design basis. The principal problem identified is that the 5 s sweep period is long relative to the 1. 4 s thermal time constant of the divertor target. An increase of the sweep frequency to ∼ 1 Hz is suggested: this increase would provide a power handling margin of ∼ 25% relative to present operational criteria
Is fat perception a thermal effect?
Prinz, J F; de Wijk, R A; Huntjens, L A H; Engelen, L; Polet, I A
2007-04-01
It has been generally assumed that fat is detected by its flavour and by its lubrication of the oral mucosa. A recent study reported a correlation of -.99 between perceived temperature of a product and its fat content. This was significantly higher than correlations of sensory scores for fat flavour, mouthfeel, and afterfeel. This suggested a third detection mechanism; fat may be detected via its effect on the thermal conductivity of the food. In 3 studies, thermal sensitivity in humans was investigated to verify whether oral thermal receptors are sufficiently rapid and accurate to play a role in the perception of fats. The thermal sensitivity of the lips and oral mucosa of the anterior and middle one-third of the tongue were assessed using a Peltier device. Subjects detected 0.5 Hz fluctuations in temperature of 0.08'C on the lower lip, 0.26 degrees C and 1.36 degrees C at the tip and dorsum of the tongue, demonstrating that the lips are sufficiently sensitive to detect small differences in temperature. In two further experiments subjects ingested custards and mayonnaises and then spat out samples after 5, 10, or 20 sec. The temperature of the food and oral mucosa was measured before and after spitting and the rates of heating were calculated. Results suggest assessment of thermal conductivity of food may be used to assess fat content.
Casimir Forces and Quantum Friction from Ginzburg Radiation in Atomic Bose-Einstein Condensates.
Marino, Jamir; Recati, Alessio; Carusotto, Iacopo
2017-01-27
We theoretically propose an experimentally viable scheme to use an impurity atom in an atomic Bose-Einstein condensate, in order to realize condensed-matter analogs of quantum vacuum effects. In a suitable atomic level configuration, the collisional interaction between the impurity atom and the density fluctuations in the condensate can be tailored to closely reproduce the electric-dipole coupling of quantum electrodynamics. By virtue of this analogy, we recover and extend the paradigm of electromagnetic vacuum forces to the domain of cold atoms, showing in particular the emergence, at supersonic atomic speeds, of a novel power-law scaling of the Casimir force felt by the atomic impurity, as well as the occurrence of a quantum frictional force, accompanied by the Ginzburg emission of Bogoliubov quanta. Observable consequences of these quantum vacuum effects in realistic spectroscopic experiments are discussed.
Casimir energy of massless fermions in the Slab-bag
International Nuclear Information System (INIS)
Paola, R.D.M. de; Rodrigues, R.B.; Svaiter, N.F.
1999-04-01
The zero-point energy of a massless fermion field in the interior of two parallel plates in a D-dimensional space-time at zero temperature is calculated. In order to regularize the model, a mix between dimensional and zeta function regularization procedure is used and it is founded that the regularized zero-point energy density is finite for any number of space-time dimensions. We present a general expression for the Casimir energy for the fermionic field in such a situation. (author)
Institute of Scientific and Technical Information of China (English)
Jin Dong-Yue; Zhang Wan-Rong; Chen Liang; Fu Qiang; Xiao Ying; Wang Ren-Qing; Zhao Xin
2011-01-01
The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.
Environmental effects of thermal power plants
International Nuclear Information System (INIS)
Gerlitzky, M.; Friedrich, R.; Unger, H.
1986-02-01
Reviewing critically the present literature, the effects of thermal power plants on the environment are studied. At first, the loads of the different power plant types are compiled. With regard to the effects of emission reduction proceedings the pollutant emissions are quantified. The second chapter shows the effects on the ecological factors, which could be caused by the most important emission components of thermal power plants. Where it is possible, relations between immissions respectively depositions and their effects on climate, man, flora, fauna and materials will be given. This shows that many effects depend strongly on the local landscape, climate and use of natural resources. Therefore, it appears efficient to ascertain different load limits. The last chapter gives a suggestion for an ecological compatibility test (ECT) of thermal power plants. In modular form the ECT deals with the emission fields, waste heat, pollution burden of air and water, noise, loss of area and aesthetical aspects. Limits depending on local conditions and use of area will be discussed. (orig.) [de
Lateral Casimir-Polder forces by breaking time-reversal symmetry
Oude Weernink, Ricardo R. Q. P. T.; Barcellona, Pablo; Buhmann, Stefan Yoshi
2018-03-01
We examine the lateral Casimir-Polder force acting on a circular rotating emitter near a dielectric plane surface. As the circular motion breaks time-reversal symmetry, the spontaneous emission in a direction parallel to the surface is in general anisotropic. We show that a lateral force arises which can be interpreted as a recoil force because of this asymmetric emission. The force is an oscillating function of the distance between the emitter and the surface, and the lossy character of the dielectric strongly influences the results in the near-field regime. The force exhibits also a population-induced dynamics, decaying exponentially with respect to time on time scales of the inverse of the spontaneous decay rate. We propose that this effect could be detected measuring the velocity acquired by the emitter, following different cycles of excitation and spontaneous decay. Our results are expressed in terms of the Green's tensor and can therefore easily be applied to more complex geometries.
Effective thermal conductivity of nanofluids: the effects of microstructure
International Nuclear Information System (INIS)
Fan Jing; Wang Liqiu
2010-01-01
We examine numerically the effects of particle-fluid thermal conductivity ratio, particle volume fraction, particle size distribution and particle aggregation on macroscale thermal properties for seven kinds of two-dimensional nanofluids. The results show that the radius of gyration and the non-dimensional particle-fluid interfacial area are two important parameters in characterizing the geometrical structure of nanoparticles. A non-uniform particle size is found to be unfavourable for the conductivity enhancement, while particle-aggregation benefits the enhancement especially when the radius of gyration of aggregates is large. Without considering the interfacial thermal resistance, a larger non-dimensional particle-fluid interfacial area between the base fluid and the nanoparticles is also desirable for enhancing thermal conductivity. The nanofluids with nanoparticles of connected cross-shape show a much higher (lower) effective thermal conductivity when the particle-fluid conductivity ratio is larger (smaller) than 1.
International Nuclear Information System (INIS)
Seyedzahedi, A.; Moradian, A.; Setare, M.R.
2016-01-01
We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water–lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO 2 , mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.
Energy Technology Data Exchange (ETDEWEB)
Seyedzahedi, A. [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Moradian, A., E-mail: a.moradian@uok.ac.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2016-04-01
We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water–lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO{sub 2}, mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.
Thermal effects on tearing mode saturation
International Nuclear Information System (INIS)
Kim, J.S.; Chu, M.S.; Greene, J.M.
1988-01-01
The effect of geometry on tearing modes, saturated states of tearing modes, and the thermal effect on tearing modes are presented. The configuration of current and magnetic fields are quite different in slabs and in Tokamaks. However, for any magnetic island regardless of geometry and heating conditions, at island saturation the product of resistivity and current is the same at magnetic O and X lines. The temperature perturbation effect on the nonlinear development of tearing modes is investigated. Thermal conduction along the field lines is much faster than that in the perpendicular direction, and thus the temperature profile follows the island structure. Utilizing Spitzer's conductivity relation, the temperature perturbation is modelled as helical components of resistivity. For a usual tearing mode unstable Tokamak, where shear is positive, the islands continue to grow to a larger size when the islands are cooled. When they are heated, the island sizes are reduced. The temperature perturbation can induce islands even for equilibria stable with respect to tearing modes. Again, the islands appear when cooling takes place. The equilibria with the cooled islands show enhanced field line stochasticity, thus enhanced heat transport. Therefore, thermal instability can be directly related to pressure disruptions. (author)
Casimir force in O(n) systems with a diffuse interface.
Dantchev, Daniel; Grüneberg, Daniel
2009-04-01
We study the behavior of the Casimir force in O(n) systems with a diffuse interface and slab geometry infinity;{d-1}xL , where 2system. We consider a system with nearest-neighbor anisotropic interaction constants J_{ parallel} parallel to the film and J_{ perpendicular} across it. We argue that in such an anisotropic system the Casimir force, the free energy, and the helicity modulus will differ from those of the corresponding isotropic system, even at the bulk critical temperature, despite that these systems both belong to the same universality class. We suggest a relation between the scaling functions pertinent to the both systems. Explicit exact analytical results for the scaling functions, as a function of the temperature T , of the free energy density, Casimir force, and the helicity modulus are derived for the n-->infinity limit of O(n) models with antiperiodic boundary conditions applied along the finite dimension L of the film. We observe that the Casimir amplitude Delta_{Casimir}(dmid R:J_{ perpendicular},J_{ parallel}) of the anisotropic d -dimensional system is related to that of the isotropic system Delta_{Casimir}(d) via Delta_{Casimir}(dmid R:J_{ perpendicular},J_{ parallel})=(J_{ perpendicular}J_{ parallel});{(d-1)2}Delta_{Casimir}(d) . For d=3 we derive the exact Casimir amplitude Delta_{Casimir}(3,mid R:J_{ perpendicular},J_{ parallel})=[Cl_{2}(pi3)3-zeta(3)(6pi)](J_{ perpendicular}J_{ parallel}) , as well as the exact scaling functions of the Casimir force and of the helicity modulus Upsilon(T,L) . We obtain that beta_{c}Upsilon(T_{c},L)=(2pi;{2})[Cl_{2}(pi3)3+7zeta(3)(30pi)](J_{ perpendicular}J_{ parallel})L;{-1} , where T_{c} is the critical temperature of the bulk system. We find that the contributions in the excess free energy due to the existence of a diffuse interface result in a repulsive Casimir force in the whole temperature region.
Local and global Casimir energies for a semitransparent cylindrical shell
International Nuclear Information System (INIS)
Cavero-Pelaez, Ines; Milton, Kimball A; Kirsten, Klaus
2007-01-01
The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λδ-function potential in a (3 + 1)-dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak coupling, through O(λ 2 ), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the δ-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ 3 ), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy and does not reflect divergences in the local energy density as the surface is approached
Effect of heat treatment temperature on binder thermal conductivities
International Nuclear Information System (INIS)
Wagner, P.
1975-12-01
The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature
Thermal stress effects in intermetallic matrix composites
Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.
1993-01-01
Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.
Thermal effects in microfluidics with thermal conductivity spatially modulated
Vargas Toro, Agustín.
2014-05-01
A heat transfer model on a microfluidic is resolved analytically. The model describes a fluid at rest between two parallel plates where each plate is maintained at a differentially specified temperature and the thermal conductivity of the microfluidic is spatially modulated. The heat transfer model in such micro-hydrostatic configuration is analytically resolved using the technique of the Laplace transform applying the Bromwich Integral and the Residue theorem. The temperature outline in the microfluidic is presented as an infinite series of Bessel functions. It is shown that the result for the thermal conductivity spatially modulated has as a particular case the solution when the thermal conductivity is spatially constant. All computations were performed using the computer algebra software Maple. It is claimed that the analytical obtained results are important for the design of nanoscale devices with applications in biotechnology. Furthermore, it is suggested some future research lines such as the study of the heat transfer model in a microfluidic resting between coaxial cylinders with radially modulated thermal conductivity in order to achieve future developments in this area.
Effective distributions of quasiparticles for thermal photons
Monnai, Akihiko
2015-07-01
It has been found in recent heavy-ion experiments that the second and the third flow harmonics of direct photons are larger than most theoretical predictions. In this study, I construct effective parton phase-space distributions with in-medium interaction using quasiparticle models so that they are consistent with a lattice QCD equation of state. Then I investigate their effects on thermal photons using a hydrodynamic model. Numerical results indicate that elliptic flow and transverse momentum spectra are modified by the corrections to Fermi-Dirac and Bose-Einstein distributions.
Thermal loading effects on geological disposal
International Nuclear Information System (INIS)
Come, B.; Venet, P.
1984-01-01
A joint study on the thermal loading effects on geological disposal was carried out within the European Community Programme on Management and Storage of Radioactive Waste by several laboratories in Belgium, France and the Federal Republic of Germany. The purpose of the work was to review the thermal effects induced by the geological disposal of high-level wastes and to assess their consequences on the 'admissible thermal loading' and on waste management in general. Three parallel studies dealt separately with the three geological media being considered for HLW disposal within the CEC programme: granite (leadership: Commissariat a l'energie atomique (CEA), France), salt (leadership: Gesellschaft fuer Strahlen- und Umweltforschung (GSF), Federal Republic of Germany), and clay (leadership: Centre d'etude de l'energie nucleaire (CEN/SCK), Belgium). The studies were based on the following items: only vitrified high-level radioactive waste was considered; the multi-barrier confinement concept was assumed (waste glass, container (with or without overpack), buffer material, rock formation); the disposal was foreseen in a deep mined repository, in an 'in-land' geological formation; only normal situations and processes were covered, no 'accident' scenario being taken into account. Although reasonably representative of a wide variety of situations, the data collected and the results obtained are generic for granite, formation-specific for salt (i.e. related to the north German Zechstein salt formation), and site-specific for clay (i.e. concentrated on the Boom clay layer at the Mol site, Belgium). For each rock type, realistic temperature limits were set, taking into account heat propagation, thermo-mechanical effects inside the rock formations, induced or modified groundwater or brine movement, effects on the buffer material as well as effects on the waste glass and canister, and finally, nuclide transport
Energy Technology Data Exchange (ETDEWEB)
Mohideen, Umar [Univ. of California, Riverside, CA (United States)
2015-04-14
Duration of award was from 4/15/10-4/14/15. In this grant period our contributions to the field of VdW/Casimir forces are 24 refereed publications in journals such as Physical Review Letters (4) [1-4], Physical Review B (10) [5-14], Physical Review D (2) [15,16], Applied Physics Letters (1) [17], Review of Scientific Instruments (1) [18] and the International Journal of Modern Physics A (5) [19-23] and B(1) (invited review article [24]). We presented 2 plenary conference talks, 3 lectures at the Pan American School on Frontiers in Casimir Physics, 2 conferences, 1 colloquium and 11 APS talks. If publications are restricted to only those with direct connection to the aims proposed in the prior grant period, then it will be a total of 12: Physical Review Letters (3) [2-4], Physical Review B (6) [6-8,12,13,25], Review of Scientific Instruments (1) [18], International Journal of Modern Physics A (1) [19] and B(1) [169]. A brief aggregated description of the directly connected accomplishments is below. The following topics are detailed: dispersion force measurements with graphene, dispersion force from ferromagnetic metals, conclusion on role of electrostatic patches, UV radiation induced modification of the Casimir force, low temperature measurement of the Casimir force, and Casimir force from thin fluctuating membranes.
Thermal effects in shales: measurements and modeling
International Nuclear Information System (INIS)
McKinstry, H.A.
1977-01-01
Research is reported concerning thermal and physical measurements and theoretical modeling relevant to the storage of radioactive wastes in a shale. Reference thermal conductivity measurements are made at atmospheric pressure in a commercial apparatus; and equipment for permeability measurements has been developed, and is being extended with respect to measurement ranges. Thermal properties of shales are being determined as a function of temperature and pressures. Apparatus was developed to measure shales in two different experimental configurations. In the first, a disk 15 mm in diameter of the material is measured by a steady state technique using a reference material to measure the heat flow within the system. The sample is sandwiched between two disks of a reference material (single crystal quartz is being used initially as reference material). The heat flow is determined twice in order to determine that steady state conditions prevail; the temperature drop over the two references is measured. When these indicate an equal heat flow, the thermal conductivity of the sample can be calculated from the temperature difference of the two faces. The second technique is for determining effect of temperature in a water saturated shale on a larger scale. Cylindrical shale (or siltstone) specimens that are being studied (large for a laboratory sample) are to be heated electrically at the center, contained in a pressure vessel that will maintain a fixed water pressure around it. The temperature is monitored at many points within the shale sample. The sample dimensions are 25 cm diameter, 20 cm long. A micro computer system has been constructed to monitor 16 thermocouples to record variation of temperature distribution with time
Physiological and pathological effects of thermal radiation
Energy Technology Data Exchange (ETDEWEB)
Hymes, I.
1983-09-15
This report deals with man's response to abnormally high levels of thermal radiation. The early sections deal with the properties and biological roles of the skin in some detail as a basis for the definitions and descriptions of pathological damage. The estimation of hazard ranges in thermal radiation exposures requires a moderately accurate knowledge of the intensity and duration of the emitted flux. The (BLEVE) Boiling Liquid Expanding Vapor Explosion fireball conveniently meets this requirement as well as having the capability to inflict severe burn injuries over considerable distances. Liquid Petroleum Gas fireballs have been used as the source term for the thermal radiation calculations which predict threshold lethality and various categories of burn injury. Inevitably there are areas of uncertainty in such calculations, some contributory factors being atmospheric conditions, fuel container rupture pattern, type of clothing worn etc. The sensitivity of the predicted hazard ranges to these influential parameters is exemplified in several of the graphs presented. The susceptibility of everyday clothing to ignite or melt in thermal fluxes greater than about 70 kW/m/sup 2/ is shown to be a matter of some gravity since burning clothing can thwart escape and inflict serious, if not fatal, burns quite apart from injuries directly received from the incident radiation. The various means by which incident heat fluxes can be reduced or their effects mitigated are reviewed. Two major BLEVE case histories are discussed in some detail and the circumstances compared with those predicted by the theoretical calculations. 38 refs., 36 figs.
Casimir force in the Goedel space-time and its possible induced cosmological inhomogeneity
Energy Technology Data Exchange (ETDEWEB)
Khodabakhshi, Sh. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Shojai, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of)
2017-07-15
The Casimir force between two parallel plates in the Goedel universe is computed for a scalar field at finite temperature. It is observed that when the plates' separation is comparable with the scale given by the rotation of the space-time, the force becomes repulsive and then approaches zero. Since it has been shown previously that the universe may experience a Goedel phase for a small period of time, the induced inhomogeneities from the Casimir force are also studied. (orig.)
Critical Steps in Data Analysis for Precision Casimir Force Measurements with Semiconducting Films
Banishev, A. A.; Chang, Chia-Cheng; Mohideen, U.
2011-06-01
Some experimental procedures and corresponding results of the precision measurement of the Casimir force between low doped Indium Tin Oxide (ITO) film and gold sphere are described. Measurements were performed using an Atomic Force Microscope in high vacuum. It is shown that the magnitude of the Casimir force decreases after prolonged UV treatment of the ITO film. Some critical data analysis steps such as the correction for the mechanical drift of the sphere-plate system and photodiodes are discussed.
Thermal effects on the Savannah River
International Nuclear Information System (INIS)
Patrick, R.
1981-01-01
The effects of thermal effluents from the Savannah River Plant (SRP), particularly during periods when the L Reactor was operative, on the structure and health of the aquatic communities of organisms in the Savannah River have been determined. Portions of the data base collected by the Academy of Natural Sciences since 1951 on the Savannah River were used. The organisms belonging to various groups of aquatic life were identified to species if possible. The relative abundance of the species was estimated for the more common species. The bacteriological, chemical and physical characteristics of the water were determined
Casimir interaction between gas media of excited atoms
International Nuclear Information System (INIS)
Sherkunov, Yury
2007-01-01
The retarded dispersion interaction (Casimir interaction) between two dilute dielectric media at high temperatures is considered. The excited atoms are taken into account. It is shown that the perturbation technique cannot be applied to this problem due to divergence of integrals. A non-perturbative approach based on kinetic Green functions is implemented. We consider the interaction between two atoms (one of them is excited) embedded in an absorbing dielectric medium. We take into account the possible absorption of photons in the medium, which solves the problem of divergence. The force between two plane dilute dielectric media is calculated at pair interaction approximation. We show that the result of quantum electrodynamics differs from the Lifshitz formula for dilute gas media at high temperatures (if the number of excited atoms is significant). According to quantum electrodynamics, the interaction may be either attractive or repulsive depending on the temperature and the density numbers of the media
The Effect of Thermal Mass on Annual Heat Load and Thermal Comfort in Cold Climate Construction
DEFF Research Database (Denmark)
Stevens, Vanessa; Kotol, Martin; Grunau, Bruno
2016-01-01
been shown to reduce the annual heating demand. However, few studies exist regarding the effects of thermal mass in cold climates. The purpose of this research is to determine the effect of high thermal mass on the annual heat demand and thermal comfort in a typical Alaskan residence using energy......Thermal mass in building construction refers to a building material's ability to absorb and release heat based on changing environmental conditions. In building design, materials with high thermal mass used in climates with a diurnal temperature swing around the interior set-point temperature have...... modeling software. The model simulations show that increased thermal mass can decrease the risk of summer overheating in Alaskan residences. They also show that increased thermal mass does not significantly decrease the annual heat load in residences located in cold climates. These results indicate...
Thermal radiation effects on hydromagnetic flow
International Nuclear Information System (INIS)
Abdelkhalek, M.M.
2005-01-01
Numerical results are presented for the effects of thermal radiation, buoyancy and heat generation or absorption on hydromagnetic flow over an accelerating permeable surface. These results are obtained by solving the coupled nonlinear partial differential equations describing the conservation of mass, momentum and energy by a perturbation technique. This qualitatively agrees with the expectations, since the magnetic field exerts a retarding force on the free convection flow. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, Prandtl number, Grashof number and Schmidt number on the profiles of the velocity components and temperature. The effects of the different parameters on the velocity and temperature profiles as well as the skin friction and wall heat transfer are presented graphically. Favorable comparisons with previously published work confirm the correctness of numerical results
Effective thermal conductivity in thermoelectric materials
Energy Technology Data Exchange (ETDEWEB)
Baranowski, LL; Snyder, GJ; Toberer, ES
2013-05-28
Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.
Okamoto, Ryuichi; Onuki, Akira
2012-03-21
We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line. © 2012 American Institute of Physics
Transient thermal effects in Alpine permafrost
Directory of Open Access Journals (Sweden)
J. Noetzli
2009-04-01
Full Text Available In high mountain areas, permafrost is important because it influences the occurrence of natural hazards, because it has to be considered in construction practices, and because it is sensitive to climate change. The assessment of its distribution and evolution is challenging because of highly variable conditions at and below the surface, steep topography and varying climatic conditions. This paper presents a systematic investigation of effects of topography and climate variability that are important for subsurface temperatures in Alpine bedrock permafrost. We studied the effects of both, past and projected future ground surface temperature variations on the basis of numerical experimentation with simplified mountain topography in order to demonstrate the principal effects. The modeling approach applied combines a distributed surface energy balance model and a three-dimensional subsurface heat conduction scheme. Results show that the past climate variations that essentially influence present-day permafrost temperatures at depth of the idealized mountains are the last glacial period and the major fluctuations in the past millennium. Transient effects from projected future warming, however, are likely larger than those from past climate conditions because larger temperature changes at the surface occur in shorter time periods. We further demonstrate the accelerating influence of multi-lateral warming in steep and complex topography for a temperature signal entering the subsurface as compared to the situation in flat areas. The effects of varying and uncertain material properties (i.e., thermal properties, porosity, and freezing characteristics on the subsurface temperature field were examined in sensitivity studies. A considerable influence of latent heat due to water in low-porosity bedrock was only shown for simulations over time periods of decades to centuries. At the end, the model was applied to the topographic setting of the Matterhorn
Energy Technology Data Exchange (ETDEWEB)
Yang, Ping, E-mail: yangpingdm@ujs.edu.cn [Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013 (China); Li, Xialong; Zhao, Yanfan [Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013 (China); Yang, Haiying [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Shuting, E-mail: wangst@mail.hust.edu.cn [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)
2013-11-01
We investigate the thermal transport properties of armchair graphene nanoribbons (AGNRs) possessing various sizes of triangular vacancy defect within a temperature range of 200–600 K by using classical molecular dynamics simulation. The results show that the thermal conductivities of the graphene nanoribbons decrease with increasing sizes of triangular vacancy defects in both directions across the whole temperature range tested, and the presence of the defect can decrease the thermal conductivity by more than 40% as the number of removed cluster atoms is increased to 25 (1.56% for vacancy concentration) owing to the effect of phonon–defect scattering. In the meantime, we find the thermal conductivity of defective graphene nanoribbons is insensitive to the temperature change at higher vacancy concentrations. Furthermore, the dependence of temperatures and various sizes of triangular vacancy defect for the thermal rectification ration are also detected. This work implies a possible route to achieve thermal rectifier for 2D materials by defect engineering.
Effects of thermal activated building systems in schools on thermal comfort in winter
Zeiler, W.; Boxem, G.
2009-01-01
There is a growing attention for the Indoor Air Quality problems in schools, but there is far less attention for the thermal comfort aspects within schools. A literature review is done to clear the effects of thermal quality in schools on the learning performance of the students: it clearly shows
Casimir potential of a compact object enclosed by a spherical cavity
International Nuclear Information System (INIS)
Zaheer, Saad; Rahi, Sahand Jamal; Emig, Thorsten; Jaffe, Robert L.
2010-01-01
We study the electromagnetic Casimir interaction of a compact object contained inside a closed cavity of another compact object. We express the interaction energy in terms of the objects' scattering matrices and translation matrices that relate the coordinate systems appropriate to each object. When the enclosing object is an otherwise empty metallic spherical shell, much larger than the internal object, and the two are sufficiently separated, the Casimir force can be expressed in terms of the static electric and magnetic multipole polarizabilities of the internal object, which is analogous to the Casimir-Polder result. Although it is not a simple power law, the dependence of the force on the separation of the object from the containing sphere is a universal function of its displacement from the center of the sphere, independent of other details of the object's electromagnetic response. Furthermore, we compute the exact Casimir force between two metallic spheres contained one inside the other at arbitrary separations. Finally, we combine our results with earlier work on the Casimir force between two spheres to obtain data on the leading-order correction to the proximity force approximation for two metallic spheres both outside and within one another.
Thermal effects on decays of a metastable brane configuration
Energy Technology Data Exchange (ETDEWEB)
Nakai, Yuichiro, E-mail: ynakai@physics.harvard.edu [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Ookouchi, Yutaka [Faculty of Arts and Science & Department of Physics, Kyushu University, Fukuoka 819-0395 (Japan)
2016-11-10
We study thermal effects on a decay process of a false vacuum in type IIA string theory. At finite temperature, the potential of the theory is corrected and also thermally excited modes enhance the decay rate. The false vacuum can accommodate a string-like object. This cosmic string makes the bubble creation rate much larger and causes an inhomogeneous vacuum decay. We investigate thermal corrections to the DBI action for the bubble/string bound state and discuss a thermally assisted tunneling process. We show that thermally excited states enhance the tunneling rate of the decay process, which makes the life-time of the false vacuum much shorter.
Thermal Radiation Effects on Thermal Explosion in Polydisperse Fuel Spray-Probabilistic Model
Directory of Open Access Journals (Sweden)
Ophir Navea
2011-06-01
Full Text Available We investigate the effect of thermal radiation on the dynamics of a thermal explosion of polydisperse fuel spray with a complete description of the chemistry via a single-step two-reactant model of general order. The polydisperse spray is modeled using a Probability Density Function (PDF. The thermal radiation energy exchange between the evaporation surface of the fuel droplets and the burning gas is described using the Marshak boundary conditions. An explicit expression of the critical condition for thermal explosion limit is derived analytically and represents a generalization of the critical parameter of the classical Semenov theory. Because we investigated the model in the range where the temperature is very high, the effect of the thermal radiation is significant.
The coke drum thermal kinetic effects
Energy Technology Data Exchange (ETDEWEB)
Aldescu, Maria M.; Romero, Sim; Larson, Mel [KBC Advanced Technologies plc, Surrey (United Kingdom)
2012-07-01
The coke drum thermal kinetic dynamics fundamentally affect the coker unit yields as well as the coke product properties and unit reliability. In the drum the thermal cracking and polymerization or condensation reactions take place in a semi-batch environment. Understanding the fundamentals of the foaming kinetics that occur in the coke drums is key to avoiding a foam-over that could result in a unit shutdown for several months. Although the most dynamic changes with time occur during drum filling, other dynamics of the coker process will be discussed as well. KBC has contributed towards uncovering and modelling the complexities of heavy oil thermal dynamics. (author)
Compton effect thermally activated depolarization dosimeter
Moran, Paul R.
1978-01-01
A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.
Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity
Energy Technology Data Exchange (ETDEWEB)
Li, Zhehao, E-mail: ccgri_lzh@163.com [Changchun Gold Research Institute, 130012 (China); Peng, Yuelian, E-mail: pyl@live.com.au [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Dong, Yajun; Fan, Hongwei [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Chen, Ping [The Research Institute of Environmental Protection, North China Pharmaceutical Group Corporation, 050015 (China); Qiu, Lin [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Qi [National Major Science and Technology Program Management Office for Water Pollution Control and Treatment, MEP, 100029 (China)
2014-10-30
Highlights: • The effects on vapor flux and thermal efficiency were simulated. • The conditions favoring vapor flux also favored thermal efficiency. • Four microporous polymer membranes were compared. • The SiO{sub 2} aerogel coating reduced the thermal conductivity of polymer membranes. • A 3ω technique was used to measure the thermal conductivity of membranes. - Abstract: The effects of the membrane characteristics and operational conditions on the vapor flux and thermal efficiency in a direct contact membrane distillation (DCMD) process were studied with a mathematical simulation. The membrane temperature, driving force of vapor transfer, membrane distillation coefficient, etc. were used to analyze the effects. The operating conditions that increased the vapor flux improved the thermal efficiency. The membrane characteristics of four microporous membranes and their performances in DCMD were compared. A polysulfone (PSf) membrane prepared via vapor-induced phase separation exhibited the lowest thermal conductivity. The PSf and polyvinylidene difluoride (PVDF) membranes were modified using SiO{sub 2} aerogel blending and coating to reduce the thermal conductivity of the membrane. The coating process was more effective than the blending process toward this end. The changes in the structure of the modified membrane were observed with a scanning electron microscope. Si was found on the modified membrane surface with an energy spectrometer. The PVDF composite and support membranes were tested during the DCMD process; the composite membrane had a higher vapor flux and a better thermal efficiency than the support. A new method based on a 3ω technique was used to measure the thermal conductivity of the membranes.
Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity
International Nuclear Information System (INIS)
Li, Zhehao; Peng, Yuelian; Dong, Yajun; Fan, Hongwei; Chen, Ping; Qiu, Lin; Jiang, Qi
2014-01-01
Highlights: • The effects on vapor flux and thermal efficiency were simulated. • The conditions favoring vapor flux also favored thermal efficiency. • Four microporous polymer membranes were compared. • The SiO 2 aerogel coating reduced the thermal conductivity of polymer membranes. • A 3ω technique was used to measure the thermal conductivity of membranes. - Abstract: The effects of the membrane characteristics and operational conditions on the vapor flux and thermal efficiency in a direct contact membrane distillation (DCMD) process were studied with a mathematical simulation. The membrane temperature, driving force of vapor transfer, membrane distillation coefficient, etc. were used to analyze the effects. The operating conditions that increased the vapor flux improved the thermal efficiency. The membrane characteristics of four microporous membranes and their performances in DCMD were compared. A polysulfone (PSf) membrane prepared via vapor-induced phase separation exhibited the lowest thermal conductivity. The PSf and polyvinylidene difluoride (PVDF) membranes were modified using SiO 2 aerogel blending and coating to reduce the thermal conductivity of the membrane. The coating process was more effective than the blending process toward this end. The changes in the structure of the modified membrane were observed with a scanning electron microscope. Si was found on the modified membrane surface with an energy spectrometer. The PVDF composite and support membranes were tested during the DCMD process; the composite membrane had a higher vapor flux and a better thermal efficiency than the support. A new method based on a 3ω technique was used to measure the thermal conductivity of the membranes
Scalar Casimir energies in M4≥/sup N/ for even N
International Nuclear Information System (INIS)
Kantowski, R.; Milton, K.A.
1987-01-01
We construct a Green's-function formalism for computing vacuum-fluctuation energies of scalar fields in 4+N dimensions, where the extra N dimensions are compactified into a hypersphere S/sup N/ of radius a. In all cases a leading cosmological energy term u/sub cosmo/proportionala/sup N//b/sup 4+N/ results. Here b is an ultraviolet cutoff at the Planck scale. In all cases an unambiguous Casimir energy is computed. For odd N these energies agree with those calculated by Candelas and Weinberg. For even N, the Casimir energy is logarithmically divergent: u/sub Casimir/--(α/sub N//a 4 )ln(a/b). The coefficients α/sub N/ are computed in terms of Bernoulli numbers
The Casimir interaction of a massive vector field between concentric spherical bodies
International Nuclear Information System (INIS)
Teo, L.P.
2011-01-01
The Casimir interaction energy due to the vacuum fluctuations of a massive vector field between two perfectly conducting concentric spherical bodies is computed. The TE contribution to the Casimir interaction energy is a direct generalization of the massless case but the TM contribution is much more complicated. Each TM mode is a linear combination of a transverse mode which is the generalization of a TM mode in the massless case and a longitudinal mode that does not appear in the massless case. In contrast to the case of two parallel perfectly conducting plates, there are no TM discrete modes that vanish identically in the perfectly conducting spherical bodies. Numerical simulations show that the Casimir interaction force between the two bodies is always attractive.
Casimir-Lifshitz force for nonreciprocal media and applications to photonic topological insulators
Fuchs, Sebastian; Lindel, Frieder; Krems, Roman V.; Hanson, George W.; Antezza, Mauro; Buhmann, Stefan Yoshi
2017-12-01
Based on the theory of macroscopic quantum electrodynamics, we generalize the expression of the Casimir force for nonreciprocal media. The essential ingredient of this result is the Green's tensor between two nonreciprocal semi-infinite slabs, including a reflexion matrix with four coefficients that mixes optical polarizations. This Green's tensor does not obey Lorentz's reciprocity and thus violates time-reversal symmetry. The general result for the Casimir force is analyzed in the retarded and nonretarded limits, concentrating on the influences arising from reflections with or without change of polarization. In a second step, we apply our general result to a photonic topological insulator whose nonreciprocity stems from an anisotropic permittivity tensor, namely InSb. We show that there is a regime for the distance between the slabs where the magnitude of the Casimir force is tunable by an external magnetic field. Furthermore, the strength of this tuning depends on the orientation of the magnetic field with respect to the slab surfaces.
Thermal effects in highly dispersed iron catalysts
International Nuclear Information System (INIS)
Alvarez, A.M.; Cagnoli, M.V.; Gallegos, N.G.; Marchetti, S.G.; Yeramian, A.A.; Mercader, R.C.
1994-01-01
The Moessbauer spectra of three Fe/SiO 2 catalysts with 5 wt% iron content show the presence of several Fe species and display different magnetic behaviours when the precursors are subjected to various thermal treatments. Based on the Moessbauer parameters and CO chemisorption measurements, the average crystal sizes of the catalysts are estimated and discussed in connection with the thermal pretreatment severity and magnetic properties of the samples. (orig.)
Effect of microscale gaseous thermal conduction on the thermal behavior of a buckled microbridge
International Nuclear Information System (INIS)
Wang Jiaqi; Tang Zhenan; Li Jinfeng; Zhang Fengtian
2008-01-01
A microbridge is a basic micro-electro-mechanical systems (MEMS) device and has great potential for application in microsensors and microactuators. The thermal behavior of a microbridge is important for designing a microbridge-based thermal microsensor or microactuator. To study the thermal behavior of a microbridge consisting of Si 3 N 4 and polysilicon with a 2 µm suspended gap between the substrate and the microbridge while the microbridge is heated by an electrical current fed through the polysilicon, a microbridge model is developed to correlate theoretically the input current and the temperature distribution under the buckling conditions, especially considering the effects of the microscale gaseous thermal conduction due to the microbridge buckling. The calculated results show that the buckling of the microbridge changes the microscale gaseous thermal conduction, and thus greatly affects the thermal behavior of the microbridge. We also evaluate the effects of initial buckling on the temperature distribution of the microbridge. The experimental results show that buckling should be taken into account if the buckling is large. Therefore, the variation in gaseous thermal conduction and the suspended gap height caused by the buckling should be considered in the design of such thermomechanical microsensors and microactuators, which requires more accurate thermal behavior
On the Casimir scaling violation in the cusp anomalous dimension at small angle
Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian
2017-10-01
We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O({φ}^4) . One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.
Thermal effects and their compensation in Advanced Virgo
International Nuclear Information System (INIS)
Rocchi, A; Coccia, E; Fafone, V; Malvezzi, V; Minenkov, Y; Sperandio, L
2012-01-01
Thermal effects in the test masses of the gravitational waves interferometric detectors may result in a strong limitation to their operation and sensitivity. Already in initial LIGO and Virgo, these effects have been observed and required the installation of dedicated compensation systems. Based on CO 2 laser projectors, the thermal compensators heat the peripheral of the input test masses to reduce the lensing effect. In advanced detectors, the power circulating in the interferometer will increase, thus making thermal effects more relevant. In this paper, the concept of the compensation system for Advanced Virgo is described.
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-06-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-03-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Effects of thermal underwear on thermal and subjective responses in winter.
Choi, Jeong-Wha; Lee, Joo-Young; Kim, So-Young
2003-01-01
This study was conducted to obtain basic data in improving the health of Koreans, saving energy and protecting environments. This study investigated the effects of wearing thermal underwear for keeping warm in the office in winter where temperature is not as low as affecting work efficiency, on thermoregulatory responses and subjective sensations. In order to create an environment where every subject feels the same thermal sensation, two experimental conditions were selected through preliminary experiments: wearing thermal underwear in 18 degrees C air (18-condition) and not wearing thermal underwear in 23 degrees C air (23-condition). Six healthy male students participated in this study as experiment subjects. Measurement items included rectal temperature (T(re)), skin temperature (T(sk)), clothing microclimate temperature (T(cm)), thermal sensation and thermal comfort. The results are as follows: (1) T(re) of all subjects was maintained constant at 37.1 degrees C under both conditions, indicating no significant differences. (2) (T)(sk) under the 18-condition and the 23-condition were 32.9 degrees C and 33.7 degrees C, respectively, indicating a significant level of difference (pcomfortable under both conditions. It was found (T)(sk) decreased due to a drop in the skin temperature of hands and feet, and the subjects felt cooler wearing only one layer of normal thermal underwear at 18 degrees C. Yet, the thermal comfort level, T(re) and T(cm) of chest part under the 18-condition were the same as those under the 23-condition. These results show that the same level of comfort, T(re) and T(cm) can be maintained as that of an environment about 5 degrees C higher in the office in winter, by wearing one layer of thermal underwear. In this regard, this study suggests that lowering indoor temperature by wearing thermal underwear in winter can contribute to saving energy and improving health.
Estimation of effective thermal conductivity tensor from composite microstructure images
International Nuclear Information System (INIS)
Thomas, M; Boyard, N; Jarny, Y; Delaunay, D
2008-01-01
The determination of the effective thermal properties of inhomogeneous materials is a long-standing problem of continuously interest. The impressive number of methods developed to measure or estimate the thermal properties of composite materials clearly exhibits the importance given to their knowledge. Homogenization models are a cheap way to determine or predict them. Many different approaches of homogenization were developed, but the last advances are credited to numerical methods. In this study, a new computational model is developed to estimate the 2D thermal conductivity tensor and the thermal main directions of a pure carbon/epoxy unidirectional composite. This tool is based on real composite microstructure.
Cheap effective thermal solar-energy collectors
Energy Technology Data Exchange (ETDEWEB)
Highgate, D.J.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). Dept. of Applied Energy
1996-04-01
A light-weight flexible solar-collector, with a wavelength-selective absorption surface and an insolation-transparent thermal-insulation protecter for its aperture, was built and tested. Its cheapness and high performance, relative to a conventional flat-plate solar-collector, provide a prima-facie case for the more widespread adoption of its design. (author)
Thermal effects on the photon mass
International Nuclear Information System (INIS)
Woloshyn, R.M.
1982-09-01
It is shown that processes of O(αGsub(F)) in which the photon interacts indirectly with the thermal neutrino background dominate electric screening at low temperature. The photon electric mass still comes out to be much smaller than the present experimental limit
Nonthermal effects in thermal treatment applications of nonionizing irradiation
Thomsen, Sharon
2005-04-01
Several non-thermal factors influence the primary and secondary effects of interstitial thermal treatments using various types of non-ionizing irradiation. Recognition and understanding of the influences of these various factors are important in choice of energy source, the configuration of the application instrument and the design of treatments.
Effect of normal processes on thermal conductivity of germanium ...
Indian Academy of Sciences (India)
Abstract. The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between differ- ent phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and ...
Study of thermal effects in superconducting RF cavities
International Nuclear Information System (INIS)
Bousson, S.; Caruette, A.; Fouaidy, M.; Hammoudi, N.; Junquera, T.; Lesrel, J.; Yaniche, J.F.
1999-01-01
A high speed thermometric system equipped with 64 fixed surface thermometers is used to investigate thermal effects in several 3 GHz cavities. An evaluation of the time response of our thermometers is presented. A method based on RF signal analysis is proposed to evaluate the normal zone propagation rate during thermal breakdown. (authors)
Convection with local thermal non-equilibrium and microfluidic effects
Straughan, Brian
2015-01-01
This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.
Energy Technology Data Exchange (ETDEWEB)
Klimchitskaya, G.L. [Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, Saint Petersburg (Russian Federation); Peter the Great Saint Petersburg Polytechnic University, Institute of Physics, Nanotechnology and Telecommunications, Saint Petersburg (Russian Federation)
2017-05-15
The strongest constraints on the Yukawa-type corrections to Newton's gravitational law and on the coupling constants of axion-like particles to nucleons, following from recently performed experiments of Casimir physics, are presented. Specifically, the constraints obtained from measurements of the lateral and normal Casimir forces between sinusoidally corrugated surfaces, and from the isoelectronic experiment are considered, and the ranges of their greatest strength are refined. Minor modifications in the experimental setups are proposed which allow for strengthening the resultant constraints up to an order of magnitude. The comparison with some weaker constraints derived in the Casimir regime is also made. (orig.)
Rodriguez, A.; Ibanescu, M.; Iannuzzi, D.; Joannopoulos, J. D.; Johnson, S.T.
2007-01-01
We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the
Chaotic behavior in Casimir oscillators: A case study for phase-change materials.
Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George
2017-10-01
Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.
Generalized Riemann zeta-function regularization and Casimir energy for a piecewise uniform string
International Nuclear Information System (INIS)
Li Xinzhou; Shi Xin; Zhang Jianzu.
1990-12-01
The generalized zeta-function techniques will be utilized to investigate the Casimir energy for the transverse oscillations of a piecewise uniform closed string. We find that zeta-function regularization method can lead straightforwardly to a correct result. (author). 6 refs
A Light Sail Inspired Model to Harness Casimir Forces for Propellantless Propulsion
International Nuclear Information System (INIS)
DeBiase, R. L.
2010-01-01
The model used to calculate Casimir forces for variously shaped conducting plates in this paper assumes the vacuum energy pervades all space and that photons randomly pop into and out of existence. While they exist, they possess energy and momentum that can be transferred by reflection as in a light sail. Quantum mechanics in the model is entirely bound up in the Casimir equation of force per unit area. This model is compared with two different experiments: that of Chen and Mohideen demonstrating lateral Casimir forces for sinusoidally corrugated spherical and flat plates and Lamoreaux demonstrating normal Casimir forces between a conducting sphere and flat plate. The calculated forces using this model were compared to the forces obtained in these experiments as well as with calculations using the proximity force approximation. In both cases the results (when compared to the actual plates measured and calculated using non-corrected equations) were less than a few parts per thousand different for the range of separation distances used. When the model was used to calculate forces on the opposite plates, different force magnitudes were obtained seemingly indicating prospects for propellentless propulsion but requiring skeptical verification.
Casimir energy in d-dimensional rectangular geometries, under mixed boundary conditions
International Nuclear Information System (INIS)
Silva, J.C. da; Placido, Hebe Q.; Santana, A.E.; M Neto, Arthur
1997-01-01
The Casimir energy and its temperature corrections are presented for the electromagnetic field confined in a d-dimensional hypercavity. The expressions are derived considering Dirichlet boundary conditions for each pair of hyperplanes defining a confined direction (the homogeneous case); or yet, by choosing different boundary conditions (Dirichlet or Neumann) at each hyperplane of the pair (the mixed case). (author)
Study of skin model and geometry effects on thermal performance of thermal protective fabrics
Zhu, Fanglong; Ma, Suqin; Zhang, Weiyuan
2008-05-01
Thermal protective clothing has steadily improved over the years as new materials and improved designs have reached the market. A significant method that has brought these improvements to the fire service is the NFPA 1971 standard on structural fire fighters’ protective clothing. However, this testing often neglects the effects of cylindrical geometry on heat transmission in flame resistant fabrics. This paper deals with methods to develop cylindrical geometry testing apparatus incorporating novel skin bioheat transfer model to test flame resistant fabrics used in firefighting. Results show that fabrics which shrink during the test can have reduced thermal protective performance compared with the qualities measured with a planar geometry tester. Results of temperature differences between skin simulant sensors of planar and cylindrical tester are also compared. This test method provides a new technique to accurately and precisely characterize the thermal performance of thermal protective fabrics.
Modeling thermal effects in braking systems of railway vehicles
Directory of Open Access Journals (Sweden)
Milošević Miloš S.
2012-01-01
Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.
Effect of high heating rate on thermal decomposition behaviour of ...
Indian Academy of Sciences (India)
Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.
Effects of ageing and moisture content on thermal properties of ...
African Journals Online (AJOL)
Effects of ageing and moisture content on thermal properties of cassava roots ... after harvest coupled with non-‐availability of acceptable storage alternatives. ... the properties simultaneously based on the transient line heat source method.
The trace identity and the planar Casimir effect
Indian Academy of Sciences (India)
this paper we recall that the trace identity associated with the massless free real ... Let us now motivate the work reported here: Labelling the two terms in eq. (3) by I and J ... In contrast however, with the same model Lagrangian as in (6) below but in 1 + 1 ... below – there being none in 1 + 1 dimensions as d = 0 in this case.
New aspects of the casimir effect: Fluctuations and radiative reaction
International Nuclear Information System (INIS)
Barton, G.
1994-01-01
But since I am among equally irrational men, I won't be criticized I hope for the fact that there is no possible, practical reason for making these calculations....We all realize that no matter how small a thing is, if it has physical interest and is thought about carefully enough, your're bound to think of something that's good for something else. 48 refs
Casimir effect for closed cavities with conducting and permeable walls
International Nuclear Information System (INIS)
Ferreira, L.A.; Zimerman, A.H.; Ruggiero, J.R.
1980-01-01
The quantum electromagnetic zero point energy is calculated for rectangular cavities where some of the walls are perfect conductors and the others are made of infinitely permeable materials. It is found that for cubic systems, for some configurations the zero point electromagnetic energy is positive, while in other configurations this zero point energy is negative. The consequences of these results on possible models for the electron are discussed. (Author) [pt
Effective thermal conductivity of advanced ceramic breeder pebble beds
Energy Technology Data Exchange (ETDEWEB)
Pupeschi, S., E-mail: simone.pupeschi@kit.edu; Knitter, R.; Kamlah, M.
2017-03-15
As the knowledge of the effective thermal conductivity of ceramic breeder pebble beds under fusion relevant conditions is essential for the development of solid breeder blanket concepts, the EU advanced and reference lithium orthosilicate material were investigated with a newly developed experimental setup based on the transient hot wire method. The effective thermal conductivity was investigated in the temperature range RT–700 °C. Experiments were performed in helium and air atmospheres in the pressure range 0.12–0.4 MPa (abs.) under a compressive load up to 6 MPa. Results show a negligible influence of the chemical composition of the solid material on the bed’s effective thermal conductivity. A severe reduction of the effective thermal conductivity was observed in air. In both atmospheres an increase of the effective thermal conductivity with the temperature was detected, while the influence of the compressive load was found to be small. A clear dependence of the effective thermal conductivity on the pressure of the filling gas was observed in helium in contrast to air, where the pressure dependence was drastically reduced.
International Nuclear Information System (INIS)
Cheng Wenlong; Liu Na; Wu Wanfan
2012-01-01
In order to overcome the difficulty of conventional phase change materials (PCMs) in packaging, the shape-stabilized PCMs are proposed to be used in the electronic device thermal control. However, the conventional shape-stabilized PCMs have the drawback of lower thermal conductivity, so a new shape-stabilized PCM with high thermal conductivity, which is suitable for thermal control of electronic devices, is prepared. The thermal properties of n-octadecane-based shape-stabilized PCM are tested and analyzed. The heat storage/release performance is studied by numerical simulation. Its thermal control effect for electronic devices is also discussed. The results show that the expanded graphite (EG) can greatly improve the thermal conductivity of the material with little effect on latent heat and phase change temperature. When the mass fraction of EG is 5%, thermal conductivity has reached 1.76 W/(m K), which is over 4 times than that of the original one. Moreover, the material has larger latent heat and good thermal stability. The simulation results show that the material can have good heat storage/release performance. The analysis of the effect of thermal parameters on thermal control effect for electronic devices provides references to the design of phase change thermal control unit. - Highlights: ► A new shape-stabilized PCM with higher thermal conductivity is prepared. ► The material overcomes the packaging difficulty of traditional PCMs used in thermal control unit. ► The EG greatly improves thermal conductivity with little effect on latent heat. ► The material has high thermal stability and good heat storage/release performance. ► The effectiveness of the material for electronic device thermal control is proved.
Dynamic nonlinear thermal optical effects in coupled ring resonators
Directory of Open Access Journals (Sweden)
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Effect of thermal phonons on the superconducting transition temperature
International Nuclear Information System (INIS)
Leavens, C.R.; Talbot, E.
1983-01-01
There is no consensus in the literature on whether or not thermal phonons depress the superconducting transition temperature T/sub c/. In this paper it is shown by accurate numerical solution of the real-frequency Eliashberg equations for the pairing self-energy phi and renormalization function Z that thermal phonons in the kernel for phi raise T/sub c/ but those in Z lower it by a larger amount so that the net effect is to depress T/sub c/. (A previous calculation which ignored the effect of thermal phonons in phi overestimated the suppression of T/sub c/ by at least a factor of 3.) It is shown how to switch off the thermal phonons in the imaginary-frequency Eliashberg equations, exactly for Z and approximately for phi. The real-frequency and approximate imaginary-frequency results for the depression of T/sub c/ by thermal phonons are in very satisfactory agreement. Thermal phonons are found to depress the transition temperature of Nb 3 Sn by only 2%. It is estimated that the suppression of T/sub c/ by thermal phonons saturates at about 50% in the limit of very strong electron-phonon coupling
Thermal transport in Si and Ge nanostructures in the 'confinement' regime.
Kwon, Soonshin; Wingert, Matthew C; Zheng, Jianlin; Xiang, Jie; Chen, Renkun
2016-07-21
Reducing semiconductor materials to sizes comparable to the characteristic lengths of phonons, such as the mean-free-path (MFP) and wavelength, has unveiled new physical phenomena and engineering capabilities for thermal energy management and conversion systems. These developments have been enabled by the increasing sophistication of chemical synthesis, microfabrication, and atomistic simulation techniques to understand the underlying mechanisms of phonon transport. Modifying thermal properties by scaling physical size is particularly effective for materials which have large phonon MFPs, such as crystalline Si and Ge. Through nanostructuring, materials that are traditionally good thermal conductors can become good candidates for applications requiring thermal insulation such as thermoelectrics. Precise understanding of nanoscale thermal transport in Si and Ge, the leading materials of the modern semiconductor industry, is increasingly important due to more stringent thermal conditions imposed by ever-increasing complexity and miniaturization of devices. Therefore this Minireview focuses on the recent theoretical and experimental developments related to reduced length effects on thermal transport of Si and Ge with varying size from hundreds to sub-10 nm ranges. Three thermal transport regimes - bulk-like, Casimir, and confinement - are emphasized to describe different governing mechanisms at corresponding length scales.
Thermal contraction effects in epoxy resin composites at low temperatures
International Nuclear Information System (INIS)
Evans, D.; Morgan, J.T.
1979-10-01
Because of their electrical and thermal insulation characteristics, high strength fibreglass/epoxy composites are widely used in the construction of bubble chamber and other cryogenic equipment. Thermal contraction effects on cooling to operating temperature present problems which need to be taken into account at the design stage. This paper gives results of thermal contraction tests carried out on fibreglass/epoxy composites including the somewhat anomalous results obtained with rings and tubes. Also considered are some of the problems associated with the use of these materials at temperatures in the region of 20K. (author)
Effects of Thermal Annealing Conditions on Cupric Oxide Thin Film
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyo Seon; Oh, Hee-bong; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)
2015-07-15
In this study, cupric oxide (CuO) thin films were grown on fluorine doped tin oxide(FTO) substrate by using spin coating method. We investigated the effects of thermal annealing temperature and thermal annealing duration on the morphological, structural, optical and photoelectrochemical properties of the CuO film. From the results, we could find that the morphologies, grain sizes, crystallinity and photoelectrochemical properties were dependent on the annealing conditions. As a result, the maximum photocurrent density of -1.47 mA/cm{sup 2} (vs. SCE) was obtained from the sample with the thermal annealing conditions of 500 ℃ and 40 min.
Thermal energy effects on articular cartilage: a multidisciplinary evaluation
Kaplan, Lee D.; Ernsthausen, John; Ionescu, Dan S.; Studer, Rebecca K.; Bradley, James P.; Chu, Constance R.; Fu, Freddie H.; Farkas, Daniel L.
2002-05-01
Partial thickness articular cartilage lesions are commonly encountered in orthopedic surgery. These lesions do not have the ability to heal by themselves, due to lack of vascular supply. Several types of treatment have addressed this problem, including mechanical debridement and thermal chondroplasty. The goal of these treatments is to provide a smooth cartilage surface and prevent propagation of the lesions. Early thermal chondroplasty was performed using lasers, and yielded very mixed results, including severe damage to the cartilage, due to poor control of the induced thermal effects. This led to the development (including commercial) of probes using radiofrequency to generate the thermal effects desired for chondroplasty. Similar concerns over the quantitative aspects and control ability of the induced thermal effects in these treatments led us to test the whole range of complex issues and parameters involved. Our investigations are designed to simultaneously evaluate clinical conditions, instrument variables for existing radiofrequency probes (pressure, speed, distance, dose) as well as the associated basic science issues such as damage temperature and controllability (down to the subcellular level), damage geometry, and effects of surrounding conditions (medium, temperature, flow, pressure). The overall goals of this work are (1) to establish whether thermal chondroplasty can be used in a safe and efficacious manner, and (2) provide a prescription for multi-variable optimization of the way treatments are delivered, based on quantitative analysis. The methods used form an interdisciplinary set, to include precise mechanical actuation, high accuracy temperature and temperature gradient control and measurement, advanced imaging approaches and mathematical modeling.
Determining Effective Thermal Conductivity of Fabrics by Using Fractal Method
Zhu, Fanglong; Li, Kejing
2010-03-01
In this article, a fractal effective thermal conductivity model for woven fabrics with multiple layers is developed. Structural models of yarn and plain woven fabric are derived based on the fractal characteristics of macro-pores (gap or channel) between the yarns and micro-pores inside the yarns. The fractal effective thermal conductivity model can be expressed as a function of the pore structure (fractal dimension) and architectural parameters of the woven fabric. Good agreement is found between the fractal model and the thermal conductivity measurements in the general porosity ranges. It is expected that the model will be helpful in the evaluation of thermal comfort for woven fabric in the whole range of porosity.
Surface effects on the thermal conductivity of silicon nanowires
Li, Hai-Peng; Zhang, Rui-Qin
2018-03-01
Thermal transport in silicon nanowires (SiNWs) has recently attracted considerable attention due to their potential applications in energy harvesting and generation and thermal management. The adjustment of the thermal conductivity of SiNWs through surface effects is a topic worthy of focus. In this paper, we briefly review the recent progress made in this field through theoretical calculations and experiments. We come to the conclusion that surface engineering methods are feasible and effective methods for adjusting nanoscale thermal transport and may foster further advancements in this field. Project supported by the National Natural Science Foundation ofChina (Grant No. 11504418), China Scholarship Council (Grant No. 201706425053), Basic Research Program in Shenzhen, China (Grant No. JCYJ20160229165210666), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).
Atomic-scale friction : thermal effects and capillary condensation
Jinesh, Kochupurackal Balakrishna Pillai
2006-01-01
This work entitled as "Atomic-scale friction: thermal effects and capillary condensation" is a study on the fundamental aspects of the origin of friction from the atomic-scale. We study two realistic aspects of atomic-scale friction, namely the effect of temperature and the effect of relative
Effective electrical and thermal conductivity of multifilament twisted superconductors
International Nuclear Information System (INIS)
Chechetkin, V.R.
2013-01-01
The effective electrical and thermal conductivity of composite wire with twisted superconducting filaments embedded into normal metal matrix is calculated using the extension of Bruggeman method. The resistive conductivity of superconducting filaments is described in terms of symmetric tensor, whereas the conductivity of a matrix is assumed to be isotropic and homogeneous. The dependence of the resistive electrical conductivity of superconducting filaments on temperature, magnetic field, and current density is implied to be parametric. The resulting effective conductivity tensor proved to be non-diagonal and symmetric. The non-diagonal transverse–longitudinal components of effective electrical conductivity tensor are responsible for the redistribution of current between filaments. In the limits of high and low electrical conductivity of filaments the transverse effective conductivity tends to that of obtained previously by Carr. The effective thermal conductivity of composite wires is non-diagonal and radius-dependent even for the isotropic and homogeneous thermal conductivities of matrix and filaments.
International Nuclear Information System (INIS)
Teo, L. P.
2011-01-01
We study the finite temperature Casimir interaction between a cylinder and a plate using the exact formula derived from the Matsubara representation and the functional determinant representation. We consider the scalar field with Dirichlet and Neumann boundary conditions. The asymptotic expansions of the Casimir free energy and the Casimir force when the separation a between the cylinder and the plate is small are derived. As in the zero temperature case, it is found that the leading terms of the Casimir free energy and the Casimir force agree with those derived from the proximity force approximation when rT>>1, where r is the radius of the cylinder. Specifically, when aT 5/2 whereas, for the Casimir force, it is of order T 7/2 . In this case, the leading terms are independent of the separation a. When 1 3/2 , whereas, for the force, it is inversely proportional to a 5/2 . The first order corrections to the proximity force approximations in different temperature regions are computed using the perturbation approach. In the zero temperature case, the results agree with those derived in [M. Bordag, Phys. Rev. D 73, 125018 (2006)].
Directory of Open Access Journals (Sweden)
DONG Jianmin
2016-10-01
Full Text Available In order to investigate the effect of water grit-blasting and high temperature thermal exposure on the microstructures of DD6 alloy with TBCs, DD6 single crystal superalloy specimens were water grit-blasted with 0.3 MPa pressure, then the specimens were coated with thermal barrier coatings by electron beam physical vapor deposition (EB-PVD. Specimens with TBCs were exposed at 1100℃ for 50 and 100 hours in the air respectively, and then these specimens were subjected to stress-rupture tests under the condition of 1100℃/130 MPa. The results show that grit-blasting doesn't lead into the recrystallization, thermal exposure can induce element interdiffusion between the bond coat and alloy substrate, the residual stress and element diffusion lead into the changes of γ' phase coarsing direction. After stress rupture tests, the secondary reaction zone emerges into a local area.
The Effects of Thermal Strain on Cognition
National Research Council Canada - National Science Library
Hocking, Chris
2000-01-01
...). The hot and humid conditions are known to cause debilitating effects on soldiers deployed to northern regions of Australia, with the consequence that the effectiveness and efficiency of operations...
Effect of thermal state and thermal comfort on cycling performance in the heat.
Schulze, Emiel; Daanen, Hein A M; Levels, Koen; Casadio, Julia R; Plews, Daniel J; Kilding, Andrew E; Siegel, Rodney; Laursen, Paul B
2015-07-01
To determine the effect of thermal state and thermal comfort on cycling performance in the heat. Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial in hot (30°C) and humid (80% relative humidity) conditions. In a randomized order, cyclists either drank ambient-temperature (30°C) fluid ad libitum during exercise (CON), drank ice slurry (-1°C) ad libitum during exercise (ICE), or precooled with iced towels and ice slurry ingestion (15 g/kg) before drinking ice slurry ad libitum during exercise (PC+ICE). Power output, rectal temperature, and ratings of thermal comfort were measured. Overall mean power output was possibly higher in ICE (+1.4%±1.8% [90% confidence limit]; 0.4> smallest worthwhile change [SWC]) and likely higher PC+ICE (+2.5%±1.9%; 1.5>SWC) than in CON; however, no substantial differences were shown between PC+ICE and ICE (unclear). Time-trial performance was likely enhanced in ICE compared with CON (+2.4%±2.7%; 1.4>SWC) and PC+ICE (+2.9%±3.2%; 1.9>SWC). Differences in mean rectal temperature during exercise were unclear between trials. Ratings of thermal comfort were likely and very likely lower during exercise in ICE and PC+ICE, respectively, than in CON. While PC+ICE had a stronger effect on mean power output compared with CON than ICE did, the ICE strategy enhanced late-stage time-trial performance the most. Findings suggest that thermal comfort may be as important as thermal state for maximizing performance in the heat.
Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors
Energy Technology Data Exchange (ETDEWEB)
Baek, W. P.; Song, C. H.; Kim, Y. S. and others
2005-02-15
The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.
Design of reinforced concrete containment structures for thermal gradients effects
International Nuclear Information System (INIS)
Bhat, P.D.; Vecchio, F.
1983-01-01
The need for more accurate prediction of structural behaviour, particularly under extreme load conditions, has made the consideration of thermal gradient effects and increasingly important part of the design of reinforced concrete structures for nuclear applications. While the thermal effects phenomenon itself has been qualitatively well understood, the analytical complications involved in theoretical analysis have made it necessary to resort to major simplifications for practical design applications. A number of methods utilizing different variations in approach have been developed and are in use today, including one by Ontario Hydro which uses an empirical relationship for determining an effective moment of inertia for cracked members. (orig./WL)
Dolomite addition effects on the thermal expansion of ceramic tiles
International Nuclear Information System (INIS)
Marino, Luis Fernando Bruno; Boschi, Anselmo Ortega
1997-01-01
The thermal expansion of ceramic tiles is of greater importance in engineering applications because the ceramics are relatively brittle and cannot tolerate large internal strain imposed by thermal expansion. When ceramic bodies are produced for glazed ties the compatibility of this property of the components should be considered to avoid damage in the final products. Carbonates are an important constituent of ceramic wall-title bodies and its presence in formulations and the reactions that occur between them and other components modify body properties. The influence in expansivity by additions of calcium magnesium carbonate in a composition of wall tile bodies has been investigated. The relative content of mineralogical components was determined by X-ray diffraction and thermal expansion by dilatometric measurements. The results was indicated that with the effect of calcium-magnesium phases and porosity on thermal expansion of wall tile bodies. (author)
An effective Handling of Thermal Bridges in the EPBD Context
DEFF Research Database (Denmark)
Erhorn, Hans; Erhorn-Kluttig, Heike; Thomsen, Kirsten Engelund
The ASIEPI project has collected and analysed international and national information from up to 17 EU Member States plus Norway on the topic of thermal bridges in buildings. Seven different aspects have been addressed, ranging from EU Member States’ approaches in regulations to quantification...... of thermal bridge effects to the energy balance, used software tools and thermal bridge atlases, available good practice guidance and promotion of good building practice to the execution quality and advanced thermal bridge driven technical developments. This report presents the gathered knowledge, draws...... conclusions, shows good country examples and gives recommendations to specific groups of audience such as policy makers and standardisation bodies but also to educational institutions, building professionals, building owners and the building industry on how to improve the quality of building component...
Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems
Zeng, C.; Deng, W.; Wu, C.; Insall, M.
2017-12-01
In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.
Nonlinear dynamics of a rack-pinion-rack device powered by the Casimir force.
Miri, MirFaez; Nekouie, Vahid; Golestanian, Ramin
2010-01-01
Using the lateral Casimir force-a manifestation of the quantum fluctuations of the electromagnetic field between objects with corrugated surfaces-as the main force transduction mechanism, a nanomechanical device with rich dynamical behaviors is proposed. The device is made of two parallel racks that are moving in the same direction and a pinion in the middle that couples with both racks via the noncontact lateral Casimir force. The built-in frustration in the device causes it to be very sensitive and react dramatically to minute changes in the geometrical parameters and initial conditions of the system. The noncontact nature of the proposed device could help with the ubiquitous wear problem in nanoscale mechanical systems.
International Nuclear Information System (INIS)
Macfarlane, A J; Pfeiffer, Hendryk
2003-01-01
The uniformity, for the family of exceptional Lie algebras g, of the decompositions of the powers of their adjoint representations is now well known for powers up to four. The paper describes an extension of this uniformity for the totally antisymmetrized nth powers up to n = 9, identifying families of representations with integer eigenvalues 5, ..., 9 for the quadratic Casimir operator, in each case providing a formula for the dimensions of the representations in the family as a function of D = dim g. This generalizes previous results for powers j and Casimir eigenvalues j, j ≤ 4. Many intriguing, perhaps puzzling, features of the dimension formulae are discussed and the possibility that they may be valid for a wider class of not necessarily simple Lie algebras is considered
Thermal Effects Induced by Laser Irradiation of Solids
International Nuclear Information System (INIS)
Galovic, S.
2004-01-01
A part of incident energy is absorbed within the irradiated sample when a solid is exposed to the influence of laser radiation, to more general electromagnetic radiation within the wide range of wavelengths (from microwaves, to infrared radiation to X-rays), or to the energy of particle beams (electronic, protonic, or ionic). The absorption process signifies a highly selective excitation of the electronic state of atoms or molecules, followed by thermal and non-thermal de-excitation processes. Non-radiation de-excitation-relaxation processes induce direct sample heating. In addition, a great number of non-thermal processes (e.g., photoluminescence, photochemistry, photovoltage) may also induce heat generation as a secondary process. This method of producing heat is called the photothermal effect.The photothermal effect and subsequent propagation of thermal waves on the surface and in the volume of the solid absorbing the exciting beam may produce the following: variations in the temperature on the surfaces of the sample; deformation and displacement of surfaces; secondary infrared radiation (photothermal radiation); the formation of the gradient of the refractivity index; changes in coefficients of reflection and absorbtion; the generation of sound (photoacoustic generation), etc. These phenomena may be used in the investigation and measurement of various material properties since the profile and magnitude of the generated signal depend upon the nature of material absorbing radiation. A series of non-destructive spectroscopic, microscopic and defectoscopic detecting techniques, called photothermal methods, is developed on the basis of the above-mentioned phenomena.This paper outlines the interaction between the intensity modulated laser beam and solids, and presents a mathematical model of generated thermal sources. Generalized models for a photothermal response of optically excited materials have been obtained, including thermal memory influence on the propagation
Effects of lithium insertion on thermal conductivity of silicon nanowires
International Nuclear Information System (INIS)
Xu, Wen; Zhang, Gang; Li, Baowen
2015-01-01
Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reduction in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms
FY 2017 – Thermal Aging Effects on Advanced Structural Materials
Energy Technology Data Exchange (ETDEWEB)
Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Wei-Ying [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-08-01
This report provides an update on the evaluation of the effect of thermal aging on tensile properties of existing laboratory-sized heats of Alloy 709 austenitic stainless steel and the completion of effort on the thermal aging effect on the tensile properties of optimized G92 ferritic-martensitic steel. The report is a Level 3 deliverable in FY17 (M3AT-17AN1602081), under the Work Package AT-17AN160208, “Advanced Alloy Testing - ANL” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.
The effects of vegetation on indoor thermal comfort
DEFF Research Database (Denmark)
Pastore, Luisa; Corrao, Rossella; Heiselberg, Per Kvols
2017-01-01
Highlights •A multi-scale simulation methodology to assess the effects of vegetation on thermal comfort is used. •It application is shown on a case of urban and building retrofit intervention. •The effect of plants on the microclimate and indoor environment is assessed. •A decrease of up to 4.8 °C...... in indoor temperature is registered. •The final impact on the indoor thermal comfort based on the adaptive model is determined....
Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues
Liu, Ran; Wang, Jia; Liu, Jing
2015-07-01
Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.
Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues
Directory of Open Access Journals (Sweden)
Ran Liu
2015-07-01
Full Text Available Hyperthermia (42-46°C, treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.
Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues
Energy Technology Data Exchange (ETDEWEB)
Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Jia [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)
2015-07-15
Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.
Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.
2014-10-01
We carefully reexamine the conditions of validity for the consistent derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors. We recover the usual expression for the lossy Drude model but not for the lossless plasma model. We give an interpretation of this new result in terms of the modes associated with the Foucault currents, which play a role in the limit of vanishing losses, in contrast to common expectations.
Helical bifurcation and tearing mode in a plasma—a description based on Casimir foliation
International Nuclear Information System (INIS)
Yoshida, Z; Dewar, R L
2012-01-01
The relation between the helical bifurcation of a Taylor relaxed state (a Beltrami equilibrium) and a tearing mode is analyzed in a Hamiltonian framework. Invoking an Eulerian representation of the Hamiltonian, the symplectic operator (defining a Poisson bracket) becomes non-canonical, i.e. the symplectic operator has a nontrivial cokernel (dual to its nullspace), foliating the phase space into level sets of Casimir invariants. A Taylor relaxed state is an equilibrium point on a Casimir (helicity) leaf. Changing the helicity, equilibrium points may bifurcate to produce helical relaxed states; a necessary and sufficient condition for bifurcation is derived. Tearing yields a helical perturbation on an unstable equilibrium, producing a helical structure approximately similar to a helical relaxed state. A slight discrepancy found between the helically bifurcated relaxed state and the linear tearing mode viewed as a perturbed, singular equilibrium state is attributed to a Casimir element (named ‘helical flux’) pertinent to a ‘resonance singularity’ of the non-canonical symplectic operator. While the helical bifurcation can occur at discrete eigenvalues of the Beltrami parameter, the tearing mode, being a singular eigenfunction, exists for an arbitrary Beltrami parameter. Bifurcated Beltrami equilibria appearing on the same helicity leaf are isolated by the helical-flux Casimir foliation. The obstacle preventing the tearing mode to develop in the ideal limit turns out to be the shielding current sheet on the resonant surface, preventing the release of the ‘potential energy’. When this current is dissipated by resistivity, reconnection is allowed and tearing instability occurs. The Δ′ criterion for linear tearing instability of Beltrami equilibria is shown to be directly related to the spectrum of the curl operator. (paper)
Casimir quantum levitation tuned by means of material properties and geometries
Dou, Maofeng; Lui, F; Boström, Mathias; Brevik, Iver Håkon; Persson, Clas
2014-01-01
The Casimir force between two surfaces is attractive in most cases. Although stable suspension of nano-objects has been achieved, the sophisticated geometries make them difficult to be merged with well-established thin film processes. We find that by introducing thin film surface coating on porous substrates, a repulsive to attractive force transition is achieved when the separations are increased in planar geometries, resulting in a stable suspension of two surfaces near the force transition...
Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force
Gusso, André
2011-01-01
A so far not considered energy loss mechanism in suspended micro- and nanoresonators due to noncontact acoustical energy loss is investigated theoretically. The mechanism consists on the conversion of the mechanical energy from the vibratory motion of the resonator into acoustic waves on large nearby structures, such as the substrate, due to the coupling between the resonator and those structures resulting from the Casimir force acting over the separation gaps. Analytical expressions for the ...
Effect of layout on surge line thermal stratification
International Nuclear Information System (INIS)
Lai Jianyong; Huang Wei
2011-01-01
In order to analyze and evaluate the effect of layout on the thermal stratification for PWR Pressurizer surge line, numerical simulation by Computational Fluid Dynamics (CFD) method is taken on 6 kinds of layout improvement with 2 improvement schemes, i.e., increasing the obliquity of quasi horizontal section and adding a vertical pipe between the quasi horizontal section and next elbow, and the maximum temperature differences of quasi horizontal section of surge line of various layouts under different flowrate are obtained. The comparison shows that, the increasing of the obliquity of quasi horizontal section can mitigate the thermal stratification phenomena but can not eliminate this phenomena, while the adding of a vertical pipe between the quasi horizontal section and next elbow can effectively mitigate and eliminate the thermal stratification phenomena. (authors)
Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors
International Nuclear Information System (INIS)
Baek, Won Pil; Song, C. H.; Kim, Y. S.
2007-02-01
The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted
Casimir friction and near-field radiative heat transfer in graphene structures
Energy Technology Data Exchange (ETDEWEB)
Volokitin, A.I. [Forschungszentrum Juelich (Germany). Peter Gruenberg Inst.; Samara State Technical Univ. (Russian Federation). Physical Dept.
2017-05-01
The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO{sub 2} substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO{sub 2} substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO{sub 2} substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO{sub 2} substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is ∝ three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.
Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature
Bimonte, Giuseppe
2018-04-01
A recent experiment [J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev. Lett. 120, 040401 (2018), 10.1103/PhysRevLett.120.040401] measured for the first time the gradient of the Casimir force between two gold spheres at room temperature. The theoretical analysis of the data was carried out using the standard proximity force approximation (PFA). A fit of the data, using a parametrization of the force valid for the sphere-plate geometry, was used by the authors to place a bound on deviations from PFA. Motivated by this work, we compute the Casimir force between two gold spheres at finite temperature. The semianalytic formula for the Casimir force that we construct is valid for all separations, and can be easily used to interpret future experiments in both the sphere-plate and sphere-sphere configurations. We describe the correct parametrization of the corrections to PFA for two spheres that should be used in data analysis.
Casimir friction and near-field radiative heat transfer in graphene structures
International Nuclear Information System (INIS)
Volokitin, A.I.; Samara State Technical Univ.
2017-01-01
The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO 2 substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO 2 substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO 2 substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO 2 substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is ∝ three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.
BPS ZN string tensions, sine law and Casimir scaling, and integrable field theories
International Nuclear Information System (INIS)
Kneipp, Marco A. C.
2007-01-01
We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G→U(1) r →C G , with C G being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, we show that for each of the two vacua the ratio of the tensions of the BPS Z N strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K ij and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories
Casimir-Polder potential for a metallic cylinder in cosmic string spacetime
Energy Technology Data Exchange (ETDEWEB)
Saharian, A.A., E-mail: saharian@ysu.am [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan (Armenia); Kotanjyan, A.S. [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan (Armenia)
2012-07-09
Casimir-Polder potential is investigated for a polarizable microparticle in the geometry of a straight cosmic string with a metallic cylindrical shell. The electromagnetic field Green tensor is evaluated on the imaginary frequency axis. The expressions for the Casimir-Polder potential is derived in the general case of anisotropic polarizability for the both interior and exterior regions of the shell. The potential is decomposed into pure string and shell-induced parts. The latter dominates for points near the shell, whereas the pure string part is dominant near the string and at large distances from the shell. For the isotropic case and in the region inside the shell the both pure string and shell-induced parts in the Casimir-Polder force are repulsive with respect to the string. In the exterior region the shell-induced part of the force is directed toward the cylinder whereas the pure string part remains repulsive with respect to the string. At large distances from the shell the total force is repulsive.
Effect of Particle Size on Thermal Conductivity of Nanofluid
Chopkar, M.; Sudarshan, S.; Das, P. K.; Manna, I.
2008-07-01
Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles.
Thermal effects in static friction: thermolubricity.
Franchini, A; Bortolani, V; Santoro, G; Brigazzi, M
2008-10-01
We present a molecular dynamics analysis of the static friction between two thick slabs. The upper block is formed by N2 molecules and the lower block by Pb atoms. We study the effects of the temperature as well as the effects produced by the structure of the surface of the lower block on the static friction. To put in evidence the temperature effects we will compare the results obtained with the lower block formed by still atoms with those obtained when the atoms are allowed to vibrate (e.g., with phonons). To investigate the importance of the geometry of the surface of the lower block we apply the external force in different directions, with respect to a chosen crystallographic direction of the substrate. We show that the interaction between the lattice dynamics of the two blocks is responsible for the strong dependence of the static friction on the temperature. The lattice dynamics interaction between the two blocks strongly reduces the static friction, with respect to the case of the rigid substrate. This is due to the large momentum transfer between atoms and the N2 molecules which disorders the molecules of the interface layer. A further disorder is introduced by the temperature. We perform calculations at T = 20K which is a temperature below the melting, which for our slab is at 50K . We found that because of the disorder the static friction becomes independent of the direction of the external applied force. The very low value of the static friction seems to indicate that we are in a regime of thermolubricity similar to that observed in dynamical friction.
The effects of MWNT on thermal conductivity and thermal mechanical properties of epoxy
Ismadi, A. I.; Othman, R. N.
2017-12-01
Multiwall nanotube (MWNT) was used as filler in various studies to improve thermal conductivity and mechanical properties of epoxy. Present study varied different weight loading (0, 0.1 %, 0.5 %, 1 %, 1.5 %, 3 % and 5 %) of MWNT in order to observe the effects on the epoxy. Nanocomposite was analyzed by dynamic-mechanical thermal analyser (DMTA) and KD2 pro analyzer. DMTA measured storage modulus (E') and glass transition temperature (Tg) of the nanocomposite. Result showed that Tg value of neat epoxy is higher than all MWNT epoxy nanocomposite. Tg values drop from 81.55 °C (neat epoxy) to 65.03 °C (at 0.1 wt%). This may happen due to the agglomeration of MWNT in the epoxy. However, Tg values increases with the increase of MWNT wt%. Tg values increased from 65.03 °C to 78.53 °C at 1 wt%. Increment of storage modulus (E') at 3 °C (glassy region) was observed as the MWNT loading increases. Maximum value of E' during glassy region was observed to be at 5 wt% with (7.26±0.7) E+08 Pa compared to neat epoxy. On the contrary, there is slight increased and slight decreased with E' values at 100 °C (rubbery region) for all nanocomposite. Since epoxy exhibits low thermal conductivity properties, addition of MWNT has enhanced the properties. Optimum value of thermal conductivity was observed at 3 wt%. The values increased up to 9.03 % compared to neat epoxy. As expected, the result showed decrease value in thermal conductivity at 5 wt% as a result of agglomeration of MWNT in the epoxy.
The effect of Acacia karroo supplementation and thermal ...
African Journals Online (AJOL)
The objective of the current study was to determine the effect of Acacia karroo supplementation and thermal preparation on consumer sensory scores of meat from indigenous Xhosa lop-eared goat breed. 18 castrated four-month-old Xhosa lop-eared kids were kept at the University of Fort Hare Farm until slaughter. Sample ...
Effect of substrate type, dopant and thermal treatment on ...
Indian Academy of Sciences (India)
Effect of substrate type, dopant and thermal treatment on physicochemical properties of TiO2–SnO2 sol–gel films. I STAMBOLOVA. ∗. , V BLASKOV, S VASSILEV†, M SHIPOCHKA and A LOUKANOV‡. Institute of General and Inorganic Chemistry, †Institute of Electrochemistry and Energy Systems, BAS,. Acad. G. Bonchev ...
Effect of high thermal expansion glass infiltration on mechanical ...
Indian Academy of Sciences (India)
This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature.
Modeling of the effective thermal conductivity of sintered porous pastes
Ordonez-Miranda, J.; Hermens, M.; Nikitin, I.; Kouznetsova, V.G.; Volz, S.
2014-01-01
The thermal conductivity of sintered porous pastes of metals is modelled, based on an analytical and a numerical approach. The first method arises from the differential effective medium theory and considers the air voids as ellipsoidal pores of different sizes, while second one is based on the
Thermal diffusion baro-effect in cluster gases
International Nuclear Information System (INIS)
Kurlapov, L.M.; Segeda, T.A.
2003-01-01
Thermal diffusion baro-effect as a difference of pressure under which action in the established process in the close device the particles flow of an irreversible nature is counterbalanced by current of gas is considered. For not ideal gases the settlement formula is received, in which no ideality is taken into account through the compressibility factor and also for cluster mixture. (author)
Thermal Performance Analysis of Staging Effect of Solar Thermal Absorber with Cross Design
International Nuclear Information System (INIS)
Amir Abdul Razak; Zafri Azran Abdul Majid; Mohd Hafidz Ruslan; Kamaruzzaman Sopian
2015-01-01
The type and shape of solar thermal absorber materials will impact on the operating temperature and thermal energy storage effect of a solar air thermal collector. For a standard flat-plate design, energy gain can be increased by expanding the thermal absorber area along the collector plane, subject to area limitation. This paper focuses on the staging effect of a metal hollow square rod absorber of aluminium, stainless steel, and a combination of the two with a cross design, for the heat gain and temperature characteristics of a solar air collector. Experiments were carried out with three cross design set-ups, with 30 minutes of heating and cooling, phase, respectively, under 485 W/ m 2 solar irradiance value, and at a constant air speed at 0.38 m/ s. One set aluminium set-up delivered the highest output temperature of 41.8 degree Celsius, followed by two-sets aluminium and one aluminium set + one stainless steel set at 39.3 and 38.2 degree Celsius, respectively. The lowest peak temperature is recorded on three sets of the aluminium absorber at 35 degree Celsius. The bi-metallic set-up performed better than the two aluminium set-up where each set-up obtained a temperature drop against heat gain gradient value of -0.4186 degree Celsius/ W and -0.4917 degree Celsius/ W, respectively. Results concluded that by increasing the number of sets, the volume and surface areas of the absorber material are also increased, and lead to a decrease in peak temperature output for each increase of sets. (author)
Aging effects on vertical graphene nanosheets and their thermal stability
Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.
2018-03-01
The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.
Modelling aging effects on a thermal cycling absorption process column
Energy Technology Data Exchange (ETDEWEB)
Laquerbe, C.; Contreras, S. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France); Baudouin, O. [ProSim SA, Stratege Bat. A, BP 27210, F-31672 Labege Cedex (France); Demoment, J. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France)
2008-07-15
Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)
Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G.
2016-05-01
The energy policies about energy efficiency in buildings currently focus on new buildings and on existing buildings in case of energy retrofit. However, historic and heritage buildings, that are the trademark of numerous European cities, should also deserve attention; nevertheless, their energy efficiency is nowadays not deeply investigated. In this context, this study evaluates the thermal performance of a traditional massive building situated in a Mediterranean city. Dynamic numerical simulations were carried out on a yearly basis through the software DesignBuilder, both in free-running conditions and in the presence of an air-conditioning (AC) system. The results highlight that the massive envelope of traditional residential buildings helps in maintaining small fluctuations of the indoor temperature, thus limiting the need for AC in the mid-season and in summer. This feature is highly emphasised by exploiting natural ventilation at night, which allows reducing the building energy demand for cooling by about 30%.The research also indicates that, for Mediterranean climate, the increase in thermal insulation does not always induce positive effects on the thermal performance in summer, and that it might even produce an increase in the heat loads due to the transmission through the envelope.
Thermal Effectiveness of Wall Indoor Fountain in Warm Humid Climate
Seputra, J. A. P.
2018-03-01
Nowadays, many buildings wield indoor water features such as waterfalls, fountains, and water curtains to improve their aesthetical value. Despite the provision of air cooling due to water evaporation, this feature also has adverse effect if applied in warm humid climate since evaporation might increase air humidity beyond the comfort level. Yet, there are no specific researches intended to measure water feature’s effect upon its thermal condition. In response, this research examines the influence of evaporative cooling on indoor wall fountain toward occupant’s thermal comfort in warm humid climate. To achieve this goal, case study is established in Waroeng Steak Restaurant’s dining room in Surakarta-Indonesia. In addition, SNI 03-6572-2001 with comfort range of 20.5–27.1°C and 40-60% of relative humidity is utilized as thermal criterion. Furthermore, Computational Fluid Dynamics (CFD) is employed to process the data and derive conclusions. Research variables are; feature’s height, obstructions, and fan types. As results, Two Bumps Model (ToB) is appropriate when employs natural ventilation. However, if the room is mechanically ventilated, Three Bumps Model (TeB) becomes the best choice. Moreover, application of adaptive ventilation is required to maintain thermal balance.
The effect of allometric scaling in coral thermal microenvironments.
Directory of Open Access Journals (Sweden)
Robert H Ong
Full Text Available A long-standing interest in marine science is in the degree to which environmental conditions of flow and irradiance, combined with optical, thermal and morphological characteristics of individual coral colonies, affects their sensitivity of thermal microenvironments and susceptibility to stress-induced bleaching within and/or among colonies. The physiological processes in Scleractinian corals tend to scale allometrically as a result of physical and geometric constraints on body size and shape. There is a direct relationship between scaling to thermal stress, thus, the relationship between allometric scaling and rates of heating and cooling in coral microenvironments is a subject of great interest. The primary aim of this study was to develop an approximation that predicts coral thermal microenvironments as a function of colony morphology (shape and size, light or irradiance, and flow velocity or regime. To do so, we provided intuitive interpretation of their energy budgets for both massive and branching colonies, and then quantified the heat-size exponent (b* and allometric constant (m using logarithmic linear regression. The data demonstrated a positive relationship between thermal rates and changes in irradiance, A/V ratio, and flow, with an interaction where turbulent regime had less influence on overall stress which may serve to ameliorate the effects of temperature rise compared to the laminar regime. These findings indicated that smaller corals have disproportionately higher stress, however they can reach thermal equilibrium quicker. Moreover, excellent agreements between the predicted and simulated microscale temperature values with no significant bias were observed for both the massive and branching colonies, indicating that the numerical approximation should be within the accuracy with which they could be measured. This study may assist in estimating the coral microscale temperature under known conditions of water flow and irradiance
Electrical stimulation vs thermal effects in a complex electromagnetic environment.
Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel
2009-08-01
Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.
Electrical stimulation vs thermal effects in a complex electromagnetic environment
International Nuclear Information System (INIS)
Paniagua, Jesus M.; Rufo, Montana; Jimenez, Antonio; Antolin, Alicia; Sanchez, Miguel
2009-01-01
Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10 -4 ) than that based on thermal considerations (exposure quotient 0.16 10 -4 ). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.
Energy Technology Data Exchange (ETDEWEB)
Rousseau, P.G., E-mail: pgr@mtechindustrial.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Toit, C.G. du; Antwerpen, W. van [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Antwerpen, H.J. van [M-Tech Industrial (Pty) Ltd., PO Box 19855, Noordbrug 2522 (South Africa)
2014-05-01
Thermal-fluid simulations are used extensively to predict the maximum fuel temperatures, flows, pressure drops and thermal capacitance of pebble bed gas cooled reactors in support of the reactor safety case. The PBMR company developed the HTTU non-nuclear test facility in cooperation with M-Tech Industrial (Pty) Ltd. and the North-West University in South Africa to conduct comprehensive separate effects tests as well as integrated effects tests to study the different thermal-fluid phenomena. This paper describes the separate effects tests that were conducted to determine the effective thermal conductivity through the pebble bed under near-vacuum conditions and temperatures up to 1200 °C. It also presents the measured temperature distributions and the methodology applied in the data analysis to derive the resultant values of effective thermal conductivity and its associated uncertainty.
International Nuclear Information System (INIS)
Rousseau, P.G.; Toit, C.G. du; Antwerpen, W. van; Antwerpen, H.J. van
2014-01-01
Thermal-fluid simulations are used extensively to predict the maximum fuel temperatures, flows, pressure drops and thermal capacitance of pebble bed gas cooled reactors in support of the reactor safety case. The PBMR company developed the HTTU non-nuclear test facility in cooperation with M-Tech Industrial (Pty) Ltd. and the North-West University in South Africa to conduct comprehensive separate effects tests as well as integrated effects tests to study the different thermal-fluid phenomena. This paper describes the separate effects tests that were conducted to determine the effective thermal conductivity through the pebble bed under near-vacuum conditions and temperatures up to 1200 °C. It also presents the measured temperature distributions and the methodology applied in the data analysis to derive the resultant values of effective thermal conductivity and its associated uncertainty
International Nuclear Information System (INIS)
Aurangzeb; Ali, Zulqurnain; Gurmani, Samia Faiz; Maqsood, Asghari
2006-01-01
Thermal conductivity, thermal diffusivity and heat capacity per unit volume of porous consolidated igneous rocks have been measured, simultaneously by Gustafsson's probe at room temperature and normal pressure using air as saturant. Data are presented for eleven samples of dunite, ranging in porosity from 0.130 to 0.665% by volume, taken from Chillas near Gilgit, Pakistan. The porosity and density parameters have been measured using American Society of Testing and Materials (ASTM) standards at ambient conditions. The mineral composition of samples has been analysed from their thin sections (petrography). An empirical model to predict the thermal conductivity of porous consolidated igneous rocks is also proposed. The thermal conductivities are predicted by some of the existing models along with the proposed one. It is observed that the values of effective thermal conductivity predicted by the proposed model are in agreement with the experimental thermal conductivity data within 6%
Information loss in effective field theory: Entanglement and thermal entropies
Boyanovsky, Daniel
2018-03-01
Integrating out high energy degrees of freedom to yield a low energy effective field theory leads to a loss of information with a concomitant increase in entropy. We obtain the effective field theory of a light scalar field interacting with heavy fields after tracing out the heavy degrees of freedom from the time evolved density matrix. The initial density matrix describes the light field in its ground state and the heavy fields in equilibrium at a common temperature T . For T =0 , we obtain the reduced density matrix in a perturbative expansion; it reveals an emergent mixed state as a consequence of the entanglement between light and heavy fields. We obtain the effective action that determines the time evolution of the reduced density matrix for the light field in a nonperturbative Dyson resummation of one-loop correlations of the heavy fields. The Von-Neumann entanglement entropy associated with the reduced density matrix is obtained for the nonresonant and resonant cases in the asymptotic long time limit. In the nonresonant case the reduced density matrix displays an incipient thermalization albeit with a wave-vector, time and coupling dependent effective temperature as a consequence of memory of initial conditions. The entanglement entropy is time independent and is the thermal entropy for this effective, nonequilibrium temperature. In the resonant case the light field fully thermalizes with the heavy fields, the reduced density matrix loses memory of the initial conditions and the entanglement entropy becomes the thermal entropy of the light field. We discuss the relation between the entanglement entropy ultraviolet divergences and renormalization.
Effects of thermal ageing on HMS-PP crystallinity
International Nuclear Information System (INIS)
Oliani, Washington L.; Parra, Duclerc F.; Lima, Luis F.C.P.; Lugao, Ademar B.
2009-01-01
The isotactic polypropylene is a linear polymer which exhibits low melt strength. Irradiation of PP under inert atmosphere causes a combination of chain scissioning and long-chain branching, and results in a material with significant enhanced melt strength. This process, which is sometimes termed visbreaking, thus provides improvement of rheological properties. HMS-PP (High Melt Strength Polypropylene) was obtained by the irradiation in atmosphere of acetylene as crosslinker agent. It was employed doses of 12.5 and 20 kGy of gamma radiation. The objective of this study is to investigate the effects of thermal ageing on the crystallinity level and chemical structure of HMS-PP. The thermal stability of the HMS-PP was evaluated after thermal ageing of samples using a stove at temperature of 90 deg C, in presence of air at different periods of time. The samples submitted to the thermal ageing were characterized by: thermogravimetry (TGA), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Since the long-term engineering properties of HMS-PP are intrinsically linked with the polymer microstructure, there is significant interest in understanding the effects of ageing, particularly due to prolonged exposure at service temperatures. In thermo-oxidative conditions, the formation of the oxidation products essentially involves a hydrogen abstraction by the peroxyl radicals, leading to hydroperoxides as primary products and chemical degradation in the immediate crack tips. Oxidative degradation on the network of HMS-PP, created by radiation process of PP, was revealed by the analytical results showing the susceptibility of HMS-PP to thermal oxidative degradation. Yellowing of the samples surface and oxidative products of degradation among other evidences were observed. (author)
Hertzberg, Jared B; Aksit, Mahmut; Otelaja, Obafemi O; Stewart, Derek A; Robinson, Richard D
2014-02-12
Thermal transport in nanostructures is strongly affected by phonon-surface interactions, which are expected to depend on the phonon's wavelength and the surface roughness. Here we fabricate silicon nanosheets, measure their surface roughness (∼ 1 nm) using atomic force microscopy (AFM), and assess the phonon scattering rate in the sheets with a novel technique: a microscale phonon spectrometer. The spectrometer employs superconducting tunnel junctions (STJs) to produce and detect controllable nonthermal distributions of phonons from ∼ 90 to ∼ 870 GHz. This technique offers spectral resolution nearly 10 times better than a thermal conductance measurement. We compare measured phonon transmission rates to rates predicted by a Monte Carlo model of phonon trajectories, assuming that these trajectories are dominated by phonon-surface interactions and using the Ziman theory to predict phonon-surface scattering rates based on surface topology. Whereas theory predicts a diffuse surface scattering probability of less than 40%, our measurements are consistent with a 100% probability. Our nanosheets therefore exhibit the so-called "Casimir limit" at a much lower frequency than expected if the phonon scattering rates follow the Ziman theory for a 1 nm surface roughness. Such a result holds implications for thermal management in nanoscale electronics and the design of nanostructured thermoelectrics.
International Nuclear Information System (INIS)
Mehrali, Mohammad; Tahan Latibari, Sara; Mehrali, Mehdi; Mahlia, Teuku Meurah Indra; Cornelis Metselaar, Hendrik Simon
2014-01-01
Highlights: • Introducing novel form-stable PCM of stearic acid (SA)/carbon nanospheres (CNSs). • The highest stabilized SA content is 83 wt% in the SA/CNS composites. • Increasing thermal conductivity of composite phase change material with high amount of latent heat. - Abstract: Stearic acid (SA) is one of the main phase change materials (PCMs) for medium temperature thermal energy storage systems. In order to stabilize the shape and enhance the thermal conductivity of SA, the effects of adding carbon nanospheres (CNSs) as a carbon nanofiller were examined experimentally. The maximum mass fraction of SA retained in CNSs was found as 80 wt% without the leakage of SA in a melted state, even when it was heated over the melting point of SA. The dropping point test shows that there was clearly no liquid leakage through the phase change process at the operating temperature range of the composite PCMs. The thermal stability and thermal properties of composite PCMs were investigated with a thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC), respectively. The thermal conductivity of the SA/CNS composite was determined by the laser flash method. The thermal conductivity at 35 °C increased about 105% for the highest loading of CNS (50 wt%). The thermal cycling test proved that form-stable composite PCMs had good thermal reliability and chemical durability after 1000 cycles of melting and freezing, which is advantageous for latent heat thermal energy storage (LHTES)
Study of thermal, radiation and environmental effects on serpentine
International Nuclear Information System (INIS)
Raje, Naina; Kalekar, Bhupesh B.; Dubey, K.A.
2016-01-01
Physical and chemical properties of a material, such as particle size surface area, magnetic properties, water content, radiation and thermal stability, viscosity, porosity, are responsible for their specific applications. Serpentine is a greenish, layer structured phyllosilicate, known as magnesium hydroxy silicate. The availability of large number of hydroxyl group makes serpentine a potential candidate for nuclear shielding material. Hence present studies have been carried out to understand the stability of serpentine with the variation in thermal, radiation and environmental parameters. Serpentine samples were received from Reactor Projects Division, BARC. An accurately weighed sample was subjected to simultaneous TG - DTA - EGA measurements in air as well as inert atmosphere at the heating rate of 10 °C/min. The sample was heated from room temperature to 1000 °C with a gas flow rate of 100 mL/min in Netzsch thermal analyzer (Model STA409 PC LUXX) connected to Bruker FTIR system (Model - Tensor27) via a 1m long capillary. The sample was subjected to gamma radiation in the range of 10 - 100 kGy using 60 Co gamma source in gamma chamber and was subjected to TG measurements to understand the effect of radiation on the thermal stability of serpentine and the results are being discussed here
The effect of the ergodic divertor on electron thermal confinement
International Nuclear Information System (INIS)
Harris, G.R.; Capes, H.; Garbet, X.
1992-06-01
The thermal confinement within the confinement zone of Tore Supra ohmically heated deuterium plasmas bounded by the ergodic divertor (ED) configuration is studied in a 1 1/2D analysis of the local power balance. Although the edge electron temperature and mean electron density (n e ) are both on average halved with application of the ED, the mean electron thermal diffusivity χ e shows the same density dependence as exhibited by standard ohmic limiter discharges, i.e., an Alcator-like inverse dependence on (n e ) at low density and a saturation at high density. The ion thermal transport at low to medium densities in both limiter and ED discharges is between 10 to 20 times that predicted by neoclassical theory. Comparing ED and limiter plasmas of the same density, a strong plasma decontamination is observed, with a reduction, in Z eff by between 1.0 to 1.5. The effective decoupling of (n e ) and Z eff by the ED and the invariant behaviour of χ e imply that electron thermal transport is only weakly dependent on Z eff in ohmic Tore Supra discharges
Effect of pressure on thermal expansion of UNiGa
International Nuclear Information System (INIS)
Honda, F.; Andreev, A.V.; Havela, L.; Prokes, K.; Sechovsky, V.
1997-01-01
The thermal expansion of single crystalline UNiGa has been measured along the crystallographic axes (a and c) under pressures up to 1.1 GPa. The linear thermal expansion both in the paramagnetic and antiferromagnetic ranges is strongly anisotropic. The antiferromagnetic ordering is accompanied by considerable (10 -4 ) linear spontaneous magnetostrictions (along the a- and c-axis) of different signs (-0.8 x 10 -4 and 1.8 x 10 -4 ). The mutual compensation of these two effects causes the volume effect to be rather small (∝10 -5 ). Two of the four magnetic phase transitions in UNiGa indicated by the expansion anomalies under ambient pressure are suppressed by pressures above 0.5 GPa. Results of our experiments allow to construct a pressure-temperature (p-T) magnetic phase diagram. (orig.)
Pressure Effects on the Thermal De-NOx Process
DEFF Research Database (Denmark)
Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim
1996-01-01
effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model......The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...
Thermal Effects by Firing Oil Shale Fuel in CFB Boilers
Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.
It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.
Hard thermal loops, static response, and the composite effective action
International Nuclear Information System (INIS)
Jackiw, R.; Liu, Q.; Lucchesi, C.
1994-01-01
First, we investigate the static non-Abelian Kubo equation. We prove that it does not possess finite energy solutions; thereby we establish that gauge theories do not support hard thermal solitons. This general result is verified by a numerical solution of the equations. A similar argument shows that ''static'' instantons are absent. In addition, we note that the static equations reproduce the expected screening of the non-Abelian electric field by a gauge-invariant Debye mass m=gT √(N+N F /2)/3 . Second, we derive the non-Abelian Kubo equation from the composite effective action. This is achieved by showing that the requirement of stationarity of the composite effective action is equivalent, within a kinematical approximation scheme, to the condition of gauge invariance for the generating functional of hard thermal loops
International Nuclear Information System (INIS)
Wu, Wan-fan; Liu, Na; Cheng, Wen-long; Liu, Yi
2013-01-01
Highlights: ► A shape-stabilized PCM is used to protect the spacecraft attacked by high energy. ► Taking a satellite as example, it proves the solution given in the work is feasible. ► Low thermal conductivity makes the material above its thermal stability limit. ► It provides guidance on how to choose the shape-stabilized PCM for similar problems. - Abstract: In space, the emergencies such as short-term high heat flux is prone to cause spacecraft thermal control system faults, resulting in temperature anomalies of electronic equipment of the spacecraft and even failures in them. In order to protect the spacecraft attacked by the high energy, a new guard method is proposed. A shape-stabilized phase change material (PCM), which has high thermal conductivity and does not require being tightly packaged, is proposed to be used on the spacecraft. To prove the feasibility of using the material on spacecraft attacked by high energy, the thermal responses for spacecraft with shape-stabilized PCM are investigated in situations of normal and short-term high heat flux, in contrast to that with conventional thermal control system. The results indicate that the shape-stabilized PCM can effectively absorb the heat to prevent the thermal control system faults when the spacecraft’s outer heat flux changes dramatically and has no negative effect on spacecraft in normal heat flux. Additionally the effect of thermal conductivity of PCM on its application effectiveness is discussed
Radiation effects on thermal decomposition of inorganic solids
International Nuclear Information System (INIS)
Dedgaonkar, V.G.
1985-01-01
Radiation effects on the thermal decomposition characteristics of inorganic oxyanions like permanganates, nitrates, zeolites and particularly ammonium perchlorate (AP) have been highlighted.The last compound finds wide application as an oxidizer in solid rocket propellents and although several hundred papers have been published on it during the last 30-40 years, most of which from the point of view of understanding and controlling the decomposition behaviour, there are only a few reports available in this area following the radiation treatment. (author)
Thermal Effect of Pulsed Laser on Human Skin
N. C. Majumdar; V. K. Kochhar
1985-01-01
An attempt has been made to derive from theoretical considerations, some idea about safety limits of exposure with regard to radiant energy skin burns. This may be regarded as a preliminary enquiry in respect of thermal tissue damage by pulsed laser radiation, since the effects of isolated single pulses from ruby laser only have been considered. The study needs to be extended to other wavelengths as well as to trains of pulses.
The effects of thermal stimulation on clinical and experimental itch.
Fruhstorfer, H; Hermanns, M; Latzke, L
1986-02-01
In order to substantiate accidental observations on the influence of skin temperature on itch, and to elucidate a possible involvement of thermoreceptors in itch generation, the effects of thermostimulation on clinical and experimental itch were studied. Eighteen patients with atopic dermatitis rated the intensity of spontaneous itch on one of their forearms before, during, and after its immersion in a waterbath of either 10 degrees C or 45 degrees C. In 40 normal subjects itch was elicited by histamine topically applied to a 7 cm2 skin area of the volar forearm. Before and after histamine application thermal thresholds were recorded. Then the skin area was heated or cooled at a rate of 0.5 degrees C/sec and itch intensity was continuously rated. Cooling abolished itch in all patients and in most of the normal subjects. Heating produced less clear effects: in two-thirds of both patients and normal subjects itch disappeared or was reduced whereas in the others itch was aggravated. Usually after the end of thermostimulation the opposite changes in itch intensity occurred. In the normal subjects thermal thresholds were not significantly influenced by histamine. Over a certain temperature range itch and thermal sensations could coexist as separate modalities. The results indicate that changes in skin temperature have a marked influence on itch intensity. Whereas cooling seems to act directly on the sensory receptors mediating itch, warm stimuli could have a central inhibitory effect. A direct role of thermoreceptors in the generation of itch is improbable.
Thermal effects influencing measurements in a supersonic blowdown wind tunnel
Directory of Open Access Journals (Sweden)
Vuković Đorđe S.
2016-01-01
Full Text Available During a supersonic run of a blowdown wind tunnel, temperature of air in the test section drops which can affect planned measurements. Adverse thermal effects include variations of the Mach and Reynolds numbers, variation of airspeed, condensation of moisture on the model, change of characteristics of the instrumentation in the model, et cetera. Available data on thermal effects on instrumentation are pertaining primarily to long-run-duration wind tunnel facilities. In order to characterize such influences on instrumentation in the models, in short-run-duration blowdown wind tunnels, temperature measurements were made in the wing-panel-balance and main-balance spaces of two wind tunnel models tested in the T-38 wind tunnel. The measurements showed that model-interior temperature in a run increased at the beginning of the run, followed by a slower drop and, at the end of the run, by a large temperature drop. Panel-force balance was affected much more than the main balance. Ways of reducing the unwelcome thermal effects by instrumentation design and test planning are discussed.
The effects of local blowing perturbations on thermal turbulent structures
Liu, Can; Araya, Guillermo; Leonardi, Stefano; Castillo, Luciano
2013-11-01
Blowing is an active flow control technique with several industrial applications, particularly in film cooling of turbine blades. In the past, the effects of localized blowing have been mostly analyzed on the velocity field and its influence of the flow parameters and turbulence structures (Krogstad and Kourakine, 2000). However, little literature can be found on the effects of blowing on the coherent thermal structures. In the present study, an incompressible turbulent channel flow with given steady blowing at the wall is simulated via DNS by means of five spanwise holes. The Reynolds number based on the friction velocity and half channel height is approximately Re = 394 and the molecular Prandtl number is Pr = 0.71. Temperature is considered a passive scalar with isothermal conditions at the wall. Different blowing amplitudes and perturbing angles (with respect to the streamwise direction) are applied to find out their effects on the turbulent thermal structures by means of a two-point correlation analysis. In addition, local reduction and increase of drag are connected to vorticity. The corresponding influence of perturbing amplitudes and angles on the energy budget of thermal fluctuations and turbulent Prandtl numbers are also shown and discussed.
Effects of pressure on thermal transport in plutonium oxide powder
International Nuclear Information System (INIS)
Bielenberg, Patricia; Prenger, F. Coyne; Veirs, Douglas Kirk; Jones, Jerry
2004-01-01
Radial temperature profiles in plutonium oxide (PuO 2 ) powder were measured in a cylindrical vessel over a pressure range of 0.055 to 334.4 kPa with two different fill gases, helium and argon. The fine PuO 2 powder provides a very uniform self-heating medium amenable to relatively simple mathematical descriptions. At low pressures ( 2 powder has small particle sizes (on the order of 1 to 10 μm), random particle shapes, and high porosity so a more general model was required for this system. The model correctly predicts the temperature profiles of the powder over the wide pressure range for both argon and helium as fill gases. The effective thermal conductivity of the powder bed exhibits a pressure dependence at higher pressures because the pore sizes in the interparticle contact area are relatively small (less than 1 μm) and the Knudsen number remains above the continuum limit at these conditions for both fill gases. Also, the effective thermal conductivity with argon as a fill gas is higher than expected at higher pressures because the solid pathways account for over 80% of the effective powder conductivity. The results obtained from this model help to bring insight to the thermal conductivity of very fine ceramic powders with different fill gases.
Tuning the thermal conductance of molecular junctions with interference effects
Klöckner, J. C.; Cuevas, J. C.; Pauly, F.
2017-12-01
We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo(phenylene ethynylene) derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and, more generally, in nanostructured metal-organic hybrid systems, which are important to determine how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.
Simulation of global warming effect on outdoor thermal comfort conditions
Energy Technology Data Exchange (ETDEWEB)
Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy
2010-07-01
In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.
International Nuclear Information System (INIS)
Wu, Jianhua; Zhang, Hailong; Zhang, Yang; Li, Jianwei; Wang, Xitao
2012-01-01
Highlights: ► Al–Cu/diamond composites have been produced by a squeeze casting method. ► Cu alloying is an effective approach to promoting interface bonding between metal matrix and diamond. ► Alloying Cu to Al matrix improves thermal conductivity and reduces coefficient of thermal expansion of the composites. -- Abstract: Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10 −6 to 6 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al 2 Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.
Modifying the Casimir force between indium tin oxide film and Au sphere
Banishev, A. A.; Chang, C.-C.; Castillo-Garza, R.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.
2012-01-01
We present complete results of the experiment on measuring the Casimir force between an Au-coated sphere and an untreated or, alternatively, UV-treated indium tin oxide (ITO) film deposited on a quartz substrate. Measurements were performed using an atomic force microscope in a high vacuum chamber. The measurement system was calibrated electrostatically. Special analysis of the systematic deviations is performed, and respective corrections in the calibration parameters are introduced. The corrected parameters are free from anomalies discussed in the literature. The experimental data for the Casimir force from two measurement sets for both untreated and UV-treated samples are presented. The random, systematic, and total experimental errors are determined at a 95% confidence level. It is demonstrated that the UV treatment of an ITO plate results in a significant decrease in the magnitude of the Casimir force (from 21% to 35% depending on separation). However, ellipsometry measurements of the imaginary parts of dielectric permittivities of the untreated and UV-treated samples did not reveal any significant differences. The experimental data are compared with computations in the framework of the Lifshitz theory. It is found that the data for the untreated sample are in a very good agreement with theoretical results taking into account the free charge carriers in an ITO film. For the UV-treated sample the data exclude the theoretical results obtained with account of free charge carriers. These data are in very good agreement with computations disregarding the contribution of free carriers in the dielectric permittivity. According to the hypothetical explanation provided, this is caused by the phase transition of the ITO film from metallic to dielectric state caused by the UV treatment. Possible applications of the discovered phenomenon in nanotechnology are discussed.
Effective Thermal Conductivity of Graphite Materials with Cracks
Pestchaanyi, S. E.; Landman, I. S.
The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.
Pressure effects on thermal conductivity and expansion of geologic materials
International Nuclear Information System (INIS)
Sweet, J.N.
1979-02-01
Through analysis of existing data, an estimate is made of the effect of pressure or depth on the thermal conductivity and expansion of geologic materials which could be present in radioactive waste repositories. In the case of homogeneous dense materials, only small shifts are predicted to occur at depths less than or equal to 3 km, and these shifts will be insignificant as compared with those caused by temperature variations. As the porosity of the medium increases, the variation of conductivity and expansion with pressure becomes greater, with conductivity increasing and expansion decreasing as pressure increases. The pressure dependence of expansion can be found from data on the temperature variation of the isobaric compressibility. In a worst case estimate, a decrease in expansion of approx. 25% is predicted for 5% porous sandstone at a depth of 3 km. The thermal conductivity of a medium with gaseous inclusions increases as the porosity decreases, with the magnitude of the increase being dependent on the details of the porosity collapse. Based on analysis of existing data on tuff and sandstone, a weighted geometric mean formula is recommended for use in calculating the conductivity of porous rock. As a result of this study, it is recommended that measurement of rock porosity versus depth receive increased attention in exploration studies and that the effect of porosity on thermal conductivity and expansion should be examined in more detail
Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors
Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.
2016-02-01
We examine the conditions of validity for the Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic plane mirrors. As in the previously studied case of nonmagnetic materials [Guérout et al., Phys. Rev. E 90, 042125 (2014), 10.1103/PhysRevE.90.042125], we recover the usual expression for the lossy model of optical response, but not for the lossless plasma model. We also show that the modes associated with the Foucault currents play a crucial role in the limit of vanishing losses, in contrast to expectations.
Calculation of nonzero-temperature Casimir forces in the time domain
International Nuclear Information System (INIS)
Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.
2011-01-01
We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.
Thermal Stress Effect on Density Changes of Hemp Hurds Composites
Schwarzova, Ivana; Cigasova, Julia; Stevulova, Nadezda
2016-12-01
The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution) and physically (by ultrasonic procedure) treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.
Thermal effects in high average power optical parametric amplifiers.
Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas
2013-03-01
Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.
Mukherjee, Banibrata; Sen, Siddhartha
2018-04-01
This paper presents generalized closed form expressions for determining the dimension limit for the basic design parameters as well as the pull-in characteristics of a nanocantilever beam under the influences of van der Waals and Casimir forces. The coupled nonlinear electromechanical problem of electrostatic nanocantilever is formulated in nondimensional form with Galerkin’s approximation considering the effects of these intermolecular forces and fringe field. The resulting integrals and higher order polynomials are solved numerically to derive the closed form expressions for maximum permissible detachment length, minimum feasible gap spacing and critical pull-in limit. The derived expressions are compared and validated as well with several reported literature showing reasonable agreement. The major advantages of the proposed closed form expressions are that, they do not contain any complex mathematical term or operation unlike in reported literature and thus they will serve as convenient tools for the NEMS community in successful design of various electrostatically actuated nanosystems.
DEFF Research Database (Denmark)
Pu, Minhao; Chen, Yaohui; Yvind, Kresten
2014-01-01
Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....
Thermal analysis of the effect of thick thermal barrier coatings on diesel engine performance
International Nuclear Information System (INIS)
Hoag, K.L.; Frisch, S.R.; Yonushonis, T.M.
1986-01-01
The reduction of heat rejection from the diesel engine combustion chamber has been the subject of a great deal of focus in recent years. In the pursuit of this goal, Cummins Engine Company has received a contract from the Department of Energy for the development of thick thermal barrier coatings for combustion chamber surfaces. This contract involves the analysis of the impact of coatings on diesel engine performance, bench test evaluation of various coating designs, and single cylinder engine tests. The efforts reported in this paper center on the analysis of the effects of coatings on engine performance and heat rejection. For this analysis the conventional water cooled engine was compared with an engine having limited oil cooling, and utilizing zirocnia coated cylinder had firedecks and piston crowns. The analysis showed little or no benefits of similarly coating the valves or cylinder liner
Mirage effect from thermally modulated transparent carbon nanotube sheets.
Aliev, Ali E; Gartstein, Yuri N; Baughman, Ray H
2011-10-28
The single-beam mirage effect, also known as photothermal deflection, is studied using a free-standing, highly aligned carbon nanotube aerogel sheet as the heat source. The extremely low thermal capacitance and high heat transfer ability of these transparent forest-drawn carbon nanotube sheets enables high frequency modulation of sheet temperature over an enormous temperature range, thereby providing a sharp, rapidly changing gradient of refractive index in the surrounding liquid or gas. The advantages of temperature modulation using carbon nanotube sheets are multiple: in inert gases the temperature can reach > 2500 K; the obtained frequency range for photothermal modulation is ~100 kHz in gases and over 100 Hz in high refractive index liquids; and the heat source is transparent for optical and acoustical waves. Unlike for conventional heat sources for photothermal deflection, the intensity and phase of the thermally modulated beam component linearly depends upon the beam-to-sheet separation over a wide range of distances. This aspect enables convenient measurements of accurate values for thermal diffusivity and the temperature dependence of refractive index for both liquids and gases. The remarkable performance of nanotube sheets suggests possible applications as photo-deflectors and for switchable invisibility cloaks, and provides useful insights into their use as thermoacoustic projectors and sonar. Visibility cloaking is demonstrated in a liquid.
Thermal Response of Cooled Silicon Nitride Plate Due to Thermal Conductivity Effects Analyzed
Baaklini, George Y.; Abdul-Aziz, Ali; Bhatt, Ramakrishna
2003-01-01
Lightweight, strong, tough high-temperature materials are required to complement efficiency improvements for next-generation gas turbine engines that can operate with minimum cooling. Because of their low density, high-temperature strength, and high thermal conductivity, ceramics are being investigated as materials to replace the nickelbase superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass (ref. 1). To complement the effectiveness of the ceramics and their applicability for turbine engine applications, a parametric study using the finite element method is being carried out. The NASA Glenn Research Center remains very active in conducting and supporting a variety of research activities related to ceramic matrix composites through both experimental and analytical efforts (ref. 1). The objectives of this work are to develop manufacturing technology, develop a thermal and environmental barrier coating (TBC/EBC), develop an analytical modeling capability to predict thermomechanical stresses, and perform a minimal burner rig test on silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Moreover, we intend to generate a detailed database of the material s property characteristics and their effects on structural response. We expect to offer a wide range of data since the modeling will account for other variables, such as cooling channel geometry and spacing. Comprehensive analyses have begun on a plate specimen with Si3N4 cooling holes.
International Nuclear Information System (INIS)
Muthukkannan, N.; Murugesan, A.G.
2002-01-01
Metabolic activities of thermophilic microorganisms isolated from the thermal water discharge point at Tuticorin thermal power station were studied by growing the microorganisms in sterile medium and at various temperature regimes of 25, 35, 45, 55 and 65degC. The optimum temperature for the growth of the bacterium isolated from the thermal power plant station was 45 degC and beyond 65 degC the growth was gradually decreased. The bacteria isolated from open sea water were mesophiles with their growth optimum at 35 degC and microbes inhabiting the thermal discharge area were thermopiles as they were tolerant even at 55 degC. The amylase production, carbohydrate metabolism and lactose fermentation activities were optimum at 45 degC. At 25 degC and beyond 65 degC biochemical activities of the organisms were inhibited to a greater extent. (author)
Thermal processing of EVA encapsulants and effects of formulation additives
Energy Technology Data Exchange (ETDEWEB)
Pern, F.J.; Glick, S.H. [National Renewable Energy Lab., Golden, CO (United States)
1996-05-01
The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.
International Nuclear Information System (INIS)
Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, J. D.; Johnson, Steven G.; Iannuzzi, Davide
2007-01-01
We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit fast methods developed for classical computational electromagnetism, since it only involves repeated evaluation of the Green's function for imaginary frequencies (equivalently, real frequencies in imaginary time). We develop the approach by systematically examining various formulations of Casimir forces from the previous decades and evaluating them according to their suitability for numerical computation. We illustrate our approach with a simple finite-difference frequency-domain implementation, test it for known geometries such as a cylinder and a plate, and apply it to new geometries. In particular, we show that a pistonlike geometry of two squares sliding between metal walls, in both two and three dimensions with both perfect and realistic metallic materials, exhibits a surprising nonmonotonic ''lateral'' force from the walls
International Nuclear Information System (INIS)
Høye, J S; I Brevik; Milton, K A
2015-01-01
Casimir friction between a polarizable particle and a semi-infinite space is a delicate physical phenomenon, as it concerns the interaction between a microscopic quantum particle and a semi-infinite reservoir. Not unexpectedly, results obtained in the past about the friction force obtained via different routes are sometimes, at least apparently, wildly different from each other. Recently, we considered the Casimir friction force for two dielectric semi-infinite plates moving parallel to each other Høye and Brevik (2014 Eur. Phys. J. D 68 61), and managed to get essential agreement with results obtained by Pendry (1997 J. Phys.: Condens. Matter 9 10301), Volokitin and Persson (2007 Rev. Mod. Phys. 79 1291), and Barton (2011 New J. Phys. 13 043023; 2011 J. Phys.: Condens. Matter 23 335004). Our method was based upon use of the Kubo formalism. In the present paper we focus on the interaction between a polarizable particle and a dielectric half-space again, and calculate the friction force using the same basic method as before. The new ingredient in the present analysis is that we take into account radiative damping, and derive the modifications thereof. Some comparisons are also made with works from others. Essential agreement with the results of Intravaia, Behunin, and Dalvit can also be achieved using the modification of the atomic polarizability by the metallic plate. (paper)
International Nuclear Information System (INIS)
Ichinose, Shoichi
2010-01-01
A geometric approach to general quantum statistical systems (including the harmonic oscillator) is presented. It is applied to Casimir energy and the dissipative system with friction. We regard the (N+1)-dimensional Euclidean coordinate system (X i ,τ) as the quantum statistical system of N quantum (statistical) variables (X τ ) and one Euclidean time variable (t). Introducing paths (lines or hypersurfaces) in this space (X τ ,t), we adopt the path-integral method to quantize the mechanical system. This is a new view of (statistical) quantization of the mechanical system. The system Hamiltonian appears as the area. We show quantization is realized by the minimal area principle in the present geometric approach. When we take a line as the path, the path-integral expressions of the free energy are shown to be the ordinary ones (such as N harmonic oscillators) or their simple variation. When we take a hyper-surface as the path, the system Hamiltonian is given by the area of the hyper-surface which is defined as a closed-string configuration in the bulk space. In this case, the system becomes a O(N) non-linear model. We show the recently-proposed 5 dimensional Casimir energy (ArXiv:0801.3064,0812.1263) is valid. We apply this approach to the visco-elastic system, and present a new method using the path-integral for the calculation of the dissipative properties.
International Nuclear Information System (INIS)
Kim, W J; Brown-Hayes, M; Brownell, J H; Dalvit, D A R; Onofrio, R
2009-01-01
We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 μm separation range. The measurements are obtained by performing electrostatic calibrations followed by a residuals analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrization-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.
A microscopic approach to Casimir and Casimir–Polder forces between metallic bodies
International Nuclear Information System (INIS)
Barcellona, Pablo; Passante, Roberto
2015-01-01
We consider the Casimir–Polder interaction energy between a metallic nanoparticle and a metallic plate, as well as the Casimir interaction energy between two macroscopic metal plates, in terms of the many-body dispersion interactions between their constituents. Expressions for two- and three-body dispersion interactions between the microscopic parts of a real metal are first obtained, both in the retarded and non-retarded limits. These expressions are then used to evaluate the overall two- and three-body contributions to the macroscopic Casimir–Polder and Casimir force, and to compare them with each other, for the two following geometries: metal nanoparticle/half-space and half-space/half-space, where all the materials are assumed perfect conductors. The above evaluation is obtained by summing up the contributions from the microscopic constituents of the bodies (metal nanoparticles). In the case of nanoparticle/half-space, our results fully agree with those that can be extracted from the corresponding macroscopic results, and explicitly show the non-applicability of the pairwise approximation for the geometry considered. In both cases, we find that, while the overall two-body contribution yields an attractive force, the overall three-body contribution is repulsive. Also, they turn out to be of the same order, consistently with the known non applicability of the pairwise approximation. The issue of the rapidity of convergence of the many-body expansion is also briefly discussed
Effect of plastic deformation on the niobium thermal expansion
International Nuclear Information System (INIS)
Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.
1978-01-01
Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening
Effect of Galleries on Thermal Conditions of Urban Open Areas
Directory of Open Access Journals (Sweden)
Shahab Kariminia
2016-06-01
Full Text Available Computer simulations were performed by ENVI-met model along with physical measurements in two urban squares under hot summer conditions in Isfahan, central Iran. Each scenario concentrated on adding or extending galleries in each square. The results confirmed the role of galleries on thermal conditions; however, it was found that the effectiveness of this strategy depends on the square geometry. It presented higher efficiency for the small square with higher H/W ratio. This solution is advisable for smaller squares and when the peripheral parts are frequently used compared to the middle areas. Galleries are most efficient when allowing enough natural ventilation.
Effect of nanofluids on thermal performance of heat pipes
Ferizaj, Drilon; Kassem, Mohamad
2014-01-01
A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat pipes are effective heat transfer devices in which the nanofluid operates in the two phases, evaporation and condensation. The heat pipe transfers the heat supplied in e.g. a laptop, from the evaporator to condenser part. Nanofluids are mixtures consisting of nanoparticles (e.g. nano-sized silver particles) and a base fluid (e.g. water). The aim of this bache...
Effects of simulated nuclear thermal pulses on fiber optic cables
International Nuclear Information System (INIS)
Baba, A.J.; Share, S.; Wasilik, J.H.
1979-01-01
The effects of pulsed thermal radiation on fiber optic cables with a variety of jackets (polyurethane, PVC, fluorocarbon) are presented. Exposure between 27 and 85 cal/cm 2 did not sever the optical fibers, but the radiation did cause disintegration of the jackets and the Kevlar strength members, which resulted in a significant reduction of the cable's ability to survive mechanical stress. Hardening techniques are discussed. The addition of low absorptance materials (white Teflon tape and aluminum foil) under clear or white Teflon jackets prevented some types of cables from being affected at fluences up to 110 cal/cm 2
Casimir energies in M4≥/sup N/ for even N. Green's-function and zeta-function techniques
International Nuclear Information System (INIS)
Kantowski, R.; Milton, K.A.
1987-01-01
The Green's-function technique developed in the first paper in this series is generalized to apply to massive scalar, vector, second-order tensor, and Dirac spinor fields, as a preliminary to a full graviton calculation. The Casimir energies are of the form u/sub Casimir/ = (1/a 4 )[α/sub N/lna/b)+β/sub N/], where N (even) is the dimension of the internal sphere, a is its radius, and b/sup -1/ is an ultraviolet cutoff (presumably at the Planck scale). The coefficient of the divergent logarithm, α/sub N/, is unambiguously obtained for each field considered. The Green's-function technique gives rise to no difficulties in the evaluation of imaginary-mass-mode contributions to the Casimir energy. In addition, a new, simplified zeta-function technique is presented which is very easily implemented by symbolic programs, and which, of course, gives the same results. An error in a previous zeta-function calculation of the Casimir energy for even N is pointed out
International Nuclear Information System (INIS)
Ton-That, Tuong
2005-01-01
In a previous paper we gave a generalization of the notion of Casimir invariant differential operators for the infinite-dimensional Lie groups GL ∞ (C) (or equivalently, for its Lie algebra gj ∞ (C)). In this paper we give a generalization of the Casimir invariant differential operators for a class of infinite-dimensional Lie groups (or equivalently, for their Lie algebras) which contains the infinite-dimensional complex classical groups. These infinite-dimensional Lie groups, and their Lie algebras, are inductive limits of finite-dimensional Lie groups, and their Lie algebras, with some additional properties. These groups or their Lie algebras act via the generalized adjoint representations on projective limits of certain chains of vector spaces of universal enveloping algebras. Then the generalized Casimir operators are the invariants of the generalized adjoint representations. In order to be able to explicitly compute the Casimir operators one needs a basis for the universal enveloping algebra of a Lie algebra. The Poincare-Birkhoff-Witt (PBW) theorem gives an explicit construction of such a basis. Thus in the first part of this paper we give a generalization of the PBW theorem for inductive limits of Lie algebras. In the last part of this paper a generalization of the very important theorem in representation theory, namely the Chevalley-Racah theorem, is also discussed
Palasantzas, George
2007-01-01
In this work, we investigate the combined influence of electromagnetic and acoustic Casimir forces on the pull-in voltage of microswitches with self-affine rough plates. It is shown that for plate separations within the micron range the acoustic term arising from pressure fluctuations can influence
Ion thermal and dispersion effects in Farley-Buneman instabilities
International Nuclear Information System (INIS)
Litt, S. K.; Smolyakov, A. I.; Hassan, E.; Horton, W.
2015-01-01
Farley-Buneman modes are an example of the collisional instability, which is thought to be the dominant mechanism for the irregularities in low ionosphere region. Despite high collisionality due to electron-neutral and ion-neutral collisions, the kinetic effects associated with finite temperature are important for determination of the mode frequencies and growth rate. This is especially important for ion component that is largely unmagnetized due to low ion cyclotron frequency. The ion thermal effects are strongly pronounced for shorter wavelengths and are crucial for the growth rate cut-off at high wavenumbers. We develop an extended fluid model for ion dynamics to incorporate the effects of ion thermal motion. The model is based on the extended MHD model that includes the evolution equations for higher order moments such as ion viscosity and ion heat flux. We also develop the generalized Chapman-Enskog closure model that provides exact linear closures based on the linearized kinetic equation. The results of these models are compared and tested against the linear kinetic model. The dispersion of Farley-Buneman modes and growth rate behavior are investigated in the short wavelength region
Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects
Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali
2018-04-01
In this article, an analytical approach is developed to study the effects of thermal loading on the wave propagation characteristics of an embedded functionally graded (FG) nanoplate based on refined four-variable plate theory. The heat conduction equation is solved to derive the nonlinear temperature distribution across the thickness. Temperature-dependent material properties of nanoplate are graded using Mori-Tanaka model. The nonlocal elasticity theory of Eringen is introduced to consider small-scale effects. The governing equations are derived by the means of Hamilton's principle. Obtained frequencies are validated with those of previously published works. Effects of different parameters such as temperature distribution, foundation parameters, nonlocal parameter, and gradient index on the wave propagation response of size-dependent FG nanoplates have been investigated.
Thermal gradient effects on the oxidation of Zircaloy fuel cladding
International Nuclear Information System (INIS)
Klein, A.C.; Reyes, J.N. Jr.; Maguire, M.A.
1990-01-01
A Thermal Gradient Test Facility (TGTF) has been designed and constructed to measure the thermal gradient effect on pressurized water reactor (PWR) fuel rod cladding. The TGTF includes a heat flux simulator assembly capable of producing a wide range of PWR operating conditions including water flow velocities and temperatures, water chemistry conditions, cladding temperatures, and heat fluxes ranging to 160 W/cm 2 . It is fully instrumented including a large number of thermocouples both inside the water flow channel and inside the cladding. Two test programs are in progress. First, cladding specimens are pre-oxidized in air at 500 deg. C and in 400 deg. C steam for various lengths of time to develop a range of uniform oxide thicknesses from 1 to 60 micrometers. The pre-oxidized specimens are placed in the TGTF to characterize the oxide thermal conductivity under a variety of water flow and heat flux conditions. Second, to overcome the long exposure times required under typical PWR conditions a series of tests with the addition of high concentrations of lithium hydroxide to the water are being considered. Static autoclave tests have been conducted with lithium hydroxide concentrations ranging from 0 to 2 moles per liter at 300, 330, and 360 deg. C for up to 36 hours. Results for zircaloy-4 show a considerable increase in the weight gain for the exposed samples with oxidation rate enhancement factors as high as 70 times that of pure water. Operation of the TGTF with elevated lithium hydroxide levels will yield real-time information concerning the effects of a heat flux on the oxidation kinetics of zircaloy fuel rod cladding. (author). 5 refs, 5 figs, 2 tabs
The Adaptive Thermal Comfort model may not always predict thermal effects on performance
DEFF Research Database (Denmark)
Wyon, David Peter; Wargocki, Pawel
2014-01-01
A letter to the editor is presented in response to the article "Progress in thermal comfort research over the last twenty years," by R.J. de Dear and colleagues.......A letter to the editor is presented in response to the article "Progress in thermal comfort research over the last twenty years," by R.J. de Dear and colleagues....
Pressure effects on the thermal stability of silicon carbide fibers
Jaskowiak, Martha H.; Dicarlo, James A.
1989-01-01
Commercially available polymer derived SiC fibers were treated at temperatures from 1000 to 2200 C in vacuum and argon gas pressure of 1 and 1360 atm. Effects of gas pressure on the thermal stability of the fibers were determined through property comparison between the pressure treated fibers and vacuum treated fibers. Investigation of the thermal stability included studies of the fiber microstructure, weight loss, grain growth, and tensile strength. The 1360 atm argon gas treatment was found to shift the onset of fiber weight loss from 1200 to above 1500 C. Grain growth and tensile strength degradation were correlated with weight loss and were thus also inhibited by high pressure treatments. Additional heat treatment in 1 atm argon of the fibers initially treated at 1360 atm argon caused further weight loss and tensile strength degradation, thus indicating that high pressure inert gas conditions would be effective only in delaying fiber strength degradation. However, if the high gas pressure could be maintained throughout composite fabrication, then the composites could be processed at higher temperatures.
Thermal effects of condensing water have remained local
International Nuclear Information System (INIS)
Ilus, E.
1997-01-01
General eutrophication of the Gulf of Finland has played a major role in the biological changes that have taken place in the sea area off Loviisa nuclear power plant. The quantities of plant nutrients in the water are now 1.5 to 2 times greater than 20 years ago. Changes attributable to the thermal effects of the power plant's cooling waters have been relatively small, and they have been restricted to the immediate surroundings of the discharge area. The most distinct environmental effects have been discovered in the temperatures of sea water, in ice conditions and in water currents within the discharge area of cooling water. The most visible biological change that has a direct link to the thermal load resulting from the power plant is the more abundant aquatic flora near the discharge point of cooling water on the southwestern shores of the Haestholmsfjaerden. Similar growth of aquatic flora has also been discovered near the discharge outlet of Olkiluoto plant, although the nutrient contents of water there are only half of the values measured in the Loviisa area. Regular radiation monitoring of the areas surrounding the nuclear power plants began before the start up of the plants. The contents of radioactive substances discovered have been small and in agreement with the release data given by the power companies. (orig.)
International Nuclear Information System (INIS)
Nguyen, Ba Nghiep; Henager, Charles H.
2013-01-01
SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby–Mori–Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al. [J. Nucl. Mater. 307–311 (2002) 1120–1125, Fusion Sci. Technol. 45 (2004) 583–591, Compos. Sci. Technol. 62 (2002) 1127–1139.
The Effect of Internal Leakages on Thermal Performance in NPPs
International Nuclear Information System (INIS)
Heo, Gyun Young; Kim, Doo Won; Jang, Seok Bo
2007-01-01
Since the Balance Of Plant (BOP, limited to a turbine cycle in this study) does not contain radioactive material, regulatory authorities did not need to have concerns on it. As the interests on safety and performance is getting more serious and extensive, controlling the level of safety and performance of a BOP have just begun or is about to begin. The performance standards or ageing management programs of the major equipment in a BOP is being developed. The regulatory requirements for tests and/or maintenance are being actively built up. There is also a probabilistic approach quantifying performance of a BOP. The study on quantifying the rate of unanticipated shutdowns caused by careless maintenance and/or tests conducted in a BOP is going on. In this study, the modeling of the entire BOP and the methodologies of thermal performance analysis should be one of the must-have items as well. This study was achieved to ensure fundamental skills related to 1) the detailed steady-state modeling of a BOP and 2) thermal performance analysis under various conditions. Particularly, the paper will focus on the effect of internal leakages inside the valves and FeedWater Heaters (FWHs). The internal leakage is regarded as the flow movement through the isolated path but remaining inside the system boundary of a BOP. For instance, the leakage from one side of a valve seat to the other side, or the leakage through the cracked tubes or tube-sheets in a heat exchanger correspond to internal leakages. We made a BOP model of OPR1000 and investigated thermal performance under the internal leakage in Turbine Bypass Condenser Dump Valves (TBCDV) and FWHs
Effective thermal neutron absorption cross section for heterogeneous mixture
International Nuclear Information System (INIS)
Gabanska, B.; Igielski, A.; Krynicka-Drozdowicz, E.; Woznicka, U.
1989-01-01
The first estimations (basing on Umiastowski's theory) of the influence of the sample heterogeneity of the effective thermal neutron absorption cross section were compared with the results obtained for the homogeneous mixture which components and concentration were the same as those of the heterogeneous sample. An experiment was prepared to determine how good this estimate is. Three artificial heterogeneous cylindrical samples (2R = H = 9 cm) were manufactured from pure silver cylinders embedded in plexiglass, keeping the Ag content and varying the size of cylinders (2R = H = 1.0 cm, 0.6 cm and 0.4 cm). Calculations performed show that the experimental effect of the sample heterogeneity can be significant. 5 figs., 5 tabs, 11 refs. (author)
Thermally activated dislocation motion including inertial effects in solid solutions
International Nuclear Information System (INIS)
Isaac, R.D.
1977-01-01
Dislocation motion through an array of obstacles is considered in terms of the potential energy of the dislocation as it moves through the array. The obstacles form a series of potential wells and barriers which can trap the dislocations. The effect of thermal fluctuations and of a viscous drag on the motion of the dislocation is investigated by analogy with Brownian motion in a field of force. The rate of escape of a trapped dislocation is found to depend on the damping coefficient only for a large viscous drag. The probability that a dislocation will be trapped by a well or barrier is found to depend on the damping coefficient for a small viscous drag. This inertial effect determines how far a dislocation will travel after breaking away from an obstacle
Thermal Conductivity of Nanotubes: Effects of Chirality and Isotope Impurity
Gang, Zhang; Li, Baowen
2005-01-01
We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for t...
Browning, J.; Daoud, A.; Meredith, P. G.; Mitchell, T. M.
2017-12-01
Volcanic and geothermal systems are in part controlled by the mechanical and thermal stresses acting on them and so it is important to understand the response of volcanic rocks to thermo-mechanical loading. One such response is the well-known `Kaiser stress-memory' effect observed under cyclic mechanical loading. By contrast, the presence of an analogous `Kaiser temperature-memory effect' during cyclic thermal loading has received little attention. We have therefore explored the possibility of a Kaiser temperature-memory effect using three igneous rocks of different composition, grain size and origin; Slaufrudalur Granophyre (SGP), Nea Kameni Andesite (NKA) and Seljadalur Basalt (SB). We present results from a series of thermal stressing experiments in which acoustic emissions (AE) were recorded contemporaneously with changing temperature. Samples of each rock were subjected to both a single heating and cooling cycle to a maximum temperature of 900 °C and multiple heating/cooling cycles to peak temperatures of 350°C, 500°C, 700°C and 900 °C (all at a constant rate of 1°C/min on heating and a natural cooling rate of memory effect in SGP, but not in either NKA and SB. We further find that the vast majority of thermal crack damage is generated upon cooling in the finer grained materials (NKA and SB), but that substantial thermal crack damage is generated during heating in the coarser grained SGP. The total amount of crack damage generated due to heating or cooling is dependent on the mineral composition and, most importantly, the grain size and arrangement, as well as the maximum temperature to which the rock is exposed. Knowledge of thermal stress history and the presence of a Kaiser temperature-memory effect is potentially important in understanding magma chamber dynamics, where the cyclic nature of mechanical and thermal inflation and deflation can lead to sequential accumulation of damage, potentially leading to critical rupture.
Thermal Coatings Seminar Series Training Part 2: Environmental Effects
Triolo, Jack
2015-01-01
This course will present an overview of a variety of thermal coatings-related topics, including: coating types and availability, thermal properties measurements, environmental testing (lab and in-flight), environmental impacts, contamination impacts, contamination liabilities, determination of BOLEOL values, and what does specularity mean to the thermal engineer.
Boron nitride elastic and thermal properties. Irradiation effects
International Nuclear Information System (INIS)
Jager, Bernard.
1977-01-01
The anisotropy of boron nitride (BN) and especially thermal and elastic properties were studied. Specific heat and thermal conductivity between 1.2 and 300K, thermal conductivity between 4 and 350K and elastic constants C 33 and C 44 were measured. BN was irradiated with electrons at 77K and with neutrons at 27K to determine properties after irradiation [fr
Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance
Energy Technology Data Exchange (ETDEWEB)
Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)
2013-07-01
The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.
Effect of thermal stresses on the mechanism of tooth pain.
Oskui, Iman Z; Ashtiani, Mohammed N; Hashemi, Ata; Jafarzadeh, Hamid
2014-11-01
Daily hot and cold thermal loadings on teeth may result in structural deformation, mechanical stress, and pain signaling. The aim of this study was to compare the adverse effects of hot and cold beverages on an intact tooth and, then, to provide physical evidence to support the hydrodynamic theory of tooth pain sensation mechanism. Three-dimensional finite element analysis was performed on a premolar model subjected to hot and cold thermal loadings. Elapsed times for heat diffusion and stress detection at the pulp-dentin junction were calculated as measures of the pain sensation. Extreme tensile stress within the enamel resulted in damage in cold loadings. Also, extreme values of stress at the pulpal wall occurred 21.6 seconds earlier than extreme temperatures in hot and cold loadings. The intact tooth was remarkably vulnerable to cold loading. Earlier changes in mechanical stress rather than temperature at the pulp-dentin junction indicate that the dental pain caused by hot or cold beverages may be based on the hydrodynamic theory. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Effect of germination and thermal treatments on folates in rye.
Kariluoto, Susanna; Liukkonen, Kirsi-Helena; Myllymäki, Olavi; Vahteristo, Liisa; Kaukovirta-Norja, Anu; Piironen, Vieno
2006-12-13
Effects of germination conditions and thermal processes on folate contents of rye were investigated. Total folate contents were determined microbiologically with Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism, and individual folates were determined by high-performance liquid chromatography after affinity chromatographic purification. Germination increased the folate content by 1.7-3.8-fold, depending on germination temperature, with a maximum content of 250 micro g/100 g dry matter. Hypocotylar roots with their notably high folate concentrations (600-1180 micro g/100 g dry matter) contributed 30-50% of the folate contents of germinated grains. Germination altered the proportions of folates, increasing the proportion of 5-methyltetrahydrofolate and decreasing the proportion of formylated folate compounds. Thermal treatments (extrusion, autoclaving and puffing, and IR and toasting) resulted in significant folate losses. However, folate levels in grains that were germinated and then were heat processed were higher than for native (nongerminated) grains. Opportunities to optimize rye processing to enhance folate levels in rye-based foods are discussed.
Thermal stability of the krypton Hall effect thruster
Directory of Open Access Journals (Sweden)
Szelecka Agnieszka
2017-03-01
Full Text Available The Krypton Large IMpulse Thruster (KLIMT ESA/PECS project, which has been implemented in the Institute of Plasma Physics and Laser Microfusion (IPPLM and now is approaching its final phase, was aimed at incremental development of a ~500 W class Hall effect thruster (HET. Xenon, predominantly used as a propellant in the state-of-the-art HETs, is extremely expensive. Krypton has been considered as a cheaper alternative since more than fifteen years; however, to the best knowledge of the authors, there has not been a HET model especially designed for this noble gas. To address this issue, KLIMT has been geared towards operation primarily with krypton. During the project, three subsequent prototype versions of the thruster were designed, manufactured and tested, aimed at gradual improvement of each next exemplar. In the current paper, the heat loads in new engine have been discussed. It has been shown that thermal equilibrium of the thruster is gained within the safety limits of the materials used. Extensive testing with both gases was performed to compare KLIMT’s thermal behaviour when supplied with krypton and xenon propellants.
Thermal Stress Effect on Density Changes of Hemp Hurds Composites
Directory of Open Access Journals (Sweden)
Schwarzova Ivana
2016-12-01
Full Text Available The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution and physically (by ultrasonic procedure treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.
Effect of the environmental stimuli upon the human body in winter outdoor thermal environment
DEFF Research Database (Denmark)
Sakoi, Tomonori; Kondo, Emi; Ishii, Jin
2013-01-01
the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses...... of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation....... The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect...
Effect of wind speed on human thermal sensation and thermal comfort
Hou, Yuhan
2018-06-01
In this experiment, a method of questionnaire survey was adopted. By changing the air flow rate under the indoor and outdoor natural conditions, the subjective Thermal Sensation Vote (TSV) and the Thermal Comfort Vote (TCV) were recorded. The draft sensation can reduce the thermal sensation, but the draft sensation can cause discomfort, and the thermal comfort in a windy environment is lower than in a windless environment. When the temperature rises or the level of human metabolism increases, the person feels heat, the demand for draft sensation increases, and the uncomfortable feeling caused by the draft sensation may be reduced. Increasing the air flow within a certain range can be used to compensate for the increase in temperature.
Fermions on the low-buckled honey-comb structured lattice plane and classical Casimir-Polder force
Goswami, Partha
2016-05-01
We start with the well-known expression for the vacuum polarization and suitably modify it for 2+1-dimensional spin-orbit coupled (SOC) fermions on the low-buckled honey-comb structured lattice plane described by the low-energy Liu-Yao-Feng-Ezawa (LYFE) model Hamiltonian involving the Dirac matrices in the chiral representation obeying the Clifford algebra. The silicene and germanene fit this description suitably. They have the Dirac cones similar to those of graphene and SOC is much stronger. The system could be normal or ferromagnetic in nature. The silicene turns into the latter type if there is exchange field arising due to the proximity coupling to a ferromagnet (FM) such as depositing Fe atoms to the silicene surface. For the silicene, we find that the many-body effects considerably change the bare Coulomb potential by way of the dependence of the Coulomb propagator on the real-spin, iso-spin and the potential due to an electric field applied perpendicular to the silicene plane. The computation aspect of the Casimir-Polder force (CPF) needs to be investigated in this paper. An important quantity in this process is the dielectric response function (DRF) of the material. The plasmon branch was obtained by finding the zeros of DRF in the long-wavelength limit. This leads to the plasmon frequencies. We find that the collective charge excitations at zero doping, i.e., intrinsic plasmons, in this system, are absent in the Dirac limit. The valley-spin-split intrinsic plasmons, however, come into being in the case of the massive Dirac particles with characteristic frequency close to 10 THz. Our scheme to calculate the Casimir-Polder interaction (CPI) of a micro-particle with a sheet involves replacing the dielectric constant of the sample in the CPI expression obtained on the basis of the Lifshitz theory by the static DRF obtained using the expressions for the polarization function we started with. Though the approach replaces a macroscopic constant by a microscopic
NOUR. Daylighting and thermal effects of windows in desert houses
Energy Technology Data Exchange (ETDEWEB)
Ouahrani, Djamel
1999-07-01
This study is on a combined effect of window, the daylighting and the thermal effects, in desert houses. It is comprised of two complementary studies. In the introduction a historical review on the development of using daylight has been carried out in order to place the case study in a historical perspective. The first study is comprehensive and contains two main parts. In the first part a study was carried out on the people and history of the town of Ghardaia in Southern Algeria. This was done in order to understand the architectural form of that region. The second part is experimental and consists of two field studies carried out in Ghardaia. Their aim was to investigate the influence of daylight and temperature on the use of residential houses. This investigation included both traditional and 'modern' houses, the modern having relatively large windows similar to those of the northern part of Algeria, the traditional ones having small or no windows. The second study is also experimental consisting of computer parametric studies on window design from two standpoints, namely daylighting level and thermal effects of windows in desert houses. A typical traditional house is described as it was observed. Then the recorded light values are presented and commented upon. In the second part, three types of modern houses observed in the field studies are presented and compared to the traditional archetype. The comparison especially dwells on the relative effectiveness of the two systems of daylighting. In the third part, focusing on various issues of lighting, the results of interviews with the inhabitants are presented. The historical studies indicate that the process of housing development, in several respects, has reached a certain quality (social, technology, and adaptation to climate) appropriate to the local original context, but that development has slowed down. The results of the lighting study indicate that the use of more windows in modern houses
NOUR. Daylighting and thermal effects of windows in desert houses
Energy Technology Data Exchange (ETDEWEB)
Ouahrani, Djamel
1999-07-01
This study is on a combined effect of window, the daylighting and the thermal effects, in desert houses. It is comprised of two complementary studies. In the introduction a historical review on the development of using daylight has been carried out in order to place the case study in a historical perspective. The first study is comprehensive and contains two main parts. In the first part a study was carried out on the people and history of the town of Ghardaia in Southern Algeria. This was done in order to understand the architectural form of that region. The second part is experimental and consists of two field studies carried out in Ghardaia. Their aim was to investigate the influence of daylight and temperature on the use of residential houses. This investigation included both traditional and 'modern' houses, the modern having relatively large windows similar to those of the northern part of Algeria, the traditional ones having small or no windows. The second study is also experimental consisting of computer parametric studies on window design from two standpoints, namely daylighting level and thermal effects of windows in desert houses. A typical traditional house is described as it was observed. Then the recorded light values are presented and commented upon. In the second part, three types of modern houses observed in the field studies are presented and compared to the traditional archetype. The comparison especially dwells on the relative effectiveness of the two systems of daylighting. In the third part, focusing on various issues of lighting, the results of interviews with the inhabitants are presented. The historical studies indicate that the process of housing development, in several respects, has reached a certain quality (social, technology, and adaptation to climate) appropriate to the local original context, but that development has slowed down. The results of the lighting study indicate that the use of more windows in modern houses constitutes a
Effects of Particle Size and Shape on U-Mo/Al Thermal Conductivity
Energy Technology Data Exchange (ETDEWEB)
Cho, Tae-Won; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2014-10-15
The thermal conductivity of atomized U-Mo/Al dispersion fuels was measured only by Lee et al. by laser-flash and differential scanning calorimetry (DSC) methods. For the U-Mo particles, they are deformed during manufacturing process such as hot rolling and during irradiation by the creep deformation. Fricke developed a model for the effective thermal conductivity of a dilute suspension of randomly oriented spheroidal particles. In general, the thermal conductivity of composite increase when the particle shape is not sphere. This model is also based on continuum theory which assumes both temperature and heat flux are continuous across the interface. Kapitza, however, showed that there is a discontinuity in temperature across the interface at metal/liquid helium interface. In general, the discontinuity is from the thermal resistance at the interface. If the thermal resistance has a significant impact on the thermal conductivity, particle size is one of the essential parameter for determining the effective thermal conductivity of composite materials. Every, et al modified Bruggeman model to consider the interfacial thermal resistance. The U-Mo/Al dispersion fuel thermal conductivity calculation can be improved by considering the anisotropic effects and interface thermal resistances. There have been various works to analyze the thermal conductivity through Finite Element Method (FEM). Coulson developed a realistic FEM model to calculate the effective thermal conductivity of the fuel meat. This FEM model does not consider the anisotropic effects and interface thermal resistances. Therefore, these effects can be evaluated by comparing the FEM calculated effective thermal conductivity with measured data. In this work, the FEM analysis was done and the anisotropic effects and interface thermal resistances was estimated. From this results, the particle shape and size effects will be discussed. Many thermal conductivity models for the particle dispersed composites have been
Effects of Particle Size and Shape on U-Mo/Al Thermal Conductivity
International Nuclear Information System (INIS)
Cho, Tae-Won; Sohn, Dong-Seong
2014-01-01
The thermal conductivity of atomized U-Mo/Al dispersion fuels was measured only by Lee et al. by laser-flash and differential scanning calorimetry (DSC) methods. For the U-Mo particles, they are deformed during manufacturing process such as hot rolling and during irradiation by the creep deformation. Fricke developed a model for the effective thermal conductivity of a dilute suspension of randomly oriented spheroidal particles. In general, the thermal conductivity of composite increase when the particle shape is not sphere. This model is also based on continuum theory which assumes both temperature and heat flux are continuous across the interface. Kapitza, however, showed that there is a discontinuity in temperature across the interface at metal/liquid helium interface. In general, the discontinuity is from the thermal resistance at the interface. If the thermal resistance has a significant impact on the thermal conductivity, particle size is one of the essential parameter for determining the effective thermal conductivity of composite materials. Every, et al modified Bruggeman model to consider the interfacial thermal resistance. The U-Mo/Al dispersion fuel thermal conductivity calculation can be improved by considering the anisotropic effects and interface thermal resistances. There have been various works to analyze the thermal conductivity through Finite Element Method (FEM). Coulson developed a realistic FEM model to calculate the effective thermal conductivity of the fuel meat. This FEM model does not consider the anisotropic effects and interface thermal resistances. Therefore, these effects can be evaluated by comparing the FEM calculated effective thermal conductivity with measured data. In this work, the FEM analysis was done and the anisotropic effects and interface thermal resistances was estimated. From this results, the particle shape and size effects will be discussed. Many thermal conductivity models for the particle dispersed composites have been
K. S. Reddy; P Karthikeyan
2010-01-01
A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II) to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν) on the structure composition factor (ψ) of the food materials is studied. Th...
Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites
Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.
2017-01-01
Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.
Thermal lensing effects in cw-pumped Nd3: YAG laser rods
International Nuclear Information System (INIS)
Chang, C.
Thermal lensing effects were investigated in cw-pumped Nd 3+ : YAG laser rods. For identically specified rods very different thermally induced focal lengths were measured. Thus compensation of thermal lensing by applying curved end faces should be done individually for each rod. (orig.) 891 HT/orig. 892 HIS
Experimental and modeling study of forest fire effect on soil thermal conductivity
Kathleen M. Smits; Elizabeth Kirby; William J. Massman; Scott Baggett
2016-01-01
An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire heated soils, comprehensive data that evaluate the long-term effect of extreme heating from a fire on the soil thermal conductivity are limited....
Deposition stress effects on thermal barrier coating burner rig life
Watson, J. W.; Levine, S. R.
1984-01-01
A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.
Isotope Effect on the Thermal Conductivity of Graphene
Directory of Open Access Journals (Sweden)
Hengji Zhang
2010-01-01
Full Text Available The thermal conductivity (TC of isolated graphene with different concentrations of isotope (C13 is studied with equilibrium molecular dynamics method at 300 K. In the limit of pure C12 or C13 graphene, TC of graphene in zigzag and armchair directions are ~630 W/mK and ~1000W/mK, respectively. We find that the TC of graphene can be maximally reduced by ~80%, in both armchair and zigzag directions, when a random distribution of C12 and C13 is assumed at different doping concentrations. Therefore, our simulation results suggest an effective way to tune the TC of graphene without changing its atomic and electronic structure, thus yielding a promising application for nanoelectronics and thermoelectricity of graphene-based nano device.
Thermal expansion and pressure effect in MnWO4
International Nuclear Information System (INIS)
Chaudhury, R.P.; Yen, F.; Cruz, C.R. de la; Lorenz, B.; Wang, Y.Q.; Sun, Y.Y.; Chu, C.W.
2008-01-01
MnWO 4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order. We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T 1 =7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8 GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low-temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure
Thermal and viscous effects on sound waves: revised classical theory.
Davis, Anthony M J; Brenner, Howard
2012-11-01
In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.
Thermal fluctuation effects far from the critical temperature
International Nuclear Information System (INIS)
Refai, T.F.
1980-01-01
We report the first measurements of thermal fluctuations in superconductors at temperatures far from the critical temperature T/sub c/ (T approx. 1/2 T/sub c/), and also the first measurements that use thermal fluctuations to probe the non-equilibrium dynamics of a superconductor. This is the first work that separately measures the fluctuations that cause a superconductor to switch to the dissipative state and those that cause it to switch back to the superconductor state. These unique measurements allowed: (1) The first measurement experimental confirmation of the theory of Langer, Ambegaokar, McCumber, and Halperin (LAMH) where T/sub c/ was not an adjustable parameter. This rigorous test of the theory was not previously possible because earlier measurements were carried out very near T/sub c/, where a change of many orders of magnitude of predicted effects occur if the assumed T/sub c/ changes a few millidegrees. Thus T/sub c/ in all previous work was always adjusted so as to get agreement with the theory. (2) The first verification of the LAMH model far from T/sub c/. (3) The first experimental confirmation of the relation between current and transition probability that was predicted in the LAMH model. (4) Confirmation that the Lamda model developed by Peters, Wolf, and Rachford (PWR) to explain the dynamics on the nonequilibrium region can be extended to explain fluctuation effects. This is based on an original phenomenological extension of the LAMH model that is developed in this work and on our data. (5) The most direct measurement to date of the nature of the decay of the dissipative region in a weak link. These measurements show that the region recovers exponentially in time as proposed in the Lamda model
On the thermal analysis of a plate-fin heat sink considering the thermal-entry length effect
International Nuclear Information System (INIS)
Bassiouny, Ramadan; Maher, Hisham; Hegazy, Adel A.
2016-01-01
Highlights: • Dissipated convective heat strongly depends on convection coefficient. Two correlations were developed for so and validated. • A clear error in air temperature distribution along the heat sink was seen if coefficient were not properly selected. • The error decreases when thermal-entry length effect is considered, as for thermal flow through short conduits as Pr <1. - Abstract: Cooling electric and electronic components is very imperative to keep these components functioning properly. The heat sink is a device used to dissipate generated heat and accordingly cool these components. Airflow through heat sinks experiences velocity and thermal boundary layer variation that significantly affects the heat transfer process and heat sink performance as a result. The present study aims at developing an analytical model that compares the effect of adopting fully-developed or thermally-developing flow on convective heat transfer coefficient and accordingly longitudinal predicted air temperature distribution. Experiments on plate-fin heat sinks were carried out to validate the developed model. The results quantitatively showed a noticeable overprediction in the air temperature distribution when the heat transfer coefficient was estimated based on a fully-developed assumption. On the other hand, a close agreement between predicted and measured values was noticed when the thermal-entry length effect was considered.
Improved hard-thermal-loop effective action for hot QED and QCD
International Nuclear Information System (INIS)
Flechsig, F.; Rebhan, A.K.
1995-01-01
The conventional results for hard thermal loops, which are the building blocks of resummed perturbation theory in thermal field theories, have collinear singularities when external momenta are light-like. It is shown that by taking into account asymptotic thermal masses these singularities are removed. The thus improved hard thermal loops can be summarized by compact gauge-invariant effective actions, generalizing the ones found by Taylor and Wong, and by Braaten and Pisarski. (orig.)
Evidence of Non-local Chemical, Thermal and Gravitational Effects
Directory of Open Access Journals (Sweden)
Hu H.
2007-04-01
Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.
Casimir quantum levitation tuned by means of material properties and geometries
Dou, Maofeng; Lou, Fei; Boström, Mathias; Brevik, Iver; Persson, Clas
2014-05-01
The Casimir force between two surfaces is attractive in most cases. Although stable suspension of nano-objects has been achieved, the sophisticated geometries make them difficult to be merged with well-established thin film processes. We find that by introducing thin film surface coating on porous substrates, a repulsive to attractive force transition is achieved when the separations are increased in planar geometries, resulting in a stable suspension of two surfaces near the force transition separation. Both the magnitude of the force and the transition distance can be flexibly tailored though modifying the properties of the considered materials, that is, thin film thickness, doping concentration, and porosity. This stable suspension can be used to design new nanodevices with ultralow friction. Moreover, it might be convenient to merge this thin film coating approach with micro- and nanofabrication processes in the future.
Dynamics of the Vacuum and Casimir Analogs to the Hydrogen Atom
White, Harold; Vera, Jerry; Bailey, Paul; March, Paul; Lawrence, Tim; Sylvester, Andre; Brady, David
2015-01-01
This paper will discuss the current viewpoint of the vacuum state and explore the idea of a "natural" vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for all primary quantum numbers to show consistency with observation at the level of Bohr theory. A comparison with the Casimir force per unit area will be made, and an explicit function for the spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit function will be numerically modeled using the industry multi-physics tool, COMSOL(trademark), and the eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.
Irreversible dynamics, Onsager-Casimir symmetry, and an application to turbulence.
Ottinger, Hans Christian
2014-10-01
Irreversible contributions to the dynamics of nonequilibrium systems can be formulated in terms of dissipative, or irreversible, brackets. We discuss the structure of such irreversible brackets in view of a degeneracy implied by energy conservation, where we consider different types of symmetries of the bracket corresponding to the Onsager and Casimir symmetries of linear irreversible thermodynamics. Slip and turbulence provide important examples of antisymmetric irreversible brackets and offer guidance for the more general modeling of irreversible dynamics without entropy production. Conversely, turbulence modeling could benefit from elucidating thermodynamic structure. The examples suggest constructing antisymmetric irreversible brackets in terms of completely antisymmetric functions of three indices. Irreversible brackets without well-defined symmetry properties can arise for rare events, causing big configurational changes.
Energy-momentum tensor for a Casimir apparatus in a weak gravitational field
International Nuclear Information System (INIS)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero; Rosa, Luigi
2006-01-01
The influence of the gravity acceleration on the regularized energy-momentum tensor of the quantized electromagnetic field between two plane-parallel conducting plates is derived. We use Fermi coordinates and work to first order in the constant acceleration parameter. A perturbative expansion, to this order, of the Green functions involved and of the energy-momentum tensor is derived by means of the covariant geodesic point-splitting procedure. In correspondence to the Green functions satisfying mixed and gauge-invariant boundary conditions, and Ward identities, the energy-momentum tensor is covariantly conserved and satisfies the expected relation between gauge-breaking and ghost parts, while a new simple formula for the trace anomaly is obtained to first order in the constant acceleration. A more systematic derivation is therefore obtained of the theoretical prediction according to which the Casimir device in a weak gravitational field will experience a tiny push in the upwards direction
Spectroscopic study of local thermal effect in transparent glass ceramics containing nanoparticles
Institute of Scientific and Technical Information of China (English)
2007-01-01
Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the temperature-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.
Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory
Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert
2018-02-01
Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.
Nonlocal effective actions in semiclassical gravity: Thermal effects in stationary geometries
Elías, M.; Mazzitelli, F. D.; Trombetta, L. G.
2017-11-01
We compute the gravitational effective action by integrating out quantum matter fields in a weak gravitational field, using the Schwinger-Keldysh (in-in) formalism. We pay particular attention to the role of the initial quantum state in the structure of the nonlocal terms in the effective action, with an eye to nonlinear completions of the theory that may be relevant in astrophysics and cosmology. In this first paper we consider a quantum scalar field in thermal equilibrium, in a stationary gravitational field. We obtain a covariant expression for the nonlocal effective action, which can be expressed in terms of the curvature tensor, the four-velocity of the thermal bath, and the local Tolman temperature. We discuss the connection between the results for ultrastatic and static metrics through conformal transformations, and the main features of the thermal corrections to the semiclassical Einstein equations.
Vacuum energy and Casimir force in the presence of a dimensional parameter in the boundary condition
International Nuclear Information System (INIS)
Lebedev, S.L.
2001-01-01
The Hamiltonian for a scalar field that satisfies the boundary condition -∂ n φ=(1/δ)φ must include a surface potential energy. The corresponding term in the Casimir energy E-tilde C proves to be a leading one when the dimension of the region is l ∼ δ. The energy E-tilde C does not involve arbitrariness associated with regularization and is an unambiguously determined function of the field mass m, the size l, and the penetration depth δ. The inclusion of the surface term is of importance for ensuring that the derivative -∂ E-tilde C /∂l is equal to the ll component of the vacuum energy-momentum tensor. The Casimir energy E-tilde C is related to its volume component E C by a Legendre transformation where the quantity conjugate to 1/δ is the product of the vacuum surface energy and δ. If δ is negative and if h-bar/mc> vertical bar δ vertical bar, there exists a critical value l=l c (δ) above which (l>l c ) the vacuum is unstable; if a self-interaction of the form φ 4 is taken into account, this will lead to a phase transition accompanied by the formation of a condensate of the field φ. If δ=+0 or ∞ and if the dimensionalities are even, it is possible to construct a vacuum energy-momentum tensor (not only energy) that is finite over the entire space. Specially chosen counterterms leave unchanged the analytic dependence of the vacuum energy on the dimensionality of space and the character of the coordinate dependence of the energy density for x>h-bar/mc
Coupled-oscillator theory of dispersion and Casimir-Polder interactions
Energy Technology Data Exchange (ETDEWEB)
Berman, P. R.; Ford, G. W. [Physics Department, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040 (United States); Milonni, P. W. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States)
2014-10-28
We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength. However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r{sup −4}, a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called “remarkable formula” for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.
Coupled-oscillator theory of dispersion and Casimir-Polder interactions
International Nuclear Information System (INIS)
Berman, P. R.; Ford, G. W.; Milonni, P. W.
2014-01-01
We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength. However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r −4 , a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called “remarkable formula” for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented
Effect of gamma irradiation on thermal inactivation and injury of Bacillus subtilis spores
International Nuclear Information System (INIS)
El-Zawahry, Y.A.; Mostafa, S.A.; Awny, N.M.
1986-01-01
Bacillus subtilis spores which received preliminary irradiation doses were more sensitive to subsequent heating than non-irradiated spores. The thermal inactivation increased by increasing any of exposure temperature, thermal exposure time or preliminary irradiation dose. The thermal (D T -) value was much higher for non-irradiated spores than the D TR value for the pre-thermal irradiated spores. The radiosensitizing effect was directly proportional to the preliminary irradiation dose. The pre-thermal irradiation treatment of B. subtilis spores resulted in a synergistic effect in spore deactivation. This synergistic effect increased gradually by increasing the preliminary irradiation dose and/or the thermal temperature from 60 to 80 0 C, but decreased for 90 0 C and for the longer exposure periods at any of the examined temperature. Thermal injury of B. subtilis spores was more for the non-irradiated than for the irradiated spores
Piezoelectric effect on the thermal conductivity of monolayer gallium nitride
Zhang, Jin
2018-01-01
Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.
Thermal effects on parallel-propagating electron cyclotron waves
International Nuclear Information System (INIS)
Robinson, P.A.
1987-01-01
Thermal effects on the dispersion of right-handed electron cyclotron waves propagating parallel to a uniform, ambient magnetic field are investigated in the strictly non-relativistic ('classical') and weakly relativistic approximations for real frequency and complex wave vector. In each approximation, the two branches of the RH mode reconnect near the cyclotron frequency as the plasma temperature is increased or the density is lowered. This reconnection occurs in a manner different from that previously assumed at parallel propagation and from that at perpendicular propagation, giving rise to a new mode near the cold plasma cut-off frequency ωsub(xC). For both parallel and perpendicular propagation, it is noted that reconnection occurs approximately when the cyclotron linewidth equals the width of the stop-band in the cold plasma dispersion relation. Inclusion of weakly relativistic effects is found to be necessary for quantitative calculations and for an accurate treatment of the new mode near ωsub(xC). Weakly relativistic effects also modify the analytic properties of the dispersion relation so as to introduce a new family of weakly damped and undamped solutions. (author)
Energy Technology Data Exchange (ETDEWEB)
Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Ali, H.
2016-08-15
Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.
Yilbas, B. S.; Ali, H.
2016-08-01
Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.
International Nuclear Information System (INIS)
Yilbas, B.S.; Ali, H.
2016-01-01
Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.
Thermal effects on aquatic organisms. Annotated bibliography of the 1975 literature
International Nuclear Information System (INIS)
Coutant, C.C.; Talmage, S.S.; Carrier, R.F.; Collier, B.N.; Dailey, N.S.
1976-10-01
Abstracts are presented of 716 papers published during 1975 concerning thermal effects on aquatic organisms. Indexes are included for author, subject category, geographic location, toxon, title, and keywords
Study on thermal effects & sulfurized additives, in lubricating greases
Shah, Ami Atul
Lithium Base grease constitutes about 50% of market. The greases are developed to be able to work in multiple working conditions and have longer working life. Greases with extreme pressure additives and anti-wear additives have been developed as a solution to many of the applications. These developed greases are tested under ASTM D2266 testing conditions to meet the requirements. The actual working conditions, although, differ than the real testing conditions. The loading, speed and temperature conditions can be more harsh, or fluctuating in nature. The cyclic nature of the parameters cannot be directly related to the test performance. For this purpose studies on the performance under spectrum loading, variable speed and fluctuating temperature must be performed. This study includes tests to understand the effect of thermal variation on some of the most commonly used grease additives that perform well under ASTM D2266 testing conditions. The studied additives include most widely used industrial extreme pressure additive MoS2. Performance of ZDDP which is trying to replace MoS2 in its industrial applications has also been studied. The tests cover study of extreme pressure, anti-wear and friction modifier additives to get a general idea on the effects of thermal variation in three areas. Sulphur is the most common extreme pressure additive. Sulphur based MoS 2 is extensively used grease additive. Study to understand the tribological performance of this additive through wear testing and SEM/EDX studies has been done. This performance is also studied for other metallic sulfides like WS2 and sulphur based organic compound. The aim is to study the importance of the type of bond that sulphur shares in its additive's structure on its performance. The MoS2 film formation is found to be on the basis of the FeS formation on the substrate and protection through sacrificial monolayer deposition of the MoS2 sheared structure. The free Mo then tends to oxidise. An attempt to
Efficient Thermal Tuning Employing Metallic Microheater With Slow Light Effect
DEFF Research Database (Denmark)
Yan, Siqi; Chen, Hao; Gao, Shengqian
2018-01-01
Thermal tuning acts as one of the most fundamental roles in integrated silicon photonics since it can provide flexibility and reconfigurability. Low tuning power and fast tuning speed are long-term pursuing goals in terms of the performance of the thermal tuning. Here we propose and experimentall...
Variable thermal resistor based on self-powered Peltier effect
Min, Gao; Yatim, N. M.
2008-01-01
Heat flow through a thermoelectric material or device can be varied by an electrical resistor connected in parallel to it. This phenomenon is exploited to design a novel thermal component-variable thermal resistor. The theoretical background to this novel application is provided and an experimental result to demonstrate its feasibility is reported.
Variable thermal resistor based on self-powered Peltier effect
International Nuclear Information System (INIS)
Min Gao; Yatim, N Md
2008-01-01
Heat flow through a thermoelectric material or device can be varied by an electrical resistor connected in parallel to it. This phenomenon is exploited to design a novel thermal component-variable thermal resistor. The theoretical background to this novel application is provided and an experimental result to demonstrate its feasibility is reported. (fast track communication)
Effects of source, water conditioning and thermal treatment on ...
African Journals Online (AJOL)
at 15 % moisture content amounting to 61.3 MJ was the optimum thermal treatment for achieving germination of 69 %. R. heudelotii seeds soaked in water for 15 days at moisture content of 24 % over dry weight followed by thermal treatment improved germination by 22 %. The highest germination of 79 % was obtained for ...
Effect of thermal processing methods on the proximate composition ...
African Journals Online (AJOL)
The nutritive value of raw and thermal processed castor oil seed (Ricinus communis) was investigated using the following parameters; proximate composition, gross energy, mineral constituents and ricin content. Three thermal processing methods; toasting, boiling and soaking-and-boiling were used in the processing of the ...
Deterioration in effective thermal conductivity of aqueous magnetic nanofluids
Altan, C.L.; Gurten, B.; Sommerdijk, N.A.J.M.; Bucak, S.
2014-01-01
Common heat transfer fluids have low thermal conductivities, which decrease their efficiency in many applications. On the other hand, solids have much higher thermal conductivity values. Previously, it was shown that the addition of different nanoparticles to various base fluids increases the
Evaluation of the Thermal Effects in Tilting Pad Bearing
Directory of Open Access Journals (Sweden)
G. B. Daniel
2013-01-01
Full Text Available The analysis of thermal effects is of expressive importance in the context of rotordynamics to evaluate the behavior of hydrodynamic bearings because these effects can influence their dynamic characteristics under specific operational conditions. For this reason, a thermohydrodynamic model is developed in this work, in which the pressure distribution in the oil film and the temperature distribution are calculated together. From the pressure distribution, the velocity distribution field is determined, as well as the viscous dissipation, and consequently, the temperature distribution. The finite volume method is applied to solve the Reynolds equation and the energy equation in the thermohydrodynamic model (THD. The results show that the temperature is higher as the rotational speed increases due to the shear rate of the oil film. The maximum temperature in the bearing occurs in the overloaded pad, near the outlet boundary. The experimental tests were performed in a tilting pad journal bearing operating in a steam turbine to validate the model. The comparison between the experimental and numerical results provides a good correlation. The thermohydrodynamic lubrication developed in this assignment is promising to consistently evaluate the behavior of the tilting pad journal bearing operating in relatively high rotational speeds.
Thermal Desorption Analysis of Effective Specific Soil Surface Area
Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.
2017-12-01
A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.
Effects of thermal motion on electromagnetically induced absorption
International Nuclear Information System (INIS)
Tilchin, E.; Wilson-Gordon, A. D.; Firstenberg, O.
2011-01-01
We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.
Effects of thermal deformation on optical instruments for space application
Segato, E.; Da Deppo, V.; Debei, S.; Cremonese, G.
2017-11-01
Optical instruments for space missions work in hostile environment, it's thus necessary to accurately study the effects of ambient parameters variations on the equipment. In particular optical instruments are very sensitive to ambient conditions, especially temperature. This variable can cause dilatations and misalignments of the optical elements, and can also lead to rise of dangerous stresses in the optics. Their displacements and the deformations degrade the quality of the sampled images. In this work a method for studying the effects of the temperature variations on the performance of imaging instrument is presented. The optics and their mountings are modeled and processed by a thermo-mechanical Finite Element Model (FEM) analysis, then the output data, which describe the deformations of the optical element surfaces, are elaborated using an ad hoc MATLAB routine: a non-linear least square optimization algorithm is adopted to determine the surface equations (plane, spherical, nth polynomial) which best fit the data. The obtained mathematical surface representations are then directly imported into ZEMAX for sequential raytracing analysis. The results are the variations of the Spot Diagrams, of the MTF curves and of the Diffraction Ensquared Energy due to simulated thermal loads. This method has been successfully applied to the Stereo Camera for the BepiColombo mission reproducing expected operative conditions. The results help to design and compare different optical housing systems for a feasible solution and show that it is preferable to use kinematic constraints on prisms and lenses to minimize the variation of the optical performance of the Stereo Camera.
Shape memory effects, thermal expansion and B19' martensite texture in titanium nickelide
International Nuclear Information System (INIS)
Zel'dovich, V.I.; Sobyanina, G.A.; Rinkevich, O.S.; Gundyrev, V.M.
1996-01-01
The influence of plastic deformation by tension and cold rolling on shape memory effect, reverse shape memory effect, thermal expansion and texture state of martensite in titanium nickelide is under study. The relationship of thermal expansion coefficient to the value of strain during direct and reverse shape memory effect is established
Dantchev, Daniel M.; Vassilev, Vassil M.; Djondjorov, Peter A.
2016-09-01
When massless excitations are limited or modified by the presence of material bodies one observes a force acting between them generally called Casimir force. Such excitations are present in any fluid system close to its true bulk critical point. We derive exact analytical results for both the temperature and external ordering field behavior of the thermodynamic Casimir force within the mean-field Ginzburg-Landau Ising type model of a simple fluid or binary liquid mixture. We investigate the case when under a film geometry the boundaries of the system exhibit strong adsorption onto one of the phases (components) of the system. We present analytical and numerical results for the (temperature-field) relief map of the force in both the critical region of the film close to its finite-size or bulk critical points as well as in the capillary condensation regime below but close to the finite-size critical point.
Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment
Directory of Open Access Journals (Sweden)
Yoshihito Kurazumi
2013-01-01
Full Text Available In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.
Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment
Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2013-01-01
In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691
Effects of thermal inflation on small scale density perturbations
Energy Technology Data Exchange (ETDEWEB)
Hong, Sungwook E. [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Seoul 130-722 (Korea, Republic of); Lee, Hyung-Joo; Lee, Young Jae; Stewart, Ewan D. [Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Zoe, Heeseung, E-mail: swhong@kias.re.kr, E-mail: ohsk111@kaist.ac.kr, E-mail: noasac@kaist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno jungang-daero, Daegu 711-873 (Korea, Republic of)
2015-06-01
In cosmological scenarios with thermal inflation, extra eras of moduli matter domination, thermal inflation and flaton matter domination exist between primordial inflation and the radiation domination of Big Bang nucleosynthesis. During these eras, cosmological perturbations on small scales can enter and re-exit the horizon, modifying the power spectrum on those scales. The largest modified scale, k{sub b}, touches the horizon size when the expansion changes from deflation to inflation at the transition from moduli domination to thermal inflation. We analytically calculate the evolution of perturbations from moduli domination through thermal inflation and evaluate the curvature perturbation on the constant radiation density hypersurface at the end of thermal inflation to determine the late time curvature perturbation. Our resulting transfer function suppresses the power spectrum by a factor 0∼ 5 at k >> k{sub b}, with k{sub b} corresponding to anywhere from megaparsec to subparsec scales depending on the parameters of thermal inflation. Thus, thermal inflation might be constrained or detected by small scale observations such as CMB distortions or 21cm hydrogen line observations.
International Nuclear Information System (INIS)
Lim, S C; Teo, L P
2007-01-01
We derive rigorously explicit formulae of the Casimir free energy at finite temperature for massless scalar field and electromagnetic field confined in a closed rectangular cavity with different boundary conditions by a zeta regularization method. We study both the low and high temperature expansions of the free energy. In each case, we write the free energy as a sum of a polynomial in temperature plus exponentially decay terms. We show that the free energy is always a decreasing function of temperature. In the cases of massless scalar field with the Dirichlet boundary condition and electromagnetic field, the zero temperature Casimir free energy might be positive. In each of these cases, there is a unique transition temperature (as a function of the side lengths of the cavity) where the Casimir energy changes from positive to negative. When the space dimension is equal to two and three, we show graphically the dependence of this transition temperature on the side lengths of the cavity. Finally we also show that we can obtain the results for a non-closed rectangular cavity by letting the size of some directions of a closed cavity go to infinity, and we find that these results agree with the usual integration prescription adopted by other authors
Directory of Open Access Journals (Sweden)
Tae Sup Yun
2014-01-01
Full Text Available The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100°C during heating to ~800°C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m−1 K−1. The surrogate aggregates effectively reduce the conductivity to ~1.25 W m−1 K−1 at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.
The opto-thermal effect on encapsulated cholesteric liquid crystals
Liu, Yu-Sung; Lin, Hui-Chi; Yang, Kin-Min
2017-12-01
In this study, we implemented a micro-encapsulated CLC electronic paper that is optically addressed and electrically erasable. The mechanism that forms spot diameters on the CLC films is discussed and verified through various experimental parameters, including the thickness of CLCs and Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS), pump intensity, and pumping time. The opto-thermal effect, brought on by the PEDOT:PSS absorbing layer, causes the spot diameters on the cholesteric liquid crystal thin films to vary. According to our results, the spot diameter is larger for a sample with a thinner cholesteric liquid crystal layer with the same excitation conditions and same thickness of the PEDOT layer. The spot diameter is also larger for a sample with a thicker PEDOT under the same excitation conditions and same thickness of the cholesteric liquid crystal layer. We proposed a simple heat-conducting model to explain the experimental results, which qualitatively agree with this theoretical model.
Characterizing the thermal effects of High Energy Arc Faults
Energy Technology Data Exchange (ETDEWEB)
Putorti, Anthony; Bareham, Scott; Praydis, Joseph Jr. [National Institute of Standards and Technology (NIST), Gaithersburg, MD (United States); Melly, Nicholas B. [U.S. Nuclear Regulatory Commission (NRC), Washington, DC (United States)
2015-12-15
International and domestic operating experience involving High Energy Arc Faults (HEAF) in Nuclear Power Plant (NPP) electrical power systems have demonstrated the potential to cause extensive damage to electrical components and distribution systems along with damage to adjacent equipment and cables. An international study by the Committee on the Safety of Nuclear Installations (CSNI) gOECD Fire Project. Topical Report No. 1: Analysis of High Energy Arcing Fault (HEAF) Fire Events h published June 25, 2013 [1], illustrates that HEAF events have the potential to be major risk contributors with significant safety consequences and substantial economic loss. In an effort to better understand and characterize the threats posed by HEAF related phenomena, an international project has been chartered; the Joint Analysis of Arc Faults (Joan of ARC) OECD International Testing Program for High Energy Arc Faults. One of the major challenges of this research is how to properly measure and characterize the risk and influence of these events. Methods are being developed to characterize relevant parameters such as; temperature, heat flux, and heat release rate of fires resulting from HEAF events. Full scale experiments are being performed at low (≤ 1000 V) and medium (≤ 35 kV) voltages in electrical components. This paper introduces the methods being developed to measure thermal effects and discusses preliminary results of full scale HEAF experiments.
Thermal effects in magnetoelectric memories with stress-mediated switching
International Nuclear Information System (INIS)
Giordano, S; Dusch, Y; Tiercelin, N; Pernod, P; Preobrazhensky, V
2013-01-01
Heterostructures with magneto-electro-elastic coupling (e.g. multiferroics) are of paramount importance for developing new sensors, actuators and memories. With the progressive miniaturization of these systems it is necessary to take into account possible thermal effects, which may influence the normal operating regime. As a paradigmatic example we consider a recently introduced non-volatile memory element composed of a magnetostrictive nanoparticle embedded in a piezoelectric matrix. The distributions of the physical fields in this matrix/inclusion configuration are determined by means of the Eshelby theory, the magnetization dynamics is studied through the Landau–Lifshitz–Gilbert formalism, and the statistical mechanics is introduced with the Langevin and Fokker–Planck methodologies. As result of the combination of such techniques we determine the switching time between the states of the memory, the error probability and the energy dissipation of the writing process. They depend on the ratio k B T/v where T is the absolute temperature and v is the volume of the magnetoelastic particle. (paper)
Thermal effects on domain orientation of tetragonal piezoelectrics
Chang, Wonyoung
Thermal effects on electrical poling or mechanical grinding induced texture in tetragonal lead zirconate titanate (PZT) and lead titanate (PT) have been investigated using ex situ and in situ X-ray diffraction (XRD) with an area detector. According to previous results using ex situ XRD, domain configurations of poled samples after heat-treatment at or higher than the Curie temperature (TC) are similar to that of unpoled samples showing random domain distributions. The texture parameter called multiples of a random distribution (MRD) gradually decreases with increasing depoling temperature. On the other hand, using in situ XRD measurements, it was found that the MRD maximum for soft PZT initially increases with temperature up to approximately 100°C and then falls to unity at temperatures approaching the TC, whereas the MRD of hard PZT and PT initially undergoes a smaller increase or no change. Mechanical strain energy has an apparent effect on domain wall mobility. In contrast with previous results on electrical poling, mechanically-ground PT and soft PZT materials retained strong ferroelastic textures during thermal cycling, even after excursions to temperatures slightly above the TC . For the ground PT, it was found that repeated cycling above T C results in changes in both peak intensity and peak position, whereas the ground soft PZT undergoes the decrease in intensity of the (002) reflection after the first cycle of heating. Residual stresses in the surface region from grinding resulted in domain wall motion and the retention of textures in annealed samples. The research in this thesis demonstrates that the magnitude of loading applied to the sample surface, the speed used for grinding, or the grit size, can greatly affect the grinding induced damage zone and the depoling behavior of piezoelectric ceramics. Among the possible effects of grinding conditions on surface textures, one of particular interest is the effect of mechanical stresses produced during
effect of gempehd thermal properties on the propagation of heat
African Journals Online (AJOL)
One avenue being explored is to search and use of new energy efficient and clean ..... Number of Prandtl and Rayleigh to different temperatures GEMPEHD temperature (°C). Pr .... the absorber plate, the latter has a high thermal conductivity.
Effect of high heating rate on thermal decomposition behaviour of ...
Indian Academy of Sciences (India)
the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into considera- ... does not change the process of releasing hydrogen from titanium hydride ... from titanium hydride in a sequence of steps.
Effect of amorphisation on the thermal properties of nanostructured membranes
Energy Technology Data Exchange (ETDEWEB)
Termentzidis, Konstantinos; Verdier, Maxime; Lacroix, David [CNRS, LEMTA, UMR 7563, Vandoeuvre les Nancy (France); Lorraine Univ., Vandoeuvre les Nancy (France). LEMTA UMR 7563
2017-05-01
The majority of the silicon devices contain amorphous phase and amorphous/crystalline interfaces which both considerably affect the transport of energy carriers as phonons and electrons. In this article, we investigate the impact of amorphous phases (both amorphous silicon and amorphous SiO{sub 2}) of silicon nanoporous membranes on their thermal properties via molecular dynamics simulations. We show that a small fraction of amorphous phase reduces dramatically the thermal transport. One can even create nanostructured materials with subamorphous thermal conductivity, while keeping an important crystalline fraction. In general, the a-SiO{sub 2} shell around the pores reduces the thermal conductivity by a factor of five to ten compared to a-Si shell. The phonon density of states for several systems is also given to give the impact of the amorphisation on the phonon modes.
Effect of fibre shape on transverse thermal conductivity of ...
Indian Academy of Sciences (India)
2Mechanical Engineering, JNTU College of Engineering, Kakinada 533 003, India e-mail: ... by numerical method using finite element analysis. .... The steady state thermal problem is solved using finite element analysis software ANSYS. A.
Comparative study on radon effects and thermal effects on humans in radon hot spring therapy
International Nuclear Information System (INIS)
Yamaoka, K.; Mitsunobu, F.; Hanamoto, K.; Tanizaki, Y.; Sugita, K.; Kohima, S.
2003-01-01
Full text: The radon therapy is used radon ( 222 Rn) gas, which mainly emits alpha-rays, and induces a small amount of active oxygen in the body. Because most of the diseases to which the radon therapy as well as the thermal therapy is applied are related to activated oxygen, in this study the effects of the radioactivity of radon and thermal effects were compared under the room or the hot spring condition with the similar chemical component, using as the parameters which are closely involved in the clinical for radon therapy. In the results, the radon and thermal therapy enhanced the antioxidation function, such as the activities of superoxide dismutase (SOD) and catalase, which inhibit lipid peroxidation and total cholesterol produce in the body. Moreover the therapy enhanced concanavalin A (ConA)-induced mitogen response, and increased the level of CD4, which is the marker of helper T cell, and decreased the level of CD8, which is the common marker of killer T cell and supresser T cell, in the white cell differentiation antigen (CD4/CD8) assay. Furthermore, the therapy increased the levels of alpha atrial natriuretic polypeptide (alpha ANP), beta endorphin, adrenocorticotropic hormone (ACTH), insulin and glucose-phosphate dehydrogenase (G-6-PDH), and decreased the vasopression level. The results were on the whole larger in the radon group than in the thermal group. The findings suggest that the radon therapy more contributes to the prevention of life style-related diseases related to peroxidation reactions and immune depression than thermal therapy. Moreover these indicate what may be a part of the mechanism for the alleviation of hypertension, osteoarthritis (pain) and diabetes mellitus brought about more radon therapy than thermal therapy
The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment
Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman
2017-10-01
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.
Effect of Liquid Phase Content on Thermal Conductivity of Hot-Pressed Silicon Carbide Ceramics
International Nuclear Information System (INIS)
Lim, Kwang-Young; Jang, Hun; Lee, Seung-Jae; Kim, Young-Wook
2015-01-01
Silicon carbide (SiC) is a promising material for Particle-Based Accident Tolerant (PBAT) fuel, fission, and fusion power applications due to its superior physical and thermal properties such as low specific mass, low neutron cross section, excellent radiation stability, low coefficient of thermal expansion, and high thermal conductivity. Thermal conductivity of PBAT fuel is one of very important factors for plant safety and energy efficiency of nuclear reactors. In the present work, the effect of Y 2 O 3 -Sc 2 O 3 content on the microstructure and thermal properties of the hot pressed SiC ceramics have been investigated. Suppressing the β to α phase transformation of SiC ceramics is beneficial in increasing the thermal conductivity of liquid-phase sintered SiC ceramics. Developed SiC ceramics with Y 2 O 3 -Sc 2 O 3 additives are very useful for thermal conductivity on matrix material of the PBAT fuel
Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate
Directory of Open Access Journals (Sweden)
Zhihe Jin
2014-01-01
Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.
Directory of Open Access Journals (Sweden)
Qing-Lin Wang
Full Text Available To evaluate the thermal resistance of marine invertebrates to elevated temperatures under scenarios of future climate change, it is crucial to understand parental effect of long acclimatization on thermal tolerance of offspring. To test whether there is parental effect of long acclimatization, adult sea cucumbers (Apostichopus japonicus from the same broodstock were transplanted southward and acclimatized at high temperature in field mesocosms. Four groups of juvenile sea cucumbers whose parents experienced different durations of high temperature acclimatization were established. Upper thermal limits, oxygen consumption and levels of heat shock protein mRNA of juveniles was determined to compare thermal tolerance of individuals from different groups. Juvenile sea cucumbers whose parents experienced high temperature could acquire high thermal resistance. With the increase of parental exposure duration to high temperature, offspring became less sensitive to high temperature, as indicated by higher upper thermal limits (LT50, less seasonal variations of oxygen consumption, and stable oxygen consumption rates between chronic and acute thermal stress. The relatively high levels of constitutive expression of heat-shock proteins should contribute to the high thermal tolerance. Together, these results indicated that the existence of a parental effect of long acclimatization would increase thermal tolerance of juveniles and change the thermal sensitivity of sea cucumber to future climate change.
Solving the problems of thermal effects and outputs
International Nuclear Information System (INIS)
Jaske, R.T.
1974-01-01
All energy used ultimately appears in the environment as a thermal release, this paper points out, and many of the measures taken to reduce other types of pollutants ultimately increase thermal pollution because energy is required to operate the pollution control equipment. A number of measures that may be taken to reduce the ratio of net energy use to gross national product are pointed out
Thermal effects on aquatic organisms: annotated bibliography of the 1974 literature
International Nuclear Information System (INIS)
Coutant, C.C.; Talmage, S.S.; Carrier, R.F.; Collier, B.N.
1975-06-01
The annotated bibliography covers the 1974 literature concerning thermal effects on aquatic organisms. Emphasis is placed on the effects of the release of thermal effluents on aquatic ecosystems. Indexes are provided for: author, keywords, subject category, geographic location, taxon, and title (alphabetical listing of keyword-in-context of the nontrivial words in the title). (CH)
Investigations on the effect of creep stress on the thermal properties of metallic materials
International Nuclear Information System (INIS)
Radtke, U.; Crostack, H.A.; Winschuh, E.
1995-01-01
Using thermal wave analysis with front side infrared detection on sample material damaged by creep, one examines whether the creep stress has an effect on the thermal material properties and to what effect this can be used to estimate the remaining service life. (orig.) [de
Bucx, M. J. L.; de Gast, H. M.; Veldhuis, J.; Hassing, L. H.; Meulemans, A.; Kammeyer, A.
2003-01-01
The increased use of thermal decontamination procedures for fibrelight laryngoscope blades, to comply with international guidelines, will have considerable economical effects. We evaluated the effect of mechanical cleaning plus thermal disinfection at 90degreesC, with or without subsequent steam
Maximisation of the Doppler effect in thermal reactors
International Nuclear Information System (INIS)
Bende, E.E.
1998-03-01
Increase of the fuel temperature in a nuclear reactor leads, or can lead, to (1) A Doppler broadening of the resonances of the nuclides in the fuel; (2) An expansion of the fuel; and (3) A shift of the Maxwellian part of the spectrum to higher energies. These processes together introduce a certain amount of reactivity, which can be expressed in the so-called fuel temperature reactivity coefficient. The reactivity effect of the third process is very small, because the Maxwell spectrum is to a major extent determined by the moderator temperature. Moreover, the reactivity effect due to an expansion of the fuel is small too, for most thermal systems. When the second and third processes can be neglected, the fuel temperature reactivity effect is fully determined by the Doppler effect. The fuel temperature reactivity coefficient is then called the Doppler coefficient of reactivity. The Doppler broadening of the resonances causes an increase of resonance absorption, due to a decrease of self-shielding. The competition between resonance fission at the one hand and resonance capture at the other hand determines the sign and magnitude of the reactivity induced by an increase of the fuel temperature. In well-designed nuclear reactors the Doppler effect due to resonance capture by fertile nuclides exceeds the Doppler effect due to resonance fission, which implies that an increase of the fuel temperature causes a negative reactivity effect and a correspondingly negative Doppler coefficient. Since the Doppler effect is a prompt effect, occurring simultaneously with the dissipation of kinetic energy of the fission products into temperature, it is very important in the study of rapid power transients. In this report, the Doppler coefficient of reactivity is defined in chapter 2. Chapter 3 discusses the geometry of the unit-cell for which the calculations are performed and describes the fuel types that have been investigated. In chapter 4 the 'Doppler efficiency' is introduced and
International Nuclear Information System (INIS)
Karelin, A.I.; Lobas, O.P.; Zhiganov, A.N.; Vasil'ev, K.F.; Zhiganova, A.A.
1987-01-01
A study was made on ammonium nitrate effect on the mechanism and kinetics of dehydration and thermal decomposition of ammonium polyuranates. Sufficient effect of nitrate ion content in ammonium polyuranate samples on their thermal stability was noted. Kinetic parameters of thermal decomposition of ammonium polyuranates were evaluated. Mechanism of dehydration and thermal decomposition of ammonium polyuranates in the presence of ammonium nitrate was suggested. It was shown that increase of ammonium nitrate content in ammonium polyuranate precipitate resulted to reduction of the specific surface of prepared uranium mixed oxide
Effect of thermal interface on heat flow in carbon nanofiber composites.
Gardea, F; Naraghi, M; Lagoudas, D
2014-01-22
The thermal transport process in carbon nanofiber (CNF)/epoxy composites is addressed through combined micromechanics and finite element modeling, guided by experiments. The heat exchange between CNF constituents and matrix is studied by explicitly accounting for interface thermal resistance between the CNFs and the epoxy matrix. The effects of nanofiber orientation and discontinuity on heat flow and thermal conductivity of nanocomposites are investigated through simulation of the laser flash experiment technique and Fourier's model of heat conduction. Our results indicate that when continuous CNFs are misoriented with respect to the average temperature gradient, the presence of interfacial resistance does not affect the thermal conductivity of the nanocomposites, as most of the heat flow will be through CNFs; however, interface thermal resistance can significantly alter the patterns of heat flow within the nanocomposite. It was found that very high interface resistance leads to heat entrapment at the interface near to the heat source, which can promote interface thermal degradation. The magnitude of heat entrapment, quantified via the peak transient temperature rise at the interface, in the case of high thermal resistance interfaces becomes an order of magnitude more intense as compared to the case of low thermal resistance interfaces. Moreover, high interface thermal resistance in the case of discontinuous fibers leads to a nearly complete thermal isolation of the fibers from the matrix, which will marginalize the contribution of the CNF thermal conductivity to the heat transfer in the composite.
A study on effective thermal conductivity of crystalline layers in layer melt crystallization
International Nuclear Information System (INIS)
Kim, Kwang-Joo; Ulrich, Joachim
2002-01-01
An effective thermal conductivity in layer melt crystallization was explored based on a model considering inclusions inside a crystalline layer during crystal growth, molecular diffusion of inclusions migration due to temperature gradient and heat generation due to recrystallization of inclusions in the crystalline layer. The effective thermal conductivity increases with time, in general, as a result of compactness of the layer. Lower cooling temperature, i.e. greater supercooling, results in a more porous layer with lower effective thermal conductivity. A similar result is seen for the parameter of melt temperature, but less pronounced. A high concentration of the melt results in a high effective thermal conductivity while low concentration yields low effective thermal conductivity. At higher impurity levels in the melt phase, constitutional supercooling becomes more pronounced and unstable growth morphologies occur more easily. Cooling rate and Reynolds number also affect the effective thermal conductivity. The predictions of an effective thermal conductivity agree with the experimental data. The model was applied to estimate the thermal conductivities of the crystalline layer during layer melt crystallization. (author)
Investigation of the Effective Thermal Conductivity in Containment Wall of OPR1000
Energy Technology Data Exchange (ETDEWEB)
Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Kunsan National University, Gunsan (Korea, Republic of)
2016-05-15
Many computational codes used for analyzing pressure of containment was developed such as CAP (Containment Analysis Package). These computational codes consider concrete conductivity instead of thermal conductivity of containment wall which have special geometry as heat sink. For precise analysis, effective thermal conductivity of containment wall has to be measured in individual NPPs. Thermal properties of concrete such as thermal conductivity have been investigated as function of chemical composition and temperature. Generally, containment of OPR1000 is constructed by Prestressed (PS) concrete-a composite material. Containment wall of OPR1000 is made up of steel liner, tendon, rebar and concrete as shown in Figure 1. Role of steel liner protects release of radioactive materials so called leak tightness. The effective thermal conductivity of containment wall in OPR1000 is analyzed by numerical tool (CFD) and compared with thermal conductivity models in composite solids. The effective thermal conductivity of containment wall of OPR1000 is investigated by numerical analysis (CFD). The thermal conductivity of reinforced concrete is 18.6% higher than that of concrete only. Several models were compared with CFD results. Rayleigh-Parallel liner model agrees well with CFD results. Experiment results will be compared with CFD result and models. CFD result was calculated in low steel volume fraction (0.0809) than that of OPR1000 (0.1043). The effective thermal conductivity in OPR1000 has slightly higher than CFD result because of different volume fraction.
A Fractal Study on the Effective Thermal Conductivity of Porous Media
Qin, X.; Cai, J.; Wei, W.
2017-12-01
Thermal conduction in porous media has steadily received attention in science and engineering, for instance, exploiting and utilizing the geothermal energy, developing the oil-gas resource, ground water flow in hydrothermal systems and investigating the potential host nuclear wastes, etc. The thermal conductivity is strongly influenced by the microstructure features of porous media. In this work, based on the fractal characteristics of the grains, a theoretical model of effective thermal conductivity is proposed for saturated and unsaturated porous media. It is found that the proposed effective thermal conductivity solution is a function of geometrical parameters of porous media, such as the porosity, fractal dimension of granular matrix and the thermal conductivity of the grains and pore fluid. The model predictions are compared with existing experimental data and the results show that they are in good agreement with existing experimental data. The proposed model may provide a better understanding of the physical mechanisms of thermal transfer in porous media than conventional models.
International Nuclear Information System (INIS)
Sitprasert, Chatcharin; Dechaumphai, Pramote; Juntasaro, Varangrat
2009-01-01
The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for
The effect of spheroidizing by thermal cycling in low concentration Cr-Mo alloy steel
International Nuclear Information System (INIS)
Yun, H.S.; Kang, C.Y.
1979-01-01
An intensive study was carried out on spheroidizing of pearlite (Sph) and number of spherical carbide in proeutectoid ferrite (No/100) of low concentration Cr-Mo steel with thermal cycling. Physical and mechanical properties of steel containing 0.33 % C with thermal cycling were compared with those of low concentration Cr-Mo steel with thermal cycling. The effect of normal heat treatment and cooling rate on spheroidizing of pearlite and precipitation of fine spherical carbide in the steels were investigated. The results obtained were as follows: 1) Thermal cycling of low concentration Cr-Mo steel promoted the spheroidizing of pearlite compared with that of steel without Cr and Mo to steel had significant effect on spheroidizing of pearlite. 2) Number of fine spherical carbides of low concentration Cr-Mo steel with thermal cycling was over 5 times to that of fine spherical carbides of hypoeutectoid steel with thermal cycling. 3) Spheroidizing of pearlite and number of fine spherical carbide in proeutectoid ferrite of low concentration Cr-Mo steel with increasing thermal cycle and cooling rate. 4) Hardness of steel with thermal cycling was decreased. However, low concentration Cr-Mo steel had little decreasing rate in hardness with increasing thermal cycle on the basis of 100 times in thermal cycle. Therefore, toughness was considered to be increased with increasing spheroidizing of pearlite without changing mechanical properties. (author)
Directory of Open Access Journals (Sweden)
Pan Pan
2017-02-01
Full Text Available Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC. This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.