WorldWideScience

Sample records for thermal behavior redes

  1. Neuronal networks for the study of buildings thermal behavior; Redes neuronales para el estudio del comportamiento termico de edificios

    Energy Technology Data Exchange (ETDEWEB)

    Marincic, Irene [Universidad de Sonora (Mexico); Del Rio, J. Antonio [Centro Morelense de Innovacion y Transferencia Tecnologica (Mexico)

    2009-07-15

    The evaluation as well as the prediction of buildings thermal behavior involves complex calculations mainly because of its enormous number of variables, many of them difficult to determine. For this type of problems, a possibility is to resort to models of the black box type, that allow the characterization of the building with very few variables, for then to be able to predict its behavior under other circumstances, with greater certainty. One of the black box models of more and more used in diverse disciplines, is the one of the artificial neuronal networks (ANN). These can be used as an alternative method of analysis and prediction, particularly for cases in which many variables take part. In this work a preliminary study is presented that analyzes the accuracy of a model of neuronal network for the prediction of the inside temperatures of a building, given the outside temperatures. A very simple network, of 3 neurons, located in 2 layers is considered. The results of the inside temperatures obtained in the learning as well as in the prediction stage are analyzed, comparing them with the ones obtained using another model of black box previously developed by the authors, the one of the function responded in the dominion of frequencies. [Spanish] Tanto la evaluacion como la prediccion del comportamiento termico de los edificios involucra calculos complejos sobre todo por su enorme numero de variables, muchas de ellas dificiles de determinar. Para este tipo de problemas, una posibilidad es recurrir a modelos del tipo caja negra, que permiten caracterizar al edificio como muy pocas variables, para luego poder predecir su comportamiento bajo otras circunstancias, como mayor certeza. Uno de los modelos de caja negra cada vez mas utilizado en diversas disciplinas, es el de las redes neuronales artificiales (ANN). Estas pueden ser usadas como metodo alternativo de analisis y sobre todo de prediccion, particularmente para los casos en que intervienen muchas variables. En

  2. Thermal behavior of natural zeolites

    International Nuclear Information System (INIS)

    Bish, D.L.

    1993-01-01

    Thermal behavior of natural zeolites impacts their application and identification and varies significantly from zeolite to zeolite. Zeolites evolve H 2 0 upon heating, but recent data show that distinct ''types'' of water (e.g., loosely bound or tightly bound zeolitic water) do not exist. Rather water is bound primarily to extra-framework cations with a continuum of energies, giving rise to pseudocontinuous loss of water accompanied by a dynamic interaction between remaining H 2 0 molecules and extra-framework cations. These interactions in the channels of zeolites give rise to dehydration dependent on the extra-framework cation, in addition to temperature and water vapor pressure. The dehydration reaction and the extra-framework cation also affect the thermal expansion/contraction. Most zeolites undergo dehydration-induced contractions that may be anisotropic, although minor thermal expansion can be seen with some zeolites. Such contractions can be partially or completely irreversible if they involve modifications of the tetrahedral framework and/or if rehydration is sluggish. Thermally induced structural modifications are also driven initially by dehydration and the concomitant contraction and migration of extra-framework cations. Contraction is accommodated by rotations of structural units and tetrahedral cation-oxygen linkages may break. Thermal reactions that involve breaking of tetrahedral cation-oxygen bonds markedly irreversible and may be kinetically limited, producing large differences between short- and long-term heating

  3. Thermal behavior of asphalt cements

    International Nuclear Information System (INIS)

    Claudy, P.M.; Letoffe, J.M.; Martin, D.; Planche, J.P.

    1998-01-01

    Asphalt cements are highly complex mixtures of hydrocarbon molecules whose thermal behavior is of prime importance for petroleum and road industry. From DSC, the determination of several thermal properties of asphalts is given, e.g. glass-transition temperature and crystallized fraction content.The dissolution of a pure n-paraffin C n H 2n+2 in an asphalt, as seen by DSC, should be a single peak. For 20 g of these glasses change with time and temperature. The formation of the crystallized phases is superposed to the enthalpic relaxation of the glasses, making a kinetic study very difficult. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Calibrating thermal behavior of electronics

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  5. Dilation Behavior of Thermal Spray Coatings

    Science.gov (United States)

    Bejarano Lopez, Miryan Lorena

    Thermal Spray (TS) is a very versatile manufacturing process to deposit thick coatings on a variety of substrates. Coatings are used in protective (i.e. wear, chemical attack, high temperature, etc.) and functional (i.e. sensors) applications. TS coatings have a unique lamellar microstructure as a result of the overlapping of millions of molten and partially-molten particles. During processing, high deformation by impact, high temperature, and rapid solidification lead to a complex hierarchical material system that contains a high amount of microstructural defects. The presence of defects in the microstructure contribute to differences in property values in comparison to bulk materials. Thermal stresses and residual strains arise from processing, thermal gradients and thermal exposure. Evaluation of thermal properties, in this case, the coefficient of thermal expansion (CTE) is of vital importance to enhance coating performance. In this dissertation, expansion measurements of various metals, alloys, ceramics, and cermet coatings; were carried out using various techniques (push rod dilatometry, x-ray diffraction XRD, digital image correlation DIC, and curvature method) to determine the dilation behavior at the atomic, micro- and macro-scale levels. The main results were. 1) Mathematical models (Turner and Kerner) used for composite materials, successfully predicted the CTE property of a TS coating where the primary phase is the coating material and the secondary phases can be oxides, precipitates, etc. (formed as a byproduct of the spraying process). CTE was found not to be affected by porosity. 2) Despite the anisotropic behavior characteristic of TS coatings, the experimental results shown that CTE results to be reasonable isotropic within the scope of this study. 3) The curvature method was found to be an alternative technique to obtain the CTE, as well as the Young's modulus of coating in a bi-material strip, with good approximation. 4) An anomalous expansion

  6. Rede residencial

    DEFF Research Database (Denmark)

    Charbonnier, Benoit; Wessing, Henrik; Lanoo, Bart

    2012-01-01

    Com a proliferação dos serviços a distância sobre as redes das operadoras e conectividade de alta velocidade entre dispositivos como TVs, centros de mídia ou PCs, é cada vez maior a pressão sobre as redes residenciais, que no futuro deverão suportar elevadas taxas de dados (acima de 1 Gbit/s), Qo...

  7. Redes empresariales

    OpenAIRE

    Sibylla Brodzinski

    2015-01-01

    Sofisticadas redes semiprivadas de telecomunicaciones que hasta hace pocos años eran ideas irrealizables, hoy cruzan las fronteras y enlazan los países intercambiando datos y agilitando la toma de decisiones. Hoy, la mayoría de las grandes y algunas pequeñas empresas que operan en la región han descubierto las ventajas de estar conectadas al mundo directamente a través de redes digitales.

  8. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  9. Study of thermal behavior of phytic acid

    Directory of Open Access Journals (Sweden)

    André Luis Máximo Daneluti

    2013-06-01

    Full Text Available Phytic acid is a natural compound widely used as depigmenting agent in galenic cosmetic emulsions. However, we have observed experimentally that phytic acid, when heated to 150 ºC for around one hour, shows evidence of thermal decomposition. Few studies investigating this substance alone with regard to its stability are available in the literature. This fact prompted the present study to characterize this species and its thermal behavior using thermal analysis (TG/DTG and DSC and to associate the results of these techniques with those obtained by elemental analysis (EA and absorption spectroscopy in the infrared region. The TG/DTG and DSC curves allowed evaluation of the thermal behavior of the sample of phytic acid and enabled use of the non-isothermal thermogravimetric method to study the kinetics of the three main mass-loss events: dehydration I, dehydration II and thermal decomposition. The combination of infrared absorption spectroscopy and elemental analysis techniques allowed evaluation of the intermediate products of the thermal decomposition of phytic acid. The infrared spectra of samples taken during the heating process revealed a reduction in the intensity of the absorption band related to O-H stretching as a result of the dehydration process. Furthermore, elemental analysis results showed an increase in the carbon content and a decrease in the hydrogen content at temperatures of 95, 150, 263 and 380 °C. Visually, darkening of the material was observed at 150 °C, indicating that the thermal decomposition of the material started at this temperature. At a temperature of 380 °C, thermal decomposition progressed, leading to a decrease in carbon and hydrogen. The results of thermogravimetry coupled with those of elemental analysis allow us to conclude that there was agreement between the percentages of phytic acid found in aqueous solution. The kinetic study by the non-isothermal thermogravimetric method showed that the dehydration

  10. Redes convergentes

    Directory of Open Access Journals (Sweden)

    Ángela Marcela Mejía Fajardo

    2004-01-01

    Full Text Available Las redes convergentes o redes de multiservicio hacen referencia a la integración de los servicios de voz, datos y video sobre una sola red basada en IP como protocolo de nivel de red. En este artículo se presenta la integración de servicios de voz sobre redes IP (VoIP como ejemplo de red convergente. La arquitectura de esta red está constituida básicamente, por el media gateway, el controlador de media gateway, el gateway de señalización y el gatekeeper. Las redes de convergencia han tenido y tendrán aún dificultades técnicas qué superar ya que los distintos servicios por ofrecer tienen diferentes características y requerimientos de red, por tanto es importante hablar aquí de ingeniería de tráfico y mecanismos que garanticen calidades de servicio.

  11. Thermal behavior of extracted and delignified pine wood flour

    Science.gov (United States)

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark; Yongming Fan; Rebecca E. Ibach

    2014-01-01

    To investigate the effect of extractives and lignin on the thermal stability of wood flour (WF), thermogravimetric analysis was used to determine thermal degradation behavior of extracted and delignified mixed pine WF. The contribution of lignin to thermal stability was greater than that of extractives. Removing extractives resulted in improved thermal stability by...

  12. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2002-01-01

    Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  13. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  14. Thermal conductivity behavior of boron carbides

    Science.gov (United States)

    Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.

    1983-01-01

    Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.

  15. Oxidation and thermal behavior of Jatropha curcas biodiesel ...

    African Journals Online (AJOL)

    The induction period of fresh Jatropha curcas biodiesel (JCB) is 3.27 hr. Also the thermal stability of JCB is very poor in terms of activation energy (Ea) and frequency factor (f). The thermal and oxidation behavior is also affected adversely by the container metal. The present paper is dealing with the study of oxidation and ...

  16. Dispersal, behavioral responses and thermal adaptation in Musca domestica

    DEFF Research Database (Denmark)

    Kjaersgaard, Anders; Blackenhorn, Wolf U.; Pertoldi, Cino

    Behavioral traits can have great impact on an organism’s ability to cope with or avoidance of thermal stress, and are therefore of evolutionary importance for thermal adaptation. We compared the morphology, heat resistance, locomotor (walking and flying) activity and flight performance of three...

  17. Effect of an Opaque Reflecting Layer on the Thermal Behavior of a Thermal Barrier Coating

    Science.gov (United States)

    Spuckler, Charles M.

    2007-01-01

    A parametric study using a two-flux approximation of the radiative transfer equation was performed to examine the effects of an opaque reflective layer on the thermal behavior of a typical semitransparent thermal barrier coating on an opaque substrate. Some ceramic materials are semitransparent in the wavelength ranges where thermal radiation is important. Even with an opaque layer on each side of the semitransparent thermal barrier coating, scattering and absorption can have an effect on the heat transfer. In this work, a thermal barrier coating that is semitransparent up to a wavelength of 5 micrometers is considered. Above 5 micrometers wavelength, the thermal barrier coating is opaque. The absorption and scattering coefficient of the thermal barrier was varied. The thermal behavior of the thermal barrier coating with an opaque reflective layer is compared to a thermal barrier coating without the reflective layer. For a thicker thermal barrier coating with lower convective loading, which would be typical of a combustor liner, a reflective layer can significantly decrease the temperature in the thermal barrier coating and substrate if the scattering is weak or moderate and for strong scattering if the absorption is large. The layer without the reflective coating can be about as effective as the layer with the reflective coating if the absorption is small and the scattering strong. For low absorption, some temperatures in the thermal barrier coating system can be slightly higher with the reflective layer. For a thin thermal barrier coating with high convective loading, which would be typical of a blade or vane that sees the hot sections of the combustor, the reflective layer is not as effective. The reflective layer reduces the surface temperature of the reflective layer for all conditions considered. For weak and moderate scattering, the temperature of the TBC-substrate interface is reduced but for strong scattering, the temperature of the substrate is increased

  18. Making Heat Visible: Promoting Energy Conservation Behaviors Through Thermal Imaging.

    Science.gov (United States)

    Goodhew, Julie; Pahl, Sabine; Auburn, Tim; Goodhew, Steve

    2015-12-01

    Householders play a role in energy conservation through the decisions they make about purchases and installations such as insulation, and through their habitual behavior. The present U.K. study investigated the effect of thermal imaging technology on energy conservation, by measuring the behavioral effect after householders viewed images of heat escaping from or cold air entering their homes. In Study 1 ( n = 43), householders who received a thermal image reduced their energy use at a 1-year follow-up, whereas householders who received a carbon footprint audit and a non-intervention control demonstrated no change. In Study 2 ( n = 87), householders were nearly 5 times more likely to install draught proofing measures after seeing a thermal image. The effect was especially pronounced for actions that addressed an issue visible in the images. Findings indicate that using thermal imaging to make heat loss visible can promote energy conservation.

  19. Thermal Degradation and Combustion Behavior of Polypropylene/MWCNT Composites

    Science.gov (United States)

    Zaikov, G. E.; Rakhimkulov, A. D.; Lomakin, S. M.; Dubnikova, I. L.; Shchegolikhin, A. N.; Davidov, E. Ya.

    2010-06-01

    Studies of thermal and fire-resistant properties of the polypropylene/multi-walled carbon nanotube composites (PP/MWCNT) prepared by means of melt intercalation are discussed. The sets of the data acquired with the aid of non-isothermal TG experiments have been treated by the model kinetic analysis. The thermal-oxidative degradation behavior of PP/MWCNT and stabilizing effect caused by addition of MWCNT has been investigated by means of TGA and EPR spectroscopy. The results of cone calorimetric tests lead to the conclusion that char formation plays a key role in the mechanism of flame retardation for nanocomposites. This could be explained by the specific antioxidant properties and high thermal conductivity of MWCNT which determine high-performance carbonization during thermal degradation process. Comparative analysis of the flammability characteristics for PP-clay/MWCNT nanocomposites was provided in order to emphasize the specific behavior of the nanocomposites under high-temperature tests.

  20. Thermal Behavior of Green Roofs Applied to Tropical Climate

    Directory of Open Access Journals (Sweden)

    Grace Tibério Cardoso

    2013-01-01

    Full Text Available The main goal of this paper is to present results on an experimental field about the green roofs thermal behavior, compared to other traditional roof covering systems. On the one hand, it intends to describe shortly the constructive system of a green roof with a lightweight building system, which has a sustainable building materials character and, on the other, it worries with the water reuse and with the run-off delay. The main methodological procedure adopted to study the thermal behavior of green roof was installing thermocouples to collect surface temperatures and indoor air, later comparing them with existing prototypes in an experimental plot. The thermal behavior analysis of cover systems was assessed by a representative episode of the climate fact, based on the dynamic climate approach. The experimental results from internal air temperature measurements show that the green roofs applied to warm and dry climates also provide an interesting time lag with surface and internal air temperature reduction.

  1. Degradation Behavior of Thermal Stabilized Polyacrylonitrile Fibers

    Directory of Open Access Journals (Sweden)

    LEI Shuai

    2017-05-01

    Full Text Available In the temperature range of 300-800℃, 40%-50% of the mass lost during the processing of polyacrylonitrile based carbon fiber (PANCF. Understanding the degradation behavior will be valuable in understanding the formation mechanism of pseudo-graphite structure, and providing theoretic basis for producing high performance carbon fiber and increasing the carbonization yield. The simulation of the degradation progress was carried out on the thermogravimetric analyzer (TGA, the results show that there are two degradation steps for PAN fiber stabilized in air, and controlled by cyclization coefficient and oxygen content. The cyclization coefficient and oxygen content are effective to the density of carbon fiber by influencing the degradation behavior, which cause defects in the fiber. The higher cyclization coefficient leads to form less structural defects and higher density of the fiber; on the contrary, the higher oxygen content leads to form more structural defects and lower density of the fiber.

  2. Mold Flux Crystallization and Mold Thermal Behavior

    Science.gov (United States)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  3. Anisotropic Thermal Behavior of Silicone Polymer, DC 745

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jillian Cathleen [Univ. of Oregon, Eugene, OR (United States). Dept. of Chemistry; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Torres, Joseph Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Volz, Heather Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallegos, Jennifer Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yang, Dali [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In material applications, it is important to understand how polymeric materials behave in the various environments they may encounter. One factor governing polymer behavior is processing history. Differences in fabrication will result in parts with varied or even unintended properties. In this work, the thermal expansion behavior of silicone DC 745 is studied. Thermomechanical analysis (TMA) is used to determine changes in sample dimension resulting from changes in temperature. This technique can measure thermal events such as the linear coefficient of thermal expansion (CTE), melting, glass transitions, cure shrinkage, and internal relaxations. Using a thermomechanical analyzer (Q400 TMA), it is determined that DC 745 expands anisotropically when heated. This means that the material has a different CTE depending upon which direction is being measured. In this study, TMA experiments were designed in order to confirm anisotropic thermal behavior in multiple DC 745 samples of various ages and lots. TMA parameters such as temperature ramp rate, preload force, and temperature range were optimized in order to ensure the most accurate and useful data. A better understanding of the thermal expansion of DC 745 will allow for more accurate modeling of systems using this material.

  4. Verdon: code of mechanical and thermal behavior of fuel element

    International Nuclear Information System (INIS)

    Courtois, C.; Truffert, J.

    1979-01-01

    Verdon code must be used for analysis and simulation of mechanical, two-dimensional, thermal and physico-chemical behavior of fuel oxide pin in steady-state and transient conditions. Calculation can be done in plane or axisymmetric geometry. Radial, one dimensional, thermal analysis works with finite differences. It takes into account the fissile material's evolution (radial redistribution, flux deepening ...) and the main fuel physico-chemical properties (conductivity, migration, fission gas release ...). Only thermal consequences of fuel mechanical behavior: fuel-cladding gap width, crack formation, creep ... are submitted to a two dimensional analysis. Mechanical analysis works in two dimensional, finite elements, plane or axisymmetric geometry. The mesh represents a part of fuel and cladding pin [fr

  5. Study of electrical and thermal characteristics of inverters for grid-connected photovoltaic systems; Estudo de caracteristicas eletricas e termicas de inversores para sistemas fotovoltaicos conectados a rede

    Energy Technology Data Exchange (ETDEWEB)

    Rampinelli, Giuliano Arns

    2010-12-15

    Grid-connected photovoltaic systems directly convert solar energy into electrical energy delivering to the distribution grid a clean and renewable energy. These systems are basically formed by an array of photovoltaic modules and inverters. The inverters are responsible for converting direct current to alternating current. A study of electrical and thermal characteristics of inverters used in grid-connected photovoltaic systems from a theoretical and experimental analysis. The inverters tests were carried out in two stages: the first stage was performed at Solar Energy Lab. of the Federal University of Rio Grande do Sul (UFRGS), Brazil, where it was used a 4,8 kW{sub p} grid-connected photovoltaic system and ten inverters of different manufacturers. The inverters electrical characteristics measured and analyzed were: direct current to alternating current conversion efficiency, maximum power point tracker efficiency, power factor and harmonic distortion in current and voltage. Inverters thermal testing was also conducted and its results are presented ana analyzed. The second stage of the experimental tests was performed at Photovoltaic Solar Energy Lab. at CIEMAT in Spain. It was used 3 kW{sub p} photovoltaic system and seven inverters of different manufacturers. The inverters are single-phase, up to 5 kW and different topologies (high frequency transformer, low frequency transformer and transformerless). The influence of DC voltage input in the behavior of DC to AC conversion efficiency and power factor was analyzed. The results of the tests allowed the development of mathematical models that describe the electrical and thermal behavior of the inverters. The proposed mathematical models were inserted into computer simulation software developed at UFRGS named FVConect. The evolution of the simulation results compared to the experimental results validates the proposed models. The analysis of the behavior of the inverters improves the understanding of the operating os

  6. Thermal Behavior of Tacca leontopetaloides Starch-Based Biopolymer

    Directory of Open Access Journals (Sweden)

    Nurul Shuhada Mohd Makhtar

    2013-01-01

    Full Text Available Starch is used whenever there is a need for natural elastic properties combined with low cost of production. However, the hydrophilic properties in structural starch will decrease the thermal performance of formulated starch polymer. Therefore, the effect of glycerol, palm olein, and crude palm oil (CPO, as plasticizers, on the thermal behavior of Tacca leontopetaloides starch incorporated with natural rubber in biopolymer production was investigated in this paper. Four different formulations were performed and represented by TPE1, TPE2, TPE3, and TPE4. The compositions were produced by using two-roll mill compounding. The sheets obtained were cut into small sizes prior to thermal testing. The addition of glycerol shows higher enthalpy of diffusion in which made the material easily can be degraded, leaving to an amount of 6.6% of residue. Blending of CPO with starch (TPE3 had a higher thermal resistance towards high temperature up to 310°C and the thermal behavior of TPE2 only gave a moderate performance compared with other TPEs.

  7. Analysis on the thermal behavior of the DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seoung; Bae, Kee Kwang; Jung, In Hwa [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    The performance assessment codes of the fuel rod were analysed for the irradiation of DUPIC fuel at HANARO(High flux Advanced Neutron Application Reactor). FEMAXI-IV code was chosen, and the models related to the thermal behaviour was evaluated. Input data related to thermal conductivities and thermal expansions of DUPIC pellet and cladding were modified. Using modified FEMAXI-IV code, the irradiation behavior of DUPIC mini-element which is irradiated with uninstrumented capsule in HANARO was carried out. The centerline temperature at maximum linear power rate of 488 w/cm and 447 w/cm in case for 24 MW and 22 MW of HANARO power was calculated and for the comparison of the results, GENGTC and HEATING codes were used too. In HEATING code, the centerline temperature was slightly higher than those of other codes, because only thermal conduction was considered. If considering the thermal expansion, the result will be similar to FEMAXI-IV. The result of GENGTC and FEMAXI-IV code almost showed same temperature distribution because both codes considered the thermal expansion. (author). 22 refs., 6 figs., 9 tabs.

  8. Thermal behavior remains engaged following exercise despite autonomic thermoeffector withdrawal.

    Science.gov (United States)

    Vargas, Nicole T; Chapman, Christopher L; Sackett, James R; Abdul-Rashed, Jabril; McBryde, Muhamed; Johnson, Blair D; Gathercole, Rob; Schlader, Zachary J

    2018-05-01

    We tested the hypothesis that thermal behavior during the exercise recovery compensates for elevated core temperatures despite autonomic thermoeffector withdrawal. In a thermoneutral environment, 6 females and 6 males (22 ± 1 y) cycled for 60 min (225 ± 46 W metabolic heat production), followed by 60 min passive recovery. Mean skin and core temperatures, skin blood flow, and local sweat rate were measured continually. Subjects controlled the temperature of their dorsal neck to perceived thermal comfort using a custom-made neck device. Neck device temperature provided an index of thermal behavior. Mean body temperature, calculated as the average of mean skin and core temperatures, provided an index of the stimulus for thermal behavior. To isolate the independent effect of exercise on thermal behavior during recovery, data were analyzed post-exercise the exact minute mean body temperature recovered to pre-exercise levels within a subject. Mean body temperature returned to pre-exercise levels 28 ± 20 min into recovery (Pre: 33.5 ± 0.2, Post: 33.5 ± 0.2 °C, P = 0.20), at which point, mean skin temperature had recovered (Pre: 29.6 ± 0.4, Post: 29.5 ± 0.5 °C, P = 0.20) and core temperature (Pre: 37.3 ± 0.2, Post: 37.5 ± 0.3 °C, P = 0.01) remained elevated. Post-exercise, skin blood flow (Pre: 59 ± 78, Post: 26 ± 25 PU, P = 0.10) and local sweat rate (Pre: 0.05 ± 0.25, Post: 0.13 ± 0.14 mg/cm 2  min -1 , P = 0.09) returned to pre-exercise levels, while neck device temperature was depressed (Pre: 27.4 ± 1.1, Post: 21.6 ± 7.4 °C, P = 0.03). These findings suggest that thermal behavior compensates for autonomic thermoeffector withdrawal in the presence of elevated core temperatures post-exercise. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Lipophilic phytosterol derivatives: synthesis, thermal property and nanoemulsion behavior

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Phytosterols and their esters have been reported as a cholesterol lowering agent in human. However, natural phytosterols have a low solubility in both water and fat resulting in a poor absorption in intestine. To improve the intestinal absorption and bioavailability of phytosterols, conversion...... of phytosterols into enzyme-liable lipophilic derivatives, such as fatty acid esters was one of the possible strategies. Differences in molecular structures of modified phytosterols may result in the differences in their thermal and micelling behaviors. Therefore, the objectives of this study were to improve...... the productive yield of a series of -sitosteryl fatty acid esters (C2-C18) and to investigate the thermal property and nano-emulsion behaviors of those compounds. This work reported a novel approach to synthesize phytosterol (-sitosterol as a model) fatty acid ester by employing Candida antarctica lipase...

  10. Thermal and sorption behavior of polyacrylonitrile supported hydrous titanium dioxide

    International Nuclear Information System (INIS)

    Ali, I.M.; El-Zahhar, A.A.; Zakaria, E.S.

    2005-01-01

    Modification of the physico-chemical properties of hydrous titanium dioxide (TiO 2 ) was conducted by using binding polyacrylonitrile (PAN) for the preparation of larger size particles having higher granular strength. The thermal behavior of the obtained composite has been studied by thermogravimetric and differential thermal analysis (TG/DTA). Sorption behavior of the TiO 2 -PAN composite for removal of some hazardous radionuclides has been studied at different conditions such as, pH, contact time, ion concentrations and reaction temperature as well as the drying temperature. The effects of interfering ions as well as some complexing agents on the distribution ratio of the sorption process have been determined. As a result of the obtained data the optimum conditions for the removal of the studied radionuclides were recommended. (author)

  11. Thermal behavior of spatial structures under solar irradiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Liao, Xiangwei; Chen, Zhihua; Zhang, Qian

    2015-01-01

    The temperature, particularly the non-uniform temperature under solar irradiation, is the main load for large-span steel structures. Due the shortage of in-site temperature test in previous studies, an in-site test was conducted on the large-span steel structures under solar irradiation, which was covered by glass roof and light roof, to gain insight into the temperature distribution of steel members under glass roof or light roof. A numerical method also was presented and verified to forecast the temperature of steel member under glass roof or light roof. Based on the on-site measurement and numerical analyses conducted, the following conclusions were obtained: 1) a remarkable temperature difference exists between the steel member under glass roof and that under light roof, 2) solar irradiation has a significant effect on the temperature distribution and thermal behavior of large-span spatial structures, 3) negative thermal load is the controlling factor for member stress, and the positive thermal load is the controlling factor for nodal displacement. - Highlights: • Temperature was measured for a steel structures under glass roof and light roof. • Temperature simulation method was presented and verified. • The thermal behavior of steel structures under glass or light roof was presented

  12. Thermal behavior of novel hybrid inorganic-organic phosphazene polymers

    NARCIS (Netherlands)

    Bosscher, G; Wieringa, RH; Jekel, AP; vandeGrampel, JC

    The thermal behavior of the following systems have been investigated by TGA and XPS: the homopolymer of N3P3Cl4(CH3)(CH2C6H4CH=CH2) (1), copolymers of 1 with MMA and styrene, and copolymers of N3P3Cl4(i-C3H7) {C[OC(O)CH3]=CH2} (2) with MMA and styrene. Upon heating under TGA conditions the highest

  13. Simulation and test of the thermal behavior of pressure switch

    Science.gov (United States)

    Liu, Yifang; Chen, Daner; Zhang, Yao; Dai, Tingting

    2018-04-01

    Little, lightweight, low-power microelectromechanical system (MEMS) pressure switches offer a good development prospect for small, ultra-long, simple atmosphere environments. In order to realize MEMS pressure switch, it is necessary to solve one of the key technologies such as thermal robust optimization. The finite element simulation software is used to analyze the thermal behavior of the pressure switch and the deformation law of the pressure switch film under different temperature. The thermal stress releasing schemes are studied by changing the structure of fixed form and changing the thickness of the substrate, respectively. Finally, the design of the glass substrate thickness of 2.5 mm is used to ensure that the maximum equivalent stress is reduced to a quarter of the original value, only 154 MPa when the structure is in extreme temperature (80∘C). The test results show that after the pressure switch is thermally optimized, the upper and lower electrodes can be reliably contacted to accommodate different operating temperature environments.

  14. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Zhong, Xinghua; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-01-01

    Highlights: • Gd 2 Zr 2 O 7 /YSZ DCL thermal barrier coating was designed and fabricated. • The Gd 2 Zr 2 O 7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd 2 Zr 2 O 7 , GZ) as the top ceramic layer and 4.5 mol% Y 2 O 3 partially-stabilized ZrO 2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y 2 O 3 partially-stabilized ZrO 2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  15. The behavior of multilayer ceramic protections at quick thermal shock

    Directory of Open Access Journals (Sweden)

    Alexandru MIHAILESCU

    2013-06-01

    Full Text Available Protective layers of “hot parts” of the turbo engines as well as co-generative systems of energy industry are exposed to a combination of wear factors which may act together at high values.The main goal of the paper is the behavior of some advanced layers, duplex and triplex, multifunctional, ceramics in relation to the most complex wear factor and disturbing as well, the quick thermal shock.The quick thermal shock test installation designed and constructed by the INCAS covers the domain of some high gradients of heating/cooling and is currently integrated in a network of European infrastructure that evaluates the properties of functional layers for turbo engines.Micro-structure inter- and intra- facial changes gradually induced in ceramic structures are highlighted and on this basis their ranking and selection for application on physical parts are established.

  16. ON THE THERMAL BEHAVIOR OF DIFFERENT TANNED BOVINE LEATHERS

    Directory of Open Access Journals (Sweden)

    VARGANICI Cristian-Dragoş

    2017-05-01

    Full Text Available Leather is one of the most globally spread biomaterial which is obtained by the processing of different animal skins. It encompasses a wide palette of applications, from footwear and clothing to upholsteries and different types of furniture [1], [2], [3]. The main constituent of animal skins is collagen, a supramolecular fibrillar protein in the form of a triple helix. This form endows leather with elasticity, good mechanical properties and softness. A major disadvantage resides in the inapplicability of raw animal hides, due to their microbiological instability and decay through rotting. Microbiological stability is obtained through the tanning process, characterized by protein crosslinking and drying afterwards. After tanning the leather exhibits the required properties for the desired specific applications in terms of aspect, availability and sustainability [4], [5]. The study aims to elucidate the thermal decomposition process of chrome-free tanned bovine hide (wet-white using a new product based on titanium and aluminium salts compared with the same hide tanned by chromium salts (wet-blue. The thermal behavior was studied by dynamic thermogravimetry in nitrogen atmosphere, up to 700 oC. A comparative thermal decomposition study between the different tanned bovine leathers was undertaken.

  17. Thermal Effects on the Bearing Behavior of Composite Joints

    Science.gov (United States)

    Walker, Sandra Polesky

    2001-01-01

    Thermal effects on the pin-bearing behavior of an IM7/PET15 composite laminate are studied comprehensively. A hypothesis presents factors influencing a change in pin-bearing strength with a change in temperature for a given joint design. The factors include the change in the state of residual cure stress, the material properties, and the fastener fit with a change in temperature. Experiments are conducted to determine necessary lamina and laminate material property data for the IM7/PET15 being utilized in this study. Lamina material properties are determined between the assumed stress free temperature of 460 F down to -200 F. Laminate strength properties are determined for several lay-ups at the operating temperatures of 350 F, 70 F, and -200 F. A three-dimensional finite element analysis model of a composite laminate subject to compressive loading is developed. Both the resin rich layer located between lamina and the thermal residual stresses present in the laminate due to curing are determined to influence the state of stress significantly. Pin-bearing tests of several lay-ups were conducted to develop an understanding on the effect of temperature changes on the pin-bearing behavior of the material. A computational study investigating the factors influencing pin-bearing strength was performed. A finite element model was developed and used to determine the residual thermal cure stresses in the laminate containing a hole. Very high interlaminar stress concentrations were observed two elements away from the hole boundary at all three operating temperatures. The pin-bearing problem was modeled assuming a rigid frictionless pin and restraining only radial displacements at the hole boundary. A uniform negative pressure load was then applied to the straight end of the model. A solution, where thermal residual stresses were combined with the state of stress due to pin-bearing loads was evaluated. The presence of thermal residual stresses intensified the interlaminar

  18. Kinetic Study and Thermal Decomposition Behavior of Lignite Coal

    Directory of Open Access Journals (Sweden)

    Mehran Heydari

    2015-01-01

    Full Text Available A thermogravimetric analyzer was employed to investigate the thermal behavior and extract the kinetic parameters of Canadian lignite coal. The pyrolysis experiments were conducted in temperatures ranging from 298 K to 1173 K under inert atmosphere utilizing six different heating rates of 1, 6, 9, 12, 15, and 18 K min−1, respectively. There are different techniques for analyzing the kinetics of solid-state reactions that can generally be classified into two categories: model-fitting and model-free methods. Historically, model-fitting methods are broadly used in solid-state kinetics and show an excellent fit to the experimental data but produce uncertain kinetic parameters especially for nonisothermal conditions. In this work, different model-free techniques such as the Kissinger method and the isoconversional methods of Ozawa, Kissinger-Akahira-Sunose, and Friedman are employed and compared in order to analyze nonisothermal kinetic data and investigate thermal behavior of a lignite coal. Experimental results showed that the activation energy values obtained by the isoconversional methods were in good agreement, but Friedman method was considered to be the best among the model-free methods to evaluate kinetic parameters for solid-state reactions. These results can provide useful information to predict kinetic model of coal pyrolysis and optimization of the process conditions.

  19. Synthesis and thermal behavior of polyacrylonitrile/vinylidene chloride copolymer

    Directory of Open Access Journals (Sweden)

    Robson Fleming

    2014-06-01

    Full Text Available Polyacrylonitrile fiber encompasses a broad range of products based on acrylonitrile (AN which is readily copolymerized with a wide range of ethylenic unsaturated monomers giving rise to polymers with different characteristics and applications. Such products can be designed for cost-effective, flame and heat resistant solutions for the textile industry, aircraft and automotive markets. In the present work acrylonitrile was copolymerized with vinylidene chloride (VDC by conventional suspension polymerization process via redox system, with an initial content of 10%/mass of the VDC monomer. The copolymer average molecular weight was obtained by Gel Permeation Chromatography (GPC and by intrinsic viscosity analysis. To control the polymerization process continuously, qualitative and quantitative analysis of the chloride content in the PAN AN/VDC copolymer structure was accomplished by using X-ray fluorescence and potentiometric titration techniques. A good correlation was found between these two techniques, leading to a straightforward verification of VDC in the polymer structure. The thermal behavior of PAN AN/VDC copolymer was performed by Differential Scanning Calorimetry (DSC and Thermogravimetric Analysis (TGA. The results showed that VDC monomers exhibited a nearly stoichiometric reaction with acrylonitrile, copolymerizing about 90% of its initial mass. VDC changed significantly the polyacrylonitrile thermal behavior, decreasing the polymer degradation temperature by about 40-50°C.

  20. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2004-01-01

    .... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...

  1. INVESTIGATION OF THERMAL BEHAVIOR OF MULTILAYERED FIRE RESISTANT STRUCTURE

    Directory of Open Access Journals (Sweden)

    R. GUOBYS

    2016-09-01

    Full Text Available This paper presents experimental and numerical investigations of thermal behavior under real fire conditions of new generation multilayered fire resistant structure (fire door, dimensions H × W × D: 2090 × 980 × 52 mm combining high strength and fire safety. This fire door consists of two steel sheets (thickness 1.5 and 0.7 mm with stone wool ( = 33 kg/m3, k = 0.037 W/mK, E = 5000 N/m2,  = 0.2 insulating layer in between. One surface of the structure was heated in fire furnace for specified period of time of 60 min. Temperature and deformation of opposite surface were measured from outside at selected measuring points during fire resistance test. Results are presented as temperature-time and thermal deformation-time graphs. Experimental results were compared with numerical temperature field simulation results obtained from SolidWorks®Simulation software. Numerical results were found to be in good agreement with experimental data. The percent differences between door temperatures from simulation and fire resistance test don’t exceed 8%. This shows that thermal behaviour of such multilayered structures can be investigated numerically, thus avoiding costly and time-consuming fire resistance tests. It is established that investigated structure should be installed in a way that places thicker steel sheet closer to the potential heat source than thinner one. It is also obtained that stone wool layer of higher density should be used to improve fire resistance of the structure.

  2. Investigation of the thermal behavior of Philippine natural zeolites

    Science.gov (United States)

    Olegario-Sanchez, Eleanor; Felizco, Jenichi Clairvaux; Mulimbayan, Francis

    2017-12-01

    This study aims to investigate the thermal behavior of natural zeolites from Mangatarem, Pangasinan, Philippines. Results obtained from the XRD pattern revealed that the sample is largely composed of mordenite, a Type I zeolite. In the chemical analysis, Si and Al are proven to be the primary components of the sample, which is typical in an aluminosilicate material. It also has a high Si/Al ratio, which suggests that the material is hydrophilic and thermally stable. The TGA analysis showed that dehydration processes dominate the sample's reaction upon heating up to 1000 °C. The initial dehydration process led to a weight loss that is almost equivalent to the moisture content, as measured by chemical analysis. The succeeding weight loss is most probably due to the dehydration of tightly-bound water and cation dehydration. No structural collapse was observed even up to 1000 °C, which suggests that the material is ideal for industrial applications. Lastly, FTIR results revealed that heating the zeolitic tuff led to possible de-alumination.

  3. Influence of user behavior on unsatisfactory indoor thermal environment

    International Nuclear Information System (INIS)

    Yan, Biao; Long, Enshen; Meng, Xi; Zhang, Yuanze; Hou, Dongqi; Du, Xin

    2014-01-01

    Highlights: • The methodology of numerical simulation of 3D heat-flux visualization is proposed. • A full-scale model of prototype office for each influential factor was set up. • The simulation results were compared with the indoor occupant comfort levels. • The contrast of average temperature increase due to user behavior was presented. - Abstract: In areas of China that have hot summers and cold winters, the overall performance of HVAC systems in the poorly-insulated existing office buildings is generally not satisfactory, especially in extreme weather conditions. The reasons for the unsatisfactory indoor thermal environment were deduced, and to validate the findings, a methodology of numerical simulation for 3D heat-flux visualization was proposed. A full-scale model of a prototype office room was created, with representative working conditions for the characteristics of particular building. The results of the heat-flux visualization and temperature distribution showed that the overall effect was resulted from merged reasons, and that significance ranking of each reason varied when the outside environmental conditions changed. The simulation results were compared with the indoor occupant comfort levels of the volunteers who worked in the target room. Models of possible influential factors such as the outdoor temperature, opening or closing windows, and the effect of window shading devices (WSD) were set up. The influence of user behavior on indoor temperature in opening window, or not using WSD was proven to be significant in causing unfavorable indoor conditions. According to the visualized evaluation and analysis of the various factors, corresponding methods for both improving indoor thermal conditions and saving energy are proposed

  4. Thermal expansion behavior of fluor-chlorapatite crystalline solutions

    Science.gov (United States)

    Hovis, G.; Harlov, D.; Gottschalk, M.; Hudacek, W.; Wildermuth, S.

    2009-04-01

    Apatite Ca5(PO4)3(F,Cl,OH,CO3) occurs widely as an accessory mineral in many igneous and metamorphic rocks and in nature displays a wide range of F-Cl-OH-CO3 mixtures (e.g., O'Reilly and Griffin, 2000) that have been used to interpret the role of fluids, e.g. Cl, F, and OH activities, during metamorphic and igneous processes (e.g., Harlov and Förster, 2002). It is important, therefore, to understand the thermodynamic behavior of these solid solutions, including their thermal expansion properties. Fluorapatite - chlorapatite samples were synthesized at the GFZ-Potsdam (Hovis, Harlov, Hahn and Steigert, 2007) using an adaptation of the molten flux method of Cherniak (2000). Dry CaF2 and CaCl2 (0.1 mole total) were mixed with Ca3(PO4)2 (0.03 moles), placed in a Pt crucible, equilibrated for 15 hours at 1375 °C, cooled to 1220 °C at 3 °C/hour, removed from the oven and cooled in air. Crystals were separated from the flux by boiling the quenched product in water. F:Cl fractions for each sample were determined via Rietveld refinement of X-ray powder diffraction data. Chemical homogeneity was confirmed by Rietveld refinement and high-contrast back-scattered electron imaging. Room-temperature unit-cell volumes were determined at the GFZ-Potsdam through Rietveld analysis of X-ray powder diffraction data and also at Lafayette College by standard unit-cell refinement techniques (Holland and Redfern, 1997) using NBS/NIST 640a Si as an internal standard. High-temperature unit-cell dimensions were calculated from X-ray powder diffraction data collected at Cambridge University from room temperature to 1000 °C on a Bruker D8 X-ray diffractometer. NBS Si again was utilized as an internal standard; high-temperature Si peak positions were taken from Parrish (1953). Results indicate that despite the considerable size difference between fluorine and chlorine ions, reflected by substantially different unit-cell sizes at room temperature, the coefficient of thermal expansion across

  5. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Elnaz Talebi

    2014-01-01

    Full Text Available The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core’s surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  6. Comparative analysis of thermal behavior in hollow nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Beatriz M. dos; Alvim, Antonio C.M., E-mail: bmachado@nuclear.ufrj.br, E-mail: aalvim@gmail.com [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-11-01

    The increase in energy demand in Brazil and in the world is a real problem and several solutions are being considered to mitigate it. Maximization of energy generation, within the safety standards of fuel resources already known, is one of them. In this respect, nuclear energy is a crucial technology to sustain energy demand on several countries. Performances of a solid cylindrical and an annular rod have been verified and compared; where it has been proven that the annular rod can reach a higher nominal power in relation to the solid one. In this paper, the temperature profiles of two distinct nuclear fuel pellets, one of them annular and the other in the shape of a hollow biconcave disc (like the cross section of a red blood cell), were compared to analyze the efficiency and safety of both. The finite differences method allowed the evaluation of the thermal behavior of these pellets, where one specific physical condition was analyzed, regarding convection and conduction at the lateral edges. The results show that the temperature profile of the hollow biconcave disc pellet is lower, about 70 deg C below, when compared to the temperature profile of the annular pellet, considering the same simulation parameters for both pellets. (author)

  7. Effect of thermal-mechanical cycling on thermal expansion behavior of boron fiber-reinforced aluminum matrix composite

    International Nuclear Information System (INIS)

    Qin, Y.C.; He, S.Y.; Yang, D.Z.

    2004-01-01

    The thermal expansion behavior of boron fiber-reinforced aluminum matrix composite subjected to thermal-mechanical cycling (TMC) was studied. Experimental results showed that TMC affected greatly the thermal expansion behavior of the composite. Using a simple analysis model of internal stress in the fibers, the stress change during the thermal expansion coefficient measurements of the composite subjected to TMC was calculated. The results indicated that TMC could induce the interfacial degradation of the composite, and the more the numbers of TMC cycles, or the higher the applied stress level of TMC, the more serious the interfacial degradation of the composite became. The proposed one-dimensional analysis model was proved to be a simple and qualitative approach to probing the interfacial degradation of unidirectional fiber-reinforced metal matrix composites during TMC

  8. Heavy Metals Behavior During Thermal Plasma Vitrification Of Incineration Residues

    Science.gov (United States)

    Cerqueira, Nuno; Vandensteendam, Colette; Baronnet, Jean Marie

    2006-01-01

    Incineration of wastes, widely and increasingly used nowadays, produces residues, mainly bottom ash and filter fly ash. Fly ash is especially problematic because of its high content in heavy metals easily drawn out. Thermal processes, based mainly on electrical arc processes, are used to melt the residues at high temperature and convert them into a relatively inert glass. Consequently, to improve the process and get a glass satisfying regulation, control of heavy metals (lead, zinc, cadmium and chromium…) volatility during plasma fly ash melting and vitrification is needed and basic data concerning vaporization of these metals are required. According to the volatility of these compounds observed during vitrification of fly ash, a predictive model has been used to simulate the elimination of Pb, Zn and S from the melt as a function of time and temperature for a system including chlorides, oxides and sulfates. The objective of this work was the experimental study of heavy metals volatility using optical emission spectroscopy. A twin torch plasma system, mounted above a cold crucible with Ar (or Ar + O2) as plasma gas, has been used. The crucible was filled with synthetic glass in which known amounts of metallic salts were added to obtain the same chemical composition as used in the model. From spectral lines intensities of Ar, the plasma temperature profiles along the observation direction has been first established, before using ratios of spectral lines of Ar and metallic (Pb, Zn) or Cl vapors to reach the evolution of the elements concentrations above the melt. Off-gases have been analyzed by mass spectrometry. The influence of the atmosphere (Ar or Ar + O2) above the crucible has been studied and differences in elements behaviors have been pointed out. The results of the spectroscopic measurements have been compared to the ones issued of modeling, in order to validate our model of vaporization.

  9. The importance of interfacial resistance on the thermal behavior of carbon nanofiber/epoxy composites

    Science.gov (United States)

    Gardea, Frank; Naraghi, Mohammad; Lagoudas, Dimitris C.

    2014-04-01

    This research addresses the thermal transport in carbon nanofiber (CNF)/epoxy composites via finite element modeling. The effects of nanofiber orientation on thermal transport are investigated through Fourier's Law of heat conduction and through simulation of a high magnitude, short heat pulse. The effect of interface thermal resistance on the effective composite thermal conductivity is also quantified. In addition, a simplified lightning strike simulation is modeled in order to analyze the effect of interfacial thermal resistance on composite behavior when subjected to multiple short heat pulses.

  10. Similitud de redes productivas

    OpenAIRE

    Villegas Arias, Gladis Cecilia

    2007-01-01

    Se discuten los hallazgos inferidos de la observación de cuatro redes productivas operantes en Colombia y dedicadas a la producción y comercialización de café, banano, flores y derivados de leche y carne. La pregunta investigativa que orientó este trabajo fue: ¿Qué aspectos son similares en el diseño de las organizaciones en red, operantes en Colombia e incluidas en este estudio? Para contestar esta pregunta, se aplicó la metodología de estudio comparativo de caso al análisis de informac...

  11. Seguridad en redes: firewalls

    OpenAIRE

    Migone, Mirta; Acosta, Laura

    1999-01-01

    El tema de la segundad no es exclusivo del área de la informática sino que, por el contrario, lo rigen principios aplicables a diferentes ambientes, siendo la informática uno de sus tantos casos particulares. Cuando nos referimos al ambiente informático y nos planteamos los problemas de tener bien conservados los trabajos, asegurar la integridad de la información, y la reserva y privacidad de los datos ante extraños, es que se habla de seguridad de redes y de la implementación de sistemas de ...

  12. Thermal Expansion Behavior of Hot-Pressed Engineered Matrices

    Science.gov (United States)

    Raj, S. V.

    2016-01-01

    Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept.

  13. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  14. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior

    Science.gov (United States)

    Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker sus...

  15. Experiments and simulation of thermal behaviors of the dual-drive servo feed system

    Science.gov (United States)

    Yang, Jun; Mei, Xuesong; Feng, Bin; Zhao, Liang; Ma, Chi; Shi, Hu

    2015-01-01

    The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 °C and 2.5 μm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.

  16. A Simplified Tool for Predicting the Thermal Behavior and the Energy Saving Potential of Ventilated Windows

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Larsen, Olena Kalyanova

    2016-01-01

    Currently, the studies of ventilated windows mainly rely on complex fluid and thermal simulation software, which require extensive information, data and are very time consuming. The aim of this paper is to develop a simplified tool to assess the thermal behavior and energy performance of ventilat...

  17. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen, E-mail: caoj@bjfu.edu.cn; Sun, Wenjing

    2015-01-01

    Highlights: • We studied the dynamic wetting behavior of thermally modified wood by wetting models. • We found lower wetting speed of water droplets on thermally modified wood surface. • Dynamic wetting behavior and surface chemical components show a strong correlation. - Abstract: In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C{sub 1}/C{sub 2} ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  18. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    International Nuclear Information System (INIS)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen; Sun, Wenjing

    2015-01-01

    Highlights: • We studied the dynamic wetting behavior of thermally modified wood by wetting models. • We found lower wetting speed of water droplets on thermally modified wood surface. • Dynamic wetting behavior and surface chemical components show a strong correlation. - Abstract: In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C 1 /C 2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood

  19. Thermographic measurement of thermal bridges in buildings under dynamic behavior

    Science.gov (United States)

    Ferrarini, G.; Bison, P.; Bortolin, A.; Cadelano, G.; De Carli, M.

    2016-05-01

    The accurate knowledge of the thermal performance could reduce significantly the impact of buildings on global energy consumption. Infrared thermography is widely recognized as one of the key technologies for building surveys, thanks to its ability to acquire at a glance thermal images of the building envelope. However, a spot measurement could be misleading when the building is under dynamic thermal conditions. In this case data should be acquired for hours or days, depending on the thermal properties of the walls. Long term thermographic monitoring are possible but imply strong challenges from a practical standpoint. This work investigates the possibilities and limitations of spot thermographic surveys coupled with contact probes, that are able to acquire continuously the thermal signal for days, to investigate the thermal bridges of a building. The goal is the estimation of the reliability and accuracy of the measurement under realistic environmental conditions. Firstly, numerical simulations are performed to determine the reference value of an experimental case. Then a long term thermographic survey is performed and integrated with the contact probe measurement, assessing the feasibility of the method.

  20. REDES SOCIALES Y POBREZA

    Directory of Open Access Journals (Sweden)

    Camilo Madariaga Orozco

    2000-01-01

    Full Text Available El ser humano tiene una gran capacidad de adaptarse y transformar las condiciones ambientales para vivir de mejor forma, aun en las situacines más adversas. Estos procesos de transmisión de conocimiento son pasados de generación en generación y se constituyen en el principal mecanismo de adaptación de la especie humana; cada cultura crea un estilo de vida que permite a sus integrantes sobrevivir y reproducirse en un entorno particular. En los ambientes de pobreza, a través de los años de investigaciones que hemos terminado en el marco del Centro de investigaciones en Desarrolo Humano, las redes sociales ha sido uno de los mecanismos más acertados e interesantes que los pobladores de las comunidades pobres practican para superar sus problemas. Producto de las investigaciones hemos hecho un análisis específico de cómo se comportan las redes en esos ambientes de pobreza crítica.

  1. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  2. Dynamic Thermal Features of Insulated Blocks: Actual Behavior and Myths

    Directory of Open Access Journals (Sweden)

    Marta Cianfrini

    2017-11-01

    Full Text Available The latest updates in the European directive on energy performance of buildings have introduced the fundamental “nearly zero-energy building (NZEB” concept. Thus, a special focus needs to be addressed to the thermal performance of building envelopes, especially concerning the role played by thermal inertia in the energy requirements for cooling applications. In fact, a high thermal inertia of the outer walls results in a mitigation of the daily heat wave, which reduces the cooling peak load and the related energy demand. The common assumption that high mass means high thermal inertia typically leads to the use of high-mass blocks. Numerical and experimental studies on thermal inertia of hollow envelope components have not confirmed this general assumption, even though no systematic analysis is readily available in the open literature. Yet, the usually employed methods for the calculation of unsteady heat transfer through walls are based on the hypothesis that such walls are composed of homogeneous layers. In this framework, a study of the dynamic thermal performance of insulated blocks is brought forth in the present paper. A finite-volume method is used to solve the two-dimensional equation of conduction heat transfer, using a triangular-pulse temperature excitation to analyze the heat flux response. The effects of both the type of clay and the insulating filler are investigated and discussed at length. The results obtained show that the wall front mass is not the basic independent variable, since clay and insulating filler thermal diffusivities are more important controlling parameters.

  3. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  4. Field Synergy Analysis and Optimization of the Thermal Behavior of Lithium Ion Battery Packs

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2017-01-01

    Full Text Available In this study, a three dimensional (3D modeling has been built for a lithium ion battery pack using the field synergy principle to obtain a better thermal distribution. In the model, the thermal behavior of the battery pack was studied by reducing the maximum temperature, improving the temperature uniformity and considering the difference between the maximum and maximum temperature of the battery pack. The method is further verified by simulation results based on different environmental temperatures and discharge rates. The thermal behavior model demonstrates that the design and cooling policy of the battery pack is crucial for optimizing the air-outlet patterns of electric vehicle power cabins.

  5. Thermal behavior of Liquidambar orientalis mill wood before and after extraction processes

    Directory of Open Access Journals (Sweden)

    Evren Terzi

    2017-11-01

    Full Text Available The effect of extractives on the thermal behavior of Liquidambar orientalis Mill. (storax wood is studied using thermogravimetric analysis (TGA. To evaluate the effects of polar and apolar extractives on the thermal behavior of wood, sawdust samples from the heartwood of L. orientalis are extracted with either cold water (48 h, hot water (48 h, or ethanol/toluene (1:2 v/v (6 h prior to thermal analysis. Thermogravimetry (TG curves show that polar and apolar extractives promote char formation, increase the amount of residue, and improve the thermal behavior of L. orientalis wood. In addition, derivative thermogravimetry (DTG curves demonstrate that thermal degradation of un-extracted and cold water-extracted wood samples occurs in a single step, while a two-step degradation pattern is seen for hot water- and ethanol/toluene-extracted wood samples. It is also observed that first degradation reactions in hot water and ethanol/toluene-extracted wood samples occur faster than those in unextracted and cold water-extracted wood samples. Although there are approximately half the number of extracted apolar compounds compared to polar compounds, the removal of both types of compounds affect the thermal properties of L. orientalis wood to the same degree. It is thus deduced that apolar extractives significantly affect the thermal behavior of L. orientalis wood.

  6. Anisotropic thermal expansion behaviors of copper matrix in β-eucryptite/copper composite

    International Nuclear Information System (INIS)

    Wang Lidong; Xue Zongwei; Qiao Yingjie; Fei, W.D.

    2012-01-01

    Highlights: ► The thermal expansion behaviors of Cu matrix were studied by in situ XRD. ► The expansion of Cu{1 1 1} plane is linear, that of Cu{2 0 0} is nonlinear. ► The anisotropic thermal expansion of Cu is related to the twinning of Cu matrix. ► The twinning of Cu matrix makes the CTE of the composite increasing. - Abstract: A β-eucryptite/copper composite was fabricated by spark plasma sintering process. The thermal expansion behaviors of Cu matrix of the composite were studied by in situ X-ray diffraction during heating process. The results show that Cu matrix exhibits anisotropic thermal expansion behaviors for different crystallographic directions, the expansion of Cu{1 1 1} plane is linear in the temperature range from 20 °C to 300 °C and the expansion of Cu{2 0 0} is nonlinear with a inflection at about 180 °C. The microstructures of Cu matrix before and after thermal expansion testing were investigated using transmission electronic microscope. The anisotropic thermal expansion behavior is related to the deformation twinning formed in the matrix during heating process. At the same time, the deformation twinning of Cu matrix makes the average coefficient of thermal expansion of the composite increase.

  7. The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel

    Directory of Open Access Journals (Sweden)

    Pošarac Milica

    2009-01-01

    Full Text Available The effect of yttria additive on the thermal shock behavior of magnesium aluminate spinel has been investigated. As a starting material we used spinel (MgAl2O4 obtained by the modified glycine nitrate procedure (MGNP. Sintered products were characterized in terms of phase analysis, densities, thermal shock, monitoring the damaged surface area in the refractory specimen during thermal shock and ultrasonic determination of the Dynamic Young modulus of elasticity. It was found that a new phase between yttria and alumina is formed, which improved thermal shock properties of the spinel refractories. Also densification of samples is enhanced by yttria addition.

  8. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  9. Thermal behavior of the Medicina 32-meter radio telescope

    Science.gov (United States)

    Pisanu, Tonino; Buffa, Franco; Morsiani, Marco; Pernechele, Claudio; Poppi, Sergio

    2010-07-01

    We studied the thermal effects on the 32 m diameter radio-telescope managed by the Institute of Radio Astronomy (IRA), Medicina, Bologna, Italy. The preliminary results show that thermal gradients deteriorate the pointing performance of the antenna. Data has been collected by using: a) two inclinometers mounted near the elevation bearing and on the central part of the alidade structure; b) a non contact laser alignment optical system capable of measuring the secondary mirror position; c) twenty thermal sensors mounted on the alidade trusses. Two series of measurements were made, the first series was performed by placing the antenna in stow position, the second series was performed while tracking a circumpolar astronomical source. When the antenna was in stow position we observed a strong correlation between the inclinometer measurements and the differential temperature. The latter was measured with the sensors located on the South and North sides of the alidade, thus indicating that the inclinometers track well the thermal deformation of the alidade. When the antenna pointed at the source we measured: pointing errors, the inclination of the alidade, the temperature of the alidade components and the subreflector position. The pointing errors measured on-source were 15-20 arcsec greater than those measured with the inclinometer.

  10. Mapping Thermal Habitat of Ectotherms Based on Behavioral Thermoregulation in a Controlled Thermal Environment

    Science.gov (United States)

    Fei, T.; Skidmore, A.; Liu, Y.

    2012-07-01

    Thermal environment is especially important to ectotherm because a lot of physiological functions rely on the body temperature such as thermoregulation. The so-called behavioural thermoregulation function made use of the heterogeneity of the thermal properties within an individual's habitat to sustain the animal's physiological processes. This function links the spatial utilization and distribution of individual ectotherm with the thermal properties of habitat (thermal habitat). In this study we modelled the relationship between the two by a spatial explicit model that simulates the movements of a lizard in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton algorithm as a way to link the physiology knowledge of the animal with the spatial utilization of its microhabitat. On a larger spatial scale, 'thermal roughness' of the habitat was defined and used to predict the habitat occupancy of the target species. The results showed the habitat occupancy can be modelled by the cellular automaton based algorithm at a smaller scale, and can be modelled by the thermal roughness index at a larger scale.

  11. Thermo-Mechanical and Thermal behavior of High-Temperature Structural Materials.

    Science.gov (United States)

    1982-12-31

    Thermomechanical Behavior of High-Temperature Materials. J. of Thermal Insulation (in press). 48. M. Bucknam, L. D. Bentsen and D. P. H. Hasselman, "The...alloying elements on the heat conduction behavior N ,of refractory oxides. Recently a method which produces a more uniform distribution of the alloying...could exhibit anisotropic behavior . In order to assure a valid comparison of the data, the cores from the refractory samples provided by manufacturer

  12. A-thermal elastic behavior of silicate glasses.

    Science.gov (United States)

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique

    2016-02-24

    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.

  13. Characterization and thermal behavior of polymer-modified asphalt

    Directory of Open Access Journals (Sweden)

    Maria da Conceição Cavalcante Lucena

    2004-12-01

    Full Text Available A styrene-butadiene-styrene modified asphalt cement was characterized by infrared, differential scanning calorimetry, thermogravimetric analysis and empirical tests such as ring and ball softening point, penetration and elastic recovery. After aging in the rolling thin-film oven, the polymer-modified asphalt presented structural changes relating to oxidation of the material. The infrared spectra showed an increase in hydroxyl groups and the formation of carbonyl compounds and sulphoxides. The percentage of crystallized fraction calculated from differential scanning calorimetry was 0.41%. Thermogravimetric analyses in inert and oxidative atmospheres revealed distinct events during thermal decomposition; the initial activation energies were similar, but changed as the process evolved.

  14. Thermal Behavior of Pinan-2-ol and Linalool

    OpenAIRE

    Leiner, Janne; Stolle, Achim; Ondruschka, Bernd; Netscher, Thomas; Bonrath, Werner

    2013-01-01

    Linalool is an important intermediate for syntheses of isoprenoid fragrance compounds and vitamins A and E. One process option for its production is the thermal gas-phase isomerization of cis- and trans-pinan-2-ol. Investigations of this reaction were performed in a flow-type apparatus in a temperature range from 350–600 °C and a residence time range of 0.6–0.8 s. Rearrangement of the bicyclic alcohol led to linalool, plinols arising from consecutive reactions of linalool and other side produ...

  15. Thermal Behavior Optimization in Multi-MW Wind Power Converter by Reactive Power Circulation

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2014-01-01

    The influence of actively controlled reactive power on the thermal behavior of multi-MW wind power converter with a Doubly-Fed Induction Generator (DFIG) is investigated. First, the allowable range of internal reactive power circulation is mapped depending on the DC-link voltage as well as the in......The influence of actively controlled reactive power on the thermal behavior of multi-MW wind power converter with a Doubly-Fed Induction Generator (DFIG) is investigated. First, the allowable range of internal reactive power circulation is mapped depending on the DC-link voltage as well...... as the induction generator and power device capacity. Then, the effects of reactive power circulation on current characteristic and thermal distribution of the two-level back-to-back power converter are analyzed and compared. Finally, the thermal-oriented reactive power control method is introduced to the system...

  16. Numerical model for the thermal behavior of thermocline storage tanks

    Science.gov (United States)

    Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.

    2017-10-01

    Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.

  17. Air flow thermal behavior along LHC sector 3-4

    CERN Document Server

    Gasser, D

    2003-01-01

    The heat flow released to the air along the LHC sector 3-4 will be removed by the ventilation system, which will operate at 45000 m3/h. The present study aims at evaluating the thermal contribution, in the heat removal, of the rock cold mass surrounding the tunnel wall. A thermal model of the tunnel is built in that purpose. This model is run in two configurations, one assuming the tunnel walls to be adiabatic and the other one taking into account the heat transfer through the walls to the surrounding rock. The comparison of the results given in both configurations allows the contribution of the rock cooling effect to be estimated. This contribution turns out to be about 10% of the total heat released in the tunnel. Nevertheless, such a figure needs to be taken with caution as it strongly depends on the heat transfer coefficients across the wall and surrounding rocks, which are assumed in the model. These coefficients are taken from the literature and are not confirmed by any experimental measurements.

  18. Numerical model for the thermal behavior of thermocline storage tanks

    Science.gov (United States)

    Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.

    2018-03-01

    Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.

  19. Thermal behaviors of mechanically activated pyrites by thermogravimetry (TG)

    International Nuclear Information System (INIS)

    Hu Huiping; Chen Qiyuan; Yin Zhoulan; Zhang Pingmin

    2003-01-01

    The thermal decompositions of mechanically activated and non-activated pyrites were studied by thermogravimetry (TG) at the heating rate of 10 K min -1 in argon. Results indicate that the initial temperature of thermal decomposition (T di ) in TG curves for mechanically activated pyrites decreases gradually with increasing the grinding time. The specific granulometric surface area (S G ), the structural disorder of mechanically activated pyrites were analyzed by X-ray diffraction laser particle size analyzer, and X-ray powder diffraction analysis (XRD), respectively. The results show that the S G of mechanically activated pyrites remains almost constant after a certain grinding time, and lattice distortions (ε) rise but the crystallite sizes (D) decrease with increasing the grinding time. All these results imply that the decrease of T di in TG curves of mechanically activated pyrites is mainly caused by the increase of lattice distortions ε and the decrease of the crystallite sizes D of mechanically activated pyrite with increasing the grinding time. The differences in the reactivity between non-activated and mechanically activated pyrites were observed using characterization of the products obtained from 1 h treatment of non-activated and mechanically activated pyrites at 713 K under inert atmosphere and characterization of non-activated and mechanically activated pyrites exposed to ambient air for a certain period

  20. Solidariedade em Redes

    Directory of Open Access Journals (Sweden)

    Angie Gomes Gomes Biondi

    2015-03-01

    Full Text Available O discurso da comum humanidade que vinculava sofredor e espectador na base de uma moralidade piedosa caducou frente às solicitações de uma sociedade tecnológica, multicultural e pluralista. Ao repertório do protesto e da denúncia, como instrumentos privilegiados da modernidade, prevalecem agora novos apelos à chamada “sensibilidade humanitária” (CHOULIARAKI, 2013 posta diretamente a cada sujeito social conectado. Deste modo, uma profusão de causas individuais tem se amontoado nas redes sociais (não raro, multiplicadas pelos meios de comunicação tradicionais todos os dias. Causas que se declaram legítimas e justificáveis em tempos de uma precária e insuficiente participação do Estado e que se orientam para uma ação direta às vítimas e oprimidos. Contudo, as interações afetivas que subjazem estes apelos solidários se coadunam à lógica de um capitalismo flexível que toma a própria vida em sua vertente criativa, como núcleo de produção econômica, ou seja, como forma de capitalização da própria vida cotidiana. Neste texto buscamos desenvolver uma etapa descritiva destas convocações solidárias como uma prática baseada na lógica conexionista que tem vigorado em nossa sociedade. Alguns casos são trazidos para pensar o lugar da vítima enquanto instância privilegiada de sua própria enunciação, os mecanismos de visibilidade que são articulados na comunicação modulada pelas redes e em que medida é possível pensar tais práticas como uma espécie de atualização das ações solidárias baseadas em uma “política do conexionismo”, conforme indicam os estudos de Boltanski e Chiapello (2013.

  1. Synthesis and Thermal behaviors of 1, 8-Dihydroxy-4, 5-Dinitroanthraquinone Nickel Salt

    Science.gov (United States)

    Wang, Ying-lei; Zhao, Feng-qi; Yi, Jian-hua; Ji, Yue-ping; Wang, Wei; Xu, Si-yu; An, Ting; Gao, Fu-lei

    2017-11-01

    A novel energetic combustion catalyst, 1, 8-dihydroxy-4, 5-dinitroanthraquinone nickel salt (DHDNENi), was firstly synthesized by the process of metathesis reaction in a yield of 91%, and its structure was characterized by IR, element analysis, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The thermal behavior and non-isothermal decomposition reaction kinetics of DHDNENi were studied by means of different heating rate differential scanning calorimetry (DSC). The kinetic equation of major exothermic decomposition reaction for DHDNENi is obtained. The self-accelerating decomposition temperature (TSADT) and critical temperature of thermal explosion (Tb) are 574.4K and 593.4K, respectively. The thermal stability of DHDNENi is good.

  2. Thermal behavior optimization in multi-MW wind power converter by reactive power circulation

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2013-01-01

    In the paper, an actively controlled reactive power influence to the thermal behavior of multi-MW wind power converter with Doubly-Fed Induction Generator (DFIG) is investigated. The allowable range of internal reactive power circulation is firstly mapped depending on the DC-link voltage as well...... as the induction generator and power device capacity. Then the effects of reactive power circulation towards current characteristic and thermal distribution of the two-level back-to-back power converter is analyzed and compared. Finally the thermal-oriented reactive power is introduced to the system...

  3. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis

    International Nuclear Information System (INIS)

    Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-01-01

    Graphical abstract: - Highlights: • Co-pyrolysis of biomass together with the plastic wastes in thermogravimetric analyzer. • Investigations into thermal and kinetic behaviors at high temperature regions. • Determination of the kinetic parameters. - Abstract: In this study, co-pyrolysis characteristics and kinetics of biomass-plastic blends were investigated. Cotton stalk, hazelnut shell, sunflower residue, and arid land plant Euphorbia rigida, were blended in definite ratio (1:1, w/w) with polyvinyl chloride (PVC) and polyethylene terephthalate (PET). Experiments were conducted with a heating rate of 10 °C min −1 from room temperature to 800 °C in the presence of N 2 atmosphere with a flow rate of 100 cm 3 min −1 . After thermal decomposition in TGA, a kinetic analysis was performed to fit thermogravimetric data and a detailed discussion of co-pyrolysis mechanism was achieved. Experimental results demonstrated that the structural differences between biomass and plastics directly affect their thermal decomposition behaviors. Biomass pyrolysis generally based on three main steps while plastic material’s pyrolysis mechanism resulted in two steps for PET and three steps for PVC. Also, the required activation energies needed to achieve the thermal degradation for plastic were found higher than the biomass materials. In addition, it can be concluded that the evaluation of plastic materials together with biomass created significant changes not only for the thermal behaviors but also for the kinetic behaviors

  4. Local thermal and structural behavior of concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Gluekler, E.L.

    1979-01-01

    At elevated temperatures, structural responses of surface heated concrete walls are significantly affected by the release of capillary, adsorbed and chemically bound water. Two major phenomena are generally observed: (1) degradation of concrete strength because of the loss of hydraulic bonds in gelatious, hydrated compounds, shrinkage of the cement matrix, increase in porosity and microcracking, and (2) pressurization of concrete pores because of vaporization of water and expansion of gases. Under certain conditions, the combined effects of material degradation and internal pressurization could lead to crack formation parallel to the surface, or spallation. This failure mode has been observed in some experiments, but not consistently. In this paper, a criterion for concrete spallation is described which depends on (1) loading conditions including pore pressures and thermal stresses, and (2) materials characteristics at elevated temperatures. (orig.)

  5. Synthesis, characterization and thermal behavior of rare earth amido sulfonates

    International Nuclear Information System (INIS)

    Luiz, Jose Marques; Nunes, Ronaldo Spezia; Matos, Jivaldo do Rosario

    2013-01-01

    Hydrated compounds prepared in aqueous solution by reaction between amidosulfonic acid [H 3 NSO 3 ] and suspensions of rare earth hydroxycarbonates [Ln 2 (OH) x (CO 3 ) y .zH 2 O] were characterized by elemental analysis (% Ln, % N and % H), infrared spectroscopy (FTIR) and thermogravimetry (TG). The compounds presented the stoichiometry Ln(NH 2 SO 3 ) 3 .xH 2 O (where x = 1, 5, 2.0 or 3.0). The IR spectra showed absorptions characteristic of H 2 O molecules and NH 2 SO 3 groups. Degree of hydration, thermal decomposition steps and formation of stable intermediates of the type [Ln 2 (SO 4 ) 3 ] and (Ln 2 O 2 SO 4 ), besides formation of their oxides, was determined by thermogravimetry. (author)

  6. Thermal fatigue behavior of US and Russian grades of beryllium

    International Nuclear Information System (INIS)

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-01-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 KW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degrees C for each pass of the beam. Large thermal stress in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m 2 . Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S-65H, S-200F, S-300F-H, Sr-200, I-400, extruded high purity. HIP'd sperical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe 12 . Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be(SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  7. Thermal and Behavioral Effects of Exposure to 30 kW, 95-GHz Millimeter Wave Energy

    Science.gov (United States)

    2017-05-04

    AFRL-RH-FS-TR-2017-0016 Thermal and Behavioral Effects of Exposure to 30-kW, 95-GHz Millimeter Wave Energy James E. Parker Eric...30-kW, 95-GHz Millimeter Wave Energy " LELAND JOHNSON, DR-III, DAF Contract Monitor Radio Frequency Bioeffects Branch STEPHANIE A. MILLER, DRIV, DAF...CONTRACT NUMBER FA8650-13-D-6368-0007 Thermal and Behavioral Effects of Exposure to 30-kW, 95-GHz Millimeter Wave Energy 5b. GRANT NUMBER N/A

  8. Loss-of-Fluid Test findings in pressurized water reactor core's thermal-hydraulic behavior

    International Nuclear Information System (INIS)

    Russell, M.

    1983-01-01

    This paper summarizes the pressurized water reactor (PWR) core's thermal-hydraulic behavior findings from experiments performed at the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The potential impact of these findings on the safety and economics of PWR's generation of electricity is also discussed. Reviews of eight important findings in the core's physical behavior and in experimental methods are presented with supporting evidence

  9. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    Science.gov (United States)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen; Sun, Wenjing

    2015-01-01

    In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C1/C2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  10. Redes Sociales Protocooperativas

    Directory of Open Access Journals (Sweden)

    Tatiana DE CARVALHO DUARTE

    2014-03-01

    Full Text Available Este trabajo hace uso de la interdisciplinariedad con la biología, para construir un concepto que explica la configuración actual de la Web 2.0, su expansión y el crecimiento. Para ilustrar el proceso he utilizado la analogía con las relaciones ecológicas que se pueden establecer sobre la base de las interacciones entre las especies neutras, positivas o negativas. Este trabajo hace referencia al hecho que las redes sociales están invirtiendo una cantidad muy baja en la publicidad, en proporción a sus ingresos y el uso de inversiones en tecnologías para atraer a los productores de contenidos y anuncios publicitarios posibles. Al mismo tiempo, los generadores de contenidos y las empresas están utilizando este espacio para la auto-promoción a través de hipervínculos, imágenes, texto, recursos de audio y video, en una interacción positiva para ambos. El enfoque en la relación de esta investigación se ejemplifica través del interacción entre la red social Facebook Inc. y una selección de blogs y sitios que crean y administran el contenido que conforma la red. Por lo tanto, este artículo tiene como objetivo describir cómo esta relación puede ser nombrado como Protocooperational y se considera beneficiosa tanto para los generadores de contenidos y las empresas que compran espacios publicitarios y de difusión de la propia red social. Este artículo pretende analizar cómo conviven ambos emprendimientos sin relación entre ellos, aunque en menor escala, y demostrar en qué medida esto será una simbiosis mutua.

  11. Thermal behavior of aerosol particles from biomass burning during the BBOP campaign using transmission electron microscopy

    Science.gov (United States)

    Adachi, K.; Ishimoto, H.; Sedlacek, A. J., III; Kleinman, L. I.; Chand, D.; Hubbe, J. M.; Buseck, P. R.

    2017-12-01

    Aerosol samples were collected from wildland and agricultural biomass fires in North America during the 2013 Biomass Burning Observation Project (BBOP). We show in-situ shape and size changes and variations in the compositions of individual particles before and after heating using a transmission electron microscope (TEM). The responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within TEM. The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remained in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Our results also suggest that because of their thermal stability, some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have a greater influence than is currently recognized in regional and global climate models.

  12. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards.

    Science.gov (United States)

    Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François

    2015-09-01

    Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior.

  13. Study on relationship between aging and thermal-hydraulic behaviors of nuclear power plants

    International Nuclear Information System (INIS)

    Murata, Hiroyuki; Inasaka, Fujio; Adachi, Masaki; Sawada, Ken-ichi; Akiyama, Shigeru; Sakuma, Masaaki; Takahashi, Ichihiko; Ushijima, Michio

    2005-01-01

    The number of aged nuclear power plants will increase in the future, because operation periods of the existing nuclear power plants are being extended from thirty years of initial supposition to sixty years at the longest. Therefore, it is important to establish the methodology to guarantee integrity of the aged nuclear power plants. Among the reported damages of nuclear power plant components due to the fatigue during long terms, many cases are considered to be related to their thermal-hydraulic behaviors during operation. Thus, quantitative understanding of thermal-hydraulic behaviors in the nuclear power plants is important to estimate many kinds of aging processes accurately. The research project, 'study on relationship between nuclear power plant aging and its thermal-hydraulic behaviors', was conducted from 2001 to 2004 in order to clarify effects of thermal-hydraulic behaviors in the nuclear power plants on structural materials during aging processes. In this project, flow induced vibration of an array of circular cylinders was investigated experimentally and numerically. Rotating bending fatigue tests were also performed for the austenitic stainless steel SUS316L (JIS G4304) and Ni-Cr-Fe alloy NCF690 (JIS G4904, INCONEL alloy 690 equivalent material) in order to examine the fatigue strength in the ultra high cycle fatigue region, namely 10 7 -10 9 cycles, and the notch effects. (author)

  14. Thermal and crystalline behavior of composites of EVOH with piassava fibers

    International Nuclear Information System (INIS)

    Nogueira, Beatriz R.; Oliveira, Rene R.; Moura, Esperidiana A.B.

    2011-01-01

    Changes of thermal and crystalline properties of ethylene vinyl alcohol (EVOH) due the incorporation of particulate piassava fiber (Attalea Funifera Mart.) treated and with silane coupling agent were studied in this work. The behavior of the materials was investigated by differential scanning calorimetry (DSC), thermogravimetry (TG) and X-ray diffraction (XRD). (author)

  15. Investigation of Thermal Behavior for Natural Fibres Reinforced Epoxy using Thermogravimetric and Differential Scanning Calorimetric Analysis

    Directory of Open Access Journals (Sweden)

    Fauzi F.A.

    2016-01-01

    Full Text Available This paper presented the research works on the investigation of the thermal behavior of the natural fibres; i.e. pineapple leaf fibre, kenaf fibre and mengkuang fibres reinforced epoxy. The thermogravimetric analysis and differential scanning calorimetric analysis were used to measure the thermal behavior of the treated and untreated pineapple, kenaf and mengkuang fibres reinforced epoxy. The samples for both analysis were subjected to maximum temperature 600°C at the heating rate of 10°C/min. The results showed that the treated fibres show higher maximum peak temperature as compared to the untreated fibres. Additionally, the glass transition temperature showed a lower value for all treated fibre. It can be concluded that investigation of thermal properties of these natural fibres could improve the utilization of natural fibre composites in various applications i.e. sports applications.

  16. Efectividad en las redes empresariales

    OpenAIRE

    Álvarez Rey, Natalia; Correal López, Ana María; García Algarra, Laura Ximena

    2014-01-01

    Este estudio tiene como objetivo identificar cuáles son las variables que repercuten en la efectividad de las redes empresariales. Esto, con base en la búsqueda de literatura existente de la efectividad en equipos, en organizaciones y en las redes interorganizacionales, así como el análisis de modelos y estudios empíricos que permitieron el análisis. De acuerdo con la búsqueda, se encontró que variables como la estructura de la red, la estabilidad del sistema, el compromiso de los empleados e...

  17. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge

    International Nuclear Information System (INIS)

    Liu, Rui; Chen, Jixin; Xun, Jingzhi; Jiao, Kui; Du, Qing

    2014-01-01

    Highlights: • The thermal behaviors of a Li-ion battery stack have been investigated by modeling. • Parametric studies have been performed focusing on three different cooling materials. • Effects of discharge rate, ambient temperature and Reynolds number are examined. • General guidelines are proposed for the thermal management of a Li-ion battery stack. - Abstract: Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors

  18. Heavy metals behavior during thermal plasma vitrification of incineration residues

    International Nuclear Information System (INIS)

    Cerqueira, N.; Vandensteendam, C.; Baronnet, J.M.

    2005-01-01

    In the developed world, incineration of wastes is widely and increasingly practiced. Worldwide, a total of approximately 100 millions of tons of municipal solid waste (MSW) material is incinerated annually. Incineration of one ton of MSW leads to the formation of 30 to 50 kg of fly ash, depending on the type of incinerator. The waste disposal of these dusts already causes great problems today; they are of low bulk density, they contain high concentrations of hazardous water-soluble heavy metal compounds, organohalogen compounds (dioxines, furanes), sulfur, and chlorinated compounds. Thermal processes, based mainly on electrical arc processes, show great promise: the residues are melted at high temperature and converted in a relatively inert glass. A few tens of plants, essentially in Japan and Taiwan, have been in industrial operation for a few years. To be authorized to be dumped in a common landfill, the glassy product has to satisfy the leaching test procedure to ensure long-term durability. But to satisfy the regulation to be reused, for example as a nonhazardous standard material in road building, the glassy product would probably include contents in some heavy metals lower than critical limits. So today, there are two alternatives: the first one is to improve the heavy toxic metals evaporation to get a 'light' glassy product and to recycle separately the said separated metals; the second is on the contrary to improve the incorporation of a maximum of heavy metals into the vitreous silicate matrix. Whatever, it is highly required to control, in situ and in real time, volatility of these metals during ash melting under electrical arc. The objective of this work was to reach basic data about metals volatility under the plasma column of an electrical arc transferred on the melt: an experiment has been designed to examine the effects of processing conditions, such as melt temperature, melt composition, and furnace atmosphere, upon volatilization and glassy slag

  19. Experimental data showing the thermal behavior of a flat roof with phase change material

    Directory of Open Access Journals (Sweden)

    Ayça Tokuç

    2015-12-01

    Full Text Available The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104.

  20. Experimental data showing the thermal behavior of a flat roof with phase change material.

    Science.gov (United States)

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  1. Thermal variation and factors influencing vertical migration behavior in Daphnia populations

    Science.gov (United States)

    Glaholt, Stephen P.; Kennedy, Meghan L.; Turner, Elizabeth; Colbourne, John K.; Shaw, Joseph R.

    2016-01-01

    SUMMARY The antipredator behavior diel vertical migration (DVM), common in aquatic keystone species Daphnia, involves daily migration from warmer surface waters before dawn to cooler deeper waters after dusk. Plasticity in Daphnia DVM behavior optimizes fitness via trade-offs between growth, reproduction, and predator avoidance. Migration behavior is affected by co-varying biotic and abiotic factors, including light, predator cues, and anthropogenic stressors making it difficult to determine each factor’s individual contribution to the variation in this behavior. This study aims to better understand this ecologically significant behavior in Daphnia by: (1) determining how Daphnia pulicaria thermal preferences vary within and among natural populations; (2) distinguishing the role of temperature verses depth in Daphnia vertical migration; and (3) defining how two anthropogenic stressors (copper and nickel) impact Daphnia migratory behavior. Simulated natural lake stratification were constructed in 8 L (0.5 m tall, 14.5 cm wide) water columns to monitor under controlled laboratory conditions the individual effects of temperature gradients, depth, and metal stressors on Daphnia vertical migration. Three major findings are reported. First, while no difference in thermal preference was found among the four populations studied, within lake populations variability among isolates was high. Second, decoupling temperature and depth revealed that depth was a better predictor of Daphnia migratory patterns over temperature. Third, exposure to environmentally relevant concentrations of copper or nickel inhibited classic DVM behavior. These findings revealed the high variability in thermal preference found within Daphnia populations, elucidated the individual roles that depth and temperature have on migratory behavior, and showed how copper and nickel can interfere with the natural response of Daphnia to fish predator cues. Thus contributing to the body of knowledge necessary to

  2. Using thermal and spectroscopic data to investigate the thermal behavior of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Bannach, Gilbert; Cervini, Priscila [Instituto de Quimica de Sao Carlos - IQSC/USP, C.P. 780, CEP 13560-970, Sao Carlos, SP (Brazil); Cavalheiro, Eder Tadeu Gomes, E-mail: cavalheiro@iqsc.usp.br [Instituto de Quimica de Sao Carlos - IQSC/USP, C.P. 780, CEP 13560-970, Sao Carlos, SP (Brazil); Ionashiro, Massao [Instituto de Quimica, UNESP, C.P. 355, CEP 14801-970, Araraquara, SP (Brazil)

    2010-02-20

    Epinephrine is a neurotransmitter of the catecholamine class that acts in the mammalian central nervous system. The TG-DTA curves of epinephrine showed that the anhydrous compound starts decomposition at 165 {sup o}C, under the conditions used in this work. The reflectance FTIR spectra and X-ray powder diffraction patterns of epinephrine before and after heating up to 210 {sup o}C, as well as the TG-FTIR spectra of sample heated between 30 and 600 {sup o}C, were obtained and reveled that after heating, structural changes occurred in the sample. At temperatures higher than 205 {sup o}C the thermal decomposition took place with elimination of methylamine in agreement with the first mass loss observed in the TG curve in both air and N{sub 2} atmospheres (TG = 17.0%, calcd. = 17.0%). The melting was observed at 205 {sup o}C (DTA) or 203 {sup o}C (DSC) but this process occurred overlapped with decomposition characteristic of an incongruent melting process.

  3. Thermal Conductivity and Wear Behavior of HVOF-Sprayed Fe-Based Amorphous Coatings

    Directory of Open Access Journals (Sweden)

    Haihua Yao

    2017-10-01

    Full Text Available To protect aluminum parts in vehicle engines, metal-based thermal barrier coatings in the form of Fe59Cr12Nb5B20Si4 amorphous coatings were prepared by high velocity oxygen fuel (HVOF spraying under two different conditions. The microstructure, thermal transport behavior, and wear behavior of the coatings were characterized simultaneously. As a result, this alloy shows high process robustness during spraying. Both Fe-based coatings present dense, layered structure with porosities below 0.9%. Due to higher amorphous phase content, the coating H-1 exhibits a relatively low thermal conductivity, reaching 2.66 W/(m·K, two times lower than the reference stainless steel coating (5.85 W/(m·K, indicating a good thermal barrier property. Meanwhile, the thermal diffusivity of amorphous coatings display a limited increase with temperature up to 500 °C, which guarantees a steady and wide usage on aluminum alloy. Furthermore, the amorphous coating shows better wear resistance compared to high carbon martensitic GCr15 steel at different temperatures. The increased temperature accelerating the tribological reaction, leads to the friction coefficient and wear rate of coating increasing at 200 °C and decreasing at 400 °C.

  4. Analysis of the thermal behavior of AlGaN/GaN HEMTs

    International Nuclear Information System (INIS)

    Russo, Salvatore; D’Alessandro, Vincenzo; Costagliola, Maurizio; Sasso, Grazia; Rinaldi, Niccolò

    2012-01-01

    Highlights: ► The thermal behavior of advanced multifinger AlGaN/GaN HEMTs grown on SiC is analyzed. ► The study is performed through accurate FEM simulations and DC/dynamic measurements. ► The FEM analysis is supported by an in-house tool devised for a smart mesh generation. ► Illustrative technology/layout guidelines to minimize the thermal issues are provided. - Abstract: The thermal behavior of state-of-the-art multifinger AlGaN/GaN HEMTs grown on SiC is thoroughly analyzed under steady-state and dynamic conditions. Accurate 3-D FEM simulations – based on a novel in-house tool devised to automatically build the device mesh – are performed using a commercial software to explore the influence of various layout and technological solutions on the temperature field. An in-house routine is employed to determine the Foster/Cauer networks suited to describe the dynamic heat propagation through the device structure. To conclude, various experimental techniques are employed to assess the thermal resistance and to allow the monitoring of the thermal impedance versus time of the transistors under test.

  5. Experimental and theoretic investigations of thermal behavior of a seasonal water pit heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Chatzidiakos, Angelos

    Seasonal heat storages are considered essential for district heating systems because they offer flexibility for the system to integrate different fluctuating renewable energy sources. Water pit thermal storages (PTES) have been successfully implemented in solar district heating plants in Denmark....... Thermal behavior of a 75,000 m3 water pit heat storage in Marstal solar heating plant was investigated experimentally and numerically. Temperatures at different levels of the water pit storage and temperatures at different depths of the ground around the storage were monitored and analyzed. A simulation...

  6. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  7. Transient thermal-mechanical coupling behavior analysis of mechanical seals during start-up operation

    Science.gov (United States)

    Gao, B. C.; Meng, X. K.; Shen, M. X.; Peng, X. D.

    2016-05-01

    A transient thermal-mechanical coupling model for a contacting mechanical seal during start-up has been developed. It takes into consideration the coupling relationship among thermal-mechanical deformation, film thickness, temperature and heat generation. The finite element method and multi-iteration technology are applied to solve the temperature distribution and thermal-mechanical deformation as well as their evolution behavior. Results show that the seal gap transforms from negative coning to positive coning and the contact area of the mechanical seal gradually decreases during start-up. The location of the maximum temperature and maximum contact pressure move from the outer diameter to inside diameter. The heat generation and the friction torque increase sharply at first and then decrease. Meanwhile, the contact force decreases and the fluid film force and leakage rate increase.

  8. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  9. Thermal behavior of latent thermal energy storage unit using two phase change materials: Effects of HTF inlet temperature

    Directory of Open Access Journals (Sweden)

    Fouzi Benmoussa

    2017-09-01

    Full Text Available This work presents a numerical study of the thermal behavior of shell-and-tube latent thermal energy storage (LTES unit using two phase change materials (PCMs. The heat transfer fluid (HTF flow through the inner tube and transfer the heat to PCMs. First, a mathematical model is developed based on the enthalpy formulation and solved through the governing equations. Second, the effects of HTF inlet temperature on the unsteady temperature evolution of PCMs, the total energy stored evolution as well as the total melting time is studied. Numerical results show that for all HTF inlet temperature, melting rate of PCM1 is the fastest and that of PCM2 is the slowest; increasing the HTF inlet temperature considerably increases the temperature evolution of PCMs. The maximum energy stored is observed in PCM2 with high melting temperature and high specific heat; heat storage capacity is large for high HTF inlet temperature. When the HTF inlet temperature increases from 338 K to 353 K, decreasing degree of melting time of PCM2 is the biggest from 1870 s to 490 s, which reduces about 73.8%; decreasing degree of melting time of PCM1 is the smallest from 530 s to 270 s, which reduces about 49.1%.

  10. Effect of thermal contact between winding pack and casing on thermal behavior of SST-1 TF coil

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, A.K. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)]. E-mail: aksahu@ipr.res.in; Sarkar, B. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Gupta, N.C. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Panchal, P. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Bhattacharya, R. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Tank, J. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Gupta, G. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Shah, N. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Shukla, P. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Singh, M. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Phadke, G. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Saxena, Y.C. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2006-11-15

    Active cooling of the casing, which houses the winding pack of the large size superconducting magnet used for magnetic confinement of plasma under a steady state configuration, has been one of the points for debate. Toroidal field (TF) coils of SST-1 consists of six double pancakes of Nb-Ti based cable-in-conduit conductor (CICC), duly impregnated and encased in a tight fit stainless steel casing. In order to validate the cooling configuration of the SST-1 TF magnet system, an experiment has been done on one of the full scale TF coil without having cooling channels for the casing. The experimental results show a distributed temperature profile on the casing ranging from the lowest temperature of 17 K to the highest temperature of 29 K. The data obtained has been analyzed on the basis of thermal contact and thermal resistance. The paper will describe the experimental setup, thermo-hydraulic behavior of the CICC in winding condition and the comparison of experimental results with an empirical analysis.

  11. Measuring thermal behavior in smaller insects: A case study in Drosophila melanogaster demonstrates effects of sex, geographic origin, and rearing temperature on adult behavior.

    Science.gov (United States)

    Rajpurohit, Subhash; Schmidt, Paul S

    2016-10-01

    Measuring thermal behavior in smaller insects is particularly challenging. In this study, we describe a new horizontal thermal gradient apparatus designed to study adult thermal behavior in small insects and apply it using D. melanogaster as a model and case study. Specifically, we used this apparatus and associated methodology to examine the effects of sex, geographic origin, and developmental rearing temperature on temperature preferences exhibited by adults in a controlled laboratory environment. The thermal gradient established by the apparatus was stable over diurnal and calendar time. Furthermore, the distribution of adult flies across thermal habitats within the apparatus remained stable following the period of acclimation, as evidenced by the high degree of repeatability across both biological and technical replicates. Our data demonstrate significant and predictable variation in temperature preference for all 3 assayed variables. Behaviorally, females were more sensitive than males to higher temperatures. Flies originating from high latitude, temperate populations exhibited a greater preference for cooler temperatures; conversely, flies originating from low latitude, tropical habitats demonstrated a relative preference for higher temperatures. Similarly, larval rearing temperature was positively associated with adult thermal behavior: low culture temperatures increased the relative adult preference for cooler temperatures, and this response was distinct between the sexes and for flies from the temperate and subtropical geographic regions. Together, these results demonstrate that the temperature chamber apparatus elicits robust, predictable, and quantifiable thermal preference behavior that could readily be applied to other taxa to examine the role of temperature-mediated behavior in a variety of contexts.

  12. Analytical modeling of the thermal behavior of a thin lubricant film under nonlinear conditions

    Directory of Open Access Journals (Sweden)

    Laraqi Najib

    2017-01-01

    Full Text Available Lubrication is an important phenomenon in a wide field of industry such as automotive, aerospace, mechanical transmission systems and many others. The viscosity of fluid is a determining factor in the thermal behavior of lubricant and solid surfaces in friction. In practice the viscosity varies strongly as a function of local pressure and temperature. In this study we are interested in the effect of temperature on the viscosity and the thermal behavior of the lubricant. We solve the dynamic and energy equations under nonlinear conditions considering that the viscosity decreases following an exponential law of the temperature as it is known in the literature, μ = μ0 e-β (T-T0. The analytical solution is compared to a numerical modeling using a finite difference methods. The results show an excellent agreement. We analyse the effect of the viscosity coefficient, β, on the velocity and the temperature in the thin lubricant film.

  13. The Correlation between Thermal and Noxious Gas Environments, Pig Productivity and Behavioral Responses of Growing Pigs

    Directory of Open Access Journals (Sweden)

    Won Kyung Chang

    2011-08-01

    Full Text Available Correlations between environmental parameters (thermal range and noxious gas levels and the status (productivity, physiological, and behavioral of growing pigs were examined for the benefit of pig welfare and precision farming. The livestock experiment was conducted at a Seoul National University station in South Korea. Many variations were applied and the physiological and behavioral responses of the growing pigs were closely observed. Thermal and gas environment parameters were different during the summer and winter seasons, and the environments in the treatments were controlled in different manners. In the end, this study finds that factors such as Average Daily Gain (ADG, Adrenocorticotropic Hormone (ACTH, stress, posture, and eating habits were all affected by the controlled environmental parameters and that appropriate control of the foregoing could contribute to the improvement of precision farming and pig welfare.

  14. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    Science.gov (United States)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  15. Influence of gravity on the skin thermal behavior: experimental study using dynamic infrared thermography.

    Science.gov (United States)

    Ratovoson, Domoina; Jourdan, Franck; Huon, Vincent

    2013-02-01

    To better understand the thermomechanical behavior of the skin and its direct environment, we present an experimental study using dynamic infrared thermography. This experimental study aims to highlight quantitatively some effects of blood flow on the heat diffusion. The originality of this research was to change the blood flow by using effects of gravity and to quantify the temperature changes. The experimental step consists of putting a cylindrical steel bar cooled or warmed on the skin of a human forearm and to measure the change of the temperature using an infrared camera. Measures have been recorded for different positions of the forearm. We noted very clearly the influence of blood circulation in the veins on the diffusion of the temperature. The return to thermal balance is faster when the arm is in a horizontal position. Moreover, a comparative study of experimental cooling and warming showed a symmetrical thermal behavior for the skin under this type of thermal solicitations. This work provided to build a database that can be used for the validation of predictive thermal models of human skin. © 2012 John Wiley & Sons A/S.

  16. Correlation between thermal behavior of clays and their chemical and mineralogical composition: a review

    Science.gov (United States)

    Dwi Yanti, Evi; Pratiwi, I.

    2018-02-01

    Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.

  17. Imidazolium-substituted ionic (co)polythiophenes: Compositional influence on solution behavior and thermal properties

    OpenAIRE

    Ghoos, Toon; Brassinne, Jeremy; Fustin, Charles-Andre; Gohy, Jean-Francois; Defour, Maxime; Van den Brande, Niko; Van Mele, Bruno; Lutsen, Laurence; Vanderzande, Dirk J.; Maes, Wouter

    2013-01-01

    A series of ionic polythiophenes, in homopolymer and random copolymer configurations, is prepared via the Grignard metathesis (GRIM) polymerization protocol and subsequent substitution on the bromohexyl side chains with N-methylimidazole. The introduced structural variations comonomer ratio, side chain composition, counter ions allow tuning of the thermal properties and solution behavior of the resulting conjugated polymers. As expected, the solubility depends majorly on the number of ionic g...

  18. CFD analysis of thermal-hydraulic behavior in SCWR typical flow channels

    International Nuclear Information System (INIS)

    Gu, H.Y.; Cheng, X.; Yang, Y.H.

    2008-01-01

    Investigations on thermal-hydraulic behavior in SCWR fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding and ability to predict the heat transfer behavior of supercritical water. In this paper, CFD analysis is carried out to study the flow and heat transfer behavior of supercritical water in sub-channels of both square and triangular rod bundles. Effect of various parameters, e.g. thermal boundary conditions and pitch-to-diameter ratio on the thermal-hydraulic behavior is investigated. Two boundary conditions, i.e., constant heat flux at the outer surface of cladding and constant heat density in the fuel pin are applied. The results show that the structure of the secondary flow mainly depends on the rod bundle configuration as well as the pitch-to-diameter ratio, whereas, the amplitude of the secondary flow is affected by the thermal boundary conditions, as well. The secondary flow is much stronger in a square lattice than that in a triangular lattice. The turbulence behavior is similar in both square and triangular lattices. The dependence of the amplitude of the turbulent velocity fluctuation across the gap on Reynolds number becomes prominent in both lattices as the pitch-to-diameter ratio increases. The effect of thermal boundary conditions on turbulent velocity fluctuation is negligibly small. For both lattices with small pitch-to-diameter ratios (P/D < 1.3), the mixing coefficient is about 0.022. Both secondary flow and turbulent mixing show unusual behavior in the vicinity of the pseudo-critical point. Further investigation is needed. A strong circumferential non-uniformity of wall temperature and heat transfer is observed in tight lattices at constant heat flux boundary conditions, especially in square lattices. In the case with constant heat density of fuel pin, the circumferential conductive heat transfer significantly reduces the non-uniformity of circumferential

  19. Three-dimensional FE analysis of the thermal-mechanical behaviors in the nuclear fuel rods

    International Nuclear Information System (INIS)

    Jiang Yijie; Cui Yi; Huo Yongzhong; Ding Shurong

    2011-01-01

    Highlights: → We establish three-dimensional finite element models for nuclear fuel rods. → The thermal-mechanical behaviors at the initial stage of burnup are obtained. → Several parameters on the in-pile performances are investigated. → The parameters have remarkable effects on the in-pile behaviors. → This study lays a foundation for optimal design and irradiation safety. - Abstract: In order to implement numerical simulation of the thermal-mechanical behaviors in the nuclear fuel rods, a three-dimensional finite element model is established. The thermal-mechanical behaviors at the initial stage of burnup in both the pellet and the cladding are obtained. Comparison of the obtained numerical results with those from experiments validates the developed finite element model. The effects of the constraint conditions, several operation and structural parameters on the thermal-mechanical performances of the fuel rod are investigated. The research results indicate that: (1) with increasing the heat generation rates from 0.15 to 0.6 W/mm 3 , the maximum temperature within the pellet increases by 99.3% and the maximum radial displacement at the outer surface of the pellet increases by 94.3%. And the maximum Mises stresses in the cladding all increase; while the maximum values of the first principal stresses within the pellet decrease as a whole; (2) with increasing the heat transfer coefficients between the cladding and the coolant, the internal temperatures reduce and the temperature gradient remains similar; when the heat transfer coefficient is lower than a critical value, the temperature change is sensitive to the heat transfer coefficient. The maximum temperature increases only 7.13% when h changes from 0.5 W/mm 2 K to 0.01 W/mm 2 K, while increases up to 54.7% when h decreases from 0.01 W/mm 2 K to 0.005 W/mm 2 K; (3) the initial gap sizes between the pellet and the cladding significantly affect the thermal-mechanical behaviors in the fuel rod; when the

  20. Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification

    Science.gov (United States)

    Chen, Zhen; Xiang, Yu; Wei, Zhengying; Wei, Pei; Lu, Bingheng; Zhang, Lijuan; Du, Jun

    2018-04-01

    During selective laser melting (SLM) of K418 powder, the influence of the process parameters, such as laser power P and scanning speed v, on the dynamic thermal behavior and morphology of the melted tracks was investigated numerically. A 3D finite difference method was established to predict the dynamic thermal behavior and flow mechanism of K418 powder irradiated by a Gaussian laser beam. A three-dimensional randomly packed powder bed composed of spherical particles was established by discrete element method. The powder particle information including particle size distribution and packing density were taken into account. The volume shrinkage and temperature-dependent thermophysical parameters such as thermal conductivity, specific heat, and other physical properties were also considered. The volume of fluid method was applied to reconstruct the free surface of the molten pool during SLM. The geometrical features, continuity boundaries, and irregularities of the molten pool were proved to be largely determined by the laser energy density. The numerical results are in good agreement with the experiments, which prove to be reasonable and effective. The results provide us some in-depth insight into the complex physical behavior during SLM and guide the optimization of process parameters.

  1. Minimization of lumen depreciation in LED lamps using thermal transient behavior analysis and design optimizations.

    Science.gov (United States)

    Khan, M Nisa

    2016-02-10

    We expansively investigate thermal behaviors of various general-purpose light-emitting diode (LED) lamps and apply our measured results, validated by simulation, to establish lamp design rules for optimizing their optical and thermal properties. These design rules provide the means to minimize lumen depreciation over time by minimizing the periods for lamps to reach thermal steady-state while maintaining their high luminous efficacy and omnidirectional light distribution capability. While it is well known that minimizing the junction temperature of an LED leads to a longer lifetime and an increased lumen output, our study demonstrates, for the first time, to the best of our knowledge, that it is also important to minimize the time it takes to reach thermal equilibrium because doing so minimizes lumen depreciation and enhances light output and color stability during operation. Specifically, we have found that, in addition to inadequate heat-sink fin areas for a lamp configuration, LEDs mounted on multiple boards, as opposed to a single board, lead to longer periods for reaching thermal equilibrium contributing to larger lumen depreciation.

  2. The Wear behavior of UHMWPE against Surface Modified CP-Titanium by Thermal Oxidation

    Directory of Open Access Journals (Sweden)

    B.T. Prayoga

    2016-12-01

    Full Text Available The effects of thermal oxidation duration on hardness, roughness, and wettability of the CP-titanium surfaces were investigated in this paper. The thermal oxidation treatment was done at 700 oC for 12-36 hours in an air atmosphere. The wear behavior of the UHMWPE sliding against treated thermal oxidation of the CP-titanium was tested by a pin-on-plate tribometer under lubrication of the solution of 75 % distilled water and 25 % bovine serum. The results showed that the layer of the oxide titanium was formed on the surface after being treated by the thermal oxidation for 12-36 hours. The oxide titanium layer was dominated by rutile form of TiO2, that offers an improvement of hardness and wettability of the CP-titanium surfaces. The average wear factor of the UHMWPE reduced significantly when the sliding against of the CP-titanium was modified by the thermal oxidation, and the lowest average wear factor was reached when the sliding against the 12 hour oxidized CP-titanium counterfaces.

  3. From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures

    International Nuclear Information System (INIS)

    Tomas, C. de; Lopeandia, A. F.; Alvarez, F. X.; Cantarero, A.

    2014-01-01

    We present a model which deepens into the role that normal scattering has on the thermal conductivity in semiconductor bulk, micro, and nanoscale samples. Thermal conductivity as a function of the temperature undergoes a smooth transition from a kinetic to a collective regime that depends on the importance of normal scattering events. We demonstrate that in this transition, the key point to fit experimental data is changing the way to perform the average on the scattering rates. We apply the model to bulk Si with different isotopic compositions obtaining an accurate fit. Then we calculate the thermal conductivity of Si thin films and nanowires by only introducing the effective size as additional parameter. The model provides a better prediction of the thermal conductivity behavior valid for all temperatures and sizes above 30 nm with a single expression. Avoiding the introduction of confinement or quantum effects, the model permits to establish the limit of classical theories in the study of the thermal conductivity in nanoscopic systems

  4. From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, C. de; Lopeandia, A. F.; Alvarez, F. X., E-mail: xavier.alvarez@uab.cat [Department of Physics, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Cantarero, A. [Materials Science Institute, University of Valencia, P. O. Box 22085, 46071 Valencia (Spain)

    2014-04-28

    We present a model which deepens into the role that normal scattering has on the thermal conductivity in semiconductor bulk, micro, and nanoscale samples. Thermal conductivity as a function of the temperature undergoes a smooth transition from a kinetic to a collective regime that depends on the importance of normal scattering events. We demonstrate that in this transition, the key point to fit experimental data is changing the way to perform the average on the scattering rates. We apply the model to bulk Si with different isotopic compositions obtaining an accurate fit. Then we calculate the thermal conductivity of Si thin films and nanowires by only introducing the effective size as additional parameter. The model provides a better prediction of the thermal conductivity behavior valid for all temperatures and sizes above 30 nm with a single expression. Avoiding the introduction of confinement or quantum effects, the model permits to establish the limit of classical theories in the study of the thermal conductivity in nanoscopic systems.

  5. From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures

    Science.gov (United States)

    de Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X.

    2014-04-01

    We present a model which deepens into the role that normal scattering has on the thermal conductivity in semiconductor bulk, micro, and nanoscale samples. Thermal conductivity as a function of the temperature undergoes a smooth transition from a kinetic to a collective regime that depends on the importance of normal scattering events. We demonstrate that in this transition, the key point to fit experimental data is changing the way to perform the average on the scattering rates. We apply the model to bulk Si with different isotopic compositions obtaining an accurate fit. Then we calculate the thermal conductivity of Si thin films and nanowires by only introducing the effective size as additional parameter. The model provides a better prediction of the thermal conductivity behavior valid for all temperatures and sizes above 30 nm with a single expression. Avoiding the introduction of confinement or quantum effects, the model permits to establish the limit of classical theories in the study of the thermal conductivity in nanoscopic systems.

  6. Thermal shock cycling effect on the mechanical behavior of epoxy matrix-woven flax fabric composites

    Science.gov (United States)

    Papanicolaou, G. C.; Chalkias, D. A.; Koutsomitopoulou, A. F.

    2018-02-01

    Thermal fatigue occurs in many engineering constructions, made of polymeric composites, during several applications. Due to the structural heterogeneity of composite materials the fatigue damage after large cyclic temperature variation is complex. It is important to examine thermal fatigue, studying the parameters affecting the process and if possible, describe their effect through mathematical equations in order to predict the properties degradation of the fatigued composites. In the present investigation epoxy matrix-woven flax fabric composites were fabricated and subsequently submitted to thermal shock cycling. Next, their mechanical behavior was studied through quasi-static 3-point bending tests. Thermal shock cycling experiments, of a maximum number of 200 thermal cycles, were performed, each cycle consisted of a 10 minutes exposure of composite specimens in an oven at 50 °C, followed by an abrupt exposure of the same specimens in a freezer for another 10 minutes at -20 °C. From the entire study, it was found that there is a certain number of cycles above which damage increases rapidly, reaching a plateau where saturation of micro-damage is attained. Finally, it is worth to mentioning that all experimental results were accurately predicted by applying the RPM model (Residual Property Model), a semi-analytical predictive model developed by the corresponding author.

  7. Thermal cycling fatigue behavior of hardfacing heat-resistant stainless steel for continuous caster rolls

    International Nuclear Information System (INIS)

    Jung, Jae Young; Sung, Hwan Jin; Ahn, Sang Ho

    1998-01-01

    The variation of tensile properties and hardness as a function of tempering temperature and time has been investigated using a hardfacing 12%Cr stainless steel. The mechanical properties of the hardfacing 12%Cr stainless steel could be generalized by the Larson-Miller parameter, which concurrently considers the effects of tempering temperature and time. Thermal cycling fatigue behavior of a hardfacing 12%Cr stainless steel has been investigated using a special thermal fatigue testing apparatus. The resistance of thermal fatigue was deteriorated mainly by the low ductility and true fracture strength of material. The temperature distribution in the specimen was calculated using finite element program and compared to experimental results. The strain and stress distributions were evaluated taking into account the temperature distribution and the temperature dependence of the material properties. The results showed that maximum values of strain and stress were produced within the induction-heating region. The strain amplitude obtained in this study was much smaller than that of fully constrained case, which corresponds to thermal expansion due to temperature difference. This result arises from the reduction of the temperature gradient due to thermal conduction to the neighboring region. The magnitude of strain raised with the increase in the temperature gradient, which is due to the rapid cooling and heating rates in the induction-heating region

  8. Young’s modulus evaluation and thermal shock behavior of a porous SiC/cordierite composite material

    Directory of Open Access Journals (Sweden)

    Pošarac-Marković M.

    2015-01-01

    Full Text Available Porous SiC/Cordierite Composite Material with graphite content (10% was synthesized. Evaluation of Young modulus of elasticity and thermal shock behavior of these samples was presented. Thermal shock behavior was monitored using water quench test, and non destructive methods such are UPVT and image analysis were also used for accompaniment the level of destruction of the samples during water quench test. Based on the level of destruction graphical modeling of critical number of cycles was given. This approach was implemented on discussion of the influence of the graphite content on thermal stability behavior of the samples. [Projekat Ministarstva nauke Republike Srbije, br. III 45012

  9. Evaluation of Thermal and Thermo-mechanical Behavior of Full-scale Energy Foundations

    Science.gov (United States)

    Murphy, Kyle D.

    This study focuses on the thermo-mechanical and thermal behavior of full-scale energy foundations installed as part of two buildings recently constructed in Colorado. The soil stratigraphy at each of the sites differed, but both foundations were expected to function as primarily end-bearing elements with a tip socketed into rock. The heat exchanger configurations were also different amongst the foundations at both sites, permitting evaluation of the role of heat exchange. A common thread for both energy foundation case histories was the monitoring of the temperature and axial strain within the foundations during heat exchange operations. The first case study involves an evaluation of the long-term thermo-mechanical response of two full-scale energy foundations installed at the new Denver Housing Authority (DHA) Senior Living Facility at 1099 Osage St. in Denver, Colorado. Due to the construction schedule for this project, the thermal properties of the foundations and surrounding subsurface could not be assessed using thermal response tests. However, instrumentation was incorporated into the foundations to assess their long-term heat exchange response as well as the thermo-mechanical strains, stresses, and displacements that occurred during construction and operation of the ground-source heat pump system. The temperature changes within the foundations during heating and cooling operations over a period of approximately 600 days ranged from 9 to 32 °C, respectively. The thermal axial stresses in the foundations were calculated from the measured strains, and ranged from 3.1 MPa during heating to --1.0 MPa during cooling. These values are within reasonable limits for reinforced concrete structures. The maximum thermal axial stress was observed near the toe of both foundations, which is consistent with trends expected for end-bearing toe boundary conditions. The greatest thermal axial strains were observed near the top of the foundations (upward expansion during

  10. A rede e o conhecimento

    Directory of Open Access Journals (Sweden)

    Placida Leopoldina Ventura Amorim da Cos Santos

    2000-12-01

    Full Text Available No futuro, com a crescente virtualização (tecnologia substituindo o espaço público da prática política, é que se mostrará se a democracia foi posta em rede (pública ou se apenas foi “tecnologizada”, tornando-se a imagem mais cara do conceito, ou seja, “publicidade”. A articulação da idéia de rede com a experiência das bibliotecas públicas seria uma possibilidade na realização da interação social e na construção da cidadania.

  11. The effects of acclimation temperature, salinity, and behavior on the thermal tolerance of Mozambique tilapia (Oreochromis mossambicus).

    Science.gov (United States)

    King, Mallory; Sardella, Brian

    2017-08-01

    Mozambique tilapia have been shown to be incredibly stress tolerant with respect to environmental salinity, hypoxia, and ammonia concentrations. Temperature challenges to this species have shown that they have difficulty with cold acclimation. The purpose of this study was to measure the effects of acclimation temperature and salinity on the thermal tolerance of Mozambique tilapia as assessed by critical thermal maxima (CT Max ) and critical thermal minima (CT Min ). We also monitored fish behavior and quantified ventilation rate. To our knowledge, this study was the first to investigate upper and lower thermal tolerances, and the effect of environmental salinity in this physiologically impressive species. Using predictive regression analyses of the thermal limits, thermal tolerance polygons were constructed and total areas were calculated 678.9°C 2 for freshwater (FW)-acclimated tilapia, and 739.4°C 2 seawater (SW)-acclimated tilapia. During the thermal challenges, we observed two novel behaviors in response to thermal challenge, ventilation cessation behavior (VCB) and aquatic surface respiration (ASR), and we conclude that the use of these behaviors extended the thermal limits of these fish in both FW and two-thirds SW by limiting the exposure of the gill epithelium to the changing environment. © 2017 Wiley Periodicals, Inc.

  12. Redes de ciudades y externalidades

    Directory of Open Access Journals (Sweden)

    Rafael Boix Domènech

    2004-01-01

    Full Text Available El concepto de «economías de aglomeración» explica la existencia de ventajas derivadas de la concentración de la población y la actividad. Sin embargo, no explica la existencia de economías externas espacialmente dinámicas. Las economías de red generadas en redes de ciudades corresponden a este último tipo, puesto que se generan por la interacción entre unidades urbanas, entre las que existe un vínculo de red. El objetivo de la presente investigación es avanzar en el estudio de la relación entre las redes de ciudades y la generación de economías externas. La investigación se divide en cuatro partes: en la primera se expone la relación entre las redes de ciudades y las economías externas. La segunda parte plantea un modelo para la medición conjunta de las economías de concentración y de red. La tercera parte explica los resultados de aplicar el modelo a un caso de estudio: la red de ciudades de Cataluña. Los resultados sugieren que existe una relación causal entre la organización de las unidades urbanas formando redes de ciudades y la generación de economías externas que afectan al crecimiento y desarrollo económico. Finalmente, se exponen las conclusiones y sus implicaciones en el diseño de políticas económicas.

  13. Redes sociales y mujeres mayores

    OpenAIRE

    Fernández Campomanes, María

    2012-01-01

    Estudio de carácter cualitativo sobre la influencia de las redes sociales en la mejora de la calidad de vida de las mujeres mayores, que responden al perfil de mujeres de más de 55 años de edad, cuidadoras y cuyo acceso a las TIC no guarda relación con el empleo ni con el ámbito académico.

  14. Redes sociales para educomunicadores : recursos y experiencias

    OpenAIRE

    Universitat Autònoma de Barcelona. Máster en Comunicación y Educación (online)

    2013-01-01

    Las redes sociales han sido universalmente acogidas entre los usuarios de internet como una manera comprometerse en eventos, grupos sociales y temas de interés. Estos usuarios han encontrado en las redes un espacio para compartir información, socializar y, en muchos casos, construir verdaderas redes de cooperación y colaboración, un uso que puede ampliarse aún más en la medida en que madure la alfabetización mediática de sus participantes. Este informe muestra las principales redes sociales, ...

  15. ESPECIFICANDO FORMALMENTE TOPOLOGIAS PARA REDES EM CHIP

    OpenAIRE

    Santos, Eliselma Vieira dos; Ramos, Karla Darlene Nepomuceno

    2012-01-01

    Este artigo trata da utilização de métodos formais na especificação de topologias para redes em chip. As redes em chip apresentam similaridades com as redes tradicionais, entretanto, por estarem inseridas em sistemas embarcados apresentam características mais restritivas do ponto de vista de espaço, consumo de energia e latência. A topologia descreve o fluxo de dados através da rede e a estrutura física de como os dispositivos estão conectados, bem como, pode determinar o grau de escalabilid...

  16. Quantification and analysis of color stability based on thermal transient behavior in white LED lamps.

    Science.gov (United States)

    Nisa Khan, M

    2017-09-20

    We present measurement and analysis of color stability over time for two categories of white LED lamps based on their thermal management scheme, which also affects their transient lumen depreciation. We previously reported that lumen depreciation in LED lamps can be minimized by properly designing the heat sink configuration that allows lamps to reach a thermal equilibrium condition quickly. Although it is well known that lumen depreciation degrades color stability of white light since color coordinates vary with total lumen power by definition, quantification and characterization of color shifts based on thermal transient behavior have not been previously reported in literature for LED lamps. Here we provide experimental data and analysis of transient color shifts for two categories of household LED lamps (from a total of six lamps in two categories) and demonstrate that reaching thermal equilibrium more quickly provides better stability for color rendering, color temperature, and less deviation of color coordinates from the Planckian blackbody locus line, which are all very important characterization parameters of color for white light. We report for the first time that a lamp's color degradation from the turn-on time primarily depends on thermal transient behavior of the semiconductor LED chip, which experiences a wavelength shift as well as a decrease in its dominant wavelength peak value with time, which in turn degrades the phosphor conversion. For the first time, we also provide a comprehensive quantitative analysis that differentiates color degradation due to the heat rise in GaN/GaInN LED chips and subsequently the boards these chips are mounted on-from that caused by phosphor heating in a white LED module. Finally, we briefly discuss why there are some inevitable trade-offs between omnidirectionality and color and luminous output stability in current household LED lamps and what will help eliminate these trade-offs in future lamp designs.

  17. 3-D CFD modeling and experimental testing of thermal behavior of a Li-Ion battery

    International Nuclear Information System (INIS)

    Gümüşsu, Emre; Ekici, Özgür; Köksal, Murat

    2017-01-01

    Highlights: • A thermally fully predictive 3-D CFD model is developed for Li-Ion batteries. • Complete flow field around the battery and conduction inside the battery are solved. • Macro-scale thermophysical properties and the entropic term are investigated. • Discharge rate and usage history of the battery are systematically investigated. • Reliability of the model was tested through experimental measurements. - Abstract: In this study, a 3-D computational fluid dynamics model was developed for investigating the thermal behavior of lithium ion batteries under natural convection. The model solves the complete flow field around the battery as well as conduction inside the battery using the well-known heat generation model of Bernardi et al. (1985). The model is thermally fully predictive so it requires only electrical performance parameters of the battery to calculate its temperature during discharging. Using the model, detailed investigation of the effects of the variation of the macro-scale thermophysical properties and the entropic term of the heat generation model was carried out. Results show that specific heat is a critical property that has a significant impact on the simulation results whereas thermal conductivity has relatively minor importance. Moreover, the experimental data can be successfully predicted without taking the entropic term into account in the calculation of the heat generation. The difference between the experimental and predicted battery surface temperature was less than 3 °C for all discharge rates and regardless of the usage history of the battery. The developed model has the potential to be used for the investigation of the thermal behavior of Li-Ion batteries in different packaging configurations under natural and forced convection.

  18. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  19. Dynamic mechanical and thermal behavior of novel liquid-crystalline polybutadiene-diols with azobenzene groups in side chains

    Czech Academy of Sciences Publication Activity Database

    Poláková, Lenka; Sedláková, Zdeňka; Beneš, Hynek; Valentová, H.; Krakovský, I.; Rabie, F.

    2013-01-01

    Roč. 57, č. 5 (2013), s. 1297-1310 ISSN 0148-6055 Institutional support: RVO:61389013 Keywords : mesophase * azobenzene mesogens * thermal behavior Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.276, year: 2013

  20. Thermal behavior studies in building using artificial neural network for non air conditioned terrace house in Malaysia

    International Nuclear Information System (INIS)

    Zainazlan Md Zain; Mohd Nasir Taib; Shahrizam Mohd Shah Baki

    2006-01-01

    Strategies to improve energy efficiency in buildings have continuously being improved and becoming more effective as new knowledge on the building behavior and technology continue to develop. Nevertheless, effort to explore for further improvement must continuously undertake to seek more energy efficient and cost effective systems. Artificial Neural Network (ANN) is currently one of the most popular mechanisms to forecast any form of behavior and phenomena. Building thermal behavior can be studied and potential for energy utilization improvement without compromising thermal comfort can be explored using ANN. This paper explores the possibility of monitoring, predicting and forecasting the thermal behavior inside a building space and the optimization of building design. Typical result of experimental data and simulated data is presented. The sample house used adopted various thermal comfort strategies like cross ventilation and space air flow consideration

  1. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.

    Science.gov (United States)

    Han, Bumsoo; Bischof, John C

    2004-04-01

    Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present

  2. A numerical study on thermal behavior of a D-type water-cooled steam boiler

    International Nuclear Information System (INIS)

    Moghari, M.; Hosseini, S.; Shokouhmand, H.; Sharifi, H.; Izadpanah, S.

    2012-01-01

    To achieve a precise assessment on thermal performance of a D-type water-cooled natural gas-fired boiler the present paper was aimed at determining temperature distribution of water and flue gas flows in its different heat exchange equipment. Using the zonal method to predict thermal radiation treatment in the boiler furnace and a numerical iterative approach, in which heat and fluid flow relations associated with different heat surfaces in the boiler convective zone were employed to estimate heat transfer characteristics, enabled this numerical study to obtain results in good agreement with experimental data measured in the utility site during steady state operation. A constant flow rate for a natural gas fuel of specified chemical composition was assumed to be mixed with a given excess ratio of air flow at a full boiler load. Significant results attributed to distribution of heat flux on different furnace walls and that of flue gas and water/steam temperature in different convective stages including superheater, evaporating risers and downcomers modules, and economizer were obtained. Besides the rate of heat absorption in every stage and other essential parameters in the boiler design too, inherent thermal characteristics like radiative and convective heat transfer coefficients as well as overall heat transfer conductance and effectiveness of convective stages considered as cross-flow heat exchangers were eventually presented for the given operating condition. - Highlights: ► Detailed distribution of heat flux on all of the boiler furnace walls was obtained. ► Flue gas and water thermal behaviors in different heating sections were evaluated. ► A good agreement was made between numerical results and experimental data. ► Contribution of the boiler furnace to the total thermal absorption was 39%. ► Contribution of the boiler tube banks to the total thermal absorption was 61%.

  3. Thermal hydraulic behavior of sub-assembly local blockage in China experiment fast reactor

    International Nuclear Information System (INIS)

    Yang Zhimin

    2000-01-01

    The geometrical parameter ratio of pitch to diameter of China Experiment Fast Reactor (CEFR) subassembly is 1,167. To address the thermal hydraulic behavior of subassembly local blockage which may be caused by deformation of cladding due to severe swelling and thermal stresses and by space swirl loosening etc., the porous numerical model and SIMPLE-P code used to solve Navier-Stokes and energy equations in porous medium was developed, and the bundle experiment with 19 pins with 24 subchannels blocked in the sodium coolant was carried on in China Institute of Atomic Energy (CIAE). The comparison of code predictions against experiments (including non-blockage and ten blockage conditions) seems well. The thermal hydraulic behavior of fuel subassembly with 61 fuel pins blockage of CEFR is calculated with SIMPLE-P code. The results indicate that the maximum temperature is 815 deg. C when the blockage area is about 37% (54 central subchannels are blocked). In this case the cladding won't be damaged and no sodium coolant boiling takes place. (author)

  4. Diurnal Thermal Behavior of Pavements, Vegetation, and Water Pond in a Hot-Humid City

    Directory of Open Access Journals (Sweden)

    Xiaoshan Yang

    2015-12-01

    Full Text Available This study investigated the diurnal thermal behavior of several urban surfaces and landscape components, including pavements, vegetation, and a water pond. The field experiment was conducted in a university campus of Guangzhou, South China, which is characterized by a hot and humid summer. The temperature of ground surface and grass leaves and the air temperature and humidity from 0.1 to 1.5 m heights were measured for a period of 24 h under hot summer conditions. The results showed that the concrete and granite slab pavements elevated the temperature of the air above them throughout the day. In contrast, the trees and the pond lowered the air temperature near ground during the daytime but produced a slight warming effect during the nighttime. The influence of vegetation on air temperature and humidity is affected by the configurations of greenery. Compared to the open lawn, the grass shaded by trees was more effective in cooling and the mixture of shrub and grass created a stronger cooling effect during the nighttime. The knowledge of thermal behavior of various urban surfaces and landscape components is an important tool for planners and designers. If utilized properly, it can lead to climatic rehabilitation in urban areas and an improvement of the outdoor thermal environment.

  5. Composition, phase behavior and thermal stability of natural edible fat from rambutan (Nephelium lappaceum L.) seed.

    Science.gov (United States)

    Solís-Fuentes, Julio A; Camey-Ortíz, Guadalupe; Hernández-Medel, María del Rosario; Pérez-Mendoza, Francisco; Durán-de-Bazúa, Carmen

    2010-01-01

    In this paper, the chemical composition, the main physicochemical properties, phase behavior and thermal stability of rambutan (Nephelium lappaceum L.) seed fat were studied. These results showed that the almond-like decorticated seed represents 6.1% of the wet weight fruit and is: 1.22% ash, 7.80% protein, 11.6% crude fiber, 46% carbohydrates, and 33.4% fat (d.b.). The main fatty acids in the drupe fat were 40.3% oleic, 34.5% arachidic, 6.1% palmitic, 7.1% stearic, 6.3% gondoic, and 2.9% behenic; the refraction, saponification and iodine values were 1.468, 186, and 47.0, respectively. The phase behavior analysis showed relatively simple crystallization and melting profiles: crystallization showed three well-differentiated groups of triglycerides around maximum peaks at +30.8, +15.6 and -18.1 degrees C; the fat-melting curve had a range between -14.5 and +51.8 degrees C with a fusion enthalpy of 124.3 J/g. The thermal stability analyzed in an inert atmosphere of N(2) and in a normal oxidizing atmosphere, showed that in the latter, fat decomposition begins at 237.3 degrees C and concludes at 529 degrees C, with three stages of decomposition. According to these results, rambutan seed fat has physicochemical and thermal characteristics that may become interesting for specific applications in several segments of the food industry.

  6. Thermal behavior and compatibility analysis of the new chemical entity LPSF/FZ4

    International Nuclear Information System (INIS)

    Costa, Salvana Priscylla Manso; Ramos da Silva, Keyla Emanuelle; Rocha de Medeiros, Giovanna Christinne; Rolim, Larissa Araujo; Ferreira de Oliveira, Jamerson; Carmo Alves de Lima, Maria do; Galdino, Suely Lins; Pitta, Ivan da Rocha; Neto, Pedro Jose Rolim

    2013-01-01

    Highlights: • We determined the thermal behavior of isolated LPSF/FZ4. • We used the isothermal and non-isothermal methods. • We reported the time of the stability of LPSF/FZ4 was measured in 4 months. • We also performed a compatibility study associated with excipients. • We reported the possible interactions of the prototype with lactose. - Abstract: In this study, differential scanning calorimetry and thermogravimetry were employed to determine the thermal behavior of LPSF/FZ4 isolated and associated with excipients (amide, β-cyclodextrin, cellulose, lactose, stearate of magnesium, aerosil, sodium lauryl sulfate, polysorbate and polyvinylpyrrolidone). Thus, the purity of the prototype calculated was 98%. Isothermal and non-isothermal methods were used to determine the kinetic parameters of decomposition, finding a first-reaction order and activation energy (A e ) of 98.22 kJ mol −1 . Also, the time of the stability of LPSF/FZ4 was measured in 4 months. The compatibility study showed possible interactions of the prototype with lactose due to a change in its heat of fusion, a reduction of more than 40 °C in its stability and a reduction of approximately 30% in A e of its decomposition reaction. The study demonstrated the importance of using thermal analytical methods to characterize new drugs to enable the development and quality control of pharmaceutical products

  7. Thermal behavior and compatibility analysis of the new chemical entity LPSF/FZ4

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Salvana Priscylla Manso [Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco (Brazil); Ramos da Silva, Keyla Emanuelle, E-mail: ramos.keyla@gmail.com [Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco (Brazil); Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas (Brazil); Rocha de Medeiros, Giovanna Christinne; Rolim, Larissa Araujo; Ferreira de Oliveira, Jamerson [Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco (Brazil); Carmo Alves de Lima, Maria do; Galdino, Suely Lins; Pitta, Ivan da Rocha [Departamento de Antibióticos, Universidade Federal de Pernambuco (Brazil); Neto, Pedro Jose Rolim [Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco (Brazil)

    2013-06-20

    Highlights: • We determined the thermal behavior of isolated LPSF/FZ4. • We used the isothermal and non-isothermal methods. • We reported the time of the stability of LPSF/FZ4 was measured in 4 months. • We also performed a compatibility study associated with excipients. • We reported the possible interactions of the prototype with lactose. - Abstract: In this study, differential scanning calorimetry and thermogravimetry were employed to determine the thermal behavior of LPSF/FZ4 isolated and associated with excipients (amide, β-cyclodextrin, cellulose, lactose, stearate of magnesium, aerosil, sodium lauryl sulfate, polysorbate and polyvinylpyrrolidone). Thus, the purity of the prototype calculated was 98%. Isothermal and non-isothermal methods were used to determine the kinetic parameters of decomposition, finding a first-reaction order and activation energy (A{sub e}) of 98.22 kJ mol{sup −1}. Also, the time of the stability of LPSF/FZ4 was measured in 4 months. The compatibility study showed possible interactions of the prototype with lactose due to a change in its heat of fusion, a reduction of more than 40 °C in its stability and a reduction of approximately 30% in A{sub e} of its decomposition reaction. The study demonstrated the importance of using thermal analytical methods to characterize new drugs to enable the development and quality control of pharmaceutical products.

  8. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.

    Science.gov (United States)

    Liu, Yurong; Geever, Luke M; Kennedy, James E; Higginbotham, Clement L; Cahill, Paul A; McGuinness, Garrett B

    2010-02-01

    Poly (vinyl alcohol)/Gelatin hydrogels are under active investigation as potential vascular cell culture biomaterials, tissue models and vascular implants. The PVA/Gelatin hydrogels are physically crosslinked by the freeze-thaw technique, which is followed by a coagulation bath treatment. In this study, the thermal behavior of the gels was examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Rheological measurement and uniaxial tensile tests revealed key mechanical properties. The role of polymer fraction in relation to these mechanical properties is explored. Gelatin has no significant effect on the thermal behavior of PVA, which indicates that no substantial change occurs in the PVA crystallite due to the presence of gelatin. The glass transition temperature, melting temperature, degree of crystallinity, polymer fraction, storage modulus (G') and ultimate strength of one freeze-thaw cycle (1FT) hydrogels are inferior to those of 3FT hydrogels. With coagulation, both 1FT and 3FT hydrogels shifted to a lower value of T(g), melting temperature and polymer fraction are further increased and the degree of crystallinity is depressed. The mechanical properties of 1FT, but not 3FT, were strengthened with coagulation treatment. This study gives a detailed investigation of the microstructure formation of PVA/Gelatin hydrogel in each stage of physical treatments which helps us to explain the role of physical treatments in tuning their physical properties for biomechanical applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    International Nuclear Information System (INIS)

    Fleming, Evan; Wen, Shaoyi; Shi, Li; Silva, Alexandre K. da

    2013-01-01

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  10. Influence of Hydrologic Heterogeneity on Thermal-Hydrologic Behavior in Emplacement Drifts

    International Nuclear Information System (INIS)

    Y. Sun; T.A. Buscheck; Y. Hao

    2006-01-01

    Fracture networks have been characterized as highly permeable continuum within the porous rock matrix in thermal-hydrologic models used to support performance assessments of the proposed nuclear-waste repository at Yucca Mountain. Uncertainty and spatial variability of the fracture permeability are important considerations for understanding thermal-hydrologic behavior within the host rock surrounding an emplacement drift. In this paper, we conducted numerical experiments with a number of realizations of intrinsic fracture permeability and examine thermal conditions around an emplacement drift. Peak temperature and boiling duration on the drift wall are used as indices to quantify, the influence of fracture permeability. The variability of peak temperature and boiling duration resulting from small-scale fracture-permeability heterogeneity is compared with the variability resulting from variability of host-rock thermal conductivity and infiltration flux. An examination of rock dryout and condensate drainage shows that small-scale heterogeneity in fracture permeability results in a relatively small range in dryout volume and does not prevent the shedding of condensate through the pillar-separating emplacement drifts

  11. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel

    International Nuclear Information System (INIS)

    Lin, H.Q.; Zhao, Y.G.; Gao, Z.M.; Han, L.G.

    2008-01-01

    The fatigue crack propagating behaviors of cast hot working die (CHWD) steel untreated and treated by an electric current in the intermediate stage of thermal fatigue were investigated in the present study. The circle/elliptical heating affected zone (HAZ) was formed ahead of the notch tip on the fatigued specimens after pulse electric current stimulation. Both SEM observation and X-ray diffraction analysis revealed that pulse electric current stimulation refined grains/subgrains in the HAZs. With the prolonging of discharging duration, the grains/subgrains decreased in size and the dislocation density and microhardness increased gradually. The grain refinement and dislocation density increase played an important role in the material strengthening, which inevitably enhanced the propagation resistance and delayed the propagation of thermal fatigue cracks. Therefore, the pulse electric current stimulation was an effective method to improve the service lifetime of die material

  12. Constitutive Model Based on Dynamic Recrystallization Behavior during Thermal Deformation of a Nickel-Based Superalloy

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-07-01

    Full Text Available The thermal deformation and dynamic recrystallization (DRX behavior of a nickel-based superalloy were investigated by the thermal compression test. The experimental results show that the process parameters have great influence on the flow stress of the superalloy. In addition, there is an inflection point on the DRX softening stage of the work-hardening rate versus stress curve. DRX under the conditions of higher temperatures and lower strain rates easily occurs when the strain reaches a critical level. Based on the classical dislocation density theory and the DRX kinetics models, a two-stage constitutive model considering the effect of work hardening-dynamic recovery and DRX is developed for the superalloy. Comparisons between the predicted and experimental data indicate that the values predicted by the proposed constitutive model are in good agreement with the experimental results.

  13. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Tsang, Chin-Fu

    2002-01-01

    A coupled thermal, hydrologic and mechanical (THM) analysis is conducted to evaluate the impact of coupled THM processes on the performance of a potential nuclear waste repository at Yucca Mountain, Nevada. The analysis considers changes in rock mass porosity, permeability, and capillary pressure caused by rock deformations during drift excavation, as well as those caused by thermo-mechanically induced rock deformations after emplacement of the heat-generating waste. The analysis consists of a detailed calibration of coupled hydraulic-mechanical rock mass properties against field experiments, followed by a prediction of the coupled thermal, hydrologic, and mechanical behavior around a potential repository drift. For the particular problem studied and parameters used, the analysis indicates that the stress-induced permeability changes will be within one order of magnitude and that these permeability changes do not significantly impact the overall flow pattern around the repository drift

  14. Effect of mild thermal treatment on the polymerization behavior, conformation and viscoelasticity of wheat gliadin.

    Science.gov (United States)

    Wang, Pei; Zou, Min; Liu, Kexin; Gu, Zhenxin; Yang, Runqiang

    2018-01-15

    The physicochemical properties of gliadin upon mild thermal treatment were studied in terms of polymerization behavior, conformation and viscoelasticity. Gliadin samples were heated at 40, 60 and 90°C for up to 20min. Results showed that α-gliadin started to polymerize via disulfide (SS) bonds before γ-gliadin at 90°C, resulting in the extractability loss in aqueous ethanol. β-Turn and specific β-sheet structures were partially conversed to α-helices during thermal treatment. Rearrangement of non-covalent forces might contribute to viscosity loss of gliadin at 40 and 60°C. However, the elevated elasticity at 90°C was mainly due to gliadin polymerization while the viscosity variation was resulted from combined effects of non-covalent forces and covalent SS bonds. This study could offer insight into the variation of gliadin characteristics during the early baking process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Thermal buckling behavior of defective CNTs under pre-load: A molecular dynamics study.

    Science.gov (United States)

    Mehralian, Fahimeh; Tadi Beni, Yaghoub; Kiani, Yaser

    2017-05-01

    Current study is concentrated on the extraordinary properties of defective carbon nanotubes (CNTs). The role of vacancy defects in thermal buckling response of precompressed CNTs is explored via molecular dynamics (MD) simulations. Defective CNTs are initially compressed at a certain ratio of their critical buckling strain and then undergo a uniform temperature rise. Comprehensive study is implemented on both armchair and zigzag CNTs with different vacancy defects including monovacancy, symmetric bivacancy and asymmetric bivacancy. The results reveal that defects have a pronounced impact on the buckling behavior of CNTs; interestingly, defective CNTs under compressive pre-load show higher resistance to thermal buckling than pristine ones. In the following, the buckling response of defective CNTs is shown to be dependent on the vacancy defects, location of defects and chirality. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Thermal and magnetic behavior of Angustifolia Kunth bamboo fibers covered with Fe3O4 particles

    International Nuclear Information System (INIS)

    Calvo, S.; Arias, N.P.; Giraldo, O.; Rosales-Rivera, A.; Moscoso, O.

    2012-01-01

    Several Angustifolia Kunth bamboo fibers, which have been previously treated with an alkaline solution, were coated with magnetite particles. The coating of the fibers was achieved by an in-situ co-precipitation method with Fe 2+ and Fe 3+ in NaOH or NH 4 OH. The fibers were evaluated by chemical analysis using atomic absorption (A.A.) technique, structural characterization by X-ray diffraction (XRD), thermal stability with thermo-gravimetric analysis (TGA) in nitrogen at temperature range between 23 °C and 800 °C and magnetic behavior using vibrating sample magnetometry (VSM) applying a magnetic field between -27 KOe and 27 KOe at room temperature. We found that the thermal stability and magnetization depend of the synthesis method used to cover the Angustifolia Kunth bamboo fibers. In addition, an improved magnetic response was observed when NaOH solution is used to generate the magnetite coating on the fiber surface.

  17. Study of thermal hydraulic behavior of supercritical water flowing through fuel rod bundles

    International Nuclear Information System (INIS)

    Thakre, Sachin; Lakshmanan, S.P.; Kulkarni, Vinayak; Pandey, Manmohan

    2009-01-01

    Investigations on thermal-hydraulic behavior in Supercritical Water Reactor (SCWR) fuel assembly have obtained a significant attention in the international SCWR community because of its potential to obtain high thermal efficiency and compact design. Present work deals with CFD analysis to study the flow and heat transfer behavior of supercritical water in 4 metre long 7-pin fuel bundle using commercial CFD package ANSYS CFX for single phase steady state conditions. Considering the symmetric conditions, 1/12th part of the fuel rod bundle is taken as a domain of analysis. RNG K-epsilon model with scalable wall functions is used for modeling the turbulence behavior. Constant heat flux boundary condition is applied at the fuel rod surface. IAPWS equations of state are used to compute thermo-physical properties of supercritical water. Sharp variations in its thermo-physical properties (specific heat, density) are observed near the pseudo-critical temperature causing sharp change in heat transfer coefficient. The pseudo-critical point initially appears in the gaps among heated fuel rods, and then spreads radially outward reaching the adiabatic wall as the flow goes downstream. The enthalpy gain in the centre of the channel is much higher than that in the wall region. Non-uniformity in the circumferential distribution of surface temperature and heat transfer coefficient is observed which is in agreement with published literature. Heat transfer coefficient is high on the rod surface near the tight region and decreases as the distance between rod surfaces increases. (author)

  18. Geographic divergence in upper thermal limits across insect life stages: does behavior matter?

    Science.gov (United States)

    MacLean, Heidi J; Higgins, Jessica K; Buckley, Lauren B; Kingsolver, Joel G

    2016-05-01

    Insects with complex life cycles vary in size, mobility, and thermal ecology across life stages. We examine how differences in the capacity for thermoregulatory behavior influence geographic differences in physiological heat tolerance among egg and adult Colias butterflies. Colias adults exhibit differences in morphology (wing melanin and thoracic setal length) along spatial gradients, whereas eggs are morphologically indistinguishable. Here we compare Colias eriphyle eggs and adults from two elevations and Colias meadii from a high elevation. Hatching success and egg development time of C. eriphyle eggs did not differ significantly with the elevation of origin. Egg survival declined in response to heat-shock temperatures above 38-40 °C and egg development time was shortest at intermediate heat-shock temperatures of 33-38 °C. Laboratory experiments with adults showed survival in response to heat shock was significantly greater for Colias from higher than from lower elevation sites. Common-garden experiments at the low-elevation field site showed that C. meadii adults initiated heat-avoidance and over-heating behaviors significantly earlier in the day than C. eriphyle. Our study demonstrates the importance of examining thermal tolerances across life stages. Our findings are inconsistent with the hypothesis that thermoregulatory behavior inhibits the geographic divergence of physiological traits in mobile stages, and suggest that sessile stages may evolve similar heat tolerances in different environments due to microclimatic variability or evolutionary constraints.

  19. Effects of mine strata thermal behavior and mine initial temperatures on mobile refuge alternative temperature.

    Science.gov (United States)

    Yantek, D S; Yan, L; Bissert, P T; Klein, M D

    2017-04-01

    Federal regulations require the installation of refuge alternatives (RAs) in underground coal mines. Mobile RAs have a limited ability to dissipate heat, and heat buildup can lead to a life-threatening condition as the RA internal air temperature and relative humidity increase. The U.S. National Institute for Occupational Safety and Health (NIOSH) performed heat testing on a 10-person tent-type training RA and contracted ThermoAnalytics Inc. to develop a validated thermal simulation model of the tested RA. The model was used to examine the effects of the constant mine strata temperature assumption, initial mine air temperature, initial mine strata surface temperature (MSST), initial mine strata temperature at depth (MSTD) and mine strata thermal behavior on RA internal air temperature using 117 W (400 Btu/h) of sensible heat input per simulated miner. For the studied RA, when the mine strata temperature was treated as a constant, the final predicted RA internal air temperature was 7.1°C (12.8°F) lower than it was when the mine strata thermal behavior was included in the model. A 5.6°C (10.0°F) increase in the initial MSST resulted in a 3.9°C (7.1°F) increase in the final RA internal air temperature, whereas a 5.6°C (10°F) increase in the initial MSTD yielded a 1.4°C (2.5°F) increase in the final RA internal air temperature. The results indicate that mine strata temperature increases and mine strata initial temperatures must be accounted for in the physical testing or thermal simulations of RAs.

  20. Diurnal thermal behavior of selected urban objects using remote sensing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, A.; Ben-Dor, E. [The Remote Sensing and GIS Laboratory, Department of Geography and Human Environment, Tel-Aviv (Israel); Saaroni, H. [Unit for Applied Climatology and Environmental Aspects, Department of Geography and Human Environment, Tel-Aviv (Israel)

    2004-07-01

    This research analyzes and summarizes some thermal behavior of various urban surfaces in time and space using high-resolution video thermal radiometer situated at a height of 103 m, in the city of Tel-Aviv. The physical properties of the various urban elements, their color, the sky view factor, street geometry, traffic loads, and anthropogenic activity are important among the factors that determine the radiant surface temperature in the urban environment. During daytime, asphalt paved roads and rooftops were found to be the warmest urban elements in our study area. In contrast, exterior walls and trees hold the highest surface temperatures at night. Open spaced surfaces that are exposed to direct solar radiation during daytime and to heat loss at night were characterized by the highest diurnal temperature range. The radiometric stationary experiment revealed the temperature differences between diverse urban coverage to be at most 10 {sup o}C; such maximum temperature differences were measured in the early noon hours. The minimal temperatures were observed just before sunrise, when the temperature contrasts (4-5 {sup o}C) were smaller than in the early noon hours. The daytime hours between 9-10 a.m. and 5-8 p.m. turned out to be problematic for remote sensing of the urban environment, because the thermal differences between different objects were found to be insignificant. A remote survey aiming to study the urban environment should be conducted twice: in the early morning hours before sunrise (5 a.m.) and in the early noon hours (12-1 p.m.). The knowledge of thermal behavior of various urban components is an important tool for designers and decision-makers. If utilized properly, it can lead to climatic rehabilitation in urban areas and a reduction of the UHI. (author)

  1. Study of Substrate Preheating on Flattening Behavior of Thermal-Sprayed Copper Particles

    Science.gov (United States)

    Yang, K.; Fukumoto, M.; Yasui, T.; Yamada, M.

    2010-12-01

    In this study, the effect of substrate preheating on flattening behavior of thermal-sprayed particles was systematically investigated. A part of mirror-polished AISI304 substrates were preheated to 573 and 773 K for 10 min, and then exposed to an air atmosphere for different durations of up to 48 h, respectively. Contact angle of water droplet was measured on the substrate under designated conditions. It was found that the contact angle increased gradually with the increase of substrate duration after preheating. Moreover, smaller contact angle was maintained on the substrate with higher preheating temperature. Commercially available Cu powders were thermally sprayed onto the substrates with the same thermal treatment history as contact angle measurement using atmospheric plasma-spray technique. The splat shape had a transitional changing tendency from a splash splat to a disk one on the substrate with a short duration after preheating, while reappearance of splash splat with the increase of duration was confirmed. In general, wetting of substrate surface by molten particles may dominate the flattening behavior of thermal-sprayed particles. The occurrence of desorption of adsorbed gas/condensation caused by substrate preheating likely provides good wetting. On the other hand, the poor wetting may be attributed to the re-adsorption of gas/condensation on the substrate surface with the increase of duration. In addition, the shear adhesion strength of coating fabricated on blasted AISI304 substrate was enhanced on the once-heated substrate, but weakened with the increase of duration. The changing tendency of the coating adhesion strength and the wetting of substrate by droplet corresponded quite well with each other.

  2. Thermal decomposition behavior of nano/micro bimodal feedstock with different solids loading

    Science.gov (United States)

    Oh, Joo Won; Lee, Won Sik; Park, Seong Jin

    2018-01-01

    Debinding is one of the most critical processes for powder injection molding. The parts in debinding process are vulnerable to defect formation, and long processing time of debinding decreases production rate of whole process. In order to determine the optimal condition for debinding process, decomposition behavior of feedstock should be understood. Since nano powder affects the decomposition behavior of feedstock, nano powder effect needs to be investigated for nano/micro bimodal feedstock. In this research, nano powder effect on decomposition behavior of nano/micro bimodal feedstock has been studied. Bimodal powders were fabricated with different ratios of nano powder, and the critical solids loading of each powder was measured by torque rheometer. Three different feedstocks were fabricated for each powder depending on solids loading condition. Thermogravimetric analysis (TGA) experiment was carried out to analyze the thermal decomposition behavior of the feedstocks, and decomposition activation energy was calculated. The result indicated nano powder showed limited effect on feedstocks in lower solids loading condition than optimal range. Whereas, it highly influenced the decomposition behavior in optimal solids loading condition by causing polymer chain scission with high viscosity.

  3. Simulation of Missing Pellet Surface thermal behavior with 3D dynamic gap element

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Koo, Yang Hyun; Kang, Chang Hak; Lee Sung Uk; Yang, Dong Yol

    2014-01-01

    Most of the fuel performance codes that are able to simulate a multidimensional analysis are used to calculate the radial temperature distribution and perform a multidimensional mechanical analysis based on a one-dimensional (1D) temperature result. The FRAPCON-FRAPTRAN code system incorporates a 1D thermal module and two-dimensional (2D) mechanical module when FEM option is activated. In this method, the multidimensional gap conductance model is not required because one-dimensional thermal analysis is carried out. On the other hand, a gap conductance model for a multi-dimension should be developed in the code to perform a multidimensional thermal analysis. ALCYONE developed by CEA introduces an equivalent heat convection coefficient that represents the multidimensional gap conductance. However, the code does not employ dynamic gap conductance which is a function of gap thickness and gap characteristics in direct. The BISON code, which has been developed by INL (Idaho National Laboratory), employed a thermo-mechanical contact method that is specifically designed for tightly-coupled implicit solutions that employ Jacobian-free solution methods. Owing to tightly-coupled implicit solutions, the BISON code solves gap conductance and gap thickness simultaneously with given boundary conditions. In this paper, 3D dynamic gap element has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. To evaluate 3D dynamic gap element module, 3D thermomechanical module using FORTRAN77 has been implemented incorporating 3D dynamic gap element. To demonstrate effect of 3D dynamic gap element, thermal behavior of missing pellet surface (MPS) has been simulated by the developed module. LWR fuel performance codes should incorporate thermo-mechanical loop to solve gap conductance problem, iteratively. However, gap conductance in multidimensional model is difficult issue owing to its nonlinearity and convergence characteristics. In

  4. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal (ECT) Models for Battery Crush

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad; Sahraei, Elham; Wierzbicki, Tom

    2016-06-14

    Vehicle crashes can lead to crushing of the battery, damaging lithium ion battery cells and causing local shorts, heat generation, and thermal runaway. Simulating all the physics and geometries at the same time is challenging and takes a lot of effort; thus, simplifications are needed. We developed a material model for simultaneously modeling the mechanical-electrochemical-thermal behavior, which predicted the electrical short, voltage drop, and thermal runaway behaviors followed by a mechanical abuse-induced short. The effect of short resistance on the battery cell performance was studied.

  5. Thermal Conductivity and Thermal Gradient Cyclic Behavior of Refractory Silicate Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Plasma-sprayed mullite and BSAS coatings have been developed to protect SiC/SiC ceramic matrix composites from high temperature environmental attack. In this study, thermal conductivity and thermal barrier functions of these coating systems are evaluated using a laser high-heat-flux test rig. The effects of water vapor on coating thermal conductivity and durability are studied by using alternating furnace and laser thermal gradient cyclic tests. The influence of laser high thermal-gradient cycling on coating failure modes is also investigated.

  6. Deuterium permeation behavior of HTUPS4 steel with thermal oxidation layer

    International Nuclear Information System (INIS)

    Xu, Yu-Ping; Liu, Feng; Zhao, Si-Xiang; Li, Xiao-Chun; Wang, Jing; An, Zhong-Qing; Lu, Tao; Liu, Hao-Dong; Ding, Fang; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-01-01

    The permeation behavior of creep-resistant, Al 2 O 3 -forming HTUPS austenitic stainless steels was studied using a gas driven permeation (GDP) device. The steel samples were first thermal oxidized at air condition, followed by GDP experiments. The permeability and diffusion coefficients of oxidized samples and bare 316L steels were derived and compared. In order to characterize the oxide layer, X-ray photoelectron spectroscopy was performed. An oxide layer with a thickness of 200 nm which mainly consists of Al 2 O 3 was detected.

  7. UMo/Al nuclear fuel plate behavior under thermal treatment (425-550 C)

    International Nuclear Information System (INIS)

    Palancher, H.; Champion, G.; Bonnin, A.; Colin, C.V.; Nassif, V.

    2013-01-01

    Nuclear fuel plates based on a γU-Mo/Al mixture are proposed for research reactors. In this work their thermal behavior in the [425; 550 C] temperature range has been studied mainly by neutron and high energy X-ray diffraction. Even if complementary studies will be necessary, the kinetics of first the growth of the interaction layer between γU-Mo and Al and second of the γU-Mo destabilization have been accurately measured. This basic work should be helpful for defining manufacturing conditions for fuel plates with optimized composition. (authors)

  8. Study of bubble behavior in weightlessness (effects of thermal gradient and acoustic stationary wave) (M-16)

    Science.gov (United States)

    Azuma, H.

    1993-01-01

    The aim of this experiment is to understand how bubbles behave in a thermal gradient and acoustic stationary wave under microgravity. In microgravity, bubble or bubbles in a liquid will not rise upward as they do on Earth but will rest where they are formed because there exists no gravity-induced buoyancy. We are interested in how bubbles move and in the mechanisms which support the movement. We will try two ways to make bubbles migrate. The first experiment concerns behavior of bubbles in a thermal gradient. It is well known than an effect of surface tension which is masked by gravity on the ground becomes dominant in microgravity. The surface tension on the side of the bubble at a lower temperature is stronger than at a higher temperature. The bubble migrates toward the higher temperature side due to the surface tension difference. The migration speed depends on the so-called Marangoni number, which is a function of the temperature difference, the bubble diameter, liquid viscosity, and thermal diffusivity. At present, some experimental data about migration speeds in liquids with very small Marangoni numbers were obtained in space experiments, but cases of large Marangoni number are rarely obtained. In our experiment a couple of bubbles are to be injected into a cell filled with silicon oil, and the temperature gradient is to be made gradually in the cell by a heater and a cooler. We will be able to determine migration speeds in a very wide range of Marangoni numbers, as well as study interactions between the bubbles. We will observe bubble movements affected by hydrodynamical and thermal interactions, the two kinds of interactions which occur simultaneously. These observation data will be useful for analyzing the interactions as well as understanding the behavior of particles or drops in materials processing. The second experiment concerns bubble movement in an acoustic stationary wave. It is known that a bubble in a stationary wave moves toward the node or the

  9. Mamey sapote seed oil (Pouteria sapota). Potential, composition, fractionation and thermal behavior

    OpenAIRE

    Solís-Fuentes, J. A.; Ayala-Tirado, R. C.; Fernández-Suárez, A. D.; Durán-de-Bazúa, M. C.

    2015-01-01

    The chemical composition of the waste from mamey sapote (Pouteria sapota) and its oil extracted from the seed (MSSO) of ripe and unripe fruits, was studied. The MSSO from ripe fruits was dry-fractionated, and the thermal and phase behaviors of its fractions and their mixtures with other known natural fats were analyzed. The main components of the mamey peel and the seed were crude fiber (81.32%) and fat (44.41% db), respectively. The seed oil contained oleic, stearic, palmitic and linoleic as...

  10. Redes sociales y derecho penal

    OpenAIRE

    Sanz Rodríguez, Patricia

    2014-01-01

    La gran evolución de Internet en las últimas décadas ha supuesto que este servicio tecnológico se encuentre presente en todos los ámbitos de nuestra vida. Sin embargo, este fenómeno lleva aparejado un incremento de la criminalidad, con la consiguiente respuesta del derecho penal. En este contexto las redes sociales se erigen como un instrumento muy importante de comunicación entre las personas, a la vez que aparecen como un medio idóneo para la comisión de conductas delictivas: usurpación del...

  11. Data mining utilizando redes neuronales

    OpenAIRE

    Ale, Juan María; Bot, Romina Laura

    2004-01-01

    Las Redes Neuronales son ampliamente utilizadas para tareas relacionadas con reconocimiento de patrones y clasificación. Aunque son clasificadores muy precisos, no son comúnmente utilizadas para Data Mining porque producen modelos de aprendizaje inexplicables. El algoritmo TREPAN extrae hipótesis explicables de una Red Neuronal entrenada. Las hipótesis producidas por el algoritmo se representan con un árbol de decisión que aproxima a la red. Los árboles de decisión extraídos por TREPAN no pue...

  12. Adaptive Thermal Comfort in Japanese Houses during the Summer Season: Behavioral Adaptation and the Effect of Humidity

    Directory of Open Access Journals (Sweden)

    Hom B. Rijal

    2015-09-01

    Full Text Available In order to clarify effect of humidity on the room temperatures reported to be comfortable, an occupant thermal comfort and behavior survey was conducted for five summers in the living rooms and bedrooms of residences in the Kanto region of Japan. We have collected 13,525 thermal comfort votes from over 239 residents of 120 homes, together with corresponding measurements of room temperature and humidity of the air. The residents were generally well-satisfied with the thermal environment of their houses, with or without the use of air-conditioning, and thus were well-adapted to their thermal conditions. The humidity was found to have very little direct effect on the comfort temperature. However, the comfort temperature was strongly related to the reported skin moisture. Behavioral adaptation such as window opening and fan use increase air movement and improve thermal comfort.

  13. Thermal behavior and transformation kinetics of titanium dioxide nanocrystallites prepared by coupling agents

    International Nuclear Information System (INIS)

    Chen, W.C.; Wang, Y.T.; Shih, C.J.

    2010-01-01

    Coupling agents have been widely used to retard the sintering of silver paste and minimize co-firing defects due to densification mismatch between silver and dielectrics. The thermal-decomposition and crystallization behavior of the coupling agent is a subject of great concern. To elucidate what is responsible for the oxidation, Ti organometallic compounds were calcined at different temperatures (350, 400, 500, 600 o C) for 2 h and the crystallization behavior was determined by X-ray diffraction (XRD). The activation energy for crystallization of coupling agents was studied by using isothermal methods. According to the quantitative XRD method, the values calculated by the Johnson-Mehi-Avrami equation are 134.9 kJ mol -1 . The growth morphology parameters are 1.061, 0.915, 1.016 respectively. Combining the results of DTA, XRD and TEM, it is found that formation of nanocrystallized titania accompanies the combustion of organometallic compounds.

  14. Thermal behavior and transformation kinetics of titanium dioxide nanocrystallites prepared by coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.C. [School of Dentistry, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Wang, Y.T. [Department of Medical Research and Education, Chen Hsin General Hospital, 45 Cheng-Hsin Street, Pai-Tou, Taipei 11220, Taiwan (China); Shih, C.J., E-mail: cjshih@kmu.edu.t [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan1st Road, Kaohsiung 80708, Taiwan (China)

    2010-02-04

    Coupling agents have been widely used to retard the sintering of silver paste and minimize co-firing defects due to densification mismatch between silver and dielectrics. The thermal-decomposition and crystallization behavior of the coupling agent is a subject of great concern. To elucidate what is responsible for the oxidation, Ti organometallic compounds were calcined at different temperatures (350, 400, 500, 600 {sup o}C) for 2 h and the crystallization behavior was determined by X-ray diffraction (XRD). The activation energy for crystallization of coupling agents was studied by using isothermal methods. According to the quantitative XRD method, the values calculated by the Johnson-Mehi-Avrami equation are 134.9 kJ mol{sup -1}. The growth morphology parameters are 1.061, 0.915, 1.016 respectively. Combining the results of DTA, XRD and TEM, it is found that formation of nanocrystallized titania accompanies the combustion of organometallic compounds.

  15. Salty solutions: their effects on thermal set points in behavioral repertoires of albino rats.

    Science.gov (United States)

    Vitulli, W F; Aker, R; Howard, S W; Jones, W M; Kimball, M W; Quinn, J M

    1994-08-01

    Salt (sodium chloride) has been linked to increased blood pressure and a rise in core body temperature. The objective of this study was to investigate the role played by salt in altering behavioral thermoregulation in albino rats. Different doses of sodium chloride were administered (ip) prior to fixed-interval 2-min. schedules of microwave reinforcement in rats tested in a cold Skinner Box. Three Sprague-Dawley rats were conditioned to regulate their thermal environment with 5-sec. exposures of MW reinforcement in a repeated-measures reversal design. Friedman's non-parametric test showed significant differences among sodium chloride doses and physiologically normal saline. Post hoc sign tests showed that all doses of NaCl suppressed operant behavior for heat except 60 mg/kg. The hypothesis that sodium chloride lowers hypothalamic set point for heat was partially supported.

  16. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Mehrali, Mohammad; Tahan Latibari, Sara; Mehrali, Mehdi; Mahlia, Teuku Meurah Indra; Cornelis Metselaar, Hendrik Simon

    2014-01-01

    Highlights: • Introducing novel form-stable PCM of stearic acid (SA)/carbon nanospheres (CNSs). • The highest stabilized SA content is 83 wt% in the SA/CNS composites. • Increasing thermal conductivity of composite phase change material with high amount of latent heat. - Abstract: Stearic acid (SA) is one of the main phase change materials (PCMs) for medium temperature thermal energy storage systems. In order to stabilize the shape and enhance the thermal conductivity of SA, the effects of adding carbon nanospheres (CNSs) as a carbon nanofiller were examined experimentally. The maximum mass fraction of SA retained in CNSs was found as 80 wt% without the leakage of SA in a melted state, even when it was heated over the melting point of SA. The dropping point test shows that there was clearly no liquid leakage through the phase change process at the operating temperature range of the composite PCMs. The thermal stability and thermal properties of composite PCMs were investigated with a thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC), respectively. The thermal conductivity of the SA/CNS composite was determined by the laser flash method. The thermal conductivity at 35 °C increased about 105% for the highest loading of CNS (50 wt%). The thermal cycling test proved that form-stable composite PCMs had good thermal reliability and chemical durability after 1000 cycles of melting and freezing, which is advantageous for latent heat thermal energy storage (LHTES)

  17. Historia en las redes, las redes de humanistas en el renacimiento

    Directory of Open Access Journals (Sweden)

    Orlando Sanchez Herrera

    2015-12-01

    Full Text Available Se realiza un censo de los humanistas del Renacimiento a partir de enciclopedias y listas de humanistas. La lista resultante se dividió en periodos de 30 años y se conformó una red social con los personajes que resultaron contemporáneos, se obtuvieron 8 redes. Cada una de las redes se analizó con el software para análisis de redes sociales Pajek y por medio de software escrito ad hoc en lenguaje M. Resultados: las redes de humanistas son redes complejas en virtud de sus propiedades topológicas. Planteamos que los parámetros topológicos de las redes sociales son la medida de su complejidad. Las redes de humanistas ganaron en robustez gradualmente hasta alcanzar su máximo en el periodo de 1493-1523, para luego declinar. Todas las redes estudiadas mantuvieron las propiedades topológicas asociadas con la velocidad de transmisión de información, facilidad de transmisión y estabilidad hasta el fin del Renacimiento. Como algunos miembros de las redes de humanistas conformaron también las llamadas redes de filósofos de la naturaleza es factible plantear que estas últimas heredaron las propiedades de las primeras. El humanista más relevante del periodo Renacentista resulto ser Erasmo de Rotterdam por el valor que alcanzo en su intermediación durante 3 periodos consecutivos.

  18. Cyclic thermal behavior associated to the degassing process at El Hierro submarine volcano, Canary Islands.

    Science.gov (United States)

    Fraile-Nuez, E.; Santana-Casiano, J. M.; González-Dávila, M.

    2016-12-01

    One year after the ceasing of magmatic activity in the shallow submarine volcano of the island of El Hierro, significant physical-chemical anomalies produced by the degassing process as: (i) thermal anomalies increase of +0.44 °C, (ii) pH decrease of -0.034 units, (iii) total dissolved inorganic carbon, CT increase by +43.5 µmol kg-1 and (iv) total alkalinity, AT by +12.81 µmol kg-1 were still present in the area. These evidences highlight the potential role of the shallow degassing processes as a natural ecosystem-scale experiments for the study of significant effects of global change stressors on marine environments. Additionally, thermal time series obtained from a temporal yo-yo CTD study, in isopycnal components, over one of the most active points of the submarine volcano have been analyzed in order to investigate the behavior of the system. Signal processing of the thermal time series highlights a strong cyclic temperature period of 125-150 min at 99.9% confidence, due to characteristic time-scales revealed in the periodogram. These long cycles might reflect dynamics occurring within the shallow magma supply system below the island of El Hierro.

  19. Thermal Cycling Behavior of Zinc Antimonide Thin Films for High Temperature Thermoelectric Power Generation Applications.

    Science.gov (United States)

    Shim, Hyung Cheoul; Woo, Chang-Su; Han, Seungwoo

    2015-08-19

    The zinc antimonide compound ZnxSby is one of the most efficient thermoelectric materials known at high temperatures due to its exceptional low thermal conductivity. For this reason, it continues to be the focus of active research, especially regarding its glass-like atomic structure. However, before practical use in actual surroundings, such as near a vehicle manifold, it is imperative to analyze the thermal reliability of these materials. Herein, we present the thermal cycling behavior of ZnxSby thin films in nitrogen (N2) purged or ambient atmosphere. ZnxSby thin films were prepared by cosputtering and reached a power factor of 1.39 mW m(-1) K(-2) at 321 °C. We found maximum power factor values gradually decreased in N2 atmosphere due to increasing resistivity with repeated cycling, whereas the specimen in air kept its performance. X-ray diffraction and electron microscopy observations revealed that fluidity of Zn atoms leads to nanoprecipitates, porous morphologies, and even growth of a coating layer or fiber structures on the surface of ZnxSby after repetitive heating and cooling cycles. With this in mind, our results indicate that proper encapsulation of the ZnxSby surface would reduce these unwanted side reactions and the resulting degradation of thermoelectric performance.

  20. Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics

    Directory of Open Access Journals (Sweden)

    R. Tuffi

    2018-01-01

    Full Text Available The thermal behavior and pyrolytic kinetic analysis of main waste polymers (polypropylene (PP, polyethylene film (PE, poly(ethylene terephthalate (PET, polystyrene (PS and three synthetic mixtures representing commingled postconsumer plastics wastes (CPCPWs output from material recovery facilities were studied. Thermogravimetry (TG pyrolysis experiments revealed that the thermal degradation of single polymers and the synthetic mixture enriched in PP occurred in one single step. The other two mixtures underwent a two-consecutive, partially overlapping degradation steps, whose peaks related to the first-order derivative of TG were deconvoluted into two distinct processes. Further TG experiments carried out on binary mixtures (PS/PP, PET/PP, PET/PEfilm and PP/PEfilm showed a thermal degradation reliance on composition, structure and temperatures of single polymer components. A kinetic analysis was made for each step using the Kissinger-Akahira-Sunose (KAS method, thus determining almost constant activation energy (Ea for pyrolysis of PS, PET, PP and PE film in the range 0.25<α<0.85, unlike for pyrolysis of CPCPWs, with particular reference to CPCPW1 and the second step of CPCPW2 and CPCPW3, both ascribable to degradation of PP and PE film. To account for the reliability of these values the integral isoconversional modified method developed by Vyazovkin was also applied.

  1. Crossover behavior of the thermal conductance and Kramers’ transition rate theory

    Science.gov (United States)

    Velizhanin, Kirill A.; Sahu, Subin; Chien, Chih-Chun; Dubi, Yonatan; Zwolak, Michael

    2015-12-01

    Kramers’ theory frames chemical reaction rates in solution as reactants overcoming a barrier in the presence of friction and noise. For weak coupling to the solution, the reaction rate is limited by the rate at which the solution can restore equilibrium after a subset of reactants have surmounted the barrier to become products. For strong coupling, there are always sufficiently energetic reactants. However, the solution returns many of the intermediate states back to the reactants before the product fully forms. Here, we demonstrate that the thermal conductance displays an analogous physical response to the friction and noise that drive the heat current through a material or structure. A crossover behavior emerges where the thermal reservoirs dominate the conductance at the extremes and only in the intermediate region are the intrinsic properties of the lattice manifest. Not only does this shed new light on Kramers’ classic turnover problem, this result is significant for the design of devices for thermal management and other applications, as well as the proper simulation of transport at the nanoscale.

  2. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim

    2017-12-01

    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  3. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Pilatowsky, I. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco, s/n, Colonia Centro, 62580 Temixco, Morelos (Mexico); Ruiz, V. [Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n, Isla de la Cartuja, 41092 Sevilla, Espana (Spain)

    2008-07-15

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design

  4. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    International Nuclear Information System (INIS)

    Garcia-Valladares, O.; Pilatowsky, I.; Ruiz, V.

    2008-01-01

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design and

  5. Thermal Behavior of an Asphalt Pavement in the Laboratory and in the Parking Lot

    Directory of Open Access Journals (Sweden)

    J. B. Martinkauppi

    2015-01-01

    Full Text Available The urban, constructed areas are full of buildings and different kinds of pavements and have a noticeable lack of trees and flora. These areas are accumulating the heat from the Sun, people, vehicles, and constructions. One interesting heat collector is the asphalt pavement. How does the heat transfer to different layers under the pavement or does it? What are the temperatures under the pavement in Finland where the winter can be pretty hard? How can those temperatures be measured accurately? These are the main questions this paper gives the preliminary answers to. First the thermal behavior of asphalt and the layers beneath are researched in the laboratory and then the measurement field is bored and dug in the parking in the Western coast of Finland, 63°5′45′′ N. Distributed temperature sensing method was found to be a good choice for temperature measurements. Thermal behavior of pavement has been monitored in different layers and the preliminary results have been published here. The goal of this research is to assess the applicability of asphalt pavements for heat energy collection.

  6. Effects of thermal cracking on the dynamic behavior of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Castellani, A.; Fontana, A.

    1977-01-01

    Thick concrete cylinders acted on by horizontal dynamic forces are analyzed. According to the dimensions they may simulate a containment structure or a reactor core support. In particular, the effects of thermal cracking on their dynamic behavior are investigated; up to now the tests are confined to vertical cracking which is likely to appear under a thermal gradient of approximately 35 to 45 0 C on the wall. At higher temperatures, the number and extension of these cracks increase, till a stabilized crack pattern is reached. This is the main subject of the present investigation. The horizontal forces call for a shear transmission along the crack. According to the literature, shear stresses can be transmitted by aggregate interlock, by shear friction, and by the dowel action provided by horizontal reinforcement. These effects may accomodate the shear transmission along the crack required to resist a given distribution of horizontal forces. On the other hand, the shear rigidity of the structure may be negatively affected by the cracking, depending on the crack width and distribution and on the amplitude of the applied forces. In this case a dynamic behavior of the structure is to be analyzed with proper consideration to the existing cracking

  7. Effect of irradiation on differential thermal properties and crystallization behavior of some lithium borate glasses

    International Nuclear Information System (INIS)

    El-Alaily, N.A.; Mohamed, R.M.

    2001-01-01

    Differential thermal properties and the crystallization behavior of binary system Li 2 O-B 2 O 3 glasses were investigated. The effects of the presence of oxides of aluminum, lead or one of the transition metals TiO 2 or V 2 O 5 or Fe 2 O 3 in the parent glass were also studied. The effects of three different heat treatments on the crystalline structure of all the studied glasses were also investigated. The results showed that all glass samples were amorphous before the heat treatment, with the most common formed phase being tetraborate Li 2 B 8 O 13 (Li 2 O-4B 2 O 3 ). The exposure of the glass samples to either gamma rays or fast neutrons resulted in considerable changes in their thermal behavior. The results also showed that T g increases for all studied glasses when subjected to irradiation either by fast neutron or gamma rays, while T c decreased only at higher doses

  8. Mechanical behavior of mullite green disks prepared by thermal consolidation with different starches

    International Nuclear Information System (INIS)

    Talou, M.H.; Tomba Martinez, A.G.; Camerucci, M.A.

    2011-01-01

    Mechanical behavior of porous green disks obtained by thermal consolidation of mullite suspensions with cassava and potato starches was studied by diametral compression testing. Disks (thickness/diameter ≤ 0.25) were prepared by thermal treatment (70-80 °C, 2h) of mullite (75 vol%)/starch (25 vol%) of suspensions (40 vol%) pre-gelled at 55-60 °C, and dried (40 °C, 24 h). Samples were characterized by porosity measurements (50-55%) and microstructural analysis (SEM). Several mechanical parameters were determined: mechanical strength, Young's modulus, strain to fracture and yield stress. Typical crack patterns were analyzed and the fractographic analysis was performed by SEM. Mechanical results were related to the developed microstructures, the behavior of the starches in aqueous suspension, and the properties of the formed gels. For comparative purposes, mullite green disks obtained by burning out the starch (650 °C, 2h) were also mechanically evaluated. (author)

  9. Chemical stability, thermal behavior, and shelf life assessment of extruded modified double-base propellants

    Directory of Open Access Journals (Sweden)

    Sherif Elbasuney

    2018-02-01

    Full Text Available Double base propellant suffers from lack of chemical stability; this could result in self ignition during storing. Modified double base (MDB propellant based on stoichiometric binary mixture of oxidizer-metal fuel (Ammonium perchlorate/Aluminum, and energetic nitramines (HMX offered enhanced thrust as well as combustion characteristics. This study is devoted to evaluate the impact of such energetic additives on thermal behavior, chemical stability, and shelf life. Extruded MDB formulations were manufactured by extrusion process. Artificial aging at 80 °C for 28 days was conducted. Shelf life assessment was performed using Van't Hoff's equation. Quantification of evolved NOx gases with aging time was performed using quantitative stability tests. MDB formulation based on HMX demonstrated extended service life of 16 years compared with (AP/Al-MDB which demonstrated 9 years. This finding was ascribed to the reactivity of AP with nitroglycerin with the formation of perchloric acid. Thermal behavior of aged MDB, exhibited an increase in heat released with time; this was ascribed to the auto-catalytic thermal degradation during artificial aging. The increase in released heat by 31% was found to be equivalent to evolved NOx gases of 6.2 cm3/5 g and 2.5 cm3/1 g for Bergmann-Junk test, and Vacuum stability test respectively. This manuscript shaded the light on a novel approach to quantify evolved NOx gases to heat released with aging time. MDB based on HMX offered balanced ballistic performance, chemical stability, and service life.

  10. Thermal Behavior and Free-Radical-Scavenging Activity of Phytic Acid Alone and Incorporated in Cosmetic Emulsions

    Directory of Open Access Journals (Sweden)

    André Luis Máximo Daneluti

    2015-07-01

    Full Text Available Phytic acid is a natural compound widely used as depigmenting agent in cosmetic emulsions. Few studies are available in the literature covering the stability and the antioxidating property of this substance, used alone or into emulsions. Therefore, the purpose of this work was to investigate the thermal behavior and antioxidant properties of phytic acid alone and into cosmetic emulsions. The thermal behavior of this substance was evaluated by thermogravimetry (TG/derivative thermogravimetry (DTG and differential scanning calorimetry (DSC and the free-radical-scavenging activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH. TG/DTG and DSC curves allowed evaluation of the thermal behavior of phytic acid. These results showed that the substance presented four stages of mass loss. Thermal decomposition of the material initiated at 150 °C. Thermal behavior of the cosmetic emulsions detected that the addition of phytic acid decreased the thermal stability of the system. DPPH free-radical-scavenging activity showed that phytic acid incorporated into emulsion had no antioxidant capacity compared to BHT. In summary, we concluded that the thermoanalytical techniques (TG and DSC were efficient and reliable in the characterization of phytic acid alone and incorporated into cosmetic emulsions.

  11. Structural analysis and thermal behavior of diopside-fluorapatite-wollastonite-based glasses and glass-ceramics.

    Science.gov (United States)

    Kansal, Ishu; Tulyaganov, Dilshat U; Goel, Ashutosh; Pascual, Maria J; Ferreira, José M F

    2010-11-01

    Glass-ceramics in the diopside (CaMgSi2O6)-fluorapatite (Ca5(PO4)3F)-wollastonite (CaSiO3) system are potential candidates for restorative dental and bone implant materials. The present study describes the influence of varying SiO2/CaO and CaF2/P2O5 molar ratio on the structure and thermal behavior of glass compositions in the CaO-MgO-SiO2-P2O5-Na2O-CaF2 system. The structural features and properties of the glasses were investigated by nuclear magnetic resonance (NMR), infrared spectroscopy, density measurements and dilatometry. Sintering and crystallization behavior of the glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. The microstructure and crystalline phase assemblage in the sintered glass powder compacts were studied under non-isothermal heating conditions at 825 °C. X-ray diffraction studies combined with the Rietveld-reference intensity ratio (R.I.R) method were employed to quantify the amount of amorphous and crystalline phases in the glass-ceramics, while scanning electron microscopy was used to shed some light on the microstructure of resultant glass-ceramics. An increase in CaO/SiO2 ratio degraded the sinterability of the glass powder compacts, resulting in the formation of akermanite as the major crystalline phase. On the other hand, an increase in P2O5/CaF2 ratio improved the sintering behavior of the glass-ceramics, while varying the amount of crystalline phases, i.e. diopside, fluorapatite and wollastonite. Copyright © 2010. Published by Elsevier Ltd.

  12. Microhabitat selection by marine mesoconsumers in a thermally heterogeneous habitat: behavioral thermoregulation or avoiding predation risk?

    Directory of Open Access Journals (Sweden)

    Jeremy J Vaudo

    Full Text Available Habitat selection decisions by consumers has the potential to shape ecosystems. Understanding the factors that influence habitat selection is therefore critical to understanding ecosystem function. This is especially true of mesoconsumers because they provide the link between upper and lower tropic levels. We examined the factors influencing microhabitat selection of marine mesoconsumers - juvenile giant shovelnose rays (Glaucostegus typus, reticulate whiprays (Himantura uarnak, and pink whiprays (H. fai - in a coastal ecosystem with intact predator and prey populations and marked spatial and temporal thermal heterogeneity. Using a combination of belt transects and data on water temperature, tidal height, prey abundance, predator abundance and ray behavior, we found that giant shovelnose rays and reticulate whiprays were most often found resting in nearshore microhabitats, especially at low tidal heights during the warm season. Microhabitat selection did not match predictions derived from distributions of prey. Although at a course scale, ray distributions appeared to match predictions of behavioral thermoregulation theory, fine-scale examination revealed a mismatch. The selection of the shallow nearshore microhabitat at low tidal heights during periods of high predator abundance (warm season suggests that this microhabitat may serve as a refuge, although it may come with metabolic costs due to higher temperatures. The results of this study highlight the importance of predators in the habitat selection decisions of mesoconsumers and that within thermal gradients, factors, such as predation risk, must be considered in addition to behavioral thermoregulation to explain habitat selection decisions. Furthermore, increasing water temperatures predicted by climate change may result in complex trade-offs that might have important implications for ecosystem dynamics.

  13. The effect of infrequent thermal overloads on the behavior of plates subjected to mechanical and cyclic thermal loading

    International Nuclear Information System (INIS)

    Phillips, J.

    1982-01-01

    Many components in high temperature plants experience steady mechanical loads combined with cyclic thermal loads due to routine shutdowns. Less frequent but more severe thermal loads due to unplanned shutdowns may interrupt this routine loading pattern. This report presents the results of computer calculations on the effect of such thermal overloads on the behaviour of a 'Bree plate'. Particular attention is given to the creep and plastic ratcheting deformation properties of the system. It is shown that the plate material properties are an important factor in the problem. With an elastic-perfectly plastic material, behaviour can be predicted from an appropriate linear combination of the results for each type of thermal cycle, multiplied by an enhancement factor in certain cases. With a bilinear kinematic hardening material behaviour is generally determined by the properties of the overload thermal cycle. These results are relevant to many high temperature design problems

  14. Influence of nano-AlN particles on thermal conductivity, thermal stability and cure behavior of cycloaliphatic epoxy/trimethacrylate system

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available We have prepared a series of nano-sized aluminium nitride (nano-AlN/cycloaliphatic epoxy/trimethacrylate (TMPTMA systems and investigated their morphology, thermal conductivity, thermal stability and curing behavior. Experimental results show that the thermal conductivity of composites increases with the nano-AlN filler content, the maximum value is up to 0.47 W/(m.K. Incorporation of a small amount of the nano-AlN filler into the epoxy/TMPTMA system improves the thermal stability. For instance, the thermal degradation temperature at 5% weight loss of nano-AlN/epoxy/TMPTMA system with only 1 wt% nano-AlN was improved by ~8ºC over the neat epoxy/TMPTMA system. The effect of nano-AlN particles on the cure behavior of epoxy/TMPTMA systems was studied by dynamic differential scanning calorimetry. The results showed that the addition of silane treated nano-AlN particles does not change the curing reaction mechanism and silane treated nano-AlN particles could bring positive effect on the processing of composite since it needs shorter pre-cure time and lower pre-temperature, meanwhile the increase of glass transition temperature of the nanocomposite improves the heat resistance.

  15. Ethernet para a rede de transporte

    OpenAIRE

    Davim, João Pedro Morais

    2010-01-01

    Actualmente, as redes de transporte utilizam principalmente tecnologia SDH sobre uma camada WDM. Esta dissertação aborda a mudança da tecnologia das redes de transporte, de SDH para Carrier Ethernet. Depois de descrever as limitações que a tecnologia Ethernet tem ao operar em redes de tranporte, passamos a descrever a definição de tecnologia Carrier Ethernet segundo o Metro Ethernet Forum. De seguida são apresentadas dois protocolos propostos para suportar a tecnologia Carri...

  16. Co-planar deformation and thermal propagation behavior in a bundle burst test

    International Nuclear Information System (INIS)

    Uetsuka, Hiroshi; Koizumi, Yasuo; Kawasaki, Satoru

    1980-07-01

    The probability of the suggested feedback mechanism which could lead to co-planar deformation in a bundle burst test was assessed by the data of test and the calculation based on simplified model. Following four points were evaluated. (1) The probability of local deformation during early heat up stage. (2) The relation between the characteristic of heater and the feedback mechanism. (3) Thermal propagation behavior between two adjacent rods during heat up stage. (4) The propagation of ballooning in a bundle. The probability of suggested feedback mechanism was denied in all the evaluation. The feedback mechanism suggested by Burman could not be a controlling mechanism in co-planar deformation in a bundle burst test. (author)

  17. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling

    Directory of Open Access Journals (Sweden)

    Liya Ye

    2018-02-01

    Full Text Available Platinum aluminide coatings with different Hf contents were fabricated by using HfCl4. The oxidation kinetics and the rumpling behavior of oxide scale were investigated. After thermal cycling, the coating with 0.46 wt% Hf showed least weight gain. With the increase of Hf content, rumpling extent of the scale decreased. Meanwhile, HfO2 preferentially formed in the scale resulting in the increase of scale thickness. The oxidation of excessive Hf even caused the spallation of the scale. The results in the present study indicate that although Hf plays an important role in decreasing rumpling extent of TGO, the oxidation of Hf decreases the adhesion of the scale. Keywords: Pt-Al coating, Hf, Oxidation, Rumpling

  18. Mars' atmospheric behavior from Viking infra-red thermal mapper measurements

    Science.gov (United States)

    Martin, T. Z.; Kieffer, M. M.; Miner, E. D.

    1982-01-01

    Data from the 15 micron band of CO2 readings with the two Viking IR thermal mappers are discussed. Contrasts were observed to be strong between clear and dusty conditions, with a latitudinal gradient and a diurnal amplitude variation in the winter southern hemisphere. Consistency was found in zonal mean temperatures in the absence of dust, with a peak temperature of 180 K at the poles and a diurnal amplitude of 15 K at the equator. Large temperature increases occur in dusty conditions, with global dust storms being present in the northern, but not southern, hemisphere. Estimations of the surface and atmospheric temperatures are calculated in order to derive optical depths from the IR measurements of atmospheric opacity. The optical depth around the whole planet is found to be relatively uniform at any given moment. Finally, the diurnal behavior of the brightness temperature is outlined for 1.4 Mars years.

  19. Thermal behavior of Nickel deformed to ultra-high strain by high pressure torsion

    DEFF Research Database (Denmark)

    Zhang, Hongwang; Huang, Xiaoxu; Pippan, Richard

    2012-01-01

    fraction of high angle boundaries (>15°) 68% as determined by transmission electron microscopy and 80% as determined by electron backscatter diffraction. The thermal behavior of this nanostructued sample has been investigated by isochronal annealing for 1h at temperatures from 100 to 600°C......, and the evolution of the structural parameters (boundary spacing, average boundary misorientation angle and the fraction of high angle boundaries), crystallographic texture and hardness have been determined. Based on microstructural parameters the stored energy in the deformed state has been estimated to be 24 MPa....... The isochronal annealing leads to a hardness drop in three stages: a relatively small decrease at low temperatures (recovery) followed by a rapid decrease at intermediate temperatures (discontinuous recrystallization) and a slow decrease at high temperatures (grain growth). Due to the presence of a small amount...

  20. Trading heat and hops for water: Dehydration effects on locomotor performance, thermal limits, and thermoregulatory behavior of a terrestrial toad.

    Science.gov (United States)

    Anderson, Rodolfo C O; Andrade, Denis V

    2017-11-01

    Due to their highly permeable skin and ectothermy, terrestrial amphibians are challenged by compromises between water balance and body temperature regulation. The way in which such compromises are accommodated, under a range of temperatures and dehydration levels, impacts importantly the behavior and ecology of amphibians. Thus, using the terrestrial toad Rhinella schneideri as a model organism, the goals of this study were twofold. First, we determined how the thermal sensitivity of a centrally relevant trait-locomotion-was affected by dehydration. Secondly, we examined the effects of the same levels of dehydration on thermal preference and thermal tolerance. As dehydration becomes more severe, the optimal temperature for locomotor performance was lowered and performance breadth narrower. Similarly, dehydration was accompanied by a decrease in the thermal tolerance range. Such a decrease was caused by both an increase in the critical minimal temperature and a decrease in the thermal maximal temperature, with the latter changing more markedly. In general, our results show that the negative effects of dehydration on behavioral performance and thermal tolerance are, at least partially, counteracted by concurrent adjustments in thermal preference. We discuss some of the potential implications of this observation for the conservation of anuran amphibians.

  1. In vitro corrosion behavior and cellular response of thermally oxidized Zr-3Sn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F.Y.; Wang, B.L.; Qiu, K.J. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Li, H.F. [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Han, Y. [State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xian 710049 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A main monoclinic ZrO{sub 2} layer formed on ZrSn alloy after thermal oxidation. Black-Right-Pointing-Pointer Corrosion resistance of ZrSn alloy was improved with thermal oxidation. Black-Right-Pointing-Pointer The oxide layer inhibited the release of the ions into the mediums. Black-Right-Pointing-Pointer Oxidized ZrSn alloy exhibited an excellent in vitro biocompatibility. - Abstract: In this study, ZrSn alloy was thermally oxidized at 600 Degree-Sign C for 3 h and its morphological and structural characteristics, corrosion behavior, ion release and in vitro cytocompatibility were studied to evaluate the feasibility of applying it as dental implant. After oxidation, a dense black oxide layer formed on ZrSn alloy surface, which consisted of predominant monoclinic zirconia and a few non-stoichiometric oxides. The scratching and water contact angle test results demonstrated that the oxide layer exhibited good adhesion strength and similar hydrophilicity to zirconia. The oxidized ZrSn alloy showed higher corrosion resistance, as indicated by far lower corrosion current density and passive current density compared to pure Ti and untreated ZrSn alloy in artificial saliva with and without H{sub 2}O{sub 2}. The amount of ions released from the oxidized ZrSn alloy was much lower than that dissolved from pure Ti in simulated corrosive oral mediums. Moreover, the oxidized ZrSn alloy did not present any significant toxic effect to both osteoblast-like cells and fibroblast cells, and osteoblast-like cells could adhere well onto the surface and exhibited a good proliferative pattern. The combination of improved surface properties, superior corrosion resistance and good biocompatibility made the oxidized ZrSn alloy promising for oral implantology application.

  2. Multibias and thermal behavior of microwave GaN and GaAs based HEMTs

    Science.gov (United States)

    Alim, Mohammad A.; Rezazadeh, Ali A.; Gaquiere, Christophe

    2016-12-01

    Multibias and thermal characterizations on 0.25 μm × (2 × 100) μm AlGaN/GaN/SiC HEMT and 0.5 μm × (2 × 100) μm AlGaAs/InGaAs pseudomorphic HEMT have carried out for the first time. Two competitive device technologies are investigated with the variations of bias and temperature in order to afford a detailed realization of their potentialities. The main finding includes the self heating effect in the GaN device, zero temperature coefficient points at the drain current and transconductance in the GaAs device. The thermal resistance RTH of 7.1, 8.2 and 9.4 °C mm/W for the GaN device was estimated at 25, 75 and 150 °C respectively which are consistent with those found in the open literature. The temperature trend of the threshold voltage VT, Schottky barrier height ϕb, sheet charge densities of two dimensional electron gas ns, and capacitance under the gate Cg are exactly opposite in the two devices; whereas the knee voltage Vk, on resistance Ron, and series resistance Rseries are shows similar trend. The multi-bias and thermal behavior of the output current Ids, output conductance gds, transconductance gm, cut-off frequency ft, maximum frequency fmax, effective velocity of electron, veff and field dependent mobility, μ demonstrates a great potential of GaN device. These results provide some valuable insights for technology of preference for future and current applications.

  3. Numerical Methods for an Analysis of Hydrogen Behaviors Coupled with Thermal Hydraulics in a NPP Containment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy.

  4. Thermal and mechanical behavior of APWR-claddings under critical heat flux conditions

    International Nuclear Information System (INIS)

    Diegele, E.; Rust, K.

    1986-10-01

    Helical grid spacers, such as three or six helical fins as integral part of the claddings, are regarded as a more convenient design for the very tight lattice of an advanced pressurized water reactor (APWR) than grid spacers usually used. Furthermore, it is expected that this spacer design allows an increased safety margin against the critical heat flux (CHF), the knowledge of which is important for design, licensing, and operation of water cooled reactors. To address the distribution of the heat flux density at the outer circumference of the cladding geometry under investigation, the temperature fields in claddings without as well with fins were calculated taking into consideration nuclear and electrically heated rods. Besides the thermal behavior of the claddings, the magnitude and distribution of thermal stresses were determined additionally. A locally increased surface heat flux up to about 40 percent was calculated for the fin bases of nuclear as well as indirect electrically heated claddings with six such helical fins. For all investigated cases, the VON MISES stresses are clearly lower than 200 MPa, implying that no plastic deformations are to be expected. The aim of this theoretical analysis is to allow a qualitative assessment of the finned tube conception and to support experimental investigations concerning the critical heat flux. (orig.) [de

  5. Behavior of oxygen in zinc oxide films through thermal annealing and its effect on sheet resistance

    International Nuclear Information System (INIS)

    Hiramatsu, Takahiro; Furuta, Mamoru; Matsuda, Tokiyoshi; Li, Chaoyang; Hirao, Takashi

    2011-01-01

    Behavior of oxygen in sputtering deposited ZnO films through thermal annealing and its effect on sheet resistance of the films were investigated. The crystallinities of the ZnO film were improved by post-deposition annealing in vacuum. However, the sheet resistance of ZnO film was dramatically decreased after post-deposition annealing in vacuum at more than 300 deg. C, while O 2 desorbed from the film. The oxygen vacancies which acted as donors were formed by the thermal annealing in vacuum. The sheet resistance of the films was recovered by annealing in oxygen ambient. In this paper, 18 O 2 gas as an oxygen isotope was used as the annealing ambient in order to distinguish from 16 O, which was constituent atom of the ZnO films. SIMS analysis revealed that 18 O diffused into the ZnO film from the top surface by 18 O 2 annealing. Therefore oxygen vacancies formed by the post-deposition annealing in vacuum could be compensated by the annealing in oxygen ambient.

  6. Effect of polyhedral-oligomeric-sil-sesquioxanes on thermal and mechanical behavior of SC-15 epoxy

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available In this study, thermal and mechanical properties of nanocomposites containing SC-15 epoxy resin and polyhedral-oligomeric-sil-sesquioxanes (POSS have been studied. Dynamic Mechanical Analysis (DMA results show that the addition of 5 wt% of POSS yielded a 13% increase in the storage modulus and a 16°C enhancement in Tg. Thermo gravimetric Analysis (TGA results show that the thermal stability of epoxy increased with higher POSS content. Tension tests were used to evaluate the mechanical properties of materials. Both modulus and tensile strength are linear functions of POSS content. Scanning Electric Microscopy (SEM pictures of fracture surfaces show that the roughness of the fracture surfaces of epoxy increased after adding POSS. Based on experiment results, a three-parameter nonlinear constitutive equation was developed to describe the strain-softening stress-strain relationship behavior of materials. The parameters in this model are the elastic modulus, a strain exponent, m, and a compliance factor, β. Their relationships to the POSS weight fraction were obtained from the experiment results. The simulated stress-strain curves from the model agree with the test data. Analysis of the model shows that both the strain exponent, m, which controls the strain softening and hardening effect of the material, and the compliance parameter, β, which controls the flow stress level of the material, increase with higher POSS content.

  7. Influence of iron on crystallization behavior and thermal stability of the insulating materials - porous calcium silicates

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2017-01-01

    The properties of porous calcium silicate for high temperature insulation are strongly influenced by impurities. In this work we determine the influence of Fe3+ on the crystallization behavior and thermal stability of hydrothermally derived calcium silicate. We synthesize porous calcium silicate...... by XRD analysis. The thermal stability and compressive strength of the calcium silicates are seriously influenced by the changes of their crystal structure. Linear shrinkage of the reference sample is 1.3% at 1050°C, whereas the sample with Fe/Si =1.0% does by 30.4%. In conclusion, the presence of Fe3...... measurements reveal a pronounced decrease in the number of Q3 sites in the calcium silicate with an increase of Fe3+, and thereby lower the crystal fraction of xonotlite (Ca6Si6O17(OH)2) phase, and increase the crystal fractions of tobermorite(Ca5Si6O16(OH)2·4H2O) and calcite (CaCO3) phases, as confirmed...

  8. Influence of test parameters on the thermal-mechanical fatigue behavior of a superalloy

    Science.gov (United States)

    Malpertu, J. L.; Rémy, L.

    1990-01-01

    The thermal-mechanical fatigue (TMF) behavior of IN-100, a cast nickel-base superalloy, was investigated with a basic mechanical strain-temperature loop applied in a temperature range from 600 °C to 1050 °C (873 to 1323 K). Peak strains were applied at intermediate temperatures, giving a faithful simulation of real component parts. Tests with or without a mean strain were used; other tests involved a longer period or a tensile hold time, and they were compared with conventional “in-phase” TMF cycles. An interrupted test procedure was used with a plastic replication technique to define a conventional TMF life to 0.3-mm crack depth, as well as a life to 50-µm, crack depth, to characterize the crack initiation period. Some stress-strain hysteresis loops were reported. Thermal-mechanical fatigue life was found to be dependent upon test parameters, while the life to crack initiation was not. Oxidation of specimens and micro-cracks was found to be important in all the tests. These results were then discussed and compared with those under low cycle fatigue at high temperature.

  9. Hydration–dehydration behavior and thermodynamics of MX-80 montmorillonite studied using thermal analysis

    International Nuclear Information System (INIS)

    Tajeddine, L.; Gailhanou, H.; Blanc, P.; Lassin, A.; Gaboreau, S.; Vieillard, P.

    2015-01-01

    Highlights: • Adsorption–desorption of water on MX-80 is determined from TGA and DTA analysis. • From DTA analysis, three types of water behavior exist at various hydration states. • Surface area of DTA allows to determine the dehydration enthalpy per mole of water. • A maximum enthalpy is 12 kJ/mol for the adsorption and desorption processes. • Enthalpy of formation of water for adsorption and desorption processes are provided. - Abstract: The thermal dehydration of natural bentonite clay MX-80 chosen as a possible future backfill material, was investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The aim of this work is to provide a better understanding of the thermodynamics of the hydration–dehydration process of MX-80. The data obtained from thermogravimetry derivative curves at different relative humidities were used to determine the adsorption–desorption isotherm of MX-80. The total amount of water varies from 0.35 to 5.62 and from 0.78 to 6.12 mol adsorbed H 2 O/mol of clay upon adsorption and desorption, respectively, for a RH between 11 and 91%. Furthermore, the heats released upon adsorption and desorption are not completely similar. Moreover, the analysis of DTA signals obtained at various hydration states provides insights about three types of water behavior in MX-80. Therefore, the surface area of DTA curves was taken into account to determine the dehydration enthalpy per mole of water; the values do not correlate with the amount of adsorbed water in MX-80, and the maximum enthalpy was approximately 12 kJ/mol for the adsorption and desorption studies. The values obtained were combined with the standard enthalpies of the formation of liquid water to obtain the corresponding enthalpy of the formation of water relative to dehydrated MX-80

  10. Las redes sociales presentes en las bibliotecas

    Directory of Open Access Journals (Sweden)

    Magda Cecilia Sandí S.

    2012-01-01

    Full Text Available El presente artículo pretende evidenciar la importancia del uso de las redes sociales en las bibliotecas como una herramienta y un canal de comunicación entre el bibliotecólogo y la comunidad de usuarios. Las redes sociales son una nueva forma de comunicarnos entre las y los usuarios del Internet, su uso es irrestricto y cada vez aumenta la comunidad de usuarios de estas herramientas en la red.

  11. Las redes sociales presentes en las bibliotecas

    Directory of Open Access Journals (Sweden)

    Magda Cecilia Sandí Sandí

    2012-07-01

    Full Text Available El presente artículo pretende evidenciar la importancia del uso de las redes sociales en las bibliotecas como una herramienta y un canal de comunicación entre el bibliotecólogo y la comunidad de usuarios. Las redes sociales son una nueva forma de comunicarnos entre las y los usuarios del Internet, su uso es irrestricto y cada vez aumenta la comunidad de usuarios de estas herramientas en la red.

  12. Las redes sociales presentes en las bibliotecas

    OpenAIRE

    Magda Cecilia Sandí Sandí

    2012-01-01

    El presente artículo pretende evidenciar la importancia del uso de las redes sociales en las bibliotecas como una herramienta y un canal de comunicación entre el bibliotecólogo y la comunidad de usuarios. Las redes sociales son una nueva forma de comunicarnos entre las y los usuarios del Internet, su uso es irrestricto y cada vez aumenta la comunidad de usuarios de estas herramientas en la red.

  13. El sujeto posmoderno en las redes sociales

    OpenAIRE

    Elizondo, Mauricio; Picot, Carla

    2011-01-01

    Nuestro recorrido comienza con las características contemporáneas de los conceptos de vida pública y vida privada, y bajo el marco de las redes sociales, cómo estos ámbitos se reflejan en las subjetividades de los usuarios. En suma, intentaremos desarrollar qué son y cómo son utilizadas estas redes sociales en la actualidad por este sujeto posmoderno.

  14. Spin mediated magneto-electro-thermal transport behavior in Ni80Fe20/MgO/p-Si thin films

    Science.gov (United States)

    Lou, P. C.; Beyermann, W. P.; Kumar, S.

    2017-09-01

    In Si, the spin-phonon interaction is the primary spin relaxation mechanism. At low temperatures, the absence of spin-phonon relaxation will lead to enhanced spin accumulation. Spin accumulation may change the electro-thermal transport within the material, and thus may serve as an investigative tool for characterizing spin-mediated behavior. Here, we present the first experimental proof of spin accumulation induced electro-thermal transport behavior in a Pd (1 nm)/Ni80Fe20 (25 nm)/MgO (1 nm)/p-Si (2 μm) specimen. The spin accumulation originates from the spin-Hall effect. The spin accumulation changes the phononic thermal transport in p-Si causing the observed magneto-electro-thermal transport behavior. We also observe the inverted switching behavior in magnetoresistance measurement at low temperatures in contrast to magnetic characterization, which is attributed to the canted spin states in p-Si due to spin accumulation. The spin accumulation is elucidated by current dependent anomalous Hall resistance measurement, which shows a decrease as the electric current is increased. This result may open a new paradigm in the field of spin-mediated transport behavior in semiconductor and semiconductor spintronics.

  15. Development of a technique for level measurement in pressure vessels using thermal probes and artificial neural networks; Desenvolvimento de uma tecnica de medida de nivel em vasos de pressao utilizando sondas termicas e redes neurais artificiais

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Walmir Maximo

    2008-07-01

    A technique for level measurement in pressure vessels was developed using thermal probes with internal cooling and artificial neural networks (ANN's). This new concept of thermal probes was experimentally tested in an experimental facility (BETSNI) with two test sections, ST1 and ST2. Two different thermal probes were designed and constructed: concentric tubes probe and U tube probe. A data acquisition system (DAS) was assembled to record the experimental data during the tests. Steady state and transient level tests were carried out and the experimental data obtained were used as learning and recall data sets in the ANN's program RETRO-05 that simulate a multilayer perceptron with backpropagation. The results of the analysis show that the technique can be applied for level measurements in pressure vessel. The technique is applied for a less input temperature data than the initially designed to the probes. The technique is robust and can be used in case of lack of some temperature data. Experimental data available in literature from electrically heated thermal probe were also used in the ANN's analysis producing good results. The results of the ANN's analysis show that the technique can be improved and applied to level measurements in pressure vessels. (author)

  16. COBRA/TRAC analysis of two-dimensional thermal-hydraulic behavior in SCTF reflood tests

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Ohnuki, Akira; Sobajima, Makoto; Adachi, Hiromichi

    1987-01-01

    The effects of radial power distribution and non-uniform upper plenum water accumulation on thermal-hydraulic behavior in the core were observed in the reflood tests with Slab Core Test Facility (SCTF). In order to examine the predictability of these two effects by a multi-dimensional analysis code, the COBRA/TRAC calculations were made. The calculated results indicated that the heat transfer enhancement in high power bundles above quench front was caused by high vapor flow rate in those bundles due to the radial power distribution. On the other hand, the heat transfer degradation in the peripheral bundles under the condition of non-uniform upper plenum water accumulation was caused by the lower flow rates of vapor and entrained liquid above the quench front in those bundles by the reason that vapor concentrated in the center bundles due to the cross flow induced by the horizontal pressure gradient in the core. The above-mentioned two-dimensional heat transfer behaviors calculated with the COBRA/TRAC code is similar to those observed in SCTF tests and therefore those calculations are useful to investigate the mechanism of the two-dimensional effects in SCTF reflood tests. (author)

  17. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  18. Effects of Electromigration on the Creep and Thermal Fatigue Behavior of Sn58Bi Solder Joints

    Science.gov (United States)

    Zuo, Yong; Ma, Limin; Guo, Fu; Qiao, Lei; Shu, Yutian; Lee, Andree; Subramanian, K. N.

    2014-12-01

    Electromigration (EM), creep, and thermal fatigue (TF) are the most important aspects of the reliability of electronic solder joints, the failure mechanisms of which used to be investigated separately. However, current, mechanical loading, and temperature fluctuation usually co-exist under real service conditions, especially as the magnitude of current density is increasing with joint miniaturization. The importance of EM can no longer be simply ignored when analyzing the creep and TF behavior of a solder joint. The published literature reports that current density substantially changes creep rate, but the intrinsic mechanism is still unclear. Hence, the purpose of this study was to investigate the effects of EM on the creep and TF behavior of Sn58Bi solder joints by analyzing the evolution of electrical resistance and microstructure. The results indicated that EM shortens the lifetime of creep or TF of Sn58Bi solder joints. During creep, EM delays or suppresses the cracking and deforming process, so fracture occurs at the cathode interface. During TF, EM suppresses the cracking process and changes the interfacial structure.

  19. Studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available Structural, thermal and electrical behavior of polymer-clay nanocomposite electrolytes consisting of polymer (polyethylene oxide (PEO and NaI as salt with different concentrations of organically modified Na+ montmorillonite (DMMT filler have been investigated. The formation of nanocomposites and changes in the structural properties of the materials were investigated by X-ray diffraction (XRD analysis. Complex impedance analysis shows the existence of bulk and material-electrode interface properties of the composites. The relative dielectric constant (εr decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region. The electrical modulus representation shows a loss feature in the imaginary component. The relaxation associated with this feature shows a stretched exponential decay. Studies of frequency dependence of dielectric and modulus formalism suggest that the ionic and polymer segmental motion are strongly coupled manifeasting as peak in the modulus (M″ spectra with no corresponding feature in dielectric spectra. The frequency dependence of ac (alternating current conductivity obeys Jonscher power law feature in the high frequency region, where as the low frequency dispersion indicating the presence of electrode polarization effect in the materials.

  20. Effect of cuprous oxide with different sizes on thermal and combustion behaviors of unsaturated polyester resin.

    Science.gov (United States)

    Hou, Yanbei; Hu, Weizhao; Gui, Zhou; Hu, Yuan

    2017-07-15

    Cuprous oxide (Cu 2 O) as an effective catalyst has been applied to enhance the fire safety of unsaturated polyester resin (UPR), but the particle size influence on combustion behaviors has not been previously reported. Herein, the UPR/Cu 2 O composites (metal oxide particles with average particle-size of 10, 100, and 200nm) were successfully synthesized by thermosetting process. The effects of Cu 2 O with different sizes on thermostability and combustion behaviors of UPR were characterized by TGA, MCC, TG-IR, FTIR, and SSTF. The results revel that the addition of Cu 2 O contributes to sufficient decomposition of oxygen-containing compounds, which is beneficial to the release of nontoxic compounds. The smallest-sized Cu 2 O performs the excellent catalytic decomposition effect and promotes the complete combustion of UPR, which benefits the enhancement of fire safety. While the other additives retard pyrolysis process and yield more char residue, and thus the flame retardancy of UPR composites was improved. Therefore, catalysis plays a major role for smaller-sized particles during thermal decomposition of matrix, while flame retarded effect became gradual distinctly for the larger-sized additives. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Investigating Thermal Comfort and User Behaviors in Outdoor Spaces: A Seasonal and Spatial Perspective

    Directory of Open Access Journals (Sweden)

    Kuo-Tsang Huang

    2015-01-01

    Full Text Available Numerous studies have examined the correlation between the number of attendants in a given outdoor environment and thermal indices to understand how the environmental planning has an impact on the users. However, extensive observations should be conducted to examine the detailed static and dynamic behavior patterns of users. We conducted dynamic observations at a stepped plaza to perform on-site measurements of the physical environment and observations of users behaviors, including their resting positions, movements, and stay durations. The results indicated that more people rested on the steps during the cool season than hot season. Compared to neutral temperatures, people demonstrated higher heat tolerance to the hot season. The results indicated that more than 75% of users preferred to remain in shaded areas and stayed longer than in the sunlight. The people tended to engage in static activities in environments that exhibit sufficient shading. The shaded areas were conducive to static activities as the summer grew hotter. The results verified that the people of Taiwan would avoid sunlight and desire shaded spaces based on their previous climate experiences and expectations, which can serve as a reference for outdoor space design to improve the usability and quality of open urban spaces.

  2. Effect of wettability of a porous stainless steel on thermally induced liquid–vapor interface behavior

    Science.gov (United States)

    Oka, C.; Odagiri, K.; Nagano, H.

    2017-12-01

    Control of thermally induced liquid–vapor interface behavior at the contact surface of porous media is crucial for development of two-phase heat transfer devices such as loop heat pipes. The behavior experiences three modes with increase of heat flux, and the middle mode possesses the highest heat transfer performance. In this paper, the effect of improving wettability of the porous media is demonstrated experimentally and numerically for the first time, in particular with regard to the effect on a domain of the middle mode. Ethanol wettability of a porous stainless steel was improved via a facile method, which was a simple acid treatment. As a result, the domain of the middle mode was extended as a consequence of the wettability improvement. The mode transfers from the middle to the last one when the pressure drop in the liquid supply exceeds the capillary pressure of liquid bridges formed between the heating plate and the porous medium. Hence, the extension of the domain suggested that the capillary pressure was increased by the wettability improvement. This was verified via numerical calculation. The calculated capillary pressure was increased by 7% after improving wettability, which resulted in the extension of the domain of the middle mode.

  3. FTOM-2D: a two-dimensional approach to model the detailed thermal behavior of nonplanar surfaces

    Science.gov (United States)

    Bartos, B.; Stein, K.

    2015-10-01

    The Fraunhofer thermal object model (FTOM) predicts the temperature of an object as a function of the environmental conditions. The model has an outer layer exchanging radiation and heat with the environment and a stack of layers beyond modifying the thermal behavior. The innermost layer is at a constant or variable temperature called core temperature. The properties of the model (6 parameters) are fitted to minimize the difference between the prediction and a time series of measured temperatures. The model can be used for very different objects like backgrounds (e.g. meadow, forest, stone, or sand) or objects like vehicles. The two dimensional enhancement was developed to model more complex objects with non-planar surfaces and heat conduction between adjacent regions. In this model we call the small thermal homogenous interacting regions thermal pixels. For each thermal pixel the orientation and the identities of the adjacent pixels are stored in an array. In this version 7 parameters have to be fitted. The model is limited to a convex geometry to reduce the complexity of the heat exchange and allow for a higher number of thermal pixels. For the test of the model time series of thermal images of a test object (CUBI) were analyzed. The square sides of the cubes were modeled as 25 thermal pixels (5 × 5). In the time series of thermal images small areas in the size of the thermal pixels were analyzed to generate data files that can easily be read by the model. The program was developed with MATLAB and the final version in C++ using the OpenMP multiprocessor library. The differential equation for the heat transfer is the time consuming part in the computation and was programmed in C. The comparison show a good agreement of the fitted and not fitted thermal pixels with the measured temperatures. This indicates the ability of the model to predict the temperatures of the whole object.

  4. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments

    International Nuclear Information System (INIS)

    Dai, Donghua; Gu, Dongdong

    2014-01-01

    Highlights: • Thermal behavior and densification activity during SLM of composites are simulated. • Temperature distributions and melt pool dimensions during SLM are disclosed. • Motion behaviors of gaseous bubbles in laser induced melt pool are elucidated. • Simulation results show good agreement with the obtained experimental results. - Abstract: Simulation of temperature distribution and densification process of selective laser melting (SLM) WC/Cu composite powder system has been performed, using a finite volume method (FVM). The transition from powder to solid, the surface tension induced by temperature gradient, and the movement of laser beam power with a Gaussian energy distribution are taken into account in the physical model. The effect of the applied linear energy density (LED) on the temperature distribution, melt pool dimensions, behaviors of gaseous bubbles and resultant densification activity has been investigated. It shows that the temperature distribution is asymmetric with respect to the laser beam scanning area. The center of the melt pool does not locate at the center of the laser beam but slightly shifts towards the side of the decreasing X-axis. The dimensions of the melt pool are in sizes of hundreds of micrometers and increase with the applied LED. For an optimized LED of 17.5 kJ/m, an enhanced efficiency of gas removal from the melt pool is realized, and the maximum relative density of laser processed powder reaches 96%. As the applied LED surpasses 20 kJ/m, Marangoni flow tends to retain the entrapped gas bubbles. The flow pattern has a tendency to deposit the gas bubbles at the melt pool bottom or to agglomerate gas bubbles by the rotating flow in the melt pool, resulting in a higher porosity in laser processed powder. The relative density and corresponding pore size and morphology are experimentally acquired, which are in a good agreement with the results predicted by simulation

  5. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.

    Science.gov (United States)

    Wu, Zhiqiang; Wang, Shuzhong; Zhao, Jun; Chen, Lin; Meng, Haiyu

    2014-10-01

    Co-thermochemical conversion of lignocellulosic biomass and coal has been investigated as an effective way to reduce the carbon footprint. Successful evaluating on thermal behavior of the co-pyrolysis is prerequisite for predicting performance and optimizing efficiency of this process. In this paper, pyrolysis and kinetics characteristics of three kinds of lignocellulosic biomass model components (cellulose, hemicellulose, and lignin) blended with a kind of Chinese bituminous coal were explored by thermogravimetric analyzer and Kissinger-Akahira-Sunose method. The results indicated that the addition of model compounds had different synergistic effects on thermal behavior of the bituminous coal. The cellulose showed positive synergistic effects on the thermal decomposition of the coal bituminous coal with lower char yield than calculated value. For hemicellulose and lignin, whether positive or negative synergistic was related to the mixed ratio and temperature range. The distribution of the average activation energy values for the mixtures showed nonadditivity performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Design of performance and analysis of dynamic and transient thermal behaviors on the intermediate heat exchanger for HTGR

    International Nuclear Information System (INIS)

    Mori, Michitsugu; Mizuno, Minoru; Itoh, Mitsuyoshi; Urabe, Shigemi

    1985-01-01

    The intermediate heat exchanger (IHX) is designed as the high temperature heat exchanger for HTGR (High Temperature Gas-cooled Reactor), which transmits the primary coolant helium's heat raised up to about 950 0 C in the reactor core to the secondary helium or the nuclear heat utilization. Having to meet, in addition, the requirement of the primary coolant pressure boundary as the Class-1 component, it must be secured integrity throughout the service life. This paper will show (1) the design of the thermal performance; (2) the results of the dynamic analyses of the 1.5 MWt-IHX with its comparison to the experimental data; (3) the analytical predictions of the dynamic thermal behaviors under start-up and of the transient thermal behaviors during the accident on the 25 MWt-IHX. (author)

  7. Effect of heat treatment on cyclic fatigue resistance, thermal behavior and microstructures of K3 NiTi rotary instruments.

    Science.gov (United States)

    Chang, Seok Woo; Kim, Yu-Chan; Chang, Hyejung; Jee, Kwang-Koo; Zhu, Qiang; Safavi, Kamran; Shon, Won-Jun; Bae, Kwang-Shik; Spangberg, Larz Sw; Kum, Kee-Yeon

    2013-11-01

    The aim of this study was to investigate the effect of heat treatment on the cyclic fatigue resistance, thermal behavior and microstructural changes of K3 NiTi rotary instruments. Twelve control (as-received) and 12 experimental (heat-treated) K3 NiTi rotary instruments were compared in this study. Those experimental K3 instruments were heated in a furnace for 30 min at 450°C and then quenched in water. The cyclic fatigue resistance was measured with a fatigue tester. The thermal characteristic and the microstructures of both instruments were investigated by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM), respectively. There was a significant increase in the cyclic fatigue resistance between the heat-treated instruments and the as-received instruments (T-test, p NiTi files and changed the thermal behavior of the instruments without marked changes in the constituting phases of NiTi alloy.

  8. Thermal and physicochemical properties important for the long term behavior of nuclear waste glasses

    Science.gov (United States)

    Matzke, Hj.; Vernaz, E.

    High level nuclear waste from reprocessing of spent nuclear fuel has to be solidified in a stable matrix for safe long-time storage. Vitrification in borosilicate glasses is the technique accepted worldwide as the best combination of engineering constraints from fabrication and physicochemical properties of the matrix. A number of different glasses was developed in different national programs. The criteria and the reasons for selecting the final compositions are described briefly. Emphasis is placed on the French product R7T7 and on thermal and physicochemical properties though glasses developed in other national projects (e.g., the German product GP 98/12, etc.) are also treated. The basic physical and mechanical properties and the chemical durability of the glass in contact with water are described. The basic mechanisms of aqueous corrosion are discussed and the evolving modelling of the leaching process is dealt with, as well as effects of container material, backfill, etc. The thermal behavior has also been studied and extensive data exist on diffusion of glass constituents (Na) and of interesting elements of the waste such as the alkalis Rb and Cs or the actinides U and Pu, as well as on crystallization processes in the glass during storage at elevated temperatures. Emphasis is placed on the radiation stability of the glasses, based on extensive studies using short-lived actinides (e.g., 244Cm) or ion implantation to produce the damage expected during long storage at an accelerated rate. The radiation stability is shown to be very good, if realistic damage conditions are used. The knowledge accumulated in the past years is used to evaluate and predict the long-term evolution of the glass under storage conditions.

  9. Description of the behavior of an aquifer by using continuous radon monitoring in a thermal spa.

    Science.gov (United States)

    Sainz, Carlos; Rábago, Daniel; Fuente, Ismael; Celaya, Santiago; Quindós, Luis Santiago

    2016-02-01

    Radon ((222)Rn) levels in air and water have been analyzed continuously for almost a year in Las Caldas de Besaya thermal spa, north Spain. Radon is a naturally occurring noble gas from the decay of radium ((226)Ra) both constituents of radioactive uranium 238 series. It has been recognized as a lung carcinogen by the World Health Organization (WHO) and International Agency for Research on Cancer (IARC). Furthermore the Royal Decree R.D 1439/2010 of November, 2010 establishes the obligation to study occupational activities where workers and, where appropriate, members of the public are exposed to inhalation of radon in workplaces such as spas. Together with radon measures several physico-chemical parameters were obtained such as pH, redox potential, electrical conductivity and air and water temperature. The devices used for the study of the temporal evolution of radon concentration have been the RTM 2100, the Radon Scout and gamma spectrometry was complementarily used to determine the transfer factor of the silicone tubes in the experimental device. Radon concentrations obtained in water and air of the spa are high, with an average of 660 Bq/l and 2900 Bq/m(3) respectively, where water is the main source of radon in the air. Radiation dose for workers and public was estimated from these levels of radon. The data showed that the thermal processes can control the behavior of radon which can be also influenced by various physical and chemical parameters such as pH and redox potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Cure Behavior and Thermal Properties of Diepoxidized Cardanol Resin Cured by Electron Beam Process

    International Nuclear Information System (INIS)

    Cho, Donghwan; Cheon, Jinsil

    2013-01-01

    Thermal curing of epoxy resin requires high temperature, time-consuming process and the volatilization of hardener. It has known that electron beam curing of epoxy resin is a fast process and occurs at low or room temperature that help reduce residual mechanical stresses in thermosetting polymers. Diepoxidized cardanol (DEC) can be synthesized by an enzymatic method from cashew nut shell liquid (CNSL), that constitutes nearly one-third of the total nut weight. A large amount of CNSL can be formed as a byproduct of the mechanical processes used to render the cashew kerneledible and its total production approaches one million tons annually, which can be bio-degradable and replace the industrial thermosetting plastics. It is expected that DEC may be cured as in an epoxy resin, which was constituted on two epoxide group and long alkyl chain, and two-types of onium salts (cationic initiator) were used as a photo-initiator. The experimental variables of this study are type and concentration of photo-initiators and electron beam dosage. In this study, the effects of initiator type and concentration on the cure behavior and the thermal properties of DEC resin processed by using electron beam technology were studied using FT-IR, TGA, TMA, DSC, and DMA. Figure 1 is the FT-IR results, showing the change of chemical structure of pure DEC and electron beam cured DEC. The characteristic absorption peak of epoxide group appeared at 850cm -1 . The shape and the height were reduced when the sample was irradiated with electron beam. From this result, the epoxide groups is DEC were opened by electron beam and cured. After then, electron beam cured DEC was investigated the effect of forming 3-dimensional network

  11. Rheological behavior, chemical and physical characterization of soybean and cottonseed methyl esters submitted to thermal oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adriano Sant' ana; Silva, Flavio Luiz Honorato da; Lima, Ezenildo Emanuel de; Carvalho, Maria Wilma N.C. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencia e Tecnologia; Dantas, Hemeval Jales; Farias, Paulo de Almeida [Universidade Federal de Campina Grande (CTRN/UFCG), PB (Brazil). Centro de Tecnologia e Recursos Naturais

    2008-07-01

    In this study the effect of antioxidant terc-butylhydroxyanisol (BHA) on the oxidative stability of soybean and cottonseed methyl esters subjected to thermal degradation at 100 deg C was studied. Soybean and cottonseed methyl esters specific mass, dynamic viscosity and rheological behavior were evaluated. According to results, antioxidant degraded samples specific mass and dynamic viscosity did not showed alterations, remaining statistically equal. Soybean and cottonseed methyl esters showed a Newtonian rheological behavior and degraded samples without adding BHA showed rheological behavior alterations. (author)

  12. Mamey sapote seed oil (Pouteria sapota. Potential, composition, fractionation and thermal behavior

    Directory of Open Access Journals (Sweden)

    Solís-Fuentes, J. A.

    2015-03-01

    Full Text Available The chemical composition of the waste from mamey sapote (Pouteria sapota and its oil extracted from the seed (MSSO of ripe and unripe fruits, was studied. The MSSO from ripe fruits was dry-fractionated, and the thermal and phase behaviors of its fractions and their mixtures with other known natural fats were analyzed. The main components of the mamey peel and the seed were crude fiber (81.32% and fat (44.41% db, respectively. The seed oil contained oleic, stearic, palmitic and linoleic as its main fatty acids. The MSSO showed a simple thermal behavior with a broad fusion range and four maximum temperature peaks. The solid fractions showed maximum melting peaks at higher temperatures than the residual liquid. The MSSO solid fractions showed a potential for use as constituents in mixtures with other natural fats, such as cocoa butter or mango seed fat.Se estudió la composición de los residuos del zapote mamey (Pouteria sapota y del aceite extraído de la semilla (ASZM de frutos maduros e inmaduros. El ASZM de frutos maduros fue fraccionado en seco y se analizó la conducta térmica y de fase de las fracciones y mezclas de éstas con otras grasas naturales conocidas. Los principales componentes de la cáscara y de la semilla fueron fibra cruda (81.32% bs y grasa (44.41% bs, respectivamente. Los principales ácidos grasos del ASZM fueron: oleico, esteárico, palmítico y linoleico y mostró una conducta térmica simple con un intervalo de fusión amplio y cuatro máximos de temperatura. Las fracciones sólidas obtenidas presentaron máximos de fusión a temperaturas más altas que la fracción líquida residual. Las fracciones sólidas del ASZM mostraron potencialidad para usarse como constituyente en mezclas con la manteca de cacao y la grasa de la semilla de mango.

  13. Thermal behavior induced by vacuum polarization on causal horizons in comparison with the standard heat bath formalism

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Institut fuer Theoretische Physik, Berlin (Germany); E-mail schroer@cbpf.br

    2003-02-01

    Modular theory of operator algebras and the associated K MS property are used to obtain a unified description for the thermal aspects of the standard heat bath situation and those caused by quantum vacuum fluctuations from localization. An algebraic variant of light front holography reveals that the vacuum polarization on wedge horizons is compressed into the light ray direction. Their absence in the transverse direction is the prerequisite to an area (generalized Banknotes-) behavior of entropy-like measures which reveal the loss of purity due to restrictions to wedges and their horizons. Besides the well-known fact that localization-induced (generalized Hawking-) temperature is fixed by the geometric aspects, this area behavior (versus the standard volume dependence) constitutes the main difference between localization-caused and standard thermal behavior. (author)

  14. Research on seasonal indoor thermal environment and residents' control behavior of cooling and heating systems in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Chihye; Chun, Chungyoon [Department of Housing and Interior Design, College of Human Ecology, Graduate School, Yonsei University, Seoul (Korea)

    2009-11-15

    Indoor thermal environments and residents' control behavior of cooling and heating systems were investigated in Seoul, Korea and compared with the results of previous studies. Twenty-four houses in summer, six houses in autumn and 36 houses in winter were used in this study. The measurement of temperature, humidity and air conditioner usage behavior was carried out. The clo-value, thermal comfort, sensation and basic data of the houses were also investigated. The indoor thermal environment in the summer had a high temperature and a high humidity ratio compare to standard comfort zone. Most of the indoor thermal environments at the time of starting the air conditioner in the summer were out of the comfort zone. Some of the data recorded while the air conditioner was stopped were in the comfort zone, but in many cases the temperature was relatively higher than comfort zone. Most indoor climate distributions in the winter were in the comfort zone and the indoor climate in autumn coincided well with the criteria of the comfort zone. Compared with results of previous studies in these 25 years, indoor ambient average temperature in winter has increased and the comfort temperature has increased in the heating period and decreased in the cooling period. This result indicates that the development of an HVAC system has created an expectation of comfort for residents and has shifted their thermal comfort zone warmer in winter and cooler in summer. (author)

  15. Otras redes sociales y monitoriazación

    OpenAIRE

    Borrás Gené, Oriol

    2013-01-01

    Sexto módulo de 6 del curso de Redes Sociales aplicadas al ámbito universitario, en el que se explican otras redes sociales aplicables a la enseñanza, herramientas de monitorización y otras aplicaciones relacionadas. Se presentan dos ejemplos de uso de redes sociales en otras Universidades: EOI y UIMP.

  16. Quality characteristics and thermal behavior of buriti (Mauritia flexuosa L. oil

    Directory of Open Access Journals (Sweden)

    M. L.F. Freitas

    2018-01-01

    Full Text Available This work reports a complete characterization of buriti oil. Physicochemical properties were determined according to AOCS methodologies and thermophysical properties were measured using a controlled stress rheometer and a digital electronic density meter. β-carotene and tocopherol contents were obtained using HPLC systems. Fatty acids and acylglycerol classes were determined using GC and HPSEC systems, respectively, while triacylglycerol composition was estimated using the software PrOleos. Thermal behavior (crystallization and melting was analyzed using a DSC. The results attested high levels of total carotenoids with β-carotene as the major one; total tocopherols contained α- and β-tocopherols which accounted for 91% of the total; and monounsaturated fatty acids were mainly represented by oleic acid. The results showed close agreement between density and viscosity of buriti and olive oils. The crystallization and melting peaks occurred at -43.06 °C and -2.73 °C, respectively. These properties enable Buriti oil to be recommended as an excellent alternative for enriching foods with bioactive compounds.

  17. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis

    International Nuclear Information System (INIS)

    Du, Yuying; Jiang, Xuguang; Lv, Guojun; Ma, Xiaojun; Jin, Yuqi; Wang, Fei; Chi, Yong; Yan, Jianhua

    2014-01-01

    Highlights: • The Activation energy for the blends is lower than that of BR and coal when BR < 50%. • The BR/coal blends start to decompose at approximately 45 °C releasing ammonia. • The yield of gaseous products increases with increasing BR blending ratio. • NH 3 , alkanes and CO 2 increase with increasing BR blending ratio. • Interactions most likely occur between the BR and the coal during co-pyrolysis. - Abstract: In this work, the thermal behavior and kinetics of bio-ferment residue (BR) and coal blends during co-pyrolysis were investigated using TG-FTIR and kinetic analysis. The co-pyrolysis of BR and coal occurred in three major stages. The BR/coal blends lost most of their weight during the devolatilization stage. The kinetics of the BR/coal blends in this stage implied that the activation energy was lower than that of BR and coal below a certain BR blending ratio. The BR/coal blends started to decompose at approximately 45 °C, releasing ammonia followed by alkanes, carbon dioxide, methane and carbon monoxide. The total yield of gaseous products (primarily ammonia, alkanes and carbon dioxide) increased with increasing BR blending ratio. Moreover, interactions most likely occurred between the BR and the coal during co-pyrolysis

  18. The role of Rh on a substituted Al Anderson heteropolymolybdate: Thermal and hydrotreating catalytic behavior

    International Nuclear Information System (INIS)

    Cabello, Carmen I.; Munoz, Mercedes; Botto, Irma L.; Payen, Edmond

    2006-01-01

    The influence of Rh heteroatom on the molybdenum reducibility in the Anderson-type heteropolyoxomolybdate structure of formula (NH 4 ) 3 [RhMo 6 O 24 H 6 ].7H 2 O was investigated by means of TPR technique. With comparative purposes, the thermal behavior in non-reducing conditions was also carried out by means of TGA-DTA studies. The study was performed by XRD, SEM, EDAX and FTIR-Raman techniques. Results were related to those preliminary measurements over other XMo 6 Anderson phases. Likewise, Rh(III)-Al(III) formal replacement in the RhMo 6 structural arrangement was proved. The formation of a solid solution in a limited range of composition (up to 0.25 Rh) was established in order to explore the catalytic performance of γ-Al 2 O 3 supported planar heteropolyoxomolybdate, aiming at optimizing the noble metal content in the catalytic system. Preliminary measurements of RhMo 6 /γ-Al 2 O 3 and (Rh, Al)Mo 6 /γ-Al 2 O 3 activity for HDS and HYD processes were also performed. These results were compared to those obtained for CoMo 6 /γ-Al 2 O 3 system in similar operating conditions and other conventional catalytic systems. The potentiality and scope of RhMo 6 catalytic system for the HDS and HYD processes were analyzed

  19. Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2018-01-01

    The swapping of methane with carbon dioxide in hydrate has been proposed as a potential strategy for geologic sequestration of carbon dioxide and production of methane from natural hydrate deposits. However, this strategy requires a better understanding of the thermodynamic characteristics of CH4...... and CO2 hydrate as well as (CH4 + CO2) or (CH4 + CO2 + N2) mixed hydrates (since (CO2 + N2) gas mixture is often used as the swapping gas), along with the thermal physics property changes during gas exchange. In this study, a high pressure micro-differential scanning calorimetry (HP μ-DSC) was performed...... on synthesized gas hydrates to investigate the dissociation behavior of various hydrates. The hydrate dissociation enthalpies were determined by both μ-DSC measurement and Clapeyron equation. For the single guest molecule hydrate system, the average dissociation enthalpies of CH4 hydrate and CO2 hydrate measured...

  20. Thermal and rheological behavior of reactive blends from metallocene olefin elastomers and polypropylene

    Directory of Open Access Journals (Sweden)

    Nei S. Domingues Junior

    2012-01-01

    Full Text Available Reactive blends of metallocene polyolefin elastomers (POE/polypropylene (PP with 60/40 composition were prepared with an organic peroxide, 2,5-dimethyl-2,5-di-(t-butylperoxyhexane, and a bis-azide derivative, diphenyloxid-4,4'-bis(sulfonylazide (BSA. Ethylene-1-butene (EB and ethylene-1-octene (EO copolymers and elastomeric polypropylene (ePP were used as the elastomeric phase. The effect of elastomeric phase on the thermal, rheological, morphological and mechanical properties of the thermoplastic vulcanizates (TPVs or dynamic vulcanizates were studied. All TPVs depicted pseudoplastic behavior and blends cured with azide curative showed higher viscosities. The TPVs showed both dispersed and continuous phase morphology that depends on the elastomeric phase type revealing a limited degree of compatibility between PP and the elastomers EO or EB. On the other hand, the TPV PP/ePP showed a uniform morphology suggesting an improved compatibility. Substantial changes observed in physical properties were explained on the basis of blends' morphology and dynamic vulcanization. The results confirm that the mechanical properties are more influenced by the elastomeric phase than by the curative agent. This study revealed a broad new range of opportunities for POE-based TPVs.

  1. Structural characterization and thermal behavior of a gum extracted from Ferula assa foetida L.

    Science.gov (United States)

    Saeidy, Sima; Nasirpour, Ali; Keramat, Javad; Desbrières, Jacques; Cerf, Didier Le; Pierre, Guillaume; Delattre, Cedric; Laroche, Céline; Baynast, Hélène De; Ursu, Alina-Violeta; Marcati, Alain; Djelveh, Gholamreza; Michaud, Philippe

    2018-02-01

    The gum asafoetida, an oleo-gum-resin from root of Ferula assa foetida, was extracted through alcoholic procedure followed by water extraction and then biochemically characterized using colorimetric assays, Fourier infrared spectroscopy, gas chromatography coupled to mass spectrometry, and 1D and 2D nuclear magnetic resonance. The gum was mainly composed of carbohydrates (67.39% w/w) with a monosaccharide distribution of 11.5: 5.9: 2.3: 1 between Gal, Ara, Rha and GlcA (molar ratio) and proteins (arabinogalactan protein). The polysaccharide consisted of a (1→3)-β-d-galactan backbone ramified predominantly from O-6 but also from O-4 and O-4,6. Side chains included terminal-α-l-Araf, terminal-α-l-Rhap, (1→3)-α-l-Araf, (1→5)-α-l-Araf, terminal-β-d-Galp, β-d-GlcA and traces of (1→4)-β-d-GlcA. X-ray diffraction pattern showed a semi crystalline microstructure. Thermal behavior of the gum was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) revealed temperatures below and upper 200°C as dominant regions of weight loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Investigation of the milling-induced thermal behavior of crystalline and amorphous griseofulvin.

    Science.gov (United States)

    Trasi, Niraj S; Boerrigter, Stephan X M; Byrn, Stephen Robert

    2010-07-01

    To gain a better understanding of the physical state and the unusual thermal behavior of milled griseofulvin. Griseofulvin crystals and amorphous melt quench samples were milled in a vibrating ball mill for different times and then analyzed using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). Modulated DSC (mDSC) and annealing studies were done for the milled amorphous samples to further probe the effects of milling. Milling of griseofulvin crystals results in decrease in crystallinity and amorphization of the compound. A double peak is seen for crystallization in the DSC, which is also seen for the milled melt quench sample. Both enthalpy and temperature of crystallization decrease for the milled melt quenched sample. Tg is visible under the first peak with the mDSC, and annealing shows that increasing milling time results in faster crystallization upon storage. Milling of griseofulvin results in the formation of an amorphous form and not a mesophase. It increases the amount of surface created and the overall energy of the amorphous griseofulvin, which leads to a decreased temperature of crystallization. The two exotherms in the DSC are due to some particles having nuclei on the surface.

  3. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics.

    Science.gov (United States)

    Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Wu, Joan; Chen, Shulin

    2016-11-01

    The present study aims to investigate the thermal decomposition behaviors and kinetics of biomass (cellulose/Douglas fir sawdust) and plastics (LDPE) in a non-catalytic and catalytic co-pyrolysis over ZSM-5 catalyst by using a thermogravimetric analyzer (TGA). It was found that there was a positive synergistic interaction between biomass and plastics according to the difference of weight loss (ΔW), which could decrease the formation of solid residue at the end of the experiment. The first order reaction model well fitted for both non-catalytic and catalytic co-pyrolysis of biomass with plastics. The activation energy (E) of Cellulose-LDPE-Catalyst and DF-LDPE-Catalyst are only 89.51 and 54.51kJ/mol, respectively. The kinetics analysis showed that adding catalyst doesn't change the decomposition mechanism. As a result, the kinetic study on catalytic co-pyrolysis of biomass with plastics was suggested that the catalytic co-pyrolysis is a promising technique that can significantly reduce the energy input. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pseudo-Bond Graph model for the analysis of the thermal behavior of buildings

    Directory of Open Access Journals (Sweden)

    Merabtine Abdelatif

    2013-01-01

    Full Text Available In this work, a simplified graphical modeling tool, which in some extent can be considered in halfway between detailed physical and Data driven dynamic models, has been developed. This model is based on Bond Graphs approach. This approach has the potential to display explicitly the nature of power in a building system, such as a phenomenon of storage, processing and dissipating energy such as Heating, Ventilation and Air-Conditioning (HVAC systems. This paper represents the developed models of the two transient heat conduction problems corresponding to the most practical cases in building envelope, such as the heat transfer through vertical walls, roofs and slabs. The validation procedure consists of comparing the results obtained with this model with analytical solution. It has shown very good agreement between measured data and Bond Graphs model simulation. The Bond Graphs technique is then used to model the building dynamic thermal behavior over a single zone building structure and compared with a set of experimental data. An evaluation of indoor temperature was carried out in order to check our Bond Graphs model.

  5. Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day

    Energy Technology Data Exchange (ETDEWEB)

    Fidaros, D.K.; Baxevanou, C.A.; Bartzanas, T. [Centre for Research and Technology-Thessaly, Institute of Technology and Management of Agricultural ecosystems, Technology Park of Thessaly, 1st Industrial Area of Volos, 38500 Volos (Greece); Kittas, C. [Centre for Research and Technology-Thessaly, Institute of Technology and Management of Agricultural ecosystems, Technology Park of Thessaly, 1st Industrial Area of Volos, 38500 Volos (Greece); University of Thessaly, School of Agricultural Sciences, Department of Agriculture, Crop Production and Rural Environment, Fytokou St., N. Ionia, GR-38446, Magnesia (Greece)

    2010-07-15

    In the present study the transport phenomena occurring inside a ventilated arc type tunnel greenhouse are simulated during a solar day taking into account the optical properties of plants only in the photosynthetic active radiation (PAR) band. The simulation concerns the day of autumn equinox for an area of central Greece. Two cases are investigated: in the first case the external temperature is considered to be constant while in the second is considered to vary during the day. In order to solve the equations describing the transport phenomena inside the greenhouse a finite volume method is used. Tomato crop inside the greenhouse is simulated as porous material while radiation transport is modelled by the Discrete Ordinates (DO) model. Flow is considered to be incompressible, unsteady and turbulent. From the results it comes out that the consideration of external temperature variation is very important since the internal thermal field is determined by the convection induced by the entering stream except the area covered by a big recirculation in the middle of the greenhouse close to the cover and the close to ground corners where the effect of the entering stream is weak. The distribution of PAR is independent of the external temperature and presents symmetrical time behavior ensuring capable amounts of radiation in all the crops during at least 8 h a day. (author)

  6. A new zinc(II supramolecular square: Synthesis, crystal structure, thermal behavior and luminescence

    Directory of Open Access Journals (Sweden)

    Wang Xiu-Yan

    2015-01-01

    Full Text Available A new square-shaped Zn(II complex, namely, [Zn4(L4(phen4]•6H2O (1 (L = 2-hydroxynicotinate and phen = 1,10- phenanthroline, has been synthesized under hydrothermal condition. The crystal of 1 belongs to triclinic, space group P -1 with a = 10.773(2 Å, b = 12.641(3 Å, c = 13.573(3 Å, α = 107.44(3º, β = 102.66(3º, γ = 93.89(3°, C72H56N12O18Zn4, Mr = 1638.77, V = 1702.8(6 Å3 , Z = 1, Dc = 1.598 g/cm3 , S = 1.045, μ(MoKα = 1.475 mm-1 , F(000 = 836, R = 0.0472 and wR = 0.0919. In 1, four L ligands bridge four Zn(II atoms to form a square-shaped structure, where four phen ligands are respectively located on four corners of the square. The π-π stacking interactions extend the adjacent squares into a 1D supramolecular chain. The thermal behavior of 1 has been characterized. Moreover, its solid state luminescence property has been studied at room temperature.

  7. Quality characteristics and thermal behavior of buriti (Mauritia flexuosa L.) oil

    International Nuclear Information System (INIS)

    Freitas, M.L.F.; Chisté, R.C.; Polachini, T.C.; Sardella, L.A.C.Z.; Aranha, C.P.M.; Ribeiro, A.P.B.; Nicoletti, V.R.

    2017-01-01

    This work reports a complete characterization of buriti oil. Physicochemical properties were determined according to AOCS methodologies and thermophysical properties were measured using a controlled stress rheometer and a digital electronic density meter. β-carotene and tocopherol contents were obtained using HPLC systems. Fatty acids and acylglycerol classes were determined using GC and HPSEC systems, respectively, while triacylglycerol composition was estimated using the software PrOleos. Thermal behavior (crystallization and melting) was analyzed using a DSC. The results attested high levels of total carotenoids with β-carotene as the major one; total tocopherols contained α- and β-tocopherols which accounted for 91% of the total; and monounsaturated fatty acids were mainly represented by oleic acid. The results showed close agreement between density and viscosity of buriti and olive oils. The crystallization and melting peaks occurred at -43.06 °C and -2.73 °C, respectively. These properties enable Buriti oil to be recommended as an excellent alternative for enriching foods with bioactive compounds. [es

  8. Caesalpinia echinata Lam. - BRAZILWOOD: THERMAL BEHAVIOR, STRUCTURAL CHARACTERISTICS, AND RESISTANCE TO BIODETERIORATION IN STATIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ana Paula Pinto Pinheiro

    Full Text Available ABSTRACT Wood is the best-known biological material used as a raw material since the dawn of mankind until present days. As a natural and renewable composite, its lifetime is limited by the degradation of its basic elements. This degradation can be caused by chemical reactions or by biological agents capable of accelerating the process of deterioration. In this work, the wear, thermal, and micro-structural characteristics, as also the bio-degradation behavior in static systems, of the wood species Brazilwood (Caesalpinia echinata were studied under laboratory conditions in order to use these woods in design. The results show that Brazilwood has a good visual performance after abrasion test, since it has not shown any representative roughness increase. In addition, Brazilwood has high level of crystallinity of, approximately, 68% and was almost insensitive to fungi attack, forming only 5.3 x 103 CFU/mL. Besides, its texture did not change due to exposure to water or sweat.

  9. Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Boenisch, Matthias

    2016-06-10

    Ti-Nb alloys are characterized by a diverse metallurgy which allows obtaining a wide palette of microstructural configurations and physical properties via careful selection of chemical composition, heat treatment and mechanical processing routes. The present work aims to expand the current state of knowledge about martensite forming Ti-Nb alloys by studying 15 binary Ti-c{sub Nb}Nb (9 wt.% ≤ c{sub Nb} ≤ 44.5 wt.%) alloy formulations in terms of their structural and mechanical properties, as well as their thermal stability. The crystal structures of the martensitic phases, α{sup '} and α'', and the influence of the Nb content on the lattice (Bain) strain and on the volume change related to the β → α{sup '}/α'' martensitic transformations are analyzed on the basis of Rietveld-refinements. The magnitude of the shuffle component of the β → α{sup '}/α'' martensitic transformations is quantified in relation to the chemical composition. The largest transformation lattice strains are operative in Nb-lean alloys. Depending on the composition, both a volume dilatation and contraction are encountered and the volume change may influence whether hexagonal martensite α{sup '} or orthorhombic martensite α'' forms from β upon quenching. The mechanical properties and the deformation behavior of martensitic Ti-Nb alloys are studied by complementary methods including monotonic and cyclic uniaxial compression, nanoindentation, microhardness and impulse excitation technique. The results show that the Nb content strongly influences the mechanical properties of martensitic Ti-Nb alloys. The elastic moduli, hardness and strength are minimal in the vicinity of the limiting compositions bounding the interval in which orthorhombic martensite α'' forms by quenching. Uniaxial cyclic compressive testing demonstrates that the elastic properties of strained samples are different than those of unstrained ones

  10. Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure

    Science.gov (United States)

    Hossain, Mohammad Shojib

    Material extrusion based additive manufacturing (AM) technology, such as fused deposition modeling (FDM), is gaining popularity with the numerous 3D printers available worldwide. FDM technology is advancing from exclusively prototype construction to achieving production-grade quality. Today, FDM-fabricated parts are widely used in the aerospace industries, biomedical applications, and other industries that may require custom fabricated, low volume parts. These applications are and were possible because of the different production grade material options (e.g., acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyphenylsulfone (PPSF), etc.) available to use in FDM systems. Recent researchers are exploring other material options including polycaprolactone (PCL), polymethylmethacrylate (PMMA), composites containing ceramic, glass and metal fillers, and even metals which depict the diversified materials and possibility of new material options using FDM technology. The understanding of the behavior and mechanical properties of the finished FDM-fabricated parts is of utmost importance in the advancement of this technology. The processing parameters, e.g., build orientation, raster width (RW), contour width (CW), raster angle (RA), and raster to raster air gap (RRAG) are important factors in determining the mechanical properties of FDM fabricated parts. The work presented here focused on the mechanical properties improvement by modifying those build parameters. The main concentration is on how modifying those parameters can improve ultimate tensile stress (UTS), Young's modulus, and tensile strain of the final product. In this research, PC parts were fabricated using three build methods: 1) default method, 2) Insight revision method, and 3) visual feedback method. By modifying build parameters, the highest average UTS obtained for PC was 63.96 MPa which was 7% higher than that of 59.73 MPa obtained using the default build parameters. The parameter modification

  11. Thermal behavior and decomposition kinetics of rifampicin polymorphs under isothermal and non-isothermal conditions

    Directory of Open Access Journals (Sweden)

    Ricardo Alves

    2010-06-01

    Full Text Available The thermal behavior of two polymorphic forms of rifampicin was studied by DSC and TG/DTG. The thermoanalytical results clearly showed the differences between the two crystalline forms. Polymorph I was the most thermally stable form, the DSC curve showed no fusion for this species and the thermal decomposition process occurred around 245 ºC. The DSC curve of polymorph II showed two consecutive events, an endothermic event (Tpeak = 193.9 ºC and one exothermic event (Tpeak = 209.4 ºC, due to a melting process followed by recrystallization, which was attributed to the conversion of form II to form I. Isothermal and non-isothermal thermogravimetric methods were used to determine the kinetic parameters of the thermal decomposition process. For non-isothermal experiments, the activation energy (Ea was derived from the plot of Log β vs 1/T, yielding values for polymorph form I and II of 154 and 123 kJ mol-1, respectively. In the isothermal experiments, the Ea was obtained from the plot of lnt vs 1/T at a constant conversion level. The mean values found for form I and form II were 137 and 144 kJ mol-1, respectively.O comportamento térmico de duas formas polimórficas da rifampicina foi estudado por DSC e TG/DTG. Os resultados termoanalíticos mostraram claramente as diferenças entre as duas formas cristalinas. O polimorfo I é a forma mais estável termicamente, a curva DSC não mostrou a fusão dessa espécie e o processo de decomposição térmica ocorreu próximo a 245 ºC. A curva DSC do Polimorfo II apresentou dois eventos consecutivos, um endotérmico (Tpico = 193,9 ºC e outro exotérmico (Tpico = 209,4 ºC, devido à fusão seguida de recristalização, a qual foi atribuída à conversão da forma II à forma I. Métodos termogravimétricos isotérmicos e não-isotérmicos foram empregados para determinar os parâmetros cinéticos do processo de decomposição térmica. Para experimentos não-isotérmicos, a energia de ativação (Ea foi

  12. Effect of gamma irradiation on mechanical and thermal properties of DGEBA/cycloaliphatic amine networks with potential for medical applications; Efeito da irradiacao gama nas propriedades mecanicas e termicas de redes DGEBA/amina cicloalifatica com potencial para aplicacoes medicas

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Juliana C.; Silva, Glaura G., E-mail: glaura@qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Mendes, Marcio W. Duarte; Bressiani, Ana H.; Bressiani, Jose C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Garcia, Filiberto Gonzalez [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2013-07-01

    Two epoxy polymers based on diglycidyl ether of bisphenol A (DGEBA), cured with piperidine (Pip) and 4,4'-diamino-3,3'-dimethyldicyclohexylmethane (3DCM), were characterized before and after treatment with γ irradiation. The changes in the mechanical and thermal properties were studied by elastic modulus, glass transition temperature and degradation temperature measurements. A dose of 50 kGy of irradiation caused subtle variations in properties such as rigidity and stability, which are relevant from the fundamental point of view. The variations do not imply on negative impact when considering the stage of sterilization during the use of these systems as a biomaterial in the medical area. (author)

  13. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  14. Estudio sobre redes sociales y estudiantes

    OpenAIRE

    Toledo Morales, Purificación; Sánchez García, José Manuel

    2012-01-01

    En este estudio pretendemos analizar cómo una muestra de 150 estudiantes utiliza las redes sociales, y explorar el impacto de estas en el rendimiento académico de los mismos. Los datos recogidos de la aplicación y análisis de una escala de opinión revelaron que mas de la mitad de los estudiantes encuestados utilizan internet con una finalidad puramente recreativa, y las redes sociales para estar en contacto con los amigos. La mayoría de los encuestados rechazan las solicitudes de amistad de d...

  15. Redes ópticas de transporte

    OpenAIRE

    Jorge, José Miguel de Almeida Goucha

    2012-01-01

    Neste trabalho foram estudadas as principais tecnologias que suportam as actuais redes de transporte. Identificaram-se um conjunto de desafios que lhe são colocados pelo aumento do tráfego de pacotes e pela necessidade de reduzir o custo por bit transportado. Estudou-se em detalhe a tecnologia de transporte OTN (Optical Transport Network). Foi desenvolvido um modelo de custos para um nó da rede, considerando simultaneamente tecnologias baseadas em comutação de circuitos e comutação d...

  16. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

    2011-02-15

    Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

  17. Microstructural evolution and stress-corrosion-cracking behavior of thermally aged Ni-Cr-Fe alloy

    International Nuclear Information System (INIS)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Taeho; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun

    2016-01-01

    Highlights: • Effects of long-term thermal aging on the nickel-based Alloy 600 were investigated. • Heat treatments simulating thermal aging were conducted by considering Cr diffusion. • Nano-indentation test results show hardening of thermally aged materials. • Thermally aged materials are more susceptible to stress corrosion cracking. • The property changes are attributed to the formation and evolution of precipitates. - Abstract: To understand the effect of long-term thermal aging in power plant systems, representative thick-walled Alloy 600 was prepared and thermally aged at 400 °C to fabricate samples with thermal aging effects similar to service operating conditions. Changes of microstructures, mechanical properties, and stress corrosion cracking susceptibility were investigated mainly through electron backscatter diffraction, nanoindentation, and high-temperature slow strain rate test. The formation of abundant semi-continuous precipitates with chromium depletion at grain boundaries was observed after thermally aged for 10 equivalent years. Also, alloys thermally aged for 10 equivalent years of thermal aging exhibited the highest susceptibility to stress corrosion cracking.

  18. Las redes sociales y su modelado matemático

    OpenAIRE

    Ortega Guerrero, Juan Carlos

    2017-01-01

    Las tecnologías de la información y comunicación (TIC) han venido a cambiar el potencial de las redes sociales. Su diversidad, alcance y características resultan impactantes y su análisis matemático es importante para comprenderlas. En este capítulo se revisan los conceptos básicos de las redes, veremos cómo se generan las redes complejas y sus características principales; en especial se analizan las redes de mundo pequeño y su uso para modelar las redes sociales, finalmente se enuncian algun...

  19. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature.

    Science.gov (United States)

    Rafiq, Aasma; Khanday, M A

    2016-12-01

    Extreme environmental and physiological conditions present challenges for thermal processes in body tissues including multi-layered human eye. A mathematical model has been formulated in this direction to study the thermal behavior of the human eye in relation with the change in blood perfusion, porosity, evaporation and environmental temperatures. In this study, a comprehensive thermal analysis has been performed on the multi-layered eye using Pennes' bio-heat equation with appropriate boundary and interface conditions. The variational finite element method and MATLAB software were used for the solution purpose and simulation of the results. The thermoregulatory effect due to blood perfusion rate, porosity, ambient temperature and evaporation at various regions of human eye was illustrated mathematically and graphically. The main applications of this model are associated with the medical sciences while performing laser therapy and other thermoregulatory investigation on human eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Influence of agronomic variables on the macronutrient and micronutrient contents and thermal behavior of mate tea leaves (Ilex paraguariensis).

    Science.gov (United States)

    Jacques, Rosângela A; Arruda, Eduardo J; de Oliveira, Lincoln C S; de Oliveira, Ana P; Dariva, Cláudio; de Oliveira, J Vladimir; Caramão, Elina B

    2007-09-05

    The influence of agronomic variables (light intensity, age of leaves, and fertilization type) on the content of macronutrients and micronutrients (potassium, calcium, sodium, magnesium, manganese, iron, zinc, and copper) of tea leaves was assessed by acid digestion, followed by flame atomic absorption spectrometry (FAAS). The thermal behavior of mate tea leaves (Ilex paraguariensis) was also studied in this work. Samples of mate (Ilex paraguariensis) were collected in an experiment conducted under agronomic control at Erva-Mate Barão Commerce and Industry LTD (Brazil). The results showed that the mineral content in mate is affected by the agronomic variables investigated. In general, the content of mineral compounds analyzed is higher for younger leaves and for plants cultivated in shadow. Thermal analysis of samples indicated a similar behavior, with three typical steps of decomposition: loss of water, degradation of low-molecular weight compounds, and degradation of residual materials.

  1. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  2. The Influence of Mineral Matrices on the Thermal Behavior of Glycine

    Science.gov (United States)

    Dalai, Punam; Pleyer, Hannes Lukas; Strasdeit, Henry; Fox, Stefan

    2017-12-01

    On the Hadean-Early Archean Earth, the first islands must have provided hot and dry environments for abiotically formed organic molecules. The heat sources, mainly volcanism and meteorite impacts, were also available on Mars during the Noachian period. In recent work simulating this scenario, we have shown that neat glycine forms a black, sparingly water-soluble polymer ("thermomelanoid") when dry-heated at 200 °C under pure nitrogen. The present study explores whether relevant minerals and mineral mixtures can change this thermal behavior. Most experiments were conducted at 200 or 250 °C for 2 or 7 days. The mineral matrices used were phyllosilicates (Ca-montmorillonites SAz-1 and STx-1, Na-montmorillonite SAz-1-Na, nontronite NAu-1, kaolinite KGa-1), salts (NaCl, NaCl-KCl, CaCl2, artificial sea salt, gypsum, magnesite), picritic basalt, and three Martian regolith simulants (P-MRS, S-MRS, JSC Mars-1A). The main analytical method employed was high-performance liquid chromatography (HPLC). Glycine intercalated in SAz-1 and SAz-1-Na was well protected against thermomelanoid formation and sublimation at 200 °C: after 2 days, 95 and 79 %, respectively, had either survived unaltered or been transformed into the cyclic dipeptide (DKP) and linear peptides up to Gly6. The glycine survival rate followed the order SAz-1 > SAz-1-Na > STx-1 ≈ NAu-1 > KGa-1. Very good protection was also provided by artificial sea salt (84 % unaltered glycine after 200 °C for 7 days). P-MRS promoted the condensation up to Gly6, consistent with its high phyllosilicate content. The remaining matrices were less effective in preserving glycine as such or as peptides.

  3. The role of Rh on a substituted Al Anderson heteropolymolybdate: Thermal and hydrotreating catalytic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, Carmen I. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas Dr. Jorge J. Ronco, CINDECA - CONICET-Universidad Nacional de La Plata, Calle 47 No 257 (1900) La Plata, Buenos Aires (Argentina)]. E-mail: ccabello@quimica.unlp.edu.ar; Munoz, Mercedes [Centro de Investigacion y Desarrollo en Ciencias Aplicadas Dr. Jorge J. Ronco, CINDECA - CONICET-Universidad Nacional de La Plata, Calle 47 No 257 (1900) La Plata, Buenos Aires (Argentina); Botto, Irma L. [Centro de Quimica Inorganica CEQUINOR - CONICET-Universidad Nacional de La Plata (1900) La Plata, Buenos Aires (Argentina); Payen, Edmond [Unite de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Universite des Sciences et Technologies de Lille, Bat. C3, 59655 Villeneuve d' Ascq Cedex (France)

    2006-08-01

    The influence of Rh heteroatom on the molybdenum reducibility in the Anderson-type heteropolyoxomolybdate structure of formula (NH{sub 4}){sub 3}[RhMo{sub 6}O{sub 24}H{sub 6}].7H{sub 2}O was investigated by means of TPR technique. With comparative purposes, the thermal behavior in non-reducing conditions was also carried out by means of TGA-DTA studies. The study was performed by XRD, SEM, EDAX and FTIR-Raman techniques. Results were related to those preliminary measurements over other XMo{sub 6} Anderson phases. Likewise, Rh(III)-Al(III) formal replacement in the RhMo{sub 6} structural arrangement was proved. The formation of a solid solution in a limited range of composition (up to 0.25 Rh) was established in order to explore the catalytic performance of {gamma}-Al{sub 2}O{sub 3} supported planar heteropolyoxomolybdate, aiming at optimizing the noble metal content in the catalytic system. Preliminary measurements of RhMo{sub 6}/{gamma}-Al{sub 2}O{sub 3} and (Rh, Al)Mo{sub 6}/{gamma}-Al{sub 2}O{sub 3} activity for HDS and HYD processes were also performed. These results were compared to those obtained for CoMo{sub 6}/{gamma}-Al{sub 2}O{sub 3} system in similar operating conditions and other conventional catalytic systems. The potentiality and scope of RhMo{sub 6} catalytic system for the HDS and HYD processes were analyzed.

  4. Comprehensive Study on Thermal and Dynamic Mechanical Behavior of PET/PEN Blends

    Directory of Open Access Journals (Sweden)

    Hossien Ali Khonakdar

    2013-10-01

    Full Text Available The effects of interchange reactions on the crystallization, melting, and dynamic mechanical thermal behavior of poly(ethylene terephthalate/poly(ethylene naphthalate (PET/PEN blends prepared by melt mixing have been investigated. The occurrence of interchange reactions has been verified by proton nuclear magnetic resonance (1H NMR. Differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA were used to study the effect of transesterification reaction on crystallinity, melting and dynamic mechanical properties of the blends. It was found that by extension of transesterification, the miscibility of the blend increased. Time and temperature of mixing were most important parameters affecting the transesterification level. On blending, the melt crystallinity of poly(ethylene terephthalate was reduced and in contrast that of poly(ethylene naphthalate was increased; where melt crystallization temperatures of both phases were depressed. A single composition-dependent glass transition peak, which was indicative of miscibility, was detected in second heating thermograms of the blends. It was observed that cold crystallization of poly(ethylene terephthalate phase decreases while that of poly(ethylene naphthalate was suppressed on blending. It was found that each phase crystallized individually and a melting point depression which was an indication of compatibility was evident at the same time. Dynamic mechanical analysis confirmed the proton nuclear magnetic resonance and differential scanning calorimetry results. The secondary viscoelastic transitions of each phase in blend samples were also probed. Increment of peak area in the loss factor has implied the miscibility of blend due to formation of poly(ethylene terephthalate/poly(ethylene naphthalate random copolymer.

  5. Thermal stability of the French nuclear waste glass - long term behavior modeling

    International Nuclear Information System (INIS)

    Orlhac, X.

    2000-01-01

    The thermal stability of the French nuclear waste glass was investigated experimentally and by modeling to predict its long-term evolution at low temperature. The crystallization mechanisms were analyzed by studying devitrification in the supercooled liquid. Three main crystalline phases were characterized (CaMoO 4 , CeCO 2 , ZnCr 2 O 4 ). Their crystallisation was TO 4.24 wt%, due to the low concentration of the constituent elements. The nucleation and growth curves showed that platinoid elements catalysed nucleation but did not affect growth, which was governed by volume diffusion. The criteria of classic nucleation theory were applied to determine the thermodynamic and diffusional activation energies. Viscosity measurements illustrate the analogy between the activation energy of viscous flow and diffusion, indicating control of crystallization by viscous flow phenomena. The combined action of nucleation and growth was assessed by TTT plots, revealing a crystallization equilibrium line that enables the crystallized fractions to be predicted over the long term. The authors show that hetero-genetics catalyze the transformation without modifying the maximum crystallized fraction. A kinetic model was developed to describe devitrification in the glass based on the nucleation and growth curves alone. The authors show that the low-temperature growth exhibits scale behavior (between time and temperature) similar to thermo-rheological simplicity. The analogy between the resulting activation energy and that of the viscosity was used to model growth on the basis of viscosity. After validation with a simplified (BaO 2 SiO 2 ) glass, the model was applied to the containment glass. The result indicated that the glass remained completely vitreous after a cooling scenario with the one measured at the glass core. Under isothermal conditions, several million years would be required to reach the maximum theoretical crystallization fraction. (author)

  6. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  7. Novel 1D coordination polymer {Tm(Piv)3}n: Synthesis, structure, magnetic properties and thermal behavior

    International Nuclear Information System (INIS)

    Fomina, Irina; Dobrokhotova, Zhanna; Aleksandrov, Grygory; Emelina, Anna; Bykov, Mikhail; Malkerova, Irina; Bogomyakov, Artem; Puntus, Lada; Novotortsev, Vladimir; Eremenko, Igor

    2012-01-01

    The new 1D coordination polymer {Tm(Piv) 3 } n (1), where Piv=OOCBu t− , was synthesized in high yield (>95%) by the reaction of thulium acetate with pivalic acid in air at 100 °S. According to the X-ray diffraction data, the metal atoms in compound 1 are in an octahedral ligand environment unusual for lanthanides. The magnetic and luminescence properties of polymer 1, it’s the solid-phase thermal decomposition in air and under argon, and the thermal behavior in the temperature range of −50…+50 °S were investigated. The vaporization process of complex 1 was studied by the Knudsen effusion method combined with mass-spectrometric analysis of the gas-phase composition in the temperature range of 570–680 K. - Graphical Abstract: Novel 1D coordination polymer {Tm(Piv) 3 } n was synthesized and studied by X-ray diffraction. The magnetic, luminescence properties, the thermal behavior and the volatility for the compound {Tm(Piv) 3 } n were investigated.▪ Highlights: ► We synthesized the coordination polymer {Tm(Piv) 3 } n . ► Tm atoms in polymer have the coordination number 6. ► Polymer exhibits blue-color emission at room temperature. ► Polymer shows high thermal stability and volatility. ► Polymer has no phase transitions in the range of −50…+50 °S.

  8. Study of the influence of mechanical - thermal treatments on the creep behavior of a niobium stainless steel

    International Nuclear Information System (INIS)

    Rossi, J.L.; Ferreira, P.I.

    1986-01-01

    The influence of microstructural parameters controlled by mechanical-thermal treatment |1| on the creep behavior of DIN-Werkstoff-Nr. 1.4981 stainless steel (material candidate for use as cladding of fast breeder reactor (fuel elements), is studied. The effects of the solution treatment, predeformation, predeformation puls aging and cycles of predeformation-ageing on the creep results obtained at 990 K, for apllied stresses in the range 70 MPc - 310 MPa, are discussed. (Author) [pt

  9. Redes de pequenas empresas: a aplicação de uma tipologia em uma rede de supermercados

    OpenAIRE

    Teixeira, Rivanda Meira; Ferreira Júnior, Israel

    2007-01-01

    O presente estudo teve como objetivo analisar as características de uma rede do setor de comércio varejista, a Rede Econômica de Supermercados, de acordo com a ti pologia de redes de empresas proposta por Hoffmann et al. (2004). Além disso, buscou-se identificar quais são os princi pais benefícios e dificuldades verificados na operacionalização da Rede. A partir de entrevistas realizadas com o gestor administrativo da Rede e com um gerente de compras, e com base na análise de documentos e mat...

  10. Redes de pequenas empresas: a aplicação de uma tipologia em uma rede de supermercados.

    OpenAIRE

    Rivanda Meira Teixeira; Israel Ferreira Júnior

    2007-01-01

    O presente estudo teve como objetivo analisar as características de uma rede do setor de comércio varejista, a Rede Econômica de Supermercados, de acordo com a ti pologia de redes de empresas proposta por Hoffmann et al. (2004). Além disso, buscou-se identificar quais são os princi pais benefícios e dificuldades verificados na operacionalização da Rede. A partir de entrevistas realizadas com o gestor administrativo da Rede e com um gerente de compras, e com base na análise de documentos e mat...

  11. Cuestionario de redes personales. Red amplia

    OpenAIRE

    Sandín Esteban, Ma. Paz; Sánchez Martí, Angelina

    2012-01-01

    En el marco de una investigación más amplia sobre transiciones escolares y el papel de las redes sociales te pedimos que contestes las preguntas siguientes acerca de tus relaciones personales. Te rogamos que leas con atención las preguntas y contestes con sinceridad. Agradecemos mucho tu colaboración.

  12. Barramentos de Campo e Redes Industriais

    OpenAIRE

    Martins, Joberto S. B.

    1993-01-01

    Uma discussão sobre a tecnologia, produtos e padronização dos Barramentos de Campo deve começar pelo entendimento do domínio da tecnologia em relação ao conjunto de redes e sistemas utilizados no ambiente industrial.

  13. The influence of the nature and textural properties of different supports on the thermal behavior of Keggin type heteropolyacids

    Directory of Open Access Journals (Sweden)

    ALEXANDRU POPA

    2006-03-01

    Full Text Available In order to obtain highly dispersed heteropolyacids (HPAs species, H3PMo12VO40 and H3PVMo11O40 were supported on various supports: silica (Aerosil - Degussa and Romsil types and TiO2. The structure and thermal decomposition of supported and unsupported HPAs were followed by different techniques (TGA-DTA, FTIR, XRD, low temperature nitrogen adsorption, scanning electron microscopy. All the supported HPAs were prepared by impregnation using the incipient wetness technique with a 1:1 mixture of water–ethanol. Samples were prepared with different concentrations to examine the effect of loading on the thermal behavior of the supported acid catalysts. The thermal stability was evaluated with reference to the bulk solid acids and mechanical mixtures. After deposition on silica types supports, an important decrease in thermal stability was observed on the Romsil types and a small decrease on the Aerosil type. The stability of the heteropolyacids supported on titania increased due to an anion-support interaction, as the thermal decomposition proceeded in two steps. The structure of the HPAs was not totally destroyed at 450 ºC as some IR bands were still preserved. A relatively uniform distribution of HPAs on the support surface was observed for all compositions of the active phase. No separate crystallites of solid phase HPAs were found in the SEM images.

  14. Curing behavior and thermal properties of trifunctional epoxy resin cured by 4, 4’-diaminodiphenyl sulfone

    Directory of Open Access Journals (Sweden)

    2009-08-01

    Full Text Available A novel trifunctional epoxy resin 4-(3, 3-dihydro-7-hydroxy-2, 4, 4-trimethyl-2H-1-benzopyran-2-yl-1, 3-benzenediol glycidyl (shorted as TMBPBTH-EPOXY was synthesized in our lab to improve thermal performance. Its curing behavior and performance were studied by using 4, 4′-diaminodiphenyl sulfone (DDS as hardener with the mass ratio of 100:41 of TMBPBTH-EPOXY and DDS. The curing activation energy was investigated by differential scanning calorimetry (DSC to be 64.0 kJ/mol estimated by Kissinger’s method and 68.7 kJ/mol estimated by Flynn-Wall-Ozawa method respectively. Thermogravimetric analyzer (TGA was used to investigate the thermal decomposition of cured compounds. It was found that when curing temperature was lower than 180°C, the thermal decomposition temperature increased with the rise of curing temperature and curing time. On the other hand, when the curing temperature was higher than 180°C, the thermal decomposition temperature went down instead with the increase of curing time that might be the over-crosslinking of TMBPBTH-EPOXY and DDS hardener. The glass transition temperature (Tg of cured TMBPBTH-EPOXY/DDS compound determined by dynamic mechanical thermal analysis (DMTA is 290.1°C.

  15. Determination of the sensitivity behavior of an acoustic, thermal flow sensor by electronic characterization

    NARCIS (Netherlands)

    van Honschoten, J.W.; Svetovoy, Vitaly; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2004-01-01

    The microflown is an acoustic, thermal flow sensor that measures sound particle velocity instead of sound pressure. It is a specific example of a wide range of two- and three-wire thermal flow sensors. For most applications the microflown should be calibrated, which is usually performed acoustically

  16. Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation

    International Nuclear Information System (INIS)

    Mao, Aihua; Luo, Jie; Li, Yi

    2017-01-01

    Highlights: • Solar radiation evaluation is integrated with the thermal transfer in clothed humans. • Thermal models are developed for clothed humans exposed in indoor solar radiation. • The effect of indoor solar radiation on humans can be predicted in different situations in living. • The green solar energy can be efficiently utilized in the building development. - Abstract: Solar radiation is a valuable green energy, which is important in achieving a successful building design for thermal comfort in indoor environment. This paper considers solar radiation indoors into the transient thermal transfer models of a clothed human body and offers a new numerical method to analyze the dynamic thermal status of a clothed human body under different solar radiation incidences. The evaluation model of solar radiation indoors and a group of coupled thermal models of the clothed human body are developed and integrated. The simulation capacities of these integrated models are validated through a comparison between the predicted results and the experimental data in reference. After that, simulation cases are also conducted to show the influence of solar radiation on the thermal status of individual clothed body segments when the human body is staying indoors in different seasons. This numerical simulation method provides a useful tool to analyze the thermal status of clothed human body under different solar radiation incidences indoors and thus enables the architect to efficiently utilize the green solar energy in building development.

  17. How Thermal Fatigue Cycles Change the Rheological Behavior of Polymer Modified Bitumen?

    NARCIS (Netherlands)

    Glaoui, B.; Merbouh, M.; Van de Ven, M.F.C.; Chailleux, E.; Youcefi, A.

    2013-01-01

    The paper deals with the problem of thermal fatigue cycles phenomenon, which affects the performance of flexible pavement. The purpose of the paper is to extent the knowledge on the rheology of polymer modified bitumen which was affected by cycles of thermal fatigue. The aim of this research is to

  18. Thermal conductivity behavior of oil palm/jute fibre-reinforced hybrid composites

    Science.gov (United States)

    Jawaid, M.; Saba, N.; Alothman, Othman Y.; Khalil, H. P. S. Abdul; Mariatti, M.

    2017-12-01

    In this study epoxy matrix, oil palm empty fruit bunch (EFB) fibres, jute fibres and oil palm EFB/jute fibre reinforced epoxy hybrid composites in different layering pattern at EFB: jute ratio (50:50) fabricated by hand lay-up technique. The thermal conductivity of epoxy matrix, oil palm EFB, jute and oil palm EFB/jute hybrid reinforced epoxy composites has been evaluated by Hot Disk Thermal Constants Analyser (Hot Disk TPS2500 S) equipped with Hot Disk Analysis Software version 5.9. Obtained results indicated that thermal conductivity of epoxy matrix increased with reinforcing of oil palm EFB and jute fibres. Hybridization of oil palm EFB with jute fibres allows an increased in thermal conductivity of oil palm EFB/jute hybrid composites. We concluded that oil palm EFB/jute hybrid composites can be used for thermal applications in automotive and construction industry to save energy.

  19. Nonclassical thermal-state superpositions: Analytical evolution law and decoherence behavior

    Science.gov (United States)

    Meng, Xiang-guo; Goan, Hsi-Sheng; Wang, Ji-suo; Zhang, Ran

    2018-03-01

    Employing the integration technique within normal products of bosonic operators, we present normal product representations of thermal-state superpositions and investigate their nonclassical features, such as quadrature squeezing, sub-Poissonian distribution, and partial negativity of the Wigner function. We also analytically and numerically investigate their evolution law and decoherence characteristics in an amplitude-decay model via the variations of the probability distributions and the negative volumes of Wigner functions in phase space. The results indicate that the evolution formulas of two thermal component states for amplitude decay can be viewed as the same integral form as a displaced thermal state ρ(V , d) , but governed by the combined action of photon loss and thermal noise. In addition, the larger values of the displacement d and noise V lead to faster decoherence for thermal-state superpositions.

  20. Characterization of physicochemical and thermal properties and crystallization behavior of krabok (Irvingia Malayana ) and rambutan seed fats.

    Science.gov (United States)

    Sonwai, Sopark; Ponprachanuvut, Punnee

    2012-01-01

    Fatty acid composition, physicochemical and thermal properties and crystallization behavior of fats extracted from the seeds of krabok (Irvingia Malayana) and rambutan (Nephelium lappaceum L.) trees grown in Thailand were studied and compared with cocoa butter (CB). The krabok seed fat, KSF, consisted of 46.9% lauric and 40.3% myristic acids. It exhibited the highest saponification value and slip melting point but the lowest iodine values. The three fats displayed different crystallization behavior at 25°C. KSF crystallized into a mixture of β' and pseudo-β' structures with a one-step crystallization curve and high solid fat content (SFC). The fat showed simple DSC crystallization and melting thermograms with one distinct peak. The rambutan seed fat, RSF, consisted of 42.5% arachidic and 33.1% oleic acids. Its crystallization behavior was more similar to CB than KSF, displaying a two-step crystallization curve with SFC lower than that of KSF. RSF solidified into a mixture of β' and pseudo-β' before transforming to β after 24 h. The large spherulitic microstructures were observed in both KSF and RSF. According to these results, the Thai KSF and RSF exhibited physicochemical, thermal characteristics and crystallization behavior that could be suitable for specific applications in several areas of the food, cosmetic and pharmaceutical industries.

  1. Influence of layout design and on-wafer heatspreaders on the thermal behavior of fully-isolated bipolar transistors: Part I - Static analysis

    Science.gov (United States)

    Russo, Salvatore; Spina, Luigi La; d'Alessandro, Vincenzo; Rinaldi, Niccolò; Nanver, Lis K.

    2010-08-01

    The impact of layout parameters on the steady-state thermal behavior of bipolar junction transistors (BJTs) with full dielectric isolation is extensively analyzed by accurate DC measurements and 3-D numerical simulations. The influence of the aspect ratio of the emitter stripe, as well as the consequences of device scaling, are investigated from a thermal viewpoint. Furthermore, the beneficial effect of implementing aluminum nitride (AlN) thin-film heatspreaders is examined. It is shown that the silicon area surrounding the heat source, as well as the distance to high-thermal-conductivity regions, can have a significant impact on the thermal behavior. A recently proposed scaling rule for the thermal resistance - fully compatible with advanced transistor models - is successfully applied to a series of test BJT structures provided that a simple parameter optimization is carried out. Based on this, some generally applicable guidelines are given to effectively downscale fully-isolated bipolar transistors without significantly worsening the thermal issues.

  2. Influence on Occupant Responses of Behavioral Modification of Clothing Insulation in Nonsteady Thermal Environments (RP-1269)

    DEFF Research Database (Denmark)

    Toftum, Jørn; Kolarik, Jakub; Belkowska, D.

    2010-01-01

    of the recommendations on drifting temperatures as stated in ASHRAE Standard 55-2004, Thermal Environmental Conditions for Human Occupancy (ASHRAE 2004) and to extend the scope of the recommendations to cover not only thermal comfort, but also the perception of air quality, health, and performance. The experiments....../h) condition when it was 2 h. Thermal sensation responses observed with adjustable clothing insulation did not differ from those observed with fixed clothing insulation, which were reported in an earlier paper. However, with fired clothing insulation, longer exposures (>4 h) seemed to aggravate general sick...

  3. Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Furbo, Simon

    2016-01-01

    Sodium acetate trihydrate is a promising phase change material for long term storage of solar thermal energy if supercooling is actively utilized. Well performing thermal energy storages need to be able to charge and discharge energy at a high rate. The relatively low thermal conductivity...... of the phase change material limits the heat exchange capacity rate to and from the storage. Another factor that limits the heat transfer is the contraction and expansion of the salt hydrate during the phase change. This density change causes formation of cavities inside the solid storage material...

  4. A reference device for evaluating the thermal behavior of installed multilayered wall containing a phase change material

    International Nuclear Information System (INIS)

    Pagliolico, S.L.; Sassi, G.; Cascone, Y.; Bongiovanni, R.M.

    2015-01-01

    Highlights: • Thermal analysis of installed wallboards embedding phase change material layer. • Simple devices and real conditions for thermal analysis toward a standardization. • Scanning calorimetric measurements as initial condition for data regression. • Bias correction of calorimetric measurements data by installation factors. • Practical approach to identify a reliable thermal curve for capacitive wallboards. - Abstract: Thermal inertia of lightweight building envelopes can be improved including phase change materials in multilayered wallboards. The thermal modeling of buildings for design purposes needs a robust description of the thermal properties of installed phase change materials. A standard method would improve the thermal characterization of commercial products. The aim of the study is to develop a simple methodology to obtain reliable thermal data for phase change materials integrated in multilayered wallboards. The methodology modifies differential scanning calorimetry measurements on phase change material by installation factors to obtain the apparent specific heat vs. temperature for the wallboard layer embedding phase change material. Simple cubic cells were realized as reference devices to simulate a confined environment. A dynamic model of heat transfer was developed to simulate the thermal behavior of devices. Installation factors were calculated by regression of the monitored temperatures inside and outside the devices operating under real environmental conditions. The apparent specific heat of phase change material, measured by differential scanning calorimetry at different rates, resulted in a spread of curves vs. temperature. Mean curves were used as initial condition for regression. The mean calculation method did not significantly affect the installed resulted curve. A unique curve of apparent specific heat vs. temperature best fit data measured over a wide range of experimental devices and conditions. Good regression

  5. Experimental Study on the Influence of Thermal Feedback on the Burning Behavior of Flexible Polyurethane

    DEFF Research Database (Denmark)

    Poulsen, Annemarie; Bwalya, Alex; Jomaas, Grunde

    2013-01-01

    A series of experiments were carried out to study the effect of thermal feedback on the flame spread rate and the heat release rate for a horizontally positioned slab of polyurethane under pre-flashover conditions. Two experiments were performed in a slightly modified ISO 9705 Room Corner Test...... a different thermal inertia. The third experiment was performed as a free burn under a hood. The experiments showed that the flame spread rate increased in the room experiments as compared with the free burn experiments. Also, the experiments showed that the thermal feedback may increase the heat release rate...... and lead to flashover conditions, something which may not be predicted based on free burn experiments. Given the profound difference between the results from the different experimental conditions, it is recommended to take detailed room effects, such as thermal feedback, into considerations...

  6. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands.

    Science.gov (United States)

    Porteiro, Jacobo; Míguez, José Luis; Crespo, Bárbara; de Lara, José; Pousada, José María

    2016-03-21

    Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials) in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  7. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands

    Directory of Open Access Journals (Sweden)

    Jacobo Porteiro

    2016-03-01

    Full Text Available Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  8. Promising and Reversible Electrolyte with Thermal Switching Behavior for Safer Electrochemical Storage Devices.

    Science.gov (United States)

    Shi, Yunhui; Zhang, Qian; Zhang, Yan; Jia, Limin; Xu, Xinhua

    2018-02-28

    A major stumbling block in large-scale adoption of high-energy-density electrochemical devices has been safety issues. Methods to control thermal runaway are limited by providing a one-time thermal protection. Herein, we developed a simple and reversible thermoresponsive electrolyte system that is efficient to shutdown the current flow according to temperature changes. The thermal management is ascribed to the thermally activated sol-gel transition of methyl cellulose solution, associated with the concentration of ions that can move between isolated chains freely or be restricted by entangled molecular chains. We studied the effect of cellulose concentration, substituent types, and operating temperature on the electrochemical performance, demonstrating an obvious capacity loss up to 90% approximately of its initial value. Moreover, this is a cost-effective approach that has the potential for use in practical electrochemical storage devices.

  9. Experimental evaluation of thermal ratcheting behavior in UO2 fuel elements

    Science.gov (United States)

    Phillips, W. M.

    1973-01-01

    The effects of thermal cycling of UO2 at high temperatures has been experimentally evaluated to determine the rates of distortion of UO2/clad fuel elements. Two capsules were rested in the 1500 C range, one with a 50 C thermal cycle, the other with a 100 C thermal cycle. It was observed that eight hours at the lower cycle temperature produced sufficient UO2 redistribution to cause clad distortion. The amount of distortion produced by the 100 C cycle was less than double that produced by the 50 C, indicating smaller thermal cycles would result in clad distortion. An incubation period was observed to occur before the onset of distortion with cycling similar to fuel swelling observed in-pile at these temperatures.

  10. Investigations of the small-scale thermal behavior of sol-gel thermites.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Mial E.; Farrow, Matthew; Tappan, Alexander Smith

    2009-02-01

    Sol-gel thermites, formulated from nanoporous oxides and dispersed fuel particles, may provide materials useful for small-scale, intense thermal sources, but understanding the factors affecting performance is critical prior to use. Work was conducted on understanding the synthesis conditions, thermal treatments, and additives that lead to different performance characteristics in iron oxide sol-gel thermites. Additionally, the safety properties of sol-gel thermites were investigated, especially those related to air sensitivity. Sol-gel thermites were synthesized using a variety of different techniques and there appear to be many viable routes to relatively equivalent thermites. These thermites were subjected to several different thermal treatments under argon in a differential scanning calorimeter, and it was shown that a 65 C hold for up to 200 minutes was effective for the removal of residual solvent, thus preventing boiling during the final thermal activation step. Vacuum-drying prior to this heating was shown to be even more effective at removing residual solvent. The addition of aluminum and molybdenum trioxide (MoO{sub 3}) reduced the total heat release per unit mass upon exposure to air, probably due to a decrease in the amount of reduced iron oxide species in the thermite. For the thermal activation step of heat treatment, three different temperatures were investigated. Thermal activation at 200 C resulted in increased ignition sensitivity over thermal activation at 232 C, and thermal activation at 300 C resulted in non-ignitable material. Non-sol-gel iron oxide did not exhibit any of the air-sensitivity observed in sol-gel iron oxide. In the DSC experiments, no bulk ignition of sol-gel thermites was observed upon exposure to air after thermal activation in argon; however ignition did occur when the material was heated in air after thermal treatment. In larger-scale experiments, up to a few hundred milligrams, no ignition was observed upon exposure to air

  11. Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition

    Science.gov (United States)

    Jun, Xie; Zhang, Yannian; Shan, Chunhong

    2017-10-01

    The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.

  12. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  13. Thermal Behavior and Structural Study of SiO₂/Poly(ε-caprolactone) Hybrids Synthesized via Sol-Gel Method.

    Science.gov (United States)

    Vecchio Ciprioti, Stefano; Tuffi, Riccardo; Dell'Era, Alessandro; Dal Poggetto, Francesco; Bollino, Flavia

    2018-02-10

    SiO₂-based organic-inorganic hybrids (OIHs) are versatile materials whose properties may change significantly because of their thermal treatment. In fact, after their preparation at low temperature by the sol-gel method, they still have reactive silanol groups due to incomplete condensation reactions that can be removed by accelerating these processes upon heating them in controlled experimental conditions. In this study, the thermal behavior of pure SiO₂ and four SiO₂-based OIHs containing increasing amount (6, 12, 24 and 50 wt %) of poly(ε-caprolactone) (PCL) has been studied by simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC). The FTIR analysis of the gas mixture evolved at defined temperatures from the samples submitted to the TG experiments identified the mechanisms of thermally activated processes occurring upon heating. In particular, all samples already release ethanol at low temperature. Moreover, thermal degradation of PCL takes place in the richest-PCL sample, leading to 5-hexenoic acid, H₂O, CO₂, CO and ε-caprolactone. After the samples' treatment at 450, 600 and 1000 °C, the X-ray diffraction (XRD) spectra revealed that they were still amorphous, while the presence of cristobalite is found in the richest-PCL material.

  14. Estudio antropológico de redes sociales de madres adolescentes durante el embarazo

    Directory of Open Access Journals (Sweden)

    Lorena Pasarin

    2009-07-01

    Full Text Available La atención de la salud incluye a diversos actores sociales, por ello en su estudio debe contemplarse el papel que adquieren los contextos socioculturales. El estudio de las redes sociales resulta conveniente para abordarlos. Este trabajo presenta una aplicación del análisis de redes sociales como complemento de abordaje metodológico al estudio de las prácticas y comportamientos relacionados con la salud de madres adolescentes durante el período prenatal. Utilizando la herramienta EgoNet, se analiza la estructura de las redes personales identificando redes integradas principalmente por familiares que brindan consejos y prestan ayuda instrumental, actuando como facilitadoras respecto a la realización de los controles de salud. La perspectiva de análisis de redes sociales permitió destacar el papel decisivo que cobran ciertas relaciones personales, funcionando como lazos eficaces que afectan significativamente el accionar de las adolescentes respecto a su salud durante el embarazo.The health care includes several social actors, this implies that its study should consider the role of the sociocultural contexts. The study of social networks is appropriate to address them. This paper presents an application of social network analysis as a complement of the methodological approach for the study of practices and health-related behaviors in adolescents mothers. This structure of personal networks is analyzed by EgoNet sofware. That structure is disscussed by identifying family networks that offer advices and provide instrumental assistance, acting as facilitators for the prenatal health controls. The social networks analysis perspective allows to emphasize the critical role acquired by certain personal relationships, which operate affecting significantly the health actions of the teenagers mothers during pregnancy.

  15. Thermal behavior and kinetics assessment of ethanol/gasoline blends during combustion by thermogravimetric analysis

    International Nuclear Information System (INIS)

    3, CEP 12.516-410 Guaratinguetá, SP (Brazil); U.T.P. – Universidad Tecnológica de Pereira, Faculty of Mechanical Engineering, Pereira, Risaralda (Colombia))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil); U.T.P. – Universidad Tecnológica de Pereira, Faculty of Mechanical Engineering, Pereira, Risaralda (Colombia))" >Rios Quiroga, Luis Carlos; 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Balestieri, José 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Antonio Perrella; 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Ávila, Ivonete

    2017-01-01

    Highlights: • Kinetic parameters of thermal decomposition events were obtained. • Thermal analysis was used as a tool for understanding combustion processes. • Blends would be classified using thermogravimetric analysis technics. • Synergistic effect of ethanol mixed with gasoline was studied and defined. • Relative error and activation energy values were used to analyze the synergy. - Abstract: The use of ethanol as a fuel or as an additive blended with gasoline is very important for most countries, which aim to reduce the heavy dependence on fossil fuels and mitigate greenhouse gases emission. An increased use of ethanol-gasoline blends has placed great relevance on acquiring knowledge about their physical and chemical properties. Thus, knowledge of such properties favors a better understanding of the effect of the percentage of ethanol/gasoline blends on engine performance. Thence, the present study has established a correlation between activation energy and synergetic effects, obtained by a thermal analysis, and ethanol content in gasoline for different blends in order to use this technique as a tool to classify these blends in the process in order to obtain useful energy in spark ignition engines. For such a purpose, a kinetic study has been conducted through a simultaneous thermal analysis system – TGA (thermogravimetry analysis) and DTA (differential thermal analysis) by following the methodology of non-isothermal tests. Thermogravimetric tests were performed and fuel activation energies for gasoline, ethanol, and percentages of 5, 10, 15, 20, 25, 30, 50, and 75% (%v) ethanol mixed with gasoline, which was achieved by the model free kinetics. The analysis results suggest that the theoretical curves characteristics of the thermal decomposition of ethanol-gasoline blends are rather different due to their ethanol content. Furthermore, it was observed significant interactions and synergistic effects, especially regarding those with low ethanol

  16. AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    S. KWON

    2013-02-01

    Full Text Available Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

  17. An analysis of the thermal and mechanical behavior of engineered barriers in a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.; Lee, J. O.

    2013-01-01

    Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

  18. Synthesis, characterization and thermal behavior: Gd(NO3)3.6H2O to Gd2O3

    International Nuclear Information System (INIS)

    Ghonge, Darshana K.; Sheelvantra, Smita S.; Kalekar, Bhupesh B.; Raje, Naina

    2015-01-01

    Gadolinium oxide finds its application in nuclear as well as medical industry. It has been prepared from the thermal decomposition of gadolinium nitrate hexahydrate. Surface area of the synthesized compound was measured as 19 m 2 /g. EDS data shows only the presence of gadolinium and oxygen in the synthesized compound with the Gd to O ratio as calculated for Gd 2 O 3 , suggests the formation of pure Gd 2 O 3 . XRD analysis confirms the formation of pure cubic phase Gd 2 O 3 . In the absence of any report on the thermal behavior of GdNH, present studies have been carried out to understand the decomposition mechanism using simultaneous TG - DTA - EGA measurements

  19. REDES SOCIALES: RIESGOS Y CONOCIMIENTOS PATERNOS

    OpenAIRE

    Brotons-Gil, Evaristo

    2013-01-01

    Con este trabajo se pretendía evaluar el conocimiento y control que tienen los padres sobre sus hijos menores de edad a través de un cuestionario hecho a los padres de niños de entre 12 y 17 años. A través de un cuestionario hecho a los padres de niños de entre 12 y 17 años se ha determinado que un 67,57% de los padres encuestados utilizan las redes sociales y sólo un 36% de los padres que acceden a las redes sociales tienen agregados a sus hijos. Otro dato significativo es ...

  20. Laboratorio de redes locales EV-LAN

    OpenAIRE

    Usbeck Wandemberg, Carlos; Amadio, Franco

    1993-01-01

    Dado el desarrollo de las redes locales, se hace necesario introducirlas dentro de la didáctica, con el fin de operar en este sector. Las problemáticas enfrentadas cubren aspectos como el conocimiento de los estándares, las topologías de las conexiones y medios de transmisión, el empleo y desarrollo del software en ambiente LAN.

  1. Internet: Redes sociales. Llamamiento ético

    OpenAIRE

    Díaz-Campo, Jesús

    2015-01-01

    Capítulo en el que se analizan los aspectos éticos de Internet y las redes sociales a partir de análisis de casos reales de 2014 en España. Se plantea la necesidad de crear un código ético específico para regular la actividad periodística en internet.

  2. Asociatividad, Capital Social y Redes Sociales

    Directory of Open Access Journals (Sweden)

    Andrés Aguirre

    2006-01-01

    Full Text Available Este trabajo indaga en la percepción de los actores sociales, las relaciones interpersonales, los significados asociados y las redes sociales autogeneradas en las prácticas asociativas que se desarrollan en este ámbito de sociabilidad compartida. Nuestro análisis se sustenta en la teoría de los campos de Pierre Bourdieu, la que opera como corpus articulador de los aspectos asociativos directos encontrados, incorporando de igual forma aspectos de la teoría del capital social, y el enfoque de redes sociales, aplicado al contexto de esta organización social. Para obtener el conocimiento así planteado, nos aproximamos al discurso, a los relatos que respecto a su asociatividad, enuncian los propios miembros del club de fútbol amateur. En este sentido, elaboramos un diseño de investigación cualitativo cuya técnica de observación y captación del sentido se basó en una serie de entrevistas semi-estructuradas. Al concluir, se desarrolla y presenta un análisis de los resultados obtenidos, entre los cuales destaca la riqueza de la vida asociativa, espacios de sociabilidad, redes de ayuda mutua, convivencia intergeneracional conformadora de identidad social, así como el potencial de capital social subyacente.

  3. Thermal Stability and Rheological Behaviors of High-Density Polyethylene/Fullerene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Liping Zhao

    2012-01-01

    Full Text Available High-density polyethylene/fullerene (HDPE/C60 nanocomposites with the C60 loading that varied from 0.5 to 5.0% by weight were prepared via melt compounding. Thermogravimetric analysis (TGA and differential scanning calorimetry (DSC results showed that the presence of C60 could remarkably enhance the thermal properties of HDPE. A very low C60 loading (0.5 wt% increased the onset degradation temperature from 389∘C to 459∘C and decreased the heat release from 3176 J/g to 1490 J/g. The larger the loading level of C60, the better the thermal stability of HDPE/C60 nanocomposites. Rheological investigation results showed that the free radical trapping effect of C60 was responsible for the improved thermal stability of HDPE.

  4. Non-Linear Mechanical Behavior of Plasma Sprayed Alumina Under Mechanical and Thermal Loading

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Matějíček, Jiří; Vilémová, Monika; Kovářík, O.

    2010-01-01

    Roč. 19, 1-2 (2010), s. 422-428 ISSN 1059-9630. [ International Thermal Spray Conference (ITSC 2009):Expanding Thermal Spray Performance to New Markets and Applications. Las Vegas, NV, 04.05.2009-07.05.2009] R&D Projects: GA ČR GA106/08/1240; GA MŠk ME 901 Institutional research plan: CEZ:AV0Z20430508 Keywords : APS coatings * fatigue and fracture * hardness and (visco-) elastic properties * influence of spray parameters * stiffness * thermal cycling Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.844, year: 2010 http://www.springerlink.com/content/a8387uk8716x53x1/fulltext.pdf

  5. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine

    Energy Technology Data Exchange (ETDEWEB)

    J. Michelle Kotler; Nancy W. Hinman; C. Doc Richardson; Jill R. Scott

    2010-10-01

    Biomolecules, methylamine and alanine, found associated with natural jarosite samples peaked the interest of astrobiologists and planetary geologists. How the biomolecules are associated with jarosite remains unclear although the mechanism could be important for detecting biosignatures in the rock record on Earth and other planets. A series of thermal gravimetric experiments using synthetic K-jarosite and Na-jarosite were conducted to determine if thermal analysis could differentiate physical mixtures of alanine and methylamine with jarosite from samples where the methylamine or alanine was incorporated into the synthesis procedure. Physical mixtures and synthetic experiments with methylamine and alanine could be differentiated from one another and from the standards by thermal analysis for both the K-jarosite and Na-jarosite end-member suites. Changes included shifts in on-set temperatures, total temperature changes from on-set to final, and the presence of indicator peaks for methylamine and alanine in the physical mixture experiments.

  6. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately.

  7. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    International Nuclear Information System (INIS)

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately

  8. Chain Extension and Thermal Behavior of Recycled Poly(Ethylene Terephthalate Modified by Reactive Extrusion with Triphenyl Phosphite

    Directory of Open Access Journals (Sweden)

    Qin Dan

    2016-01-01

    Full Text Available Reactive extrusion experiments of recycled PET fabrics (R-PET were carried out in a Haake torque rheometer with triphenyl phosphite (TPP and thermal behavior of modified R-PET was investigated by differential scanning calorimetry (DSC. The reaction mechanism which TPP acts as a cross-linker is verified by the experiment of phosphorus elemental analysis. DSC results show the presence of reaction residues may not modify melting temperature Tm and crystallization temperature Tc is controlled by the combined effect of molecular weight and reaction residues.

  9. Effects of thermal aging on thermo-mechanical behavior of a glass sealant for solid oxide cell applications

    DEFF Research Database (Denmark)

    Abdoli, Hamid; Alizadeh, Parvin; Boccaccini, Dino

    2014-01-01

    , modulus of elasticity, and high-temperature deformation of the glass. The balance between the viscosity and viscous flowing behavior was explored for the non-aged and aged glasses as it is essential to have a successful sealing for a SOC stack. The results reveal a temperature dependence of Young......'s modulus in which a transition between a slow softening (elastic) regime and a rapid softening one was observed. Crystallization induced by thermal aging led to higher creep resistance, but lower capability of crack healing when inspected by electron microscopy. However, potential of stress relaxation...

  10. Thermal behavior and decomposition of cerium(III) butanoate, pentanoate and hexanoate salts upon heating in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Suarez Guevara, Maria Josefina; Yue, Zhao

    2017-01-01

    The thermal behavior and decomposition of Ce-butanoate monohydrate (Ce(C3H7CO2)3·H2O), Ce-pentanoate (Ce(C4H9CO2)3) and Ce-hexanoate (Ce(C5H11CO2)3) were studied in a flow of argon while heating at 5 °C/min. By means of several techniques such as simultaneous TG-DTA, FTIR evolved gas analysis, in...

  11. Experimental Study of the Influence of Speed and Load on Thermal Behavior of High-Speed Helical Gear Trains

    Science.gov (United States)

    Handschuh, R.; Kilmain, C.

    2005-01-01

    An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as speed, load, and lubricant flow rate were varied. Temperature test data from a helical gear train at varying speeds and loads (to 5000 hp and 15000 rpm) was collected using thermocouple rakes and axial arrays. The instrumentation was able to capture the radial and axial expelled lubricant-air environment (fling-off lubricant) that is expelled during the gear meshing process. Effects of operational characteristics are presented.

  12. Thermal-Induced Denaturation and Aggregation Behavior of Lysozyme and Bovine Serum Albumin: a Thermodynamic and Structural Study

    Science.gov (United States)

    Perez, Aline Sanches; Oliveira, Cristiano Luis Pinto

    2017-10-01

    Solution studies permit a direct investigation of the particles on a well-defined environment. Fluorescence, circular dichroism, scattering, and calorimetry provide, individually, very important information among the protein structure, overall shape, and thermodynamic equilibrium. In this work, a combination of these techniques is presented for the study of denaturation induced by temperature of two well-known proteins, Henn Egg lysozyme and bovine serum albumin. A detailed thermodynamic and structural investigation is shown for these proteins, providing interesting information on the thermal-induced changes in the protein structure and aggregation behavior.

  13. Influence of duration of thermal comfort provision on heating behavior of buildings

    International Nuclear Information System (INIS)

    Bojic, Milorad; Despotovic, Milan

    2007-01-01

    Because of the permanent dilemma whether residential buildings using district heating should be heated continually or discontinuously, we evaluated how the yearly heating load and the peak heating load of a small building in Serbia depend on the duration of thermal comfort provision. Using HTB2 software, a product of the Welsh School of Architecture, it was found that an increase in the duration of thermal comfort provision in the building from 16 h to 24 h increases the yearly heating load by 20%, reduces the peak heating load by up to 40% and may increase the number of new customers served with the same heating plant by up to 40%

  14. Redes Neuronales Artificiales en la predicción de errores, aplicado a redes de computadoras

    OpenAIRE

    Aguilar Durán, Rosendo Arturo

    2002-01-01

    Las redes de computadoras son vitales para los negocios, ya que me permiten compartir y acceder información, además de tener una amplia comunicación con las personas, día a día el avance de la tecnología hace que las redes de computadoras tengan mayor velocidad por lo tanto sean mas complejas, todo esto conlleva a que administrarlas sea todo un reto. Para tener una buena administración no importando la complejidad de la misma, es necesario contar con ...

  15. The oxidation behavior of classical thermal barrier coatings exposed to extreme temperature

    Directory of Open Access Journals (Sweden)

    Alina DRAGOMIRESCU

    2017-03-01

    Full Text Available Thermal barrier coatings (TBC are designed to protect metal surfaces from extreme temperatures and improve their resistance to oxidation during service. Currently, the most commonly used systems are those that have the TBC structure bond coat (BC / top coat (TC layers. The top coat layer is a ceramic layer. Oxidation tests are designed to identify the dynamics of the thermally oxide layer (TGO growth at the interface of bond coat / top coat layers, delamination mechanism and the TBC structural changes induced by thermal conditions. This paper is a short study on the evolution of aluminum oxide protective layer along with prolonged exposure to the testing temperature. There have been tested rectangular specimens of metal super alloy with four surfaces coated with a duplex thermal barrier coating system. The specimens were microscopically and EDAX analyzed before and after the tests. In order to determine the oxide type, the samples were analyzed using X-ray diffraction. The results of the investigation are encouraging for future studies. The results show a direct relationship between the development of the oxide layer and long exposure to the test temperature. Future research will focus on changing the testing temperature to compare the results.

  16. Thermal behavior of biflorin by beans TG and a DSC photovisual system

    Directory of Open Access Journals (Sweden)

    C. F. S. Aragão

    Full Text Available This work proposes thermal characterization, of the biflorine, orto-quinon of Capraria biflora L., through the TG and DSC photovisual data. The thermogravimetric results showed that the decomposition reaction biflorine occurs three steps under air atmosphere, The DSC of biflorin presented five peaks relating to phase transitions. The DSC photovisual system demonstrated changes in biflorin.

  17. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    of decreasing hydrophobicity. This is indicated by the initial decrease and then increase in the value of Keq. with the increasing strength of the acid treatment. The corresponding carbon - ionomer composite also showed varying thermal stability depending on Nafion orientation. The specific maximum surface...

  18. Behavior of Avirulent Yersinia pestis in Liquid Whole Egg as Affected by Antimicrobials and Thermal Pasteurization

    Science.gov (United States)

    Yersinia spp. is a psychrotrophic bacterium that can grow at temperatures as low as minus two degrees Celsius, and is known to contaminate shell eggs in the United States and shell eggs and liquid egg in South America. A study was performed to determine the thermal sensitivity of avirulent Yersinia...

  19. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)

    2016-01-14

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.

  20. Thermal behavior of TAXN and TCDXM D2 collimator mask, Finite element studies

    CERN Document Server

    Sklariks, Stepans

    2015-01-01

    The objective of this project was to perform thermal loading simulations of TCDXM (D2 collimator mask) and TAXN so as to allow the preliminary evaluation of the suitability of the given parts for the upcoming high luminosity upgrade that is to be performed in LHC in the nearest future.

  1. Effect of gamma irradiation on mechanical, thermal and rheological behavior of HDPE filled with seaweed residues

    International Nuclear Information System (INIS)

    Catano, L.; Albano, C.; Karam, A.; Dominguez, N.; Sanchez, Y.; Gonzalez, J.

    2005-01-01

    The present work shows the results obtained during the investigation of the influence of gamma irradiation on mechanical, thermal and rheological properties of high-density polyethylene (HDPE) filled with seaweed residues (SR). The SR used was located on Venezuelan coastlines and they are composed mainly by CaCO 3 in aragonite phase. The HDPE was extruded along with the filler at different compositions (20, 30 and 40 wt.%). The composites were exposed to a 60 Co source irradiated at 25 and 100 kGy. From the obtained results, it was noticed that Young modulus remained constant with filler content. Moreover, the influence of filler content was found to be more prominent on properties like tensile stress and elongation at break. On the other hand, thermal analysis showed that filler content had no significant influence on thermal stability. Still, it is necessary to point out that low radiation doses improved thermal stability of the composites. From rheological studies it was observed a decreasing of melt flow index (MFI) by increasing the SR amount and radiation. Therefore, was determinate that high filler content composites are the best choice to be considered for biomedical and industrial applications

  2. Miscibility and thermal behavior of poly (ε-caprolactone)/long-chain ester of cellulose blends

    Science.gov (United States)

    Yuzhi Xu; Chunpeng Wang; Nicole M. Stark; Zhiyong Cai; Fuxiang Chu

    2012-01-01

    The long-chain cellulose ester (LCCE) cellulose laurate, poly(ε-caprolactone) (PCL) and their blends were characterized by tensile strength, Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). The compatibility of the blends was...

  3. Experimental Study on the Influence of Thermal Feedback on the Burning Behavior of Flexible Polyurethane

    DEFF Research Database (Denmark)

    Poulsen, Annemarie; Bwalya, Alex; Jomaas, Grunde

    2013-01-01

    A series of experiments were carried out to study the effect of thermal feedback on the flame spread rate and the heat release rate for a horizontally positioned slab of polyurethane under pre-flashover conditions. Two experiments were performed in a slightly modified ISO 9705 Room Corner Test...

  4. Electrical conductivity and thermal behavior of solid electrolytes based on alkali carbonates and sulfates

    NARCIS (Netherlands)

    Brosda, S.; Bouwmeester, Henricus J.M.; Guth, U.

    1997-01-01

    Both thermal stability and electrical conductivity of alkali ion conducting Na2CO3 and Na2SO4, were improved by adding alkaline earth carbonates and sulfates, respectively, as well as insulating materials like ¿-Al2O3. The admixing of divalent compounds causes two effects. First a more or less

  5. O CAPITAL SOCIAL EM REDE: COMO AS REDES SOCIAIS NA INTERNET ESTÃO GERANDO NOVAS FORMAS DE CAPITAL SOCIAL

    OpenAIRE

    RECUERO, Raquel

    2012-01-01

    O presente artigo busca discutir as mudanças ocasionadas pelas novas formas de conexão nos sites de rede social (SRSs) das redes sociais online nos investimentos e recursos que chamamos “capital social”. A partir de uma apresentação teórica e baseados no duplo aspecto envolvido no conceito, onde ambos (atores e rede) beneficiam-se dos investimentos individuais, apresentaremos uma proposta de sistematização da compreensão do conceito de capital social nas redes sociais online.

  6. O CAPITAL SOCIAL EM REDE: COMO AS REDES SOCIAIS NA INTERNET ESTÃO GERANDO NOVAS FORMAS DE CAPITAL SOCIAL

    Directory of Open Access Journals (Sweden)

    RECUERO, Raquel

    2012-12-01

    Full Text Available O presente artigo busca discutir as mudanças ocasionadas pelas novas formas de conexão nos sites de rede social (SRSs das redes sociais online nos investimentos e recursos que chamamos “capital social”. A partir de uma apresentação teórica e baseados no duplo aspecto envolvido no conceito, onde ambos (atores e rede beneficiam-se dos investimentos individuais, apresentaremos uma proposta de sistematização da compreensão do conceito de capital social nas redes sociais online.

  7. Preparation, melting behavior and thermal stability of poly(lactic acid)/poly(propylene carbonate) blends processed by vane extruder

    International Nuclear Information System (INIS)

    Zou, Wei; Chen, Rongyuan; Zhang, Haichen; Qu, Jinping

    2016-01-01

    Poly (lactic acid) (PLA)/Poly (propylene carbonate) (PPC) blends were prepared by vane extruder which is a type of novel polymer processing extruder based on elongation force field. Scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric (TG) were used respectively to analyze the compatibility, the melting behavior and thermal stability properties of PLA/PPC blends affected by the different content of PPC. The results showed that with the increase of the PPC content, the glass transition temperature of PLA was reduced, and the glass transition temperature of PPC was increased, which indicated that PLA and PPC had partial compatibility. The cold crystallization temperature of PLA increased with the increase of the PPC content, which showed that PPC hindered the cold crystallization process of PLA. The addition of PPC had little impact on the melting process of PLA, and the melting temperature of PLA was almost kept the same value. Thermogravimetric analysis showed that the thermal stability of PPC was worse than that of PLA, the addition of PPC reduced the thermal stability of PLA.

  8. Thermal-hydraulic behavior of a PWR under accident conditions complementary test results from UPTF and PKL

    International Nuclear Information System (INIS)

    Umminger, K.; Liebert, J.; Kastner, W.

    1997-01-01

    Two complementary test facilities - the Upper Plenum Test Facility (UPTF) and the Primaerkreislauf test facility (PKL) - were constructed to investigate the thermal-hydraulic response of a pressurized water reactor (PWR) during postulated accidents. The UPTF is a geometrical full-scale simulation of the primary system of a 1300-MW PWR. The upper plenum, the downcomer and the four connected loops as well as the pressurizer are represented on a 1:1 scale. The integral test facility PKL also simulates a 1300-MW PWR, whereby the power and volume is reduced by a factor of 1:145 (elevations 1:1). The PKL test facility models the entire primary system, relevant parts of the secondary side and all important engineered safety and auxiliary systems. Whereas the UPTF was mainly designed to perform separate-effect tests focusing on multidimensional thermal-hydraulic phenomena in full-scale simulated components, the main objective of the PKL tests has been the investigation of the thermal-hydraulic system behavior on the primary and secondary side. So far the program objectives represent a reasonable completion and in summary the experimental results from both test facilities provide an essential contribution for a better understanding of assumed accident sequences in a PWR. Test results which demonstrate the complementary character of the UPTF and the PKL test programs as well as the interaction between the two test facilities are presented in this paper. (author)

  9. Preparation, melting behavior and thermal stability of poly(lactic acid)/poly(propylene carbonate) blends processed by vane extruder

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Wei, E-mail: zw55624@163.com; Chen, Rongyuan; Zhang, Haichen; Qu, Jinping, E-mail: jpqu@scut.edu.cn [National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640 (China)

    2016-03-09

    Poly (lactic acid) (PLA)/Poly (propylene carbonate) (PPC) blends were prepared by vane extruder which is a type of novel polymer processing extruder based on elongation force field. Scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric (TG) were used respectively to analyze the compatibility, the melting behavior and thermal stability properties of PLA/PPC blends affected by the different content of PPC. The results showed that with the increase of the PPC content, the glass transition temperature of PLA was reduced, and the glass transition temperature of PPC was increased, which indicated that PLA and PPC had partial compatibility. The cold crystallization temperature of PLA increased with the increase of the PPC content, which showed that PPC hindered the cold crystallization process of PLA. The addition of PPC had little impact on the melting process of PLA, and the melting temperature of PLA was almost kept the same value. Thermogravimetric analysis showed that the thermal stability of PPC was worse than that of PLA, the addition of PPC reduced the thermal stability of PLA.

  10. Thermal properties and physicochemical behavior in aqueous solution of pyrene-labeled poly(ethylene glycol)-polylactide conjugate.

    Science.gov (United States)

    Chen, Wei-Lin; Peng, Yun-Fen; Chiang, Sheng-Kuo; Huang, Ming-Hsi

    2015-01-01

    A fluorescence-labeled bioresorbable polymer was prepared by a coupling reaction of poly(ethylene glycol)-polylactide (PEG-PLA) with carboxyl pyrene, using N,N'-diisopropylcarbodiimide/1-hydroxy-7-azabenzotriazole (DIC/HOAt) as a coupling agent and 4-dimethylaminopyridine (DMAP) as a catalyst. The obtained copolymer, termed PEG-PLA-pyrene, was characterized using various analytical techniques, such as gel permeation chromatography (GPC), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), proton nuclear magnetic resonance ((1)H-NMR), infrared spectroscopy (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), to identify the molecular structure and to monitor the thermal property changes before and after the reaction. The presence of a pyrene moiety at the end of polylactide (PLA) did not alter the crystallization ability of the poly(ethylene glycol) (PEG) blocks, indicating that the conjugate preserved the inherent thermal properties of PEG-PLA. However, the presence of PEG-PLA blocks strongly reduced the melting of pyrene, indicating that the thermal characteristics were sensitive to PEG-PLA incorporation. Regarding the physicochemical behavior in aqueous solution, a higher concentration of PEG-PLA-pyrene resulted in a higher ultraviolet-visible (UV-vis) absorbance and fluorescence emission intensity. This is of great interest for the use of this conjugate as a fluorescence probe to study the in vivo distribution as well as the internalization and intracellular localization of polymeric micelles.

  11. Thermal profiles, crystallization behaviors and microstructure of diacylglycerol-enriched palm oil blends with diacylglycerol-enriched palm olein.

    Science.gov (United States)

    Xu, Yayuan; Zhao, Xiaoqing; Wang, Qiang; Peng, Zhen; Dong, Cao

    2016-07-01

    To elucidate the possible interaction mechanisms between DAG-enriched oils, this study investigated how mixtures of DAG-enriched palm-based oils influenced the phase behavior, thermal properties, crystallization behaviors and the microstructure in binary fat blends. DAG-enriched palm oil (PO-DAGE) was blended with DAG-enriched palm olein (POL-DAGE) in various percentages (0%, 10%, 30%, 50%, 70%, 90%, 100%). Based on the observation of iso-solid diagram and phase diagram, the binary mixture of PO-DAGE/POL-DAGE showed a better compatibility in comparison with their corresponding original blends. DSC thermal profiles exhibited that the melting and crystallization properties of PO-DAGE/POL-DAGE were distinctively different from corresponding original blends. Crystallization kinetics revealed that PO-DAGE/POL-DAGE blends displayed a rather high crystallization rate and exhibited no spherulitic crystal growth. From the results of polarized light micrographs, PO-DAGE/POL-DAGE blends showed more dense structure with very small needle-like crystals than PO/POL. X-ray diffraction evaluation revealed when POL-DAGE was added in high contents to PO-DAGE, above 30%, β-polymorph dominated, and the mount of β' forms crystals was decreasing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Analytical study on thermal-hydraulic behavior of transient from forced circulation to natural circulation in JRR-3

    International Nuclear Information System (INIS)

    Hirano, Masashi; Sudo, Yukio

    1986-01-01

    Transient thermal-hydraulic behaviors of the JRR-3 which is an open-pool type research reactor has been analyzed with the THYDE-P1 code. The focal point is the thermal-hydraulic behaviors related to the core flow reversal during the transition from forced circulation downflow to natural circulation upflow. In the case of a loss-of-coolant accident (LOCA), for example, the core flow reversal is expected to occur just after the water pool isolation from the primary cooling loop with a leak. The core flow reversal should cause a sudden increase in fuel temperature and a steep decrease in the departure-from-nucleate-boiling ratio (DNBR) and the phenomenon is, therefore, very important especially for safety design and evaluation of research reactors. Major purposes of the present work are to clarify physical phenomena during the transient and to identify important parameters affecting the peak fuel temperature and the minimum DNBR. The results calculated with THYDE-P1 assuming the sequences of events of the loss-of-offsite power and LOCA help us to understand the phenomena both qualitatively and quantitatively, with respect to the safety design and evaluation. (author)

  13. Block Copolymers of Macrolactones/Small Lactones by a “Catalyst-Switch” Organocatalytic Strategy. Thermal Properties and Phase Behavior

    KAUST Repository

    Ladelta, Viko

    2018-03-16

    Poly(macrolactones) (PMLs) can be considered as biodegradable alternatives of polyethylene; however, controlling the ring-opening polymerization (ROP) of macrolactone (ML) monomers remains a challenge due to their low ring strain. To overcome this problem, phosphazene (t-BuP4), a strong superbase, has to be used as catalyst. Unfortunately, the one-pot sequential block copolymerization of MLs with small lactones (SLs) is impossible since the high basicity of t-BuP4 promotes both intra- and intermolecular transesterification reactions, thus leading to random copolymers. By using ROP and the “catalyst-switch” strategy [benzyl alcohol, t-BuP4/neutralization with diphenyl phosphate/(t-BuP2)], we were able to synthesize different well-defined PML-b-PSL block copolymers (MLs: dodecalactone, ω-pentadecalactone, and ω-hexadecalactone; SLs: δ-valerolactone and ε-caprolactone). The thermal properties and the phase behavior of these block copolymers were studied by differential scanning calorimetry and X-ray diffraction spectroscopy. This study shows that the thermal properties and phase behavior of PMLs-b-PSLs are largely influenced by the PMLs block if PMLs components constitute the majority of the block copolymers.

  14. Behavior of Concrete Slab Track on Asphalt Trackbed Subjected to Thermal Load

    OpenAIRE

    Woo Young Jung; Seong Hyeok Lee; Jin Wook Lee; Bu Seog Ju

    2013-01-01

    Concrete track slab and asphalt trackbed are being introduced in Korea for providing good bearing capacity, durability to the track and comfortable rideness to passengers. Such a railway system has been designed by the train load so as to ensure stability. But there is lack of research and design for temperature changes which influence the behavior characteristics of concrete and asphalt. Therefore, in this study, the behavior characteristics of concrete track slab subjected to varying temper...

  15. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    Science.gov (United States)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).

  16. Estudo epidemiológico dos sintomas do transtorno do déficit de atenção/hiperatividade e transtornos de comportamento em escolares da rede pública de Florianópolis usando a EDAH Epidemiological study on symptoms of Attention Deficit/Hyperactivity Disorder and Behavior Disorders in public schools of Florianopolis/SC using the EDAH

    Directory of Open Access Journals (Sweden)

    Lisiane Schilling Poeta

    2004-09-01

    Full Text Available OBJETIVOS: O transtorno do déficit de atenção/hiperatividade (TDAH é uma patologia caracterizada por desatenção, hiperatividade e impulsividade. Este trabalho teve como objetivo realizar um estudo epidemiológico dos sintomas do transtorno do déficit de atenção e do transtorno de conduta em escolares da rede pública de Florianópolis usando a Escala para la evaluación del trastorno por déficit de atención con hiperatividad (EDAH. MÉTODOS: Fizeram parte do estudo 1.898 escolares (1.001 do sexo masculino e 897 do sexo feminino, matriculados em cinco escolas da rede pública de Florianópolis, de 1ª a 4ª série do ensino fundamental, com idades entre 6 e 12 anos. O instrumento utilizado foi a Escala de Farré e Narbona, preenchida pelos professores e pais, que classifica a criança com o predomínio dos sintomas de hiperatividade, déficit de atenção, transtorno de conduta,hiperatividade com déficit de atenção e TDAH associado com transtorno de conduta (global. RESULTADOS: Dentre os 1.898 escolares, 95 (5% apresentaram os sintomas do transtorno do déficit de atenção/hiperatividade associado ao transtorno de conduta. Em relação ao sexo, a freqüência foi maior nos meninos, na proporção de 3:1. CONCLUSÃO: Os dados encontrados nesta pesquisa corroboram os da literatura. A distribuição dos subtipos do TDAH por sexo é similar à informada na literatura.OBJECTIVE: attention deficit/hyperactivity disorder (ADHD is a pathology characterized by inattention, hyperactivity and impulsivity. The purpose of this article is to conduct an epidemiological study on symptoms of ADHA and behavior disorders in public schools of Florianopolis/SC. METHOD: The study involved 1.898 students (1.001 males and 897 females enrolled in five public schools of Florianópolis, from the 1st up to the 4th grades, aged 6 to 12. The instrument used was the EDAH, filled out by teachers and parents, which classifies children with predominance of the

  17. State reduced order models for the modelling of the thermal behavior of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Menezo, Christophe; Bouia, Hassan; Roux, Jean-Jacques; Depecker, Patrick [Institute National de Sciences Appliquees de Lyon, Villeurbanne Cedex, (France). Centre de Thermique de Lyon (CETHIL). Equipe Thermique du Batiment]. E-mail: menezo@insa-cethil-etb.insa-lyon.fr; bouia@insa-cethil-etb.insa-lyon.fr; roux@insa-cethil-etb.insa-lyon.fr; depecker@insa-cethil-etb.insa-lyon.fr

    2000-07-01

    This work is devoted to the field of building physics and related to the reduction of heat conduction models. The aim is to enlarge the model libraries of heat and mass transfer codes through limiting the considerable dimensions reached by the numerical systems during the modelling process of a multizone building. We show that the balanced realization technique, specifically adapted to the coupling of reduced order models with the other thermal phenomena, turns out to be very efficient. (author)

  18. PREPARATION, CHARACTERIZATION AND THERMAL BEHAVIOR OF ALKYL SUBSTITUTED PHENOLIC EPOXY RESIN

    OpenAIRE

    Jyoti Chaudhary*, Supriya Dadhich, Giriraj Tailor

    2017-01-01

    The present article deals with the synthesis of phenolic epoxy resin by the reaction of phenolic resin and epichlorohydrin. The synthesis of phenolic resin was carried out by using p-ethylphenol, formaldehyde and naphthol. The structures of phenolic and epoxy resins were confirmed by spectroscopic analysis. The synthesized epoxy resin showed solubility in polar solvents like DMF, dioxane, acetone, DMSO, THF, ethyl acetate, and chloroform. Thermal characterization of epoxy resin was monitored ...

  19. Thermal Stability, Combustion Behavior, and Mechanical Property in a Flame-Retardant Polypropylene System

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2017-01-01

    Full Text Available In order to comprehensively improve the strength, toughness, flame retardancy, smoke suppression, and thermal stability of polypropylene (PP, layered double hydroxide (LDH Ni0.2Mg2.8Al–LDH was synthesized by a coprecipitation method coupled with the microwave-hydrothermal treatment. The X-ray diffraction (XRD, morphology, mechanical, thermal, and fire properties for PP composites containing 1 wt %–20 wt % Ni0.2Mg2.8Al–LDH were investigated. The cone calorimeter tests confirm that the peak heat release rate (pk–HRR of PP–20%LDH was decreased to 500 kW/m2 from the 1057 kW/m2 of PP. The pk–HRR, average mass loss rate (AMLR and effective heat of combustion (EHC analysis indicates that the condensed phase fire retardant mechanism of Ni0.2Mg2.8Al–LDH in the composites. The production rate and mean release yield of CO for composites gradually decrease as Ni0.2Mg2.8Al–LDH increases in the PP matrix. Thermal analysis indicates that the decomposition temperature for PP–5%LDH and PP–10%LDH is 34 °C higher than that of the pure PP. The mechanical tests reveal that the tensile strength of PP–1%LDH is 7.9 MPa higher than that of the pure PP. Furthermore, the elongation at break of PP–10%LDH is 361% higher than PP. In this work, the synthetic LDH Ni0.2Mg2.8Al–LDH can be used as a flame retardant, smoke suppressant, thermal stabilizer, reinforcing, and toughening agent of PP products.

  20. Thermal behavior of a cryogenic loop heat pipe for space application

    Science.gov (United States)

    Gully, Philippe; Mo, Qing; Yan, Tao; Seyfert, Peter; Guillemet, Laurent; Thibault, Pierre; Liang, Jingtao

    2011-08-01

    This paper discusses a prototype of cryogenic loop heat pipe (CLHP) working around 80 K with nitrogen as the coolant, developed at CEA-SBT in collaboration with the CAS/TIPC and tested in laboratory conditions. In addition to the main loop it features a pressure reduction reservoir and a secondary circuit which allow cooling down the loop from the room temperature conditions to the nitrogen liquid temperature and transferring the evaporator heat leaks and radiation heat loads towards the condenser. The general design, the instrumentation and the experimental results of the thermal response of the CLHP are presented, analyzed and discussed both in the transient phase of cooling from room temperature (i) and in stationary conditions (ii). During phase (i), even in a severe radiation environment, the secondary circuit helped to condense the fluid and was very efficient to chill the primary evaporator. During phase (ii), we studied the effects of transferred power, filling pressure and radiation heat load for two basic configurations of cold reservoir of the secondary circuit. A maximum cold power of 19 W with a corresponding limited temperature difference of 5 K was achieved across a 0.5 m distance. We evidenced the importance of the filling pressure to optimize the thermal response. A small heating power (0.1 W) applied on the shunted cold reservoir allows to maintain a constant subcooling (1 K). The CLHP behaves as a capillary pumped loop (CPL) in such a configuration, with the cold reservoir being the compensation chamber of the thermal link. The radiation heat loads may affect significantly the thermal response of the system due to boiling process of liquid and large mass transfer towards the pressure reduction reservoir.

  1. Thermal, mechanical and morphological behavior of starch thermoplastic (TPS) and polycaprolactone (PCL)

    International Nuclear Information System (INIS)

    Campos, Adriana de; Marconcini, Jose M.; Mattoso, Luiz H.C.

    2011-01-01

    Thermal, mechanical and morphological properties of thermoplastic starch (TPS) and polycaprolactone (PCL) blend obtained by extrusion was studied. The results showed that TPS/PCL blends are immiscible, however it is suggested some interaction in the interphase between TPS and PCL as observed by crystallinity decrease of the blend. The PCL addition in the TPS improves the properties and decreases the cost of the blend. (author)

  2. Redefinição automática da rede de transporte coletivo para alocação de fluxo de equilíbrio

    Directory of Open Access Journals (Sweden)

    Fernando Ramiro Castro Aragón

    2010-04-01

    Full Text Available

    Muitas formulações para resolver problemas de alocação de fluxos para o transporte coletivo utilizam redes lógicas redefinidas a partir de uma rede inicial para este modo de transporte. A rede de transporte coletivo é redefinida criando-se nós e arcos adicionais a representação da rede viária, para permitir a aplicação de algoritmos que modelam o comportamento dos passageiros na hora da escolha da rota e para poder representar os diferentes componentes do tempo total de viagem como os tempos de caminhada, tempos de espera, tempos de transbordo e tempos de descida nos pontos de parada. Este trabalho visa demonstrar que este processo de redefinição da rede pode ser executado de uma forma automática a partir de certas informações do modelo de rede original e dos itinerários das linhas de ônibus.

    ABSTRACT

    Most approaches of transit network problems use a redefined network that consider behavioral assumptions and different components of total travel time. The purpose of this article is to demonstrate that it is possible to automate the representation of a logic transit network, including walking arcs, waiting arcs, transfer arcs and aligthing arcs, starting from some representation of the street network and from transit lines information as itineraries, frequency and speed.

  3. Thermal Diffusion in Binary Mixtures: Transient Behavior and Transport Coefficients from Equilibrium and Nonequilibrium Molecular Dynamics.

    Science.gov (United States)

    Bonella, Sara; Ferrario, Mauro; Ciccotti, Giovanni

    2017-10-24

    Equilibrium and nonequilibrium molecular dynamics simulations are combined to compute the full set of coefficients that appear in the phenomenological equations describing thermal transport in a binary mixture subject to a constant thermal gradient. The Dynamical Non-Equilibrium Molecular Dynamics approach (D-NEMD) is employed to obtain the microscopic time evolution of the density and temperature fields, together with that of the mass and energy fluxes. D-NEMD enables one to study not only the steady state, but also the evolution of the fields during the transient that follows the onset of the thermal gradient, up to the establishment of the steady state. This makes it possible to ensure that the system has indeed reached a stationary condition, and to analyze the transient mechanisms and time scales of the mass and energy transport. A local time averaging procedure is applied to each trajectory contributing to the calculation to improve the signal-to-noise ratio in the estimation of the fluxes and to obtain a clear signal with the, relatively limited, statistics available.

  4. Thermal behavior of phenol-furfuryl alcohol resin/carbon nanotubes composites

    Science.gov (United States)

    Conejo, L. S.; Costa, M. L.; Oishi, S. S.; Botelho, E. C.

    2018-04-01

    Phenol-furfuryl alcohol resins (PFA) are excellent candidates to replace existing thermoset matrices used in obtaining insulating systems or carbon materials, both in its pure form and reinforced with nanoscale structures. This work had as main purpose synthesize and investigate thermal characterization of PFA resin and its nanostructured composites with different concentrations of carbon nanotubes (0, 0.1, 0.5 and 1.0 wt%). The DSC analysis was performed to estimate the specific heat (cp) of the cured samples and thermomechanical analysis to find the linear thermal expansion coefficient (α). From these results, the cp values found for the PFA system was similar to that described in the literature for the phenolic resin. The cp increased with the increase in the CNT concentration in the system up to 0.5%. The coefficient of linear thermal expansion obtained by TMA technique for PFA sample was 33.10‑6/°C which was close to the α value of phenolic resin (40 to 80.10‑6/°C).

  5. Synthesis, thermal behavior and thermoelectric properties of disordered tellurides with structures derived from the rocksalt type

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thorsten

    2014-06-17

    GeBi{sub 2}Te{sub 4} is proposed as phase-change material. Nanostructures in metastable GeBi{sub 2}Te{sub 4} were obtained by high-pressure synthesis and thermal quenching, - depending on temperature and pressure different modifications were found. The differences in the electrical characteristics can be attributed to the variation of grain boundary concentration and the grain size distribution. Two synthesis approaches were used to prepare Ag{sub 3.4}In{sub 3.7}Sb{sub 76.4}Te{sub 16.5} bulk samples and studied with respect to their transport and thermal properties. A high pressure route to prepare thermoelectrics with low thermal conductivity was developed for AgIn{sub x}Sb{sub 1-x}Te{sub 2}. Disorder and and transport studies on In{sub 3}SbTe{sub 2} were performed using X-ray, neutron and electron diffraction measurements. Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials were induced by phase transitions associated with vacancy ordering. Further studies concerned solid solution series (GeTe){sub x}(LiSbTe{sub 2}){sub 2} (1 smaller or equal x smaller or equal 11) and their thermoelectric properties.

  6. Effect of Nano-Magnesium Hydride on the Thermal Decomposition Behaviors of RDX

    International Nuclear Information System (INIS)

    Yao, M.; Chen, L.; Rao, G.; Peng, J.; Zou, J.; Zeng, X.

    2013-01-01

    In order to improve the detonation performance of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) explosive, addictive with high heat values were used, and magnesium hydride (MgH 2 ) is one of the candidates. However, it is important to see whether MgH 2 is a safe addictive. In this paper, the thermal and kinetic properties of RDX and mixture of RDX/MgH 2 were investigated by differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC), respectively. The apparent activation energy (E) and frequency factor (A) of thermal explosion were calculated based on the data of DSC experiments using the Kissinger and Ozawa approaches. The results show that the addition of MgH 2 decreases both E and A of RDX, which means that the mixture of RDX/MgH 2 has a lower thermal stability than RDX, and the calculation results obtained from the ARC experiments data support this too. Besides, the most probable mechanism functions about the decomposition of RDX and RDX/MgH 2 were given in this paper which confirmed the change of the decomposition mechanism.

  7. Behavior of thermal diffusion of hydrofluorocarbon HFC-32 near the critical region

    Science.gov (United States)

    Tsvetkov, O. B.; Laptev, Yu A.; Rykov, S. V.; Galahova, N. A.; Kolbasijk, K. S.

    2017-11-01

    HCFC-22 prohibited after 2020 Year. The thermal diffusion values of HFC-32 were determined using a received cross-over equation of state and available experimental thermal-conductivity data reported by a number of investigations including the authors of this work. Extensive measurements have been obtained for thermal conductivity of difluoromethane with a steady-state method for which coaxial-cylinder apparatus was employed. The sample fluid was located in a gap between two vertical cylinders. The occurrence of convection in the fluid was avoided one to application of small temperature differences across the gap. The range of state points studied includes those with densities from 70 to 1000 kg·m‑3, temperatures from 294 to 350 K and pressures up to 7 MPa. The isobaric specific heat values were determined from the crossover equation of state based on the phenomenological theory of a critical point and Benedek’s hypothesis. A theoretically based crossover model is capable to represent the thermodynamic properties of HFC-32 in a large range of temperatures and densities including the critical point.

  8. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  9. A study of the thermal behavior of terrestrial tridymite by continuous X-ray diffraction

    Science.gov (United States)

    Smelik, Eugene A.; Reeber, Robert R.

    1990-06-01

    Phase transition behavior of two types of terrestrial tridymite; crystals from Topaz Mountain in the Thomas Range of northwestern Utah and Smith Peak in Plumas County, California; were investigated. The Topaz Mtn. samples were characterized at room temperature using optical, X-ray diffraction (Debye-Scherrer, rotation, and Laue), and transmission electron microscopy (TEM) methods. Least-squares refinement of the powder data yielded an orthorhombic cell with a = 17.072 Å, b = 9.923 Å, and c = 16.291 Å. The tridymite is designated PO-2 (nomenclature of Nukui and Nakazawa 1980). This material is complexly twinned and has severe stacking disorder parallel to [001]. Additional X-ray experiments were performed on one Plumas County crystal and four Topaz Mtn. crystals during heating from room temperature to a minimum of 320° C with one run attaining a maximum temperature of 532° C. Crystal to crystal behavior was somewhat variable suggesting kinetic barriers to transition controlled by the detailed structural state of each crystal. The Laue results indicated that the transition behavior of these multiple twinned tridymites could be conveniently divided into two classes: discontinuous and continuous. The discontinuous diffraction effects were generally associated with major structural transitions. Continuous diffraction effects involved gradual structural distortions of the tridymite framework that occurred over discrete ranges of temperature. Upon cooling, many of the minor effects were not reversible while the major transitions were reversible with some temperature hysteresis. Comparison of initial and final diffraction patterns indicated that the starting and ending structures were very similar but not identical. From the five experiments, three distinct patterns emerged based on the major transitions observed: Type I behavior (Topaz Mtn.) characterized by three major changes at 175 187° C, 283 302° C, and 348 352° C, Type II behavior (Plumas Co.) characterized

  10. Comportamentos de saúde entre jovens estudantes das redes pública e privada da área metropolitana do Estado de São Paulo Health behavior among students of public and private schools in S. Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Beatriz Carlini-Cotrim

    2000-12-01

    Full Text Available OBJETIVO: Estudar a freqüência de vários comportamentos de saúde entre estudantes secundários de escolas estaduais e particulares da cidade de São Paulo, SP. MÉTODOS: Estudo de corte transversal, com o sorteio de dez escolas estaduais e a seleção de sete particulares. Em cada escola, quatro salas de aula foram sorteadas, entre a sétima série do ensino fundamental e a terceira série do ensino médio. Para a coleta de dados, utilizou-se a versão do questionário de autopreenchimento utilizado pelo "Centers for Disease Control" para monitorar comportamentos de risco entre jovens. RESULTADOS: Uma proporção significativa de estudantes engajam-se em comportamentos de risco à saúde, principalmente na faixa de 15 a 18 anos de idade. Nas escolas públicas, os comportamentos mais freqüentes foram: andar de motocicleta sem capacete (70,4% dos estudantes que andaram de motocicleta; não utilização de preservativos na última relação sexual (34% dos sexualmente ativos; andar armado (4,8% dos respondentes no último ano e tentar suicídio (8,6% nos últimos 12 meses. Nas escolas privadas, o uso de substâncias psicoativas foi o comportamento de risco mais proeminente: 25% relatou pelo menos um episódio de uso de álcool; 20,2% usou algum inalante no último ano; e 22,2% consumiu maconha no mesmo período. As estudantes do sexo feminino relataram menos comportamentos de risco, à exceção de tentativas de suicídio e de controle de peso por métodos não saudáveis. CONCLUSÕES: As informações obtidas podem contribuir para a estruturação de ações programáticas que considerem a distribuição de comportamentos de saúde na clientela-alvo.OBJECTIVE: To investigate the prevalence of several health behaviors among students of public and private schools in S. Paulo, Brazil. METHODS: An epidemiological survey about health behaviors among high school students was carried out in S. Paulo in 1998. Seventh to eleventh graders from ten

  11. Redes sociales y sociedad del conocimiento

    OpenAIRE

    Vélez Cuartas, Gabriel Jaime

    2009-01-01

    Esta segunda edición de Innovación RICEC integra 5 de los artículos presentados en la mesa "Redes Sociales y Sociedad del Conocimiento" del "4to Congreso de Sistemas de Innovación para la Competitividad 2009: SINNCO" realizado por el CONCYTEG (Consejo de Ciencia y Tecnología de Guanajuato - México). Dos artículos sobre avances de investigación cercanas al concepto de controversia de Callon y por tanto al de teoría del actor red; y finalmente una reseña de la escuela de verano de la red intern...

  12. Comunicación y redes sociales

    OpenAIRE

    Perona Páez, Juan José

    2011-01-01

    Las redes sociales se están convirtiendo en unas potentes herramientas de comunicación que superan con creces los objetivos con las que fueron creadas, consagrándose como auténticas plataformas de participación e interacción capaces de movilizar a importantes sectores de población y poner en jaque a gobiernos e instituciones. Las revoluciones acontecidas a principios de 2011 en los países árabes y las concentraciones de la llamada spanish revolution son un buen ejemplo del poder de unos instr...

  13. Redes de ayuda mutua y apoyo local

    OpenAIRE

    Subirana Samitier, Pere

    2014-01-01

    El Penedés es tierra de vino y cava. Su exportación llega a rincones muy recónditos del planeta. Nos gustaría que esta especie de "manual" para poner en funcionamiento las redes de intercambio local LETS (sistemas de cambio local o Local Exchange and Trading System, en inglés) llegase también a muchos lugares y que fuera una herramienta efectiva para mejorar las condiciones de vida de muchas personas.

  14. Redes de amistad, felicidad y familia

    Directory of Open Access Journals (Sweden)

    FÉLIX REQUENA SANTOS

    1994-01-01

    Full Text Available Usando los datos reticulares obtenidos de la encuesta de octubre de 1993 por "cires", se ha actualizado la relación entre felicidad, redes de amistad y relaciones familiares. Se pone de manifiesto que el gasto de felicidad aumenta con el número de amigos pero no con la intensidad de la amistad. Las relaciones más intensas las proporciona mejor la familia. Estos efectos se mantienen después de establecer diferencias según algunos atributos de los respondentes, como sexo, edad, religión. Sin embargo, este efecto se invierte cuando se controla por el "status" socioeconómico.

  15. Entornos colaborativos: seguridad en redes sociales

    OpenAIRE

    Pérez García, Víctor Manuel

    2012-01-01

    Este proyecto fin de carrera analiza las amenazas y vulnerabilidades que atentan contra la seguridad informática en el uso de las Redes Sociales. El principal fin de estas amenazas es la de atentar contra la privacidad de los usuarios, lo que deriva directamente en la violación de derechos jurídicos como el Real Decreto 1720/2007 de protección de datos de carácter personal. Se trata por tanto de un proyecto con una gran investigación y cuyo carácter funcional y de consultoría intenta establec...

  16. El periodismo en tiempos de redes sociales

    Directory of Open Access Journals (Sweden)

    Flavia Gomes Franco e Silva

    2014-09-01

    Full Text Available El libro coordinado por el doctor Jesús Miguel Flores Vivar promueve un acercamiento a las distintas facetas de un ecosistema comunicativo cada vez más convergente e interconectado. Los autores relatan, desde distintos puntos de vista, la trayectoria del periodismo en un proceso continuo de adaptación al entorno interactivo de la web. Se trata de una obra que invita a reflexionar acerca del uso eficaz de las redes sociales por los medios de comunicación, señalando nuevas tendencias en torno a la construcción del periodismo ciudadano y sociocívico.

  17. Redes, cultura, e identidad en las organizaciones

    Directory of Open Access Journals (Sweden)

    Xavier Coller

    2002-01-01

    Full Text Available La interacción entre cultura y estructura informal de la organización tiene efectos diversos en la vida diaria de las instituciones. Algunos de ellos son el desarrollo de una cierta identidad organizativa y la aparición de relaciones de poder informal. Este artículo avanza varias líneas de investigación sobre estos dos aspectos aprovechando algunas de las aportaciones del análisis de redes. Los autores aventuran algunas hipótesis de trabajo que pueden ayudar a orientar investigaciones empíricas en el futuro.

  18. Thermal and Evolved Gas Behavior of Calcite Under Mars Phoenix TEGA Operating Conditions

    Science.gov (United States)

    Ming, D.W.; Niles, P.B.; Morris, R.V.; Boynton, W.V.; Golden, D.C.; Lauer, H.V.; Sutter, B.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS). Martian soil was heated up to 1000 C in the DSC ovens and evolved gases from mineral decomposition products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil. Initial TEGA results indicated the presence of endothermic peaks with onset temperatures that ranged from 675 C to 750 C with corresponding CO2 release. This result suggests the presence of calcite (CaCO3. CaO + CO2). Organic combustion to CO2 is not likely since this mostly occurs at temperatures below 550 C. Fe-carbonate and Mg-carbonate are not likely because their decomposition temperatures are less than 600 C. TEGA enthalpy determinations suggest that calcite, may occur in the Martian soil in concentrations of approx.1 to 5 wt. %. The detection of calcite could be questioned based on previous results that suggest Mars soils are mostly acidic. However, the Phoenix landing site soil pH was measured at pH 8.3 0.5, which is typical of terrestrial soils where pH is controlled by calcite solubility. The range of onset temperatures and calcite concentration as calculated by TEGA is poorly con-strained in part because of limited thermal data of cal-cite at reduced pressures. TEGA operates at calcite literature thermal data was obtained at 1000 mbar or higher pressures.

  19. Thermal Stability and Rheological Behaviors of High-Density Polyethylene/Fullerene Nanocomposites

    OpenAIRE

    Zhao, Liping; Song, Ping'an; Cao, Zhenhu; Fang, Zhengping; Guo, Zhenghong

    2012-01-01

    High-density polyethylene/fullerene (HDPE/C60) nanocomposites with the C60 loading that varied from 0.5 to 5.0% by weight were prepared via melt compounding. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed that the presence of C60 could remarkably enhance the thermal properties of HDPE. A very low C60 loading (0.5 wt%) increased the onset degradation temperature from 3 8 9 ∘ C to 4 5 9 ∘ C and decreased the heat release from 3176 J/g to 1490 J/g. Th...

  20. Studies on thermal decomposition behaviors of polypropylene using molecular dynamics simulation

    Science.gov (United States)

    Huang, Jinbao; He, Chao; Tong, Hong; Pan, Guiying

    2017-11-01

    Polypropylene (PP) is one of the main components of waste plastics. In order to understand the mechanism of PP thermal decomposition, the pyrolysis behaviour of PP has been simulated from 300 to 1000 K in periodic boundary conditions by molecular dynamic method, based on AMBER force field. The simulation results show that the pyrolysis process of PP can mostly be divided into three stages: low temperature pyrolysis stage, intermediate temperature stage and high temperature pyrolysis stage. PP pyrolysis is typical of random main-chain scission, and the possible formation mechanism of major pyrolysis products was analyzed.

  1. Fatigue Behavior of High Strength Steel S890Q Containing Thermally Cut Straight Edges

    OpenAIRE

    Cicero, S.; García, T.; Álvarez, J.A.; Bannister, A.; Klimpel, A.; Martín-Meizoso, A.; Aldazabal, J.

    2016-01-01

    This paper evaluates the effect of different thermal cutting methods on the fatigue life of high strength steel S890Q. The investigation covers flame, plasma and laser cutting methodologies, and specimens with rectangular sections and cut straight edges. The experimental program is composed of 30 specimens that were conducted to failure by applying fatigue cycles with a stress ratio (R) of 0.1 in a high frequency testing machine. The resultant best-fit S-N curves have been compared, revealing...

  2. Thermally Reversible and Irreversible Phase Transition Behaviors in Poly(ethylene oxide)/Ionic Liquid Mixtures.

    Science.gov (United States)

    Chen, Yunlei; Niu, Yanhua; Gong, Pengjian; Xiao, Zhilin; Li, Guangxian

    2017-12-01

    The irreversible and reversible phase transition behaviors during phase separation-recovery (heating-cooling) cycles for poly(ethylene oxide)/1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (PEO/[EMIM][BF 4 ]) mixtures with a lower critical solution temperature phase diagram are reported for the first time. The evident differential scanning calorimetry endothermic and exothermic peaks are observed during the heating-cooling scan cycles near the phase boundary, in which the large heat loss for samples below the critical composition (60 wt% PEO) and obvious downward shift of phase transition temperature for all the compositions between the first and second cycles are particularly attractive. After the first recovery process, a reversible behavior during the next cycles is expected. These interesting phenomena are further confirmed by optical microscopy and Fourier-transform infrared measurements. It is demonstrated that the disruption and partial recovery of the hydrogen bonds, combined with the conformational change of PEO chains, can contribute to this irreversible behavior as well as a conversion to reversible phase transition behavior. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermal effects in a mechanical model for pseudoelastic behavior of NiTi wires

    Directory of Open Access Journals (Sweden)

    Hugo Soul

    2007-12-01

    Full Text Available A mechanical model for pseudoelastic behavior of NiTi wires is proposed with the aim to predict the behavior of Shape Memory Alloys(SMA damping wire elements in model structures. We have considered at first a simple linearwise stress-strain relationship to describe the basic isothermal behavior of the SMA members. Then, this basic model is modified in order to include the effect of the strain rate. The model is based on detailed experimental characterization performed on a Ni rich NiTi superelastic wire which included the study of the localized character of the deformation and the local heat generation associated with the stress induced martensitic transformation occurring in these alloys. Heat conduction along the wire and heat interaction with the surroundings was also considered. In that way, the resulting local temperature field around the transformation front is assessed and its effect on the progression of the transformation is evaluated. It is shown how the simple mechanical model reproduces the global mechanical behavior, including the existence of a maximum in the damping capacity with the transformation rate.

  4. Effect of coating thickness on microstructure and low temperature cyclic thermal fatigue behavior of thermal barrier coating (Al2O3)

    Science.gov (United States)

    Verma, Vijay; Patel, Sachin; Swarnkar, Vikas; K, Rajput S.

    2018-03-01

    Effect of coating thickness on low temperature cyclic thermal fatigue behaviour of Al2O3 thermal barrier coating (TBC) was concluded through the cyclic furnace thermal fatigue test (CFTF). Detonation gun (Thermal Spray) process was used for bond coating of NiCr and top coating of Al2O3 on Aluminium Alloy 6061 substrate. Top coating was done at two level of thickness to investigate the effect of coating thickness on low temperature cyclic thermal fatigue. The top coat of thickness 100μm-150μm was considered as thin TBC while the top coat of thickness 250μm-300μm was considered as thick TBC. The thickness of bond coat was taken as 120μm constant for both level of Al2O3 top coating. During CFTF test appearance of any crack on coated surface was adapted as main criterion of coating failure. Crack initiation was observed at edges and corner of thin thermal barrier coating after 60 number of thermal fatigue cycles while in case of thick thermal barrier coating these crack initiation was observed after 72 cycles of cyclic thermal fatigue test. During the study, it was observed that thick thermal barrier coating survived for long duration in comparison of thin TBC. Hence it can be concluded that application of thick TBC is more favourable to improve thermal durability of any component.

  5. WESF cesium capsule behavior at high temperature or during thermal cycling

    International Nuclear Information System (INIS)

    Tingey, G.L.; Gray, W.J.; Shippell, R.J.; Katayama, Y.B.

    1985-06-01

    Double-walled stainless steel (SS) capsules prepared for storage of radioactive 137 Cs from defense waste are now being considered for use as sources for commercial irradiation. Cesium was recovered at B-plant from the high-level radioactive waste generated during processing of defense nuclear fuel. It was then purified, converted to the chloride form, and encapsulated at the Hanford Waste Encapsulation and Storage Facility (WESF). The molten cesium chloride salt was encapsulated by pouring it into the inner of two concentric SS cylinders. Each cylinder was fitted with a SS end cap that was welded in place by inert gas-tungsten arc welding. The capsule configuration and dimensions are shown in Figure 1. In a recent review of the safety of these capsules, Tingey, Wheelwright, and Lytle (1984) indicated that experimental studies were continuing to produce long-term corrosion data, to reaffirm capsule integrity during a 90-min fire where capsule temperatures reached 800 0 C, to monitor mechanical properties as a function of time, and to assess the effects of thermal cycling due to periodic transfer of the capsules from a water storage pool to the air environment of an irradiator facility. This report covers results from tests that simulated the effects of the 90-min fire and from thermal cycling actual WESF cesium capsules for 3845 cycles over a period of six months. 11 refs., 39 figs., 9 tabs

  6. Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber

    Directory of Open Access Journals (Sweden)

    Singhal Mayank

    2017-01-01

    Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.

  7. Heat transfer behavior including thermal wake effects in forced air cooling of arrays of rectangular blocks

    International Nuclear Information System (INIS)

    Sridhar, S.; Faghri, M.; Lessmann, R.C.

    1990-01-01

    Experiments have been carried out to study thermal wake effects in arrays of rectangular blocks encountered in electronic equipment. Data were obtained for a series of channel heights and flow velocities. The temperature rise due to wake effects behind a single heated module was found to be fairly independent of the channel height and the position of the heated block, for a given approach velocity. The adiabatic temperature rise data for a module due to a heated element immediately upstream of it for different inter-module spacings were found to correlate well in terms of a new parameter called the surface packing density. This paper reports that it was reported by the authors in an earlier paper that both the adiabatic heat transfer coefficient nd pressure-drop data for regular in-line arrays correlated well in terms of a composite geometric parameter called the column packing density. These experiments have been extended to a higher Reynolds number. Empirical correlations are presented here for friction factor and Nusselt number in terms of the volume packing density, and for the thermal wake effects in terms of the surface packing density. Data from literature for arrays with widely different geometric parameters are shown to agree with these correlations

  8. Thermal behavior of kiln cars while traveling through a tunnel kiln

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2015-05-01

    Full Text Available The kiln car is widely used as a kind of transport equipment in the current ceramic industry, and it is heated to the firing temperature and cooled down to the ambient temperature with products in the tunnel kiln. And the burning of the ceramics requires a lot of energy, and the efficiency is relatively low within 30% or even less. In addition, the mass ratio between car and ware can be more than 50%. So the energy loss of car also occupies a great part in total energy consumption. In this work, a mathematical model will be created to describe the temperature distribution inside the kiln car while it travels through the tunnel kiln. All the used parameters are from real ceramic industry. The operative process is assumed as a countercurrent heat exchanger. Both the convection and radiation are considered as boundary condition in the model. Furthermore, the thermal results of car and the specific energy consumption of car in the standard case will be demonstrated. Finally, the influences of different thermal physical parameters on the energy consumption of car will be investigated, and the possible optimization measures of car are proposed through comparing the different specific energy losses.

  9. Behavior of AlxMgFeZn-alloy through microhardness, microstructure, thermal treatment and electrodissolution

    International Nuclear Information System (INIS)

    Pech-Canul, M.I.; Bautista-Hernández, A.; Salazar-Villanueva, M.; Valdez, S.

    2013-01-01

    Microstructural changes induced by aged treatment shown a connection between differences of microhardness and electrodissolution. AlxMgFeZn alloys were prepared by metal mold casting method in order to diminish the process cost generating an alloy with homogenous microstructure and less casting porosity. In addition, was correlated the influence of chemical composition with the thermal treatment on the electrochemical dissolution or electrodissolution. With all this in mind, the AlxMgFeZn alloy has been studied by means of microhardness, X-ray diffraction, scanning electron microscopy, and short-term electrochemical test. The formation of Mg 3 Zn 3 Al 2 precipitate phase was identified for two conditions, the first one is when the chemical composition of magnesium is upper to 5.49% in as-cast condition and the second one is influenced by the thermal treatment of aging. In addition, the microhardness and electrochemical dissolution has been influenced by the presence and quantity of the Mg 3 Zn 3 Al 2 phase. The chemical composition of magnesium alloying modifies the microstructure, increases the content of Mg 3 Zn 3 Al 2 phase and, provides a localized dissolution on the AlxMgFeZn alloy surface.

  10. Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2014-04-01

    Full Text Available Cool roofs represent an acknowledged passive cooling technique to reduce building energy consumption for cooling and to mitigate urban heat island effects. This paper concerns the evaluation of the dynamic effect of new cool roof clay tiles on building thermal performance in summer and winter conditions. To this end, these properties have been analyzed on traditional roof brick tiles through an indoor and outdoor two-year long continuous monitoring campaign set up in a residential building located in central Italy. The analysis and the cooperation with industrial companies producing brick tiles and reflective coatings allowed the production of a new tile with notable “cool roof” properties through the traditional industrial manufacturing path of such tiles. Notable results show that during summer the high reflection tiles are able to decrease the average external roof surface temperature by more than 10 °C and the indoor operative temperature by more than 3 °C. During winter the average external surface temperature is lower with high reflection tiles by about 1 °C. Singular optic-thermal phenomena are registered while evaluating the dynamics of the cool roof effect. Interesting findings show how the sloped cool roof application could suggest further considerations about the dynamic effect of cool roofs.

  11. Effect of electron beam irradiation on thermal and crystallization behavior of PP/EPDM blend

    Science.gov (United States)

    Balaji, Anand Bellam; Ratnam, Chantara Thevy; Khalid, Mohammad; Walvekar, Rashmi

    2017-12-01

    The irradiation stability of ethylene-propylene diene terpolymer (EPDM)/ polypropylene (PP) blends is studied in an attempt to develop radiation compatible PP/EPDM blends suitable for medical applications. The PP/EPDM blends with mixing ratios of 80/20, 50/50/ 20/80 were prepared in an internal mixer at 165 °C and a rotor speed of 50 rpm followed by compression molding. The blends and the individual components were irradiated using 3.0 MeV electron beam (EB) accelerator at doses ranging from 0 to 100 kGy in air and room temperature. Later, the PP/EPDM blends were subjected to gel content, thermal stability, crystallization and dynamic mechanical properties before and after irradiation. Results revealed that the irradiation-induced crosslinking in the PP/EPDM blend increases with the increasing irradiation dose and the EPDM content in the blend. However, the thermal stability of the blends did not show any significant changes upon irradiation. The dynamic mechanical analysis shows that the EPDM rich blend has higher compatibility than PP dominant blends. A further improvement in the blend compatibility found to be achieved upon irradiation.

  12. Ionic Conductance, Thermal and Morphological Behavior of PEO-Graphene Oxide-Salts Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Thin films composites of poly(ethylene oxide-graphene oxide were fabricated with and without lithium salts by solvent cast method. The ionic conductivity of these composites was studied at various concentrations of salt polymer-GO complexes and at different temperatures. The effects of temperature and graphene oxide concentration were measured from Arrhenius conductance plots. It is shown that the addition of salts in pure PEO increases conductance many times. The graphene oxide addition has enhanced the conductance approximately 1000 times as compared to that of pure PEO. The activation energies were determined for all the systems which gave higher values for pure PEO and the value decreased with the addition of LiClO4 and LiCl salts and further decreases with the addition of graphene oxide. The composite has also lowered the activation energy values which mean that incorporation of GO in PEO has decreased crystallinity and the amorphous region has increased the local mobility of polymer chains resulting in lower activation energies. SEM analysis shows uniform distribution of GO in polymer matrix. The thermal stability studies reveal that incorporation of GO has somewhat enhanced the thermal stability of the films.

  13. The study of the thermal behavior of a new semicrystalline polyimide

    Science.gov (United States)

    Cheng, Stephen Z. D.; Chalmers, Tammy M.

    1992-01-01

    Thermal properties of a new semicrystalline polyimide synthesized from 3,3',4,4' benzophenone tetracarboxylic dianhydride (BTDA) and 2,2 dimethyl 1,2-(4 aminophenoxy) propane (DMDA) were studied. Heat capacities in the solid and liquid states of BTDA-DMDA were measured. The heat capacity increase at the glass transition temperature (T sub g = 230 C) is 145 J/(C mol) for amorphous BTDA-DMDA. The equilibrium heat of fusion of the BTDA-DMDA crystals was obtained using wide angle X ray diffraction and differential scanning calorimetry measurements, and it is 75.8 kJ/mol. Based on the information of crystallinity and the heat capacity increase at T sub g, a rigid amorphous fraction is identified in semicrystalline BTDA-DMDA samples. The rigid amorphous fraction represents an interfacial region between the crystalline and amorphous states. In particular, this fraction increases with the crystallinity of the sample which should be associated with crystal sizes, and therefore, with crystal morphology. It was also found that this polymer has a high temperature crystal phase upon annealing above its original melting temperature. The thermal degradation activation energies are determined to be 154 and 150 kJ/mol in nitrogen and air, respectively.

  14. Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch.

    Science.gov (United States)

    Qiu, Shuang; Yadav, Madhav P; Chen, Hao; Liu, Yan; Tatsumi, Eizo; Yin, Lijun

    2015-01-22

    Corn fiber gum (CFG) was a novel arabinoxylan hydrocolloid and recent researches showed its considerable potential in food processing. In this study, the interactions of maize starch and CFG were studied. Maize starch/CFG blend gels were prepared from maize starch suspension mixing with 0.1%, 0.25%, 0.5%, 1.0% (w/w) CFG. The pasting and thermal properties, rheological properties, microstructure, leached amylose and swelling power characteristics were evaluated. Compared with the reference, CFG addition lowered peak viscosity and breakdown of the composite system, but increased final viscosity in RVA measurement. The swelling power and the amount of leached amylose of maize starch gels were reduced as the addition concentration of CFG increased. The thermal characteristics of maize starch/CFG mixtures varied insignificantly as determined in DSC heating process. Rheological parameters, such as storage modulus (G') and loss modulus (G"), of the maize starches were observed to increase when CFG was present, supporting the hypothesis that the interaction between CFG and amylose could happen in the composite system. Confocal laser scanning microscopy (CLSM) confirmed changes in gels microstructure as starch components tended to be inhibited from leaching out of the granules when CFG was added, and the morphology of starch granule was more compact when CFG was added. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing

    Directory of Open Access Journals (Sweden)

    Yuning Sun

    2014-07-01

    Full Text Available The carbon nanotube (CNT field emitters have been fabricated by attaching a CNT film on a graphite rod using graphite adhesive material. The CNT field emitters showed much improved field emission properties due to increasing crystallinity and decreasing defects in CNTs after the high temperature thermal annealing at 900 °C in vacuum ambient. The CNT field emitters showed the low turn-on electric field of 1.15 V/μm, the low threshold electric field of 1.62 V/μm, and the high emission current of 5.9 mA which corresponds to a current density of 8.5 A/cm2. In addition, the CNT field emitters indicated the enhanced field emission properties due to the multi-stage effect when the length of the graphite rod increases. The CNT field emitter showed good field emission stability after the high temperature thermal annealing. The CNT field emitter revealed a focused electron beam spot without any focusing electrodes and also showed good field emission repeatability.

  16. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R.; Minier, L.

    1998-03-24

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  17. Crystal chemistry and thermal behavior of La doped (U, Th)O2

    Science.gov (United States)

    Keskar, Meera; Shelke, Geeta P.; Shafeeq, Muhammed; Krishnan, K.; Sali, S. K.; Kannan, S.

    2017-12-01

    X-ray diffraction, chemical and thermal studies of [(U0.2Th0.8)1-yLay]O2+x (LUTL) and [(U0.3Th0.7)1-yLay]O2+x (UTL); compounds (where y ≤ 0.4) were carried out. These compounds were synthesized by gel combustion method followed by heating in reduced atmospheres at 1673 K. To co-relate lattice parameters with metal and oxygen concentrations, reduced oxides were heated in Ar, CO2 and air atmospheres. Retention of FCC phase was confirmed in all mixed oxides with y ≤ 0.4. The cubic lattice parameters could be expressed in a linear equation of x and y as: a (Ǻ) = 5.5709 - 0.187 x + 0.032 y; [x uranium is predominantly present as a mixture of +5 and + 6 states when La/U ratio ∼2. Oxidation kinetics of mixed oxides was studied by non-isothermal method using thermogravimetry and was found to be a diffusion controlled reaction. High temperature X-ray diffraction studies of LUTL and UTL mixed oxides showed positive thermal expansion in the temperature range of 298-1273 K and % expansion increases with La concentration.

  18. Thermal shock behavior of W-ZrC/Sc2O3 composites under two different transient events by electron and laser irradiation

    Science.gov (United States)

    Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-02-01

    The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.

  19. A Study on Cavitation Erosion Behaviors of Corrosion-resistance Thermal Spray Coating Materials

    International Nuclear Information System (INIS)

    Jin, Hee Seok

    2003-02-01

    The hydraulic machinery of screw propeller and pump impellers is damaged by cavitation erosion in sea water. The cavitation erosion is a phenomenon leading a functional disorder of various fluid machinery and dropping off in efficiency by cavity fluid fluctuation. This study is investigated the cavitation erosion of various metallic coatings made by thermal spraying methods. The coating materials are AMDRY625, Cr 2 O 3 , SUS316, Zn, Al. These metals are coated on substrate of high strength brass ( Cu - Zn ). Test specimens are immersed in 3.5% NaCl solution for 500 and 1000 hours, respectively. After pre-corrosion, the cavitation erosion test was conducted on coating specimens in 3.5% NaCl solution along 210 minutes. The results are summarized as follows : 1. Both substrate and test specimens coated by thermal spray underwent weight loss in proportion to the time length of the cavitation erosion test, and the weight loss happened more to 1,000 hour-immersed test specimens and 500 hour-immersed ones in the time order rather than the ones in non-corrosion condition. 2. Substrate and Amdry625 and SUS316 test specimens were all influenced very little by weight loss regardless of the time length and the conditions of the test. 3. The amount of weight loss of aluminum and zinc test specimens and Cr 2 O 3 test specimens heavily increased at the early stage regardless of the conditions but later decreased after the coated layers were fretted by cavitation erosion. 4. The comparison of weight loss after the test showed that Amdry625, SUS316 and substrate underwent very little weight loss, proving to be the very likely materials to bear cavitation erosion but aluminum and zinc and Cr 2 O 3 underwent very great weight loss, proving to be the very unlikely materials to bear cavitation erosion. 5. After the test, the surfaces of Amdry625, SUS316 and substrate showed that they had been less damaged by cavitation erosion but the rest showed that they had been very much damaged by

  20. Oxidation and crystallization behavior of calcium europium silicon nitride thin films during rapid thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M. de, E-mail: m.dejong-1@tudelft.nl [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Enter, V.E. van, E-mail: vvanenter@gmail.com [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Schuring, E.W., E-mail: schuring@ecn.nl [Energy Center of the Netherlands, Westerduinweg 3, 1755LE Petten (Netherlands); Kolk, E. van der, E-mail: e.vanderkolk@tudelft.nl [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands)

    2016-03-31

    Luminescent thin films were fabricated on silicon wafers using reactive magnetron sputtering of Ca, Si and Eu in Ar/N{sub 2} atmosphere. In order to activate the luminescence, the as-deposited nitride films were heated to 1100 °C by a rapid thermal processing treatment. X-ray diffraction measurements reveal the crystal phases that form during thermal treatment. By recording scanning electron microscopy images of the surface and the cross-section of the film at different radial locations, the formation of different layers with a thickness depending on the radial position is revealed. Energy dispersive x-ray spectroscopy analysis of these cross-sections reveals the formation of an oxide top layer and a nitride bottom layer. The thickness of the top layer increases as a function of radial position on the substrate and the thickness of the bottom layer decreases accordingly. The observation of different 4f{sup 6}5d{sup 1} → 4f{sup 7} Eu{sup 2+} luminescence emission bands at different radial positions correspond to divalent Eu doped Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, Ca{sub 2}SiO{sub 4} and CaSiO{sub 3}, which is in agreement with the phases identified by X-ray diffraction analysis. A mechanism for the observed oxidation process of the nitride films is proposed that consists of a stepwise oxidation from the as-deposited amorphous nitride state to crystalline Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, to Ca{sub 2}SiO{sub 4} and finally CaSiO{sub 3}. The oxidation rate and final state of oxidation show a strong temperature–time dependency during anneal treatment. - Highlights: • A thin film of nitridated Ca, Si and Eu was deposited using magnetron sputtering. • Rapid thermal processing (RTP) results in Eu{sup 2+} doped Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, Ca{sub 2}SiO{sub 4}, and CaSiO{sub 3}. • Oxidation rate differs with radial position due to a temperature gradient during RTP. • Cross-section SEM–EDX shows how the oxidation progresses in lateral direction.

  1. Thermal Behavior of Mixtures of Perlite and Phase Change Materials in a Simulated Climate

    International Nuclear Information System (INIS)

    Childs, K.W.; Childs, P.W.; Christian, J.E.; Petrie, T.W.

    1995-01-01

    Carefully controlled and well documented experiments have been done for two candidate configurations to control the heat load on a conditioned space. The 2:1 PCM/perlite mixture and the 6:1 PCM/perlite mixture, both on a weight basis, accomplished thermal control. The 2:1 system seemed to have enough PCM to be effective and involve a much larger fraction of its PCM in diurnal freezing and melting than the 6:1 system. It is a good starting point for engineering design of an optimum thermal control system. The results from the 2:1 system were reproduced with the computer program HEATING to prove that we know the relevant mechanisms and thermophysical properties of the PCM used in the system. Even without a model for the supersaturation and hysteresis that this material exhibited, HEATING reproduced the heat fluxes to the conditioned space in the experiments accurately enough to mirror the good thermal control performance of the system. The modified sensible heat capacity that was used in HEATING is a handy way to account for phase change effects and could be used in a subroutine to compute hourly phase change effects for whole building models like DOE-2. The experiments were done with PCM/perlite mixtures sealed in small methylmethacrylate boxes and covered top and bottom by XPS. The boxes allowed precise placement of the instrumentation used to follow the phase change effects. The XPS gave high R-value per unit thickness. A more practical prototype configuration such as PCM/perlite hermetically sealed in plastic pouches between layers of batts or blown-in insulation should be tested over a larger cross section. A good candidate is the whole attic cavity of the manufactured home test section used in the present work. Use of a PCM that does not exhibit supersaturation and hysteresis would make interpretation of the results easier. If the results of the larger scale test areas are as encouraging as the test cell results, a whole house model with a phase change

  2. Evaluation of thermal displacement behavior of high temperature piping system in power-up test of HTTR. No. 1 results up to 20 MW operation

    Energy Technology Data Exchange (ETDEWEB)

    Hanawa, Satoshi; Kojima, Takao; Sumita, Junya; Tachibana, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2002-03-01

    Temperature of the primary cooling system of the High Temperature Engineering Test Reactor, HTTR, becomes very high because the coolant temperature at the reactor outlet reaches 950degC, and 400degC at inlet of the reactor. Therefore, it is important to confirm the thermal displacement behavior of the high temperature piping system in the primary cooling system from the viewpoint of the structural integrity. Moreover, newly designed 3-dimensional floating support system is adopted to the cooling system, it is meaningful to verify the thermal displacement behavior of the piping system applied the 3-dimensional floating support system. In the power-up test (up to 20 MW operation), thermal displacement behavior of the high temperature piping system was measured. This paper describes the experimental and analytical results of thermal displacement characteristics of the high temperature piping system. The results showed that the resistance force induced from the supporting system effects to the thermal displacement behavior of cooling system, and the analytical results have a good agreement with the experimental results by optimizing the resistant force of the floating support system. Additionally, structural integrity at the 30 MW operation was confirmed by the analysis. (author)

  3. Effect of Thermal Mechanical Behaviors of Cu on Stress Distribution in Cu-Filled Through-Silicon Vias Under Heat Treatment

    Science.gov (United States)

    Zhao, Xuewei; Ma, Limin; Wang, Yishu; Guo, Fu

    2018-01-01

    Through-silicon vias (TSV) are facing unexpected thermo-mechanical reliability problems due to the coefficient of thermal expansion (CTE) mismatch between various materials in TSVs. During applications, thermal stresses induced by CTE mismatch will have a negative impact on other devices connecting with TSVs, even leading to failure. Therefore, it is essential to investigate the stress distribution evolution in the TSV structure under thermal loads. In this report, TSVs were heated to 450°C at different heating rates, then cooled down to room temperature after a 30-min dwelling. After heating treatment, TSV samples exhibited different Cu deformation behaviors, including Cu intrusion and protrusion. Based on the different Cu deformation behaviors, stress in Si around Cu vias of these samples was measured and analyzed. Results analyzed by Raman spectrums showed that the stress distribution changes were associated with Cu deformation behaviors. In the area near the Cu via, Cu protrusion behavior might aggravate the stress in Si obtained from the Raman measurement, while Cu intrusion might alleviate the stress. The possible reason was that in this area, the compressive stress σ_{θ } induced by thermal loads might be the dominant stress. In the area far from the Cu via, thermal loads tended to result in a tensile stress state in Si.

  4. Thermal behavior of neutron shielding material, NS-4-FR, under long term storage conditions

    International Nuclear Information System (INIS)

    Yamada, N.; O-iwa, A.; Asano, R.; Horita, R.; Kusunoki, K.

    2004-01-01

    NS-4-FR, Epoxy-Resin, has been widely used as a neutron shielding material for casks. It is recognized that the resin will degrade during storage and loose weight under high temperature conditions. Most of the examinations for the resin degrading behavior were conducted with rather small bare resin specimens. However, the actual quantity of neutron shielding is quite large and is covered by the cask body. To confirm the degrading behavior of the resin under the long-term storage conditions, we performed the test on the specimen with the same cross-section as the actual design, Hitz B69. The resin test vessels were made out of stainless steel and equipped with flange

  5. Viscoelastic and thermal behavior of structural concrete with reference to containment vessels

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1981-01-01

    A method of numerical viscoelastic stress analysis is described suitable for concrete structures operating at elevated temperatures. The paper describes how approximate numerical methods of elastic analysis of the finite element type can be extended to incorporate the viscoelastic behavior of structural concrete of the quasi-static type. A new eight parameter viscoelastic model is proposed to represent concrete behavior in the loaded and unloaded stage. The deformational expressions for the proposed viscoelastic analogue are also developed. Finally, as a result of courve-fitting procedures, the evaluation of the creep law coefficients are obtained for creep laws appropriate to a test regime. The proposed method is of general application providing that the properties of concrete are assessed reasonably well. The analytical predictions are compared with experimental results obtained on concrete model specimens loaded for 3 1/2 months, at a temperature of 80 0 C. (author)

  6. Effect of Friction Stir Process Parameters on the Mechanical and Thermal Behavior of 5754-H111 Aluminum Plates

    Science.gov (United States)

    Serio, Livia Maria; Palumbo, Davide; De Filippis, Luigi Alberto Ciro; Galietti, Umberto; Ludovico, Antonio Domenico

    2016-01-01

    A study of the Friction Stir Welding (FSW) process was carried out in order to evaluate the influence of process parameters on the mechanical properties of aluminum plates (AA5754-H111). The process was monitored during each test by means of infrared cameras in order to correlate temperature information with eventual changes of the mechanical properties of joints. In particular, two process parameters were considered for tests: the welding tool rotation speed and the welding tool traverse speed. The quality of joints was evaluated by means of destructive and non-destructive tests. In this regard, the presence of defects and the ultimate tensile strength (UTS) were investigated for each combination of the process parameters. A statistical analysis was carried out to assess the correlation between the thermal behavior of joints and the process parameters, also proving the capability of Infrared Thermography for on-line monitoring of the quality of joints. PMID:28773246

  7. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste.

    Science.gov (United States)

    Dhyani, Vaibhav; Kumar Awasthi, Mukesh; Wang, Quan; Kumar, Jitendra; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Wang, Meijing; Bhaskar, Thallada; Zhang, Zengqiang

    2018-03-01

    In this work, the influence of composting on the thermal decomposition behavior and decomposition kinetics of pig manure-derived solid wastes was analyzed using thermogravimetry. Wheat straw, biochar, zeolite, and wood vinegar were added to pig manure during composting. The composting was done in the 130 L PVC reactors with 100 L effective volume for 50 days. The activation energy of pyrolysis of samples before and after composting was calculated using Friedman's method, while the pre-exponential factor was calculated using Kissinger's equation. It was observed that composting decreased the volatile content of all the samples. The additives when added together in pig manure lead to a reduction in the activation energy of decomposition, advocating the presence of simpler compounds in the compost material in comparison with the complex feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A physics-based crystallographic modeling framework for describing the thermal creep behavior of Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    This Report addresses the Milestone M2MS-16LA0501032 of NEAMS Program (“Develop hardening model for FeCrAl cladding), with a deadline of 09/30/2016. Here we report a constitutive law for thermal creep of FeCrAl. This Report adds to and complements the one for Milestone M3MS-16LA0501034 (“Interface hardening models with MOOSE-BISON”), where we presented a hardening law for irradiated FeCrAl. The last component of our polycrystal-based constitutive behavior, namely, an irradiation creep model for FeCrAl, will be developed as part of the FY17 Milestones, and the three regimes will be coupled and interfaced with MOOSE-BISON.

  9. Mechanical Behavior of Syntactic Foams for Deep Sea Thermally Insulated Pipeline

    OpenAIRE

    Choqueuse, Dominique; Davies, Peter; Perreux, Dominique; Sohier, L; Cognard, Jean Yves

    2010-01-01

    Ultra Deep offshore oil exploitation (down to 3000 meters depth) presents new challenges to offshore engineering and operating companies. Flow assurance and particularly the selection of insulation materials to be applied to pipe lines are of primary importance, and are the focus of much industry interest for deepwater applications. Polymeric and composite materials, particularly syntactic foams, are now widely used for this application, so the understanding of their behavior under extreme co...

  10. Thermal behavior of pure rice bran oil, sunflower oil and their model blends during deep fat frying

    Directory of Open Access Journals (Sweden)

    Singh, Charanjiv

    2006-12-01

    Full Text Available Shall be deleted offer some advantages like better nutritional quality, lower cost and greater storage stability than pure oils. Model blends prepared from pure rice bran oil (RBO and sunflower oil (SFO were examined for change in their physico-chemical parameters (acid value, iodine value, color value, peroxide value and fatty acids. Repeated deep fat frying processes were carried out using dried potato chips in pure rice bran oil, sunflower oil and their model blends, in order to study the thermal behavior of pure rice bran oil, sunflower oil and their model blends. Pure rice bran oil and sunflower oil showed good thermal stability during the repeated deep fat frying cycles. Although all the blended oils used in the study showed good thermal stability during repeated deep fat frying cycles, model blends consisting of 60%RBO + 40% SFO showed better suitability during repeated deep fat frying than the remaining blended oils.La mezclas de aceites pueden ofrecer algunas ventajas sobre los aceites puros las como mejor calidad nutricional, coste inferior o mayor estabilidad durante el almacenamiento. En este estudio, aceite de salvado de arroz (RBO, aceite de girasol (SFO y mezclas de ambos, se sometieron al proceso de fritura de patatas y se evaluaron los principales cambios físico-químicos en los aceites puros y en sus mezclas (acidez, índice de yodo, color, índice de peróxidos y composición de ácidos grasos. Aunque todas las muestras mostraron buena estabilidad a elevada temperatura, los mejores resultados se obtuvieron con la mezcla que contenía 60% de RBO y 40% de SFO.

  11. Investigation of bioactivity, biocompatibility and thermal behavior of sol–gel silica glass containing a high PEG percentage

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Renella, R.A.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Vecchio Ciprioti, S. [Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, Building RM017, I-00161 Rome (Italy)

    2016-04-01

    SiO{sub 2}/PEG organic–inorganic hybrid materials, which contain 60 or 70 weight percentage of PEG, were synthesized by the sol–gel technique. The materials were characterized and subjected to various tests to assess their application in the biomedical field. The evaluation of their morphology by scanning electron microscopy (SEM) confirms the homogeneity of the samples on the nanometer scale. Fourier transform infrared spectroscopy (FT-IR) indicated that the two components of the hybrids (SiO{sub 2} and PEG) are linked by hydrogen bonds. This feature makes them class I hybrids. Simultaneous thermogravimetry/differential thermal analysis (TG/DTA) was used to investigate their thermal behavior and to establish the best temperatures for their pre-treatment. The fundamental properties that a material must have to be used in the biomedical field are biocompatibility and bioactivity. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid. This indicates that the materials are able to bond to bone tissue. Moreover, the biocompatibility of SiO{sub 2}/PEG hybrids was assessed by performing WST-8 cytotoxicity tests on fibroblast cell NIH 3T3 after 24 h of exposure. The cytotoxicity tests highlight that the cell viability is affected by the polymer percentage. The results showed that the synthesized materials were bioactive and biocompatible. Therefore, the results obtained are encouraging for the use of the obtained hybrids in dental or orthopedic applications. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at high PEG percentage • Chemical, thermal and morphological characterization of hybrid materials • Biological characterizations with WST-8 cytotoxicity tests • Bioactivity characterizations of hybrid materials with high PEG percentage.

  12. Evaluation of thermal-hydraulic behaviors in loss-of-RHR event during mid-loop operation

    International Nuclear Information System (INIS)

    Murase, Michio; Nagumo, Hiroichi; Minami, Noritoshi; Utanohara, Yoichi; Kinoshita, Ikuo

    2009-01-01

    The loss-of-RHR (residual heat removal systems) during mid-loop operation is one of relatively high-risk events in a PWR. In order to increase confidence of the calculated results, the CSAU (code scaling, applicability, and uncertainty) methodology is being applied to evaluate the loss-of-RHR event, and PIRT (phenomena identification and ranking table) for the event has been developed. Based on the PIRT, the authors have been evaluating important thermal-hydraulic behaviors during a loss-of-RHR event, and major results are summarized in this paper. As one of substitute methods of RHR cooling, reflux cooling by a steam generator (SG) is expected. In the case, behavior of non-condensable gas (i.e. air) in the reactor cooling system (RCS) and countercurrent gas-liquid flow in the hot leg affect heat transfer in the SG U-tubes, RCS pressure and coolant level in the core. Therefore, we conducted condensation heat transfer experiments in the presence of non-condensable gas at Perdue University, developed heat transfer correlations, conducted Bethsy test analyses using RELAP5/MOD3 with the developed correlations, and confirmed that heat transfer coefficients and thermal-hydraulic behavior in the SG U-tube bundle do not greatly affect the heat transfer rate and RCS pressure because the heat transfer area of the SG is large enough to release decay heat. On the other hand, movement of non-condensable gas in the RCS into the SG U-tubes directly affects the RCS pressure. Therefore, we calculated behavior of non-condensable gas in the pressurizer using the CFD code, FLUENT6.3.26, and the results showed that non-condensable gas in the pressurizer would not flow out into the hot leg. As for countercurrent gas-liquid flow in the hot leg, which consists of horizontal, elbow and inclined sections, we performed air-water experiments using small-scale models at Kobe University, and conducted numerical calculations using FLUENT6.3.26, in order to evaluate flow patterns. The results

  13. Thermal aging effects on the microstructure, oxidation behavior, and mechanical properties of as-cast nickel aluminide alloys

    Science.gov (United States)

    Lee, Dongyun

    The thermal aging effects on the microstructure, oxidation behavior at 900° and 1100°C, and mechanical properties of IC221M (Ni3Al based intermetallic alloy, ASTM A1002-99) were investigated. The microstructure consists of dendritic arms of the gamma (nickel solid solution) phase containing cube-shape gamma' (Ni3Al precipitates. The interdendritic regions are mostly gamma' (Ni3Al with up to 8 vol.% gamma + Ni5Zr eutectic constituents. Thermal aging effects on the microstructures and how microsegregation affects the oxidation behavior were examined. Four primary changes in the microstructures were observed: (1) there is considerable homogenization of the cast microstructures with aging, (2) the volume fraction of gamma' increases with aging time and temperature, (3) the gamma' phase coarsens, and (4) the volume fraction of the gamma + Ni5Zr eutectic constituents decreases. During the initial stages of oxidation at 900°C, surface oxides form along the microsegregation patterns, revealing the cast microstructures. The first oxide to form is mostly NiO with small amounts of Cr2O 3, ZrO2, NiCr2O4, and theta-Al 2O3. Initial oxidation occurs primarily in the interdendritic regions due to microsegregation of alloying elements during casting. With further aging, the predominant surface oxides become NiO and NiAl2O 4 spinel, with a continuous film of alpha-Al2O3 forming immediately beneath them. Although these oxides are constrained to the near surface region, other oxides penetrate to greater depths, facilitated by oxidation of the gamma + Ni5Zr eutectic constituents. These oxides appear in the microstructure as long, thin spikes of ZrO2 surrounded by a sheath of Al2O3. They can penetrate to depths greater than 10 times that of the continuous surface oxide. The oxidation behavior at 1100°C is similar to that at 900°C, but the oxidation kinetics are faster, NiO dominates at all aging periods, and the surface oxides do not adhere to the matrix meaning that a protective

  14. Effect of dispersion of carbon nanotubes in polyacrylonitrile matrix on mechanical and thermal behavior of nanocomposites

    International Nuclear Information System (INIS)

    Fraczek, A; Blazewicz, S

    2009-01-01

    The work deals with preparation of polyacrylonitrile (PAN)-based nanocomposites containing multi wall carbon nanotubes (MWCNTs). The effect of nanotubes addition to the PAN solution on selected properties of the obtained samples is discussed. The nanocomposites were characterized by scanning electron microscopy (SEM) and thermogravimetry. Agglomeration and dispersion of MWCNT in polymer solution were studied using Zetananosizer. The mechanical properties of the nanocomposites before and after optimization dispersion process were examined. It is found that improperly prepared PAN suspension containing nanotubes causes a significant reduction of the tensile strength of nanocomposite samples. The preparation procedure of the polymeric solution with carbon nanotubes and the sonication sequence have a significant impact on mechanical properties of the obtained samples. The thermogravimetry analysis of nanocomposite samples shows a raise of the temperature of maximum thermal degradation in the case of sample containing 1wt% of MWCNT.

  15. Microstructure, molecular weight and thermal behavior of natural rubber (NR) from mangabeira (Hancornia speciosa)

    International Nuclear Information System (INIS)

    Santos, Expedito Flavio dos; Feitosa, Judith P.A.; Ricardo, Nagila M.P.S.

    2001-01-01

    The natural rubber (NR) from Hancornia speciosa contains characteristics that turns it a good alternative in elastomers supply. The NMR and IR spectra showed that the rubber of mangabeira is composed fundamentally by poly(1,4-cis-isoprene). The rubber molecular weight obtained by GPC and viscometry was 2,0x10 6 and 1,3x10 6 g/mol, respectively, in good agreement with the values determined for seringueira and manicoba NR. The glass transition temperature obtained by DSC (Tg = - 65 deg C) showed the mangabeira rubber is ideal to be utilized in regions of cold climate without compromising its mechanical properties. The rubber has also good thermal stability up to 213 deg C, as indicated by TG curves. This results indicated that the mangabeira NR can be effectively used in vulcanized articles or to be added to asphalt. (author)

  16. Understanding unusual thermal transport behavior in soft materials under mechanical strain - A molecular dynamics study

    Science.gov (United States)

    Murad, Sohail; Puri, Ishwar K.

    2015-04-01

    Experiments have shown a dependence of the thermal conductivity of soft polymer materials on shear stress, which is common to several applications, such as film processing, fiber spinning, blow molding, and vacuum forming. Experiments reveal that the conductivity initially decreases with shear, but then increases as additional shear rate is applied. Based on molecular principles, we hypothesize that when molecules are initially placed under tension and extended, they disentangle, which reduces the number of points of interaction and diminishes the heat flux. Further molecular stretching increases this flux because the molecules are now better axially aligned. Molecular dynamics simulations confirm this competition and reproduce the inflection in the flux-strain relationship, which has not been previously explained.

  17. Evaluation of thermal behavior during laser metal deposition using optical pyrometry and numerical simulation

    Science.gov (United States)

    Dubrov, Alexander V.; Zavalov, Yuri N.; Mirzade, Fikret K.; Dubrov, Vladimir D.

    2017-06-01

    3D mathematical model of non-stationary processes of heat and mass transfer was developed for additive manufacturing of materials by direct laser metal deposition. The model takes into account self-consistent dynamics of free surface, temperature fields, and melt flow speeds. Evolution of free surface is modelled using combined Volume of Fluid and Level-Set method. Article presents experimental results of the measurement of temperature distribution in the area of bead formation by direct laser metal deposition, using multi-channel pyrometer, that is based on two-color sensors line. A comparison of experimental data with the results of numerical modeling was carried out. Features of thermal dynamics on the surface of melt pool have been detected, which were caused by thermo-capillary convection.

  18. Thermal Entanglement and Critical Behavior of Magnetic Properties on a Triangulated Kagomé Lattice

    Directory of Open Access Journals (Sweden)

    N. Ananikian

    2011-01-01

    Full Text Available The equilibrium magnetic and entanglement properties in a spin-1/2 Ising-Heisenberg model on a triangulated Kagomé lattice are analyzed by means of the effective field for the Gibbs-Bogoliubov inequality. The calculation is reduced to decoupled individual (clusters trimers due to the separable character of the Ising-type exchange interactions between the Heisenberg trimers. The concurrence in terms of the three qubit isotropic Heisenberg model in the effective Ising field in the absence of a magnetic field is non-zero. The magnetic and entanglement properties exhibit common (plateau, peak features driven by a magnetic field and (antiferromagnetic exchange interaction. The (quantum entangled and non-entangled phases can be exploited as a useful tool for signalling the quantum phase transitions and crossovers at finite temperatures. The critical temperature of order-disorder coincides with the threshold temperature of thermal entanglement.

  19. Analysis of crack behavior in the JRC Ispra pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Jovanovic, A.; Lucia, A.C.

    1990-01-01

    The analytical work performed in the framework of the Pressurized Thermal Shock (PTS) experimental research at the JRC Ispra, Italy, is described in the paper. In particular, the development of the FRAP preprocessor and development and implementation of a methodology for analysis of local non-stationary heat transfer coefficients during a PTS, have been tackled. FRAP is used as a front-end for the finite element code ABAQUS, for the heat transfer, stress and fracture mechanics analyses. The ABAQUS results are used further on, for the probabilistic fatigue crack analysis performed by the JRC Ispra code COVASTOL. Only the preliminary results of application of FRAP, ABAQUS and COVASTOL codes in the experiment are given in this paper, in order to illustrate the applied analytical procedure. (orig.)

  20. Thermal behavior of heat-pipe-assisted alkali-metal thermoelectric converters

    Science.gov (United States)

    Lee, Ji-Su; Lee, Wook-Hyun; Chi, Ri-Guang; Chung, Won-Sik; Lee, Kye-Bock; Rhi, Seok-Ho; Jeong, Seon-Yong; Park, Jong-Chan

    2017-11-01

    The alkali-metal thermal-to-electric converter (AMTEC) changes thermal energy directly into electrical energy using alkali metals, such as sodium and potassium, as the working fluid. The AMTEC system primarily consists of beta-alumina solid electrolyte (BASE) tubes, low and high-pressure chambers, an evaporator, and a condenser and work through continuous sodium circulation, similar to conventional heat pipes. When the sodium ions pass through the BASE tubes with ion conductivity, this ion transfer generates electricity. The efficiency of the AMTEC directly depends on the temperature difference between the top and bottom of the system. The optimum design of components of the AMTEC, including the condenser, evaporator, BASE tubes, and artery wick, can improve power output and efficiency. Here, a radiation shield was installed in the low-pressure chamber of the AMTEC and was investigated experimentally and numerically to determine an optimum design for preventing radiation heat loss through the condenser and the wall of AMTEC container. A computational fluid dynamics (CFD) simulation was carried out to decide the optimum size of the low-pressure chamber. The most suitable height and diameter of the chamber were 270 mm and 180 mm, respectively, with eight BASE tubes, which were 150 mm high, 25 mm in diameter, and 105 mm in concentric diameter. Increasing the temperature ratio ( T Cond /T B ) led to high power output. The minimum dimensionless value (0.4611) for temperature ( T Cond /T B ) appeared when the radiation shield was made of 500-mesh nickel. Simulation results for the best position and shape for the radiation shield, revealed that maximum power was generated when a stainless steel shield was installed in between the BASE tubes and condenser.

  1. The Mechanical and Thermal Behaviors of Heat-Treated Ni-Rich NiTi Orthodontic Archwires

    Science.gov (United States)

    Seyyed Aghamiri, S. M.; Nili Ahmadabadi, M.; Raygan, Sh.; Haririan, I.; Ahmad Akhondi, M. S.

    2009-08-01

    The near equiatomic nickel-titanium alloy is an outstanding intermetallic compound exhibiting distinctive properties associated with characteristic thermal and stress-induced martensitic transformations. The process of producing orthodontic wires has been modified to obtain the optimal shape memory behaviors. Phase transformation temperatures and load-deflection characteristics of this binary alloy are very significant variables in the performance of this alloy and can be manipulated by different thermomechanical treatments via inducing precipitation or dislocation networks in the matrix. In this study, one brand of commercial heat-activated nickel-titanium archwire (3 M Unitek) was selected and solution treated. Then, the wires annealed at 400 °C for 10, 30, and 60 min. Thermal transformation temperatures were determined using differential scanning calorimeter. It was showed that these temperatures increased with increasing the time of heat treatment and multistage transformation occurred as the result of inhomogeneities. In order to evaluate mechanical parameters of heat-treated archwires, they were placed on an arch-form fixture simulating maxillary dentition and load-deflection curves were obtained by three-point bending test at 37 °C. The results compared to as-received archwires and the best superelasticity was observed after 30 min aging.

  2. The effects of thermal aging on material behavior and strength of CF8M in nuclear reactor coolant system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Do; Lee, Yong Seon; Park, Jung Cheol; In, Jae Hyeon; Woo, Seung Wan; Pae, Yong Tak; Nam, Uk Hui; Park, Yun Won [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    1999-03-15

    The following investigations are performed in order to estimate the mechanism of the structural integrity, and the life prediction. The CF8M is observed a brittle behavior in the range of 475 .deg. C. The five classes of the thermally aged CF8M specimen are prepared using an artificially accelerated aging method. Namely, after the specimen are held for 100, 300, 900, 1800 and 3600 hrs. at 430 .deg. C respectively, the specimen are water cooled to room temperature. In addition to the thermally aged specimens the specimens associated with {delta}-phase degradation are prepared. After the specimens are maintained for 20 min, 5, 15, 50 and 150 hrs. at 700 .deg. C, respectively. which is in the range of {delta}-phase degradation, all specimens are cooled in water. The impact energy variations are measured for both the aged and virgin specimen at -173, -70, -32, 27 and 100 .deg. C, respectively, through the Charpy impact tests in addition to the hardness tests. The characteristics of the fatigue crack growth and low cycle fatigue tests are investigated using both aged and virgin specimens. Also fractured surfaces of the specimen are observed using the scanning electronic microscopy. J-R curve and J{sub IC} of the aged and virgin specimens are found J{sub IC} in order to predict the critical flaw size and fatigue life.

  3. Crystal structure, vibrational, spectral investigation, quantum chemical DFT calculations and thermal behavior of Diethyl [hydroxy (phenyl) methyl] phosphonate

    Science.gov (United States)

    Ouksel, Louiza; Chafaa, Salah; Bourzami, Riadh; Hamdouni, Noudjoud; Sebais, Miloud; Chafai, Nadjib

    2017-09-01

    Single Diethyl [hydroxy (phenyl) methyl] phosphonate (DHPMP) crystal with chemical formula C11H17O4P, was synthesized via the base-catalyzed Pudovik reaction and Lewis acid as catalyst. The results of SXRD analyzes indicate that this compound crystallizes into a mono-clinic system with space group P21/n symmetry and Z = 4. The crystal structure parameters are a = 9.293 Å, b = 8.103 Å, c = 17.542 Å, β = 95.329° and V = 1315.2 Å3, the structure displays one inter-molecular O-H⋯O hydrogen bonding. The UV-Visible absorption spectrum shows that the crystal exhibits a good optical transmission in the visible domain, and strong absorption in middle ultraviolet one. The vibrational frequencies of various functional groups present in DHPMP crystal have been deduced from FT-IR and FT-Raman spectra and then compared with theoretical values performed with DFT (B3LYP) method using 6-31G (p, d) basis sets. Chemical and thermodynamic parameters such as: ionization potential (I), electron affinity (A), hardness (σ), softness (η), electronegativity (χ) and electrophilicity index (ω), are also calculated using the same theoretical method. The thermal decomposition behavior of DHPMP, studied by using thermogravimetric analysis (TDG), shows a thermal stability until to 125 °C.

  4. Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN.

    Science.gov (United States)

    Papageorgiou, George Z; Tsanaktsis, Vasilios; Bikiaris, Dimitrios N

    2014-05-07

    Poly(ethylene-2,5-furandicarboxylate) (PEF) is a new alipharomatic polyester that can be prepared from monomers derived from renewable resources like furfural and hydroxymethylfurfural. For this reason it has gained high interest recently. In the present work it was synthesized from the dimethylester of 2,5-furandicarboxylic acid and ethylene glycol by applying the two-stage melt polycondensation method. The thermal behavior of PEF was studied in comparison to its terephthalate and naphthalate homologues poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN), which were also synthesized following the same procedure. The equilibrium melting point of PEF was found to be 265 °C while the heat of fusion for the pure crystalline PEF was estimated to be about 137 J g(-1). The crystallization kinetics was analyzed using various models. PET showed faster crystallization rates than PEN and this in turn showed faster crystallization than PEF, under both isothermal and non-isothermal conditions. The spherulitic morphology of PEF during isothermal crystallization was investigated by polarized light microscopy (PLM). A large nucleation density and a small spherulite size were observed for PEF even at low supercoolings, in contrast to PET or PEN. Thermogravimetric analysis indicated that PEF is thermally stable up to 325 °C and the temperature for the maximum degradation rate was 438 °C. These values were a little lower than those for PET or PEN.

  5. The effect of PEG molecular weights on the thermal stability and dissolution behaviors of griseofulvin-PEG crystalline inclusion complexes.

    Science.gov (United States)

    Yang, Xiaotong; Zhong, Zhi; Huang, Yanbin

    2016-07-11

    Co-crystals formed between small molecular drugs and hydrophilic co-formers have shown great potential to optimize the dissolution profiles of drug substances. So far most of the co-formers used are small molecules. However, linear polymers are also able to form drug-polymer crystalline inclusion complexes (ICs). In contrast to the small molecular co-formers, molecular weight of the polymer co-formers can be easily changed without disrupting the IC crystal structure, and hence represents an interesting approach to tune the IC properties. In this study, we investigated the effect of PEG molecular weights on the thermal stability and dissolution behavior of Gris-PEG ICs. It was found that the thermal stability of Gris-PEG IC crystals first increased with PEG molecular weight, and then reached a plateau value, while an optimized PEG molecular weight existed for the dissolution profile. The experimental results were explained by the formation of two types of crystal defects during the IC growth in PEG melt: the void defects and the grain boundary defects. This is the first study on the pharmaceutical profiles of drug-polymer crystalline inclusion complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Thermal and magnetic behavior of Angustifolia Kunth bamboo fibers covered with Fe{sub 3}O{sub 4} particles

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, S. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Arias, N.P. [Laboratorio de Materiales Nanoestructurados y Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Departamento de Ingenieria Electrica, Electronica y Computacion, Facultad de Ingenieria y Arquitectura, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Giraldo, O., E-mail: ohggiraldo@hotmail.com [Laboratorio de Materiales Nanoestructurados y Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Rosales-Rivera, A.; Moscoso, O. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia)

    2012-08-15

    Several Angustifolia Kunth bamboo fibers, which have been previously treated with an alkaline solution, were coated with magnetite particles. The coating of the fibers was achieved by an in-situ co-precipitation method with Fe{sup 2+} and Fe{sup 3+}in NaOH or NH{sub 4}OH. The fibers were evaluated by chemical analysis using atomic absorption (A.A.) technique, structural characterization by X-ray diffraction (XRD), thermal stability with thermo-gravimetric analysis (TGA) in nitrogen at temperature range between 23 Degree-Sign C and 800 Degree-Sign C and magnetic behavior using vibrating sample magnetometry (VSM) applying a magnetic field between -27 KOe and 27 KOe at room temperature. We found that the thermal stability and magnetization depend of the synthesis method used to cover the Angustifolia Kunth bamboo fibers. In addition, an improved magnetic response was observed when NaOH solution is used to generate the magnetite coating on the fiber surface.

  7. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability

    International Nuclear Information System (INIS)

    Ma Mingguo; Zhu Jiefang; Li Shuming; Jia Ning; Sun Runcang

    2012-01-01

    Nanocomposites of cellulose/iron oxide have been successfully prepared by hydrothermal method using cellulose solution and Fe(NO 3 ) 3 ·9H 2 O at 180 °C. The cellulose solution was obtained by the dissolution of microcrystalline cellulose in NaOH/urea aqueous solution, which is a good system to dissolve cellulose and favors the synthesis of iron oxide without needing any template or other reagents. The phases, microstructure, and morphologies of nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectra (EDS). The effects of the heating time, heating temperature, cellulose concentration, and ferric nitrate concentration on the morphological behavior of products were investigated. The experimental results indicated that the cellulose concentration played an important role in both the phase and shape of iron oxide in nanocomposites. Moreover, the nanocomposites synthesized by using different cellulose concentrations displayed different thermal stabilities. - Highlights: ► Nanocomposites of cellulose/iron oxide have been prepared by hydrothermal method. ► The cellulose concentration played an important role in the phase of iron oxide. ► The cellulose concentration played an important role in the shape of iron oxide. ► The samples displayed different thermal stabilities.

  8. Effect of Gd3+ Ions on the Thermal Behavior, Optical, Electrical and Magnetic Properties of PbS Thin Films

    Science.gov (United States)

    Ravishankar, S.; Balu, A. R.; Nagarethinam, V. S.

    2018-02-01

    This paper reports the effect of Gd doping concentration on the thermal behavior, structural, morphological, optical, electrical and magnetic properties of PbS thin films. Gd doping concentration in PbS was varied as 0 wt.%, 1 wt.%, 2 wt.%, 3 wt.% and 4 wt.%, respectively. Thermogravimetric-Differential Thermal Analysis curves confirm that both the undoped and doped films become well crystallized above 354°C and 342°C, respectively. X-ray diffraction studies confirm that all the films exhibit face-centered cubic crystal structure with a strong (2 0 0) preferential growth. Undoped films exhibit triangular-shaped grains which modify to small cuboids with Gd doping. Energy dispersive x-ray spectra confirm the presence of Gd in the doped films. Transmission electron microscopy images confirm the presence of nanosized grains for both the undoped and doped films. The doped films showed increased transparency and improved magnetic behaviour. The results obtained confirm that Gd3+, a rare earth ion, strongly influences the physical properties of PbS thin films to a large extent.

  9. Thermal annealing behavior of niobium-implanted {alpha}-Al{sub 2}O{sub 3} under reducing environment

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianer; Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Gan Mingle; Takeshita, Hidefumi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Thermal annealing behavior is studied in {alpha}-Al{sub 2}O{sub 3} implanted with {sup 93}Nb{sup +} using RBS/channeling technique and optical absorption spectrometry. The samples with <0001> and <112-bar0> orientations are implanted with 300 keV and 400 keV {sup 93}Nb{sup +} ions. Thermal annealing under reducing environment (Ar+3%H{sub 2}) is employed in the temperature range from 600 to 1000degC to explore unusual materials phase. The annealing up to 1000degC for an hour does not show any essential change in RBS/channeling spectra in two kinds of samples but the significant decrease in the visible region is observed in optical absorption spectra. After annealing at 1000degC for 10 hours, the recovery of the lattice damage is detected by RBS/channeling analysis especially in (112-bar0) sample. In the optical absorption spectra, new absorption envelope appears in the ultraviolet region. The results are related to the formation of niobium metal fine particles, and the sharp distribution is realized especially in (0001) sample. (author)

  10. Performance and thermal behavior of wood plastic composite produced by nonmetals of pulverized waste printed circuit boards.

    Science.gov (United States)

    Guo, Jie; Tang, Yinen; Xu, Zhenming

    2010-07-15

    A new kind of wood plastic composite (WPC) was produced by compounding nonmetals from waste printed circuit boards (PCBs), recycled high-density polyethylene (HDPE), wood flour and other additives. The blended granules were then extruded to profile WPC products by a conical counter-rotating twin-screw extruder. The results showed that the addition of nonmetals in WPC improved the flexural strength and tensile strength and reduced screw withdrawal strength. When the added content of nonmetals was 40%, the flexural strength of WPC was 23.4 MPa, tensile strength was 9.6 MPa, impact strength was 3.03 J/m(2) and screw withdrawal strength was 1755 N. Dimensional stability and fourier transform infrared spectroscopy (FTIR) of WPC panels were also investigated. Furthermore, thermogravimetric analysis showed that thermal degradation of WPC mainly included two steps. The first step was the decomposition of wood flour and nonmetals from 260 to 380 degrees C, and the second step was the decomposition of HDPE from 440 to 500 degrees C. The performance and thermal behavior of WPC produced by nonmetals from PCBs achieves the standard of WPC. It offers a novel method to treat nonmetals from PCBs. 2010 Elsevier B.V. All rights reserved.

  11. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires.

    Science.gov (United States)

    Leite, Ricardo Machado; Centeno, Felipe Roman

    2018-01-15

    Studies on fire behavior are extremely important as they contribute in a firefighting situation or even to avoid such hazard. Experimental studies of fire in real scale are unfeasible, implying that reduced-scale experiments must be performed, and results extrapolated to the range of interest. This research aims to experimentally study the fire behavior in tanks of 0.04m, 0.20m, 0.40m, 0.80m and 4.28m diameter, burning regular gasoline or diesel oil S-500. The following parameters were here obtained: burning rates, burning velocities, heat release rates, flame heights, and temperature distributions adjacent to the tank. Such parameters were obtained for each tank diameter with the purpose of correlating the results and understanding the relationship of each parameter for the different geometrical scale of the tanks. Asymptotic results for larger tanks were found as (regular gasoline and diesel oil S-500, respectively): burning rates 0.050kg/(m 2 s) and 0.031kg/(m 2 s), burning velocities 4.0mm/min and 2.5mm/min, heat release rates per unit area 2200kW/m 2 and 1500kW/m 2 , normalized averaged flame heights (H i /D, where H i is the average flame height, D is the tank diameter) 0.9 and 0.8. Maximum temperatures for gasoline pools were higher than for diesel oil pools, and temperature gradients close to the tanks were also higher for the former fuel. The behavior of the maximum temperature was correlated as a function of the tank diameter, the heat release rate of each fuel and the dimensionless distance from the tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core

    International Nuclear Information System (INIS)

    Belo, Allan Cavalcante

    2016-01-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4 th generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range and

  13. Corrosion Behavior Of Potential Structural Materials For Use In Nitrate Salts Based Solar Thermal Power Plants

    Science.gov (United States)

    Summers, Kodi

    The increasing global demand for electricity is straining current resources of fossil fuels and placing increased pressure on the environment. The implementation of alternative sources of energy is paramount to satisfying global electricity demand while reducing reliance on fossil fuels and lessen the impact on the environment. Concentrated solar power (CSP) plants have the ability to harness solar energy at an efficiency not yet achieved by other technologies designed to convert solar energy to electricity. The problem of intermittency in power production seen with other renewable technologies can be virtually eliminated with the use of molten salt as a heat transfer fluid in CSP plants. Commercial and economic success of CSP plants requires operating at maximum efficiency and capacity which requires high temperature and material reliability. This study investigates the corrosion behavior of structural alloys and electrochemical testing in molten nitrate salts at three temperatures common to CSP plants. Corrosion behavior was evaluated using gravimetric and inductively-coupled plasma optical emission spectroscopy (ICP-OES) analysis. Surface morphology was studied using scanning electron microscopy. Surface oxide structure and chemistry was characterized using X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical behavior of candidate structural alloys Alloy 4130, austenitic stainless steel 316, and super-austenitic Incoloy 800H was evaluated using potentiodynamic polarization characteristics. It was observed that electrochemical evaluation of these candidate materials correlates well with the corrosion behavior observed from gravimetric and ICP-OES analysis. This study identifies that all three alloys exhibited acceptable corrosion in 300°C molten salt while elevated salt temperatures require the more corrosion resistant alloys, stainless steel 316 and 800H. Characterization of the sample

  14. Las relaciones empresariales: una tipología de redes

    OpenAIRE

    José Luis Galán; Cristóbal Casanueva; Ignacio Castro-Abancéns

    2010-01-01

    El conjunto de redes en las que participan las empresas son consideradas como un recurso para las mismas. Cada empresa participa en redes diferentes y su posición en cada red la hace diferente a las demás. Las relaciones de una empresa se comportan como un recurso que está en la base de la heterogeneidad que le permite ser soporte de una ventaja competitiva sostenible. Sin embargo, el análisis de las redes empresariales es complejo. Este trabajo pretende disminuir esa complejidad analiz...

  15. Minería de datos en redes educativas

    OpenAIRE

    Sosa, Marcelo Omar; Sosa Bruchmann, Eugenia C.; Vega, Raúl Marcelo

    2013-01-01

    La minería de datos (data mining) viene ampliando sus áreas de aplicación, demostrando la validez de sus descripciones y predicciones en el análisis de datos. Las nuevas áreas en las que se vienen desarrollando estudios se relacionan directamente con el fenómeno de los últimos años como son las redes sociales. Siguiendo las características de estas últimas se crearon redes como lo son las redes educativas, las que se conforman en estratos académicos, que pueden ser de tamaño muy grandes si se...

  16. El papel de las redes sociales en los movimientos sociales

    OpenAIRE

    Arrate Cobo, Aroa

    2016-01-01

    Las Redes Sociales cada vez están mas presentes en nuestras vidas, marcando un antes y un después con su llegada. Teniendo esto en cuenta, en este Trabajo de Fin de Grado, se propone un análisis sobre el papel de las redes sociales en los Movimientos Sociales. Para ello se ha realizado una investigación de algunos de los últimos movimientos sociales más presentes en las redes. Esta se completa con entrevistas a participantes de estos movimientos, al objeto de contrastar los datos ...

  17. Revolución de las Redes Sociales

    OpenAIRE

    Ibarra-Rementería, Garazi

    2012-01-01

    El desarrollo de las redes sociales facilita la comunicación entre los usuarios de un modo asíncrono, ofreciendo la posibilidad de compartir objetos y transmitir opiniones de distinta índole. Este trabajo se centra, en el uso que las personas y, en especial, los adolescentes hacen de Facebook, Tuenti y otras redes sociales. Este trabajo tiene como objeto convencer de los beneficios que la educación podría obtener basándose en la repercusión indiscutible que las redes sociales han causado e...

  18. Thermal Behavior of an HSLA Steel and the Impact in Phase Transformation: Submerged Arc Welding (SAW) Process Approach to Pipelines

    Science.gov (United States)

    Costa, P. S.; Reyes-Valdés, F. A.; Saldaña-Garcés, R.; Delgado, E. R.; Salinas-Rodríguez, A.

    Heat input during welding metal fusion generates different transformations, such as grain growth, hydrogen cracking, and the formation of brittle structures, generally associated with the heat-affected zone (HAZ). For this reason, it is very important to know the behavior of this area before welding. This paper presents a study of the thermal behavior and its effect on phase transformations in the HAZ, depending on cooling rates (0.1-200 °C/s) to obtain continuous cooling transformation (CCT) curves for an high-strength low-alloy (HSLA) steel. In order to determine the formed phases, optical microscopy and Vickers microhardness measurement were used. The experimental CCT curve was obtained from an HSLA steel, and the results showed that, with the used cooling conditions, the steel did not provide formation of brittle structures. Therefore, it is unlikely that welds made by submerged arc welding (SAW) may lead to hydrogen embrittlement in the HAZ, which is one of the biggest problems of cracking in gas conduction pipelines. In addition, with these results, it will be possible to control the microstructure to optimize the pipe fabrication with SAW process in industrial plants.

  19. Analysis of the hydrothermal behavior and entropy generation in a regenerative cooling channel considering thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, M., E-mail: mostafamahmoodi@engineer.com [Department of Aerospace Engineering, Malek-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Kandelousi, Sh., E-mail: m.Kandelousi.sh@gmail.com [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2015-09-15

    Highlights: • Heat transfer enhancement of kerosene–alumina nanofluid is studied. • DTM is applied to solve the governing equations. • Nu is an increasing function of Rd, ϕ. • Be is a decreasing function of R, Ec. - Abstract: A semi-analytical investigation is performed into the force convection heat transfer characteristics and entropy generation of kerosene–alumina nanofluid in a channel of semi cryogenic engine. Thermal radiation effect is considered in energy equation. The governing equations are reduced to ordinary equation by means of similarity solution and solve by Differential Transformation Method. Velocity, temperature and concentration profiles as well as the skin friction coefficient, Nusselt number and Bejan number are determined for different values of pertinent parameters such as Radiation parameter, nanofluid volume fraction, Viscosity parameter and Eckert number. Results indicate that entropy generation is an increasing function of Viscosity parameter and Eckert number while it is a decreasing function of Radiation parameter. Also it can be concluded that Nusselt number enhances with augment of Radiation parameter and nanofluid volume fraction while it decreases with increase of Radiation and Viscosity parameter parameters.

  20. Analysis of the hydrothermal behavior and entropy generation in a regenerative cooling channel considering thermal radiation

    International Nuclear Information System (INIS)

    Mahmoodi, M.; Kandelousi, Sh.

    2015-01-01

    Highlights: • Heat transfer enhancement of kerosene–alumina nanofluid is studied. • DTM is applied to solve the governing equations. • Nu is an increasing function of Rd, ϕ. • Be is a decreasing function of R, Ec. - Abstract: A semi-analytical investigation is performed into the force convection heat transfer characteristics and entropy generation of kerosene–alumina nanofluid in a channel of semi cryogenic engine. Thermal radiation effect is considered in energy equation. The governing equations are reduced to ordinary equation by means of similarity solution and solve by Differential Transformation Method. Velocity, temperature and concentration profiles as well as the skin friction coefficient, Nusselt number and Bejan number are determined for different values of pertinent parameters such as Radiation parameter, nanofluid volume fraction, Viscosity parameter and Eckert number. Results indicate that entropy generation is an increasing function of Viscosity parameter and Eckert number while it is a decreasing function of Radiation parameter. Also it can be concluded that Nusselt number enhances with augment of Radiation parameter and nanofluid volume fraction while it decreases with increase of Radiation and Viscosity parameter parameters

  1. Thermally robust chelating adsorbents for the capture of gaseous mercury: Fixed-bed behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ji, L.; Abu-Daabes, M.; Pinto, N.G. [University of Cincinnati, Cincinnati, OH (USA). Dept. of Chemical and Material Engineering

    2009-02-15

    Thermally robust chelating adsorbents for the capture of vapor-phase mercuric chloride (HgCl2) have been developed, to address the issue of mercury removal from flue gases from coal-fired power plants. The adsorbents are mesoporous silica substrates functionalized with a chelating agent and coated with an ionizing surface nano-layer. This architecture enables selective, multi-dentate adsorption of mercury directly from the gas phase with high capacity. The capture efficiency of the adsorbents was evaluated in the fixed-bed mode for oxidized mercury at 160{sup o}C. Two chelating adsorbents, one functionalized with 3-mercaptopropyltrimethoxysilane (MPTS) and the other with 2-mercaptobenzothialzole (MBT), were studied. For both adsorbents a high mercury uptake capacity was observed, several times higher than that of commercial activated carbon. The mechanism for mercury uptake in the two adsorbents is different. The effect of pore size on uptake was also evaluated. It was found that pore size does not have a significant effect on the mercury adsorption, and mercury diffusion through the ionic coating is believed to be the rate-limiting step for capture.

  2. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Minh-Tai Le

    2015-08-01

    Full Text Available In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA and thermogravimetric analysis (TGA are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg, as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs.

  3. Pyrolysis kinetics and thermal decomposition behavior of polycarbonate - a TGA-FTIR study

    Directory of Open Access Journals (Sweden)

    Apaydin-Varol Esin

    2014-01-01

    Full Text Available This study covers the thermal degradation of polycarbonate by means of Thermogravimetric Analyzer coupled with Fourier transform infrared spectrometer (TGA-FTIR. Thermogravimetric analysis of polycarbonate was carried out at four different heating rates of 5, 10, 15, and 20°C per minute from 25°C to 1000°C under nitrogen atmosphere. The results indicated that polycarbonate was decomposed in the temperature range of 425-600°C. The kinetic parameters, such as activation energy, pre-exponential factor and reaction order were determined using five different kinetic models; namely Coast-Redfern, Friedman, Kissinger, Flynn-Wall-Ozawa (FWO, and Kissinger-Akahira-Sunose (KAS. Overall decomposition reaction order was determined by Coats-Redfern method as 1.5. Average activation energy was calculated as 150.42, 230.76, 216.97, and 218.56 kJ/mol by using Kissinger, Friedman, FWO, and KAS models, respectively. Furthermore, the main gases released during the pyrolysis of polycarbonate were determined as CO2, CH4, CO, H2O, and other lower molecular weight hydrocarbons such as aldehydes, ketones and carbonyls by using thermogravimetric analyzer coupled with Fourier transform infrared spectrometer.

  4. Implications of Thermal Annealing on the Benzene Vapor Sensing Behavior of PEVA-Graphene Nanocomposite Threads.

    Science.gov (United States)

    Patel, Sanjay V; Cemalovic, Sabina; Tolley, William K; Hobson, Stephen T; Anderson, Ryan; Fruhberger, Bernd

    2018-02-14

    The effect of thermal treatments, on the benzene vapor sensitivity of polyethylene (co-)vinylacetate (PEVA)/graphene nanocomposite threads, used as chemiresistive sensors, was investigated using DC resistance measurements, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). These flexible threads are being developed as low-cost, easy-to-measure chemical sensors that can be incorporated into smart clothing or disposable sensing patches. Chemiresistive threads were solution-cast or extruded from PEVA and vapor in dry air. In addition, annealing increased the speed of response and recovery upon exposure to and removal of benzene vapor. DSC results showed that the presence of graphene raises the freezing point, and may allow greater crystallinity, in the nanocomposite after annealing. SEM images confirm increased surface roughness/area, which may account for the increase response speed after annealing. Benzene vapor detection at 5 ppm is demonstrated with limits of detection estimated to be as low as 1.5 ppm, reflecting an order of magnitude improvement over unannealed threads.

  5. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets.

    Science.gov (United States)

    Le, Minh-Tai; Huang, Shyh-Chour

    2015-08-24

    In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs.

  6. Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics.

    Science.gov (United States)

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-10-01

    The thermal conversion characteristics, kinetics, and thermodynamics of agricultural residues, rape straw (RS) and wheat bran (WB), were investigated under non-isothermal conditions. TGA experiments showed that the pyrolysis characteristics of RS were quite different from those of WB. As reflected by the comprehensive devolatilization index, when the heating rate increased from 10 to 30Kmin -1 , the pyrolysis performance of RS and WB were improved 5.27 and 5.96 times, respectively. The kinetic triplets of the main pyrolysis process of agricultural residues were calculated by the Starink method and the integral master-plots method. Kinetic analysis results indicated that the most potential kinetic models for the pyrolysis of RS and WB were D 2 and F 2.7 , respectively. The thermodynamic parameters (ΔH, ΔG, and ΔS) were determined by the activated complex theory. The positive ΔH, positive ΔG, and negative ΔS at characteristic temperatures validated that the pyrolysis of agricultural residues was endothermic and non-spontaneous. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Thermal Behavior of a Single Spent Fuel in Water Pool Storage Under Partially Uncovered Condition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo Ram; Park, Hee Sung; Song, Sub Lee; Lee, Jae Young [Handong Global Univ, Pohang (Korea, Republic of)

    2015-10-15

    LOCA in SFP can be led by a partial drain-down or a boil off scenario. In order to predict the response and consequence in such case, exact model on the partially uncovered SFP has to be established. Most studies on accidents in SFP have been done by safety analysis codes such as ATHLET-CD, ASTEC, MAAP, and MELCOR. However, an experimental investigation has not been conducted so far. Schultz et al.(2014) studied experimentally the response of air cooled BWR fuel assembly which is blocked at lower side fluid path. In this study, we experimentally investigated the thermal response of a partially uncovered single nuclear fuel rod (SNFR) in the SFP. The SNFR was 1/4 scaled down in axial length. 1-dimensional numerical analysis model was developed and compared with the result of experiment. An experimental study was conducted for obtaining transient temperature profile data of a modeled single nuclear fuel rod in heating condition under partially uncovered condition. Numerical prediction model was developed also and the prediction result was compared with the experimental result.

  8. Empleo de redes neuronales artificiales en redes de distribución eléctrica

    OpenAIRE

    Alexander Cabrera; Delmar Jaime; Dante Miraglia; Sergio de la Fé Dotres

    2011-01-01

    En el trabajo se muestran las experiencias alcanzadas  en la aplicación de las Redes Neuronales Artificiales para resolver problemas tales como  la predicción de carga y de pérdidas de energía en las líneas y la localización de zonas en falla en circuitos de distribución de la ciudad de Santiago de Cuba.

  9. Thermal conductivity and thermal diffusivity

    International Nuclear Information System (INIS)

    Hust, J.G.

    1983-01-01

    This chapter examines the heat transfer properties of solids, with emphasis on the behavior of pure metals and alloys. Topics considered include electronic conduction, magnetic field effects, lattice conduction, measuring methods, specimen size, uncertainty, thermal anchoring, radial heat loss, thermal conductivity apparatus, thermal diffusivity apparatus, empirical correlations, the Wiedemann-Franz-Lorenz law, Matthiessen's rule, low-temperature correlation, predictive techniques, crystalline dielectrics, and disordered dielectrics. The materials examined include copper, aluminium, binary alloys, structural alloys, and structural composites

  10. Redes de pequenas empresas: a aplicação de uma tipologia em uma rede de supermercados.

    Directory of Open Access Journals (Sweden)

    Rivanda Meira Teixeira

    2007-09-01

    Full Text Available O presente estudo teve como objetivo analisar as características de uma rede do setor de comércio varejista, a Rede Econômica de Supermercados, de acordo com a tipologia de redes de empresas proposta por Hoffmann et al. (2004. Além disso, buscou-se identificar quais são os principais benefícios e dificuldades verificados na operacionalização da Rede. A partir de entrevistas realizadas com o gestor administrativo da Rede e com um gerente de compras, e com base na análise de documentos e material institucional, pode-se classificar a Rede como de cooperação horizontal, aglomerada, formal e não-orbital. As principais vantagens percebidas para os supermercados, com relação à participação na rede, foram a realização de ações de marketing e de compras conjuntas. A principal dificuldade apontada reside na conciliação dos objetivos do negócio com os objetivos individuais.

  11. Redes Corporativas Inmersivas. Nuevas formas de uso de las redes sociales

    Directory of Open Access Journals (Sweden)

    Jorge E. Giménez Hernando

    2011-07-01

    Full Text Available Las redes sociales se están imponiendo como forma de comunicación a través de Internet sobre cualesquiera otros formatos tradicionales, llegando incluso a eclipsar el más reciente y universal correo electrónico. De entre sus múltiples aplicaciones, destacan desde el punto de vista empresarial las redes sociales corporativas, que se conciben como un vehículo extraordinariamente eficaz para transferir el conocimiento que aporte a la compañía ventaja competitiva para posicionarse y operar en el mercado.Por otra parte, el auge del desarrollo de las nuevas tecnologías basadas en 3D, los mundos virtuales o la realidad aumentada, que se ha basado en los últimos años en entornos lúdicos y de esparcimiento, está comenzando a aplicarse a otro tipo de contenidos, que se intentan aprovechar de su realismo y motivación.El presente artículo presenta la realización de una experiencia piloto en que se han aunado ambos conceptos, aplicando las tecnologías de mundos virtuales a las redes sociales corporativas, y permitiendo la comparación de los resultados obtenidos con los acumulados en experiencias anteriores de acceso web tradicional. Dicha comparación se ha basado en las encuestas realizadas a los usuarios tras la experiencia piloto.

  12. Thermal Behavior of Cd During Sludge Incineration: Experiments and Thermodynamic Equilibrium Model.

    Science.gov (United States)

    Liu, Jingyong; Zhuo, Zhongxu; Sun, Shuiyu; Xie, Wuming; Lu, Shaoyou; Sun, Jian; Kuo, Jiahong; Yujie, Wang

    2016-12-01

      Experiments and thermodynamic equilibrium calculations were performed to investigate the behavior of Cd during sewage sludge incineration. The chemical equilibrium calculations indicated that chlorine significantly increased the volatilization of Cd in the form of CdCl2. In addition, SiO2-containing materials can function as sorbents for stabilizing Cd. The effect of PVC added to the sludge on the migration of Cd in the sludge was greater than that of NaCl. As the temperature increased, both organic and inorganic chlorides reduced the Cd distribution in the bottom ash. The chloride concentration, and the incineration time exhibited insignificant changes in Cd emission. With the addition of either NaCl or PVC into the sludge, the phases of Cd present in the bottom slag were primarily present in the form of silica-alumina oxides or multi-metal oxide, which could inhabit the Cd volatilization.

  13. Mechanical and thermal behavior of a prototype support structure for a large silicon vertex detector (BCD)

    International Nuclear Information System (INIS)

    Mulderink, H.; Michels, N.; Joestlein, H.

    1989-01-01

    The Bottom Collider Detector (BCD) has been proposed as a device to study large numbers of events containing B mesons. To identify secondary vertices in hadronic events it will employ the most ambitious silicon strip tracking detector proposed to-date. This report will discuss results from measurements on a first mechanical/thermal model of the vertex detector support structure. The model that was built and used for the studies described here is made of brass. Brass was used because it is readily available and easily assembled by soft soldering, and, for appropriate thicknesses, it will behave similarly to the beryllium that will be used in the actual detector. The trough was built to full scale with the reinforcement webbing and the cooling channels in place. There were no detector modules in place. We plan, however, to install modules in the trough in the future. The purpose of the model was to address two concerns that have arisen about the proposed structure of the detector. The first is whether or not the trough will be stable enough. The trough must be very light in weight yet have a high degree of rigidity. Because of the 3m length of the detector there is question as to the stiffness of the proposed trough. The main concern is that there will sagging or movement of the trough in the middle region. The second problem is the heat load. There will be a great deal of heat generated by the electronics attached to the detector modules. So the question arises as to whether or not the silicon detectors can be kept cool enough so that when the actual experiment is run the readings will be valid. The heat may also induce motion by differential expansion of support components. 26 figs

  14. Thermal Effects on the Compressive Behavior of IM7/PET15 Laminates

    Science.gov (United States)

    Walker, Sandra Polesky

    2003-01-01

    The effect of changing operating temperature on the compressive response of IM7/PETI5 composite laminates is investigated within this paper. The three temperatures evaluated for this study were 129 C, 21 C, and 177 C, a spectrum from cryogenic to an elevated operating temperature. Laminate compressive strength property testing was conducted using the Wyoming Combined Load Compression fixture to generate strength data at the three operating temperatures of interest for several lay-ups. A three-dimensional finite element analysis model of a [90/0]8s composite laminate subject to compressive loading is developed. The model is used to study the key attributes of the laminate that significantly influence the state of stress in the laminate. Both the resin rich layer located between lamina and the thermal residual stresses present in the laminate due to curing are included in the analysis model. For the laminate modeled, the effect of modeling temperature dependent material properties was determined to be insignificant for the operating temperatures studied. Simply using the material properties measured at the operating temperature of interest was sufficient for predicting stresses accurately in a linear analysis for the current problem. The three-dimensional analysis results revealed that the application of an applied compressive axial load in the 0-degree direction decreased the interlaminar stresses present in the laminate initially due to curing. Therefore, failure was concluded not be attributable to the interlaminar stresses in the composite laminate being studied when a compressive load is applied. The magnitude of the measured laminate compressive strength change with a change in temperature is concluded to be dominated by the change in the lamina compressive axial strength with a change in temperature.

  15. Runaway behavior and thermally safe operation of multiple liquid-liquid reactions in the semi-batch reactor. The nitric acid oxidation of 2-octanol.

    NARCIS (Netherlands)

    van Woezik, B.A.A.; Westerterp, K.R.

    2001-01-01

    The thermal runaway behavior of an exothermic, heterogeneous, multiple reaction system has been studied in a cooled semi-batch reactor. The nitric acid oxidation of 2-octanol has been used to this end. During this reaction, 2-octanone is formed, which can be further oxidized to unwanted carboxylic

  16. Redes sociales en las bibliotecas escolares

    Directory of Open Access Journals (Sweden)

    Vicent Giménez Chornet

    2015-04-01

    Full Text Available Las bibliotecas escolares deben ser un medio para acceder al conocimiento, y las Tecnologías de la Información y la Comunicación pueden facilitar que los estudiantes adolescentes se inicien en el uso de estas tecnologías para desarrollar sus capacidades y habilidades en la búsqueda de información. Las redes sociales e Internet preocupan por las situaciones problemáticas que pueden provocar en los niños y adolescentes que no sean conscientes de los peligros de la red, pero ello no debe impedir que conozcan las ventajas que las TIC ofrecen como forma y medio de aprender. En el artículo se analizan diferentes propuestas innovadoras que se han implantado en distintas bibliotecas escolares del mundo. Se concluye que es importante que los estudiantes preuniversitarios conozcan y dominen estas herramientas antes de incorporarse al mundo laboral o a la universidad.

  17. Comparative physical-chemical characterization of encapsulated lipid-based isotretinoin products assessed by particle size distribution and thermal behavior analyses

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Carla Aiolfi, E-mail: carlaaiolfi@usp.br [Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000 (Brazil); Menaa, Farid [Department of Dermatology, School of Medicine Wuerzburg, Wuerzburg 97080 (Germany); Fluorotronics, Inc., 1425 Russ Bvld, San Diego Technology Incubator, San Diego, CA 92101 (United States); Menaa, Bouzid, E-mail: bouzid.menaa@gmail.com [Fluorotronics, Inc., 1425 Russ Bvld, San Diego Technology Incubator, San Diego, CA 92101 (United States); Quenca-Guillen, Joyce S. [Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000 (Brazil); Matos, Jivaldo do Rosario [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000 (Brazil); Mercuri, Lucildes Pita [Department of Exact and Earth Sciences, Federal University of Sao Paulo, Diadema, SP 09972-270 (Brazil); Braz, Andre Borges [Department of Engineering of Mines and Oil, Polytechnical School, University of Sao Paulo, SP 05508-900 (Brazil); Rossetti, Fabia Cristina [Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14015-120 (Brazil); Kedor-Hackmann, Erika Rosa Maria; Santoro, Maria Ines Rocha Miritello [Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-000 (Brazil)

    2010-06-10

    Isotretinoin is the drug of choice for the management of severe recalcitrant nodular acne. Nevertheless, some of its physical-chemical properties are still poorly known. Hence, the aim of our study consisted to comparatively evaluate the particle size distribution (PSD) and characterize the thermal behavior of the three encapsulated isotretinoin products in oil suspension (one reference and two generics) commercialized in Brazil. Here, we show that the PSD, estimated by laser diffraction and by polarized light microscopy, differed between the generics and the reference product. However, the thermal behavior of the three products, determined by thermogravimetry (TGA), differential thermal (DTA) analyses and differential scanning calorimetry (DSC), displayed no significant changes and were more thermostable than the isotretinoin standard used as internal control. Thus, our study suggests that PSD analyses in isotretinoin lipid-based formulations should be routinely performed in order to improve their quality and bioavailability.

  18. Reciclando a cidadania em rede interdisciplinar

    Directory of Open Access Journals (Sweden)

    Foresti, Andréa Jaeger

    2006-01-01

    Full Text Available Este texto tem por objetivo evidenciar o processo de constituição da ONG REDECRIAR, diretamente vinculada ao Projeto “Reciclando a Cidadania em Rede Interdisciplinar”, examinando os elementos que nele estão imbricados. O primeiro elemento se refere ao chamado Terceiro Setor, o qual se configurou como espaço de intervenção profissional, viabilizando a articulação de conhecimentos interdisciplinares, norteados por princípios éticos e políticos, que buscam garantir a universalidade das políticas sociais públicas. O segundo elemento a ser examinado é o Desenvolvimento Sustentável que se conformou como tema central das ações planejadas por abarcar, em seu conceito, o equilíbrio entre as questões ambientais, sociais e econômicas. Esta conformação determinou a efetividade da proposta, ao delinear o conteúdo das intervenções, direcionado a um públicoalvo coletivo. Nessa perspectiva, a implementação dos pressupostos metodológicos do Trabalho, em Redes Sociais, constitui-se como terceiro elemento imbricado no processo de constituição da REDECRIAR, corroborando com a reciclagem – aproximação prática de um novo conceito – da Cidadania, efetivado por um grupo de profissionais do Serviço Social, Biologia e Nutrição

  19. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior.

    Science.gov (United States)

    Ye, Rongda; Fang, Xiaoming; Zhang, Zhengguo; Gao, Xuenong

    2015-11-13

    Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28)/expanded perlite (EP) composite phase change materials (PCMs). The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%-35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.

  20. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior

    Directory of Open Access Journals (Sweden)

    Rongda Ye

    2015-11-01

    Full Text Available Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28/expanded perlite (EP composite phase change materials (PCMs. The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%–35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.

  1. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    Science.gov (United States)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  2. Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water

    Science.gov (United States)

    Li, Shilei; Wang, Yanli; Wang, Hui; Xin, Changsheng; Wang, Xitao

    2016-02-01

    The stress corrosion cracking (SCC) behavior of cast austenitic stainless steels of unaged and thermally aged at 400 °C for as long as 20,000 h were studied by using a slow strain rate testing (SSRT) system. Spinodal decomposition in ferrite during thermal aging leads to hardening in ferrite and embrittlement of the SSRT specimen. Plastic deformation and thermal aging degree have a great influence on the oxidation rate of the studied material in simulated PWR primary water environments. In the SCC regions of the aged SSRT specimen, the surface cracks, formed by the brittle fracture of ferrite phases, are the possible locations for SCC. In the non-SCC regions, brittle fracture of ferrite phases also occurs because of the effect of thermal aging embrittlement.

  3. The Effects of Internal Components' Disposition on Thermal-Hydraulic Behaviors in Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Han, Ji Woong; Eoh, Jae Hyuk; Kim, Seong O

    2009-01-01

    Decay heat removal is very important in a nuclear power plant. The KALIMER-600, Korea Advanced Liquid MEtal Reactor, employs the PDRC(Passive Decay heat Removal Circuit) to remove the decay heat. However the cooling performance before the activation of DHX greatly depends on the natural circulation flow within the reactor pool. In the previous studies the effect of various design parameters such as coastdown flow, IHX(Intermediate Heat eXchanger) elevation and heat transfer via CCS (Cavity Cooling System) on the initial cooling performance has been analyzed. In the case of IHX elevation analysis the increase of IHX elevation was shown to enhance the initial cooling performance. However, the elevating the IHX is accompanied by the variation of hot or cold pool volume, the previous calculation was resulted from the combination of those effects. In order to analyze those effects qualitatively supplementary calculation conditions were prepared and related analyses have been done in this study. In those analyses the ratio between hot and cold pool volumes has been varied without elevating the IHX by changing the vertical position of separation plate and baffle plate. The COMMIX-1AR/P code is utilized as a tool to investigate overall transient behaviors within a pool. This study is expected to provide the basic information for the decision of internal components' layout in the sodium cooled fast reactor

  4. Thermal behavior in single track during selective laser melting of AlSi10Mg powder

    Science.gov (United States)

    Wei, Pei; Wei, Zhengying; Chen, Zhen; He, Yuyang; Du, Jun

    2017-09-01

    A three-dimensional model was developed to simulate the radiation heat transfer in the AlSi10Mg packed bed. The volume of fluid method (VOF) was used to capture the free surface during selective laser melting (SLM). A randomly packed powder bed was obtained using discrete element method (DEM) in Particle Flow Code (PFC). The proposed model has demonstrated a high potential to simulate the selective laser melting process (SLM) with high accuracy. In this paper, the effect of the laser scanning speed and laser power on the thermodynamic behavior of the molten pool was investigated numerically. The results show that the temperature gradient and the resultant surface tension gradient between the center and the edge of the molten pool increase with decreasing the scanning speed or increasing the laser power, thereby intensifying the Marangoni flow and attendant turbulence within the molten pool. However, at a relatively high scanning speed, a significant instability may be generated in the molten pool. The perturbation and instability in the molten pool during SLM may result in an irregular shaped track.

  5. Effect of Shot Peening on Tribological Behaviors of Molybdenum-Thermal Spray Coating using HVOF Method

    Directory of Open Access Journals (Sweden)

    H. Mohassel

    2017-03-01

    Full Text Available We have investigated the influence of post-shot peening on Mo-coating as compared to substrate steel 16MnCr5 (according to ZFN-413 A. Shot peening of carburized steel discs with and without Mo-coating was performed by using Shot size S230, Almen intensity 0.42 mm ’A’ and exposure time 96 sec. Tribological properties were analyzed, using pin-on-disc tribometer apparatus, under dry sliding conditions at different specific applied loads, sliding velocities and distance. Typical standardized methods were used for studying of surface integrity parameters (micro-hardness, topography and surface roughness. Surface morphology of the Mo-coating specimens with and without Shot Peening before and after wear was evaluated by Scanning Electron Microscopy. The results showed that shot peening after Mo-coating has considerable effect on improving wear resistance and because of having low friction coefficient has showed better wear behavior and tribologi cal properties over that of the un-peened Mo-coating.

  6. Influence of oxygen on the thermal behavior of the ZrO2-Fe2O3 system

    International Nuclear Information System (INIS)

    Stefanic, G.; Grzeta, B.; Music, S.

    2000-01-01

    Amorphous precursors of the ZrO 2 -Fe 2 O 3 system at the ZrO 2 -rich side of the concentration range were prepared by co-precipitation of the corresponding nitrates from aqueous solutions. The thermal behavior of the amorphous samples obtained was investigated using differential thermal analysis. It was found that amorphous precursors with Fe 2 O 3 content up to 30 mol% are single co-gels. In situ phase development during the calcination of the samples at low air pressure (∝4 x 10 -3 Pa) was investigated using X-ray diffraction at high temperature. The results were compared with the results of phase analysis after calcination and cooling in the presence of air at atmospheric pressure (∝10 5 Pa). The phase compositions of the samples at room temperature were determined using X-ray diffraction and laser Raman spectroscopy. The incorporation of Fe 3+ cations partially stabilized cubic ZrO 2 during the calcination in the presence of air at atmospheric pressure, but destabilized this polymorph during calcination at very low pressure. The observed differences in the phase development were attributed to the influence of oxygen vacancies introduced during calcination at very low pressure. The solubility of Fe 2 O 3 in ZrO 2 also depended on the calcination procedure. During calcination at atmospheric pressure, the solubility limits of Fe 2 O 3 in ZrO 2 decreased from more than 30 mol% at 600 C to ∝2 mol% at 1100 C. On the other hand, the solubility of Fe 2 O 3 in ZrO 2 was shown to be significantly higher during calcination at up to 1200 C at very low pressure. (orig.)

  7. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Ali, E-mail: alinazari84@aut.ac.ir [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of); Riahi, Shadi [Department of Technical and Engineering Sciences, Islamic Azad University (Saveh Branch), Saveh (Iran, Islamic Republic of)

    2010-11-15

    Research highlights: {yields} TiO{sub 2} nanoparticles effects on flexural strength of self compacting concrete. {yields} Physical and microstructural consideration. {yields} Mechanical tests. {yields} Thermal analysis. {yields} Porosimetry. - Abstract: In the present study, flexural strength, thermal properties and microstructure of self compacting concrete with different amount of SiO{sub 2} nanoparticles has been investigated. SiO{sub 2} nanoparticles with the average particle size of 15 nm were partially added to self compacting concrete and various behaviors of the specimens have been measured. The results indicate that SiO{sub 2} nanoparticles are able to improve the flexural strength of self compacting concrete and recover the negative effects of superplasticizer on flexural strength of the specimens. SiO{sub 2} nanoparticle as a partial replacement of cement up to 4 wt% could accelerate C-S-H gel formation as a result of the increased crystalline Ca(OH){sub 2} amount at the early ages of hydration. The increased the SiO{sub 2} nanoparticles' content more than 4 wt%, causes the reduced the flexural strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all also indicate that SiO{sub 2} nanoparticles up to 4 wt% could improve the mechanical and physical properties of the specimens. Finally, SiO{sub 2} nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  8. Recrystallization Behavior in SAC305 and SAC305 + 3.0POSS Solder Joints Under Thermal Shock

    Science.gov (United States)

    Han, Jing; Gu, Penghao; Ma, Limin; Guo, Fu; Liu, Jianping

    2018-04-01

    Sn-3.0Ag-0.5Cu (SAC305) and SAC305 + 3.0 polyhedral oligomeric silsesquioxanes (POSS) ball grid array (BGA) assemblies have been prepared, observed, and subjected to thermal shock. The microstructure and grain orientation evolution of the solder joints located at the same position of the package were characterized by scanning electron microscopy and electron backscattering diffraction, respectively. The results showed that the microstructure of the solder joints was refined by addition of POSS particles. In addition, compared with the single-grained or tricrystal joints normally observed in SAC305 BGA solder joints, the frequency of single-grained as-reflowed SAC305 + 3.0POSS BGA joints was greatly reduced, and the solder joints were typically composed of multicrystals with orientations separated by high-angle grain boundaries. These multicrystal joints appear to be obtained by dominant tricrystals or double tricrystals with deviation of the preferred [110] and [1\\bar{1}0] growth directions of Sn dendrites in Sn-Ag-based solder alloys during solidification from the melt. After 928 thermal shock cycles, the SAC305 solder joint had large-area recrystallization and cracks in contrast to the SAC305 + 3.0POSS solder joint located at the same position of the package, indicating that addition of POSS to SAC305 solder joints may contribute to postponement of recrystallization and subsequent crack initiation and propagation along recrystallized grain boundaries by pinning grain boundaries and movement of dislocations. This finding also confirms the double tricrystal solidification twinning nucleation behavior in Pb-free solder joints.

  9. Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Fereshte Mohammad [Department of Polymer Engineering, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Kaffashi, Babak, E-mail: kaffashi@ut.ac.ir [Department of Polymer Engineering, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Shokrollahi, Parvin, E-mail: p.shokrolahi@ippi.ac.ir [Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Akhlaghi, Shahin; Hedenqvist, Mikael S. [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology, SE-100 44 Stockholm (Sweden)

    2016-02-01

    The effect of hydroxyapatite nano-particles (nHA) on morphology, and rheological and thermal properties of PCL/chitosan blends was investigated. The tendency of nHA to reside in the submicron-dispersed chitosan phase is determined using SEM and AFM images. The presence of electrostatic interaction between amide sites of chitosan and ionic groups on the nHA surface was proved by FTIR. It is shown that the chitosan phase is thermodynamically more favorable for the nano-particles to reside than the PCL phase. Lack of implementation of Cox–Merz theory for this system shows that the polymer–nano-particle network is destructed by the flow. Results from dynamic rheological measurements and Zener fractional model show that the presence of nHA increases the shear moduli and relaxation time of the PCL/chitosan blends. DSC measurements showed that nHA nano-particles are responsible for the increase in melting and crystallization characteristics of the PCL/chitosan blends. Based on thermogravimetric analysis, the PCL/chitosan/nHA nano-composites exhibited a greater thermal stability compared to the nHA-free blends. - Highlights: • In PCL/chitosan/nHA nano-composites, nHA shows tendency to chitosan phase. • At low shear rates, nano-composites show higher viscosity than unfilled blends. • At high shear rates, nano-composites show shear-thinning behavior. • nHA increases the shear moduli and relaxation time of PCL/chitosan blends. • The polymer/nano-particle network is destructed by the flow.

  10. Furnace Cyclic Behavior of Plasma-Sprayed Zirconia-Yttria and Multi-Component Rare Earth Oxide Doped Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.

    2002-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.

  11. Thermal properties and physicochemical behavior in aqueous solution of pyrene-labeled poly(ethylene glycol-polylactide conjugate

    Directory of Open Access Journals (Sweden)

    Chen WL

    2015-04-01

    Full Text Available Wei-Lin Chen,1,2 Yun-Fen Peng,1,3 Sheng-Kuo Chiang,1 Ming-Hsi Huang1–3 1National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; 2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; 3PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan Abstract: A fluorescence-labeled bioresorbable polymer was prepared by a coupling reaction of poly(ethylene glycol-polylactide (PEG-PLA with carboxyl pyrene, using N,N’-diisopropylcarbodiimide/1-hydroxy-7-azabenzotriazole (DIC/HOAt as a coupling agent and 4-dimethylaminopyridine (DMAP as a catalyst. The obtained copolymer, termed PEG-PLA-pyrene, was characterized using various analytical techniques, such as gel permeation chromatography (GPC, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS, proton nuclear magnetic resonance (1H-NMR, infrared spectroscopy (IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA, to identify the molecular structure and to monitor the thermal property changes before and after the reaction. The presence of a pyrene moiety at the end of polylactide (PLA did not alter the crystallization ability of the poly(ethylene glycol (PEG blocks, indicating that the conjugate preserved the inherent thermal properties of PEG-PLA. However, the presence of PEG-PLA blocks strongly reduced the melting of pyrene, indicating that the thermal characteristics were sensitive to PEG-PLA incorporation. Regarding the physicochemical behavior in aqueous solution, a higher concentration of PEG-PLA-pyrene resulted in a higher ultraviolet-visible (UV-vis absorbance and fluorescence emission intensity. This is of great interest for the use of this conjugate as a fluorescence probe to study the in vivo distribution as well as the internalization and intracellular localization of polymeric micelles

  12. Electrochemical Behavior of Bilayer Thermal-Spray Coatings in Low-Temperature Corrosion Protection

    Directory of Open Access Journals (Sweden)

    Esmaeil Sadeghimeresht

    2017-09-01

    Full Text Available Cr3C2-NiCr coatings are greatly used to protect critical components in corrosive environments and to extend their lifetime and/or improve functional performance. However, the pores formed during spraying restrict the coating’s applicability area for many corrosion protection applications. To overcome this technical challenge, bilayer coatings have been developed, in which an additional layer (the so-called “intermediate layer” is deposited on the substrate before spraying the Cr3C2-NiCr coating (the so-called “top layer”. The corrosion behavior of the bilayer coating depends on the composition and microstructure of each layer. In the present work, different single-layer coatings (i.e., Cr3C2-NiCr, Fe- and Ni-based coatings were initially sprayed by a high-velocity air fuel (HVAF process. Microstructure analysis, as well as electrochemical tests, for example, open-circuit potential (OCP and polarization tests, were performed. The potential difference (ΔE had a great influence on galvanic corrosion between the top and intermediate layers, and thus, the coatings were ranked based on the OCP values (from high to low as follows: NiCoCrAlY > NiCr > Cr3C2-NiCr > NiAl > Fe-based coatings (alloyed with Cr > pure Ni. The Ni-based coatings were chosen to be further used as intermediate layers with the Cr3C2-NiCr top layer due to their capabilities to show high OCP. The corrosion resistance (Rp of the bilayer coatings was ranked (from high to low as follows: NiCoCrAlY/Cr3C2-NiCr > NiCr/Cr3C2-NiCr > NiAl/Cr3C2-NiCr > Ni/Cr3C2-NiCr. It was shown that splat boundaries and interconnected pores are detrimental for corrosion resistance, however, a sufficient reservoir of protective scale-forming elements (such as Cr or/and Al in the intermediate layer can significantly improve the corrosion resistance.

  13. REDES PARA EL DESARROLLO DE LA INVESTIGACIÓN CON ÉNFASIS EN CONTEXTOS EDUCATIVOS

    Directory of Open Access Journals (Sweden)

    William Mantilla Cárdenas

    2005-01-01

    Full Text Available La multiplicidad de las redes en educación, desde la perspectiva de las redes sociales, hace pensar que las redes no se producen, sino que también se descubren, es decir, existen como redes sociales espontáneas. En primer lugar, se hace una conceptualización de las redes para mostrar las diferencias con otros tipos de organización social. Entre estos conceptos se enfatiza en la complejidad, la fractalidad y la apertura. Luego se centra en la reflexión sobre redes a partir de experiencias realizadas en el contexto investigativo y educativo.

  14. REDES PARA EL DESARROLLO DE LA INVESTIGACIÓN CON ÉNFASIS EN CONTEXTOS EDUCATIVOS

    OpenAIRE

    William Mantilla Cárdenas; Teresita Lourdes Bernal Romero

    2005-01-01

    La multiplicidad de las redes en educación, desde la perspectiva de las redes sociales, hace pensar que las redes no se producen, sino que también se descubren, es decir, existen como redes sociales espontáneas. En primer lugar, se hace una conceptualización de las redes para mostrar las diferencias con otros tipos de organización social. Entre estos conceptos se enfatiza en la complejidad, la fractalidad y la apertura. Luego se centra en la reflexión sobre redes a partir de experiencias real...

  15. Simulación de redes móviles ad hoc mediante ns-3

    OpenAIRE

    Yuste Delgado, Antonio

    2014-01-01

    Introducción a la herramienta de simulación de redes network simulator 3 (ns-3). Este simulador es una de los programas más utilizados en la actualidad para la simulación de redes de diversos tipos, desde las redes ad hoc a redes móviles. El profesor Antonio Yuste especialista en protocolos de enrutamiento en redes móviles ad hoc utiliza este software en sus simulaciones. El objetivo de la charla es una dar una visión general del simulador y explicarnos cómo simular redes ad hoc móviles. U...

  16. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    International Nuclear Information System (INIS)

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-01

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: ► The microstructure of Cu-Al alloy is modified in the Ag presence. ► (α + γ) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. ► Ag-rich phase modifies the magnetic characteristics of Cu–Al–Mn alloy.

  17. Structural, thermal and optical behavior of 84 MeV oxygen and 120 MeV silicon ions irradiated PES

    Science.gov (United States)

    Samra, Kawaljeet Singh; Thakur, Sonika; Singh, Lakhwant

    2011-03-01

    In order to study structural, thermal and optical behavior, thin flat samples of polyethersulfone were irradiated with oxygen and silicon ions. The changes in properties were analyzed using different techniques viz: X-ray diffraction, thermo-gravimetric analysis, Fourier transform infrared, UV-visible and photoluminescence spectroscopy. A noticeable increase in the intensity of X-ray diffraction peaks was observed after irradiation with 84 MeV oxygen ions at low and medium fluences, which may be attributed to radiation-induced cross-linking in polymer. Fourier transform infrared and thermo-gravimetric analysis corroborated the results of X-ray diffraction analysis. No noticeable change in the Fourier transform infrared spectra of oxygen ion irradiated polyethersulfone were observed even at the highest fluence of 1 × 10 13 ions cm -2, but after irradiation with silicon ions, a reduction in intensity of almost all characteristic bands was revealed. An increase in the activation energy of decomposition of polyethersulfone was observed after irradiation with 84 MeV oxygen ions up to medium fluences but degradation was revealed at higher fluences. Similar trends were observed by photoluminescence analysis.

  18. Structural, thermal and optical behavior of 84 MeV oxygen and 120 MeV silicon ions irradiated PES

    International Nuclear Information System (INIS)

    Samra, Kawaljeet Singh; Thakur, Sonika; Singh, Lakhwant

    2011-01-01

    In order to study structural, thermal and optical behavior, thin flat samples of polyethersulfone were irradiated with oxygen and silicon ions. The changes in properties were analyzed using different techniques viz: X-ray diffraction, thermo-gravimetric analysis, Fourier transform infrared, UV-visible and photoluminescence spectroscopy. A noticeable increase in the intensity of X-ray diffraction peaks was observed after irradiation with 84 MeV oxygen ions at low and medium fluences, which may be attributed to radiation-induced cross-linking in polymer. Fourier transform infrared and thermo-gravimetric analysis corroborated the results of X-ray diffraction analysis. No noticeable change in the Fourier transform infrared spectra of oxygen ion irradiated polyethersulfone were observed even at the highest fluence of 1 x 10 13 ions cm -2 , but after irradiation with silicon ions, a reduction in intensity of almost all characteristic bands was revealed. An increase in the activation energy of decomposition of polyethersulfone was observed after irradiation with 84 MeV oxygen ions up to medium fluences but degradation was revealed at higher fluences. Similar trends were observed by photoluminescence analysis.

  19. Synthesis, Characterization, and Photocatalytic Behavior of Praseodymium Carbonate and Oxide Nanoparticles Obtained by Optimized Precipitation and Thermal Decomposition

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Sadeghpour Karimi, Meisam; Norouzi, Parviz

    2017-07-01

    Direct precipitation of insoluble praseodymium carbonate salt by reaction of the corresponding cation and anion was utilized in this study. This facile, routine, and effective route was optimized statistically through an orthogonal array design for fabrication of nanoparticles, using a Taguchi method to quantitatively evaluate the effects of the major operation conditions on the particle diameter via analysis of variance. The results indicated that high-purity particles with very small dimension (30 nm) could be produced simply by regulating the cation and anion concentrations and flow rate of introducing the cation into the anion solution. The product was thermally decomposed to yield praseodymium oxide nanoparticles by single-stage reaction. Both products were characterized using various conventional techniques including x-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy to monitor the effects of the optimization on their physicochemical properties. Furthermore, the photocatalytic behavior of the nanoparticles was evaluated for treatment of water polluted with methyl orange, revealing high efficiency for degradation of the organic pollutant.

  20. Synthesis, Structure and Thermal Behavior of Oxalato-Bridged Rb+ and H3O+ Extended Frameworks with Different Dimensionalities

    Directory of Open Access Journals (Sweden)

    Claude Lecomte

    2010-02-01

    Full Text Available Correlative studies of three oxalato-bridged polymers, obtained under hydrothermal conditions for the two isostructural compounds {Rb(HC2O4(H2C2O4(H2O2}∞1, 1, {H3O(HC2O4(H2C2O4.2H2O}∞1, 2, and by conventional synthetic method for {Rb(HC2O4}∞3, 3, allowed the identification of H-bond patterns and structural dimensionality. Ferroïc domain structures are confirmed by electric measurements performed on 3. Although 2 resembles one oxalic acid sesquihydrate, its structure determination doesn’t display any kind of disorder and leads to recognition of a supramolecular network identical to hybrid s-block series, where moreover, unusual H3O+ and NH4+ similarity is brought out. Thermal behaviors show that 1D frameworks with extended H-bonds, whether with or without a metal center, have the same stability. Inversely, despite the dimensionalities, the same metallic intermediate and final compounds are obtained for the two Rb+ ferroïc materials.

  1. Erosion behavior of HVOF thermal sprayed NiAl intermetallic coatings with different CeO2

    International Nuclear Information System (INIS)

    Wang, Y.; Chen, W.

    2003-01-01

    The influence of CeO 2 and heat treatment on the microstructure, hardness and especially erosion behavior of HVOF thermal sprayed NiAl intermetallic coatings was studied in this investigation. Among the NiAl intermetallic coatings studied, the NiAl coating containing 8 wt.% CeO 2 has the highest erosion rate, while the coating containing 2-5 wt.%CeO 2 exhibits the lowest erosion rate. Erosion surface morphologies showed a combined ductile and brittle feature. Heat treatment at temperatures higher than 600 o C softened the coating materials, leading to an increased erosion rate. Work hardening has occurred during erosion testing, and the highest degree of work hardening occurred in the NiAl coating containing about 5 wt.% CeO 2 . The degree of work hardening of the as-sprayed coating appeared larger than that of coating being heat-treated. Due to work hardening, the erosion rate becomes less discernible at the elongated erosion time among coatings with different hardness values. (author)

  2. Novel thiourea derivative and its complexes: Synthesis, characterization, DFT computations, thermal and electrochemical behavior, antioxidant and antitumor activities

    Science.gov (United States)

    Yeşilkaynak, Tuncay; Muslu, Harun; Özpınar, Celal; Emen, Fatih Mehmet; Demirdöğen, Ruken Esra; Külcü, Nevzat

    2017-08-01

    A novel thiourea derivative, N-((2-chloropyridin-3-yl)carbamothioyl) thiophene-2-carboxamide,C11H8ClN3OS2 (HL) and its Co(II), Ni(II) and Cu(II) complexes (ML2 type) were prepared and characterized by elemental analysis, FT-IR,1H NMR and HR-MS methods. The crystal structure of HL was also investigated by single crystal X-ray diffraction study. The HL crystallizes in the orthorhombic crystal system with P 21 21 21 space group, Z = 4, a = 3.8875(3) Å, b = 14.6442(13) Å, c = 21.8950(19) Å. The [ML2] complex structures were optimized by using B97D/TZVP level. Molecular orbitals of HL ligand were calculated at the same level. Thermal and electrochemical behaviors of the complexes were investigated. Anticancer and antioxidant activities of the complexes were also investigated. Antioxidant activities were determined by using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2‧-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) assays. Anticancer activities were studied via MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in MCF-7 (Michigan Cancer Foundation-7) breast cancer cells.

  3. Crystal growth, structural, thermal and mechanical behavior of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals

    Science.gov (United States)

    Mahadevan, M.; Ramachandran, K.; Anandan, P.; Arivanandhan, M.; Bhagavannarayana, G.; Hayakawa, Y.

    2014-12-01

    Single crystals of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of L-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method.

  4. Búsqueda de recursos en redes peer-to-peer totalmente descentralizadas basada en redes neuronales artificiales

    OpenAIRE

    Corbalán, Leonardo César

    2014-01-01

    Las redes Peer-to-Peer (P2P) puras no estructuradas como Gnutella, dónde los nodos se conectan entre sí como pares o iguales, sin roles diferenciados ni jerarquías de ninguna clase, son sistemas distribuidos, dinámicos, sin punto alguno de centralización, que favorecen la robustez y tolerancia a fallos. Sin embargo, la búsqueda de recursos en estos sistemas constituye un problema esencial. El algoritmo de búsqueda BFS de Gnutella genera gran cantidad de tráfico dificultando su escalabilidad. ...

  5. Thermal decomposition behavior of the rare-earth ammonium sulfate R2(SO4)3.(NH4)2SO4

    International Nuclear Information System (INIS)

    Nagai, Tsukasa; Tamura, Shinji; Imanaka, Nobuhito

    2010-01-01

    Rare-earth ammonium sulfate octahydrates of R 2 (SO 4 ) 3 .(NH 4 ) 2 SO 4 .8H 2 O (R=Pr, Nd, Sm, and Eu) were synthesized by a wet process, and the stable temperature region for the anhydrous R 2 (SO 4 ) 3 .(NH 4 ) 2 SO 4 form was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Detailed characterization of these double salts demonstrated that the thermal stability of anhydrous R 2 (SO 4 ) 3 .(NH 4 ) 2 SO 4 is different between the Pr, Nd salts and the Sm, Eu salts, and the thermal decomposition behavior of these salts was quite different from the previous reports. - Graphical abstract: Stable temperature range of anhydrous rare-earth ammonium sulfate R 2 (SO 4 ) 3 .(NH 4 ) 2 SO 4 was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Since the previous reports were based only on thermal analysis, the present work has more accurately determined the exact thermal stability of rare-earth ammonium sulfate solids.

  6. Thermal behavior of the amorphous precursors of the ZrO2-SnO2 system

    International Nuclear Information System (INIS)

    Stefanic, Goran; Music, Svetozar; Ivanda, Mile

    2008-01-01

    Thermal behavior of the amorphous precursors of the ZrO 2 -SnO 2 system on the ZrO 2 -rich side of the concentration range, prepared by co-precipitation from aqueous solutions of the corresponding salts, was monitored using differential thermal analysis, X-ray powder diffraction, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectrometry (EDS). The crystallization temperature of the amorphous precursors increased with an increase in the SnO 2 content, from 405 deg. C (0 mol% SnO 2 ) to 500 deg. C (40 mol% SnO 2 ). Maximum solubility of Sn 4+ ions in the ZrO 2 lattice (∼25 mol%) occurred in the metastable products obtained upon crystallization of the amorphous precursors. A precise determination of unit-cell parameters, using both Rietveld and Le Bail refinements of the powder diffraction patterns, shows that the incorporation of Sn 4+ ions causes an asymmetric distortion of the monoclinic ZrO 2 lattice. The results of phase analysis indicate that the incorporation of Sn 4+ ions has no influence on the stabilization of cubic ZrO 2 and negligible influence on the stabilization of tetragonal ZrO 2 . Partial stabilization of tetragonal ZrO 2 in products having a tin content above its solid-solubility limit was attributed to the influence of ZrO 2 -SnO 2 surface interactions. In addition to phases closely structurally related to cassiterite, monoclinic ZrO 2 and tetragonal ZrO 2 , a small amount of metastable ZrSnO 4 phase appeared in the crystallization products of samples with 40 and 50 mol% of SnO 2 calcined at 1000 deg. C. Further temperature treatments caused a decrease in and disappearance of metastable phases. The results of the micro-structural analysis show that the sinterability of the crystallization products significantly decreases with an increase in the SnO 2 content

  7. Redes sociales y partidos políticos en Chile.

    Directory of Open Access Journals (Sweden)

    Adler Lomnitz, Larissa

    2002-09-01

    Full Text Available En este estudio se describe el origen y la evolución de dos partidos políticos chilenos (el Partido Radical y el Partido Demócrata Cristiano por medio del análisis de las redes sociales que los originaron y que los componen. Se propone un modelo teórico que consiste en la combinación de un análisis estructural basado en el estudio de redes sociales y en la descripción del sistema simbólico que las retroalimenta. La estructura y función de las redes sociales depende de la dirección en la que se dan los intercambios -redes horizontales y redes verticales-, de lo que se intercambia, y de la articulación que se da entre las redes. En toda sociedad se dan intercambios simétricos y asimétricos, que van conformando redes horizontales y verticales. Estas redes se van articulando entre sí, conformando el tejido social. El predominio de unas sobre otras y su combinación dan el carácter a la cultura política (ejemplo, autoritaria vs. igualitaria. En el caso de Chile encontramos que se trata de una sociedad horizontalmente estructurada en clases sociales, al interior de las cuales se advierten redes sociales informales que eventualmente y por razones ideológicas se van formalizando en partidos políticos. Estos grupos igualitarios de amigos ejercen informalmente control sobre sus propios miembros creando barreras invisibles que los distinguen de los demás, y aunque si bien es cierto que en ellos surgen líderes “naturales”, su liderazgo es condicional lo que permite el surgimiento de tendencias y facciones que a su vez pueden llegar a constituirse en nuevos partidos. Por ende, el sistema depende de negociaciones horizontales permanentes mediadas por un fuerte presidencialismo dentro de un sistema parlamentario fuerte y apoyado por una legitimidad casi fanática.

  8. A universal T{sup 2} behavior of low temperature thermal conductivity of some simple molecular polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Romanova, T., E-mail: t.romanova@int.pan.wroc.pl [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, PN 1410, Okolna 2, 50-950 Wroclaw (Poland); Stachowiak, P.; Jeżowski, A. [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, PN 1410, Okolna 2, 50-950 Wroclaw (Poland); Krivchikov, A.I.; Vdovychenko, G.A. [B. Verkin Institute for Low Temperature Physics and Engineering of NAS Ukraine, 47 Lenin Avenue, Kharkov 61103 (Ukraine)

    2015-02-15

    The low-temperature dependence of thermal conductivity coefficient of dielectric crystals on temperature spreads over a vast region, both in terms of the absolute value of the coefficient as well as its functional dependence on the temperature. However, we were able to notice a group of simple molecular polycrystals which show their thermal conductivity very close to each other. What is more, the similarity of the thermal conductivity of the polycrystals for many reasons resembles known and studied for over 30 years the universality observed for low-temperature thermal conductivity of amorphous solids. Here, utilizing already developed thermal conductivity models, we try to understand what phenomena could result in the similarity of the thermal conductivity of the polycrystals and therefore explain the finding. Provided that some other conditions are met at least each of three different phonon scattering mechanisms could lead to the similarity.

  9. Influence of in situ synthesized TiC on thermal stability and corrosion behavior of Zr60Cu10Al15Ni15 amorphous composites

    International Nuclear Information System (INIS)

    Geng, Jiwei; Teng, Xinying; Zhou, Guorong; Leng, Jinfeng; Zhao, Degang

    2014-01-01

    In situ synthesized TiC particles were prepared by a thermal explosion method. Adding “in situ synthesized” TiC into Zr 60 Cu 10 Al 15 Ni 15 glass matrix to obtain amorphous matrix composites was achieved. The corrosion behavior of Zr 60 Cu 10 Al 15 Ni 15 amorphous composites was evaluated using potentiodynamic polarization measurements in 3.5 wt% NaCl solution at room temperature. The results show that the microhardness and thermal stability are improved apparently, while the TiC (≤0.6 wt%) does not significantly affect the supercooled liquid behavior. Moreover, the corrosion resistance is improved apparently because the nanocrystals accelerate the diffusion of passive elements for faster formation of the protective passive film at nanocrystals/amorphous interfaces. However, when the TiC content is more than 0.6 wt%, both glass forming ability and corrosion resistance are reduced significantly

  10. Thermal behavior of dawsonite

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, F J; Howatson, J; Smith, J W

    1980-06-01

    Evidence for the dawsonite decomposition reaction sequence is presented. Synthetic dawsonite was heated at temperatures from 250 to 800/sup 0/C and studied by X-ray powder diffraction and infrared spectroscopy. From 350 to 550/sup 0/C sodium carbonate and a low temperature form of alumina were the main products. Hydrolysis experiments showed that this heretofore unidentified alumina product is rho-alumina. At temperatures of 600/sup 0/C and above, the sodium carbonate and rho-alumina react in an incomplete solid state reaction to form crystalline sodium aluminate.

  11. Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing

    Science.gov (United States)

    Wang, Xiaodan; Estradé, Sonia; Lin, Yuanjing; Yu, Feng; Lopez-Conesa, Lluis; Zhou, Hao; Gurram, Sanjeev Kumar; Peiró, Francesca; Fan, Zhiyong; Shen, Hao; Schaefer, Lothar; Braeuer, Guenter; Waag, Andreas

    2017-05-01

    Recently, colored H-doped TiO2 (H-TiO2) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core—disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO2 nanorods grown on F:SnO2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO2 nanorods/FTO system for

  12. O apoio da rede social no cuidado domiciliar

    Directory of Open Access Journals (Sweden)

    Ingrid Meireles Gomes

    2016-01-01

    Full Text Available RESUMO Objetivo: Interpretar a vivência do apoio da rede social pelas pessoas envolvidas no cuidado domiciliar. Métodos: Trata-se de uma teoria fundamentada nos dados, com 12 participantes, pacientes em cuidado domiciliar, membros de redes sociais primárias e secundárias; realizada na área de uma Unidade de Saúde Estratégia de Saúde da Família de um município metropolitano do Sul do Brasil. Utilizou-se de entrevistas semiestruturadas para coleta de dados e análise de dados foi segundo Glaser. Resultados: Elencaram-se quatro categorias que descrevem o fenômeno em estudo "identificando as fontes de apoio no cuidado domiciliar", "caracterizando as redes sociais que fornecem apoio no cuidado domiciliar", "compreendendo-se como parte da rede social que fornece apoio no cuidado domiciliar" e "percebendo mudanças decorrentes do cuidado domiciliar". Conclusões: Destaque para relevância das redes sociais no cuidado domiciliar, o enfermeiro como apoio social significante, uso de recursos eletrônicos como fonte de apoio e necessidade de participação da população.

  13. Thermal Diffusion Dynamic Behavior of Two-Dimensional Ag-SMALL Clusters on Ag(1 1 1) Surface

    Science.gov (United States)

    Zakirur-Rehman; Hayat, Sardar Sikandar

    2015-07-01

    In this paper, the thermal diffusion behavior of small two-dimensional Ag-islands on Ag(1 1 1) surface has been explored using molecular dynamics (MD) simulations. The approach is based on semi-empirical potentials. The key microscopic processes responsible for the diffusion of Ag1-5 adislands on Ag(1 1 1) surface are identified. The hopping and zigzag concerted motion along with rotation are observed for Ag one-atom to three-atom islands while single-atom and multi-atom processes are revealed for Ag four-atom and five-atom islands, during the diffusion on Ag(1 1 1) surface. The same increasing/decreasing trend in the diffusion coefficient and effective energy barrier is observed in both the self learning kinetic Monte Carlo (SLKMC) and MD calculations, for the temperature range of 300-700 K. An increase in the value of effective energy barrier is noticed with corresponding increase in the number of atoms in Ag-adislands. A reasonable linear fit is observed for the diffusion coefficient for studied temperatures (300, 500 and 700 K). For the observed diffusion mechanisms, our findings are in good agreement with ab initio density-functional theory (DFT) calculations for Al/Al(1 1 1) while the energy barrier values are in same range as the experimental values for Cu/Ag(1 1 1) and the theoretical values using ab initio DFT supplemented with embedded-atom method for Ag/Ag(1 1 1).

  14. Numerical models for the analysis of thermal behavior and coolability of a particulate debris bed in reactor lower head

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Sang Baik; Kim, Byung Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This report provides three distinctive, but closely related numerical models developed for the analysis of thermal behavior and coolability of a particulate debris bed that is may be formed inside the reactor lower head during severe accident late phases. The first numerical module presented in the report, MELTPRO-DRY, is used to analyze numerically heat-up and melting process of the dry particle bed, downward- and sideward-relocation of the liquid melt under gravity force and capillary force acting among porous particles, and solidification of the liquid melt relocated into colder region. The second module, MELTPROG-WET, is used to simulate numerically the cooling process of the particulate debris bed under the existence of water, which is subjected to two types of numerical models. The first type of WET module utilizes distinctive models that parametrically simulate the water cooling process, that is, quenching region, dryout region, and transition region. The choice of each parametric model depends on temperature gradient between the cooling water and the debris particles. The second type of WET module utilizes two-phase flow model that mechanically simulates the cooling process of the debris bed. For a consistent simulation from the water cooling to the dryout debris bed, on the other hand, the aforementioned two modules, MELTPROG-DRY and MELTPROG-WET, were integrated into a single computer program DBCOOL. Each of computational models was verified through limited applications to a heat-generating particulate bed contained in the rectangular cavity. 22 refs., 5 figs., 2 tabs. (Author)

  15. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  16. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: A supramolecular structure

    Science.gov (United States)

    Montazerozohori, M.; Musavi, S. A.; Masoudiasl, A.; Naghiha, A.; Dusek, M.; Kucerakova, M.

    2015-02-01

    Two new cadmium(II) complexes with the formula of CdL2(NCS)2 and CdL2(N3)2 (in which L is 2,2-dimethyl-N,N‧-bis-(3-phenyl-allylidene)-propane-1,3-diamine) have been synthesized and characterized by elemental analysis, molar conductivity measurements, FT/IR, UV-Visible, 1H and 13C NMR spectra and X-ray studies. The crystal structure analysis of CdL2(NCS)2 indicated that it crystallizes in orthorhombic system with space group of Pbca. Two Schiff base ligands are bonded to cadmium(II) ion as N2-donor chelate. Coordination geometry around the cadmium ion was found to be partially distorted octahedron. The Cd-Nimine bond distances are found in the range of 2.363(2)-2.427(2) Å while the Cd-Nisothiocyanate bond distances are 2.287(2) Å and 2.310(2) Å. The existence of C-H⋯π and C-H⋯S interactions in the CdL2(NCS)2 crystal leads to a supramolecular structure in its network. Then cadmium complexes were screened in vitro for their antibacterial and antifungal activities against two Gram-negative and two Gram-positive bacteria and also against Candida albicans as a fungus. Moreover, the compounds were subjected for DNA-cleavage potential by gel electrophoresis method. Finally thermo-gravimetric analysis of the complexes was applied for thermal behavior studies and then some thermo-kinetics activation parameters were evaluated.

  17. El Impacto de las Redes Sociales en los Ingresos de los Mexicanos en EEUU

    OpenAIRE

    Juan Ordaz Diaz; Adolfo Albo

    2011-01-01

    En este documento se analiza empiricamente si, como resultado de contar con acceso a redes sociales, los migrantes mexicanos en los Estados Unidos incrementan sus ingresos. Se emplean cifras de la Encuesta Nacional a Hogares Rurales de Mexico (ENHRUM). Se encuentra que quienes tienen acceso a redes fuertes reciben en promedio mas ingresos que los que cuentan con redes debiles o en las cuales su acceso es nulo.Las personas que mayor beneficio obtienen de las redes sociales son los jovenes del ...

  18. Vantagens competitivas em redes de micro, pequena e média empresas: o caso da Rede Brasil Escolar

    Directory of Open Access Journals (Sweden)

    Vaine Fermoseli Vilga

    2008-09-01

    Full Text Available Neste artigo, é apresentado um estudo sobre o associativismo de papelarias da Rede Brasil Escolar, com o objetivo de veriicar as vantagens competitivas das empresas ao ingressarem nesse tipo de associação. Dados primários foram coletados em 45 papelarias, com base na população de 85 papelarias do Estado de São Paulo. A cooperação produtiva, tecnológica ou de serviços entre micro, pequenas e médias empresas representa alternativa para obtenção de ganhos coletivos entre os atores. As alianças estratégicas, redes de empresas, clusters, organizações virtuais, incubadoras, arranjos produtivos locais, condomínios e consórcios são formas de coordenação e gestão de recursos complementares, distintas da hierarquia e do mercado. No artigo, o associativismo é apresentado como forma de governança de redes; além disso, são explorados a tipologia e os mecanismos para coordenação das redes de pequenas e médias empresas. Os resultados da pesquisa revelam elevados benefícios às papelarias associadas à Rede Brasil Escolar, o que não seria possível se fossem gerenciadas isolada e independentemente.

  19. Atrapados en las redes de migración.

    OpenAIRE

    Zavala Sánchez, Fabiola Mayteé

    2013-01-01

    “Atrapados en las redes de la migración” pretende ser un estudio del fenómeno migratorio en el Ecuador, en el cual se investiga el proceso de la construcción de redes sociales migratorias. Con esta investigación se pretende determinar cómo las redes transnacionales de migración se construyen y transforman, pero sobre todo se tratará de conocer cuáles son los actores que en ellas intervienen, cuáles son sus roles y funciones. El estudio se lo realizará a través de una microinvestigación, me...

  20. Aspectos legales al utilizar las principales redes sociales en Colombia

    Directory of Open Access Journals (Sweden)

    Manuel Adolfo Alvarado Carmona

    2017-01-01

    Full Text Available Se analizaron los aspectos legales al utilizar las dos principales redes sociales en Colombia como los son facebook y twitter. Cuando un usuario se conecta a cualquiera de las redes sociales debe hacerlo de forma responsable porque de lo contrario puede incurrir en la violación de la normatividad Colombiana en la cual se encuentran los delitos informáticos, la protección de la información y los datos, injuria y calumnia, ciberacoso y derechos de autor. Se determinaron los problemas que conllevan cuando no se utiliza bien la información en las redes sociales en el ámbito jurídico.

  1. Thermal fatigue behavior of H-13 die steel for aluminum die casting with various ion sputtered coatings

    Science.gov (United States)

    Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    Sputtered coatings of Mo, W, Pt, Ag, Au, Co, Cr, Ni, Ag + Cu, Mo + Pt, Si3N4, A1N, Cr3C2, Ta5Si3, and ZrO2 were applied to a 2-inch-square, 7-inch-long thermal fatigue test specimen which was then internally water cooled and alternately immersed in molten aluminum and cooled in air. After 15,000 cycles the thermal fatigue cracks at the specimen corners were measured. Results indicate that a significant improvement in thermal fatigue resistance was obtained with platinum, molybdenum, and tungsten coatings. Metallographic examination indicates that the improvement in thermal fatigue resistance resulted from protection of the surface of the die steel from oxidation. The high yield strength and ductility of molybdenum and tungsten contributed to the better thermal fatigue resistance.

  2. Ensinar e aprender geografia com/nas redes sociais

    Directory of Open Access Journals (Sweden)

    Élida Pasini Tonetto

    2015-01-01

    Full Text Available Este estudo trata de refletir sobre as potencialidades/operacionalidades das práticas pedagógicas da Geografia na apropriação das redes sociais online. Para isso, analisamos possíveis potencialidades oferecidas pelas redes sociais online para a Geografia e como podem ser operacionalizadas nas práticas pedagógicas com as redes sociais online seu ensino e, também, pensar como elas podem contribuir para ensinar e aprender com mais significância Geografia. Os fios teóricos da pesquisa estão tramados no entendimento de aprendizagem online para emaranhar os conceitos de espaço e ciberespaço, transitando por dois locais fundamentais: o da escola e o das redes. A abordagem metodológica é construída nas trilhas das pesquisas pós-críticas em educação, onde o Facebook é o lócus para analisar as novas formas de comunicar que subjetivam os sujeitos e engendram novos formatos de ensinagem. Os resultados apontam diferentes potencialidades e operacionalidades das redes sociais online, mas que não representam apenas o uso da técnica em sala de aula, mas sim como parte da agenda de busca pela construção de processos de aprendizagens significativos em Geografia, através das redes sociais, que representam uma forma contemporânea de comunicar/interagir presente no cotidiano dos alunos.

  3. 7 ejemplos de intervención basada en redes

    OpenAIRE

    Maya Jariego, Isidro; Holgado Ramos, Daniel

    2017-01-01

    El análisis de redes sociales resulta efectivo en el diseño, implementación y evaluación de intervenciones comunitarias. En este artículo mostramos, a través de diferentes ejemplos, cómo las redes sociales se han utilizado con éxito para poner en marcha procesos de influencia social, segmentar grupos y comunidades, promover el intercambio de apoyo social, coordinar organizaciones comunitarias, y facilitar la colaboración entre los participantes o los profesionales durante la aplicación de pro...

  4. LAS REDES SOCIALES: UNA NUEVA HERRAMIENTA DE DIFUSIÓN

    OpenAIRE

    Hutt Herrera, Harold

    2012-01-01

    Las redes sociales han marcado un hito en materia de difusión masiva, debido a su alcance, características e impacto en la sociedad actual. Son utilizadas tanto por individuos como por empresas, dado que permiten lograr una comunicación interactiva y dinámica. Durante los últimos años, han surgido muchos tipos de redes sociales, tanto en el ámbito social o general, como en el corporativo, para efectos de negocios, o bien en temas específicos de interés de grupos o segmentos determinados. Sin ...

  5. Saude bucal na rede de atencao e processo de regionalizacao

    Directory of Open Access Journals (Sweden)

    Ana Lucia Schaefer Ferreira de Mello

    2014-01-01

    Full Text Available O artigo tem por objetivo caracterizar a construção da rede regionalizada de saúde, focalizando a atenção à saúde bucal e identificando dificuldades e avanços na sua implementação. Teve por contexto o modelo de rede sugerido nacionalmente pelas políticas que orientam o Sistema Único de Saúde. Estudo exploratório-descritivo, com abordagem qualitativa e sustentação metodológica na Teoria Fundamentada nos Dados. Realizaram-se entrevistas com gestores, profissionais de saúde e professores graduados em Odontologia, constituindo três grupos intencionais. A categoria central denominou-se "Potencializando a interação no cuidado à saúde bucal na rede de atenção à saúde no processo de regionalização". No modelo teórico proposto, a potencialização das interações decorre de condições como: Caracterização do cuidado à saúde bucal na rede regionalizada de atenção à saúde; Identificação das dificuldades na implementação e Análise do funcionamento da rede de atenção à saúde bucal. A inserção da saúde bucal na rede está no início, por vezes descolada do conjunto de relações que constitui a rede de atenção que, também, está em consolidação. Os elementos recolhidos neste estudo indicam a implantação da rede regionalizada de atenção como condição para levar o cuidado à saúde bucal a um novo patamar de atenção e assistência.

  6. O TEXTO DAS REDES SOCIAIS VIRTUAIS: MARCAS INTERACIONAIS E PROCESSUAIS

    Directory of Open Access Journals (Sweden)

    Marlete Sandra Diedrich

    2012-01-01

    Full Text Available O propósito deste texto é, na perspectiva epistemológica da Análise da Conversação, discutir o caráter interacional e processual do texto produzido nas redes sociais virtuais. As redes sociais virtuais representam, portanto, gêneros textuais produzidos por um sujeito que tem como meio de produção a escrita, mas que procura usar estruturas linguísticas que simulem, neste uso, a língua em sua modalidade falada, numa clara tentativa de intensificar o processo interacional com os demais sujeitos envolvidos no ato enunciativo.

  7. Visualización de redes personales en Sarajevo

    OpenAIRE

    Aguilar Carretero, Claudia

    2005-01-01

    El concepto de “identificación” permite a las Ciencias Sociales, más que el de “identidad étnica”, analizar los procesos mediante los cuales las personas se autoidentifican e identifican a otros. A través del estudio de las redes personales de jóvenes en Sarajevo (Bosnia y Herzegovina) se muestran diferentes procesos de identificación en un contexto de fuerte exclusión étnica. La visualización de las redes personales por parte de los propios informantes constituye una fuente privilegiada de i...

  8. Redes sociales: herramienta de marketing internacional en el sector hotelero

    OpenAIRE

    Ana María Miranda Zavala; Isaac Cruz Estrada

    2016-01-01

    El presente artículo tiene como objetivo identificar las estrategias de marketing internacional en redes sociales que realizan los hoteles de cuatro y cinco estrellas de la ciudad de Tijuana, Baja California, México. Así mismo, la revisión de las características y contenidos de las redes sociales de este sector, reconociendo la importancia en el marketing internacional como medio de comunicación con los huéspedes. De este modo, se propone caracterizar los atributos que consideran esenciales l...

  9. El Reflejo de un contexto : redes sociales y smartphones

    OpenAIRE

    Sanz Pérez, Iván

    2013-01-01

    Conté: treball i pòster En esta investigación se presentan dos propuestas fundamentadas en una serie de datos (evolución de Internet, redes sociales y Smartphones; rol de las redes sociales en relación a los cambios actuales en los procesos de socialización de los jóvenes; conflictos en los centros educativos; tipos ideales de relación social; peligros relacionados por el exceso de información en la red al construir nuestra identidad virtual, …) que ayuda a entender el cambio en que se est...

  10. Sistemas de Inteligencia Web basados en redes sociales

    OpenAIRE

    Rosa Troyano, Fco. Fernando de la; Martínez Gasca, Rafael

    2007-01-01

    El Análisis de las Redes Sociales (ARS) es un área que está emergiendo como imprescindible en los procesos de toma de decisiones. Su capacidad para analizar e intervenir una red social puede ser aprovechada para implantar tareas de vigilancia en los sistemas de inteligencia de un centro de investigación o una empresa de base tecnológica. El objetivo de este trabajo es realizar una propuesta para diseñar sistemas de inteligencia web basados en redes sociales. El primer obstáculo para implantar...

  11. Influence of Upconversion Processes in the Optically-Induced Inhomogeneous Thermal Behavior of Erbium-Doped Lanthanum Oxysulfide Powders

    Directory of Open Access Journals (Sweden)

    Rolindes Balda

    2016-05-01

    Full Text Available The efficient infrared-to-visible upconversion emission present in Er-doped lanthanum oxysulfide crystal powders is used as a fine thermal sensor to determine the influence of upconversion processes on the laser-induced thermal load produced by the pump laser and to assess the potentialities of this material in order to obtain anti-Stokes laser-induced cooling. The analysis of the upconversion emission and excitation spectra as well as the decay curves indicates that energy transfer upconversion is the main mechanism responsible for the green (4S3/2 and red (4F9/2 upconversion luminescence. The dependence on temperature of the intensity ratio of upconversion emission from thermally-coupled 2H11/2 and 4S3/2 levels of Er3+ in the 240–300 K temperature range has been used to estimate a relative sensitivity of 1.09 × 10−2 K−1. Thermal measurements performed on the powder samples by using a thermal infrared camera exhibit a very inhomogeneous heat distribution at the sample surface due to the random distribution of the pumping energy inside the sample as well as to the random properties of the thermal field. The analysis of both spectroscopic and thermal measurements show that after a transient heating induced by the background absorption, cooling of discrete regions by means of anti-Stokes processes can be observed.

  12. Thermal fatigue life prediction based on crack propagation behaviors in high-temperature materials for power plant components

    International Nuclear Information System (INIS)

    Nitta, Akihito; Ogata, Takashi; Kuwabara, Kazuo

    1986-01-01

    For reducing an electric power supply cost, it is desired to extend the life of thermal power plant being still supplying the greater part of electric power in Japan. It is, therefore, becoming more and more important for the remaining life control of long-operated thermal power plants to exactly estimate the thermal fatigue damage accumulating in high temperature components. In this report, a discussion was made on thermal fatigue life laws derived from the crack propagation laws. As a result, the life laws were found to be effective for the evaluation of thermal fatigue life as well as isothermal fatigue life. Based on the concept of the life laws, the thermal and isothermal fatigue lives were also predicted as a propagation period of a crack with initial length equal to grain size from the characteristics of high temperature fatigue crack propagation. In addition to them, the rapid straining method was found to be required for more accurate estimation of creep strain in in-phase thermal fatigue. (author)

  13. Influence of thermal oxidation duration on the microstructure and fretting wear behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Liu, Yuhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-06-01

    Thermal oxidation under water oxidizing atmosphere was performed on Ti6Al4V alloy under different durations from 2 h to 8 h. Surface characterizations were performed using X-ray diffractometery (XRD), scanning electron microscopy (SEM), Raman spectroscopy, nanoindentation and nano scratch testing. Fretting wear behaviors of untreated and oxidized samples were also examined. The formed oxide coating mainly included rutile TiO{sub 2} as well as a little alumina. The weight gain with respect to the oxidation duration obeyed the linear oxidation kinetics law. The growth of oxide grains was in inadequate growth state of incomplete scale coverage from 2nd to 4th hour duration, in normal growth state from 4th to 6th hour duration while in excessive growth state of oxide particle agglomeration and surface roughening from 6th to 8th (or more than 8th) hour duration. The coating thickness increased from 5 μm to 12 μm as oxidation duration increased from 2 h to 8 h. The increase in duration also increased surface roughness and nano hardness as well as adhesion strength of the film/substrate for oxidized samples. The nano hardness value was 10.06 ± 2.15 GPa and the critical load of failure during nano scratch testing was 554.3 ± 6.44 mN for 4 h treated sample. The untreated and oxidized samples showed a same fretting running status and fretting regime with a displacement amplitude of 200 μm while revealing different fretting failure mechanisms. It was mainly abrasive and adhesive wear under ploughing force for untreated sample, while a mix of 3-body abrasion by rolling oxide particles and severe plastic deformation under high contact stress between two ceramic materials for the oxidized samples. The oxide coating was not worn out and improved the fretting wear resistance of titanium alloy. - Highlights: • A thickness of 5–12 μm rutile TiO{sub 2} coating formed under different oxidation durations. • Weight gain with respect to oxidation duration obeyed linear

  14. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.

    Science.gov (United States)

    Tian, Chixia; Lin, Feng; Doeff, Marca M

    2018-01-16

    Layered lithium transition metal oxides, in particular, NMCs (LiNi x Co y Mn z O 2 ) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure-performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO 2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface

  15. Light-Emitting Diode Phototherapy Reduces Nocifensive Behavior Induced by Thermal and Chemical Noxious Stimuli in Mice: Evidence for the Involvement of Capsaicin-Sensitive Central Afferent Fibers.

    Science.gov (United States)

    Pigatto, Glauce Regina; Coelho, Igor Santos; Aquino, Rosane Schenkel; Bauermann, Liliane Freitas; Santos, Adair Roberto Soares

    2017-07-01

    Low-intensity phototherapy using light fonts, like light-emitting diode (LED), in the red to infrared spectrum is a promising alternative for the treatment of pain. However, the underlying mechanisms by which LED phototherapy reduces acute pain are not yet well understood. This study investigated the analgesic effect of multisource LED phototherapy on the acute nocifensive behavior of mice induced by thermal and chemical noxious stimuli. The involvement of central afferent C fibers sensitive to capsaicin in this effect was also investigated. Mice exposed to multisource LED (output power 234, 390, or 780 mW and power density 10.4, 17.3, and 34.6 mW/cm 2 , respectively, from 10 to 30 min of stimulation with a wavelength of 890 nm) showed rapid and significant reductions in formalin- and acetic acid-induced nocifensive behavior. This effect gradually reduced but remained significant for up to 7 h after LED treatment in the last model used. Moreover, LED (390 mW, 17.3 mW/cm 2 /20 min) irradiation also reduced nocifensive behavior in mice due to chemical [endogenous (i.e., glutamate, prostaglandins, and bradykinin) or exogenous (i.e., formalin, acetic acid, TRPs and ASIC agonist, and protein kinase A and C activators)] and thermal (hot plate test) stimuli. Finally, ablating central afferent C fibers abolished LED analgesia. These experimental results indicate that LED phototherapy reduces the acute painful behavior of animals caused by chemical and thermal stimuli and that LED analgesia depends on the integrity of central afferent C fibers sensitive to capsaicin. These findings provide new information regarding the underlying mechanism by which LED phototherapy reduces acute pain. Thus, LED phototherapy may be an important tool for the management of acute pain.

  16. Análisis de redes sociales e historia : Una metodología para el estudio de redes clientelares

    OpenAIRE

    Sánchez Balmaseda, María Isabel

    1995-01-01

    Este trabajo de investigación tiene como objetivo realizar aportaciones en el campo de la metodología de las ciencias sociales y humanas. A tal fin, en primer lugar, se lleva a cabo una exposición detallada de dos metodologías, a saber, el análisis de redes sociales y la metodología de redes clientelares. La primera consiste en la aplicación de la teoría de grafos al estudio de los grupos humanos, mientras que la segunda es una metodología especifica utilizada por algunos historiadores para e...

  17. Daily thermal fluctuations experienced by pupae via rhythmic nursing behavior increase numbers of mushroom body microglomeruli in the adult ant brain

    Directory of Open Access Journals (Sweden)

    Agustina eFalibene

    2016-04-01

    Full Text Available Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces. The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C, or at constant temperatures (25.4, 35.0°C. We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies.

  18. The Influence of High Pressure Thermal Behavior on Friction-induced material transfer During Dry Machining of Titanium

    International Nuclear Information System (INIS)

    Abdel-Aal, H. A.; El Mansori, M.

    2011-01-01

    In this paper we study failure of coated carbide tools due to thermal loading. The study emphasizes the role assumed by the thermo-physical properties of the tool material in enhancing or preventing mass attrition of the cutting elements within the tool. It is shown that within a comprehensive view of the nature of conduction in the tool zone, thermal conduction is not solely affected by temperature. Rather it is a function of the so called thermodynamic forces. These are the stress, the strain, strain rate, rate of temperature rise, and the temperature gradient. Although that within such consideration description of thermal conduction is non-linear, it is beneficial to employ such a form because it facilitates a full mechanistic understanding of thermal activation of tool wear.

  19. Thermal and thermo-mechanical behavior of butyl based rubber exposed to silicon oil at elevated temperature

    International Nuclear Information System (INIS)

    Ali, S.; Ramzan, S.; Raza, R.; Ahmed, F.; Hussain, R.; Ullah, S.; Ali, S.

    2013-01-01

    Silica reinforced rubbers are used as chemical resistant seals at high temperature. In this study the effect of alkali and silicon oil on the thermal and thermo-mechanical properties of the silica reinforced butyl rubber exposed as an interface between two liquid media at elevated temperature is investigated. Rubber bladder containing alkaline solution was immersed in silicon oil at 195+-5 degree C for multiple cycles and loss in its thermal, thermo-mechanical and mechanical properties were studied by TGA, DMA and Tinius Olsen Testing Machine supported by FTIR and Optical microscopy. It was observed that the thermal and thermo-mechanical properties of butyl rubber were negatively affected due to leaching out of silica filler embedded in an organic matrix at elevated temperature. The thermal stability of exposed rubber was decreased around 200 degree C and the loss of storage modulus was observed up to 99.5% at -59 degree C. (author)

  20. INFLUENCE OF THE SIZE OF METHYLENE SPACERS ON THE THERMAL BEHAVIOR OF SEVERAL ALIPHATIC-AROMATIC POLYESTERS

    Directory of Open Access Journals (Sweden)

    NATALIA HURDUC

    2014-04-01

    Full Text Available Polyesters have a wide range of technical applications and therefore their processing is of the utmost importance. Since polyesters are usually processed by melting, their thermal stability is an extremely important characteristic for the exact determination of the operational parameters. The thermal analysis was carried out using a MOM-Budapest derivatograph at the 10 C/min heating speed, aluminum oxide the reference material, and the air conditions were static. The study lead to conclusions on the thermal stability and degradation mechanism depending on the number of methylene groups in the spacer. Thermal stability is supported by the increase in the number of methylene groups in the spacer. The degradation mechanism is complex through successive reactions. The spacer size influences the nature of the micromolecules formed by spacer fragmenting and by the number of carbon atoms, respectively.