WorldWideScience

Sample records for thermal aging treatment

  1. Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

    CERN Document Server

    Althouse, L P

    1979-01-01

    Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

  2. Aging Thermal Treatment in the Inconel 725 Brazed Incorporating Tungsten Nanoparticles

    Directory of Open Access Journals (Sweden)

    H. M. Hdz-García

    2016-01-01

    Full Text Available Fractures in blade sections of Inconel 725 were impregnated with tungsten nanoparticles and jointed by the brazing process. In order to evaluate their effect over the microstructure, aging thermal treatments at 750°C for 2, 6, 10, and 14 h were done. BNi-9 was selected as brazing filler metal and was characterized by scanning electron microscopy and X-ray fluorescence. Before brazing, the fractures were impregnated with a mixture of tungsten NPs in ethanol. Measurements of Vickers microhardness showed an increase in the melting zone of samples with aging thermal treatment for 14 h, which is attributed to the precipitation of the γ′ phase with a typical size of ca. 100 nm. Likewise, the tungsten NPs modified the size and morphology of Cr-Ni eutectics into finer and uniformly distributed microstructures.

  3. Effects of Thermal Treatment and Physical Aging on the Gas Transport Properties in Matrimid®

    Directory of Open Access Journals (Sweden)

    Ansaloni L.

    2015-02-01

    Full Text Available Carbon dioxide and methane transport in a commercial polyimide, Matrimid 5218®, has been characterized in order to evaluate the effect of membrane thermal treatment and physical aging on its potentialities for CO2/CH4 separation. In particular, CO2 and CH4 permeabilities and diffusion coefficients were measured at three different temperatures (35, 45 and 55°C in films pretreated at 50, 100, 150 and 200°C, respectively. The performances of each sample were examined for a period of more than 3 000 hours. Permeability and diffusivity values for both penetrants showed a marked decrease with increasing the pretreatment temperature up to 150°C and remained, then, substantially unchanged for specimens pretreated at the highest temperature. Interestingly, the samples characterized by the higher flux after film formation also showed a faster aging phenomenon, leading to a 25 % decrease of CO2 permeability in the period inspected. Conversely, the samples pretreated at temperatures of 150°C, or higher, displayed very stable transport properties for the entire duration of the monitoring campaign. At the end of the aging period considered, the differences among samples were definitely reduced, suggesting that the initial behaviors are related to different polymer structures induced by pretreatment, which slowly evolve in time towards more similar and more stable configurations. Such aging rearrangements affect both CO2 and CH4 permeability in a similar way, so that no significant changes were observed for selectivity, which showed only a slight increment by increasing the temperature of the thermal treatment or the duration of the aging period.

  4. Effects of Si69 treatment on fly ash particles and thermal ageing on the properties of NR/SBR blend

    Directory of Open Access Journals (Sweden)

    Sombatsompop, N.

    2007-09-01

    Full Text Available The research involved property development of NR/SBR blend filled fly ash particles used for reinforcement in comparison with commercial silica. The effects of silica content and surface treatment by Si69 silane coupling agent were studied. The experimental results suggested that as the silica content from fly ash particles increased the cure time decreased. The increase in silica content in fly ash resulted in increases in tensile modulus, hardness, tears strength and percent compression set, but led to decreases in elongation at break, abrasion, percent resilience and tensile strength. When adding the silane coupling agent the cure time and overall mechanical properties were improved. After thermal ageing, the tensile modulus and tensile strength increased, but the elongation at break decreased. Overall results recommended that 20 phr of silica in 2% Si69-treated fly ash particles gave the optimum mechanical properties of the blend and can be used to replace the commercial silica.

  5. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  6. Thermal Treatment Technologies: Lessons Learned

    Science.gov (United States)

    2011-11-01

    biostimulation I After biostimulation II...100,000 , 24 35 50 70 95r a t i o n ( p p m methane formation following thermal treatment. Prior to biostimulation 300,000 400,000 300,000 400,000...Great Lakes - Autoclaved Great Lakes - Live H 4 C o n c e n t The majority of reducing After biostimulation I After biostimulation II 100,000 200,000

  7. Thermal waste treatment; Thermische Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Urban, A.I.; Bilitewski, B. [eds.

    1998-09-01

    One effect of the enactment of the new Law on Recycling and Waste Management, in conjunction with the lowering of emission limit values, has been to bring thermal water treatment more and more into the focus of the discussion on optimal water utilisation. The present volume discusses the consequences of changing waste arisings and composition for various process combinations. [Deutsch] Durch das Inkrafttreten des neuen Kreislaufwirtschafts- und Abfallgesetzes und strengeren Emissionsgrenzwerten rueckt immer mehr die thermische Abfallbehandlung in den Vordergrund der Diskussionen um die optimale Abfallverwertung. Die Folgen der sich veraendernden Abfallmengen und -zusammensetzungen im Hinblick auf Anlagenauslastung, Feuerungstechnik, Rueckstaende und Kosten werden eroertert. Es werden verschiedene Verfahrenskombinationen vorgestellt und diskutiert. Verschiedene Moeglichkeiten der Klaerschlammbehandlung und der Einsatz der Reststoffe Asche und Schlacke in der Bauindustrie werden behandelt. (ABI)

  8. Transitional Thermal Creep of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Freiesleben Hansen, Per

    1999-01-01

    Couplings between creep of hardened concrete and temperature/water effects are well-known. Both the level and the gradients in time of temperature or water content influence the creep properties. In early age concrete the internal drying and the heat development due to hydration increase the effect...... of these couplings. The purpose of this work is to set up a mathematical model for creep of concrete which includes the transitional thermal effect. The model govern both early age concrete and hardened concrete. The development of the material properties in the model are assumed to depend on the hydration process...... termed the microprestresses, which reduces the stiffness of the concrete and increase the creep rate. The aging material is modelled in an incremental way reflecting the hydration process in which new layers of cement gel solidifies in a stress free state and add stiffness to the material. Analysis...

  9. Transitional Thermal Creep of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard, A. B.; Damkilde, L.; Hansen, Per Freiesleben

    1999-01-01

    Couplings between creep of hardened concrete and temperature/water effects are well-known. Both the level and the gradients in time of temperature or water content influence the creep properties. In early age concrete the internal drying and the heat development due to hydration increase the effect...... of these couplings. The purpose of this work is to set up a mathematical model for creep of concrete that includes the transitional thermal effect. The model governs both early age concrete and hardened concrete. The development of the material properties in the model is assumed to depend on the hydration process...... termed the microprestresses, which reduce the stiffness of the concrete and increase the creep rate. The aging material is modeled in an incremental way reflecting the hydration process in which new layers of cement gel solidify in a stress free state and add stiffness to the material. Analysis...

  10. Thermal aging of nitroplasticized Estane 5703

    Energy Technology Data Exchange (ETDEWEB)

    Orler, E. B. (E. Bruce); Wrobleski, Debra A.; Cooke, D. W. (D. Wayne); Bennett, B. L. (Bryan L.); Smith, M. E. (Mark E.); Jahan, M. S. (M. Shan)

    2002-01-01

    In support of the Lifetime Prediction modeling effort, we have been investigating the aging processes that could impact the lifetime of PBX 9501. PBX 9501 is composed of 95% HMX and 5% polymeric binder. The polymeric binder is composed of 50% nitroplasticizer (NP) and 50% Estane{reg_sign} 5703 with a small quantity of stabilizer. Estane{reg_sign} 5703 is a segmented poly(ester urethane) with mechanical properties derived from phase separation of hard and soft segments along the polymer backbone. Since the binder has a significant effect on the composite mechanical properties, it is essential to know how the binder changes with time. Typically, polymer lifetime predictions are determined from extrapolation of properties after the material has been exposed to elevated temperatures and/or reactive environments for varying periods of time. For multiphase polymers, this accelerated aging methodology is very difficult to interpret since elevated temperatures alter the physical structure of the polymer, as well as, accelerate the chemical degradation reactions. Accelerated aging studies of nitroplasticized Estane have shown an increase in the molecular weight. The increase in molecular weight is most likely due to polymer chain branching reactions that eventually leads to formation an insoluble cross-linked gel. The decreased chain mobility caused by branching may also affect phase separation, which in turn, may change the mechanical properties. In this paper we report results of thermal aging studies on the properties, morphology and chemistry of nitroplasticized Estane.

  11. Enhancing composite durability : using thermal treatments

    Science.gov (United States)

    Jerrold E. Winandy; W. Ramsay Smith

    2007-01-01

    The use of thermal treatments to enhance the moisture resistance and aboveground durability of solid wood materials has been studied for years. Much work was done at the Forest Products Laboratory in the last 15 years on the fundamental process of both short-and long-term exposure to heat on wood materials and its interaction with various treatment chemicals. This work...

  12. Thermal treatment of dissimilar steels' welded joints

    Science.gov (United States)

    Nikulina, A. A.; Denisova, A. S.; Gradusov, I. N.; Ryabinkina, P. A.; Rushkovets, M. V.

    2016-04-01

    In this paper combinations of chrome-nickel steel and high-carbon steel, produced by flash butt welding after heat treatment, are investigated. Light and electron microscopic studies show that the welded joints after heat treatment have a complex structure consisting of several phases as initial welded joints. A martensite structure in welded joints after thermal treatment at 300... 800 °C has been found.

  13. Carotenes in processed tomato after thermal treatment

    NARCIS (Netherlands)

    Luterotti, S.; Bicanic, D.D.; Markovic, K.; Franko, M.

    2015-01-01

    This report adds to the ongoing vivid dispute on the fate of carotenes in tomato upon thermal processing. Although many papers dealing with changes in the raw tomatoes during industrial treatment have already appeared, data on the fate of finished, processed tomato products when they are

  14. Avoiding Aging? Social Psychology's Treatment of Age

    Science.gov (United States)

    Barrett, Anne E.; Redmond, Rebecca; von Rohr, Carmen

    2012-01-01

    Population aging, in conjunction with social and cultural transformations of the life course, has profound implications for social systems--from large-scale structures to micro-level processes. However, much of sociology remains fairly quiet on issues of age and aging, including the subfield of social psychology that could illuminate the impact of…

  15. Effect of thermal treatment on Zn nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Acuña-Avila, Pedro E., E-mail: pacunaa004@alumno.uaemex.mx; López, Roberto; Vigueras-Santiago, Enrique; Hernández-López, Susana; Camacho-López, Marco [Laboratorio de Investigación y Desarrollo de Materiales Avanzados (LIDMA). Facultad de Química de la Universidad Autónoma del Estado de México. Paseo Colón esquina Paseo Tollocan C.P. 50120, Toluca, Estado de México, México (Mexico); Ornelas-Gutierrez, Carlos; Antunez, Wilber [Centro de investigación en Materiales Avanzados S. C. (CIMAV). Miguel de Cervantes N° 120. C.P. 31109. Chihuahua, Chihuahua, México (Mexico)

    2015-06-15

    Metallic Zn nanodisks with hexagonal morphology were obtained onto glass substrate under vacuum thermal evaporation. A thermal characterization of Zn nanodiks showed a lower oxidation temperature than source powder Zn. Different thermal treatment on Zn nanodisks played an important role on the morphology, crystal size and surface vibrational modes of ZnO. The growth of ZnO nanoneedles started at the edge of metallic zinc hexagonal structures according with SEM images, the higher temperature the longer needles were grown. XRD diffractogram confirmed the wurtzite structure of ZnO with metallic nuclei. A wide band between 530 and 580 cm{sup −1} of Raman scattering corresponded at surface vibrational modes not observed at higher temperature.

  16. OVARIAN AGING AND INFERTILITY TREATMENT

    Directory of Open Access Journals (Sweden)

    Helena Meden Vrtovec

    2003-12-01

    Full Text Available Background. Due to changes in the socio-economic environment the first pregnancy is being more often postponed to advanced age; an increasing number of women seek medical help for infertility in their late thirties. Degenerative processes in the ovary start as early as after 35 years of age. When the woman is over 38, the signs of hormonal changes occur (FSH, inhibin, the menstrual cycle changes, and fertility is being increasingly reduced. Infertility treatment by assisted reproduction technology (ART has proved less efficient in older than in younger women.Material and methods. In a retrospective analysis we evaluated the success rates achieved with homologous intrauterine insemination (IUI, in vitro fertilization and embryo-transfer (IVF-ET, intracytoplasmic sperm injection (ICSI, and compared them in regard to the women > 38 years vs. < 38 years.Results. After IUI the pregnancy rate in the women over 38 was 3.7% per patient (1.5% per cycle and 28.0% (9.9% in the women younger than 38 years. After IVF-ET the pregnancy rate in the over 38-year group was 16% per patient (14% per cycle, and 28% per patient (25% per cycle in the less than 38-year group. After ICSI, the pregnancy rate in the group over 38 years was 11% per patient (9% per cycle, and 25% per patient (22% per cycle in the less than 38-year group. In the analysed population, the spontaneous abortion rate was 26.0% in the group of women aged over 38 years, and 14.0% in the group of women aged less than 38 years.Conclusions. Before introduction of an ART procedure the woman with advanced age should be properly counselled and well informed about poor success of their infertility treatment and high spontaneous abortion rate.

  17. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    Science.gov (United States)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  18. Catalytic thermal treatment of desizing wastewaters.

    Science.gov (United States)

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2007-10-01

    In the present study, catalytic thermal treatment (thermolysis) was investigated for the reduction of COD and color of the desizing wastewater under moderate temperature and atmospheric pressure conditions using various catalysts. The experimental runs were performed in a glass reactor equipped with a vertical condenser. The homogeneous copper sulfate catalyst was found to be the most active in comparison to other catalysts under similar operating conditions. A removal of about 71.6% chemical oxygen demand (COD) and 87.2% color of desizing wastewater was obtained with a catalyst concentration of 4 kg/m(3) at pH 4. The initial pH value of the wastewater showed a pronounced effect on the precipitation process. During the thermolysis, copper gets leached to the aqueous phase, the residue obtained after the treatment is rich in copper and it can be blended with organic manure for use in agricultural fields. The thermogravimetric analysis showed that the thermal oxidation of the solid residue obtained after thermolysis gets oxidized at a higher temperature range than that of the residue obtained from the desizing wastewater. The results lead to the conclusion that thermochemical precipitation is a very fast (instantaneous) process and would need a very small reactor vessel in comparison to other processes.

  19. FY 2017 – Thermal Aging Effects on Advanced Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Wei-Ying [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This report provides an update on the evaluation of the effect of thermal aging on tensile properties of existing laboratory-sized heats of Alloy 709 austenitic stainless steel and the completion of effort on the thermal aging effect on the tensile properties of optimized G92 ferritic-martensitic steel. The report is a Level 3 deliverable in FY17 (M3AT-17AN1602081), under the Work Package AT-17AN160208, “Advanced Alloy Testing - ANL” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  20. Accelerated thermal and radiative ageing of hydrogenated NBR for DRC

    Energy Technology Data Exchange (ETDEWEB)

    Mares, G. [EUROTEST S.A., Bucharest (Romania). Research, Equipment Testing, Industrial Engineering and Scientific Services; Notingher, P. [Univ. Politehnica, Bucharest (Romania). Faculty of Electrical Engineering

    1996-12-31

    The accelerated thermal and gamma radiation ageing of HNBR carbon black-T80 has been studied by measuring the residual deformation under constant deflection -- DRC, in air, using a relevant equation for the relaxation phenomena. The residual deformation under constant deflection during the process of accelerated ageing is increasing but the structure of polymer answers in the proper manner to the mechanical stress. The degradation equations were obtained, using Alfrey model for the relaxation polymer subject to compression and an Arrhenius dependence for the chemical reaction rate. The inverted relaxation time for the thermal degradation is depending on the chemical reaction rate and the dose rate of gamma radiation.

  1. Aging effects on vertical graphene nanosheets and their thermal stability

    Science.gov (United States)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.

    2017-10-01

    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  2. Thermal studies to determine the accelerated ageing of flares

    NARCIS (Netherlands)

    Klerk, W.P.C. de; Krabbendam-La Haye, E.L.M.; Berger, B.; Brechbuhl, H.; Popescu, C.

    2005-01-01

    Thermal analysis is an interesting technique to determine kinetic parameters of separate components, and also of a complete system to receive adequate information on the ageing process of pyrotechnic compositions. The investigated tracer is a tracking tracer of a Swiss missile. It is attached to a

  3. Thermal Expansion and Aging Effects in Neuromorphic Signal Processor

    NARCIS (Netherlands)

    Zjajo, A.; van Leuken, T.G.R.M.

    2016-01-01

    In this paper, we propose an efficient methodology based on a real-time estimator and predictor-corrector scheme for accurate thermal expansion profile and aging evaluation of a neuromorphic signal processor circuit components. As the experimental results indicate, for comparable mesh size, the

  4. Thermal Embrittlement of Reactor Pressure Vessel Steel due to Aging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Soo; Park, Duck Gun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Thermal SS sets are located above the nuclear core where a fast neutron flux is negligible and temperature is 320 .deg. C (as opposed to 290 .deg. C in locations of high-irradiated SS). These SS allow monitoring of continuous operation temperature exposure effect on mechanical characteristics of the steels. Although transgranular cleavage is the predominant mode of brittle fracture in RPV steels, solute (e.g. phosphorus) segregation to grain boundaries can result in another type of brittle fracture known as intergranular (grain boundary) fracture. Figures 1 a) and b) show examples of transgranular and intergranular (IG) fracture, respectively, as viewed in a scanning electron microscope. The investigators have interpreted the intergranular cracking occurs as a result of segregation of sulfur and/or phosphorus at grain boundary. The IG cracking is a kind of symptom of embrittlement. It is reported that the IG cracking occurs in inert (Ar) environment under slow strain rate test. 1. The lath grain size in SA508 RPV steel increases slightly due to thermal aging at 350, 420, and 420 .deg. C for 2,250H. 2. The decrease in toughness appeared 4-25% and the lattice contraction appeared to be +0.004% - -0.022% due to thermal aging at 350, 420, and 420 .deg. C for 2,250H. 3. The amount of decrease in Charpy impact energy due to thermal aging is correlated well with the magnitude of lattice contraction.

  5. Effects of ageing and moisture content on thermal properties of ...

    African Journals Online (AJOL)

    The mean thermal conductivity ranged from 0.4770 to 0.5654, 0.4804 to 0.5530 and 0.4302 to 0.6102 W/mK at these ages respectively. The thermal diffusivity also ranged from 1.588 to 2.426, 1.614 to 0.1972 and 1.610 to 2.020m2/s while the specific heat capacity ranged from 2.3626 to 3.1495, 2.4900 to 3.7538 and 3.4222 ...

  6. What is an anti-aging treatment?

    Science.gov (United States)

    Gems, David

    2014-10-01

    Key objectives of biogerontology are to understand the biology of aging and to translate scientific insight into interventions that improve late-life health - or anti-aging treatments. In this context, when considering the problem of how to effect translational research, it is useful to have a clear, consensus view on what exactly constitutes an anti-aging treatment. This essay critically assesses the understanding of this concept common among biogerontologists, and proposes a new definition. A current conception of anti-aging treatment imagines a primary cause of aging that is causally upstream of, and the cause of, all age-related pathology. Intervening in this aging process thus protects against the totality of age-related diseases. However, this underlying aging process remains an abstraction. By contrast, what is demonstrable is that interventions in model organisms can improve late-life health and extend lifespan. Furthermore, a safe deduction is that treatments that extend lifespan do so by reducing age-related pathology, both florid and subtle. What is currently identifiable about aging (i.e. senescence) is that it is a very complex disease syndrome, likely involving a number of biological mechanisms. Treatments that substantially extend lifespan must suppress multiple pathologies that otherwise limit lifespan, but whether they suppress the entire aging process remains undemonstrated. A more pragmatic and realistic definition of anti-aging treatment is any preventative approach to reduce late-life pathology, based on the understanding that senescence is a disease syndrome. This definition would encompass preventative approaches aimed at both broad and narrow spectra of age-related pathologies. Its adoption would facilitate translation, since it would shift the emphasis to medical practice, particularly the introduction of preventative approaches. Narrow spectrum anti-aging treatments (e.g. the cardiovascular polypill) could establish a practice that

  7. Effects of thermal treatments on donkey milk nutritional characteristics.

    Science.gov (United States)

    Polidori, Paolo; Vincenzetti, Silvia

    2013-12-01

    Human breast milk is the best nutritional support to ensure right development and influence immune status of the newborn infant. However, when it is not possible to breast feed it may be necessary to use commercial infant formulas that mimic, where possible, the levels and types of nutrients present in human milk. Despite this, some formula-fed infants develop allergy and/or atopic disease compared to breast-fed infants. Most infants with cow's milk protein allergy (CMPA) develop symptoms before 1 month of age, often within 1 week after introduction of cow's milk-based formula. Donkey milk may be considered a good substitute for cow's milk in feeding children with CMPA since its composition is very similar to human milk. An in-depth analysis of the donkey milk protein profile has been performed in this study. The interest was focused on the milk proteins considered safe for the prevention and treatment of various disorders in human. Since donkey milk supply is related to its seasonal availability during the year, in this study were evaluated the effects of different thermal treatments on the protein fractions of donkey milk. The results obtained in fresh, frozen, powdered and lyophilized donkey milk showed different values in total proteins, caseins, whey proteins and lysozyme content. This study demonstrated the possibility of using lyophilization in order to maintain the nutritional characteristics of donkey milk. The article presents some promising patents on the effects of thermal treatments on donkey milk nutritional characteristics.

  8. Researches regarding the optimization of thermal treatment depending on hardness for maraging 300 steel

    Directory of Open Access Journals (Sweden)

    A. Nioaţă

    2013-04-01

    Full Text Available The paper presents researches regarding the optimization of aging thermal treatment and solution heat treatment for MARAGING 300, in order to get a certain hardness value. Experimental data processing resulted from the study of MARAGING 300 steel hardness dependence on the temperature and aging maintenance time and solution heat treatment was made using Statistica program. Results have allowed to determine some mathematic patterns for determining heating temperature, maintenance time respectively in order to get a certain steel hardness.

  9. Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane

    Directory of Open Access Journals (Sweden)

    Karina Kwapiszewska

    2016-11-01

    Full Text Available The paper describes a cheap and accessible technique of a poly(dimethylsiloxane (PDMS master treatment by thermal aging as a step of double casting microfabrication process. Three-dimensional PDMS microstructures could have been achieved using this technique. It was proved, that thermal aging changes nanotopology of a PDMS surface and thus enhances efficiency of double casting prototyping. The thermally aged PDMS master could have been used for multiple and correct replication of over 98% of the fabricated microstructures. Moreover, lack of chemical modification preserved the biocompatibility of PDMS devices. The fabricated microstructures were successfully utilized for 3D cell culture.

  10. Microstructure Changes in Polyester Polyurethane upon Thermal and Humid Aging

    Directory of Open Access Journals (Sweden)

    Qiang Tian

    2016-05-01

    Full Text Available The microstructure of compression molded Estane 5703 films exposed to 11%, 45%, and 80% relative humidity and 70 °C for 1 and 2 months has been studied by small-angle neutron scattering (SANS, Fourier transform infrared spectroscopy (FTIR, gel permeation chromatography (GPC, and differential scanning calorimetry (DSC. Scattering data indicated increase of the interdomain distance and domain size with a higher humidity and longer aging time. GPC data showed a progressive shortening of polyurethane chains with increasing humidity and aging time. The shortening of the polyurethane chains caused a drop of the glass transition temperature of soft segments, and promoted crystallization of the soft segments during long-time storage of the aged samples at room temperature. FTIR showed a substantial increase in the number of inter-urethane H-bonds in the aged samples. This correlates with the increase of the hard domain size and the degree of phase separation as measured by SANS. The data collected reveals that the reduced steric hindrance caused by hydrolysis of ester links in polybutylene adipate residues promotes the organization of hard segments into domains, leading to the increase of domain size and distance, as well as phase segregation in aged Estane. These findings provide insight into the effects of humidity and thermal aging on the microstructure of aged polyester urethane from molecular to nanoscale level.

  11. Assessment of Accrued Damage and Remaining Useful Life in Leadfree Electronics Subjected to Multiple Thermal Environments of Thermal Aging and Thermal Cycling

    Data.gov (United States)

    National Aeronautics and Space Administration — A method has been developed for prognostication of accrued prior damage in electronics subjected to overlapping sequential environments of thermal aging and thermal...

  12. Physicochemical characterization of thermally aged Egyptian linen dyed with organic natural dyestuffs

    Science.gov (United States)

    Kourkoumelis, N.; El-Gaoudy, H.; Varella, E.; Kovala-Demertzi, D.

    2013-08-01

    A number of organic natural dyestuffs used in dyeing in ancient times, i.e. indigo, madder, turmeric, henna, cochineal, saffron and safflower, have been used to colour Egyptian fabrics based on linen. Their physicochemical properties have been evaluated on thermally aged linen samples. The aged dyed linen samples were thoroughly examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile strength and elongation measurements. It was found that, in the molecular level, dyes interact mainly with the cellulose compounds of the aged linen while in the macroscopic level tensile and elongation parameters are altered. Tensile strength is positively related to the dye treatment while elongation depends specifically on the type of the dye used. Results converge that the dyed textiles did indeed play a role as protecting agents affecting strength and reducing thermal deterioration.

  13. Clinical Outcomes Associated with Thermal Pulsation System Treatment

    National Research Council Canada - National Science Library

    Satjawatcharaphong, Pam; Ge, Shaokui; Lin, Meng C

    2015-01-01

    PURPOSETo identify patient characteristics at a baseline ocular surface evaluation that correlate with improvement in dry eye symptoms at a follow-up visit after treatment with the LipiFlow Thermal Pulsation System...

  14. Retrieval/ex situ thermal treatment scoring interaction report

    Energy Technology Data Exchange (ETDEWEB)

    Raivo, B.D.; Richardson, J.G.

    1993-11-01

    A retrieval/ex situ thermal treatment technology process for the Idaho National Engineering Laboratory transuranic waste pits and trenches is present. A system performance score is calculated, and assumptions, requirements, and reference baseline technologies for all subelements are included.

  15. Accelerated thermal aging of petroleum-based ferrofluids

    Science.gov (United States)

    Segal, V.; Nattrass, D.; Raj, K.; Leonard, D.

    1999-07-01

    The effect of elevated temperature on the physical and insulating properties of ferrofluid specifically developed for use as a liquid dielectric (D-fluid) for power transformers has been investigated. The D-fluid was produced as a colloidal mix of a specifically synthesized ferrofluid with a conventional mineral oil, and it was subjected to thermal aging conditions modeled after a typical power transformer where the insulation fluid is expected to retain its dielectric performance for about 40 years of continuous service in a sealed tank. The well-known Arrhenius relationship was employed to model "life in service" for up to 40 years at 105°C which corresponded to holding the samples in sealed jars for 10 weeks at 185°C. Another set of small ampules (5 ml) was prepared to test the main physical properties after even longer aging. D-fluid tested after a period of 34 and 50 weeks at 185°C showed no degradation of thermal or colloid stability. The dielectric colloid was also subjected to a 21 day-long test at 110°C in a sealed jar in the presence of typical transformer materials: copper, cellulose, and silicon steel (so-called "bomb" test). Finally, the ferrofluid went through an oxidation stability test (ASTM D2440). Test results show that the newly developed dielectric colloid satisfies the long-term service requirements the transformer users typically apply to conventional mineral oils.

  16. Thermal Ablation for the Treatment of Abdominal Tumors

    OpenAIRE

    Brace, Christopher L.; Hinshaw, J. Louis; Lubner, Meghan G.

    2011-01-01

    Percutaneous thermal ablation is an emerging treatment option for many tumors of the abdomen not amenable to conventional treatments. During a thermal ablation procedure, a thin applicator is guided into the target tumor under imaging guidance. Energy is then applied to the tissue until temperatures rise to cytotoxic levels (50-60 ?C). Various energy sources are available to heat biological tissues, including radiofrequency (RF) electrical current, microwaves, laser light and ultrasonic waves...

  17. The future of thermal waste treatment; Zukunft der thermischen Restabfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, K.; Kern, M. (eds.); Tappen, I.; Weber-Wied, R. (comps.)

    2001-07-01

    Contents: State of the art of energy-efficient thermal waste treatment processes and practical examples; Regional and economic aspects; Licensing problems of thermal waste treatment plants. [German] Der vorliegende Tagungsband zum 2. Stassfurter Abfall- und Energieforum beschreibt den aktuellen Stand energieeffizienter thermischer Abfallbehandlungsmethoden an praktischen Beispielen und stellt den Bezug dieser Massnahmen zum raeumlich-wirtschaftlichen Umfeld dar. Darueber hinaus werden vergaberechtliche Fragen im Zusammenhang mit der europaweiten Ausschreibungspflicht fuer die Errichtung thermischer Abfallbehandlungsanlagen aufgezeigt und eroertert. (orig.)

  18. Integrated thermal treatment system sudy: Phase 2, Results

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  19. Low level mixed waste thermal treatment technical basis report

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  20. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  1. Electrochemical Aging of Thermal-Sprayed Zinc Anodes on Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, G.R.; Bullard, S.J.; Covino, B.S. Jr.; Cramer, S.D.; Cryer, C.B.; McGill, G.E.

    1996-10-01

    Thermal-sprayed zinc anodes are used in impressed current cathodic protection systems for some of Oregon's coastal reinforced concrete bridges. Electrochemical aging of zinc anodes results in physical and chemical changes at the zinc-concrete interface. Concrete surfaces heated prior to thermal-spraying had initial adhesion strengths 80 pct higher than unheated surfaces. For electrochemical aging greater than 200 kC/m{sup 2} (5.2 A h/ft{sup 2}), there was no difference in adhesion strengths for zinc on preheated and unheated concrete. Adhesion strengths decreased monotonically after about 400 to 600 kC/m{sup 2} (10.4 to 15.6 A-h/ft{sup 2}) as a result of the reaction zones at the zinc-concrete interface. A zone adjacent to the metallic zinc (and originally part of the zinc coating) was primarily zincite (ZnO), with minor constituents of wulfingite (Zn(OH){sub 2}), simonkolleite (Zn{sub 5}(OH) {sub 8}C{sub l2}{sup .}H{sub 2}O), and hydrated zinc hydroxide sulfates (Zn{sub 4}SO{sub 4}(OH){sub 6}{sup .}xH{sub 2}O). This zone is the locus for cohesive fracture when the zinc coating separates from the concrete during adhesion tests. Zinc ions substitute for calcium in the cement paste adjacent to the coating as the result of secondary mineralization. The initial estimate of the coating service life based on adhesion strength measurements in accelerated impressed current cathodic protection tests is about 27 years.

  2. Silicon technologies ion implantation and thermal treatment

    CERN Document Server

    Baudrant, Annie

    2013-01-01

    The main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion.

  3. Thermal power sludge – properties, treatment, utilization

    Directory of Open Access Journals (Sweden)

    Martin Sisol

    2005-11-01

    Full Text Available In this paper a knowledge about properties of thermal power sludge from coal combustion in smelting boilers is presented. The physical and technological properties of slag – granularity, density, specific, volume and pouring weight, hardness and decoupling – together with chemical properties influence its exploitation. The possibility of concentrating the Fe component by the mineral processing technologies (wet low-intenzity magnetic separation is verified. An industrial use of the slag in civil engineering, e.g. road construction, was realised. The slag-fly ashes are directly utilized in the cement production as a substitute of a part of natural raw materials. For the use of slag as the stoneware in the road construction, all the criteria are fulfilled.

  4. Integrated thermal treatment systems study. Internal review panel report

    Energy Technology Data Exchange (ETDEWEB)

    Cudahy, J.; Escarda, T.; Gimpel, R. [and others

    1995-04-01

    The U.S. Department of Energy (DOE) Office of Technology Development (OTD) commissioned two studies to evaluate nineteen thermal treatment technologies for treatment of DOE mixed low-level waste. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the help of the DOE Office of Environmental Management (EM) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel to review and comment on the ITTS studies. This Panel was composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency, the California EPA, and private experts. The Panel met from November 15-18, 1994 to review the ITTS studies and to make recommendations on the most promising thermal treatment systems for DOE mixed low-level wastes and on research and development necessary to prove the performance of the technologies. This report describes the findings and presents the recommendations of the Panel.

  5. Effect of Nanoparticles on the Morphology, Thermal, and Electrical Properties of Low-Density Polyethylene after Thermal Aging

    Directory of Open Access Journals (Sweden)

    Youyuan Wang

    2017-10-01

    Full Text Available This paper investigates the morphology, thermal, and electrical properties of LDPE (low-density polyethylene-based nanocomposites after thermal aging. The FTIR (Fourier transform infrared spectroscopy spectra results show that thermo-oxidative reactions occur in neat LDPE and LDPE/SiO2 nanocomposites when the aging time is 35 days and in LDPE/MgO nanocomposites when the aging time is 77 days. Specifically, LDPE/MgO nanocomposites delay the appearance of thermo-oxidative reactions, showing anti-thermal aging ability. Furthermore, nanocomposites present lower onset degradation temperature than neat LDPE, showing better thermal stabilization. With regard to the electrical properties, nanocomposites maintain the ability to suppress space charge accumulation after thermal aging. Additionally, in comparison with SiO2 nanocomposites and neat LDPE, the permittivity of LDPE/MgO nanocomposites changes slightly after thermal aging. It is concluded that LDPE/MgO nanocomposites have better insulation properties than neat LDPE after thermal aging, which may be caused by the interface introduced by the nanoparticles.

  6. Effect of Nanoparticles on the Morphology, Thermal, and Electrical Properties of Low-Density Polyethylene after Thermal Aging.

    Science.gov (United States)

    Wang, Youyuan; Wang, Can; Zhang, Zhanxi; Xiao, Kun

    2017-10-12

    This paper investigates the morphology, thermal, and electrical properties of LDPE (low-density polyethylene)-based nanocomposites after thermal aging. The FTIR (Fourier transform infrared spectroscopy) spectra results show that thermo-oxidative reactions occur in neat LDPE and LDPE/SiO₂ nanocomposites when the aging time is 35 days and in LDPE/MgO nanocomposites when the aging time is 77 days. Specifically, LDPE/MgO nanocomposites delay the appearance of thermo-oxidative reactions, showing anti-thermal aging ability. Furthermore, nanocomposites present lower onset degradation temperature than neat LDPE, showing better thermal stabilization. With regard to the electrical properties, nanocomposites maintain the ability to suppress space charge accumulation after thermal aging. Additionally, in comparison with SiO₂ nanocomposites and neat LDPE, the permittivity of LDPE/MgO nanocomposites changes slightly after thermal aging. It is concluded that LDPE/MgO nanocomposites have better insulation properties than neat LDPE after thermal aging, which may be caused by the interface introduced by the nanoparticles.

  7. Clinical outcomes associated with thermal pulsation system treatment

    OpenAIRE

    Satjawatcharaphong, P; S. Ge; Lin, MC

    2015-01-01

    © 2015 American Academy of Optometry. Purpose To identify patient characteristics at a baseline ocular surface evaluation that correlate with improvement in dry eye symptoms at a follow-up visit after treatment with the LipiFlow Thermal Pulsation System. Methods Thirty-two patients completed a comprehensive baseline ocular surface evaluation and were treated with the LipiFlow Thermal Pulsation System followed by maintenance home therapy. Lipid layer thickness and blink pattern were determined...

  8. Treatment of parkinson's disease ata young age

    Directory of Open Access Journals (Sweden)

    Dmitry Valeryevich Artemyev

    2010-01-01

    Full Text Available The paper considers the specific features of the diagnosis and treatment of parkinsonism in young and middle-aged patients. It is stressed that early-onset Parkinson's disease (PD shows a number of the specific features of the mechanism responsible for the development, clinical picture, and course, as well as a response to antiparkinsonian agents, and prognosis. Indications for the use of different groups of antiparkinsonian drugs and the basic principles of management in young and middle-aged patients are discussed. Emphasis is laid on the key role of non-ergoline dopamine receptor agonists in the treatment of patients with PD. Approaches to correcting the non-motor symptoms of PD and current indications for neurosurgical treatment are considered.

  9. Thermal Aging Evaluation of Mod. 9Cr-1Mo Steel using Nonlinear Rayleigh Waves

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Sang; Kim, Hoe-Woong; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Marino, Daniel; Kim, Jin-Yeon; Jacobs, L.J [Georgia Institute of Technology, Atlanta (United States); Ruiz, Alberto [UMSNH, Morelia (Mexico)

    2014-10-15

    Thermal aging can pose a high risk to decreases in the mechanical properties such as strength or creep resistance. This can lead to an unexpected failure during long term operation. Nonlinear NDE techniques are preferred over conventional NDE techniques (linear ultrasonic measurements) because nonlinear ultrasonic techniques have shown their capability to detect a microstructural damage in the structures undergoing fatigue and creep. These nonlinear ultrasonic techniques make use of the fact that the dislocation density increases, which will create a nonlinear distortion of an ultrasonic wave; this damage causes the generation of measurable higher harmonic components in an initially mono-chromatic ultrasonic signal. This study investigates the recently developed non-contact nonlinear ultrasonic technique to detect the microstructural damage of mod. 9Cr-1Mo steel based on nonlinear Rayleigh wave with varying propagation distances. Nonlinear Rayleigh surface wave measurements using a non-contact, air-coupled ultrasonic transducer have been applied for the thermal aging evaluation of modified 9Cr-1Mo ferritic-martensitic steel. Thermal aging for various heat treatment times of mod.. 9Cr-1Mo steel specimens is performed to obtain the nucleation and growth of precipitated particles in specimens. The amplitudes of the first and second harmonics are measured along the propagation distance and the relative nonlinearity parameter is obtained from these amplitudes. The relative nonlinearity parameter shows a similar trend with the Rockwell C hardness.

  10. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei, E-mail: mli@anl.gov [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Miller, Michael K. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Chen, Wei-Ying [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • Thermally-aged CF8 was irradiated with 1 MeV Kr ions at 400 °C. • Atom probe tomography revealed a strong dose dependence of G-phase precipitates. • Phase separation of α and α′ in ferrite was reduced after irradiation. - Abstract: The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α′ phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10{sup 19} ions/m{sup 2} at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α′ spinodal decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α′ spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.

  11. Treatment of parkinson's disease ata young age

    OpenAIRE

    Dmitry Valeryevich Artemyev

    2010-01-01

    The paper considers the specific features of the diagnosis and treatment of parkinsonism in young and middle-aged patients. It is stressed that early-onset Parkinson's disease (PD) shows a number of the specific features of the mechanism responsible for the development, clinical picture, and course, as well as a response to antiparkinsonian agents, and prognosis. Indications for the use of different groups of antiparkinsonian drugs and the basic principles of management in young and middle-ag...

  12. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, H.A.; Schmidt, L.J.; Erickson, T.A.; Sondreal, E.A.; Erjavec, J.; Steadman, E.N.; Fabrycky, W.J.; Wilson, J.S.; Musich, M.A.

    1996-07-01

    This report analyzes three systems engineering (SE) studies performed on integrated thermal treatment systems (ITTSs) and integrated nonthermal treatment systems (INTSs) for the remediation of mixed low-level waste (MLLW) stored throughout the US Department of Energy (DOE) weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center (EERC), Science Applications International Corporation (SAIC), the Waste Policy Institute (WPI), and Virginia Tech (VT). The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions taken in the studies might bias the resulting economic evaluations of both thermal and nonthermal systems, (2) identify the critical areas of the studies that would benefit from further investigation, and (3) develop a standard template that could be used in future studies to produce sound SE applications.

  13. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  14. Thermal treatment technology at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hillary, J.M. [EG and G Idaho Inc., Idaho Falls, ID (United States)

    1994-12-31

    Recent surveys of mixed wastes in interim storage throughout the 30-site Department of Energy complex indicate that only 12 of those sites account for 98% of such wastes by volume. Current inventories at the Idaho National Engineering Laboratory (INEL) account for 38% of total DOE wastes in interim storage, the largest of any single site. For a large percentage of these waste volumes, as well as the substantial amounts of buried and currently generated wastes, thermal treatment processes have been designated as the technologies of choice. Current facilities and a number of proposed strategies exist for thermal treatment of wastes of this nature at the INEL. High-level radioactive waste is solidified in the Waste Calciner Facility at the Idaho Central Processing Plant. Low-level solid wastes until recently have been processed at the Waste Experimental Reduction Facility (WERF), a compaction, size reduction, and controlled air incineration facility. WERF is currently undergoing process upgrading and RCRA Part B permitting. Recent systems studies have defined effective strategies, in the form of thermal process sequences, for treatment of wastes of the complex and heterogeneous nature in the INEL inventory. This presentation reviews the current status of operating facilities, active studies in this area, and proposed strategies for thermal treatment of INEL wastes.

  15. Thermal aging effect of vanadyl acetylacetonate precursor for deposition of VO{sub 2} thin films with thermochromic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jung-Hoon [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Nam, Sang-Hun [Institute of Basic Science, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Kim, Donguk; Kim, Minha [School of Electronic and Electrical Engineering, Sungkyunkwan University (Korea, Republic of); Seo, Hyeon Jin; Ro, Yu Hyeon [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Joo, Yong Tae [YOUNG DO Glass Industry Co., Ltd., Jeongeup (Korea, Republic of); Lee, Jaehyeong [School of Electronic and Electrical Engineering, Sungkyunkwan University (Korea, Republic of); Boo, Jin-Hyo, E-mail: jhboo@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Institute of Basic Science, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of)

    2016-10-15

    Highlights: • 7 day aged VO(acac){sub 2} sol shows enhanced adhesivity on the SiO{sub 2} compared with non-aged sol. • The aging process has significantly affected the morphologies of VO{sub 2} films. • From the FT-IR spectra, thermal aging process provides the deformation of precursor. • The metal insulator transition (MIT) efficiency (ΔT{sub at2000} {sub nm}) reached a maximum value of 51% at 7 day aging. • Thermal aging process could shorten the aging time of sol solution. - Abstract: Thermochromic properties of vanadium dioxide (VO{sub 2}) have been studied extensively due to their IR reflection applications in energy smart windows. In this paper, we studied the optical switching property of VO{sub 2} thin film, depending on the thermal aging time of the vanadyl acetylacetonate (VO(acac){sub 2}) precursor. We found the alteration of the IR spectra of the precursor by tuning the aging time as well as heat treatments of the precursor. An aging effect of vanadium precursor directly affects the morphologies, optical switching property and crystallinity of VO{sub 2} films. The optimum condition was achieved at the 7 day aging time with metal insulator transition (MIT) efficiency of 50%.

  16. THERMAL SENSITIVITY ACROSS AGES AND DURING CHRONIC FENTANYL ADMINISTRATION IN RATS

    Science.gov (United States)

    Mitzelfelt, Jeremiah D.; Carter, Christy S.; Morgan, Drake

    2013-01-01

    Rationale Chronic pain is becoming a more common medical diagnosis and is especially prevalent in older individuals. As such, prescribed use of opioids is on the rise, even though the efficacy for pain management in older individuals is unclear. Objectives Thus the present preclinical study assessed the effectiveness of chronic fentanyl administration to produce antinociception in aging rats (16, 20, 24 months). Methods Animals were tested in a thermal sensitivity procedure known to involve neural circuits implicated in chronic pain in humans. Sensitivity to heat and cold thermal stimulation was assessed during 28 days of fentanyl administration (1.0 mg/kg/day), and 28 days of withdrawal. Results Fentanyl resulted in decreased thermal sensitivity to heat but not cold stimulation indicated by more time spent in the hot compartment relative to time spent in the cold or neutral compartments. Unlike previous findings using a hot-water tail withdrawal procedure, tolerance did not develop to the antinociceptive effects of fentanyl over a 28-day period of drug administration. The oldest animals were least sensitive, and the youngest animals most sensitive to the locomotor-stimulating effects of fentanyl. The effect on the antinociceptive response to fentanyl in the oldest group of rats was difficult to interpret due to profound changes in the behavior of saline-treated animals. Conclusions Overall, aging modifies the behavioral effects of opioids, a finding that may inform future studies for devising appropriate treatment strategies. PMID:23900640

  17. Effect of interfacial treatment on the thermal properties of thermal conductive plastics

    Directory of Open Access Journals (Sweden)

    2007-09-01

    Full Text Available In this paper, ZnO, which is processed by different surface treatment approaches, is blended together with polypropylene to produce thermal conductive polymer composites. The composites are analyzed by Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM to investigate the surface modification of filler, their distribution in the matrix and the condition of two-phase interface. Optimized content of filler surface modifier is investigated as well. The results showed that using low-molecular coupling agent produces positive effect to improve the interface adhesion between filler and matrix, and the thermal conductivity of the composite as well. Macro-molecular coupling agent can strongly improve two-phase interface, but it is not beneficial at obtaining a high thermal conductivity. The blend of ZnO without modification and polypropylene has many defects in the two-phase interface, and the thermal conductivity of the composite is between those of composites produced by previous two approaches. The surface treatment of the filler also allowed producing the composites with lower coefficient of thermal expansion (CTE. As for the content of low-molecular coupling agent, it obtains the best effect at 1.5 wt%.

  18. Menopause: Treatment Tips From the National Institute on Aging

    Science.gov (United States)

    ... Menopause Treatment Tips From the National Institute on Aging Past Issues / Winter 2017 Table of Contents Possible ... Menopause / Treatment Tips From the National Institute on Aging / Menopause Mayhem / Weighing Your Treatment Options Winter 2017 ...

  19. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.

    Science.gov (United States)

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-11-15

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The correlation between elongation at break and thermal decomposition of aged EPDM cable polymer

    Science.gov (United States)

    Šarac, T.; Devaux, J.; Quiévy, N.; Gusarov, A.; Konstantinović, M. J.

    2017-03-01

    The effect of simultaneous thermal and gamma irradiation ageing on the mechanical and physicochemical properties of industrial EPDM was investigated. Accelerated ageing, covering a wide range of dose rates, doses and temperatures, was preformed in stagnant air on EPDM polymer samples extracted from the cables in use in the Belgian nuclear power plants. The mechanical properties, ultimate tensile stress and elongation at break, are found to exhibit the strong dependence on the dose, ageing temperature and dose rate. The thermal decomposition of aged polymer is observed to be the dose dependent when thermogravimetry test is performed under air atmosphere. No dose dependence is observed when thermal decomposition is performed under nitrogen atmosphere. The thermal decomposition rates are found to fully mimic the reduction of elongation at break for all dose rates and ageing temperatures. This effect is argued to be the result of thermal and radiation mediated oxidation degradation process.

  1. INFLUENCE OF THERMAL AGING IN DIFFERENTIAL STICKING PROPERTIES OF THE DRILLING FLUIDS WITH CLAY

    Directory of Open Access Journals (Sweden)

    Raquel Santos Leite

    2013-10-01

    Full Text Available This work has the aim to evaluate the influence of thermal aging and filtration properties in the differential sticking of the clay fluids. Clay fluids with dispersant additives tested at room temperature and after thermal aging are studied. Drilling fluids were submitted to thermal aging for 16 hours in a Roller Oven at 93,3°C (200°F. Fluid loss (FL and the differential sticking coefficient (DSC in a Fann differential sticking tester under a pressure of 477.5 psi are determined. The cake thickness (CT is determined by an extensometer. It is concluded according to the results obtained that the thermal aging has significant influence in fluid losses and in the cake thickness of the studied fluids. Moreover, it is shown that the risk of arrest by differential pressure fluid is not influenced by thermal aging at 93.3°C.

  2. The recovery of latent text from thermal paper using a simple iodine treatment procedure.

    Science.gov (United States)

    Kelly, Paul F; King, Roberto S P; Bleay, Stephen M; Daniel, Thomas O

    2012-04-10

    Faded, or actively removed text on thermally printed paper samples may be enhanced and retrieved through the use of a simple iodine fuming procedure. The recovery of printed documentation evidence in this fashion is neither affected by prior fingerprint enhancement techniques (such as ninhydrin or DFO), nor by sample age. This method allows, for the first time, evidence to be obtained from completely faded thermal paper samples (receipts, for example) as well as allowing deliberately removed printed text (a consequence of solvent washing pre-treatment in latent fingerprint enhancement procedures) to be recovered. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Aging Effects and Estimating Degradation Mechanisms of Thermally Upgraded Paper in Mineral Oil

    Science.gov (United States)

    Miyagi, Katsunori; Oe, Etsuo; Yamagata, Naoki

    The life of a transformer is limited to the deterioration of its solid insulation. Winding conductors and other solid insulation materials in oil-immersed transformers have been insulated using cellulose products. For many years, manufacturers have met the needs of special applications by designing transformers using thermally upgraded materials to achieve lighter weight, higher power density and increased life. Recently, the effect of thermally upgraded insulation on diagnostic techniques such as gas-in oil analysis, and their indication of insulation degradation have been reviewed. This paper describes evaluations of the thermal degradation characteristics and decomposition reactions in mineral transformer oil of amine-impregnated thermally upgraded paper insulation. The thermal resistance of the thermally upgraded paper is evaluated by comparison with Kraft paper insulation. Further, aging degradation mechanisms of decompositional degradation of the thermally upgraded paper due to aging in mineral transformer oil are proposed.

  4. Thermal Characteristics of Hyperaccumulator and Fate of Heavy Metals during Thermal Treatment of Sedum plumbizincicola.

    Science.gov (United States)

    Zhong, Daoxu; Zhong, Zhaoping; Wu, Longhua; Xue, Hui; Song, Zuwei; Luo, Yongming

    2015-01-01

    Thermal treatment is one of the most promising disposal techniques for heavy metal- (HM)-enriched hyperaccumulators. However, the thermal characteristics and fate of HMs during thermal treatment of hyperaccumulator biomass need to be known in detail. A horizontal tube furnace was used to analyze the disposal process of hyperaccumulator biomass derived from a phyto-extracted field in which the soil was moderately contaminated with heavy metals. Different operational conditions regarding temperature and gas composition were tested. A thermo-dynamic analysis by advanced system for process engineering was performed to predict HM speciation during thermal disposal and SEM-EDS, XRD and sequential chemical extraction were used to characterize the heavy metals. The recovery of Zn, Pb and Cd in bottom ash decreased with increasing temperature but recovery increased in the fly ash. Recovery of Zn, Pb and Cd fluctuated with increasing air flow rate and the metal recovery rates were higher in the fly ash than the bottom ash. Most Cl, S, Fe, Al and SiO2 were found as alkali oxides, SO2, Fe2(SO4)3, iron oxide, Ca3Al2O6, K2SiO3 and SiO2 instead of reacting with HMs. Thus, the HMs were found to occur as the pure metals and their oxides during the combustion process and as the sulfides during the reducing process.

  5. Treatment of waste thermal waters by ozonation and nanofiltration.

    Science.gov (United States)

    Kiss, Z L; Szép, A; Kertész, S; Hodúr, C; László, Z

    2013-01-01

    After their use for heating, e.g. in greenhouses, waste thermal waters may cause environmental problems due to their high contents of ions, and in some cases organic matter (associated with an oxygen demand) or toxic compounds. The aims of this work were to decrease the high organic content of waste thermal water by a combination of ozone treatment and membrane separation, and to investigate the accompanying membrane fouling. The results demonstrated that the chemical oxygen demand and the total organic content can be effectively decreased by a combination of ozone pretreatment and membrane filtration. Ozone treatment is more effective for phenol elimination than nanofiltration alone: with a combination of the two processes, 100% elimination efficiency can be achieved. The fouling index b proved to correlate well with the fouling and polarization layer resistances.

  6. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  7. Effects of Porosity and Thermal Treatment on Hydration of Mushrooms

    OpenAIRE

    Paudel, Ekaraj; Boom, R.M.; Sman, van der, R.G.M.

    2016-01-01

    In this study, hydration of mushroom as a porous food material has been studied considering their biphasic character. It consists of a solid phase that consists of intertwined hyphae and having cell walls with a swellable polymeric matrix and a pore phase made up by the space in between the hyphae. We have investigated the hydration of mushrooms as a function of initial porosity and thermal treatment. Variation in porosity is induced by the natural variation in the growth of mushroom. Porosit...

  8. Recycling supercapacitors based on shredding and mild thermal treatment.

    Science.gov (United States)

    Jiang, Guozhan; Pickering, Stephen J

    2016-02-01

    Supercapacitors are widely used in electric and hybrid vehicles, wind farm and low-power equipment due to their high specific power density and huge number of charge-discharge cycles. Waste supercapacitors should be recycled according to EU directive 2002/96/EC on waste electric and electronic equipment. This paper describes a recycling approach for end-of-life supercapacitors based on shredding and mild thermal treatment. At first, supercapacitors are shredded using a Retsch cutting mill. The shredded mixture is then undergone thermal treatment at 200°C to recycle the organic solvent contained in the activated carbon electrodes. After the thermal treatment, the mixture is roughly separated using a fluidized bed method to remove the aluminium foil particles and paper particles from the activated carbon particles, which is subsequently put into water for a wet shredding into fine particles that can be re-used. The recycled activated carbon has a BET surface area of up to 1200m(2)/g and the recycled acetonitrile has a high purity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Thermal Treatment of Iron Oxide Stabilized APC Residues from Waste Incineration and the Effect on Heavy Metal Binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Stackpoole, M.; Bender-Koch, C.

    2000-01-01

    Iron oxide stabilized APC residues from MSWI were heat treated at 600°C and 900°C. The thermal treatments resulted in a change in product stability by forcing a transformation in the mineralogical structures of the products. The treatments, moreover, simulated somewhat the natural aging processes...

  10. Dynamic thermal tomography for nondestructive inspection of aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Shapiro, A.B.

    1993-11-01

    The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.

  11. Thermal hydrolysis for sewage treatment: A critical review.

    Science.gov (United States)

    Barber, W P F

    2016-11-01

    A review concerning the development and applicability of sewage sludge thermal hydrolysis especially prior to anaerobic digestion is presented. Thermal hydrolysis has proven to be a successful approach to making sewage sludge more amenable to anaerobic digestion. Currently there are 75 facilities either in operation or planning, spanning several continents with the first installation in 1995. The reported benefits of thermal hydrolysis relate to: increased digestion loading rate due to altered rheological properties, improved biodegradation of (especially activated) sludge and enhanced dewaterability. In spite of its relative maturity, there has been no attempt to perform a critical review of the pertinent literature relating to the technology. Closer look at the literature reveals complications with comparing both experimental- and full-scale results due to differences in experimental set-up and capability, and also site-specific conditions at full-scale. Furthermore, it appears that understanding of thermodynamic and rheological properties of sludge is key to optimizing the process, however these parameters are largely overlooked by the literature. This paper aims to bridge these complexities in order to elucidate the benefits of thermal hydrolysis for sewage treatment, and makes recommendations for further development and research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of thermal aging on mechanical performance of paper

    Science.gov (United States)

    B.T. Hotle; J.M. Considine; M.J. Wald; R.E. Rowlands; K.T. Turner

    2008-01-01

    A missing element of paper aging research is a description of mechanical performance with aging. Tensile strength cannot be predicted directly from DP measurements, and existing models do not represent the effects of aging on strength and stiffness. The primary aim of the present work is to characterize changes of mechanical properties, such as tensile response and...

  13. Simultaneous Thermal and Gamma Radiation Aging of Cable Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Liu, Shuaishuai; Bowler, Nicola

    2016-12-19

    Polymers used in nuclear power plant electrical cable systems experience aging and degradation over time due to environmental stress including heat and gamma irradiation. Prediction of long-term cable performance has been based on results of short-term accelerated laboratory aging studies, but questions remain regarding the correlation of accelerated aging to long-term, in-plant aging. This work seeks to increase understanding of the combined effects of heat and radiation on cable polymer material aging toward addressing these questions.

  14. Change in magnetic properties of a cold rolled and thermally aged Fe-Cu alloy

    Science.gov (United States)

    Park, D. G.; Ryu, K. S.; Kobayashi, S.; Takahashi, S.; Cheong, Y. M.

    2010-05-01

    The variation in magnetic properties of a Fe-1%Cu model alloy due to a cold rolling and a thermal aging has been evaluated to simulate the radiation damage of reactor pressure vessel of nuclear power plant. The thermal aging was conducted at 500 °C with different aging times in series. The hysteresis loops, magnetic Barkhausen noise (BN) and Vickers microhardness were measured for prestrained, strained, and thermal aged samples. The coercivity increased by a plastic strain and decreased by thermal aging, The BN decreased in the prestrained and strained samples but large changes were observed in the strained sample. These results were interpreted in terms of the domain wall motion signified by a change in the mean free path associated with microinternal stress and copper rich precipitates.

  15. Effect of thermal ageing on mechanical properties of a high-strength ODS alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hoon; Kim, Sung Hwan; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Tae Kyu [Nuclear Materials DivisionKorea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A new high-strength ODS alloy, ARROS, was recently developed for the application as the cladding material of a Sodium-cooled fast reactor (SFR). To assess the long-term integrity under thermal ageing, ARROS was thermally aged in air at 650°C for 1000 h. The degree of thermal ageing was assessed by mechanical tests such as uniaxial tensile, hardness, and small punch tests at from room temperature to 650°C. Tensile strength was slightly decreased but elongation, hardness, and small punch energy were hardly changed at all test temperatures for the specimen aged at 650°C for 1000 h. However, the variation in mechanical properties such as hardness and small punch energy increased after thermal ageing. Using the test results, the correlation between tensile strength and maximum small punch load was established.

  16. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  17. Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition

    Science.gov (United States)

    Jun, Xie; Zhang, Yannian; Shan, Chunhong

    2017-10-01

    The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.

  18. Isothermal relaxation current and microstructure changes of thermally aged polyester films impregnated by epoxy resin

    Science.gov (United States)

    Jiang, Xiongwei; Sun, Potao; Peng, Qingjun; Sima, Wenxia

    2018-01-01

    In this study, to understand the effect of thermal aging on polymer films degradation, specimens of polyester films impregnated by epoxy resin with different thermal aging temperatures (80 and 130 °C) and aging times (500, 1600, 2400 and 3000 h) are prepared, then charge de-trapping properties of specimens are investigated via the isothermal relaxation current (IRC) measurement, the distributions of trap level and its corresponding density are obtained based on the modified IRC model. It is found that the deep trap density increases remarkably at the beginning of thermal aging (before 1600 h), but it decreases obviously as the aging degree increases. At elevated aging temperature and, in particular considering the presence of air gap between two-layer insulation, the peak densities of deep traps decrease more significant in the late period of aging. It can be concluded that it is the released energy from de-trapping process leads to the fast degradation of insulation. Moreover, after thermal aging, the microstructure changes of crystallinity and molecular structures are analyzed via the x-ray diffraction experiment and Fourier transform infrared spectrometer. The results indicate that the variation of the deep trap density is closely linked with the changes of microstructure, a larger interface of crystalline/amorphous phase, more defects and broken chains caused by thermal aging form higher deep trap density stored in the samples.

  19. Mechanical properties and microstructure of long term thermal aged WWER 440 RPV steel

    Science.gov (United States)

    Kolluri, M.; Kryukov, A.; Magielsen, A. J.; Hähner, P.; Petrosyan, V.; Sevikyan, G.; Szaraz, Z.

    2017-04-01

    The integrity assessment of the Reactor Pressure Vessel (RPV) is essential for the safe and Long Term Operation (LTO) of a Nuclear Power Plant (NPP). Hardening and embrittlement of RPV caused by neutron irradiation and thermal ageing are main reasons for mechanical properties degradation during the operation of an NPP. The thermal ageing-induced degradation of RPV steels becomes more significant with extended operational lives of NPPs. Consequently, the evaluation of thermal ageing effects is important for the structural integrity assessments required for the lifetime extension of NPPs. As a part of NRG's research programme on Structural Materials for safe-LTO of Light Water Reactor (LWR) RPVs, WWER-440 surveillance specimens, which have been thermal aged for 27 years (∼200,000 h) at 290 °C in a surveillance channel of Armenian-NPP, are investigated. Results from the mechanical and microstructural examination of these thermal aged specimens are presented in this article. The results indicate the absence of significant long term thermal ageing effect of 15Cr2MoV-A steel. No age hardening was detected in aged tensile specimens compared with the as-received condition. There is no difference between the impact properties of as-received and thermal aged weld metals. The upper shelf energy of the aged steel remains the same as for the as-received material at a rather high level of about 120 J. The T41 value did not change and was found to be about 10 °C. The microstructure of thermal aged weld, consisting carbides, carbonitrides and manganese-silicon inclusions, did not change significantly compared to as-received state. Grain-boundary segregation of phosphorus in long term aged weld is not significant either which has been confirmed by the absence of intergranular fracture increase in the weld. Negligible hardening and embrittlement observed after such long term thermal ageing is attributed to the optimum chemical composition of 15Cr2MoV-A for high thermal stability.

  20. In-Field Thermal Treatment of Huanglongbing (HLB) infected Trees

    OpenAIRE

    Khot, L. R.; Jones, S. E.; Trivedi, P; Ehsani, M. R.; Wang, N.; Reyes-De-Corcuera, J. I.

    2014-01-01

    To decrease Candidatus Liberibacter asiaticus titer and increase the productive life of infected trees, thermal treatment of orange trees was proposed.  A moving greenhouse was developed to cover single trees during the summer of 2012.  Four trees (~ 2.5×2.5×2.5 m) were treated, one tree per day, during the months of September (trees T1 through T3) and October (tree T4).  From each tree, three symptomatic branches were sampled to determine microbial kill before (0 h) and at 2, 3, 4, and 5 h d...

  1. Prognostics Approach For Power Mosfet Under Thermal-Stress Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes...

  2. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    Science.gov (United States)

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  3. Summary of comparative results integrated nonthermal treatment and integrated thermal treatment systems studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    In July 1994, the Idaho National Engineering Laboratory (INEL), under a contract from U.S. Department of Energy`s (DOE) Environment Management Office of Science and Technology (OST, EM-50) published a report entitled {open_quotes}Integrated Thermal Treatment System Study - Phase 1 Results{close_quotes} (EGG-MS-11211). This report was the culmination of over a year of analysis involving scientists and engineers within the DOE complex and from private industry. The purpose of that study was {open_quotes}to conduct a systematic engineering evaluation of a variety of mixed low level waste (MLLW) treatment system alternatives.{close_quotes} The study also {open_quotes}identified the research and development, demonstrations, and testing and evaluation needed to assure unit operability in the most promising alternative system.{close_quotes} This study evaluated ten primary thermal treatment technologies, organized into complete {open_quotes}cradle-to-grave{close_quotes} systems (including complete engineering flow sheets), to treat DOE MLLW and calculated mass balances and 20-year total life cycle costs (TLCC) for all systems. The waste input used was a representative heterogenous mixture of typical DOE MLLW. An additional study was conducted, and then, based on response to these studies, additional work was started to investigate and evaluate non-thermal treatment options on a footing comparable to the effort devoted to thermal options. This report attempts to present a summary overview of the thermal and non-thermal treatment technologies which were examined in detail in the process of the above mentioned reviews.

  4. Thermal ablation for the treatment of abdominal tumors.

    Science.gov (United States)

    Brace, Christopher L; Hinshaw, J Louis; Lubner, Meghan G

    2011-03-07

    Percutaneous thermal ablation is an emerging treatment option for many tumors of the abdomen not amenable to conventional treatments. During a thermal ablation procedure, a thin applicator is guided into the target tumor under imaging guidance. Energy is then applied to the tissue until temperatures rise to cytotoxic levels (50-60 °C). Various energy sources are available to heat biological tissues, including radiofrequency (RF) electrical current, microwaves, laser light and ultrasonic waves. Of these, RF and microwave ablation are most commonly used worldwide. During RF ablation, alternating electrical current (~500 kHz) produces resistive heating around the interstitial electrode. Skin surface electrodes (ground pads) are used to complete the electrical circuit. RF ablation has been in use for nearly 20 years, with good results for local tumor control, extended survival and low complication rates. Recent studies suggest RF ablation may be a first-line treatment option for small hepatocellular carcinoma and renal-cell carcinoma. However, RF heating is hampered by local blood flow and high electrical impedance tissues (eg, lung, bone, desiccated or charred tissue). Microwaves may alleviate some of these problems by producing faster, volumetric heating. To create larger or conformal ablations, multiple microwave antennas can be used simultaneously while RF electrodes require sequential operation, which limits their efficiency. Early experiences with microwave systems suggest efficacy and safety similar to, or better than RF devices. Alternatively, cryoablation freezes the target tissues to lethal levels (-20 to -40 °C). Percutaneous cryoablation has been shown to be effective against RCC and many metastatic tumors, particularly colorectal cancer, in the liver. Cryoablation may also be associated with less post-procedure pain and faster recovery for some indications. Cryoablation is often contraindicated for primary liver cancer due to underlying coagulopathy and

  5. Nitrogen oxides and methane treatment by non-thermal plasma

    Science.gov (United States)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  6. Effects of Thermal and Humidity Aging on the Interfacial Adhesion of Polyketone Fiber Reinforced Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Han Ki Lee

    2016-01-01

    Full Text Available Polyketone fiber is considered as a reinforcement of the mechanical rubber goods (MRG such as tires, automobile hoses, and belts because of its high strength and modulus. In order to apply it to those purposes, the high adhesion of fiber/rubber interface and good sustainability to aging conditions are very important. In this study, polyketone fiber reinforced natural rubber composites were prepared and they were subjected to thermal and humidity aging, to assess the changes of the interfacial adhesion and material properties. Also, the effect of adhesive primer treatment, based on the resorcinol formaldehyde resin and latex (RFL, of polyketone fiber for high interfacial adhesion was evaluated. Morphological and property changes of the rubber composites were analyzed by using various instrumental analyses. As a result, the rubber composite was aged largely by thermal aging at high temperature rather than humidity aging condition. Interfacial adhesion of the polyketone/NR composites was improved by the primer treatment and its effect was maintained in aging conditions.

  7. Effect of age on response to amblyopia treatment in children.

    Science.gov (United States)

    Holmes, Jonathan M; Lazar, Elizabeth L; Melia, B Michele; Astle, William F; Dagi, Linda R; Donahue, Sean P; Frazier, Marcela G; Hertle, Richard W; Repka, Michael X; Quinn, Graham E; Weise, Katherine K

    2011-11-01

    To determine whether age at initiation of treatment for amblyopia influences the response among children 3 to less than 13 years of age with unilateral amblyopia who have 20/40 to 20/400 amblyopic eye visual acuity. A meta-analysis of individual subject data from 4 recently completed randomized amblyopia treatment trials was performed to evaluate the relationship between age and improvement in logMAR amblyopic eye visual acuity. Analyses were adjusted for baseline amblyopic eye visual acuity, spherical equivalent refractive error in the amblyopic eye, type of amblyopia, prior amblyopia treatment, study treatment, and protocol. Age was categorized (3 to treatment than were younger age groups (children from 3 to amblyopia (P treatment response between children 3 to less than 5 years of age and children 5 to less than 7 years of age for moderate amblyopia (P = .67), but there was a suggestion of greater responsiveness in children 3 to less than 5 years of age compared with children 5 to less than 7 years of age for severe amblyopia (P = .09). Amblyopia is more responsive to treatment among children younger than 7 years of age. Although the average treatment response is smaller in children 7 to less than 13 years of age, some children show a marked response to treatment.

  8. Bath thermal waters in the treatment of knee osteoarthritis: a randomized controlled clinical trial.

    Science.gov (United States)

    Branco, Marcelo; Rêgo, Neiva N; Silva, Paulo H; Archanjo, Ingrid E; Ribeiro, Mirian C; Trevisani, Virgínia F

    2016-08-01

    Osteoarthritis is a degenerative disease associated with pain, reduced range of motion, and impaired function. Balneotherapy or bathing in thermal or mineral waters is used as a non-invasive treatment for various rheumatic diseases. To evaluate the effectiveness of hot sulfurous and non-sulfurous waters in the treatment of knee osteoarthritis. A randomized, assessor-blind, controlled trial. A spa resort. One hundred and forty patients of both genders, mean age of 64.8±8.9 years, with knee osteoarthritis and chronic knee pain. Patients were randomized into three groups: the sulfurous water (SW) group (N.=47), non-sulfurous water (NSW) group (N.=50), or control group (N.=43) who received no treatment. Patients were not blinded to treatment allocation. Treatment groups received 30 individual thermal baths (three 20-minute baths a week for 10 weeks) at 37-39 °C. The outcome measures were pain (visual analog scale, VAS), physical function (Western Ontario and McMaster Universities Osteoarthritis Index, WOMAC; Lequesne Algofunctional Index, LAFI; Stanford Health Assessment Questionnaire, HAQ), and use of pain medication. Patients were assessed before treatment (T1), at treatment endpoint (T2), and two months post-intervention (T3). Intra- and intergroup comparisons were performed at a significance level of 0.05 (Ptreatment groups (Ptreatment groups at T2 and T3 (Ptreatment groups at T2, but patients in the SW group reported less pain and better functional status than those in the NSW group at T3, showing a lasting effect of sulfurous water baths. Both therapeutic methods were effective in the treatment of knee osteoarthritis; however, sulfurous baths yielded longer-lasting effects than non-sulfurous water baths. Baths in thermal waters, especially those in sulfurous waters, are effective in reducing pain and improving physical function in patients with knee osteoarthritis.

  9. Percutaneous treatment of bone tumors by radiofrequency thermal ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Santiago, Fernando, E-mail: ferusan@ono.com [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Mar Castellano Garcia, Maria del; Guzman Alvarez, Luis [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Martinez Montes, Jose Luis [Department of Traumatology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Ruiz Garcia, Manuel; Tristan Fernandez, Juan MIguel [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain)

    2011-01-15

    We present our experience of the treatment of bone tumors with radiofrequency thermal ablation (RFTA). Over the past 4 years, we have treated 26 cases (22 benign and 4 malignant) using CT-guided RFTA. RFTA was the sole treatment in 19 cases and was combined with percutaneous cementation during the same session in the remaining seven cases. Our approach to the tumors was simplified, using a single point of entrance for both RFTA and percutaneous osteoplasty. In the benign cases, clinical success was defined as resolution of pain within 1 month of the procedure and no recurrence during the follow-up period. It was achieved in 19 out of the 21 patients in which curative treatment was attempted. The two non-resolved cases were a patient with osteoid osteoma who developed a symptomatic bone infarct after a symptom-free period of 2 months and another with femoral diaphysis osteoblastoma who suffered a pathological fracture after 8 months without symptoms. The procedure was considered clinically successful in the five cases (4 malign and 1 benign) in which palliative treatment was attempted, because there was a mean ({+-}SD) reduction in visual analogue scale (VAS) pain score from 9.0 {+-} 0.4 before the procedure to <4 during the follow-up period.

  10. Clinical Outcomes Associated with Thermal Pulsation System Treatment.

    Science.gov (United States)

    Satjawatcharaphong, Pam; Ge, Shaokui; Lin, Meng C

    2015-09-01

    To identify patient characteristics at a baseline ocular surface evaluation that correlate with improvement in dry eye symptoms at a follow-up visit after treatment with the LipiFlow Thermal Pulsation System. Thirty-two patients completed a comprehensive baseline ocular surface evaluation and were treated with the LipiFlow Thermal Pulsation System followed by maintenance home therapy. Lipid layer thickness and blink pattern were determined using the LipiView Interferometer. Noninvasive tear breakup time was measured using a Medmont E300 Corneal Topographer. Slit lamp biomicroscopy was used to evaluate invasive tear breakup time and corneal staining after instillation of fluorescein dye. Conjunctival staining, location of the line of Marx, and presence of lid wiper epitheliopathy were evaluated with lissamine green dye. Meibomian gland expressibility was scored using the TearScience Meibomian Gland Evaluator, and meibography was imaged using the Oculus Keratograph. A logistic regression model was used to estimate the odds ratios for having a decreased posttreatment score (reduced symptoms) of Standard Patient Evaluation of Eye Dryness (SPEED). Baseline SPEED score (p = 0.01) and sex (p = 0.03) had significant odds ratios at the α = 0.05 level. Baseline noninvasive tear breakup time (p = 0.07), number of grade 0 meibomian glands in the lower lid (p = 0.09), and conjunctival staining grade in the inferior region (p = 0.10) met an α = 0.10 criterion for significant odds ratios, but not the typical α = 0.05 criterion. Higher baseline SPEED score and male sex had greater odds for decreased posttreatment SPEED score. Our results identified factors that better select candidates for LipiFlow Thermal Pulsation System.

  11. Anaerobic digestion of waste activated sludge—comparison of thermal pretreatments with thermal inter-stage treatments

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Thygesen, Anders; Thomsen, Anne Belinda

    2011-01-01

    BACKGROUND: Treatment methods for improved anaerobic digestion (AD) of waste activated sludge were evaluated. Pretreatments at moderate thermal (water bath at 80 °C), high thermal (loop autoclave at 130–170 °C) and thermo-chemical (170 °C/pH 10) conditions prior to AD in batch vials (40 days/37 °C......) were compared with inter-stage treatments under the same conditions carried out between two separate steps of AD (19–21 days/37 °C). Combined treatment at 80 °C with CO2/ NH3-stripping was also evaluated. RESULTS: Pretreatment at 80 °C had no effect on methane yield while inter-stage treatment gave....... CONCLUSION: Thermal treatment of waste activated sludge for improved anaerobic digestion seems more effective when applied as an inter-stage treatment rather than a pretreatment. Copyright © 2010 Society of Chemical Industry...

  12. Influence of coating on nanocrystalline magnetic properties during high temperature thermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Lekdim, Atef, E-mail: atef.lekdim@univ-lyon1.fr; Morel, Laurent; Raulet, Marie-Ange

    2017-05-15

    Since their birth or mergence the late 1980s, the nanocrystalline ultrasoft magnetic materials are taking a great importance in power electronic systems conception. One of the main advantages that make them more attractive nowadays is their ability to be packaged since the reduction of the magnetostrictive constant to almost zero. In aircraft applications, due to the high component compactness and to their location (for example near the jet engine), the operating temperature increases and may reach easily 200 °C and more. Consequently, the magnetic thermal ageing may occur but is, unfortunately, weakly studied. This paper focuses on the influence of the coating (packaging type) on the magnetic nanocrystalline performances during a thermal ageing. This study is based on monitoring the magnetic characteristics of two types of nanocrystalline cores (naked and coated) during a thermal activated ageing (100, 150 and 200 °C). Based on a dedicated monitoring protocol, a large magnetic characterization has been done and analyzed. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena. - Highlights: • The coating impacts drastically the magnetic properties during thermal ageing. • Irreversible ageing phenomena after the total coating breakage. • The deteriorations are related to the storage of the magnetoelastic anisotropy.

  13. Effects of treatment temperature on thermally-carbonized porous silicon hygroscopicity

    Energy Technology Data Exchange (ETDEWEB)

    Paski, J.; Bjoerkqvist, M.; Salonen, J.; Lehto, V.P. [Laboratory of Industrial Physics, Department of Physics, University of Turku, 20014 Turku (Finland)

    2005-06-01

    Thermal carbonization of porous silicon (PSi) by acetylene has shown good stability against ageing and it also maintains a large spesific surface area of the PSi. Therefore, thermally carbonized porous silicon (TCPSi) is appropriate for humidity sensing applications. Hysteresis occurs, when water condenses into the pores of hygroscopic media, e.g. in the oxidized PSi. In the case of TCPSi, the hygroscopicity can be tuned by the treatment temperature and both a hydrophilic and hydrophobic surface can be obtained. Hysteresis can be reduced, when condensation is diminuished. In this work, hygroscopicity of various PSi samples carbonized at different temperatures were studied. Contact angles and pore size distributions of differently treated samples were determined. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Influence of ageing, grinding and preheating on the thermal behaviour of alpha-lactose monohydrate.

    Science.gov (United States)

    Garnier, S; Petit, S; Mallet, F; Petit, M-N; Lemarchand, D; Coste, S; Lefebvre, J; Coquerel, G

    2008-09-01

    It is shown that the onset temperature and the magnitude of thermal events observed during DSC analyses of alpha-lactose monohydrate can be strongly affected by various treatments such as ageing, manual grinding and preheating (cycle of preliminary dehydration and rehydration). In the case of grinding and preheating, the change of dehydration pathways was further investigated by using a suitable combination of characterization techniques, including X-ray powder diffraction (XRPD) performed with a synchrotron source (allowing an accurate Rietveld analysis), scanning electron microscopy (SEM), laser particle size measurements, FTIR spectroscopy and (1)H NMR for the determination of beta-lactose contents in samples. It appeared that the dehydration mechanism is affected not only by a smaller particle size distribution, but also by residual anisotropic lattice distortions and by the formation of surface defects or high energy surfaces. The fusion-recrystallization process occurring between anhydrous forms of alpha-lactose at ca. 170 degrees C is not significantly affected by grinding, whereas a preheating treatment induces an unexpected large increase of the enthalpy associated with this transition. Our observations and interpretations confirm the important role of water molecules in the crystal cohesion of the title compound and illustrate the necessity to consider the history of each sample for a satisfactory understanding of the physical properties and the behaviour of this important pharmaceutical excipient.

  15. Treatment of 14 sludge types from wastewater treatment plants using bench and pilot thermal hydrolysis.

    Science.gov (United States)

    Qiao, Wei; Sun, Yifei; Wang, Wei

    2012-01-01

    A total of 14 types of sludge from household sewage, mixture of domestic and industrial wastewater, and industrial and oil wastewater treatment plants were selected to evaluate the effectiveness and adaptability of thermal hydrolysis pre-treatment. Organic solubilization, dewatering improvement, volume reduction, high-strength filtrate biodegradation, and dewatered sludge incineration were investigated using bench and pilot thermal hydrolysis experiments (170 °C/60 min). Results showed that sludge types significantly affected the treatment effects. Organic content has a primary influence on thermal effects. The relationship between suspended solid (SS) solubilization and raw sludge organic content was linear with an R(2) of 0.73. The relationship between raw sludge organic content and treated sludge dewatering was linear with an R(2) of 0.86 and 0.65 for pilot and bench pre-treatments, respectively. Household and oil sludge possessed incineration possibilities with high heat value. Industrial and oil sludge filtrate was unsuitable for digestion to recover bioenergy.

  16. Formation of separating layers under conditions of the thermal aging of sorbents modified by fluorinated polyimide

    Science.gov (United States)

    Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.; Vaganova, T. A.

    2014-03-01

    Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study the effect of the content of perfluorinated polyimide when used as a stationary phase for modifying Chromosorb P NAW diatomite supports and aluminum oxide, and the effect of thermal aging conditions on changes in their texture and chromatographic characteristics. It is shown that Chromosorb P NAW + 5 wt % of polyimide (PI) adsorbent thermally aged at 700°C in a flow of inert gas exhibits properties of carbon molecular sieves, while aluminum oxide impregnated with 10 wt % of PI and thermally aged at 250°C allows us to selectively separate permanent and organic gases, as well separate saturated and unsaturated hydrocarbons.

  17. Mechanical Properties of Thermally Aged Austenitic Stainless Steel Welds and Cast Austenitic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sunghoon; Seo, Myeong-Gyu; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kyoung Soo [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    Conventional test methods for tensile and J-R properties of such weld require large size specimens. Meanwhile, small punch (SP) test has advantages of using small size samples at specific location. In this study, the mechanical property changes caused by the thermal aging were evaluated for the stainless steel welds and CASSs using tensile, J-R, and SP test. Based on the results, correlations were developed to estimate the fracture toughness using the load-displacement curve of SP tests. Finally, the fracture surfaces of compact tension (CT) and SP test specimens are compared and discussed in view of the effect of thermal aging on microstructure. Stainless steel welds of ER316L and ER347 as well as CASS (CF8M) were thermally aged at 400 .deg. C for 5,000 h. So far, tensile properties and fracture toughness of un-aged materials were carried out at room temperature and 320 .deg. C as a reference data. In order to evaluate the effect of thermal aging on mechanical properties, aged specimens are being tested and the changes in these properties will be discussed. In addition, correlations will be developed to estimate the fracture toughness in between J-R curve and SP curve.

  18. Old age depression and its treatment.

    Science.gov (United States)

    Maierà, Enza

    2010-11-01

    The Numbers of elderly people are gradually increasing in our society, and mood disorders are progressively increasing among older people. Old age depression may also occur after life events: the death of the significant other, economical reasons, health problems (neurological and/or cardiovascular diseases, arthritis, cancer, nutritional deficiency) and can develop into a depressive state. Old age depression is often mistreated, or undertreated, and also underdiagnosed, and this for several reasons: older people reduce their social relations, depression very often presents as a comorbidity with organic diseases (that cover and mask depressive symptoms); finally,the patient may believe that a depressive state is a normal course of life in older people. Recovering from depression is really feasible both in young/adults and in old people, but in older people we can find a higher frequency of admission to hospital, or mortality or suicidality. The depressive symptoms in old age depression is similar to those in adults, however the following aspects require special care, in order to ensure a correct diagnosis despite the presence of comorbidities: - the mood: in contrast with the young and adult, old people often do not complain about their low mood; - the psychotic simptoms: hypocondriacal and psychotic, including hallucinatory symptoms are often present; - the anxiety symptoms: these are often present together with neuro-sensory symptoms; - the somatic symptoms: the comorbidity with organic diseases can mask and overlap the depressive state; - reduction of congnitive functioning: in these cases, which are quite frequent, it is essential to make a differential diagnosis from "pseudodementia" and "dementia". In conclusion, several factors contribute to the onset of depression in old age, so that we can assert that it is a really a multifactorial disease.

  19. Melatonin and aging: prospects for human treatment.

    Science.gov (United States)

    Bubenik, G A; Konturek, S J

    2011-02-01

    Human life span, with or without modern medicine is around 85-95 years. All living creatures have their inner clock that measures their daily (circadian) and their seasonal (circannual) time. These time changes are mediated by the alteration of levels of melatonin, an evolutionary ancient hormone, which is produced in many body tissues, including the pineal gland, retina and the gastrointestinal tract (GIT). Light is blocking the production of melatonin in the pineal gland, darkness is stimulating it. So, the diurnal changes of light intensity of melatonin, provide a "daily clock" and the seasonal changes provide a "seasonal clock". Finally, the reduction of melatonin observed with aging, may indicate the presence of an "age clock". Melatonin is a strong antioxidant (often it is called scavenger of free radicals), which protects the body from the effects of noxious compounds. Therefore it was hypothesized that the reduction of melatonin levels with age contributes to the aging process. So far, the only remedy to extend the life span was a 40% reduction in caloric intake, which prolonged the life in mice, rats, dogs and monkeys by 30-50%. A large group of people imitate these experiments performed on animals, but the results of these experiments will not be known for several decades. How is being hungry prolonging the life span? There is a connection between caloric reduction and melatonin levels in GIT. Several experiments indicate that fasting in animals substantially increased their production of GIT melatonin. Therefore, instead of being permanently hungry, a prolongation of human life could be achieved by a replacement melatonin therapy. A daily intake of melatonin before bed time might achieve the same effect as fasting e.g. an increase of body melatonin levels, which will protect the individual from the ravages of old age. That includes Parkinson's disease and Alzheimer's disease. There is a large group of people taking melatonin daily who believe that

  20. Treatment and recycling of incinerated ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Chu, J P; Tzeng, C C; Chen, Y S

    2002-01-01

    To treat incinerated ash is an important issue in Taiwan. Incinerated ashes contain a considerable amount of hazardous materials such as dioxins and heavy metals. If these hazardous materials are improperly treated or disposed of, they shall cause detrimental secondary contamination. Thermal plasma vitrification is a robust technology to treat and recycle the ash residues. Under the high temperature plasma environment, incinerated ashes are vitrified into benign slag with large volume reduction and extreme detoxification. Several one-step heat treatment processes are carried out at four temperatures (i.e. 850, 950, 1,050 and 1,150 degrees C) to obtain various "microstructure materials". The major phase to form these materials is a solid solution of gehlenite (Ca2Al2SiO7) and åkermanite (Ca2MgSi2O7) belonging to the melilite group. The physical and mechanical properties of the microstructure materials are improved by using one-step post-heat treatment process after plasma vitrification. These microstructure materials with good quality have great potential to serve as a viable alternative for construction applications.

  1. Treatment of fly ash from power plants using thermal plasma

    Directory of Open Access Journals (Sweden)

    Sulaiman Al-Mayman

    2017-05-01

    Full Text Available Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20–50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy.

  2. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a comprehensive understanding of requirements for a facility that could safely conduct effluent treatment for a Nuclear Thermal Propulsion (NTP) rocket...

  3. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries

    Science.gov (United States)

    Börner, M.; Friesen, A.; Grützke, M.; Stenzel, Y. P.; Brunklaus, G.; Haetge, J.; Nowak, S.; Schappacher, F. M.; Winter, M.

    2017-02-01

    Established safety of lithium ion batteries is key for the vast diversity of applications. The influence of aging on the thermal stability of individual cell components and complete cells is of particular interest. Commercial 18650-type lithium ion batteries based on LiNi0.5Co0.2Mn0.3O2/C are investigated after cycling at different temperatures. The variations in the electrochemical performance are mainly attributed to aging effects on the anode side considering the formation of an effective solid-electrolyte interphase (SEI) during cycling at 45 °C and a thick decomposition layer on the anode surface at 20 °C. The thermal stability of the anodes is investigated including the analysis of the evolving gases which confirmed the severe degradation of the electrolyte and active material during cycling at 20 °C. In addition, the presence of metallic lithium deposits could strongly affect the thermal stability. Thermal safety tests using quasi-adiabatic conditions show variations in the cells response to elevated temperatures according to the state-of-charge, i.e. a reduced reactivity in the discharged state. Furthermore, it is revealed that the onset of exothermic reactions correlates with the thermal stability of the SEI, while the thermal runaway is mainly attributed to the decomposition of the cathode and the subsequent reactions with the electrolyte.

  4. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  5. Microstructural characterization and thermal cycling reliability of solders under isothermal aging and electrical current

    Science.gov (United States)

    Chauhan, Preeti Singh

    Solder joints on printed circuit boards provide electrical and mechanical connections between electronic devices and metallized patterns on boards. These solder joints are often the cause of failure in electronic packages. Solders age under storage and operational life conditions, which can include temperature, mechanical loads, and electrical current. Aging occurring at a constant temperature is called isothermal aging. Isothermal aging leads to coarsening of the bulk microstructure and increased interfacial intermetallic compounds at the solder-pad interface. The coarsening of the solder bulk degrades the creep properties of solders, whereas the voiding and brittleness of interfacial intermetallic compounds leads to mechanical weakness of the solder joint. Industry guidelines on solder interconnect reliability test methods recommend preconditioning the solder assemblies by isothermal aging before conducting reliability tests. The guidelines assume that isothermal aging simulates a "reasonable use period," but do not relate the isothermal aging levels with specific use conditions. Studies on the effect of isothermal aging on the thermal cycling reliability of tin-lead and tin-silver-copper solders are limited in scope, and results have been contradictory. The effect of electrical current on solder joints has been has mostly focused on current densities above 104A/cm2 with high ambient temperature (≥100oC), where electromigration, thermomigration, and Joule heating are the dominant failure mechanisms. The effect of current density below 104A/cm2 on temperature cycling fatigue of solders has not been established. This research provides the relation between isothermal aging and the thermal cycling reliability of select Sn-based solders. The Sn-based solders with 3%, 1%, and 0% silver content that have replaced tin-lead are studied and compared against tin-lead solder. The activation energy and growth exponents of the Arrhenius model for the intermetallic growth in

  6. Thermal analysis of pentaerythritol tetranitrate and development of a powder aging model

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey W [Los Alamos National Laboratory; Sandstrom, Mary M [Los Alamos National Laboratory; Giambra, Anna M [Los Alamos National Laboratory; Archuleta, Jose G [Los Alamos National Laboratory; Monroe, Deirde C [Los Alamos National Laboratory

    2009-01-01

    We have applied a range of different physical and thermal analysis techniques to characterize the thermal evolution of the specific surface area of pentaerythritol tetranitrate (PETN) powders. Using atomic force microscopy we have determined that the mass transfer mechanism leading to powder coarsening is probably sublimation and redeposition of PETN. Using thermogravimetric analysis we have measured vapor pressures of PETN powders whose aging will be simulated in future work. For one specific powder we have constructed an empirical model of the coarsening that is fit to specific surface area measurements at 60 C to 70 C to provide predictive capability of that powder's aging. Modulated differential scanning calorimetry and mass spectroscopy measurements highlight some of the thermal behavior of the powders and suggest that homologue-based eutectics and impurities are localized in the powder particles.

  7. effect of pre effect of pre-ageing thermal conditions on the corrosion ...

    African Journals Online (AJOL)

    eobe

    Keywords: Al-Si-Mg alloy, thermal ageing, polarization, eutectics, interdendritic spacing. 1. INTRODUCTION. INTRODUCTION. INTRODUCTION. Corrosion of aluminium alloys lead to impairment of its operation and progressive weakening of that structure. The consequences of corrosion are many, and its effects on safety, ...

  8. Effects of morphine on thermal sensitivity in adult and aged rats.

    Science.gov (United States)

    Morgan, Drake; Mitzelfelt, Jeremiah D; Koerper, Lorraine M; Carter, Christy S

    2012-06-01

    There are contradictory data regarding older individuals' sensitivity to pain stimulation and opioid administration. Adult (12-16 months; n = 10) and aged (27-31 months; n = 7) male F344xBN rats were tested in a thermal sensitivity procedure where the animal chooses to remain in one of two compartments with floors maintained at various temperatures ranging from hot (45°C) through neutral (30°C) to cold (15°C). Effects of morphine were determined for three temperature comparisons (ie, hot/neutral, cold/neutral, and hot/cold). Aged rats were more sensitive to cold stimulation during baseline. Morphine produced antinociception during hot thermal stimulation, but had no effect on cold stimulation. The antinociceptive (and locomotor-altering) effects of morphine were attenuated in aged rats. These data demonstrate age-related differences in baseline thermal sensitivity and responsiveness to opioids. Based on behavioral and physiological requirements of this procedure, it is suggested that thermal sensitivity may provide a relevant animal model for the assessment of pain and antinociception.

  9. Magnetic Properties Studies on Thermal Aged Fe-Cu Alloys for the Simulation of Radiation Damage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. K.; Kishore, M.B.; Park, D. G. [KAERI, Daejeon (Korea, Republic of); Son, De Rac. [Hannam University, Daejeon (Korea, Republic of)

    2016-05-15

    We evaluated the changes in magnetic properties due to cold rolling and thermal ageing of a Fe-1%Cu model alloy in this study. Initially, the alloy was 10% cold rolled, and isothermally aged at 400 .deg. C for 1, 10, 100 and 1000 hr. The samples were prepared at various thermal aging conditions and all the conditions were interpreted. The hysteresis loops, Magnetic Barkhausen noise (BN). The change of magnetic properties can be interpreted in terms of the domain wall motion and dislocation dynamics associated with copper rich precipitates (CRPs).The results were interpreted in terms of ageing time dependence of the precipitates evolution such as the volume fraction and size distribution. In order to evaluate the radiation embrittlement of RPV steel, A Cold rolled Fe-Cu model Alloy was prepared, The prepared samples were thermally aged by annealing at 400 .deg. C for various times, the magnetic properties of the annealed samples were measured, The Barkhausen noise and BH Loop shows a considerable trend corresponding to the Ageing time. The magnetic properties were interpreted and correlated to the CRPs formed through annealing process.

  10. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Georg Neugebauer

    2015-09-01

    Full Text Available Wastewater heat recovery via heat exchangers and heat pumps constitutes an environmentally friendly, approved and economically competitive, but often underestimated technology. By introducing the spatial dimension in feasibility studies, the results of calculations change considerably. This paper presents a methodology to estimate thermal energy resource potentials of wastewater treatment plants taking spatial contexts into account. In close proximity to settlement areas, wastewater energy can ideally be applied for heating in mixed-function areas, which very likely have a continuous heat demand and allow for an increased amount of full-load hours compared to most single-use areas. For the Austrian case, it is demonstrated that the proposed methodology leads to feasible results and that the suggested technology might reduce up to 17% of the Austrian global warming potential of room heating. The method is transferrable to other countries as the input data and calculation formula are made available. A broad application of wastewater energy with regard to spatial structures and spatial development potentials can lead to (1 increasing energy efficiency by using a maximum of waste heat and (2 a significant reduction of (fossil energy consumption which results in a considerable reduction of the global warming potential of the heat supply (GWP if electricity from renewables is used for the operation of heat pumps.

  11. Final treatment of spent batteries by thermal plasma.

    Science.gov (United States)

    Cubas, Anelise Leal Vieira; Machado, Marina de Medeiros; Machado, Marília de Medeiros; Dutra, Ana Regina de Aguiar; Moecke, Elisa Helena Siegel; Fiedler, Haidi D; Bueno, Priscila

    2015-08-15

    The growth in the use of wireless devices, notebooks and other electronic products has led to an ever increasing demand for batteries, leading to these products being commonly found in inappropriate locations, with adverse effects on the environment and human health. Due to political pressure and according to the environmental legislation which regulates the destination of spent batteries, in several countries the application of reverse logistics to hazardous waste is required. Thus, some processes have been developed with the aim of providing an appropriate destination for these products. In this context, a method for the treatment of spent batteries using thermal plasma technology is proposed herein. The efficiency of the method was tested through the determination of parameters, such as total organic carbon, moisture content and density, as well as analysis by atomic absorption spectrometry, scanning electron microscopy and X-ray fluorescence using samples before and after inertization. The value obtained for the density was 19.15%. The TOC results indicated 8.05% of C in the batteries prior to pyrolisis and according to the XRF analysis Fe, S, Mn and Zn were the most stable elements in the samples (highest peaks). The efficiency of the paste inertization was 97% for zinc and 99.74% for manganese. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the electrolyte paste obtain from batteries. Copyright © 2015. Published by Elsevier Ltd.

  12. Electrochemical study of the thermal treatment effects on Cusub(x)S thin films

    Energy Technology Data Exchange (ETDEWEB)

    Duo, R.; Fatas, E.; Arjona, F.; Camarero, E.G.

    1983-03-01

    The effects of thermal treatments on the stoichiometry and photovoltaic properties of Cusub(x)S thin films have been studied. It has been observed that the evaporation of a thin copper films on Cusub(x)S, followed by thermal treatment in vacuum, improves the Cusub(x)S/CdS heterojunctions due to a rire in the stoichiometry and fill factor.

  13. Influence of fibre-surface treatment on structural, thermal and ...

    Indian Academy of Sciences (India)

    Administrator

    were prepared with treated and untreated jute fibre (15 wt%) reinforced unsaturated polyester (UPE). .... fibres whereas W2 was the weight of dry fibres after being .... 2.5e Thermal analysis of fibre: DSC measurements were performed using a (TA Instrument, USA, Model No. Q10) thermal analyser. A heating rate of 10 o.

  14. Acid Aging Effects on Surfaces of PTFE Gaskets Investigated by Thermal Analysis

    Directory of Open Access Journals (Sweden)

    C. Fragassa

    2016-12-01

    Full Text Available This paper investigates the effect of a prolonged acid attack on the surface of PTFE by Thermogravimetric Analysis (TGA and Differential Scanning Calorimetry (DSC. PTFE is very non-reactive, partly because of the strength of carbon–fluorine bonds and for its high crystallinity, and, as a consequence, it is often used in containers and pipework with reactive and corrosive chemicals. The PTFE under analysis is commercialized by two alternative producers in form of Teflon tapes. These tapes are adopted, as gaskets, in process plants where tires moulds are cleaned by acid solutions inside a multistage ultrasonic process. In this case, PTFE shows, in a relatively short operation time, inexplicably phenomena of surface degradation, which could be related, in general terms, to an acid attack. But, even considering the combined effect of ultrasonic waves, temperature, humidity and acid attack, the PTFE properties of resistance nominally exclude the risk of the extreme erosion phenomena as observed. The present experimental research aim at investigating this contradiction. A possible explanation could be related to the presence in the cleaning solution of unexpected fluorides, able to produce fluorinating agents and, thus, degrade carbon-fluorine bonds. Considering more the 300 chemical elements a tire compound consists in, it is really complex to preserve the original chemical composition of the cleaning solution. In this research PTFE samples have been treated with different mixtures of acids with the aim at investigating the different aging effects. The thermal analysis has permitted the experimental characterization of PTFE surface properties after acid attack, providing evidence of the degradation phenomena. In particular, the different acid treatments adopted for accelerating the aging of gaskets have highlighted the different behaviour of the PTFE matrix, but also differences between manufacturers.

  15. Dental and chronological age in children under oncological treatment.

    Science.gov (United States)

    Flores, Antonieta Pérez; Monti, Claudia Fierro; Brunotto, Mabel

    2015-03-01

    The current oncology treatment has improved the survival of children with several types of cancer, and the effect of radiotherapy and/or chemotherapy treatment on dental maturation in comparison with chronological age is not widely known. The aim of this work was to evaluate and compare the impact of radiotherapy and/or chemotherapy treatment during dental maturation with chronological age in Chilean children diagnosed with cancer. Study Design was cross-sectional study on children diagnosed with different types of cancer and treated with radiotherapy and/or chemotherapy when they were ages of 0.1 to 13 years. Demirjian tables for both girls and boys are used to determine the dental age. The association between chronological and dental age was highly significant. Nevertheless, a linear relation between chronological and dental age was not observed when the data were stratified by BMI and type of treatment. This study confirmed that dental age is an indicator of chronological age but that other variables, such as body mass index, in children with cancer could be confounder variables. Thus, further studies are necessary to investigate the influence of BMI on tooth eruption/maturation in children under oncological treatment. © 2015 American Academy of Forensic Sciences.

  16. Influence of coating on nanocrystalline magnetic properties during high temperature thermal ageing

    Science.gov (United States)

    Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange

    2017-05-01

    Since their birth or mergence the late 1980s, the nanocrystalline ultrasoft magnetic materials are taking a great importance in power electronic systems conception. One of the main advantages that make them more attractive nowadays is their ability to be packaged since the reduction of the magnetostrictive constant to almost zero. In aircraft applications, due to the high component compactness and to their location (for example near the jet engine), the operating temperature increases and may reach easily 200 °C and more. Consequently, the magnetic thermal ageing may occur but is, unfortunately, weakly studied. This paper focuses on the influence of the coating (packaging type) on the magnetic nanocrystalline performances during a thermal ageing. This study is based on monitoring the magnetic characteristics of two types of nanocrystalline cores (naked and coated) during a thermal activated ageing (100, 150 and 200 °C). Based on a dedicated monitoring protocol, a large magnetic characterization has been done and analyzed. Elsewhere, X-Ray Diffraction and magnetostriction measurements were carried out to support the study of the anisotropy energies evolution with ageing. This latter is discussed in this paper to explain and give hypothesis about the ageing phenomena.

  17. Age, lighting treatment, feed allocation and feed form influence ...

    African Journals Online (AJOL)

    2016-02-09

    sajas.v46i1.4. Age, lighting treatment, feed allocation and feed form influence broiler breeder feeding time. R.M. Gous# & R. Danisman. School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal,.

  18. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    Science.gov (United States)

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption.

  19. Effect of ageing treatment on wear properties and electrical ...

    Indian Academy of Sciences (India)

    Administrator

    Prior to solid solution heat treatment at 920°C and ageing at 470°C, 500°C and 530°C for 1 h, 2 h and 3 h, respectively, the prepared ... Cu–Cr–Zr; wear; ageing treatment; electrical conductivity. 1. Introduction. Cu–Cr–Zr alloys are used ..... tion coefficient in dry sliding conditions is the formation of oxide layer on the contact ...

  20. In-situ Thermal Treatment of Trichloroethene at Marshall Space Flight Center

    Science.gov (United States)

    Cole, Jason; McElroy, William J.; Glasgow, Jason; Heron, Gorm; Galligan, Jim; Parker, Ken; Davis, E. F.

    2008-01-01

    This viewgraph presentation describes the in-situ thermal treatment of trichloroethene at Marshall space Flight Center. The contents include: 1) Background 1 and 2; 2) Source Area-13; 3) In-situ Thermal Treatment; 4) SA-13 Lithology; 5) SA-13 In-Situ Thermal TS; 6) SA-13 ISTD System Components; 7) ISTD Overview; 8) Heaters; 9) SA-13 ISTD Wellfield Layout; 10) SA-13 Well Field; 11) ISTD Process and Instrumentation; 12) Treatment Zone Temperature; 13) SA-13 System Removals; 14) SA-13 DNAPL (typical photos); 15) Treatment Results 1-5; and 16) SA-13 TCE Removal Summary.

  1. Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis

    Science.gov (United States)

    Popescu, Carmen-Mihaela; Navi, Parviz; Placencia Peña, María Inés; Popescu, Maria-Cristina

    2018-02-01

    Spruce wood samples were subjected to different conditions of thermal and hydro-thermal treatment by varying the temperature, relative humidity and period of exposure. The obtained treated samples were evaluated using near infrared spectroscopy (NIR), principal component analysis (PCA) and hierarchical cluster analysis (HCA) in order to evidence the structural changes which may occur during the applied treatment conditions. Following this, modification in all wood components were observed, modifications which were dependent on the temperature, amount of relative humidity and also the treatment time. Therefore, higher variations were evidenced for samples treated at higher temperatures and for longer periods. At the same time, the increase in the amount of water vapours in the medium induced a reduced rate of side chains and condensation reactions occurring in the wood structure. Further, by PCA and HCA was possible to discriminate the modifications in the wood samples according to treatment time and amount of relative humidity.

  2. Thermal irritation of teeth during dental treatment procedures

    OpenAIRE

    Su-Jung Kwon; Yoon-Jung Park; Sang-Ho Jun; Jin-Soo Ahn; In-Bog Lee; Byeong-Hoon Cho; Ho-Hyun Son; Deog-Gyu Seo

    2013-01-01

    While it is reasonably well known that certain dental procedures increase the temperature of the tooth's surface, of greater interest is their potential damaging effect on the pulp and tooth-supporting tissues. Previous studies have investigated the responses of the pulp, periodontal ligament, and alveolar bone to thermal irritation and the temperature at which thermal damage is initiated. There are also many in vitro studies that have measured the temperature increase of the pulp and tooth-s...

  3. Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-19

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  4. Non-destructive evaluation of polyolefin thermal aging using infrared spectroscopy

    Science.gov (United States)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-01

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for nondestructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  5. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review.

    Science.gov (United States)

    Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen

    2017-05-15

    Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Fourier Transform Infrared Spectroscopic Study of Thermal and Electrical Aging in Polyurethane

    Science.gov (United States)

    1987-03-20

    allophanate, biuret , and aromatic groups, while the soft segments co01sist of the flexible polyether, polyester, and polyalkyl groups from the polyols...results in Fig. 3a, it is a rea- sonable working hypothesis that these aging methods are achieving substantial- ly the same result by different means...formative stage of Uralane 5753 degradation via physical, thermal, and electrical methods . The changes in infrared absorbance noted in Tables 1 and 2 were

  7. [Therapeutic approaches for the treatment of facial aging].

    Science.gov (United States)

    Gauglitz, G G; Podda, M

    2015-10-01

    Over the last few decades, a magnitude of novel therapeutic approaches to battle the signs of facial aging have become available in esthetic dermatology. Comprehensive research in this area has significantly improved our understanding of the anatomy and physiology of facial aging. In order to successfully address age-related alterations in the human face, today's anti-aging treatment frequently necessitates multifaceted options. Alongside botulinum toxin and fillers, a plethora of different modalities are currently available to complete our esthetic portfolio, which are discussed in this review.

  8. The effect of age on A delta- and C-fibre thermal pain perception.

    Science.gov (United States)

    Chakour, M C; Gibson, S J; Bradbeer, M; Helme, R D

    1996-01-01

    It has been suggested that ageing may have a differential effect on C fibre-mediated protopathic/tonic pain versus epicritic/phasic pain perception mediated by A delta fibres. The present study attempted to independently assess age-related changes in the function of A delta- and C-nociceptive fibres by examining CO2 laser-induced thermal pain thresholds before, during and after a compression block of the superficial radial nerve in 15 young and 15 healthy elderly adult subjects. Nerve block efficacy was monitored via measures of cold, warm and mechanical threshold, and simple reaction time. During nerve compression block, reaction time and mechanical threshold increased, cold sensation became impaired while warm sensation remained unaffected throughout the test in both groups. With respect to pain sensitivity, young adults exhibited significant increases in thermal pain threshold during A-fibre block while pain threshold remained relatively stable across the 3 test periods in the elderly group. It would appear that elderly adults rely predominantly on C-fibre input when reporting pain whereas younger adults utilise additional input from A delta fibres. Subsequent analysis revealed that during pre- and post-block periods, older adults exhibited a significant elevation in thermal pain threshold; however, when A delta-fibre function was impaired and only C-fibre information was available, both groups responded similarly. These findings support the notion of a differential age-related change in A-fibre-mediated epicritic pain perception versus C-fibre-mediated protopathic pain.

  9. A Novel Combination of Thermal Ablation and Heat-Inducible Gene therapy for Breast Cancer Treatment

    Science.gov (United States)

    2009-04-01

    intensity focused ultrasound ( HIFU ) has been developed as an emerging non-invasive strategy for cancer treatment by thermal ablation of tumor tissue. The...feasibility of synergistic combination of HIFU thermal ablation and HIFU -induced gene therapy is interpreted both in vitro and in vivo using cancer...distribution. This work opens up a new paradigm for synergistic combination of HIFU thermal ablation with heat-induced gene therapy to improve the overall

  10. Device for thermal-acid treatment of the near-face well zone

    Energy Technology Data Exchange (ETDEWEB)

    Alekseyev, V.S.; Grebennikov, V.T.; Khlistunov, V.V.; Krakovskiy, B.S.

    1981-10-07

    A device is suggested for thermal-acid treatment of the near-face well zone which contains a housing. Within it there is a thermal reagent, diaphragm made of material which is soluble in acid and a piston. It is distinguished by the fact that in order to accelerate the reaction of thermal reagent in the well in the upper part of the housing there is a sleeve with reverse valve and delimiters for the piston course.

  11. Thermal plasma technology for the treatment of wastes: a critical review.

    Science.gov (United States)

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.

  12. Thermal irritation of teeth during dental treatment procedures

    Directory of Open Access Journals (Sweden)

    Su-Jung Kwon

    2013-08-01

    Full Text Available While it is reasonably well known that certain dental procedures increase the temperature of the tooth's surface, of greater interest is their potential damaging effect on the pulp and tooth-supporting tissues. Previous studies have investigated the responses of the pulp, periodontal ligament, and alveolar bone to thermal irritation and the temperature at which thermal damage is initiated. There are also many in vitro studies that have measured the temperature increase of the pulp and tooth-supporting tissues during restorative and endodontic procedures. This review article provides an overview of studies measuring temperature increases in tooth structures during several restorative and endodontic procedures, and proposes clinical guidelines for reducing potential thermal hazards to the pulp and supporting tissues.

  13. Thermal aging of some decommissioned reactor components and methodology for life prediction

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.

    1989-03-01

    Since a realistic aging of cast stainless steel components for end-of-life or life-extension conditions cannot be produced, it is customary to simulate the thermal aging embrittlement by accelerated aging at /approximately/400/degree/C. In this investigation, field components obtained from decommissioned reactors have been examined after service up to 22 yr to provide a benchmark of the laboratory simulation. The primary and secondary aging processes were found to be identical to those of the laboratory-aged specimens, and the kinetic characteristics were also similar. The extent of the aging embrittlement processes and other key factors that are known to influence the embrittlement kinetics have been compared for the decommissioned reactor components and materials aged under accelerated conditions. On the basis of the study, a mechanistic understanding of the causes of the complex behavior in kinetics and activation energy of aging (i.e., the temperature dependence of aging embrittlement between the accelerated and reactor-operating conditions) is presented. A mechanistic correlation developed thereon is compared with a number of available empirical correlations to provide an insight for development of a better methodology of life prediction of the reactor components. 18 refs., 18 figs., 5 tabs.

  14. Formation of nanocarbon spheres by thermal treatment of woody char from fast pyrolysis process

    Science.gov (United States)

    Qiangu Yan; Hossein Toghiani; Zhiyong Cai; Jilei Zhang

    2014-01-01

    Influences of thermal treatment conditions of temperature, reaction cycle and time, and purge gas type on nanocarbon formation over bio-chars from fast pyrolysis and effects of thermal reaction cycle and purge gas type on bio-char surface functional groups were investigated by temperature-programmed desorption (TPD) and temperature programmed reduction methods....

  15. Long-term results of primary transpupillary thermal therapy for the treatment of choroidal malignant melanoma.

    Science.gov (United States)

    Aaberg, T M; Bergstrom, C S; Hickner, Z J; Lynn, M J

    2008-06-01

    This is a long-term follow-up report investigating primary transpupillary thermal therapy (TTT) for choroidal melanoma. Retrospective case series of 135 patients harbouring choroidal melanoma treated with primary TTT. Patient demographics, tumour characteristics, treatment responses and complications, visual acuity outcomes and mortality data were captured and reported. A statistical analysis was performed for predictors of treatment failure. Successful tumour regression was achieved in 76% of patients. Of the 32 patients who failed, 12 had enucleation, and 20 had irradiation. Metastatic disease has occurred in three patients, and two patients have died (3/135, or 2%). Multivariate analysis determined that tumour diameter, tumour thickness greater than 3 mm and tumours exhibiting high-risk characteristics were significant predictors of failure. Patient age, gender, number of treatments and proximity of the tumour to the disc or fovea were not predictive of failure. Kaplan-Meier cumulative probability predicted a 19% 5-year treatment failure and 33% 10-year treatment failure. Treatment failure occurred as late as 99 months. Final visual acuity was 20/40 or better in 50% of patients; 32% had a final visual acuity of 20/200 or worse. Thirty-two per cent of patients developed one or more complications as a result of the TTT, the most concerning of which was intra- or extrascleral extension of tumour (occurring in 11 patients). Though not as successful as radiation therapy, TTT successfully induced regression in 76% of patients. TTT may still have a role in our treatment paradigm but should probably be reserved for specific cases, such as monocular patients with tumours near critical visual structures, surgically unstable patients or patients with advanced diabetic retinopathy. All patients considering TTT as monotherapy for choroidal melanoma must be selected, counselled and followed appropriately.

  16. Evaluation and optimization of non enzymatic browning of “cajuina” during thermal treatment

    Directory of Open Access Journals (Sweden)

    L. F. Damasceno

    2008-06-01

    Full Text Available "Cajuina" is a very popular drink in the Brazilian northeastern region and is produced by clarifying cashew apple juice. To preserve "cajuina" from chancing, the clarified cashew apple juice is submitted to thermal treatment where a desired final color should be obtained. To optimize color formation while maintaining high vitamin C and low 5-hydroxymethylfurfural (5-HMF concentrations the thermal treatment of "cajuina" needs to be studied and the non enzymatic mechanism should be better understood and controlled. In this work the effect of thermal treatment on "cajuina" (clarified cashew apple juice was studied at temperatures from 88°C to 121°C. Changes in color were measured and the variation in vitamin C, 5-hydroxymethylfurfural (5-HMF and sugar content were used to evaluate non enzymatic browning. The kinetic models were used to optimize the thermal treatment to produce "cajuina" with an absorbance at 420 nm of 0.023.

  17. Thermal treatment of sewage sludge from waste water. Tratamiento termico de lodos procedentes de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, G. (Universidad de Trento (Italy)); Canziani, R.; Ragazzi, M. (Politicnico de Milan (Italy))

    1994-01-01

    Thermal Treatment of sewage sludge can be beneficial as a pre-treatment step of many treatment/disposal options, but above all, it allows the recovery of the energetic content sludge. Energy recovery from sewage sludge can be performed in many ways; direct incineration thermal drying followed by incineration and co-combustion with municipal solid wastes or other non conventional fuels. Another option is the recovery of waste energy (e.g. from an endo thermal engine using biogas as fuel) to dry sludge wich, in turn can be used as a fuel. The paper will evaluate several options of thermal treatment of sewage sludge, with particular emphasis on the energetic yield from different processes. (Author)

  18. 5-HMF and carbohydrates content in stingless bee honey by CE before and after thermal treatment.

    Science.gov (United States)

    Biluca, Fabíola C; Della Betta, Fabiana; de Oliveira, Gabriela Pirassol; Pereira, Lais Morilla; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2014-09-15

    This study aimed to assess 5-hydroximethylfurfural and carbohydrates (fructose, glucose, and sucrose) in 13 stingless bee honey samples before and after thermal treatment using a capillary electrophoresis method. The methods were validated for the parameters of linearity, matrix effects, precision, and accuracy. A factorial design was implemented to determine optimal thermal treatment conditions and then verify the postprocedural 5-HMF formation, but once 5-HMF were good linearity, precision, and accuracy. None of the thirteen in natura samples presented 5-HMF, and carbohydrate levels ranged from 48.59% to 69.36%. In the same conditions of thermal treatment, Apis mellifera honey presented higher 5-HMF content than stingless bee honey. Results suggest that a high temperature related to briefer thermal treatment could be an efficient way to extend shelf life without affecting 5-HMF content in stingless bee honey. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Prognostic factors for the success of thermal balloon ablation in the treatment of menorrhagia

    NARCIS (Netherlands)

    Bongers, M. Y.; Mol, B. W. J.; Brölmann, H. A. M.

    2002-01-01

    OBJECTIVE: To identify predictive factors that will ensure successful menorrhagia treatment using hot fluid balloon endometrial ablation. METHODS: This is a prospective study on patients referred for menorrhagia and treated with hot fluid thermal balloon ablation. Potential prognostic factors for

  20. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  1. Nonablative minimally invasive thermal therapies in the treatment of symptomatic benign prostatic hyperplasia.

    NARCIS (Netherlands)

    Ancona, F.C.H. d'

    2008-01-01

    PURPOSE OF REVIEW: As all new treatment modalities nonablative thermal therapy for minimal invasive treatment of benign prostatic hyperplasia should be critically analyzed. This review discusses the literature to identify the merits of these so-called minimally invasive treatments and the place they

  2. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  3. Thermal epiphysiodesis Made with RFA. A New Treatment for LLD?

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Rahbek, Ole; Stødkilde-Jørgensen, Hans

    follow-up we found an average leg length difference of 3.9mm (SD=1.286, Median=3.666, P=0.014), and for the 6 month one we found a difference of 8.11mm in average. No damage to the surrounding cartilage structures was found. The animals could walk normally after the anesthesia and no signs of pain...... the complications. Radiofrequency ablation involves the application of energy in the radio wave frequency resulting in local thermal coagulative necrosis. It has been shown to be a reliable technique for creating thermally induced coagulation necrosis. The experience with this technique has been reported...... ablation sites (lateral and medial) identified at the proximal tibia growth plate using x-ray. Under general anesthesia, a probe was inserted and the ablation performed. T1, T2 and water content MR images were performed right after the procedure, 12 weeks later for 6 animals, and 6 months later...

  4. Lethal thermal maxima for age-0 pallid and shovelnose sturgeon: Implications for shallow water habitat restoration

    Science.gov (United States)

    Deslauriers, David; Heironimus, Laura B.; Chipps, Steven R.

    2016-01-01

    We evaluated temperature tolerance in age-0 pallid and shovelnose sturgeon (Scaphirhynchus albus and Scaphirhynchus platorynchus), two species that occur sympatrically in the Missouri and Mississippi Rivers. Fish (0.04–18 g) were acclimated to water temperatures of 13, 18 or 24 °C to quantify temperatures associated with lethal thermal maxima (LTM). The results show that no difference in thermal tolerance existed between the two sturgeon species, but that LTM was significantly related to body mass and acclimation temperature. Multiple linear regression analysis was used to estimate LTM, and outputs from the model were compared with water temperatures measured in the shallow water habitat (SWH) of the Missouri River. Observed SWH temperatures were not found to yield LTM conditions. The model developed here is to serve as a general guideline in the development of future SWH.

  5. Effects of thermal aging on microstructure and hardness of China low activation martensitic steel welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhang, Junyu [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui (China); Xu, Gang, E-mail: gang.xu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-08-15

    Highlights: • The hardness of HAZ and WM decreases obviously after aging. • The precipitation of the Laves-phase in BM is similar to that in HAZ. • M{sub 23}C{sub 6} particles are conducive to the nucleation of Laves-phase. • Ta may have a role to retard the early precipitation of the Laves-phase. - Abstract: The aim of this paper is to investigate the microstructure evolution and the change in hardness distribution of China low activation martensitic steel welded joints after thermal aging at 550 °C for 6000 h. The joint was processed by electron beam welding. Compared to the base metal (BM) and heat affected zone (HAZ), Laves-phase was not formed in weld metal (WM) in the as-aged condition due to the higher tantalum content and less precipitation in WM before aging. The dislocation density decreased in HAZ and WM after aging for 6000 h. The property results showed that hardness of WM and HAZ was decreased significantly after aging for 6000 h due to the weakening of solution strengthening and dislocations strengthening. However, the change in the hardness of the base metal by aging remained at a minor level.

  6. THERMAL CYCLING UNDER LOADING OF SINGLE CRYSTAL Cu-Al-Ni AFTER AGING

    Directory of Open Access Journals (Sweden)

    Ignacio Corro

    2016-06-01

    Full Text Available In this paper, a study of single crystal Cu-14.3Al-4.1Ni (%wt subjected to thermal cycling under loading is presented. Shape memory Cu-Al-Ni has low diffusion at temperatures above room temperature. Therefore, it is interesting to know your answer in working conditions and after being aged in this temperature range. Specimens were characterized before and after aging, using a device designed by the authors. Parameters such as critical temperatures and hysteresis width, the repeatability of the curves and the type of TM induced were analyzed. These parameters have changes then the aging or contribute to that may influence the design of applications.

  7. Influence of Fuzzy Parameters on the Modeling Quality of XLPE Insulation Properties under Thermal Aging

    Directory of Open Access Journals (Sweden)

    Lakhdar Bessissa

    2016-03-01

    Full Text Available In this work, we have used the fuzzy logic approach to predict mechanical properties (hot set test of cross-linked polyethylene (XLPE used as insulation in high voltage cables. The studied property presents non linear variations according to the aging time under high temperatures. So it is very difficult to find a theoretical or experimental model of the properties evolution under thermal aging. For that reason, several factors have been considered such as aging time and applied temperature. The obtained results are very encouraging and pointed out that the fuzzy logic is a powerful tool to predict the insulation proprieties. In other words, the obtained results are in good accordance with the experimental results with an acceptable error margin.

  8. The influence of carbon black on curing kinetics and thermal aging of acrylonitrile–butadiene rubber

    Directory of Open Access Journals (Sweden)

    Jaroslava Budinski-Simendić

    2009-10-01

    Full Text Available Elastomers based on a copolymer of butadiene and acrylonitrile (NBR have excellent oil resistance but are very sensitive for degradation at very high temperatures. The aim of this applicative contribution was to determine the effect of high abrasion furnace carbon black with primary particle size 46 nm on aging properties of elastomeric materials based on NBR as network precursor. The curing kinetics was determined using the rheometer with an oscillating disk, in which the network formation process is registered by the torque variation during time. The vulcanizates were obtained in a hydraulic press at 150 °C. The mechanical properties of elastomeric composites were determined before and after thermal aging in an air circulating oven. The reinforcing effect of the filler particles was assessed according to mechanical properties before and after aging.

  9. Treatment of dry age-related macular degeneration with dobesilate.

    Science.gov (United States)

    Cuevas, P; Outeiriño, L A; Angulo, J; Giménez-Gallego, G

    2012-06-21

    The authors present anatomical and functional evidences of dry age-macular degeneration improvement, after intravitreal treatment with dobesilate. Main outcomes measures were normalisation of retinal structure and function, assessed by optical coherence tomography, fundus-monitored microperimetry, electrophysiology and visual acuity. The effect might be related to the normalisation of the outer retinal architecture.

  10. Effect of thermal treatment on apatite-forming ability of NaOH-treated tantalum metal.

    Science.gov (United States)

    Miyazaki, T; Kim, H M; Kokubo, T; Miyaji, F; Kato, H; Nakamura, T

    2001-08-01

    The prerequisite for an artificial material to bond to living bone is the formation of bonelike apatite on its surface in the body. This apatite can be reproduced on its surface even in an acellular simulated body fluid with ion concentrations nearly equal to those of the human blood plasma. The present authors previously showed that the tantalum metal subjected to a NaOH treatment to form a sodium tantalate hydrogel layer on its surface forms the bonelike apatite on its surface in SBF in a short period. The gel layer as-formed on the metal is, however, not resistant against abrasion, and hence thus-treated metal is not useful for clinical applications. In the present study, effects of thermal treatment on the mechanical properties and apatite-forming ability of the NaOH-treated tantalum metal were investigated. The sodium tantalate gel on the NaOH-treated tantalum was dehydrated to convert into amorphous sodium tantalate by a thermal treatment at 300 degrees C in air environment and into crystalline sodium tantalates by the thermal treatment at 500 degrees C. Resistivity of the gel layer against both peeling-off and scratching was significantly improved by the thermal treatment at 300 degrees C. The high apatite-forming ability of the sodium tantalate hydrogel was a little decreased by the thermal treatment at 300 degrees C, but appreciably decreased by the thermal treatment at 500 degrees C. It is believed that the tantalum metal subjected to the 0.5 M-NaOH treatment and the subsequent thermal treatment at 300 degrees C is useful as implants in dental and orthopaedic fields, since it shows high bioactivity as well as high fracture toughness. Copyright 2001 Kluwer Academic Publishers

  11. Long-term melatonin treatment delays ovarian aging.

    Science.gov (United States)

    Tamura, Hiroshi; Kawamoto, Mai; Sato, Shun; Tamura, Isao; Maekawa, Ryo; Taketani, Toshiaki; Aasada, Hiromi; Takaki, Eiichi; Nakai, Akira; Reiter, Russel J; Sugino, Norihiro

    2017-03-01

    Ovarian aging is characterized by gradual declines in oocyte quantity and quality. Melatonin is considered an anti-aging agent due to its cytoprotective actions as an antioxidant. This study examined whether long-term melatonin treatment would delay ovarian aging in mice. Female ICR mice (10 weeks old) were given melatonin-containing water (100 μg/mL; melatonin) or water only until 43 weeks of age. Their oocytes were recovered from the oviduct, and in vitro fertilization was performed. The ovaries were used for a histological analysis of the number of follicles. The mRNA expression of the aging-related sirtuin genes (SIRT1, SIRT3) and the autophagy-related gene (LC3) and the telomere length of the ovarian chromosomes were analyzed. Transcriptome changes in the ovaries were also characterized using microarray. The number of ovulated oocytes decreased with age; however, it was greater in melatonin-treated mice than that from control animals. The decreased fertilization rate and blastocyst rate during aging also were higher in the melatonin-treated mice than in the controls, as were the numbers of primordial, primary, and antral follicles. The mRNA expression of SIRT1 and LC3 and telomere length were enhanced due to melatonin treatment. Seventy-eight genes that were downregulated during aging and upregulated by melatonin were identified by a microarray analysis. Forty of these 78 genes were ribosome-related genes, and a free radical scavenging network was identified. The present results indicate that melatonin delays ovarian aging by multiple mechanisms including antioxidant action, maintaining telomeres, stimulating SIRT expression and ribosome function, and by reducing autophagy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  13. Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors.

    Science.gov (United States)

    Nguyen, Van Phuc; Oh, Junghwan; Park, Suhyun; Wook Kang, Hyun

    2017-04-01

    A variety of thermal therapeutic methods have been investigated to treat bladder tumors but often cause bowel injury and bladder wall perforation due to high treatment dosage and limited clinical margins. The objective of the current study is to develop a dual-thermal modality to deeply coagulate the bladder tumors at low thermal dosage and to evaluate therapeutic outcomes with high contrast photoacoustic imaging (PAI). High intensity focused ultrasound (HIFU) is combined with 532 nm laser light to enhance therapeutic depth during thermal treatments on artificial tumor-injected bladder tissue ex vivo. PAI is employed to identify the margins of the tumors pre- and post-treatments. The dual-thermal modality achieves 3- and 1.8-fold higher transient temperature changes and 2.2- and 1.5-fold deeper tissue denaturation than laser and HIFU, respectively. PAI vividly identifies the position of the injected tumor and entails approximately 7.9 times higher image contrast from the coagulated tumor as that from the untreated tumor. Spectroscopic analysis exhibits that both 740 nm and 760 nm attains the maximum photoacoustic amplitudes from the treated areas. The proposed PAI-guided dual-thermal treatments (laser and HIFU) treatments can be a feasible therapeutic modality to treat bladder tumors in a controlled and efficient manner. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modeling of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2017-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... fabricated. The temperature distribution produced by such abnormal conditions has been modelled first by means of FEM simulations and then experimentally validated by means of a non-destructive testing technique including an ultra-fast infrared camera. Results demonstrate a significant imbalance...

  15. Prediction of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2016-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... fabricated. The temperature distribution produced by such abnormal conditions has been modelled first by means of FEM simulations and then experimentally validated by means of a non-destructive testing technique including an ultra-fast infrared camera. Results demonstrate a significant imbalance...

  16. Effects of thermal treatments and germination on physico-chemical ...

    African Journals Online (AJOL)

    Certain physico-chemical properties including viscoelasticity, crystallinity and maltose content of corn depends on the gelatinization of starch under different treatments. Three different treatments were performed; boiling in water, steam heating, and germination. The effects of gelatinization on viscoelastic property of corn ...

  17. Thermal Epiphysiodesis Made with RFA. A New Treatment for LLD?

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Rahbek, Ole; Stødkilde-Jørgensen, Hans

    leg length difference of 3.9mm (SD=1.286, Median=3.666, P=0.014), and for the 6 month one we found a difference of 8.11mm in average. No damage to the surrounding cartilage structures was found. The animals could walk normally after the anesthesia and no signs of pain or discomfort were presented...... be a method which neutralizes these complications. RFA involves the application of energy in the radio wave frequency resulting in local thermal coagulative necrosis. It has been shown to be a reliable technique for creating thermally induced coagulation necrosis. The experience with this technique has been...... at two ablation sites (lateral and medial) identified using a C-arm. Under general anesthesia, a probe was inserted and the ablation performed. T1, T2 and water content MR images were obtained right after the procedure; 12 weeks later for 6 animals, and 6 months later for the last 2 ones. The length...

  18. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    Science.gov (United States)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-11-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5-10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant.

  19. Thermal Performance of Hollow Clay Brick with Low Emissivity Treatment in Surface Enclosures

    Directory of Open Access Journals (Sweden)

    Roberto Fioretti

    2014-10-01

    Full Text Available External walls made with hollow clay brick or block are widely used for their thermal, acoustic and structural properties. However, the performance of the bricks frequently does not conform with the minimum legal requirements or the values required for high efficiency buildings, and for this reason, they need to be integrated with layers of thermal insulation. In this paper, the thermal behavior of hollow clay block with low emissivity treatment on the internal cavity surfaces has been investigated. The purpose of this application is to obtain a reduction in the thermal conductivity of the block by lowering the radiative heat exchange in the enclosures. The aims of this paper are to indicate a methodology for evaluating the thermal performance of the brick and to provide information about the benefits that should be obtained. Theoretical evaluations are carried out on several bricks (12 geometries simulated with two different thermal conductivities of the clay, using a finite elements model. The heat exchange procedure is implemented in accordance with the standard, so as to obtain standardized values of the thermal characteristics of the block. Several values of emissivity are hypothesized, related to different kinds of coating. Finally, the values of the thermal transmittance of walls built with the evaluated blocks have been calculated and compared. The results show how coating the internal surface of the cavity provides a reduction in the thermal conductivity of the block, of between 26% and 45%, for a surface emissivity of 0.1.

  20. Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation

    Science.gov (United States)

    Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.

    2009-02-01

    A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended

  1. An update on cutaneous aging treatment using herbs.

    Science.gov (United States)

    Kanlayavattanakul, Mayuree; Lourith, Nattaya

    2015-01-01

    Skin aging is caused by several factors. Ultraviolet (UV) exposure as well as oxidative stress elevates inflammatory mediators causing degradation of the extracellular matrix, which is regarded as the major cause of skin wrinkles, one of the signs of aging. Topical applications of active ingredients protect against dermal photodamage and scavenge radicals that can delay skin aging. Matrix metalloproteinase inhibitors against degradation of collagen, elastin, and hyaluronan are the key strategy to combat cutaneous aging. In addition, active ingredients with the efficacy to enhance extracellular matrix production, including those with UV protection efficacy, play an important role in protecting the skin from aging. Naturally derived compounds for combating skin wrinkles are gaining more interest among the consumers as they are perceived to be milder, safer, and healthier. This article, therefore, briefly addresses the causes of skin aging and extensively summarizes on herbs appraisal for skin wrinkles treatment. Therefore, delaying aging of skin using the functional herbs would maintain the individual's appearance with high esthetic and psychosocial impacts.

  2. Gingival enlargement in different age groups during fixed Orthodontic treatment.

    Science.gov (United States)

    Eid, Hossam A; Assiri, Hassan Ahmed M; Kandyala, Reena; Togoo, Rafi A; Turakhia, Viral S

    2014-02-01

    During fixed orthodontic therapy, adolescents tend to have higher chances of gingivitis and gingival enlargement (GE) compared to adults. A cross sectional study was undertaken to evaluate the above hypothesis, by assessing GE in patients of different age groups receiving fixed orthodontic therapy. Patients undergoing orthodontic treatment were selected by simple random sampling from the King Khalid University College of Dentistry out patient's clinic of preventive dental sciences division to form the study group. Participant's were divided into three age groups and GE was graded as 0, 1 and 2 as per the classification of the American Academy of Periodontology. Data were analyzed by using IBM SPSS version 16.0 (Statistical Package for Social Services, Chicago, IL, USA) and descriptive statistics were obtained. Differences in proportions were compared using the Chi-square test and the significance level was set at p ≤ 0.05. 62.3% (n=33) were males and 37.7% (n=20) were females. Group 1 had 21 patients (39.7%); Group 2 had 24 patients (45.3%) and Group 3 had 8 patients (15.1%).The highest frequency (48%) of GE was observed among the Group 1 age group (10-19 years). Differences in frequency of GE according to age groups were found to be statistically significant (p=0.046).Differences in GE according to the frequency of practicing oral hygiene measures were statistically significant (pdifferent age groups during fixed Orthodontic treatment. J Int Oral Health 2014;6(1):1-4.

  3. Thermal aging modeling and validation on the Mo containing Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Busby, Jeremy T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    Thermodynamics of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical knowledge to understand thermal aging effect on the phase stability of Mo-containing austenitic steels, which subsequently facilitates alloy design/improvement and degradation mitigation of these materials for reactor applications. Among the intermetallic phases, Chi (χ), Laves, and Sigma (σ) are often of concern because of their tendency to cause embrittlement of the materials. The focus of this study is thermal stability of the Chi and Laves phases as they were less studied compared to the Sigma phase. Coupled with thermodynamic modeling, thermal stability of intermetallic phases in Mo containing Fe-Cr-Ni alloys was investigated at 1000, 850 and 700 C for different annealing times. The morphologies, compositions and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Three key findings resulted from this study. First, the Chi phase is stable at high temperature, and with decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. Thirdly, in situ transformation from Chi phase to Laves phase was directly observed, which increased the local strain field, generated dislocations in the intermetallic phases, and altered the precipitate phase orientation relationship with the austenitic matrix. The thermodynamic models that were developed and validated were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  4. Palaeointensity, core thermal conductivity and the unknown age of the inner core

    Science.gov (United States)

    Smirnov, Aleksey V.; Tarduno, John A.; Kulakov, Evgeniy V.; McEnroe, Suzanne A.; Bono, Richard K.

    2016-05-01

    Data on the evolution of Earth's magnetic field intensity are important for understanding the geodynamo and planetary evolution. However, the paleomagnetic record in rocks may be adversely affected by many physical processes, which must be taken into account when analysing the palaeointensity database. This is especially important in the light of an ongoing debate regarding core thermal conductivity values, and how these relate to the Precambrian geodynamo. Here, we demonstrate that several data sets in the Precambrian palaeointensity database overestimate the true paleofield strength due to the presence of non-ideal carriers of palaeointensity signals and/or viscous re-magnetizations. When the palaeointensity overestimates are removed, the Precambrian database does not indicate a robust change in geomagnetic field intensity during the Mesoproterozoic. These findings call into question the recent claim that the solid inner core formed in the Mesoproterozoic, hence constraining the thermal conductivity in the core to `moderate' values. Instead, our analyses indicate that the presently available palaeointensity data are insufficient in number and quality to constrain the timing of solid inner core formation, or the outstanding problem of core thermal conductivity. Very young or very old inner core ages (and attendant high or low core thermal conductivity values) are consistent with the presently known history of Earth's field strength. More promising available data sets that reflect long-term core structure are geomagnetic reversal rate and field morphology. The latter suggests changes that may reflect differences in Archean to Proterozoic core stratification, whereas the former suggest an interval of geodynamo hyperactivity at ca. 550 Ma.

  5. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment......ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment...

  6. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment......ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment...

  7. Estimation of the Processing Parameters in Electron Beam Thermal Treatments

    OpenAIRE

    Dulau, Mircea

    2014-01-01

    Electron beam have many special properties which make them particularly well suited for use in materials handling through melting, welding, surface treatment, etc., taking into account that this manufacturing is performed in vacuum. The use of electron beam for surface limited heat treatment of workpiece has brought about a noticeable extension of the beam technologies. Some theoretical aspects and simulation results are presented in this paper, considering a high power electron beam processi...

  8. Effects of thermal treatment on colour and texture of Typha latifolia L.

    Science.gov (United States)

    Zhang, Min; Zhou, Yun-hua; Wang, Shaojin; Tang, Juming

    2012-04-01

    Through the analysis of the residual activity of peroxidase (POD), chromatic aberration, shear intensity and shear power, the effects of different thermal treatment times at 100°C on the POD, surface colour and texture of Typha latifolia L. were evaluated. The results showed that the activity of POD decreased with the increasing thermal treatment time at 100°C. The regeneration amount of POD increased first for some time and then started to decrease with the treatment time. Thermal treatment times 1.0 and 1.5 min at 100°C exhibited maximum regeneration of POD for the samples stored at 20 and 37°C, respectively. The sample had acceptable texture and surface colour when they were treated at 100°C for 4 min because the POD in the sample was inactivated to an acceptable level.

  9. Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

  10. Treatment of the ageing hand with dermal fillers

    Directory of Open Access Journals (Sweden)

    Ulrich Kühne

    2012-01-01

    Full Text Available Following the trend in facial cosmetic procedures, patients are now increasingly requesting hand rejuvenation treatments. Intrinsic ageing of the hands is characterized by loss of dermal elasticity and atrophy of the subcutaneous tissue. Thus, veins, tendons and bony structures become apparent. Among the available procedures, intrinsic ageing of the hands is best improved by restoring the volume of soft tissue. Volume restoration can be achieved with a number of long-lasting dermal fillers with varying degrees of improvement and treatment longevity. The dermal fillers used in hand rejuvenation include autologous fat, collagen, hyaluronic acid, calcium hydroxylapatite and poly-L-lactic acid. Here, we describe our preferred injection method for hand rejuvenation using calcium hydroxylapatite and a single-bolus injection.

  11. Effects of thermal treatment on colloidal chemical properties of mixtures for production of technical carbon

    Energy Technology Data Exchange (ETDEWEB)

    Svinukhov, A.G.; Kolesnikov, S.I.; Soboleva, Eh.B.; Turundaevskaya, N.E. (Moskovskii Institut Nefti i Gaza im. I.M. Gubkina (USSR))

    1990-07-01

    Evaluates thermochemical changes of petroleum-derived and coal-derived tar fractions. Mixtures studied include gasoline pyrolysis tar, anthracene fractions and gas oil residue extracts. Temperature of experiments was 200 to 300 C. Content of heptane and toluene insoluble components were factors in thermal stability. Colorimetry was applied to measure system aggregate stability. From among the initial raw materials, the anthracene fraction gave the highest asphaltene yield, but this yield decreased after treatment at 250 C together with its stability factor. Thermal treatment of pyrolysis tars sharply increased their asphaltene and carbene-carboid content but thermal stability changed slightly. Experimental results are provided in tables. The analysis shows that aggregate stability of mixtures has minima at 5, 15 and 30% of tar content. Mixtures break above 35%. Above 30%, the mixture's thermal stability and homogeneity are disturbed. 6 refs.

  12. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Frederick E., E-mail: frederick.e.pinkerton@gm.com [Chemical and Materials Systems Laboratory, General Motors Research and Development Center, Warren, MI 48092 (United States); Balogh, Michael P.; Ellison, Nicole [Chemical and Materials Systems Laboratory, General Motors Research and Development Center, Warren, MI 48092 (United States); Foto, Aldo [Element Materials Technology Wixom, Inc (United States); Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P. [Powertrain Materials/Fluids/AMPPD Engineering and Labs, GFL VE/PT Materials Engineering, General Motors LLC, Pontiac, MI 48340 (United States)

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity H{sub ci} of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H{sub 2} gas. Expansion of the NdFeB crystal lattice in both ATF and H{sub 2} identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets. - Highlights: • Injection molded NdFeB magnets age rapidly in automatic transmission fluid (ATF). • Coercivity loss is not due to direct chemical reaction between ATF and the powder. • Chemical reaction with the binder does not play a major role in aging. • Hydrogen dissociates from ATF and diffuses into Nd{sub 2}Fe{sub 14}B, reducing coercivity.

  13. The role of thermal balneotherapy in the treatment of obese patient with knee osteoarthritis

    Science.gov (United States)

    Masiero, Stefano; Vittadini, Filippo; Ferroni, Costanza; Bosco, Anna; Serra, Roberto; Frigo, Anna Chiara; Frizziero, Antonio

    2017-09-01

    Osteoarthritis (OA) is the most common form of arthritis clinically characterized by joint pain, functional limitation, and reduced quality of life. Several studies have shown a clear link between obesity and higher risk of knee OA. According to the multifactorial OA pathogenesis, the management of this condition requires a multidisciplinary approach. The objective of this study is to evaluate hydrokinesitherapy effects in thermal setting in obese patients with knee OA. Fifty-three patients were assessed for eligibility, of which 33 refused the treatment, while 10 patients dropped out after the enrollment for personal reasons or inability to adhere to the program. Ten patients (8 females, 2 males, mean age of 59.4 years) with obesity (range BMI 30-45 kg/m2) and knee OA (II-III grade of Kellgren-Lawrence scale) treated with hydrokinetic therapy in thermal water (two sessions per week for 8 consecutive weeks) completed the study. Primary outcome measure was pain (VAS). Secondary outcomes were clinical knee evaluation (range of motion—ROM, lower-limb muscle strength), WOMAC, and Lequesne Algofunctional Index. Patellar tendon and peri-articular soft tissue ultrasound evaluation and gait analysis at baseline (T0), at the end of treatment (T1), and at 6 months of follow-up (T2) were performed. Significant decrease on VAS pain during walking on a flat surface and going up/down stairs was reached from baseline at T1 (p = 0.0039; p = 0.0098) and was maintained at T2 (p = 0.00954) exclusively for VAS pain during walking on a flat surface. WOMAC score showed a significant reduction between T0 and T1 (p = 0.0137) and between T0 and T2 (p = 0.006438), as ROM evaluations. Kinematic path assessment did not show significant results in individual gait steps, except for the space-time variables of the average speed and the values of ground reaction force (GRF) obtained with force platforms. Hydrokinesitherapy in thermal environment in obese patients with knee OA may determine pain

  14. The role of thermal balneotherapy in the treatment of obese patient with knee osteoarthritis

    Science.gov (United States)

    Masiero, Stefano; Vittadini, Filippo; Ferroni, Costanza; Bosco, Anna; Serra, Roberto; Frigo, Anna Chiara; Frizziero, Antonio

    2018-02-01

    Osteoarthritis (OA) is the most common form of arthritis clinically characterized by joint pain, functional limitation, and reduced quality of life. Several studies have shown a clear link between obesity and higher risk of knee OA. According to the multifactorial OA pathogenesis, the management of this condition requires a multidisciplinary approach. The objective of this study is to evaluate hydrokinesitherapy effects in thermal setting in obese patients with knee OA. Fifty-three patients were assessed for eligibility, of which 33 refused the treatment, while 10 patients dropped out after the enrollment for personal reasons or inability to adhere to the program. Ten patients (8 females, 2 males, mean age of 59.4 years) with obesity (range BMI 30-45 kg/m2) and knee OA (II-III grade of Kellgren-Lawrence scale) treated with hydrokinetic therapy in thermal water (two sessions per week for 8 consecutive weeks) completed the study. Primary outcome measure was pain (VAS). Secondary outcomes were clinical knee evaluation (range of motion—ROM, lower-limb muscle strength), WOMAC, and Lequesne Algofunctional Index. Patellar tendon and peri-articular soft tissue ultrasound evaluation and gait analysis at baseline (T0), at the end of treatment (T1), and at 6 months of follow-up (T2) were performed. Significant decrease on VAS pain during walking on a flat surface and going up/down stairs was reached from baseline at T1 ( p = 0.0039; p = 0.0098) and was maintained at T2 ( p = 0.00954) exclusively for VAS pain during walking on a flat surface. WOMAC score showed a significant reduction between T0 and T1 ( p = 0.0137) and between T0 and T2 ( p = 0.006438), as ROM evaluations. Kinematic path assessment did not show significant results in individual gait steps, except for the space-time variables of the average speed and the values of ground reaction force (GRF) obtained with force platforms. Hydrokinesitherapy in thermal environment in obese patients with knee OA may determine

  15. Treatment Moderators and Predictors of Outcome in the Treatment of Early Age Mania (TEAM) Study

    Science.gov (United States)

    Vitiello, Benedetto; Riddle, Mark A.; Yenokyan, Gayane; Axelson, David A.; Wagner, Karen D.; Joshi, Paramjit; Walkup, John T.; Luby, Joan; Birmaher, Boris; Ryan, Neal D.; Emslie, Graham; Robb, Adelaide; Tillman, Rebecca

    2012-01-01

    Objective: Both the diagnosis and treatment of bipolar disorder in youth remain the subject of debate. In the Treatment of Early Age Mania (TEAM) study, risperidone was more effective than lithium or divalproex in children diagnosed with bipolar mania and highly comorbid with attention-deficit/hyperactivity disorder (ADHD). We searched for…

  16. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fujun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Peng, Changsheng [The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Hou, Deyi [Geotechnical and Environmental Research Group, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Wu, Bin; Zhang, Qian; Li, Fasheng [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Gu, Qingbao, E-mail: guqb@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2015-12-30

    Highlights: • Hg content was reduced to <1.5 mg/kg when treated at 400 °C with citric acid. • The treated soil retained most of its original soil physicochemical properties. • Proton provided by citric acid facilitates thermal removal of mercury. • This thermal treatment method is expected to reduce energy input by 35%. - Abstract: Thermal treatment is a promising technology for the remediation of mercury contaminated soils, but it often requires high energy input at heating temperatures above 600 °C, and the treated soil is not suitable for agricultural reuse. The present study developed a novel method for the thermal treatment of mercury contaminated soils with the facilitation of citric acid (CA). A CA/Hg molar ratio of 15 was adopted as the optimum dosage. The mercury concentration in soils was successfully reduced from 134 mg/kg to 1.1 mg/kg when treated at 400 °C for 60 min and the treated soil retained most of its original soil physiochemical properties. During the treatment process, CA was found to provide an acidic environment which enhanced the volatilization of mercury. This method is expected to reduce energy input by 35% comparing to the traditional thermal treatment method, and lead to agricultural soil reuse, thus providing a greener and more sustainable remediation method for treating mercury contaminated soil in future engineering applications.

  17. Thermal and high magnetic field treatment of materials and associated apparatus

    Science.gov (United States)

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2007-01-09

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  18. Estimation of the Processing Parameters in Electron Beam Thermal Treatments

    Directory of Open Access Journals (Sweden)

    DULAU Mircea

    2014-05-01

    Full Text Available Electron beam have many special properties which make them particularly well suited for use in materials handling through melting, welding, surface treatment, etc., taking into account that this manufacturing is performed in vacuum. The use of electron beam for surface limited heat treatment of workpiece has brought about a noticeable extension of the beam technologies. Some theoretical aspects and simulation results are presented in this paper, considering a high power electron beam processing system and Matlab facilities. This paper can be used in power engineering and electro-technologies fields as a guideline, in order to simulate and analyse the process parameters.

  19. Finite element treatment of nonlinear thermal radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, C.R.E. de; Ackroyd, R.T.; Goddard, A.J.H. (Univ. of London (United Kingdom))

    1993-01-01

    This paper reports the application of a variational finite element-spherical harmonics method to transient nonlinear radiation transport problems. Apart from its geometric flexibility, the finite element treatment described allows the use of spatially discontinuous trial functions in the variational principles. This permits an economical treatment of steep gradients in the photon intensity distribution and offers greater freedom in the choice of spherical harmonic expansion, potentially allowing the order of the expansion to be varied from region to region according to physical needs. The formulation also easily accomodates, with minor computational overheads, spatially varying cross sections and temperatures.

  20. Measurement of the optical fiber numeric aperture exposed to thermal and radiation aging

    Science.gov (United States)

    Vanderka, Ales; Bednarek, Lukas; Hajek, Lukas; Latal, Jan; Poboril, Radek; Zavodny, Petr; Vasinek, Vladimir

    2016-12-01

    This paper deals with the aging of optical fibers influenced by temperature and radiation. There are analyzed changes in the structure of the optical fiber, related to the propagation of light in the fiber structure. In this case for numerical aperture. For experimental measurement was used MM fiber OM1 with core diameter 62.5 μm, cladding diameter 125 μm in 2.8 mm secondary coating. Aging of the optical fiber was achieved with dry heat and radiation. For this purpose, we were using a temperature chamber with a stable temperature of 105 °C where the cables after two months. Cables were then irradiated with gamma radiation 60Co in doses of 1.5 kGy and then 60 kGy. These conditions simulated 50 years aging process of optical cables. According to European Standard EN 60793-1-43:2015 was created the automatic device for angular scan working with LabVIEW software interface. Numerical aperture was tested at a wavelength of 850 nm, with an output power 1 mW. Scanning angle was set to 50° with step 0.25°. Numerical aperture was calculated from the position where power has fallen from maximal power at e2 power. The measurement of each sample was performed 10 hours after thermal and radiation aging. The samples were subsequently tested after six months from the last irradiation. In conclusion, the results of the experiment were analyzed and compared.

  1. Gamma-radiation effect on thermal ageing of butyl rubber compounds

    Energy Technology Data Exchange (ETDEWEB)

    Scagliusi, Sandra R.; Cardoso, Elizabeth C.L.; Lugao, Ademar B., E-mail: srscagliusi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Butyl rubber has a comprehensive use in sealing systems, especially in tires inner tubes, due to their low permeability to gases. So, it is required that butyl rubber compounds show a better performance, more and more. Butyl rubber is provided with excellent mechanical properties and oxidation resistance. Besides showing these properties, radiation exposures impart modifications in physical-chemical and morphological properties on butyl rubber materials. When exposed to gamma-radiation, rubbers suffer changes in their mechanical and physical properties, caused by material degradation. The major radiation effect in butyl rubbers is chain scission; besides, ageing promotes too the same effect with further build-up of free radicals. This work aims to the study of gamma-radiation in physical-chemical properties of butyl rubber subjected to thermal ageing. Doses used herein were: 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 KGy. Samples were evaluated before and after ageing according to traditional essays, such as: hardness, tensile strength and elongation at break. From accomplished assessments it is possible to affirm that at doses higher than 50 kGy it was observed a sharp decreasing in butyl rubber physical-chemical properties, before and after exposure to ageing. (author)

  2. On the treatment of resonance cross sections in thermal reactor ...

    African Journals Online (AJOL)

    This paper discusses the mathematical models and methods used for calculating resonance cross sections in the resonance region of the neutron energy spectrum. Particular attention has been paid to the treatment outlined in the WIMSD/4 version of the WIMS lattice transport code. The significance of the resonance ...

  3. Influence of fibre-surface treatment on structural, thermal and ...

    Indian Academy of Sciences (India)

    This chemical treatment was also found to alter the characteristic of the fibre surface topography as seen by the SEM. From the ... E Sinha1 S K Rout2. Department of Physics, National Institute of Technology, Rourkela 769 008, India; Department of Applied Physics, Birla Institute of Technology, Ranchi 835 215, India ...

  4. Thermal Epiphysiodesis Made with RFA. A New Treatment for LLD?

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Rahbek, Ole; Stødkilde-Jørgensen, Hans

    to the metaphysis, and vascular or nerve injury have potentially serious consequences. Therefore, there is a need for a reliable and precise procedure which overcomes the complications. Radiofrequency ablation involves the application of energy in the radio wave frequency resulting in local thermal coagulative...... and the ablation performed. T1, T2 and water content MR images were performed right after the procedure, 12 weeks later for 6 animals, and 6 months later for the last 2 ones. The length of both tibiae was measured immediately after the ablation and at the end of the study. Results Both legs were equal...... at the beginning of the study and, overall, there was a leg length difference (P=0.006) in average of 4.8mm (SD=2.25, Median=3.88) at the end. For the 12 week follow-up we found an average leg length difference of 3.9mm (SD=1.286, Median=3.666, P=0.014), and for the 6 month one we found a difference of 8.11mm...

  5. Nanoparticles in treatment of thermal injured rats: Is it safe?

    Energy Technology Data Exchange (ETDEWEB)

    Melo, P S; Ferreira, I R [Biochemistry Department, Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Marcato, P D; Paula, L B de; Duran, N; Alves, O L [Chemistry Institute, UNICAMP, SP (Brazil); Huber, S C [VERIS, Campinas, SP (Brazil); Almeida, A B A [SOBRAPAR, Campinas, SP (Brazil); Torsoni, S [FCA, UNICAMP, SP (Brazil); Seabra, A B, E-mail: pmelo@unicamp.br [Universidade Federal de Sao Paulo, SP (UNIFESP), Diadema, SP (Brazil)

    2011-07-06

    The aim of this study was to assess whether thermal trauma induced oxidative stress altered the balance between oxidant and antioxidant systems in the blood of burn wound rats in the absence and presence of silver nanoparticles and S-nitrosoglutathione, GSNO. Free silver nanoparticles, free GSNO and silver nanoparticles + GSNO had no cytotoxic effects. Under anesthesia, the shaved dorsum of the rats was exposed to 90{sup 0}C (burn group) water bath. Studied compounds were administered topically immediately and at 28 days after the burn injury, four times a day. Silver nanoparticles and silver nanoparticles + GSNO were no toxic in vitro and in vivo. There were no significant differences in the levels of urea, creatinine, aminotransferases and hematological parameters, in control-burn groups (free silver nanoparticles) and treated-burn groups (free GSNO or silver nanoparticles + GSNO). There were no differences in lipid peroxidation and in the levels of protein carbonyls and glutathione, used as oxidative stress markers. A little inflammatory cell response, papillary dermis vascularization, fibroblasts differentiated into contractile myofibroblasts and the presence of a large amount of extracellular matrix were evidenced in treated groups following skin injury. These results indicate that silver nanoparticles and GSNO may provide an effective action on wound healing.

  6. Nanoparticles in treatment of thermal injured rats: Is it safe?

    Science.gov (United States)

    Melo, P. S.; Marcato, P. D.; Huber, S. C.; Ferreira, I. R.; de Paula, L. B.; Almeida, A. B. A.; Durán, N.; Torsoni, S.; Seabra, A. B.; Alves, O. L.

    2011-07-01

    The aim of this study was to assess whether thermal trauma induced oxidative stress altered the balance between oxidant and antioxidant systems in the blood of burn wound rats in the absence and presence of silver nanoparticles and S-nitrosoglutathione, GSNO. Free silver nanoparticles, free GSNO and silver nanoparticles + GSNO had no cytotoxic effects. Under anesthesia, the shaved dorsum of the rats was exposed to 90°C (burn group) water bath. Studied compounds were administered topically immediately and at 28 days after the burn injury, four times a day. Silver nanoparticles and silver nanoparticles + GSNO were no toxic in vitro and in vivo. There were no significant differences in the levels of urea, creatinine, aminotransferases and hematological parameters, in control-burn groups (free silver nanoparticles) and treated-burn groups (free GSNO or silver nanoparticles + GSNO). There were no differences in lipid peroxidation and in the levels of protein carbonyls and glutathione, used as oxidative stress markers. A little inflammatory cell response, papillary dermis vascularization, fibroblasts differentiated into contractile myofibroblasts and the presence of a large amount of extracellular matrix were evidenced in treated groups following skin injury. These results indicate that silver nanoparticles and GSNO may provide an effective action on wound healing.

  7. Effect of accelerated thermal ageing on the selective solar thermal harvesting properties of multiwall carbon nanotube/nickel oxide nanocomposite coatings

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-05-01

    Full Text Available intensity in the D and G bands of disordered and graphitic carbon, respectively but an enhancement of the NiO bands indicating loss of carbon atoms due to thermal ageing tests. Simple equations are derived determining the proportion of carbon atoms...

  8. Effect of Accelerated Thermal Ageing on the Selective Solar Thermal Harvesting Properties of Multiwall Carbon Nanotube/Nickel Oxide Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Kittessa T. Roro

    2012-01-01

    Full Text Available Varying amounts of dispersed multiwalled carbon nanotubes in NiO have been used to develop composites that absorb the solar energy very well but lose very little through emission. Determination of absorptance, αsol, and emissivity, εther, from such selective solar absorbers shows that the optimum efficiency of 71% can be attained when about 10 mg of MWCNTs are composited with NiO. One such absorber was subjected to thermal ageing tests. The performance criterion (PC limit for passing the test when simulated for 25 years is (−Δα+0.25Δε≤0.05. It was found that the typical absorber had a PC value of −0.01. This value is much better than the passing limit. Raman spectra of the typical absorber before and after the thermal ageing test showed a reduced intensity in the D and G bands of disordered and graphitic carbon, respectively but an enhancement of the NiO bands indicating loss of carbon atoms due to thermal ageing tests. Simple equations are derived determining the proportion of carbon atoms that are lost and the proportion of carbon atoms that remains in the absorber; both of these are in agreement with the original carbon composition before the thermal ageing test. It is reported that the typical absorber will retain 63% of the carbon after 25 years.

  9. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate

    Science.gov (United States)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad

    2017-07-01

    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  10. Peculiarities of Thermal Treatment of Monolithic Reinforced Concrete Structures

    Science.gov (United States)

    Kuchin, V. N.; Shilonosova, N. V.

    2017-11-01

    A mathematical program has been developed that allows one to determine the parameters of heat treatment of monolithic structures. One of the quality indicators of monolithic reinforced concrete structures is the level of temperature stresses arising in the process of heat treatment and further operation of structures. In winter at heat treatment the distribution of temperatures along the cross-section of the structure is uneven. A favorable thermo-stressed state in a concrete massif occurs when using the preheating method, providing the concrete temperature in the center of the structure is greater than at the periphery. In this case, after the strength is set and the temperature is later equalized along the cross-section, the central part of the structure tends to decrease its dimensions more but the extreme zones prevent it. Therefore, the center is in a state of tension, and the extreme zones on the periphery are compressed. In compressed concrete there is a lesser chance of cracks or defects. The temperature gradient over the section of the structure, the stress in the concrete and its strength are determined. When calculating the temperature and strength fields, the stress level was determined - a value equal to the ratio of the tensile stresses in the section under consideration to the tensile strength of the concrete in this section at the same time. The nature of the change in stress level is determined by the massive structure and power of the formwork heaters. It is shown that under unfavorable conditions the stress level is close to the critical value. The greatest temperature gradient occurs in the outer layers adjacent to the heating formwork. A technology for concrete conditioning is proposed which makes it possible to reduce the temperature stresses along the cross-section of the structure. The time for concrete conditioning in the formwork is reduced. In its turn, it further reduces labor costs and the cost of concrete work along with the cost of

  11. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn

    2017-08-31

    Highlights: • The KMC method is adopted to investigate the relationships between surface evolution and hydrogen thermal treatment conditions. • The reduction in surface roughness is divided into two stages at relatively low temperatures, both exhibiting exponential dependence on the time. • The optimized surface structure can be obtained by precisely adjusting thermal treatment temperatures and hydrogen pressures. - Abstract: The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  12. The effect of thermal pre-treatment on the hydrometallurgical purification of large silicon particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon-Soo; Lee, Jin-Seok; Jang, Bo-Yun; Ahn, Young-Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2014-08-15

    The most desirable approach to the hydrometallurgical process consists in using larger silicon particles by exposing the metallic impurities contained in the silicon to its surface via a thermally activated elution prior to chemical treatment. The present study reports experimental findings concerning the effect of a thermal pre-treatment using a mixture of 5-wt% nitric acid and 2.5-wt% hydrofluoric acid for the purification of metallurgical-grade silicon particles of different sizes on the hydrometallurgical process. The extraction rates of metallic impurities from inside the silicon were in inverse proportion to the size of the silicon particle. However, the effect of the thermal pre-treatment on the extraction rate became greater with increasing particle size.

  13. Influences of Thermal Treatment on the Dielectric Performances of Polystyrene Composites Reinforced by Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Benhui Fan

    2017-07-01

    Full Text Available Dielectric properties of composites near percolation threshold (fc are often sensitive to thermal treatments, and the annealing temperature is usually associated with a polymer’s rheological properties. In this study, the influences of the thermal treatment on dielectric properties are investigated for the polystyrene (PS matrix composite reinforced by graphene nanoplatelets (GNP fillers near fc. It can be found that the thermal treatment can not only increase the dielectric constant, but also decrease the dielectric loss for the PS/GNP composite. This interesting phenomenon possibly happens in the interfacial region of PS/GNP with the thickness about 4–6 nm according to the electron energy-loss spectroscopy (EELS results. The free volumes around the interface can be easily altered by the movement of polymeric segments after annealing at the glass transition temperature.

  14. Integrated Thermal Treatment Systems study: US Department of Energy Internal Review Panel report

    Energy Technology Data Exchange (ETDEWEB)

    Cudahy, J.; Escarda, T.; Gimpel, R. [and others

    1995-04-01

    The U.S. Department of Energy`s (DOE) Office of Technology Development (OTD) commissioned two studies to uniformly evaluate nineteen thermal treatment technologies. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the advice and guidance of the DOE Office of Environmental Management`s (EM`s) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel, composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency (EPA), the California EPA, and private experts. The Panel met from November 15-18, 1994, to review and comment on the ITTS studies, to make recommendations on the most promising thermal treatment systems for DOE mixed low level wastes (MLLW), and to make recommendations on research and development necessary to prove the performance of the technologies on MLLW.

  15. Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation

    Directory of Open Access Journals (Sweden)

    Julia E. Vidonish

    2016-12-01

    Full Text Available Thermal treatment technologies hold an important niche in the remediation of hydrocarbon-contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainability of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.

  16. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice.

    Science.gov (United States)

    Santhirasegaram, Vicknesha; Razali, Zuliana; Somasundram, Chandran

    2013-09-01

    Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4-9%) and polyphenols (30-35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The Prediction of Long-Term Thermal Aging in Cast Austenitic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang; Yang, Ying; Lach, Timothy G.

    2017-02-15

    Cast austenitic stainless steel (CASS) materials are extensively used for many massive primary coolant system components of light water reactors (LWRs) including coolant piping, valve bodies, pump casings, and piping elbows. Many of these components are operated in complex and persistently damaging environments of elevated temperature, high pressure, corrosive environment, and sometimes radiation for long periods of time. Since a large number of CASS components are installed in every nuclear power plant and replacing such massive components is prohibitively expensive, any significant degradation in mechanical properties that affects structural integrity, cracking resistance in particular, of CASS components will raise a serious concern on the performance of entire power plant. The CASS materials for nuclear components are highly corrosion-resistant Fe-Cr-Ni alloys with 300 series stainless steel compositions and mostly austenite (γ)–ferrite (δ) duplex structures, which result from the casting processes consisting of alloy melting and pouring or injecting liquid metal into a static or spinning mold. Although the commonly used static and centrifugal casting processes enable the fabrication of massive components with proper resistance to environmental attacks, the alloying and microstructural conditions are not highly controllable in actual fabrication, especially in the casting processes of massive components. In the corrosion-resistant Fe-Cr-Ni alloy system, the minor phase (i.e., the δ-ferrite phase) is inevitably formed during the casting process, and is in a non-equilibrium state subject to detrimental changes during exposure to elevated temperature and/or radiation. In general, relatively few critical degradation modes are expected within the current design lifetime of 40 years, given that the CASS components have been processed properly. It has been well known, however, that both the thermal aging and the neutron irradiation can cause degradation of static

  18. Effects of thermal aging on thermo-mechanical behavior of a glass sealant for solid oxide cell applications

    DEFF Research Database (Denmark)

    Abdoli, Hamid; Alizadeh, Parvin; Boccaccini, Dino

    2014-01-01

    Thermo-mechanical properties of a silicate based glass and its potential use for sealing application in intermediate temperature solid oxide cell (SOC) are presented in this paper. Effects of thermal aging are discussed on structural and microstructural evolution, thermal expansion, viscosity......, modulus of elasticity, and high-temperature deformation of the glass. The balance between the viscosity and viscous flowing behavior was explored for the non-aged and aged glasses as it is essential to have a successful sealing for a SOC stack. The results reveal a temperature dependence of Young......'s modulus in which a transition between a slow softening (elastic) regime and a rapid softening one was observed. Crystallization induced by thermal aging led to higher creep resistance, but lower capability of crack healing when inspected by electron microscopy. However, potential of stress relaxation...

  19. The effects of thermal aging on material behavior and strength of CF8M in nuclear reactor coolant system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Do; Lee, Yong Seon; Nam, Uk Hui; Park, Jung Cheol; Pae, Yong Tak; In, Jae Hyeon; Woo, Seung Wan [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    1998-03-15

    The following investigations are performed in order to estimate the mechanism of the thermal integrity, and the life prediction. The CF8M is observed a brittle behavior in the range of 475 .deg. C. The five classes of the thermally aged CF8M specimen are prepared using an artificially accelerated aging method. Namely, after the specimen are held for 100, 300, 900, 1800 and 3600 hrs. at 430 .deg. C respectively, the specimen are water cooled to room temperature. The impact energy variations are measures for both the aged and virgin specimen at -173, -70, -32, 27 and 100 .deg. C respectively through the Charpy impact tests in addition to the hardness tests. The tests results are to be a guide line to predict the life of CF8M, a RCS component material caused by thermal aging. The critical flaw size can be estimated by KIC obtained from the impact energy.

  20. Changes in the texture of butternut squash following thermal treatment

    Directory of Open Access Journals (Sweden)

    B. SLASKA-GRZYWNA

    2016-03-01

    Full Text Available Samples of butternut squash were heated in a convection steam oven at the temperature of 80°C and 100°C without any/or with addition of steam. The most significant changes of texture properties in the pulp were registered regarding its hardness and chewiness, while the alterations of its springiness and cohesiveness occurred within a smaller range. The decisive influence on changing the hardness and chewiness of butternut pulp was observed for the addition of steam, and, to a lower extent, for the time and temperature of treatment; in case of springiness the vital factor was the temperature of the process.

  1. Hydrolysis of Baltic amber during thermal ageing--an infrared spectroscopic approach.

    Science.gov (United States)

    Pastorelli, Gianluca; Shashoua, Yvonne; Richter, Jane

    2013-04-01

    To enable conservation of amber in museums, understanding of chemical changes is crucial. While oxidation has been investigated particularly well for this natural polymer, further degradation phenomena in relation to humidity and pollutants are poorly studied or still unknown. Attenuated total reflectance-Fourier transform infrared spectroscopy was explored with regard to Baltic amber. A systematic spectroscopic survey of a wide range of thermally aged model amber samples, exposed to different microclimatic conditions, showed significant changes in their spectra. Samples aged in a humid and acidic environment or exposed to a humid and alkaline atmosphere generally exhibited a higher absorbance intensity of carbonyl groups at frequencies assigned to acids than unaged samples, samples aged in drier conditions and samples immersed in an alkaline solution. Baltic amber comprises succinate ester, which may be hydrolysed into communol and succinic acid. The survey thus provided evidence about the progress of hydrolytic reactions during degradation of Baltic amber. Infrared spectroscopy was shown to have significant potential for providing qualitative and quantitative chemical information on hydrolysis of amber, which will be of interest for the development of preventive conservation techniques for museum collections of amber objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Pathological gambling and treatment outcomes for adults age 50 or older in methadone maintenance treatment.

    Science.gov (United States)

    Engel, Rafael J; Rosen, Daniel

    2015-01-01

    This study examined the relationship of pathological gambling to negative treatment outcomes for methadone maintenance patients aged 50 or older. The study included 130 methadone maintenance patients. Pathological gambling was determined using the Lie-Bet, a screen for pathological gambling; the outcomes were remaining in treatment and negative urine screens for drug use. Twenty percent of the sample identified as pathological gamblers. Pathological gambling was unrelated to remaining in treatment or negative urine screens. Although pathological gambling had no adverse influence on these treatment outcomes, the prevalence of pathological gambling suggests that screening for it may provide insights about other concerns.

  3. A study of copper precipitation in the thermally aged FeCu alloy using SANS

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, J. H.; Kwon, S. C.; Kim, W. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Lee, M. N.; Koo, Y. M. [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2005-07-01

    The continued operation or lifetime extension of a number of nuclear power plant around the world requires an understanding of the damage imparted to the reactor pressure vessel (RPV) steel by radiation. Irradiation embrittlement of nuclear reactor pressure vessel steels results from a high number of nanometer sized Cu rich precipitates (CRPs) and sub-nanometer defect-solute clusters. The copper precipitation leads to a distortion of the crystal lattice surrounding the copper precipitates and yields an internal micro-stress. In order to study the effect of copper precipitation on the steel embrittlement under neutron irradiation, the characteristics of nano size defects were investigated using small angle neutron scattering (SANS) in the thermal aged FeCu model alloys. The results on the precipitation composition, number density, size distribution and matrix composition obtained using a high resolution TEM and SANS are compared and contrasted.

  4. Three-dimensional thermal aging and dimensional stability of cellular plastic insulation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Youchen; Kokko, E. [VTT Building Technology, Espoo (Finland). Building Physics, Puilding Services and Fire Technology

    1996-12-31

    The requirement of producing environmental-friendly plastic foam results in the replacement of the traditional blowing agents, CFCs (chlorofluorocarbons), with zero ozone depletion potential (ODP) alternatives. The tool which is able to evaluate the quality of the new generation of plastic foams becomes practically important. A 3-dimensional (3-D) heat and mass (gases) transfer model with respect to rigid closed-cell cellular plastics has been carefully deduced and furnished based on our previous understanding of such problems. To solve the 3-D parabolic partial differential equations subject to the third type of boundary conditions, a modified alternative direction implicit (AD I) finite difference method was developed by using the natural laws. To predict the long-term dimensional stability of a plastic foam insulation in air, a simplified mechanical model has been presented. In addition, to closure the prediction of foam dimensional stability, we have deduced a general relationship between the elastic modulus (Young`s modulus) of a rigid closed-cell cellular plastic, E{sub f} and its density, {phi}{sub p}. In comparison to the published measurements and other two well-known E{sub f} - {phi}{sub p} models, it is found that our E{sub f} - up relationship gives better prediction and is valid over the entire rigid plastic foam density range. Thermal aging and average volume change of zero ODP foams with different facing will be addressed. In addition, the application of the model shows the effects of foam dimension and facing on its thermal aging and deformation. (orig.) (13 refs.)

  5. Mechanical properties of thermally aged cast stainless steels from Shippingport reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Shack, W.J. [Argonne National Lab., IL (United States)

    1995-04-01

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was {approximately}13 y at {approximately}281 C (538 F) for the hot-leg components and {approximately}264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot and crossover-leg elbows (CF-8M steel) after service of {approximately} 15 y and the KRB reactor pump cover plate (CF-8) after {approximately} 8 y of service.

  6. Mechanical properties of thermally aged cast stainless steels from shippingport reactor components.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Shack, W. J.; Energy Technology

    1995-06-07

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was {approx}13 y at {approx}281 C (538 F) for the hot-leg components and {approx}264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y and the KRB reactor pump cover plate (CF-8) after {approx}8 y of service.

  7. Radiation treatment for age-related macular degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Tomoko; Mandai, Michiko; Honjo, Megumi; Matsuda, Naoko; Miyamoto, Hideki; Takahashi, Masayo; Ogura, Yuichiro; Sasai, Keisuke [Kyoto Univ. (Japan). Faculty of Medicine

    1996-11-01

    Fifteen eyes of age-related macular degeneration were treated by low-dose radiation. All the affected eyes had subfoveal neovascular membrane. Seventeen nontreated eyes with similar macular lesion served as control. Radiation was performed using photon beam at 6MV. Each eye received daily dose of 2 Gy for 5 consecutive days. When evaluated 9 to 12 months after treatment, the size of neovascular membrane had decreased in 47% of treated eyes and 7% of control eyes. The visual acuity improved by 2 lines or more in 13% of treated eyes and in none of control eyes. When the initial neovascular membrane was less than 1.5 disc diameter in size, the visual acuity had improved or remained stationary in 90% of treated eyes and in 36% of control eyes. The findings show the potential beneficial effect of radiation for age-related macular degeneration. (author)

  8. Magnetically driven rotation of thermal plasma jet for non-degradable CF{sub 4} treatment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sooseok, E-mail: choi@chemenv.titech.ac.jp [Department of Nuclear Engineering, Seoul National University (Korea, Republic of); Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology (Japan); Hong, Sang Hee; Kim, Sungwoo [Department of Nuclear Engineering, Seoul National University (Korea, Republic of); Park, Dong-Wha [Department of Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma, Inha University (Korea, Republic of); Watanabe, Takayuki [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology (Japan)

    2012-11-15

    Effects of an externally applied magnetic field on the thermal plasma treatment of non-degradable greenhouse gas were investigated. Tetrafluoromethane (CF{sub 4}) was decomposed as a waste gas, because it is the most stable species among perfluorocompounds and has the highest global warming potential. A permanent magnet equipped on the exit region of a hollow electrode plasma torch produced azimuthal Lorentz force to drive rotational motions of the arc root and the thermal plasma jet. In order to sustain a stable arc discharge, the position of the permanent magnet was determined by numerical analysis on the temperature distribution according to the length of arc column. Forcibly swirling motion of thermal plasma jet was observed in accordance with the strength of applied magnetic field. Increased destruction and removal efficiency of CF{sub 4} was measured in torch operation with the externally applied magnetic field due to the enhanced entrainment of waste gas into the thermal plasma jet.

  9. Thermal treatment of dusts from non ferrous metallurgical industries

    Directory of Open Access Journals (Sweden)

    Menad, Noureddine

    2000-06-01

    Full Text Available Three samples of dusts generated by the non ferrous metallurgical industries are treated between 200 and 800 °C in controlled oxidizing and reducing atmospheres. The objective of this study is to recover the valuable metals from these wastes. The treatments of these solids under oxidizing conditions at 700 °C are well adapted for two samples. The totality of valuable elements are concentrated in the treatments' residues. The use of hydrogen at 600 °C, permits the removal of up to 100 % of valuable metals contained in the treated industrial wastes. The recovery rate of valuable metals (Pb, Zn, Cu as well as the Global Decontamination Factor are reported.

    Se han tratado tres muestras procedentes de la industria metalúrgica no férrea entre 200 y 800 °C, en atmósferas oxidantes o reductoras controladas. El objetivo de este estudio es recuperar cuanto sea posible de los elementos valiosos de estos residuos. Los tratamientos bajo condiciones oxidantes a 700 °C han dado buenos resultados en dos muestras, en donde la totalidad de los elementos valiosos se concentraba en los residuos de tratamiento. El uso del hidrógeno a 600 °C permite la separación de hasta el 100 % de los metales valiosos contenidos en los residuos industriales tratados. Finalmente, se detallan las tasas de recuperación de los metales plomo, zinc y cobre así como el factor de descontaminación global (GDF.

  10. Review of the integrated thermal and nonthermal treatment system studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1 -- issued July 1994; Integrated Thermal Treatment System Study, Phase 2 -- issued February 1996; and Integrated Nonthermal Treatment System Study -- drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  11. Stem cell treatment for age-related neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Nurković J.

    2015-01-01

    Full Text Available The belief in the inability of neurogenesis, that is the inability to create new neurons after embryonic and early postnatal development of the central nervous system, was rejected in the mid-nineties, when the existence of neurogenesis in restricted areas of CNS adult mammals, including humans, was discovered.Transplantation of stem cells or their derivatives into respective tissues or organs is considered as one of the most promising remedies for many incurable diseases.In this review, we summarized current knowledge and present and future perspectives andchallenges regarding stem cells treatment for Parkinson's and Alzheimer's disease, as the most common age-related neurodegenerative diseases.

  12. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    Science.gov (United States)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  13. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning.

    Science.gov (United States)

    Lopresto, Vanni; Pinto, Rosanna; Farina, Laura; Cavagnaro, Marta

    2017-08-01

    Microwave thermal ablation (MTA) therapy for cancer treatments relies on the absorption of electromagnetic energy at microwave frequencies to induce a very high and localized temperature increase, which causes an irreversible thermal damage in the target zone. Treatment planning in MTA is based on experimental observations of ablation zones in ex vivo tissue, while predicting the treatment outcomes could be greatly improved by reliable numerical models. In this work, a fully dynamical simulation model is exploited to look at effects of temperature-dependent variations in the dielectric and thermal properties of the targeted tissue on the prediction of the temperature increase and the extension of the thermally coagulated zone. In particular, the influence of measurement uncertainty of tissue parameters on the numerical results is investigated. Numerical data were compared with data from MTA experiments performed on ex vivo bovine liver tissue at 2.45GHz, with a power of 60W applied for 10min. By including in the simulation model an uncertainty budget (CI=95%) of ±25% in the properties of the tissue due to inaccuracy of measurements, numerical results were achieved in the range of experimental data. Obtained results also showed that the specific heat especially influences the extension of the thermally coagulated zone, with an increase of 27% in length and 7% in diameter when a variation of -25% is considered with respect to the value of the reference simulation model. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Model bimetallic Pd-Ni automotive exhaust catalysts. Influence of thermal aging and hydrocarbon self-poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Hungria, A.B.; Martinez-Arias, A. [Instituto de Catalisis y Petroleoquimica, CSIC, C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Calvino, J.J. [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Anderson, J.A. [Surface Chemistry and Catalysis Group, Department of Chemistry, University of Aberdeen, AB24 3UE Scotland (United Kingdom)

    2006-02-22

    Bimetallic Pd-Ni catalysts supported on Al{sub 2}O{sub 3} and (Ce,Zr)O{sub x}/Al{sub 2}O{sub 3} were examined with respect to their catalytic performance for the elimination of CO, NO and C{sub 3}H{sub 6} under stoichiometric conditions. The effects of a thermal aging treatment at 1273K, reactant competition in the presence of the hydrocarbon and the influence of the presence of nickel in the catalyst have been analysed by XRD, HREM, catalytic activity measurements and in situ DRIFTS spectroscopy. Self-poisoning effects, induced by the presence of the hydrocarbon in the reactant mixture, were identified as the main factor affecting the light-off activity. While a Ni-induced preferential interaction between Pd and the Ce-Zr mixed oxide component appears, in general terms, to be beneficial for the catalytic performance of the fresh (Ce,Zr)O{sub x}/Al{sub 2}O{sub 3}-supported bimetallic catalyst, it is shown to be detrimental for the aged system as a consequence of a facilitated degradation of the (Ce,Zr)O{sub x} component and encapsulation of the active palladium particles. (author)

  15. Effects of thermal aging and neutron irradiation on the mechanical properties of three-wire stainless steel weld overlay cladding

    Energy Technology Data Exchange (ETDEWEB)

    Haggag, F.M.; Nanstad, R.K.

    1997-05-01

    Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288{degrees}C for 1605 h resulted in an appreciable decrease (16%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3{degrees}C). The combined effect of aging and neutron irradiation at 288{degrees}C to a fluence of 5 x 10{sup 19} neutrons/cm{sup 2} (> 1 MeV) was a 22% reduction in the USE and a 29{degrees}C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to {minus}125{degrees}C) but no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J{sub Ic}) much more than did thermal aging alone. Irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. Other results from tensile, CVN, and fracture toughness specimens showed that the effects of thermal aging at 288 or 343{degrees}C for 20,000 h each were very small and similar to those at 288{degrees}C for 1605 h. The effects of long-term thermal exposure time (50,000 h and greater) at 288{degrees}C will be investigated as the specimens become available in 1996 and beyond.

  16. effect of pre effect of pre-ageing thermal conditions on the corrosion ...

    African Journals Online (AJOL)

    eobe

    treatable cast Al-Si alloys [2,3], which after fabrication, needs an artificially aging heat treatment to attain the desired strength [4,5].The alloys have a wide range of applications in the automobile and aerospace, defense and general engineering industries[6]. A356 (Al-7Si-. 0.3Mg) and A357 (Al-7Si-0.5Mg) series are the two.

  17. The Role of Alloy Composition and T7 Heat Treatment in Enhancing Thermal Conductivity of Aluminum High Pressure Diecastings

    Science.gov (United States)

    Lumley, Roger N.; Deeva, Natalia; Larsen, Robert; Gembarovic, Jozef; Freeman, Joe

    2013-02-01

    The thermal conductivity of some common and experimental high pressure diecasting (HPDC) Al-Si-Cu alloys is evaluated. It is shown that the thermal conductivity of some compositions may be increased by more than 60 pct by utilizing T7 heat treatments. This may have substantial performance and cost benefits for applications where thermal management is a key design parameter.

  18. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  19. Ultrasound velocity test to decay evaluation on decorative stone after different artificial ageing treatments

    Science.gov (United States)

    Fioretti, Giovanna; Andriani, Gioacchino Francesco

    2016-04-01

    Ultrasound propagation velocity depends on several physical properties, for instance density, porosity and textural discontinuities within stones. These properties are strongly influenced by state of conservation of materials and their modification can be considered decay markers; therefore, ultrasound velocity measurement represents a non-destructive technique to evaluate the decay underway on employed stone. In this study, samples of the Avorio variety, an Apulian limestones, were processed to artificial ageing treatments, in particular thermal shocks, extreme thermal exposure at high temperatures between 200 and 600°C, and cycles of immersion of rock samples into saline solution alternating with drying phases in muffle furnace. Effects of induced deterioration were examined by comparing p-wave ultrasound velocity values, visual appearance and mass loss with water absorption values and capillarity test results. This research suggests first that the ultrasound velocity test can be considered a valuable non-invasive technique to assess the state of decay of decorative and building stones. Furthermore, in order to simulate dangerous and extreme environmental conditions and study their influence on the stone decay patterns, new considerations and suggestions about ageing test and procedures were proposed.

  20. Thermal ageing on the microstructure and mechanical properties of Al–Cu–Mg alloy/bagasse ash particulate composites

    Directory of Open Access Journals (Sweden)

    V.S. Aigbodion

    2014-07-01

    Full Text Available Thermal ageing on the microstructure and mechanical properties of Al–Cu–Mg alloy/bagasse ash(BAp particulate composites was investigated. The composites were produced by a double stir-casting method by varying bagasse ash from 2 to 10 wt.%. After casting the samples were solution heat-treated at a temperature of 500 °C in an electrically heated furnace, soaked for 3 h at this temperature and then rapidly quenched in water and thermal aged at temperatures of 100, 200 and 300 °C. The ageing characteristics of these grades of composites were evaluated using scanning electron microscopy (SEM, hardness and tensile test samples obtained from solution heat-treated composites samples subjected to the temperature conditions mentioned above. The results show that the uniform distribution of the bagasse ash particles in the microstructure of both the as-cast and age-hardened Al–Cu–Mg/BAp composites is the major factor responsible for the improvement in mechanical properties. The presence of the bagasse ash particles in the matrix alloy results in a much smaller grain size in the cast composites compared to the matrix alloy. The addition of bagasse ash particles to Al–Cu–Mg (A2009 does not alter the thermal ageing sequence, but it alters certain aspects of the precipitation reaction. Although thermal ageing is accelerated in the composites the presence of bagasse ash particles in A2009 reduces the peak temperatures.

  1. Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Chang; Choi, Kyoung Joon [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Bahn, Chi Bum [School of Mechanical Engineering, Pusan National University, 63-gil, Geumjeong-Gu, Pusan 609-735 (Korea, Republic of); Kim, Si Hoon; Kim, Ju Young [School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2015-04-15

    In order to investigate the effects of long-term thermal aging on the microstructural evolution of Type-II boundary regions in the weld metal of Alloy 152, a representative dissimilar metal weld was fabricated from Alloy 690, Alloy 152, and A533 Gr.B. This mock-up was thermally aged at 450 °C to accelerate the effects of thermal aging in a nuclear power plant operation condition (320 °C). The microstructure of the Type-II boundary region of the weld root, which is parallel to and within 100 μm of the fusion boundary and known to be more susceptible to material degradation, was then characterized after different aging times using a scanning electron microscope equipped with an energy dispersive X-ray spectroscope for micro-compositional analysis, electron backscattered diffraction detector for grain and grain boundary orientation analysis, and a nanoindenter for measurement of mechanical properties. Through this, it was found that a steep compositional gradient and high grain average misorientation is created in the narrow zone between the Type-II and fusion boundaries, while the concentration of chromium and number of low-angle grain boundaries increases with aging time. A high average hardness was also observed in the same region of the dissimilar metal welds, with hardness peaking with thermal aging simulating an operational time of 15 years.

  2. Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints

    Science.gov (United States)

    Yoo, Seung Chang; Choi, Kyoung Joon; Bahn, Chi Bum; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun

    2015-04-01

    In order to investigate the effects of long-term thermal aging on the microstructural evolution of Type-II boundary regions in the weld metal of Alloy 152, a representative dissimilar metal weld was fabricated from Alloy 690, Alloy 152, and A533 Gr.B. This mock-up was thermally aged at 450 °C to accelerate the effects of thermal aging in a nuclear power plant operation condition (320 °C). The microstructure of the Type-II boundary region of the weld root, which is parallel to and within 100 μm of the fusion boundary and known to be more susceptible to material degradation, was then characterized after different aging times using a scanning electron microscope equipped with an energy dispersive X-ray spectroscope for micro-compositional analysis, electron backscattered diffraction detector for grain and grain boundary orientation analysis, and a nanoindenter for measurement of mechanical properties. Through this, it was found that a steep compositional gradient and high grain average misorientation is created in the narrow zone between the Type-II and fusion boundaries, while the concentration of chromium and number of low-angle grain boundaries increases with aging time. A high average hardness was also observed in the same region of the dissimilar metal welds, with hardness peaking with thermal aging simulating an operational time of 15 years.

  3. TREATMENT OF CANCER IN THE OLDER AGED PERSON

    Directory of Open Access Journals (Sweden)

    Lodovico Balducci

    2010-05-01

    Full Text Available

     Cancer is a disease of aging .  Currently 50% of all malignancies occur in individuals 65 and over and by the year 2030 older individuals will account for 70% of all neoplasms.

     With the aging of the population the management of cancer in the older person with chemotherapy is beoming increasingly common. This treatment may be  safe and effective if some appropriate measures are taken, including, an assessment of the physiologic age of each patient, modification of doses according to the renal function, use of meyelopoietic growth factors prophylactically in presence of moderately toxic chemotherapy, and provision of an adequate caregiver. Cure, prolongation of survival, and symptom palliation are universal goals of medical treatment.   Prolongation of active life expectancy  should be added to the treatment goal of the older aged person .

     

     

  4. Thermal degradation of new and aged urethane foam and epon 826 epoxy.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mills, Bernice E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-08-01

    Thermal desorption spectroscopy was used to monitor the decomposition as a function of temperature for the foam and epoxy as a function of temperature in the range of 60C to 170C. Samples were studied with one day holds at each of the studied temperatures. Both new (FoamN and EpoxyN) and aged (FoamP and EpoxyP) samples were studied. During these ~10 day experiments, the foam samples lost 11 to 13% of their weight and the EpoxyN lost 10% of its weight. The amount of weight lost was difficult to quantify for EpoxyP because of its inert filler. The onset of the appearance of organic degradation products from FoamP began at 110C. Similar products did not appear until 120C for FoamN, suggesting some effect of the previous decades of storage for FoamP. In the case of the epoxies, the corresponding temperatures were 120C for EpoxyP and 110C for EpoxyN. Suggestions for why the aged epoxy seems more stable than newer sample include the possibility of incomplete curing or differences in composition. Recommendation to limit use temperature to 90-100C for both epoxy and foam.

  5. A cell for the controllable thermal treatment and electrochemical characterisation of single crystal alloy electrodes

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Chorkendorff, Ib

    2012-01-01

    A new electrochemical cell is described which provides the opportunity to perform electrochemical experiments and apply a controllable thermal treatment without exposing the sample to the laboratory atmosphere. We report typical model experiments with Pt(111) single crystal electrodes which can...

  6. Acceleration of Intended Pozzolanic Reaction under Initial Thermal Treatment for Developing Cementless Fly Ash Based Mortar

    Directory of Open Access Journals (Sweden)

    Yang-Hee Kwon

    2017-02-01

    Full Text Available Without using strong alkaline solution or ordinary Portland cement, a new structural binder consisting of fly ash and hydrated lime was hardened through an intensified pozzolanic reaction. The main experimental variables are the addition of silica fume and initial thermal treatment (60 °C for 3 days. A series of experiments consisting of mechanical testing (compressive and flexural strength, modulus of elasticity, X-ray diffraction, and measurements of the heat of hydration, pore structure, and shrinkage were conducted. These tests show that this new fly ash-based mortar has a compressive strength of 15 MPa at 91 days without any silica fume addition or initial thermal treatment. The strength increased to over 50 MPa based on the acceleration of the intensified pozzolanic reaction from the silica fume addition and initial thermal treatment. This is explained by a significant synergistic effect induced by the silica fume. It intensifies the pozzolanic reaction under thermal treatment and provides a space filling effect. This improved material performance can open a new pathway to utilize the industrial by-product of fly ash in cementless construction materials.

  7. Toxin production in food as influenced by pH, thermal treatment and ...

    African Journals Online (AJOL)

    The effect of pH, thermal treatment and chemical preservatives on the growth rate and toxin elaboration of E. coli, K. aerogenes, C. freundii, B. polymyxa, S. epidermidis and E. aerogenes was studied. It was observed that E. coli had no viable growth until 48 h of incubation, while the other five isolates had visible growth right ...

  8. Upgrading Fast Pyrolysis Oil via Hydrodeoxygenation and Thermal Treatment: Effects of Catalytic Glycerol Pretreatment

    NARCIS (Netherlands)

    Reyhanitash, Ehsan; Tymchyshyn, M.; Yuan, Zhongshun; Albion, K.; van Rossum, G.; Xu, C.

    2014-01-01

    The effects of stabilizing fast pyrolysis oil (PO) with glycerol via catalytic glycerol pretreatment on upgrading via hydrodeoxygenation (HDO) or thermal treatment (TT) were studied. Nonstabilized (original) fast pyrolysis oil was also upgraded via HDO or TT to obtain benchmarks. Generally, HDO

  9. Acceleration of Intended Pozzolanic Reaction under Initial Thermal Treatment for Developing Cementless Fly Ash Based Mortar.

    Science.gov (United States)

    Kwon, Yang-Hee; Kang, Sung-Hoon; Hong, Sung-Gul; Moon, Juhyuk

    2017-02-24

    Without using strong alkaline solution or ordinary Portland cement, a new structural binder consisting of fly ash and hydrated lime was hardened through an intensified pozzolanic reaction. The main experimental variables are the addition of silica fume and initial thermal treatment (60 °C for 3 days). A series of experiments consisting of mechanical testing (compressive and flexural strength, modulus of elasticity), X-ray diffraction, and measurements of the heat of hydration, pore structure, and shrinkage were conducted. These tests show that this new fly ash-based mortar has a compressive strength of 15 MPa at 91 days without any silica fume addition or initial thermal treatment. The strength increased to over 50 MPa based on the acceleration of the intensified pozzolanic reaction from the silica fume addition and initial thermal treatment. This is explained by a significant synergistic effect induced by the silica fume. It intensifies the pozzolanic reaction under thermal treatment and provides a space filling effect. This improved material performance can open a new pathway to utilize the industrial by-product of fly ash in cementless construction materials.

  10. Cooling Rate Study of Nickel-Rich Material During Thermal Treatment and Quench

    Science.gov (United States)

    Thomas, Fransua; Murguia, Silvia Briseno (Editor)

    2016-01-01

    To investigate quench cracking that results from water quenching after heat treatment of binary and Ni-rich material, cooling rates of specimens were measured during quenching and hardness post-thermal treatment. For specific applications binary Ni-Ti is customarily thermally treated and quenched to attain desired mechanical properties and hardness. However, one problem emerging from this method is thermal cracking, either during the heat treatment process or during the specimen's application. This can result in material and equipment failure as well as financial losses. The objective of the study is to investigate the internal cooling rate of 60-NiTi during quenching and determine possible factors causing thermal cracking. Cubic (1 in.3) samples of both material were heat treated in air at 1000 deg C for 2 hrs and quenched in room temperature water using two methods: (1) dropped in the water and (2) agitated in the water. Hardness of the two fore-mentioned methods was measured post heat treatment. Results indicate that the quenching method had an effect on cooling rate during quenching but hardness was observed to be essentially the same through the thickness of the samples.

  11. FORMING OF MECHANICAL CHARACTERISTICS OF THE SLUGS OF TITANIC ALLOY BT23 AT THERMAL TREATMENT

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2005-01-01

    Full Text Available Тhе changings of the initial plate structure of alloy BT23 at running of high-temperature thermal treatment of large-sized slugs with heating up to 650- 950 eC and cooling on air and in water and their influence on forming of complex of mechanical characteristics are examined.

  12. Effect of thermal ammoniation and heat treatment on the faecal and ...

    African Journals Online (AJOL)

    Polyphenol content was reduced from 1,24 to 0,55%. This study was therefore conducted to determine the effect of thermal ammoniation and heat treatment of ... high-tannin grain in the diet on the performance of growing pigs. Experimental Procedures. Digestion trial. Grain sorghum with a polyphenol content of 1,24%.

  13. Gingival enlargement in different age groups during fixed Orthodontic treatment

    Science.gov (United States)

    Eid, Hossam A; Assiri, Hassan Ahmed M; Kandyala, Reena; Togoo, Rafi A; Turakhia, Viral S

    2014-01-01

    Background: During fixed orthodontic therapy, adolescents tend to have higher chances of gingivitis and gingival enlargement (GE) compared to adults. A cross sectional study was undertaken to evaluate the above hypothesis, by assessing GE in patients of different age groups receiving fixed orthodontic therapy. Materials & Methods: Patients undergoing orthodontic treatment were selected by simple random sampling from the King Khalid University College of Dentistry out patient’s clinic of preventive dental sciences division to form the study group. Participant’s were divided into three age groups and GE was graded as 0, 1 and 2 as per the classification of the American Academy of Periodontology. Data were analyzed by using IBM SPSS version 16.0 (Statistical Package for Social Services, Chicago, IL, USA) and descriptive statistics were obtained. Differences in proportions were compared using the Chi-square test and the significance level was set at p ≤ 0.05. Results: 62.3% (n=33) were males and 37.7% (n=20) were females. Group 1 had 21 patients (39.7%); Group 2 had 24 patients (45.3%) and Group 3 had 8 patients (15.1%).The highest frequency (48%) of GE was observed among the Group 1 age group (10-19 years). Differences in frequency of GE according to age groups were found to be statistically significant (p=0.046).Differences in GE according to the frequency of practicing oral hygiene measures were statistically significant (p<0.001). Conclusion: Highest frequency of GE was observed among the adolescents. The patients who practiced oral hygiene measures more than three times daily did not have any GE. On the other hand, those who brushed and flossed only once daily had the highest percentage of grade 2 GE. How to cite the article: Eid HA, Assiri HA, Kandyala R, Togoo RA, Turakhia VS. Gingival enlargement in different age groups during fixed Orthodontic treatment. J Int Oral Health 2014;6(1):1-4. PMID:24653595

  14. Evaluation of Biofield Treatment on Atomic and Thermal Properties of Ethanol

    OpenAIRE

    Nayak, Gopal; Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn

    2015-01-01

    Ethanol is a polar organic solvent, and frequently used as a fuel in automobile industries, principally as an additive with gasoline due to its higher octane rating. It is generally produced from biomass such as corn, sugar and some other agriculture products. In the present study, impact of biofield treatment on ethanol was evaluated with respect to its atomic and thermal properties. The ethanol sample was divided into two parts i.e., control and treatment. Control part was remained untreate...

  15. The Role of Percutaneous Image-Guided Thermal Ablation for the Treatment of Pulmonary Malignancies.

    Science.gov (United States)

    Mouli, Samdeep K; Kurilova, Ieva; Sofocleous, Constantinos T; Lewandowski, Robert J

    2017-10-01

    Image-guided thermal ablation is a minimally invasive treatment option for patients with primary and secondary pulmonary malignancies. Modalities include radiofrequency ablation, microwave ablation, and cryoablation. Although no large randomized studies exist comparing ablation to surgery or radiotherapy, numerous studies have reported safety and efficacy for the treatment of both primary and metastatic disease in select patients. Future studies will refine patient selection, procedural technique, and assessment for local recurrence and will evaluate long-term survival.

  16. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  17. Percutaneous collagen induction as an additive treatment for scar formation following thermal injuries: Preliminary experience in 47 children.

    Science.gov (United States)

    Kubiak, Rainer; Lange, Bettina

    2017-08-01

    Thermal injuries are one of the most physically and psychologically devastating causes of pediatric trauma. Post-traumatic sequelae such as hypertrophic scars and contractures often result in long lasting morbidity and disfigurement. Conservative therapy, including pressure garments and silicone, is the gold standard for scar management in the pediatric population. Most recently percutaneous collagen induction (PCI) was introduced as an alternative treatment in adults. The aim of this report was to share our experience with PCI in children and adolescents in scar management following thermal injuries. Between July 2013 and February 2016, a total of 99 PCI treatments were performed on forty-seven children and adolescents for scar formation following thermal injuries in this retrospective study. A medical roller device (Dermaroller(®), Dermaroller GmbH, Wolfenbüttel, Germany) with 2.5mm long needles was used. All procedures were carried out under general anesthesia. At the end of the operation vitamin A and vitamin C oil (ENVIRON(®) AVST Body Oil; Environ Skin Care, Pty. Ltd., Cape Town, South Africa) was applied topically. Photographs were taken before and a minimum of 4 weeks after the first PCI in order to document the effect on scar tissue. These images were graded according to the Vancouver Scar Scale (VSS). The median age at the time of the first PCI was 8.3 years (range, 0.8-21.2 years). The median time interval between the injury and PCI was 18 months (range, 4-170 months). There were no intraoperative problems noted. Minor postoperative complications occurred in 2 patients (4.3%). All patients reported subjective improvement and were satisfied with the procedure and the results. Pre- and post-treatment photographs were available in 40 patients, and overall VSS scores improved post-treatment in all patients. Following a single PCI treatment, scar vascularity, pliability and height all improved, however there was no statistically significant effect on

  18. Real-time temperature feedback for nanoparticles based tumor thermal treatment (Conference Presentation)

    Science.gov (United States)

    Steinberg, Idan; Tamir, Gil; Gannot, Israel

    2017-02-01

    Systemic hyperthermia therapy exploits the fact that cancer cells are more sensitive to elevated temperatures than healthy tissue. Systemic application of hyperthermia externally usually leads to low efficiency treatment. Recently, our group and others have proposed an antibody conjugated magnetic nanoparticles (MNPs) approach to overcome the limitation of systemic hyperthermia. MNPs can bind specifically to the tumor sites, thus delivering internal highly effective targeted hyperthermia. However, such internal mechanism requires more complicated controls and monitoring. This current work presents a deep tissue temperature monitoring method to control hyperthermia effectiveness and minimize collateral damage to surrounding tissues. A low-frequency narrowband modulation of the RF field used for MNP heating leads to the generation of diffused thermal waves which propagate to the tissue surface and captured by a thermal camera. A Fourier domain, analytical heat transfer model is used for temperature monitoring algorithm. The ill-posed thermal inverse problem is solved efficiently by iterating over the source power until both the amplitude and phase match the recorded thermal image sequence. The narrow bandwidth thermal stimulation enables acquiring deep signals with high SNR. We show that thermal transverse resolution improves as the stimulation frequency increases even slightly above DC, enabling better heat source transverse separation and margin identification in the case of distributed tumors. These results can be used as a part of an overall image and treat system for efficient detection of tumors, manipulation of MNPs and monitoring MNP based hyperthermia.

  19. [Dynamics of health and aging rate of patients of different age and sex in the treatment of moderate multiple pathologies].

    Science.gov (United States)

    Myakotnykh, V S; Gavrilov, I V; Egorin, K V; Meshchaninov, V N; Borovkova, T A

    2013-01-01

    The article presents results of investigation of the dynamics of health status of patients of different age and sex, with several non-serious diseases, in the course of their treatment in the hospital, as well as the determination of their biological age before and after the course of treatment. The clear differences in the number of diseases, their nature, duration of the treatment and its effectiveness depending on age and sex were revealed. However, at the age of older than 60 years these differences gradually disappearing. Multiple, although non-serious, pathology has a negative impact on the indicators of the biological age of men in the calendar age of 20-39 years and women in the calendar age of 20-39 and older than 60 years, but the rejuvenating effect of the treatment is extremely low. In a number of cases, in the process of treatment of multiple pathologies the indicators of initially reduced biological age get even higher and adapt to the indicators of the calendar age. The authors explain this from the position of the disturbed by the treatment adaptation of the organism to easy disease, as well as the opportunity of reviewing the biological age significantly reduced in relation to the calendar age as a pathological phenomenon similar to significantly increased biological age.

  20. Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.

    2017-12-01

    Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials – CF3, CF3M, CF8, and CF8M – were thermally aged for 1500 hours at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/ α`, precipitation of G-phase in the δ-ferrite, segregation of solute to the austenite/ ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. A comprehensive model is being developed to correlate the microstructural evolution with mechanical behavior and simulation for predictive evaluations of LWR coolant system components.

  1. Post-growth thermal treatment of the InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, J.; Babinski, A.; Bozek, R.; Baranowski, J.M.

    2000-11-22

    The effect of post-growth thermal treatment of the InAs/GaAs quantum dots is investigated in this work. The photoluminescence (PL) and transmission electron microscopy (TEM) studies of samples annealed at temperatures up to 950 degrees C are presented. A complete dissolution of QDs and substantial broadening of the wetting layer (WL) can be seen from TEM. We propose that the thermally induced modification of the WL rather than QDs can be responsible for a blue-shift and narrowing of PL peaks in structures containing InAs/GaAs QDs.

  2. Effect of thermal treatment in vacuum on Fe-doped SnO{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Bilovol, V. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Mudarra Navarro, A.M.; Rodriguez Torres, C.E. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, IFLP-CCT La Plata, CONICET (Argentina); Cabrera, A.F., E-mail: cabrera@fisica.unlp.edu.ar [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, IFLP-CCT La Plata, CONICET (Argentina)

    2012-08-15

    A sample of 10 at% Fe-doped SnO{sub 2} powder was prepared by mechanical alloying and then thermally treated at 773 K in vacuum. The fit of the diffraction patterns and X-ray absorption spectroscopy measurements revealed that the as milled sample was pure doped rutile. Fe dissolved into SnO{sub 2} was found in Fe{sup 2+}/Fe{sup 3+} ionic valence with mainly paramagnetic behavior. After the thermal treatment all techniques indicate the formation of the ternary Sn{sub 0.36}Fe{sub 2.64}O{sub 4} spinel phase, which is responsible for the observed ferromagnetism.

  3. Effect of Air Plasma Treatment on Thermal Comfort Properties of Woven Fabric

    Science.gov (United States)

    Rajwin, A. Jebastin; Prakash, C.

    2017-11-01

    In this study, the effect of air plasma on thermal comfort properties of cotton woven fabric has been investigated. The woven fabric samples were treated with plasma under various parameters like treatment time, the distance between fabric sample and electrode, and frequency of the plasma process. It was observed that air permeability of the fabric has a linear relationship with distance of the sample, and inversely related to time and frequency. The thermal resistance and water vapor permeability decreased with distance and increased with time and frequency.

  4. Investigation of the thermal decomposition of magnesium–sodium nitrate pyrotechnic composition (SR-524 and the effect of accelerated aging

    Directory of Open Access Journals (Sweden)

    Zaheer-ud-din Babar

    2017-03-01

    Full Text Available The aging behavior of the pyrotechnics is influenced by the storage atmosphere and more specifically on the temperature and humidity levels. The investigated composition SR 524 is a military pyrotechnic composition that is used as a tracer. The accelerated aging of the SR 524 composition has been carried out at a temperature of 70 °C and relative humidity of 70 percent. The results indicate that there is significant change in the thermal behavior, kinetic parameters and the morphology of the aged composition. The decomposition temperature and the activation energy were found to be lowered in the aged composition. The activation energy of the aged composition decreased nearly 57 percent. SEM micrographs of the aged composition revealed the development of micro cracks as a result of accelerated aging. XRD spectra of the aged composition showed the presence of magnesium hydroxide indicating the reaction between magnesium and water vapors present in the highly humid atmosphere.

  5. Assessment technique for acne treatments based on statistical parameters of skin thermal images.

    Science.gov (United States)

    Padilla-Medina, J Alfredo; León-Ordoñez, Francisco; Prado-Olivarez, Juan; Vela-Aguirre, Noe; Ramírez-Agundis, Agustin; Díaz-Carmona, Javier

    2014-04-01

    Acne vulgaris as an inflammatory disease, with an excessive production of subdermal fat, modifies the dynamics of the bloodstream, and consequently temperature, on the affected skin zone. A high percentage of this heat interchange is manifested as electromagnetic radiation with far-infrared wavelengths, which can be captured through a thermal imaging camera. A technique based on thermal image analysis for efficiency assessment in acne vulgaris is described. The procedure is based on computing statistical parameters of thermal images captured from the affected skin zone being attended by an acne treatment. The proposed technique was used to determine the skin thermal behavior according to acne severity levels in different acne treatment stages. Infrared images of acne skin zones on eight patients, diagnosed with acne vulgaris and attended by one specific acne treatment, were weekly registered during 11 weeks. The infrared images were captured until no more improvement in affected zones was detected. The obtained results suggest a direct relationship between the used statistical parameters, particularly first- and second-order statistics, and the acne vulgaris severity level on the affected zones.

  6. Topical Peptide Treatments with Effective Anti-Aging Results

    Directory of Open Access Journals (Sweden)

    Silke Karin Schagen

    2017-05-01

    Full Text Available In the last two decades, many new peptides have been developed, and new knowledge on how peptides improve the skin has been uncovered. The spectrum of peptides in the field of cosmetics is continuously growing. This review summarizes some of the effective data on cosmeceutical peptides that work against intrinsic and extrinsic aging. Some peptides have been proven in their efficacy through clinical skin trials. Well-known and documented peptides like copper tripeptide are still under research to obtain more details on their effectiveness, and for the development of new treatments. Palmitoyl pentapeptide-4 and Carnosine are other well-researched cosmeceuticals. Additionally, there are many more peptides that are used in cosmetics. However, study results for some are sparse, or have not been published in scientific journals. This article summarizes topical peptides with proven efficacy in controlled in vivo studies.

  7. Effect of thermal treatments on the properties of Cusub(x)S films obtained by evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Arjona, F.; Camarero, E.G.; Dou, R.; Fatas, E.

    1983-01-01

    It has been observed that Cusub(x)S films with a high sulphur content (x<1.9) transform into the chalcocite phase (x>1.99) after undergoing thermal treatment at 170/sup 0/C under vacuum, following evaporation of a thin copper film of 80-120 A thickness. Similar treatments in an oxygen atmosphere, or in air (for longer than 5 min) do not result in such high stoichiometries. It was also observed that the evaporation of a thin (approx.= 80 A) copper film on Cusub(x)S, followed by the same thermal treatment under vacuum, noticeably improves the Cusub(x)S/CdS heterojunctions due to a rise in the fill factor.

  8. Effect of thermal treatments on technological properties of wood from two Eucalyptus species.

    Science.gov (United States)

    Cademartori, Pedro Henrique G; Missio, André L; Mattos, Bruno D; Gatto, Darci A

    2015-03-01

    The effect of thermal treatments on physical and mechanical properties of rose gum and Sydney blue gum wood was evaluated. Wood samples were thermally modified in a combination: pre-treatment in an autoclave (127°C - 1h) and treatment in an oven (180-240°C - 4h); and only treatment in an oven at 180-240°C for 4h. Chemical changes in the structure of woods were evaluated through infrared spectroscopy. Evaluation of physical properties was performed through mass loss, specific gravity, equilibrium moisture content and dimensional stability tests. Surface changes were analyzed through apparent contact angle technique and static bending tests were carried out to evaluate the mechanical behavior. Use of pre-treatment in autoclave affected the properties analyzed, however oven, resulted in the highest changes on wood from both species. Chemical changes were related to the degradation of hemicelluloses. Moreover, a significant decrease of hygroscopicity and mechanical strength of thermally modified woods was observed, while specific gravity did not significantly change for either of the species studied. The best results of decrease of wettability were found in low temperatures, while dimensional stability increased as a function of temperature of exposure in oven. The highest loss of mechanical strength was observed at 240°C for both species.

  9. A new web-based modelling tool (Websim-MILQ) aimed at optimisation of thermal treatments in the dairy industry

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Straatsma, J.; Keijzer, P.M.; Verschueren, M.; Jong, de P.

    2008-01-01

    In the framework of a cooperative EU research project (MILQ-QC-TOOL) a web-based modelling tool (Websim-MILQ) was developed for optimisation of thermal treatments in the dairy industry. The web-based tool enables optimisation of thermal treatments with respect to product safety, quality and costs.

  10. Usage of Non-Explicit Numerical Diagram of Triple Dimensional Equation of Heat Conduction in Problems of Thermal Treatment Optimization

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available A mathematical model and a program for determination of temperature field dynamics in industrial-scale blanks of unspecified and three-dimensional configuration at thermal treatment according to preset mode are presented in the paper. The paper contains computer-based calculations of temperature field dynamics for a number of blanks at various thermal treatment modes.

  11. Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay claddings of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Kakubo, Y.; Matsukawa, Y.; Nozawa, Y.; Toyama, T.; Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Katsuyama, J.; Yamaguchi, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Suzuki, M. [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan)

    2014-09-15

    The effects of thermal aging of stainless steel weld-overlay claddings of nuclear reactor pressure vessels on the microstructure and hardness of the claddings were investigated using atom probe tomography and nanoindentation testing. The claddings were aged at 400 °C for periods of 100–10,000 h. The fluctuation in Cr concentration in the δ-ferrite phase, which was caused by spinodal decomposition, progressed rapidly after aging for 100 h, and gradually for aging durations greater than 1000 h. On the other hand, NiSiMn clusters, initially formed after aging for less than 1000 h, had the highest number density after aging for 2000 h, and coarsened after aging for 10,000 h. The hardness of the δ-ferrite phase also increased rapidly for short period of aging, and saturated after aging for longer than 1000 h. This trend was similar to the observed Cr fluctuation concentration, but different from the trend seen in the formation of the NiSiMn clusters. These results strongly suggest that the primary factor responsible for the hardening of the δ-ferrite phase owing to thermal aging is Cr spinodal decomposition.

  12. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.

    Science.gov (United States)

    Chen, Xin; Diederich, Chris J; Wootton, Jeffery H; Pouliot, Jean; Hsu, I-Chow

    2010-02-01

    A patient-specific optimisation-based hyperthermia treatment planning program for catheter-based ultrasound technology was developed for a priori evaluation of proposed applicator implant strategies and determination of initial applied power settings. The interstitial and endocavity heating applicators, designed for delivering 3-D controllable hyperthermia within High Dose Rate (HDR) brachytherapy implants, consist of linear and sectored arrays of ultrasound transducers with variable power control in both length and angle. A 3D biothermal model, which incorporates relevant anatomical structures and implant geometries based upon HDR treatment planning, has been developed to simulate the temperature distributions induced by these ultrasound applicators within the catheter implants. A temperature-based constrained optimisation algorithm was devised and integrated within the finite-element thermal solver to determine the optimal applied power levels. A temperature-expressed objective function and constraints were employed to limit maximum temperature (T(max)), maximise target coverage (T(target)), and minimise thermal exposure to normal tissue and surrounding organs. The optimisation-based treatment planning was applied on representative examples of clinical HDR implants for endocavity treatment of cervix (n = 3) and interstitial treatment of prostate (n = 3). Applicator positioning and orientation, T(max), and T(target), were varied, and temperature volume and thermal dose volume histograms calculated for each plan. The optimisation approach provided optimal applied power levels (4-24 independent transducer sections) leading to conforming or tailored temperature distributions for all cases, as indicated with improved temperature index T(90) in the target volume and negligible temperature and thermal dose (t(43,max) optimised power estimates was shown to be within optimisation (optimisation-based treatment planning platform for catheter-based ultrasound applicators is

  13. Patient age and dentists’ decisions about occlusal caries treatment thresholds

    Science.gov (United States)

    Kakudate, Naoki; Sumida, Futoshi; Matsumoto, Yuki; Yokoyama, Yoko; Gilbert, Gregg H; Gordan, Valeria V

    2014-01-01

    Objectives This study was performed to (1) quantify dentists’ treatment thresholds for occlusal primary caries; (2) determine if patient's age affects dentists’ decisions to surgically treat these carious lesions; (3) test the hypothesis that patients’, dentists’, and practices’ characteristics are significantly associated with surgical enamel intervention. Methods The study used a cross-sectional design consisting of a questionnaire survey in Japan. This study queried dentists working in outpatient dental practices who were affiliated with the Dental Practice-Based Research Network Japan (JDPBRN), which aims to allow dentists to investigate research questions and share experiences and expertise (n=282). Participants were asked whether they would surgically intervene in a series of cases depicting occlusal caries. Each case included a photograph of an occlusal surface displaying typical characteristics of caries penetration, and written descriptions of adult and pediatric patients at high caries risk. Results In a case of a carious lesion within inner enamel, the proportion of dentists who indicated surgical intervention was significantly higher in the adult patient (48%) when compared to the pediatric patient (34%) (pdentists’ decisions to intervene surgically into the inner enamel carious lesion. Conclusions These findings demonstrate that over one-third of participants chose to intervene surgically into inner enamel carious lesions, and patients’ age affects dentists’ decisions about when to intervene surgically (clinicaltrials.gov registration number NCT01680848). PMID:24809540

  14. [Cherubism: diagnosis and treatment in the pediatric age].

    Science.gov (United States)

    Sánchez Burgos, R; Martín Pérez, M; Ramírez Piqueras, M; Gómez García, E; Burgueño García, M

    2012-01-01

    Cherubism is a benign bone dysplasia of childhood, exclusively involving maxillary bones and spontaneous resolving after puberty in different grades. Approximately, 280 cases have been reviewed in the literature. It is an autosomal dominant disorder in which the normal bone is replaced by cellular fibrous and immature bone, resulting in painless symmetrical enlargement of the jaws. Diagnosis is based in clinical and radiological findings, confirmed by histology. Treatment is a controversial issue, and it is recommended surgical management as conservative as possible during the rapid growth phases. An aggressive case of cherubism is reported, diagnosed and followed since early childhood until puberty, with progressive involvement of facial bones developing in a disruption of facial contours and occlusion. The patient is treated by several surgical interventions oriented to minimize the aesthetic impact of the disease being as conservative as possible. The highlights of this case are the great proportion of the lesions, the functional and emotional disturbances brought out by these lesions and the difficulty to choose the most appropriate age and form of treatment.

  15. Quantitative model of the effects of contamination and space environment on in-flight aging of thermal coatings

    Science.gov (United States)

    Vanhove, Emilie; Roussel, Jean-François; Remaury, Stéphanie; Faye, Delphine; Guigue, Pascale

    2014-09-01

    The in-orbit aging of thermo-optical properties of thermal coatings critically impacts both spacecraft thermal balance and heating power consumption. Nevertheless, in-flight thermal coating aging is generally larger than the one measured on ground and the current knowledge does not allow making reliable predictions1. As a result, a large oversizing of thermal control systems is required. To address this issue, the Centre National d'Etudes Spatiales has developed a low-cost experiment, called THERME, which enables to monitor the in-flight time-evolution of the solar absorptivity of a large variety of coatings, including commonly used coatings and new materials by measuring their temperature. This experiment has been carried out on sunsynchronous spacecrafts for more than 27 years, allowing thus the generation of a very large set of telemetry measurements. The aim of this work was to develop a model able to semi-quantitatively reproduce these data with a restraint number of parameters. The underlying objectives were to better understand the contribution of the different involved phenomena and, later on, to predict the thermal coating aging at end of life. The physical processes modeled include contamination deposition, UV aging of both contamination layers and intrinsic material and atomic oxygen erosion. Efforts were particularly focused on the satellite leading wall as this face is exposed to the highest variations in environmental conditions during the solar cycle. The non-monotonous time-evolution of the solar absorptivity of thermal coatings is shown to be due to a succession of contamination and contaminant erosion by atomic oxygen phased with the solar cycle.

  16. Fracture Toughness of Z3CN20.09M Cast Stainless Steel with Long-Term Thermal Aging

    Science.gov (United States)

    Yu, Weiwei; Yu, Dunji; Gao, Hongbo; Xue, Fei; Chen, Xu

    2017-09-01

    Accelerated thermal aging tests were performed at 400 °C for nearly 18,000 h on Z3CN20.09M cast stainless steel which was used for primary coolant pipes of nuclear power plants. A series of Charpy impact tests were conducted on Z3CN20.09M after different long-term thermal aging time. The test results indicated that the Charpy impact energy of Z3CN20.09M cast stainless steel decreased rapidly at an early stage and then almost saturated after thermal aging of 10,000 h. Furthermore, J-resistance curves were measured for CT specimens of longitudinal and circumferential pipe orientations. It showed that there was no obvious difference in the fracture characteristics of Z3CN20.09M in different sampling directions. In addition, the observed stretch zone width (SZW) revealed that the value of initiation fracture toughness J SZW was significantly lower than that of fracture toughness J IC, indicating a low actual crack initiation energy due to long-term thermal aging.

  17. Effect of thermal ageing on the corrosion resistance of stainless steel type 316L exposed in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y.; Kish, J., E-mail: jiaoyn@mcmaster.ca, E-mail: kishjr@mcmaster.ca [McMaster University, Hamilton, ON (Canada); Zheng, W., E-mail: wenyue.zheng@nrcan.rncan.gc.ca [Canmet Materials, Hamilton, ON (Canada); Guzonas, D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Cook, W., E-mail: wcook@unb.ca [University of New Brunswick, Fredericton, NB (Canada)

    2014-07-01

    The tendency for intermetallic precipitates to form in austenitic stainless steel during prolonged exposure at the expected operating temperature of the fuel cladding in the Canadian supercritical water reactor (SCWR) concept represents a possible serious threat to the intrinsic in-service corrosion performance of the candidate alloy. The objective of this study was to better understand the extent to which a thermally-aged microstructure affects the mode and extent of corrosion exhibited by Type 316L stainless steel exposed in 25 MPa supercritical water (SCW) at 550 {sup o}C for 500 h. Mechanically-abraded samples were exposed in an as-received and thermally-aged condition. Thermal ageing conducted at 815 {sup o}C (peak fuel cladding temperature expected) for 1000 h was found to produce a discontinuous network of the carbide (M{sub 23}C{sub 6}), chi (χ), laves (η) and sigma (σ) phases. The similar weight gain and oxide scale structure, composition and thickness suggested that the thermally-aged condition does not have a marked influence on the corrosion resistance. (author)

  18. Speciation Dynamics of Phosphorus during (Hydro)Thermal Treatments of Sewage Sludge.

    Science.gov (United States)

    Huang, Rixiang; Tang, Yuanzhi

    2015-12-15

    (Hydro)thermal treatments of sewage sludge from wastewater treatment process can significantly reduce waste volume and transform sludge into valuable products such as pyrochar and hydrochar. Given the global concern with phosphorus (P) resource depletion, P recycling/reclamation from or direct soil application of the derived chars can be potential P recycling practices. In order to evaluate P recyclability as well as the selection and optimization of treatment techniques, it is critical to understand the effects of different treatment techniques and conditions on P speciation and distribution. In the present study, we systematically characterized P speciation in chars derived from thermal (i.e., pyrolysis) and hydrothermal treatments of municipal sewage sludge using complementary chemical extraction and nuclear magnetic resonance (NMR) spectroscopy methods. P species in the raw activated sludge was dominated by orthophosphate and long-chain polyphosphates, whereas increased amounts of pyrophosphate and short-chain polyphosphates formed after pyrolysis at 250-600 °C. In contrast, hydrothermal treatments resulted in the production of only inorganic orthophosphate in the hydrochar. In addition to the change of molecular speciation, thermal treatments also altered the physical state and extractability of different P species in the pyrochars from pyrolysis, with both total P and polyphosphate being less extractable with increasing pyrolysis temperature. Results from this study suggest that P speciation and availability in sludge-derived chars are tunable by varying treatment techniques and conditions, and provide fundamental knowledge basis for the design and selection of waste management strategies for better nutrient (re)cycling and reclamation.

  19. Thermal Aging of Unsaturated Polyester Composite Reinforced with E-Glass Nonwoven Mat

    Directory of Open Access Journals (Sweden)

    Hossain Milon

    2017-12-01

    Full Text Available An experiment was carried out using glass fiber (GF as reinforcing materials with unsaturated polyester matrix to fabricate composite by hand layup technique. Four layers of GF were impregnated by polyester resin and pressed under a load of 5 kg for 20 hours. The prepared composite samples were treated by prolonged exposure to heat for 1 hour at 60-150°C and compared with untreated GF-polyester composite. Different mechanical test of the fabricated composite were investigated. The experiment depicted significant improvement in the mechanical properties of the fabricated composite resulted from the heat treatment. The maximum tensile strength of 200.6 MPa is found for 90°C heat-treated sample. The mechanical properties of the composite do seem to be very affected negatively above 100°C. Water uptake of the composite was carried out and thermal stability of the composite was investigated by thermogravimetric analysis, and it was found that the composite is stable up to 600°C. Fourier transform infrared spectroscopy shows the characteristic bond in the composite. Finally, the excellent elevated heat resistant capacity of glass-fiber-reinforced polymeric composite shows the suitability of its application to heat exposure areas such as kitchen furniture materials, marine, and electric board.

  20. Surrogate formulations for thermal treatment of low-level mixed waste. Part 1: Radiological surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Lee, H.T. [Oak Ridge Associated Universities, TN (United States)

    1994-01-01

    The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are {sup 239}Pu, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 103}Ru, {sup 99}Tc, and {sup 90}Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium.

  1. Thermal Treatment of Melt-Spun Fibers Based on High Density PolyEthylene and Lignin

    Directory of Open Access Journals (Sweden)

    Panagiotis Goulis

    2017-11-01

    Full Text Available The purpose of this study was the synthesis of novel low-cost carbon fibers along with the investigation of the optimal parameters of temperature and time for the stabilization of hybrid high-density polyethylene (HDPE and lignin melt-spun fibers. These fibers were manufactured by physical compounding of HDPE and chemically-modified softwood kraft lignin (SKL in order to produce green fiber precursors for carbon fiber synthesis. Stabilization tests were performed with respect to thermal treatment (physical method and sulfonation treatment (chemical method. The results revealed that only chemical methods induce the desired thermal process-ability to the composite fibers in order to manufacture carbon fibers by using a simple method. This investigation shed light on the stabilization techniques of polymeric fibers in the absence of any cyclic groups in terms of environmentally-friendly mass production of carbon fibers using low-cost and green raw materials. This study facilitates incorporation of softwood lignin in homegrown polymeric fibers by a low-cost production process via melt-spinning of composite fibers, which were successfully stabilized using a facile chemical method and carbonized. Additionally, a comprehensive investigation of the thermal behavior of the samples was accomplished, by examining several ways and aspects of fiber thermal treating. The properties of all studied fibers are presented, compared, and discussed.

  2. Strength training and testosterone treatment have opposing effects on migration inhibitor factor levels in ageing men

    DEFF Research Database (Denmark)

    Glintborg, D.; Christensen, L. L.; Kvorning, T.

    2013-01-01

    Strength Training and Testosterone Treatment Have Opposing Effects on Migration Inhibitor Factor Levels in Ageing Men......Strength Training and Testosterone Treatment Have Opposing Effects on Migration Inhibitor Factor Levels in Ageing Men...

  3. Identification and location of {sup 14}C-bearing species in thermally treated neutron irradiated graphites NBG-18 and NBG-25: Pre- and post-thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    LaBrier, Daniel, E-mail: labrdani@isu.edu; Dunzik-Gougar, Mary Lou

    2015-05-15

    Recent studies have been performed to determine the effectiveness of thermal treatment as a method for removing {sup 14}C contamination from irradiated graphite surfaces. Samples of two grades of irradiated nuclear graphite (NBG-18 and NBG-25) were thermally treated to determine the amount of {sup 14}C contamination on irradiated graphite surfaces. The results of these analyses indicate that specific chemical forms of {sup 14}C (namely, {sup 14}CO and {sup 14}CO{sub 2}) may be selectively removed based on the temperature used during thermal treatment. Characterization studies utilizing various surface analysis techniques (XPS, SIMS, SEM/EDS) were employed to investigate the chemical speciation, bond structure, and morphology of the surfaces of pre- and post-thermally treated irradiated graphite.

  4. Laser ablation therapy: An alternative treatment for medically resistant mesial temporal lobe epilepsy after age 50.

    Science.gov (United States)

    Waseem, Hena; Osborn, Katie E; Schoenberg, Mike R; Kelley, Valerie; Bozorg, Ali; Cabello, Daniel; Benbadis, Selim R; Vale, Fernando L

    2015-10-01

    Selective anterior mesial temporal lobe (AMTL) resection is considered a safe and effective treatment for medically refractory mesial temporal lobe epilepsy (MTLE). However, as with any open surgical procedure, older patients (aged 50+) face greater risks. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has shown recent potential as an alternative treatment for MTLE. As a less invasive procedure, MRgLITT could be particularly beneficial to older patients. To our knowledge, no study has evaluated the safety and efficacy of MRgLITT in this population. Seven consecutive patients (aged 50+) undergoing MRgLITT for MTLE were followed prospectively to assess surgical time, complications, postoperative pain control, length of stay (LOS), operating room (OR) charges, total hospitalization charges, and seizure outcome. Five of these patients were assessed at the 1-year follow-up for seizure outcome. These data were compared with data taken from 7 consecutive patients (aged 50+) undergoing AMTL resection. Both groups were of comparable age (mean: 60.7 (MRgLITT) vs. 53 (AMTL)). One AMTL resection patient had a complication of aseptic meningitis. One MRgLITT patient experienced an early postoperative seizure, and two MRgLITT patients had a partial visual field deficit. Seizure-freedom rates were comparable (80% (MRgLITT) and 100% (AMTL) (p>0.05)) beyond 1year postsurgery (mean follow-up: 1.0years (MRgLITT) vs. 1.8years (AMTL)). Mean LOS was shorter in the MRgLITT group (1.3days vs. 2.6days (p<0.05)). Neuropsychological outcomes were comparable. Short-term follow-up suggests that MRgLITT is safe and provides outcomes comparable to AMTL resection in this population. It also decreases pain medication requirement and reduces LOS. Further studies are necessary to assess the long-term efficacy of the procedure. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Influence of Chemical Treatment on Thermal Decomposition and Crystallite Size of Coir Fiber

    Science.gov (United States)

    Manjula, R.; Raju, N. V.; Chakradhar, R. P. S.; Kalkornsurapranee, Ekwipoo; Johns, Jobish

    2018-01-01

    Coir fibers were treated with sodium hydroxide (NaOH) and glutaraldehyde (GA). The influence of alkali and aldehyde treatment on thermal degradation and crystallinity of coir fiber was studied in detail. Thermogravimetric analysis and X-ray diffraction techniques were mainly used to characterize the coir samples. Activation energy of degradation was calculated from Broido and Horowitz-Metzger equations. NaOH-treated samples showed an increase in thermal stability. Removal of impurities such as waxy and fatty acid residues from the coir fiber by reacting with strong base solution improved the stability of fiber. Crosslinking of cellulose with GA in the fiber enhanced the stability of the material. Scanning electron microscopy was employed to analyze the change in surface morphology upon chemical treatment. Improvement in the properties suggests that NaOH and GA can be effectively used to modify coir fiber with excellent stability.

  6. Testosterone treatment in the aging male: myth or reality?

    Science.gov (United States)

    Nigro, Nicole; Christ-Crain, Mirjam

    2012-03-19

    The definition of late onset hypogonadism in the aging male is controversially debated, and according to the latest literature consists of at least three especially sexual symptoms such as loss of morning erection, low sexual desire and erectile dysfunction as well as a total testosterone <8-11 nmol/l. Testosterone replacement therapy in the aging male has been shown to have a beneficial effect on muscle and fat mass as well as on bone mineral density, with more conflicting effects observed on muscle strength, sexual function, mood and quality of life. The prescriptions for testosterone products for the aging male increased by over 170% in the previous five years. Furthermore, there is a lot of epidemiological data showing an inverse relationship between testosterone levels and obesity, insulin resistance, the metabolic syndrome and type 2 diabetes mellitus. However, only few small randomised placebo-controlled studies have investigated the effect of testosterone replacement therapy on insulin resistance and HbA1c levels, with controversial results. Importantly, so far the long-term safety and efficacy of testosterone replacement therapy has not been established. Although until now no clear evidence has been found that testosterone replacement therapy has a causative role in prostate cancer or indeed in changes of the biology of the prostate, in a recent meta-analysis a 4-fold increased risk of prostate-associated event rates in testosterone treated elderly men sounds a note of caution. Also the risk for cardiovascular events is still not clear and caution is warranted especially in elderly men with cardiovascular disease and limited mobility. In summary, the actual available evidence of long-term risks and outcome of testosterone replacement therapy is still very limited and carefully designed placebo-controlled trials of testosterone administration to assess the risks and benefits of such a therapy are required. Until then, testosterone treatment in elderly men

  7. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    Science.gov (United States)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  8. Processes for thermal treatment of sewage sludge; Verfahren zur thermischen Klaerschlammverwertung

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, Rolf; Mocker, Mario; Rundel, Paul Michael; Binder, Samir [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany)

    2012-05-15

    In Germany about two million tons of sewage sludge dry mass arise from wastewater treatment in municipal sewage plants. At present already more than fifty percentage of this quantity is utilized thermally. The thermal treatment takes place in large scale plants predominantly, amongst others about 48 % by co-incineration in coal fired power plants. Furthermore sewage sludge is co-fired in cement plants and waste incineration plants. In case of large scale mono incineration of sewage sludge the stationary fluidized bed firing system is state of the art. In recent years also thermal processes for local treatment of sewage sludge were developed and offered at markets at a progressive rate. In addition to the mainly used incineration processes with grate fired furnaces and fluidized bed system there are several developments in the area of gasification and pyrolysis. At the technical centre for combustion engineering, installed at the ATZ Entwicklungszentrum, detailed analyses regarding the incineration properties and the emission behaviour of sewage sludge were carried out with a new developed vortex firebox and with a modified grate furnace. The results of these combustion tests show, that the specific fuel characteristics of sewage sludge require special technical measures in order to realise a stable incineration. This concern for both firing systems amongst others the pulsing of the fuel feeding, a selective supply and distribution of the combustion air as well as a variable fuel movement. Because the influencing potential regarding the contaminant content of the flue gas by firing measures is limited, in plants for thermal treatment of sewage sludge an aligned flue gas cleaning system is required to meet the emission limits of the 17. BImSchV. (orig.)

  9. Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge.

    Science.gov (United States)

    Xue, Tao; Huang, Xia

    2007-01-01

    The releasing characteristics of phosphorus, nitrogen compounds, organics, and some metal cations during thermal treatment of excess sludge were investigated. It was found that during heating not only phosphorus, but also nitrogen compounds, organics, and some metal cations could be released in abundance. The maximum orthophosphate (ortho-P) release of about 90 mg/L in concentration was observed at 50 degrees C in 1 h. Except for volatile fatty acids (VFAs), comparatively little total nitrogen (TN), total organic carbon (TOC), and metal cations were released at the same time. Such results might favor further process of phosphorus recovery. VFAs were considerably released only at 50 degrees C. Acetic, butyric, and propionic acid were the most abundant components in turn and their releasing profiles exhibited good linear relationship with time (R2 = 0.9977, 0.9624, and 0.8908, respectively). The concentrations of Mg2+ and K+ increased with time and temperature during thermal treatment, but Ca2+ decreased. The release of Mg2+ and K+ agreed well with TP release (R2 = 0.9892 and 0.9476, respectively). Temperature in the experimental range had very little impact on the linear relationships, especially of Mg2+. Moreover, the parameter of mixed liquor suspended solids (MLSS) was found to be an important factor for thermal sludge treatment as the released ortho-P and total phosphorus (TP) at 50 degrees C increased more than one-fold when MLSS was increased from 4000 to 8000 mg/L.

  10. Effect of Nisin and Thermal Treatments on the Heat Resistance of Clostridium sporogenes Spores.

    Science.gov (United States)

    Ros-Chumillas, Maria; Esteban, Maria-Dolores; Huertas, Juan-Pablo; Palop, Alfredo

    2015-11-01

    The aim of this research was to evaluate the effect of thermal treatments (isothermal or nonisothermal) combined with nisin, a natural antimicrobial, on the survival and recovery of Clostridium sporogenes spores. The addition of nisin to the heating medium at concentrations up to 0.1 mg liter(-1) did not reduce the heat resistance of C. sporogenes. Without a thermal treatment, nisin added at concentrations up to 0.1 mg liter(-1) did not reduce the viable counts of C. sporogenes when added to the recovery medium, but inactivation of more than 4 log cycles was achieved after only 3 s at 100°C. At 100°C, the time needed to reduce viable counts by more than 3 log cycles was nine times shorter when 0.01 mg liter(-1) nisin was added to the recovery medium than without it. The heat resistance values calculated under isothermal conditions were used to predict the survival in the nonisothermal experiments, and the predicted values accurately fit the experimental data. The combination of nisin with a thermal treatment can help control C. sporogenes.

  11. Effects of Thermal Treatment on the Dynamic Mechanical Properties of Coal Measures Sandstone

    Science.gov (United States)

    Li, Ming; Mao, Xianbiao; Cao, Lili; Pu, Hai; Mao, Rongrong; Lu, Aihong

    2016-09-01

    Many projects such as the underground gasification of coal seams and coal-bed methane mining (exploitation) widely involve the dynamic problems of coal measures sandstone achieved via thermal treatment. This study examines the dynamic mechanical properties of coal measures sandstone after thermal treatment by means of an MTS653 high-temperature furnace and Split Hopkinson pressure bar test system. Experimental results indicate that 500 °C is a transition point for the dynamic mechanical parameters of coal measures sandstone. The dynamic elastic modulus and peak strength increase linearly from 25 to 500 °C while the dynamic peak strain decreases linearly over the same temperature range. The dynamic elastic modulus and peak strength drop quickly from 500 to 800 °C, with a significant increase in the dynamic peak strain over the same temperature range. The rock mechanics are closely linked to material composition and mesoscopic structure. Analysis by X-ray diffraction and scanning electron microscopy indicate that the molecules inside the sandstone increase in density due to the thermal expansion of the material particles, which effectively improves the deformation resistance and carrying capacity of the sandstone and reduces the likelihood of axial deformation. With heat treatment that exceeds 500 °C, the dynamic mechanical properties rapidly weaken due to the decomposition of kaolinite; additionally, hot cracking of the mineral particles within the materials arises from coal sandstone internal porosity, and other defects gradually appear.

  12. Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

  13. Tratamiento térmico de acero cubano // Thermal treatment of cuban steel

    Directory of Open Access Journals (Sweden)

    N. Caballero Stevens

    2001-01-01

    Full Text Available En este trabajo se muestran algunos de los resultados obtenidos durante la investigación de un nuevo acero cubano que sepretende destinar a la fabricación de elementos de corte para máquinas combinadas cortadoras de caña de azúcar,herramientas de mano y otras piezas de gran responsabilidad que requieren elevada dureza para su trabajo. En el trabajo sepresentan los aspectos principales que relacionan la composición química, microestructura y dureza de este acero. Seestablecen experimentalmente las temperaturas de los puntos críticos para definir los regímenes de tratamiento térmico. Seincluye el comportamiento de las propiedades de dureza ante diferentes regímenes de tratamiento térmico.Palabras claves: Acero, recocido, temple, revenido, martensita, dureza________________________________________________________________________________AbstractIn this article are shown some of the results obtained during the investigation of a new cuban steel that it is going to beused in the manufacture of blades for cane cutting machines, hand tools and other part of great responsibility that requirehigh hardness for the job.In the article are presented the principles aspects of quimical composition, microstructure and hardness of this steel. Thereare stablished experimentally the temperature of the critic points in order to determine the regimes of the thermal treatment.The behavior of the properties of hardness is included at different regimes of thermal treatment.Key words: Steel, thermal treatment, quenching, tempering, hardness.

  14. Prediction of Failure Due to Thermal Aging, Corrosion and Environmental Fracture in Amorphous and Titanium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2003-04-15

    DARPA is exploring a number of advanced materials for military applications, including amorphous metals and titanium-based alloys. Equipment made from these materials can undergo degradation due to thermal aging, uniform corrosion, pitting, crevice corrosion, denting, stress corrosion cracking, corrosion fatigue, hydrogen induced cracking and microbial influenced corrosion. Amorphous alloys have exceptional resistance to corrosion, due in part to the absence of grain boundaries, but can undergo crystallization and other phase instabilities during heating and welding. Titanium alloys are extremely corrosion resistant due to the formation of a tenacious passive film of titanium oxide, but is prone to hydrogen absorption in crevices, and hydrogen induced cracking after hydrogen absorption. Accurate predictions of equipment reliability, necessary for strategic planning, requires integrated models that account for all relevant modes of attack, and that can make probabilistic predictions. Once developed, model parameters must be determined experimentally, and the validity of models must be established through careful laboratory and field tests. Such validation testing requires state-of-the-art surface analytical techniques, as well as electrochemical and fracture mechanics tests. The interaction between those processes that perturb the local environment on a surface and those that alter metallurgical condition must be integrated in predictive models. The material and environment come together to drive various modes of corrosive attack (Figure 1). Models must be supported through comprehensive materials testing capabilities. Such capabilities are available at LLNL and include: the Long Term Corrosion Test Facility (LTCTF) where large numbers of standard samples can be exposed to realistic test media at several temperature levels; a reverse DC machine that can be used to monitor the propagation of stress corrosion cracking (SCC) in situ; and banks of potentiostats with

  15. Effect of Thermal Aging on Impact Absorbed Energies of Solder Joints Under High-Strain-Rate Conditions

    Science.gov (United States)

    Zhang, Ning; Shi, Yaowu; Lei, Yongping; Xia, Zhidong; Guo, Fu; Li, Xiaoyan

    2009-10-01

    This study was concerned with the effect of thermal aging on the impact properties of solder joints. Three kinds of solders, conventional Sn-37Pb solder, Sn-3.8Ag-0.7Cu solder, and Sn-3.8Ag-0.7Cu doped with rare-earth (RE) elements, were selected to manufacture joint specimens for the Charpy impact test. U-notch specimens were adopted and isothermally aged at 150°C for 100 h and 1000 h, and then impacted by using a pendulum-type impact tester at room temperature. The Sn-37Pb solder joints exhibited higher performance in terms of impact absorbed energy in the as-soldered and 100 h thermally aged conditions. Interestingly, the Sn-3.8Ag-0.7Cu solder joints exhibited improved performance for the impact value after 1000 h of thermal aging. For the Sn-37Pb and Sn-3.8Ag-0.7Cu solder joints, the impact absorbed energies initially increased when the storage duration was limited to 100 h, and then gradually decreased with its further increase. For the Sn-3.8Ag-0.7Cu-RE specimens, impact performance decreased directly with increasing thermal aging. Furthermore, scanning electron microscopy (SEM) observation showed that the fracture paths were focused on the interface zone for the three kinds of joints in the aged conditions. For the Sn-37Pb joints, the fracture surfaces mainly presented a ductile fracture mode. For the Sn-3.8Ag-0.7Cu joints, with microstructure coarsening, crack propagation partly shifted towards the Sn/Cu6Sn5 interface. Compared with the 100 h aged joints, the area fraction of intergranular fracture of Sn grains on the Sn-3.8Ag-0.7Cu fracture surfaces was increased when the aging time was 1000 h. On the contrary, the fracture morphologies of Sn-3.8Ag-0.7Cu-RE were mainly brittle as thermal aging increased. Thus, an interrelationship between impact energy value and fracture morphology was observed.

  16. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants

    Energy Technology Data Exchange (ETDEWEB)

    Oleszek, Sylwia, E-mail: sylwia_oleszek@yahoo.com [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze (Poland); Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze (Poland); Shibata, Etsuro, E-mail: etsuro@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan); Nakamura, Takashi, E-mail: ntakashi@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan)

    2013-09-15

    Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is

  17. Intraocular Lenses for the Treatment of Age-Related Cataracts

    Science.gov (United States)

    2009-01-01

    Executive Summary Objective The objective of the report is to examine the comparative effectiveness and cost-effectiveness of various intraocular lenses (IOLs) for the treatment of age-related cataracts. Clinical Need: Target Population and Condition A cataract is a hardening and clouding of the normally transparent crystalline lens that may result in a progressive loss of vision depending on its size, location and density. The condition is typically bilateral, seriously compromises visual acuity and contrast sensitivity and increases glare. Cataracts can also affect people at any age, however, they usually occur as a part of the natural aging process. The occurrence of cataracts increases with age from about 12% at age 50 years, to 60% at age 70. In general, approximately 50% of people 65 year of age or older have cataracts. Mild cataracts can be treated with a change in prescription glasses, while more serious symptoms are treated by surgical removal of the cataract and implantation of an IOL. In Ontario, the estimated prevalence of cataracts increased from 697,000 in 1992 to 947,000 in 2004 (35.9% increase, 2.4% annual increase). The number of cataract surgeries per 1,000 individuals at risk of cataract increased from 64.6 in 1992 to 140.4 in 1997 (61.9% increase, 10.1% annual increase) and continued to steadily increase to 115.7 in 2004 (10.7% increase, 5.2% increase per year). Description of Technology/Therapy IOLs are classified either as monofocal, multifocal, or accommodative. Traditionally, monofocal (i.e.. fixed focusing power) IOLs are available as replacement lenses but their implantation can cause a loss of the eye’s accommodative capability (which allows variable focusing). Patients thus usually require eyeglasses after surgery for reading and near vision tasks. Multifocal IOLs aim to improve near and distant vision and obviate the need for glasses. Potential disadvantages include reduced contrast sensitivity, halos around lights and glare

  18. Ozonation and Thermal Pre-Treatment of Municipal Sewage Sludge-Implications for Toxicity and Methane Potential

    DEFF Research Database (Denmark)

    Davidsson, A.; Eriksson, Eva; Fick, J.

    2013-01-01

    The aim of this study was to determine effects on methane potential and overall sludge quality from two different sludge pre-treatment technologies (ozonation high/low dosage and thermal treatment 55/70 degrees C). In general both treatments produced increased methane potential. Thermal treatment...... resulted in higher chemical oxygen demand (COD)-solubilisation, while the highest volatile fatty acids (VFA) increase was obtained with ozonation. Sludges had inhibiting effects in a barley seed germination assay and a yeast oestrogen screen both before and after pre-treatment, but inhibition was reduced...... by ozone treatment and digestion. No statistical significant reduction in concentrations of included pharmaceuticals could be observed....

  19. Comparative Study on Accelerated Thermal Ageing of Vegetable Insulating Oil-paperboard and Mineral Oil-paperboard

    Science.gov (United States)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Yang, Jun; Wang, Xuan; Fang, Fu-Xin; Kong, Hai-Yang; Qian, Hang

    2016-05-01

    To comparatively study the insulation ageing life of vegetable insulating oil-paperboard and mineral oil-paperboard, we conducted accelerated thermal ageing experiments at 170°C. Then according to the temperature rise of vegetable insulating oil transformer, we conducted accelerated thermal ageing experiments at 150°C for vegetable insulating oil-paperboard and at 140°C for mineral oil-paperboard. The appearance, polymerization degree, and SEM microstructure of the paperboard after different ageing experiments were comparative analyzed. The results show that after the oil-paperboard system is accelerated ageing for 1 000 h at 170°C, that is equivalent to 20 years natural ageing, the structure of paperboard in vegetable insulating oil is damaged severely, which indicates that the lifetime of transformer are in the late stage; while the structure of paperboard in mineral oil maintain complete, and the polymerization degree is still above 500, which indicate that the lifetime of transformer are in the middle stage. The accelerated ageing rate of the vegetable insulating oil-paperboard system at 150°C is slower than that of the mineral oil-paperboard system, which indicates that the lifetime of the vegetable insulating oil-paperboard is longer than that of the mineral oil-paperboard.

  20. Effect of long-term thermal aging on the fracture toughness of austenitic stainless steel base and weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.F.

    1995-09-27

    Compact tension specimens taken from FFTF primary piping materials (Type 316 stainless steel (SS) and 16-8-2 SS weld metal) and from reactor vessel materials (304 SS and 308 SS weld metal) were heated in laboratory furnaces from 100,000 hours. Fracture toughness testing was performed on these specimens, which are 7.62- and 25.4-mm thick, respectively at the aging temperature (482 and 427 degrees). Results were analyzed with the multiple-specimen method. Thermal aging continues to reduce the fracture toughness of FFTF component materials. Results show that thermal aging has a strong effect on the toughness degradation of weld metals, particularly for 16-8-2 SS weld whose aged/unaged Jc ratio is only 0.31 after 100,000-hour aging. The fracture toughness of the 308 and 16-8-2 SS weld metals fluctuated during 20,000 to 50,000-hour aging but deteriorated as the aging time increased to 100,000 hours; the toughness degradation is significant. Fracture control based on a fracture mechanics approach should be considered

  1. An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment

    Directory of Open Access Journals (Sweden)

    Shijin Xia

    2016-01-01

    Full Text Available Inflamm-aging is a challenging and promising new branch of aging-related research fields that includes areas such as immunosenescence. Increasing evidence indicates that inflamm-aging is intensively associated with many aging diseases, such as Alzheimer’s disease, atherosclerosis, heart disease, type II diabetes, and cancer. Mounting studies have focused on the role of inflamm-aging in disease progression and many advances have been made in the last decade. However, the underlying mechanisms by which inflamm-aging affects pathological changes and disease development are still unclear. Here, we review studies of inflamm-aging that explore the concept, pathological features, mechanisms, intervention, and the therapeutic strategies of inflamm-aging in disease progression.

  2. The need for bioaugmentation after thermal treatment of a TCE-contaminated aquifer: Laboratory experiments

    Science.gov (United States)

    Friis, A. K.; Albrechtsen, H.-J.; Cox, E.; Bjerg, P. L.

    2006-12-01

    A microcosm study was conducted to evaluate the need for bioaugmentation after a thermal treatment to anaerobically dechlorinate trichloroethene (TCE) to ethene. The microcosms were either: heated to 100 °C and slowly cooled to simulate thermal remediation while bioaugmenting when the declining temperature reached 10 °C; or kept at ambient groundwater temperatures (10 °C) and bioaugmented for comparison. Aquifer samples from three sediment locations within a TCE-polluted source zone were investigated in duplicate microcosms. In biostimulated (5 mM lactate) and heated microcosms, no conversion of TCE was observed in 4 out of 6 microcosms, and in the remaining microcosms the dechlorination of TCE was incomplete to cDCE ( cis-dichloroethene). By comparison, complete TCE dechlorination to ethene was observed in 4 out of 6 heated microcosms that were bioaugmented with a highly enriched dechlorinating mixed culture, KB-1™, but no electron donor, and also in 4 of 6 microcosms that were augmented with KB-1™ and an electron donor (5 mM lactate). These data suggest that electron donor released during heating, was capable of promoting complete dechlorination coincident with bioaugmentation. Heated microcosms demonstrated less methanogenesis than unheated microcosms, even with elevated H 2 concentrations and addition of KB-1™, which contains methanogens. This suggests that the heating process suppressed the native microbial community, which can decrease competition with the bioaugmented culture and increase the effectiveness of dechlorination following a thermal treatment. Specifically, cDCE removal rates were four to six times higher in heated than unheated bioaugmented microcosms. This study confirms the need for bioaugmentation following a laboratory thermal treatment to obtain complete dechlorination of TCE.

  3. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    Science.gov (United States)

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels

  4. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution

    Science.gov (United States)

    Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A.

    2017-11-01

    The incorporation of plant crops in construction materials offers very good hygrothermal performance to the building, ensuring substantial environmental and ecological benefits. This paper focuses on studying the evolution of hygrothermal properties of hemp concrete over age (7, 30 and 60 days). The analysis is done with respect to two main hygric and thermal properties, respectively: sorption isotherms, water vapor permeability, thermal conductivity and heat capacity. In fact, most of these parameters are very susceptible to change function of the age of the material. This influence of the aging is mainly due to the evolution of the microstructure with the binder hydration over time and the creation of new hydrates which can reduces the porosity of the material and consequently modify its properties. All the tested hemp concrete samples presented high moisture storage capacity and high-water vapor permeability whatever the age of such hygroscopic material. These hygric parameters increase significantly for high relative humidity requiring more consideration of such variability during the modeling of coupled heat and mass transfer within the material. By the same, the thermal conductivity and heat capacity tests highlighted the impact of the temperature and hygric state of the studied material.

  5. Treatment of nanomaterial-containing waste in thermal waste treatment facilities; Behandlung nanomaterialhaltiger Abfaelle in thermischen Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Julia; Weiss, Volker [Umweltbundesamt, Dessau-Rosslau (Germany); Oischinger, Juergen; Meiller, Martin; Daschner, Robert [Fraunhofer Umsicht, Sulzbach-Rosenberg (Germany)

    2016-09-15

    There is already a multitude of products on the market, which contain synthetic nanomaterials (NM), and for the coming years an increase of such products can be expected. Consequently, it is predictable that more nanomaterial-containing waste will occur in the residual waste that is predominately disposed in thermal waste treatment plants. However, the knowledge about the behaviour and effects of nanomaterials from nanomaterial-containing waste in this disposal route is currently still low. A research project of the German Environment Agency on the ''Investigation of potential environmental impacts when disposing nanomaterial-containing waste in waste treatment plants'' will therefore dedicate itself to a detailed examination of emission pathways in the thermal waste treatment facilities. The tests carried out i.a. on an industrial waste incineration plant and a sludge incineration plant with controlled addition of titanium dioxide at the nanoscale, showed that no increase in the emissions of NM in the exhaust gas was detected. The majority of the NM was found in the combustion residues, particularly the slag.

  6. Effects of thermal pre-treatments on solid slaughterhouse waste methane potential.

    Science.gov (United States)

    Rodríguez-Abalde, A; Fernández, B; Silvestre, G; Flotats, X

    2011-07-01

    The effects of thermal pre-treatments on the biogas production potential of two solid slaughterhouse waste types (poultry and piggery slaughterhouse by-products) were assessed by means of batch experiments. Both animal by-products were characterized in terms of fat, protein and carbohydrate concentrations. The selected thermal pre-treatments, pasteurization (70 °C for 60 min) and sterilization (133 °C and 3 bars for 20 min), are included in the current European regulations for the disposal or use of animal by-products. The pre-treatments produced notable improvements in organic matter solubilization, but had different effects on the anaerobic bioavailability of the treated substrates. The methane yield of the initial volatile solids did not increase significantly after pre-treatment when carbohydrate concentration was high, reaching a maximum of 0.48 m(CH4)(3) kg(VS)(-1) for the pasteurized poultry waste. However, this yield increased by up to 52.7% after pasteurization and 66.1% after sterilization for the lower carbohydrate concentration sample (piggery waste), reaching maxima of 0.88 and 0.96 m(CH4)(3) kg(VS)(-1), respectively. The maximum methane production rates, measured as the maximum slope of the accumulated methane production curve, per unit of initial biomass content, were also different. While this rate increased by 52.6% and 211.6% for piggery waste after pasteurization and sterilization, respectively, it decreased by 43.8% for poultry waste after pasteurization with respect to untreated waste. Compounds with low biodegradability that are produced by Maillard reactions during thermal pre-treatment could explain the low bioavailability observed for waste with a high carbohydrate concentration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effects of Thermal Treatment on Tensile Strength of Laurentian Granite Using Brazilian Test

    Science.gov (United States)

    Yin, Tubing; Li, Xibing; Cao, Wenzhuo; Xia, Kaiwen

    2015-11-01

    The effect of thermal treatment on several physical properties and the tensile strength of Laurentian granite (LG) are measured in this study. Brazilian disc LG specimens are treated at temperatures of up to 850 °C. The physical properties such as grain density, relative volume change per degree, and P-wave velocity are investigated under the effect of heat treatment. The results indicate that both the density and the P-wave velocity decrease with the increase in heating temperature. However, the relative volume change per degree is not sensitive below 450 °C, while a remarkable increase appears from 450 to 850 °C. All cases are explained by the increase in both number and width of the thermally induced microcracks with the heating temperature. Brazilian tests are carried out statically with an MTS hydraulic servo-control testing system and dynamically with a modified split Hopkinson pressure bar (SHPB) system to measure both static and dynamic tensile strength of LG. The relationship between the tensile strength and treatment temperatures shows that static tensile strength decreases with temperature while the dynamic tensile strength first increases and then decreases with a linear increase in the loading rate. However, the increase in dynamic tensile strength with treatment temperatures from 25 to 100 °C is due to slight dilation of the grain boundaries as the initial thermal action, which leads to compaction of rock. When the treatment temperature rises above 450 °C, the quartz phase transition results in increased size of microcracks due to the differential expansion between the quartz grains and other minerals, which is the main cause of the sharp reduction in tensile strength.

  8. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  9. Investigation on the impacts of different genders and ages on satisfaction with thermal environments in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, JoonHo; Aziz, Azizan; Loftness, Vivian [Center for Building Performance and Diagnostics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)

    2010-06-15

    This paper investigates the effects of occupant gender and age on thermal satisfaction in office environments. The data used for the analyses was collected from 40-sampled occupants and their workstations on 38 floors in 20 office buildings in the U.S. with support from the U.S. General Services Administration. The field measurements include data collection for air temperature, radiant temperature, temperature stratification, relative humidity and air velocity of the sampled workstations. Occupant satisfaction surveys were distributed to each occupant in the workstations measured, and the thermal attributes of building systems were recorded. The objective and subjective data sets support statistical correlation analysis between environmental qualities and user satisfactions. The statistical analysis of air temperatures, occupant thermal satisfaction, age and gender revealed that females are more dissatisfied with their thermal environments than males especially in the summer season with high significance, and occupants over 40 years old are more satisfied than under 40 in the cooling season with marginal significance. (author)

  10. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Directory of Open Access Journals (Sweden)

    Emiliano Schena

    2016-07-01

    Full Text Available During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C, sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings, and frequency response (hundreds of kHz, are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  11. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview.

    Science.gov (United States)

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-07-22

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C(-1) for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  12. Effects of thermal treatments on the characterisation and utilisation of red mud with sawdust additive.

    Science.gov (United States)

    Liu, Yanju; Naidu, Ravi; Ming, Hui; Dharmarajan, Rajarathnam; Du, Jianhua

    2016-06-01

    Extremely large amounts of red mud (bauxite residue) are generated globally every year from alumina refining industries, which are being disposed of on engineered landfills. The objective of this study is to investigate the effects of thermal treatments on red mud for development of utilisation strategies. Thermal treatments of red mud samples and their characterisations were investigated under inert (N2) and oxidative (air) conditions with and without sawdust addition at 200-600°C. After calcination, the resulting samples were analysed using thermogravimetric-infrared spectroscopy (TG-IR) for functional group transformations, thermogravimetric analysis (TGA) for thermal loss profiles and X-ray diffraction (XRD) for mineral transformations. The characterisation results showed that in N2 environment, boehmite in red mud was transferred to transition alumina at around 400°C while losing water from structural components. The addition of sawdust for incubation and calcination of red mud in air increased the surface area, whereas that in nitrogen atmosphere lead to reduction of hematite to magnetite at around 500°C. The incorporated carbon materials played a major role in increasing the surface area especially for pore size less than 2.5 nm. This treated red mud with altered mineral composition and improved properties for binding contaminants can be used for environmental remediation and in the process of metal recovery such as iron. © The Author(s) 2016.

  13. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Science.gov (United States)

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  14. Thermal Treatment of Mercury Mine Wastes Using a Rotary Solar Kiln

    Directory of Open Access Journals (Sweden)

    Andrés Navarro

    2014-01-01

    Full Text Available Thermal desorption, by a rotary kiln of mercury contaminated soil and mine wastes, has been used in order to volatilize mercury from the contaminated medium. Solar thermal desorption is an innovative treatment that uses solar energy to increase the volatility of contaminants, which are removed from a solid matrix by a controlled air flow system. Samples of soils and mine wastes used in the experiments were collected in the abandoned Valle del Azogue mine (SE, Spain, where a complex ore, composed mainly of cinnabar, arsenic minerals (realgar and orpiment and stibnite, was mined. The results showed that thermal treatment at temperatures >400 °C successfully lowered the Hg content (2070–116 ppm to <15 mg kg−1. The lowest values of mercury in treated samples were obtained at a higher temperature and exposition time. The samples that showed a high removal efficiency (>99% were associated with the presence of significant contents of cinnabar and an equivalent diameter above 0.8 mm.

  15. Effect of thermal annealing treatment with titanium chelate on buffer layer in inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiyong [College of Science, Shenyang Agricultural University, Shenyang 110866 (China); Wang, Ning, E-mail: ning_wang@outlook.com [School of Electrical and Electronic and Engineering, Nanyang Technological University 639798 (Singapore); Fu, Yan, E-mail: 1060945062@qq.com [College of Science, Shenyang Agricultural University, Shenyang 110866 (China)

    2016-12-15

    Highlights: • The TIPD layer as electron extraction layer and instead of Ca or LiF. • Impact of the work function of TIPD layer by thermal annealing treatment. • Importance of TIPD layer as electron extraction layer for work function and potential barrier. - Abstract: The solution processable electron extraction layer (EEL) is crucial for polymer solar cells (PSCs). Here, we investigated titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as an EEL and fabricated inverted PSCs with a blend of poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) acting as the photoactive layer, with a structure of ITO/TIPD/P3HT:ICBA/MoO{sub 3}/Ag. After thermal annealing treatment at 150 °C for 15 min, the PSC performances increased from 3.85% to 6.84% and they achieve stable power conversion efficiency (PCE), with a similar PCE compared with TiO{sub 2} as an EEL by the vacuum evaporated method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet photoelectron spectroscopy (UPS) confirmed that the TIPD decomposed and formed the Ti=O bond, and the energy level of the lowest unoccupied molecular orbital and the highest occupied molecular orbital increased. The space charge limited current (SCLC) measurements further confirmed the improvement in electron collection and the transport ability using TIPD as the EEL and thermal annealing.

  16. The effects of thermal aging on material behavior and strength of CF8M in nuclear reactor coolant system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Do; Lee, Yong Seon; Park, Jung Cheol; In, Jae Hyeon; Woo, Seung Wan; Pae, Yong Tak; Nam, Uk Hui; Park, Yun Won [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    1999-03-15

    The following investigations are performed in order to estimate the mechanism of the structural integrity, and the life prediction. The CF8M is observed a brittle behavior in the range of 475 .deg. C. The five classes of the thermally aged CF8M specimen are prepared using an artificially accelerated aging method. Namely, after the specimen are held for 100, 300, 900, 1800 and 3600 hrs. at 430 .deg. C respectively, the specimen are water cooled to room temperature. In addition to the thermally aged specimens the specimens associated with {delta}-phase degradation are prepared. After the specimens are maintained for 20 min, 5, 15, 50 and 150 hrs. at 700 .deg. C, respectively. which is in the range of {delta}-phase degradation, all specimens are cooled in water. The impact energy variations are measured for both the aged and virgin specimen at -173, -70, -32, 27 and 100 .deg. C, respectively, through the Charpy impact tests in addition to the hardness tests. The characteristics of the fatigue crack growth and low cycle fatigue tests are investigated using both aged and virgin specimens. Also fractured surfaces of the specimen are observed using the scanning electronic microscopy. J-R curve and J{sub IC} of the aged and virgin specimens are found J{sub IC} in order to predict the critical flaw size and fatigue life.

  17. The effect of thermal treatment on antioxidant capacity and pigment contents in separated betalain fractions.

    Science.gov (United States)

    Mikołajczyk-Bator, Katarzyna; Pawlak, Sylwia

    2016-01-01

    Increased consumption of fruits and vegetables significantly reduces the risk of cardio-vascular disease. This beneficial effect on the human organism is ascribed to the antioxidant compounds these foods contain. Unfortunately, many products, particularly vegetables, need to be subjected to thermal processing before consumption. The aim of this study was to determine the effect of such thermal treatment on the antioxidant capacity and pigment contents in separated fractions of violet pigments (betacyanins) and yellow pigments (betaxanthins and betacyanins). Fractions of violet and yellow pigments were obtained by separation of betalain pigments from fresh roots of 3 red beet cultivars using column chromatography and solid phase extraction (SPE). The betalain pigment content was determined in all samples before and after thermal treatment (90°C/30 min) by spectrophotometry, according to Nilsson's method [1970] and antioxidant capacity was assessed based on ABTS. Betalain pigments in the separated fractions were identified using HPLC-MS. After thermal treatment of betacyanin fractions a slight, but statistically significant degradation of pigments was observed, while the antioxidant capacity of these fractions did not change markedly. Losses of betacyanin content amounted to 13-15% depending on the cultivar, while losses of antioxidant capacity were approx. 7%. HPLC/MS analyses showed that before heating, betanin was the dominant pigment in the betacyanin fraction, while after heating it was additionally 15-decarboxy-betanin. Isolated fractions of yellow pigments in red beets are three times less heat-resistant than betacyanin fractions. At losses of yellow pigment contents in the course of thermal treatment reaching 47%, antioxidant capacity did not change markedly (a decrease by approx. 5%). In the yellow pigment fractions neobetanin was the dominant peak in the HPLC chromatogram, while vulgaxanthin was found in a much smaller area, whereas after heating

  18. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it [Niccolò Cusano University, via Don Carlo Gnocchi, 3, 00166 Rome (Italy); Carnevale, Ennio [Industrial Engineering Department, University of Florence, via Santa Marta, 3, 50129 Florence (Italy); Corti, Andrea [Department of Information Engineering and Mathematics, University of Siena, via Roma, 56, 53100 (Italy)

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  19. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China.

    Science.gov (United States)

    Zhou, Yingjun; Takaoka, Masaki; Wang, Wei; Liu, Xiao; Oshita, Kazuyuki

    2013-07-01

    Co-digestion of wasted sewage sludge, restaurant kitchen waste, and fruit-vegetable waste was carried out in a pilot plant with thermal hydrolysis pre-treatment. Steam was used as heat source for thermal hydrolysis. It was found 38.3% of volatile suspended solids were dissolved after thermal hydrolysis, with digestibility increased by 115%. These results were more significant than those from lab studies using electricity as heat source due to more uniform heating. Anaerobic digesters were then operated under organic loading rates of about 1.5 and 3 kg VS/(m³ d). Little difference was found for digesters with and without thermal pre-treatment in biogas production and volatile solids removal. However, when looking into the digestion process, it was found digestion rate was almost doubled after thermal hydrolysis. Digester was also more stable with thermal hydrolysis pre-treatment. Less volatile fatty acids (VFAs) were accumulated and the VFAs/alkalinity ratio was also lower. Batch experiments showed the lag phase can be eliminated by thermal pre-treatment, implying the advantage could be more significant under a shorter hydraulic retention time. Moreover, it was estimated energy cost for thermal hydrolysis can be partly balanced by decreasing viscosity and improving dewaterability of the digestate. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Treatment intensity, age and outcome in medical ICU patients: results of a French administrative database.

    Science.gov (United States)

    Peigne, Vincent; Somme, Dominique; Guérot, Emmanuel; Lenain, Emilie; Chatellier, Gilles; Fagon, Jean-Yves; Saint-Jean, Olivier

    2016-12-01

    Intensive care unit (ICU) patients are aging, and older age has been associated with higher mortality in ICU. As previous studies have reported that older age was also associated with less intensive treatment, we investigated the relationship between age, treatment intensity and mortality in medical ICU patients. Data were extracted from the administrative database of 18 medical ICUs. Patients with a unique medical ICU stay and a Simplified Acute Physiology Score II (without age-related points) >15 were included. Treatment intensity was described with a novel indicator, which is a four-group classification based upon the most frequent ICU procedures. The relationship between age, treatment intensity and hospital mortality was analyzed with the estimation of standardized mortality ratio in the four groups of treatment intensity. A total of 23,578 patients, including 3203 patients aged ≥80 years, were analyzed. Hospital mortality increased from 13 % for the younger patients (age < 40 years) to 38 % for the older patients (age ≥ 80 years), while Simplified Acute Physiology Score II (without age-related points) increased only from 36 (age < 40 years) to 43 (age ≥ 80). Hospital mortality increased with age in the four groups of treatment intensity. Standardized mortality ratio increased with age among the patients with less intensive treatment but was not associated with age among the patients with the highest treatment intensity. Our results support the fact that the increase in mortality with age among ICU patients is not related to an increase in severity. Using a new tool to estimate ICU treatment intensity, our study suggests that mortality of ICU patients increases with age whatever the treatment intensity is. Further investigations are required to determinate whether this increase in mortality among older ICU patients is related to undertreatment or to a lower efficiency of organ support treatment.

  1. Investigation of structural modification and thermal characteristics of lignin after heat treatment.

    Science.gov (United States)

    Kim, Jae-Young; Hwang, Hyewon; Oh, Shinyoung; Kim, Yong-Sik; Kim, Ung-Jin; Choi, Joon Weon

    2014-05-01

    Milled wood lignin was subjected to heat treatment between 150 and 300°C to understand the pattern of its structural modification and thermal properties. When the temperature was elevated with interval of 50°C, the color of the lignin became dark brown and the lignin released various forms of phenols from terminal phenolic groups in the lignin, leading to two physical phenomena: (1) gradual weight loss of the lignin, up to 19% based on dry weight and (2) increase in the carbon content and decrease in the oxygen content. Nitrobenzene oxidation and (13)C NMR analyses confirmed a cleavage of β-O-4 linkage (depolymerization) and reduction of methoxyl as well as phenolic hydroxyl group were also characteristic in the lignin structure during heat treatment. Simultaneously with lignin depolymerization, GPC analysis provided a possibility that condensation between lignin fragments could also occur during heat treatment. TGA/DTG/DSC data revealed that thermal stability of lignin obviously increased after heat treatment, implicating the structural rearrangement of lignin to reduction of β-O-4 linkage as well as accumulation of CC bonds. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Mode I fracture toughness behavior of hydro-thermally aged carbon fibre reinforced DGEBA-HHPA-PES systems

    Science.gov (United States)

    Alessi, Sabina; Pitarresi, Giuseppe; Spadaro, Giuseppe; Tumino, Davide

    2012-07-01

    In this work the Mode I fracture toughness behavior of unidirectional CFRP laminates is investigated by means of Double Cantilever Beam (DCB) tests. The composite samples were manufactured by thermal curing after impregnation of a Carbon fabric with a DGEBA epoxy and anhydride HHPA curing agent. One resin batch was also mixed with a PES thermoplastic monomer to enhance the matrix toughness. Two lots of samples, toughened and untoughened, were then left to soak in hot water to achieve various degrees of aging. The influence of matrix toughening and hydrothermal aging on the delamination behavior of the composite have then been assessed and correlated with characterization data from Dynamic Mechanical Thermal Analysis (DMTA) and Scanning Electron Microscopy (SEM).

  3. Improved electrical stability of CdS thin film transistors through Hydrogen-based thermal treatments

    KAUST Repository

    Salas Villaseñor, Ana L.

    2014-06-01

    Thin film transistors (TFTs) with a bottom-gate configuration were fabricated using a photolithography process with chemically bath deposited (CBD) cadmium sulfide (CdS) films as the active channel. Thermal annealing in hydrogen was used to improve electrical stability and performance of the resulting CdS TFTs. Hydrogen thermal treatments results in significant V T instability (V T shift) improvement while increasing the I on/I off ratio without degrading carrier mobility. It is demonstrated that after annealing V T shift and I on/I off improves from 10 V to 4.6 V and from 105 to 10 9, respectively. Carrier mobility remains in the order of 14.5 cm2 V s-1. The reduced V T shift and performance is attributed to a reduction in oxygen species in the CdS after hydrogen annealing, as evaluated by Fourier transform infrared spectroscopy (FTIR). © 2014 IOP Publishing Ltd.

  4. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxin [ORNL; Bhat, Vinay V [ORNL; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL

    2012-01-01

    Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

  5. Non-isothermal kinetic analysis of processes occurring during thermal treatment of kaolinite

    Science.gov (United States)

    Ondro, Tomáš; Trník, Anton

    2017-07-01

    A non-isothermal kinetic analysis of processes occurring during thermal treatment of kaolinite is carried out using differential thermal analysis on powder samples with heating rates from 1 to 10 °C min-1 in static air atmosphere. For the parameterization of dehydroxylation process and crystallization of Al-Si spinel phase from metakaolinite the Kissinger method is used. The determined values of apparent activation energy for the dehydroxylation of kaolinite and formation of Al-Si spinel phase are (163 ± 11) kJ mol-1 and (826 ± 16) kJ mol-1, respectively. For the dehydroxylation of kaolinite the diffusion controlled growth of a new phase with a decreasing nucleation rate is determined as a mechanism of the process. The results also show that the formation of Al-Si spinel phase from metakaolinite is controlled by grain edge nucleation after saturation.

  6. Age-related macular degeneration: epidemiology and optimal treatment

    DEFF Research Database (Denmark)

    la Cour, Morten; Kiilgaard, Jens Folke; Nissen, Mogens Holst

    2002-01-01

    Age-related macular degeneration (AMD) is a common macular disease affecting elderly people in the Western world. It is characterised by the appearance of drusen in the macula, accompanied by choroidal neovascularisation (CNV) or geographic atrophy. The disease is more common in Caucasian...... individuals than in pigmented races. In predominantly Caucasian populations, the age-standardised prevalence of AMD in at least one eye is 7760 cases per million. The age-standardised cumulated 1-year incidence of AMD in at least one eye is 1051 cases per million individuals. AMD is the most important single...... cause of blindness among Caucasian individuals in developed countries. Blindness resulting from AMD rarely occurs before age 70, and most cases occur after age 80. The age-standardised 1-year incidence of legal blindness resulting from AMD is 212 cases per million. Two-thirds of AMD cases have CNV...

  7. Influence of Thermal Aging on the Microstructure and Mechanical Behavior of Dual Phase Precipitation Hardened Powder Metallurgy Stainless Steels

    Science.gov (United States)

    Stewart, Jennifer

    2011-12-01

    Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 538°C in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite hardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties. Due to the complex non-uniform stresses and strains associated with conventional nanoindentation, micropillar compression has become an attractive method to probe local mechanical behavior while limiting strain gradients and contributions from surrounding features. In this study, micropillars of ferrite and martensite were fabricated by focused ion beam (FIB) milling of dual phase precipitation hardened powder metallurgy (PM) stainless steels. Compression testing was conducted using a nanoindenter equipped with a flat punch indenter. The stress-strain curves of the individual microconstituents were calculated from the load-displacement curves less the extraneous displacements of the system. Using a rule of mixtures approach in conjunction with porosity corrections, the mechanical properties of ferrite and martensite were combined for comparison to tensile tests of the bulk material, and reasonable agreement was found for the ultimate tensile

  8. Improved field emission properties of α-Fe2O3 nanoflakes with current aging treatment and morphology optimization

    Science.gov (United States)

    Wu, Junqing; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-02-01

    α-Fe2O3 nanomaterials were synthesized by thermal oxidation of pure iron foil and the effects of current aging treatment and morphology on their field emission properties were systematically investigated. The current aging treatment was found to be an efficient method to improve the field emission properties of α-Fe2O3 nanoflakes. The emission current density was largely enhanced from 0.05–5.70 mA cm‑2 under an applied electrical field of 7.8 MV m‑1, and their threshold field decreased from than 11.0–6.6 MV m‑1 after the current aging treatment. The mechanism of the improvement in the field emission performance of α-Fe2O3 nanoflakes induced by the current aging treatment is discussed. α-Fe2O3 nanostructures with various morphologies were synthesized by adjusting the growth temperatures between 300 °C–450 °C to optimize their morphologies. α-Fe2O3 nanoflakes synthesized at 350 °C were superior field emitters with a low threshold field of 5.1 MV m‑1, high current density of 63.4 mA cm‑2, and stable emission, which demonstrated that α-Fe2O3 nanoflakes could be a promising material for application as field emitters.

  9. Investigation of Molecular Structure and Thermal Properties of Thermo-Oxidative Aged SBS in Blends and Their Relations

    Directory of Open Access Journals (Sweden)

    Xiong Xu

    2017-07-01

    Full Text Available Tri-block copolymer styrene–butadiene (SBS is extensively applied in bituminous highway construction due to its high elasticity and excellent weather resistance. With the extension of time, tri-block structural SBS automatically degrades into bi-block structural SB- with some terminal oxygen-containing groups under the comprehensive effects of light, heat, oxygen, etc. In this paper, the effects of aging temperature, aging time and oxygen concentration on the molecular structure of thermo-oxidative aged SBS were mainly investigated using Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS, and the correlation between oxygen-containing groups and thermal properties (TG–DTG was further discussed. The FTIR and XPS results show that rapid decomposition of SBS will occur with increments of aging temperature, aging time and oxygen concentration, and a large number of oxygen-containing groups such as –OH, C=O, –COOH, etc. will be formed during thermo-oxidative aging. In short-term aging, changes in aging temperature and oxygen concentration have a significant impact on the structural damage of SBS. However, in long-term aging, it has no further effect on the molecular structure of SBS or on increasing oxygen concentration. The TG and DTG results indicate that the concentration of substances with low molecular weight gradually increases with the improvement of the degree of aging of the SBS, while the initial decomposition rate increases at the beginning of thermal weightlessness and the decomposition rate slows down in comparison with neat SBS. From the relation between the XPS and TG results, it can be seen that the initial thermal stability of SBS rapidly reduces as the relative concentration of the oxygen-containing groups accumulates around 3%, while the maximum decomposition temperature slowly decreases when the relative concentration of the oxygen-containing groups is more than 3%, due to the difficult

  10. Osteoinduction of porous titanium: a comparative study between acid-alkali and chemical-thermal treatments.

    Science.gov (United States)

    Zhao, Chaoyong; Zhu, Xiangdong; Liang, Kailu; Ding, Jietao; Xiang, Zhou; Fan, Hongsong; Zhang, Xingdong

    2010-11-01

    In this study, a slurry foaming method was developed to fabricate porous titanium, and two different surface treatments were applied to investigate their effects on the osteoinduction of the implants. Three types of implants, that was porous titanium with no treatment, with chemical-thermal treatment (CTPT), and with acid-alkali treatment (AAPT), were implanted in the dorsal muscles of adult dogs for 3 and 5 months. After implantation for 3 months, new bone was only found in the inner pores of AAPT by histological analysis and field emission scanning electron microscopy observation. After implantation for 5 months, new bone was also found in CTPT, but it was absent in AAPT. This study not only confirmed that porous titanium with appropriate surface treatments could possess osteoinduction but also showed that its osteoinductive potential was tightly related to the surface treatment. As a simpler method, acid-alkali treatment could endow porous titanium with faster osteoinduction, and AAPT might have potential in clinical application. © 2010 Wiley Periodicals, Inc.

  11. Possibilities for arthroscopic treatment of the ageing sternoclavicular joint

    DEFF Research Database (Denmark)

    Rathcke, Martin; Tranum-Jensen, Jorgen; Krogsgaard, Michael Rindom

    2017-01-01

    AIM To investigate if there are typical degenerative changes in the ageing sternoclavicular joint (SCJ), potentially accessible for arthroscopic intervention. METHODS Both SCJs were obtained from 39 human cadavers (mean age: 79 years, range: 59-96, 13 F/26 M). Each frozen specimen was divided fro...

  12. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  13. Thermal oxidation of nuclear graphite: A large scale waste treatment option.

    Science.gov (United States)

    Theodosiou, Alex; Jones, Abbie N; Marsden, Barry J

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.

  14. Substance Abuse Treatment Admissions Aged 12 to 14. The TEDS Report

    Science.gov (United States)

    Substance Abuse and Mental Health Services Administration, 2011

    2011-01-01

    This report uses data from the Treatment Episode Data Set (TEDS) for 2008 to provide information on the characteristics of youths aged 12 to 14 admitted to substance abuse treatment. In 2008, approximately 23,770 substance abuse treatment admissions were adolescents aged 12 to 14. The two most frequently reported primary substances of abuse among…

  15. Recommendations for the treatment of aging in standard technical specifications

    Energy Technology Data Exchange (ETDEWEB)

    Orton, R.D.; Allen, R.P.

    1995-09-01

    As part of the US Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program, Pacific Northwest Laboratory (PNL) evaluated the standard technical specifications for nuclear power plants to determine whether the current surveillance requirements (SRs) were effective in detecting age-related degradation. Nuclear Plant Aging Research findings for selected systems and components were reviewed to identify the stressors and operative aging mechanisms and to evaluate the methods available to detect, differentiate, and trend the resulting aging degradation. Current surveillance and testing requirements for these systems and components were reviewed for their effectiveness in detecting degraded conditions and for potential contributions to premature degradation. When the current surveillance and testing requirements appeared ineffective in detecting aging degradation or potentially could contribute to premature degradation, a possible deficiency in the SRs was identified that could result in undetected degradation. Based on this evaluation, PNL developed recommendations for inspection, surveillance, trending, and condition monitoring methods to be incorporated in the SRs to better detect age- related degradation of these selected systems and components.

  16. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs.

  17. Analysis of the Production Cost for Various Grades of Biomass Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Robert S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wood, Rick A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Westover, Tyler L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-12-01

    Process flow sheets were developed for the thermal treatment of southern pine wood chips at four temperatures (150, 180, 230, and 270 degrees C) and two different scales (20 and 100 ton/hour). The larger capacity processes had as their primary heat source hot gas assumed to be available in quantity from an adjacent biorefinery. Mass and energy balances for these flow sheets were developed using Aspen Plus process simulation software. The hot gas demands in the larger processes, up to 1.9 million lb/hour, were of questionable feasibility because of the volume to be moved. This heat was of low utility because the torrefaction process, especially at higher temperatures, is a net heat producer if the organic byproduct gases are burned. A thermal treatment flow sheet using wood chips dried in the biorefinery to 10% moisture content (rather than 30% for green chips) with transfer of high temperature steam from the thermal treatment depot to the biorefinery was also examined. The equipment size information from all of these cases was used in several different equipment cost estimating methods to estimate the major equipment costs for each process. From these, factored estimates of other plant costs were determined, leading to estimates (± 30% accuracy) of total plant capital cost. The 20 ton/hour processes were close to 25 million dollars except for the 230 degrees C case using dried wood chips which was only 15 million dollars because of its small furnace. The larger processes ranged from 64-120 million dollars. From these capital costs and projections of several categories of operating costs, the processing cost of thermally treated pine chips was found to be $28-33 per ton depending on the degree of treatment and without any credits for steam generation. If the excess energy output of the two 20 ton/hr depot cases at 270 degrees C can be sold for $10 per million BTU, the net processing cost dropped to $13/ton product starting with green wood chips or only $3 per ton

  18. The thermal waste treatment: A technology for the environment; Termodistruzione dei rifiuti

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, P. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1996-09-01

    The present report is divided into three parts: the first describes the combustion technology and energy recovery process, analyses the most efficient devices to reduce exhaust emissions, examines the environmental effects of emissions and reports economical considerations on the technology. The second part describes the commercial, pre commercial and experimental devices and their appliance sectors. The third part analyses the Italian situation taking into account separately industrial and municipal solid wastes. The aim of the distinction is to define for each stream the problems connected to the diffusion of the thermal waste treatment and the obstacles encountered to obtain information about the existent plant.

  19. Synthesis of salicylaldehyde Schiff base modified Cu nanocrystals by thermal treatment in liquid paraffin

    Science.gov (United States)

    Wen, Yueli; Huang, Wei; Wang, Bin; Fan, Jinchuan; Gao, Zhihua; Yin, Lihua

    2011-11-01

    Cuboid copper nanocrystals were synthesized by thermal treatment in liquid paraffin without any inert gas protection with salicylaldehyde Schiff base copper (II) (Cu (II)-Salen) complex as precursor. Liquid paraffin was used as solvent and reductant. The obtained copper nanocrystals are morphology-controlled and stable when exposed to air for one year. The nanocrystals were characterized by X-ray diffraction measurements (XRD), UV-visible spectroscopy (UV-vis), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FT-IR). The results showed that the stable cuboid copper nanocrystals are synthesized by using Salen as capping agents.

  20. The Effect of Thermal Cycling Treatments on the Thermal Stability and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite

    Directory of Open Access Journals (Sweden)

    Fan Bu

    2016-11-01

    Full Text Available The effect of thermal cycling treatments on the thermal stability and mechanical properties of a Ti48Zr20Nb12Cu5Be15 bulk metallic glass composite (BMGC has been investigated. Results show that moderate thermal cycles in a temperature range of −196 °C (cryogenic temperature, CT to 25 °C (room temperature, RT or annealing time at CT has not induced obvious changes of thermal stability and then it decreases slightly over critical thermal parameters. In addition, the dendritic second phases with a bcc structure are homogeneously embedded in the amorphous matrix; no visible changes are detected, which shows structural stability. Excellent mechanical properties as high as 1599 MPa yield strength and 34% plastic strain are obtained, and the yield strength and elastic modulus also increase gradually. The effect on the stability is analyzed quantitatively by crystallization kinetics and plastic-flow models, and indicates that the reduction of structural relaxation enthalpy, which is related to the degradation of spatial heterogeneity, reduces thermal stability but does not imperatively deteriorate the plasticity.

  1. Aging and corrosion problems of plane thermal solar collectors: literature and field investigations

    Energy Technology Data Exchange (ETDEWEB)

    Wennerholm, H.; Lagerkvist, K.U.

    1979-01-01

    The literature and field investigation will be the basis of a project concerning the development of standardized methods for the test of solar collectors which are used in heating and cooling systems. The literature and field investigations include the study of the construction of plane thermal solar collectors as well as atmospheric degradation processes on different construction materials.

  2. Fluorescence sensor array for identification of commercial milk samples according to their thermal treatments.

    Science.gov (United States)

    Mungkarndee, Radeemada; Techakriengkrai, Ittipon; Tumcharern, Gamolwan; Sukwattanasinitt, Mongkol

    2016-04-15

    Identification of processed milk is of importance for commercial and legal concerns. The fluorescence response patterns induced by fluorophore/protein interactions allow a possible discrimination of processed milk samples corresponding to their thermal treatment. The fluorescence responses of 4 fluorophores upon addition of commercial milk samples in 96-well plate are measured in the range of 400-600 nm using the excitation wavelength at 375 nm. The pattern recognition of the 53,126 fluorescence responses (4 fluorophores×41 wavelengths×4 thermally processed milks×3 brands×3 lots×3 bottles×3 repeats) are analyzed by multivariate statistical methods. Linear discriminant analysis (LDA) successfully recognizes the milk samples according to their thermal processing, i.e. pasteurized milk, sterilized milk, UHT fresh milk and recombined milk (UHT milk having milk powder), with 100% classification accuracy in a cross validation using a leave-one-out technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Emissions of polycyclic aromatic hydrocarbons from thermal pre-treatment of waste hydrodesulfurization catalysts.

    Science.gov (United States)

    Lai, Yi-Chieh; Lee, Wen-Jhy; Huang, Kuo-Lin; Huang, Hong-Hsin

    2007-09-01

    Despite increasing environmental concerns and stringent limitations on the sulfur content in fuels, many waste hydrodesulfurization (HDS) catalysts containing Co, Mo, Ni and V are generated in the petroleum refining process. To recover valuable metals in the waste HDS catalysts via hydrometallurgy, thermal treatment is usually performed first to remove contaminants (residual oil, carbon and sulfur) present on the surface of catalysts. In this study, the mass partitions of polycyclic aromatic hydrocarbons (PAHs) in different media (aqueous, particulate and gaseous) were quantified in order to determine the efficiency of three different air pollution control devices, cooling unit, filter and glass cartridge, on PAH removal. An afterburner and two furnace temperatures were used to observe the effect on the PAH contents of the treated residues. Results show that total-PAH content in treated residues decreased with the pyrolysis temperature of the primary furnace, while those generated in flue gases were destroyed by the afterburner at an efficiency of approximately 95%. In addition, the thermal process converts high molecular weight PAHs to low molecular weight PAHs, and the afterburner temperature involved (1200 degrees C) was high enough to prohibit the generation of high molecular weight PAHs (HM-PAHs), leading to the domination of low molecular weight PAHs (LM-PAHs) in flue gases, while treated residues were dominated by HM-PAHs. Finally, information on metal contents and their concentrations in the Toxicity Characteristic Leaching Procedure in waste HDS catalyst and thermal treated residues are examined as an index of the potential for metal recovery.

  4. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements

    Directory of Open Access Journals (Sweden)

    Georgeta Voicu

    2016-02-01

    Full Text Available In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h followed by rapid cooling in air. The resulted material (clinker was ground for one hour in a laboratory planetary mill (v = 150 rot/min, in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD, scanning electron microscopy (SEM, infrared spectroscopy (FT-IR and thermal analysis (DTA-DTG-TG. The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1 was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2. The compressive strength values were 18.5 MPa (MTA1 and 22.9 MPa (MTA2. Both MTA cements showed good bioactivity (assessed by an in vitro test, good cytocompatibility and stimulatory effect on the proliferation of cells.

  5. Thermal Aging Effects on Residual Stress and Residual Strain Distribution on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The

  6. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  7. Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces

    Science.gov (United States)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-10-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  8. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  9. Effect of Pre-Ageing Thermal Conditions on the Corrosion Properties ...

    African Journals Online (AJOL)

    From the results, the corrosion rate decreases with increasing pre-ageing time and temperatures. Equally, from the linear polarization data/curves, the corrosion rate of the treated alloy decreases at all ageing temperatures along with the ageing time. The Optical Microscope (OM) results of as-corroded samples revealed that ...

  10. Multiplanar MR temperature-sensitive imaging of cerebral thermal treatment using interstitial ultrasound applicators in a canine model.

    Science.gov (United States)

    Kangasniemi, Marko; Diederich, Chris J; Price, Roger E; Stafford, R Jason; Schomer, Donald F; Olsson, Lars E; Tyreus, Per Daniel; Nau, Will H; Hazle, John D

    2002-11-01

    To study the feasibility of an interleaved gradient-echo, echo-planar imaging (iGE-EPI) sequence for multiplanar magnetic resonance temperature imaging (MRTI) to monitor intracerebral thermal treatment three-dimensionally using multielement ultrasound applicators. Transmissible venereal tumor (TVT) fragments were injected into the right cerebral hemisphere of five dogs. Guided by MRI, an interstitial ultrasound applicator was inserted into the tumor or normal brain tissue. The iGE-EPI sequence was used to estimate temperature changes by computing the complex phase-difference induced by temperature-dependent shifts in the proton resonance frequency of water. The thermal dose maps were updated every 6-8 seconds for five to seven image planes during treatment. The results of MRTI were compared with those of post-treatment MRI and histologic analysis. The multiplanar MRTI monitored temperature and thermal dose distributions in tumor and normal brain tissue over the entire user-defined treatment volume. The ultrasound applicators produced contiguous areas of coagulative necrosis, resulting in 1.5-4.0 cm(3) volumes of tissue necrosis. MRTI-based assessments of thermal-dose distributions were consistent with the results of post-treatment MRI and histologic analysis. Multiplanar MRTI is feasible for measuring necrosing thermal doses during intracerebral thermal delivery by interstitial ultrasound applicators. Copyright 2002 Wiley-Liss, Inc.

  11. Anorexia of Aging: Risk Factors, Consequences, and Potential Treatments.

    Science.gov (United States)

    Landi, Francesco; Calvani, Riccardo; Tosato, Matteo; Martone, Anna Maria; Ortolani, Elena; Savera, Giulia; Sisto, Alex; Marzetti, Emanuele

    2016-01-27

    Older people frequently fail to ingest adequate amount of food to meet their essential energy and nutrient requirements. Anorexia of aging, defined by decrease in appetite and/or food intake in old age, is a major contributing factor to under-nutrition and adverse health outcomes in the geriatric population. This disorder is indeed highly prevalent and is recognized as an independent predictor of morbidity and mortality in different clinical settings. Even though anorexia is not an unavoidable consequence of aging, advancing age often promotes its development through various mechanisms. Age-related changes in life-style, disease conditions, as well as social and environmental factors have the potential to directly affect dietary behaviors and nutritional status. In spite of their importance, problems related to food intake and, more generally, nutritional status are seldom attended to in clinical practice. While this may be the result of an "ageist" approach, it should be acknowledged that simple interventions, such as oral nutritional supplementation or modified diets, could meaningfully improve the health status and quality of life of older persons.

  12. Anorexia of Aging: Risk Factors, Consequences, and Potential Treatments

    Science.gov (United States)

    Landi, Francesco; Calvani, Riccardo; Tosato, Matteo; Martone, Anna Maria; Ortolani, Elena; Savera, Giulia; Sisto, Alex; Marzetti, Emanuele

    2016-01-01

    Older people frequently fail to ingest adequate amount of food to meet their essential energy and nutrient requirements. Anorexia of aging, defined by decrease in appetite and/or food intake in old age, is a major contributing factor to under-nutrition and adverse health outcomes in the geriatric population. This disorder is indeed highly prevalent and is recognized as an independent predictor of morbidity and mortality in different clinical settings. Even though anorexia is not an unavoidable consequence of aging, advancing age often promotes its development through various mechanisms. Age-related changes in life-style, disease conditions, as well as social and environmental factors have the potential to directly affect dietary behaviors and nutritional status. In spite of their importance, problems related to food intake and, more generally, nutritional status are seldom attended to in clinical practice. While this may be the result of an “ageist” approach, it should be acknowledged that simple interventions, such as oral nutritional supplementation or modified diets, could meaningfully improve the health status and quality of life of older persons. PMID:26828516

  13. Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water

    Science.gov (United States)

    Li, Shilei; Wang, Yanli; Wang, Hui; Xin, Changsheng; Wang, Xitao

    2016-02-01

    The stress corrosion cracking (SCC) behavior of cast austenitic stainless steels of unaged and thermally aged at 400 °C for as long as 20,000 h were studied by using a slow strain rate testing (SSRT) system. Spinodal decomposition in ferrite during thermal aging leads to hardening in ferrite and embrittlement of the SSRT specimen. Plastic deformation and thermal aging degree have a great influence on the oxidation rate of the studied material in simulated PWR primary water environments. In the SCC regions of the aged SSRT specimen, the surface cracks, formed by the brittle fracture of ferrite phases, are the possible locations for SCC. In the non-SCC regions, brittle fracture of ferrite phases also occurs because of the effect of thermal aging embrittlement.

  14. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation.

    Science.gov (United States)

    Nazari, Laleh; Yuan, Zhongshun; Santoro, Domenico; Sarathy, Siva; Ho, Dang; Batstone, Damien; Xu, Chunbao Charles; Ray, Madhumita B

    2017-04-15

    The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p effect for temp. pH 2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (k hyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microstructure and mechanical properties of a microalloyed steel after thermal treatments

    Directory of Open Access Journals (Sweden)

    André Barros Cota

    2003-06-01

    Full Text Available The properties of a microalloyed steel, with Nb and V in its composition, were studied, after different intercritical thermal treatments and at different austenitizing and tempering temperatures. The mechanical properties of the specimens were measured in a Vickers hardness tester, and their microstructures were analyzed by optical microscopy, with the aid of a digital image processor. After austenitizing at 1100 °C and tempering at 625 °C, the samples showed significantly higher tempering resistance, reflected by their retention of high hardness, which may be associated with a secondary hardening precipitation of Nb carbon nitrides. In the sample with dual-phase microstructure, the martensite volume fraction varied from 18.2 to 26.3% and the ferrite grain size remained unchanged, upon the variation of the time length of the intercritical treatments. Tempered samples showed Vickers hardness (HVN varying from 327 to 399, and dual-phase samples showed HVN from 362 to 429.

  16. Treatment of gastric cancer cells with non-thermal atmospheric plasma generated in water

    CERN Document Server

    Chen, Zhitong; Cheng, Xiaoqian; Gjika, Eda; Keidar, Michael

    2016-01-01

    Non-thermal atmospheric plasma (NTAP) can be applied to living tissues and cells as a novel technology for cancer therapy. Even though studies report on the successful use of NTAP to directly irradiate cancer cells, this technology can cause cell death only in the upper 3-5 cell layers. We report on a NTAP argon solution generated in DI water for treating human gastric cancer cells (NCl-N87). Our findings showed that the plasma generated in DI water during a 30-minute treatment had the strongest affect in inducing apoptosis in cultured human gastric cancer cells. This result can be attributed to presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced in water during treatment. Furthermore, the data showed that elevated levels of RNS may play an even more significant role than ROS in the rate of apoptosis in gastric cancer cells.

  17. Trends in Substances of Abuse among Pregnant Women and Women of Childbearing Age in Treatment

    Science.gov (United States)

    ... Episode Data Set (TEDS), the proportion of female substance abuse treatment admissions aged 15 to 44 who were pregnant ... see http: / / store. samhsa. gov/ product/ TIP- 51- Substance- Abuse- Treatment- Addressing- the- Specific- Needs- of- Women/ SMA12- 4426. ...

  18. Synthesis and characterization of CdSe nanoparticles via thermal treatment technique

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    Full Text Available The synthesis of CdSe nanoparticles was undertaken via the thermal treatment method at varying calcination temperatures from 450 to 700 °C in alternate oxygen and nitrogen environment. Selenium powder was dissolved in ethylenediamine at 200 °C for 2 h before mixing with the metal precursor, cadmium nitrate and the capping agent polyvinylpyrrolidone to materialize the CdSe nanoparticles upon calcination. A series of measurements were employed to analyze the structural, elemental and optical properties of the attained nanoparticles at room temperatures using FTIR, XRD, EDX, SEM and TEM spectroscopies. XRD patterns and FTIR spectra revealed of the fact that, prior to calcination, an amorphous phase of the unheated material has taken shape, which after calcination achieved the crystalline structure of CdSe nanoparticles. The CdSe nanoparticle samples confirmed to be pure cadmium and selenium through EDX and FTIR analyses. The TEM images showed that as the calcination temperature raised from 450 to 700 °C the average particle size increased from 11 to 32 nm and the optical band gap energy decreased from 2.36 to 1.80 eV. Keywords: Cadmium selenide nanoparticles, Thermal treatment method, Structural and optical properties

  19. Study of Cd Te recrystallization by hydrated-CdCl{sub 2} thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez V, C.; Albor A, M. L.; Galarza G, U.; Aguilar H, J. R. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico); Gonzalez T, M. A. [IPN, Escuela Superior de Computo, Nueva Industrial Vallejo, 07738 Ciudad de Mexico (Mexico); Flores M, J. M. [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria en Metalurgia y Materiales, Nueva Industrial Vallejo, 07738 Ciudad de Mexico (Mexico); Jimenez O, D. [IPN, Escuela Superior de Ingenieria Mecanica y Electrica, SEPI, Nueva Industrial Vallejo, 07738 Ciudad de Mexico (Mexico)

    2017-11-01

    Cd Te thin films solar cells are currently produced using a layer sequence of glass/FTO/CdS/Cd Te/metal contact (Cu/Ag), these films are deposited by two different techniques, chemical bath deposition (CBD) and close space vapour transport (CSVT). In order to reach reasonable conversion efficiencies, the device has to be thermally treated in a hydrated-CdCl{sub 2} atmosphere. This study was carried out using X-ray diffraction (XRD), photoluminescence, Sem-EDS, four probe method and Sims profiling of Cd Te. These analyses confirm the presence of hydrated CdCl{sub 2} and Cd Te phases on Cd Te surface and shown a good recrystallization morphology helping to the carriers mobility along the structure. Using the thermal treatment was possible to reduce the resistivity of Cd Te thin film; it is a result to the Cl migration along the Cd Te solar cell structure, reducing the defects between CdS and Cd Te thin films. A strong Cd Te thin film recrystallization was observed by the implementation of a hydrated-CdCl{sub 2} treatment doing to this a good candidate to Cd Te solar cells process. (Author)

  20. Economic aspects of thermal treatment of solid waste in a sustainable WM system

    Energy Technology Data Exchange (ETDEWEB)

    Massarutto, Antonio

    2015-03-15

    Highlights: • Provides a comprehensive review of the applied economic literature dedicated to WtE. • Offers a detailed discussion of the main assumptions that characterize alternative positions. • Highlights the most robust achievements obtained by the applied economic research in this field. • Compares economic and non-economic valuation techniques. - Abstract: This paper offers a systematic review of the literature of the last 15 years, which applies economic analysis and theories to the issue of combustion of solid waste. Waste incineration has attracted the interest of economists in the first place concerning the comparative assessment of waste management options, with particular reference to external costs and benefits. A second important field of applied economic research concerns the market failures associated with the provision of thermal treatment of waste, that justify some deviation from the standard competitive market model. Our analysis discusses the most robust achievements and the more controversial areas. All in all, the economic perspective seems to confirm the desirability of assigning a prominent role to thermal treatments in an integrated waste management strategy. Probably the most interesting original contribution it has to offer concerns the refusal of categorical assumptions and too rigid priority ladders, emphasizing instead the need to consider site-specific circumstances that may favor one or another solution.

  1. Effect of radiation sickness on the progress and treatment of mechanical and thermal injuries. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.

    1964-04-01

    It has been estimated that 70 or 75% of persons exposed to atomic weapons would suffer mechanical and thermal injuries, and that 30% receive radiation injuries. Of the total persons injured, 75% would suffer combinations of these injuries. As a result the various injurious agents, complexes of injury conditions, would be observed. These include leukopenia and impaired resistance to infection, shortened delay in appearance o irradiation symptoms, intensified evidence of shock, and an increased tendency toward hemorrhage, with increased sensitivity to blood loss. The author discusses a wide range of general and specific medical procedures and drugs that can be used to treat and support recovery of persons with combined radiation and mechanical or thermal injuries. Some general treatment procedures include absolute isolation and rest, special dietetic supplementation, strict medical supervision to prevent acute hemorrhage or circulatory failure, and parenteral administration of fluids. Other special measures include treatment of the primary reactions to injury by antihistamines, sedatives, antibiotics, hormones, support of circulation, blood transfusions, etc.

  2. Effect of Microwave Treatment on Microbial Contamination of Honeys and on Their Physicochemical and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Paz Moliné María de la

    2015-06-01

    Full Text Available In recent years, microwave heating has become a common method for pasteurization and sterilization of food. Honey is a sweet substance produced by worker honeybees from nectar of flowers. The major microbial contaminants include moulds and yeasts, as well as the spore-forming bacteria, being their counts indicative of honeys’ commercial quality and safety. Paenibacillus larvae is also of interest since it causes American foulbrood (AFB in honeybee larvae. The main quality factors that are used in the honey international trade are moisture, hydroxymethylfurfural content (HMF, and enzymatic indices. Moreover, honey exhibits several thermal events, the most important being the glass transition temperature (Tg. The aim of this work was to evaluate microwave effect (800 watts during 45 and 90 seconds on microbial content in particular over P. larvae spores retained in honey, and on physicochemical and thermal properties. Microwave promoted a decrease of microbial count with time of exposure, including P. larvae. Moisture content diminished after treatment, while Tg increased linearly, and acidity decremented in the majority of cases. Honeys darkened and HMF exceeded the permissible value. Diastase and glucose-oxidase enzymes were totally inactivated by microwave treatment.

  3. Pediatric Thermal Burns and Treatment: A Review of Progress and Future Prospects.

    Science.gov (United States)

    Mathias, Elton; Srinivas Murthy, Madhu

    2017-12-11

    Burn injuries are a devastating critical care problem. In children, burns continue to be a major epidemiologic problem around the globe resulting in significant morbidity and death. Apparently, treating these burn injuries in children and adults remains similar, but there are significant physiological and psychological differences. The dermal layer of the skin is generally thinner in neonates, infants, and children than in adults. Enhanced evaporative loss and need for isotonic fluids increases the risk of hypothermia in the pediatric population. The pain management of the children with major burns challenges the skills of the personnel of every unit. Managing these wounds requires intensive therapeutic treatment for multi-organ dysfunction, and surgical treatment to prevent sepsis and other complications that further delay wound closure. Alternatives to the practice of donor site harvest and autografting for the treatment of severe burns and other complex skin defects are urgently needed for both adult and pediatric populations. This review article focuses on thermal burn pathophysiology and pain management and provides an overview of currently approved products used for the treatment of pediatric burn wounds. A new promising approach has been presented as a first-line therapy in the treatment of burns to reduce surgical autografting in pediatric patients.

  4. Pediatric Thermal Burns and Treatment: A Review of Progress and Future Prospects

    Directory of Open Access Journals (Sweden)

    Elton Mathias

    2017-12-01

    Full Text Available Burn injuries are a devastating critical care problem. In children, burns continue to be a major epidemiologic problem around the globe resulting in significant morbidity and death. Apparently, treating these burn injuries in children and adults remains similar, but there are significant physiological and psychological differences. The dermal layer of the skin is generally thinner in neonates, infants, and children than in adults. Enhanced evaporative loss and need for isotonic fluids increases the risk of hypothermia in the pediatric population. The pain management of the children with major burns challenges the skills of the personnel of every unit. Managing these wounds requires intensive therapeutic treatment for multi-organ dysfunction, and surgical treatment to prevent sepsis and other complications that further delay wound closure. Alternatives to the practice of donor site harvest and autografting for the treatment of severe burns and other complex skin defects are urgently needed for both adult and pediatric populations. This review article focuses on thermal burn pathophysiology and pain management and provides an overview of currently approved products used for the treatment of pediatric burn wounds. A new promising approach has been presented as a first-line therapy in the treatment of burns to reduce surgical autografting in pediatric patients.

  5. Effect of ageing treatment on wear properties and electrical ...

    Indian Academy of Sciences (India)

    After the ageing processes, all samples were characterized in terms of electrical conductivity, scanning electron microscope (with energy dispersive X-ray spectrum ... Technical Education Faculty, Department of Machine Education, Karabuk University, Karabük 078100, Turkey; Department of Metal Education, Karabuk ...

  6. Conjectures Concerning Cross-Sex Hormone Treatment of Aging Transsexual Persons

    NARCIS (Netherlands)

    Gooren, L.; Lips, P.T.A.M.

    2014-01-01

    Introduction: Guidelines for cross-sex hormone treatment of transsexual people are now in place. However, little attention has been paid to the issue of treatment suitability for older people. Does existing treatment need to be adapted as subjects age, and does it make a difference if treatment is

  7. Cardiovascular genetic assessment and treatment in middle age to ...

    African Journals Online (AJOL)

    Assessment and treatment of cardiovascular disease (CVD) risk factors as a preventable cause of cognitive decline, morbidity and mortality is an important clinical goal. The apolipoprotein E (Apo E) gene provides a genetic link between CVD and the development of Alzheimer's disease (AD). The E4 allele increases the risk ...

  8. Group Treatment of Sexually Abused Latency-Age Girls.

    Science.gov (United States)

    Zaidi, Lisa Y.; Gutierrez-Kovner, Victoria M.

    1995-01-01

    Describes a pilot group developed to address the traumagenic stigmatization, powerlessness, betrayal, and sexualization that characterize victims of sexual abuse. Treatment modules developed within this framework focused on: group cohesiveness, discussion of specific abuse experiences, coping strategies, sexuality, victimization prevention, and…

  9. Influence of age and formalin treatment on the chemical composition ...

    African Journals Online (AJOL)

    The chemical composition and in vitro dry-matter digestibility (IVDMD) of manure collected from steers fed ... Formalin treatment under these conditions negatively influenced the chemical composition and IVDMD of these parameters with respect to nutritive value. .... value comparable to that of heat-damaged haylage.

  10. Ultrasonic Sensor Signals and Optimum Path Forest Classifier for the Microstructural Characterization of Thermally-Aged Inconel 625 Alloy

    Directory of Open Access Journals (Sweden)

    Victor Hugo C. de Albuquerque

    2015-05-01

    Full Text Available Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 \\(^\\circ\\C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms and accurate (accuracy of 88.75% and harmonic mean of 89.52 for the application proposed.

  11. Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy.

    Science.gov (United States)

    de Albuquerque, Victor Hugo C; Barbosa, Cleisson V; Silva, Cleiton C; Moura, Elineudo P; Filho, Pedro P Rebouças; Papa, João P; Tavares, João Manuel R S

    2015-05-27

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75%" and harmonic mean of 89.52) for the application proposed.

  12. Effect of Thermal Fields on the Structure of Corrosion-Resistant Steels Under Different Modes of Laser Treatment

    Science.gov (United States)

    Tarasova, T. V.; Gusarov, A. V.; Protasov, K. E.; Filatova, A. A.

    2017-11-01

    The influence of temperature fields on the structure and properties of corrosion-resistant chromium steels under different modes of laser treatment is investigated. A model of heat transfer under laser impact on target is used to plot thermal fields and cycles and cooling rates. It is shown that the model used for computing thermal fields gives tentative geometric sizes of the fusion zones under laser treatment and selective laser fusion. The cooling rate is shown to have decisive influence on the structure of corrosion-resistant steels after laser treatment with surface fusion in devices for pulsed, continuous, and selective laser melting.

  13. Improvement of biomaterials used in tissue engineering by an ageing treatment.

    Science.gov (United States)

    Acevedo, Cristian A; Díaz-Calderón, Paulo; Enrione, Javier; Caneo, María J; Palacios, Camila F; Weinstein-Oppenheimer, Caroline; Brown, Donald I

    2015-04-01

    Biomaterials based on crosslinked sponges of biopolymers have been extensively used as scaffolds to culture mammal cells. It is well known that single biopolymers show significant change over time due to a phenomenon called physical ageing. In this research, it was verified that scaffolds used for skin tissue engineering (based on gelatin, chitosan and hyaluronic acid) express an ageing-like phenomenon. Treatments based on ageing of scaffolds improve the behavior of skin-cells for tissue engineering purposes. Physical ageing of dry scaffolds was studied by differential scanning calorimetry and was modeled with ageing kinetic equations. In addition, the physical properties of wet scaffolds also changed with the ageing treatments. Scaffolds were aged up to 3 weeks, and then skin-cells (fibroblasts) were seeded on them. Results indicated that adhesion, migration, viability, proliferation and spreading of the skin-cells were affected by the scaffold ageing. The best performance was obtained with a 2-week aged scaffold (under cell culture conditions). The cell viability inside the scaffold was increased from 60% (scaffold without ageing treatment) to 80%. It is concluded that biopolymeric scaffolds can be modified by means of an ageing treatment, which changes the behavior of the cells seeded on them. The ageing treatment under cell culture conditions might become a bioprocess to improve the scaffolds used for tissue engineering and regenerative medicine.

  14. Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration

    DEFF Research Database (Denmark)

    Hecksher, Tina; Olsen, Niels Boye; Niss, Kristine

    2010-01-01

    Aging to the equilibrium liquid state of organic glasses is studied. The glasses were prepared by cooling the liquid to temperatures just below the glass transition. Aging following a temperature jump was studied by measuring the dielectric loss at a fixed frequency using a microregulator in which...... temperature is controlled by means of a Peltier element. Compared to conventional equipment, the new device adds almost two orders of magnitude to the span of observable aging times. Data for the following five glass-forming liquids are presented: dibutyl phthalate, diethyl phthalate, 2,3-epoxy propyl......-phenyl-ether, 5-polyphenyl-ether, and triphenyl phosphite. The aging data were analyzed using the Tool–Narayanaswamy formalism. The following features are found for all five liquids: (1) The liquid has an “internal clock,” a fact that is established by showing that aging is controlled by the same material time...

  15. Effect of thermal aging conditions on the corrosion properties and hardness of a duplex stainless steel

    Directory of Open Access Journals (Sweden)

    José Eduardo May

    2010-12-01

    Full Text Available The corrosion properties of a 22.5 wt. (% Cr duplex stainless steel were investigated after long-term aging of 3000, 5000 and 7000 hours at 300 and 400 ºC. The corrosion resistance was measured based on mass loss in a FeCl3 10 wt. (% solution and electrochemical measurements in a 0.1 M H2SO4 solution. The results indicate that the corrosion resistance decreased steadily up to 5000 hours of aging. However, the samples subjected to 7000 hours of aging showed better corrosion resistance than those aged for 3000 and 5000 hours. This effect is attributed to the phase transformation that occurs during aging, a finding which was confirmed by hardness, transmission electron microscopy and X-ray photoelectron spectroscopy measurements.

  16. Thermal treatments of solid wastes. Different strategies for related pollutant management

    Energy Technology Data Exchange (ETDEWEB)

    Nicolella, C.; Convertti, A.; Rovatti, M. [Genoa Univ. (Italy); Boschi, R.; Cozzani, V.; Tognotti, L. [Pisa Univ. (Italy). Dept. of Chemistry Engineering

    1995-12-31

    Thermal treatment of solid wastes present different advantages/disadvantages as far as recovery and emissions concerns. They provide a captive energy source; reduce the quantity of waste to be landfilled; there are limited by-product and pollutant generating problems. Combined treatment of solid wastes (incineration, pyrolysis, gasification) have been considered to evaluate the energy recovery as well as the quality and the amount of pollutants potentially generated by the combined processes. Direct incineration of MSW, RDF or specific industrial wastes represents a viable, definitive, low environmental impact solution for most refuses. Treatment of emissions can be efficiently achieved by dry or wet processes. Nowadays abatement technologies are able to provide emissions within the guidelines of EEC countries. Problems arise when wastes contain large amount of chlorinated compounds (for example PVC) and/or heavy rentals: incineration may be not best way to be pursued. The general aim of the research program carried out by ISTIC (Genova), and Department of Chemical Engineering (Pisa) is to gain fundamental information on pyrolysis of refuse materials and to study the possible industrial application of these processes. Possible solutions have been studied in terms of material and energy balances, in order to verify the feasibility of combined treatments. Here, preliminary results are given on a two-stage process (low temperature pyrolysis (LTP) followed by incineration or gasification/pyrolysis) for treating specific wastes. (author)

  17. Mechanical, thermal and morphological properties of glutaraldehyde crosslinked bovine pericardium followed by glutamic acid treatment

    Directory of Open Access Journals (Sweden)

    Gilberto Goissis

    2009-03-01

    Full Text Available Major problems with valve bioprostheses are associated with progressive structural deterioration and calcification, directly associated with the use of glutaraldehyde (GA. This work describes the effects of GA processing and borate/glutamic acid buffer treatment on the mechanical, thermal and morphological properties of 0.5% GA crosslinked bovine pericardium (BP. The results showed that while the treatment of 0.5% GA crosslinked BP with borate/glutamic acid significantly improves the mechanical properties, it had no visible effect on surface morphology. Better surface preservation was only achieved for BP pre-treated with a lower GA concentration followed by the conventional treatment (0.5% GA. Improvements in mechanical properties probably arises from structural changes probably involving the depolymerization of polymeric GA crosslinks and an increase electrostatic interaction due to covalent binding of glutamic acid to free carbonyl groups (Schiff base.The results indicate that the treatment GA crosslinked BP with borate/glutamic acid buffer may be an attractive procedure for the manufacture of heart valve bioprostheses.

  18. Transition phases of zeolite Faujasite type to Sodalite by thermal treatment

    Directory of Open Access Journals (Sweden)

    Katia K. Kaminishikawahara

    2015-10-01

    Full Text Available The zeolites can have several functions as catalysts (biofuel production and molecular sieves (treatment of contaminated areas. This study aims to characterize the zeolites obtained in the transition of a Faujasite like zeolite into a Sodalite, when submitted to different thermal treatment times. The synthesized zeolites were characterized by X-ray diffraction where the crystalline phases were identified: Faujasite, Sodalite, SiO2 and amorphous material. The 4 hours heat treatment produces zeolite crystal structure similar to Faujasite, having basic sites, surface area of 552.7 m2 g-1 , and pore volume of 0.3391 cm3 g-1. With increasing time of heat treatment was observed the transition to the Sodalite phase witch containing 0.277 mmol g-1 of basic active sites with surface area of 11.38 m2 g-1 and pore volume of 0.0651 cm3 g-1. By the Rietveld method was identified and quantified the presence of Sodalite and Hidrossodalite in samples with 24 and 30 hours of reaction times.

  19. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications.

    Science.gov (United States)

    Jiménez-Sánchez, Cecilia; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2017-02-11

    This paper provides an overview of alternatives to conventional thermal treatments and a review of the literature on fruit-juice processing for three key operations in fruit-juice production such as microbial inactivation, enzyme inactivation, and juice yield enhancement, these being radiation treatments (UV light, high-intensity light pulses, γ-irradiation), electrical treatments (pulsed electric fields, radiofrequency electric fields, ohmic heating), microwave heating, ultrasound, high hydrostatic pressure, inert gas treatments (supercritical carbon dioxide, ozonation), and flash-vacuum expansion. The nonthermal technologies discussed in this review have the potential to meet industry and consumer expectations. However, the lack of standardization in operating conditions hampers comparisons among different studies, and consequently ambiguity arises within the literature. For the juice industry to advance, more detailed studies are needed on the scaling-up, process design, and optimization, as well as on the effect of such technologies on juice quality of juices in order to maximize their potential as alternative nonthermal technologies in fruit-juice processing.

  20. Application of low-temperature thermal treatment for the reduction of mercury content in coal

    Directory of Open Access Journals (Sweden)

    Wichliński Michał

    2016-01-01

    Full Text Available The article describes research carried out on four coals samples (raw coals A and B and enriched coals A and B. The fuels were subjected to low-temperature thermal treatment in order to remove as much mercury as possible while still maintaining high energy quality of the fuels. The lab-scale tests were performed in a fluidized bed column and for chosen coal fraction 500-1000µm. Air and a mixture of carbon dioxide (16% and nitrogen (the rest were used as the fluidizing medium that as intended to have similar composition as the synthetic flue gas. The coals were tested for five temperatures of 200, 250, 300, 350 and 400°C.The results indicated that it was possible to remove more than 80% of mercury from coal A (raw and enriched, in CO2/N2 atmosphere at the temperature of 400°C in the case of coal B, both raw and enriched, the amount of removed mercury at 400°C was roughly 70%. At lower temperature, 350°C, the amount of removed mercury was 70% and 60% for coals A and B, respectively. Apart from the above test the investigation were also carried out in order to determine the loss of volatiles during the thermal treatment of the coals. The results indicated that at 400°C roughly 20% of the volatiles were evolved from the fuel particles. The loss of elemental carbon and fuel higher heating value (HHV after the treatment were 10% and 8%, respectively.

  1. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  2. Age, lighting treatment, feed allocation and feed form influence ...

    African Journals Online (AJOL)

    On five occasions, when the hens were 39, 40, 41, 45 and 54 weeks old, the time taken by the hens to consume all their feed was measured and scaled to min/100 g consumed. Hens learned to consume the feed more rapidly as the laying period progressed. The mean clean-up time over all treatments was 67.7, 62.1, 63.4, ...

  3. Natural and artificial ageing for evaluating waterproofing treatments for marble

    Directory of Open Access Journals (Sweden)

    Mecchi, Anna María

    1992-06-01

    Full Text Available Exposure of samples to artificial ageing is commonly carried out to test the durability of natural and artificial stones and the effectiveness of products used for their conservation. Correlations between artificial and natural ageing, however, are not always well understood mainly because the former can only try to simulate, in a faster but simplified way, the effects of the many causes interacting ín natural environments. In the present study, marble samples from Carrara and Proconnesion quarries, were treated with four waterproofing products (or mixtures of products and exposed to artificial ageing while an analogous set was exposed outdoor, in the town center of Rome for two years. Several physical parameters were measured before and after the ageing and the experimental results enabled us to compare the effects produced by the different types of ageing and to estimate the correlations between them. As for the durability of the tested waterproofing products, the two systems are in good agreement even if two years of natural ageing resulted to be slightly more severe than 33 days of exposure to saline fog, to UV radiation and to wetting-drying cycles.

    La exposición de muestras a envejecimiento artificial se lleva a cabo comúnmente para chequear la duración de las piedras naturales y artificiales y la eficacia de los productos usados para su cuidado. Las correlaciones entre el envejecimiento artificial y natural, sin embargo, no siempre se entienden bien principalmente porque el envejecimiento trata de simular, de una manera rápida pero sencilla, los efectos de las muchas causas que actúan en el ambiente natural. En este estudio, muestras de mármol de las canteras de Carrara y Proconnesio, han sido tratadas con cuatro productos o mezclas de productos, para su impermeabilización y expuestos a envejecimiento artificial. Mientras, un juego análogo de piedras se exponía al exterior en el centro de la ciudad de Roma, por un

  4. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants.

    Science.gov (United States)

    Oleszek, Sylwia; Grabda, Mariusz; Shibata, Etsuro; Nakamura, Takashi

    2013-09-01

    The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000°C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Usefulness of ultrasonic strain measurement-based shear modulus reconstruction for diagnosis and thermal treatment.

    Science.gov (United States)

    Sumi, Chikayoshi

    2005-10-01

    We previously reported an ultrasonic strain measurement-based one-dimensional (1-D) shear modulus reconstruction technique using a regularization method for differential diagnosis of malignancies on human superficial tissues (e.g., breast tissues). Here, ultrasonic strain measurement-based 2-D and 3-D shear modulus reconstruction techniques are described, and the 1-D technique is reviewed and subsequently applied to various human in vivo tissues, including deeply situated tissues (e.g., liver). Because soft tissues are deformed in 3-D space by externally situated arbitrary mechanical sources, the accuracy of the low-dimensional (i.e., 1-D or 2-D) reconstructions is lower to that of 3-D reconstruction due to occurrence of erroneous reconstruction artifacts (i.e., the reconstructed modulus is different than reality). These artifacts are confirmed on simulated inhomogeneous cubic phantoms containing a spherical homogenous inclusion using numerically calculated deformation data. The superiority of quasi-real-time imaging of the shear modulus is then demonstrated by comparing it with conventional B-mode imaging and strain imaging from the standpoints of monitoring the effectiveness of minimally invasive thermal therapy as well as differential diagnosis. Because the 2-D and 3-D techniques require special ultrasonic (US) equipment, the 1-D technique using conventional US imaging equipment is used, even though erroneous artifacts will occur. Specifically, the 1-D technique is applied as a diagnostic tool for differentiating malignancies in human in vivo liver and breast tissue, and a monitoring technique for determining the effectiveness of interstitial electromagnetic wave (micro and rf) thermal therapy on human in vivo liver and calf in vitro liver. Even when using the 1-D technique, reconstructed shear moduli were confirmed to be a suitable measure for monitoring thermal treatment as well as differential diagnosis. These results are encouraging in that they will promote

  6. Antiamnesic effect of combined treatment with galantamine and estradiol in middle-aged ovariectomized female rats.

    Science.gov (United States)

    Losev, N A; Fedotova, Yu O; Sapronov, N S

    2006-04-01

    The effect of chronic combined treatment with galantamine and 17beta-estradiol on passive avoidance retention was studied in middle-aged ovariectomized female rats (15 months) with scopolamine-induced amnesia. Combined treatment with galantamine and estradiol completely restored retrieval of memory traces in middle-aged ovariectomized female rats.

  7. EFFECT OF HEAT TREATMENT ON THERMAL PROPERTIES OF PITCH-BASED AND PAN-BASED CARBON-CARBON COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Sardar S. [Southern Illinois University; Dinwiddie, Ralph Barton [ORNL; Porter, Wallace D [ORNL; Lance, Michael J [ORNL; Fillip, Peter [Southern Illinois University

    2011-01-01

    Thermal properties of two directional (2D) pitch-based carbon fiber with charred resin and three directional (3D) PAN-based carbon fiber with CVI carbon matrix C/C composite were investigated for non-heat treated (NHT) and heat treated (HT) materials through the thickness (z-direction). Heat treatment was performed at 1800, 2100 and 2400 oC for 1-hr in inert argon atmosphere. Thermal diffusivity, heat capacity and bulk density were measured to calculate thermal conductivity. Thermal diffusivity and conductivity was the highest for 3D C/C heat treated at maximum temperature with non-heat treated one exhibiting the lowest one. Similarly, 2D C/C heat treated at maximum temperature exhibited the highest thermal diffusivity and thermal conductivity. Polarized light microscopy (PLM) images of HTT C/C show a progressive improvement in microstructure when compared to NHT C/C. However, HTT 2D and 3D C/C composites exhibited extensive shrinkage of charred resin and CVI carbon matrix, respectively, from fibers resulting in intra and inter-bundles cracking when compared to NHT one. Raman spectroscopy and XRD results of NHT and HTT C/C indicated increased ordering of structure. A progressive improvement in thermal properties was observed with increased heat treatment temperatures.

  8. Time and chemotherapy treatment trends in the treatment of elderly patients (age ?70 years) with small cell lung cancer

    OpenAIRE

    Yau, T; Ashley, S; Popat, S; Norton, A.; Matakidou, A; Coward, J; O'Brien, M E R

    2006-01-01

    Platinum-based treatment for small cell lung cancer (SCLC) has been established since 1995. This study investigates treatment outcome of elderly patients (age ?70 years) with SCLC over the past 20 years in a large UK cancer centre. Comparison of all-cause survival was assessed in patients presenting between two predefined time periods: 1982?1994 and 1995?2003. All the survival analysis were adjusted for stage and performance status and age if appropriate. Survival between different chemothera...

  9. ANTIOXIDANT SUPPLEMENTATION IN THE TREATMENT OF AGING-ASSOCIATED DISEASES

    Directory of Open Access Journals (Sweden)

    Valeria eConti

    2016-02-01

    Full Text Available Oxidative stress is generally considered an imbalance between pro- and antioxidants species, which often results into indiscriminate and global damage at the organismal level. Elderly people are more susceptible to oxidative stress and this depends, almost in part, from a decreased performance of their endogenous antioxidant system. As many studies reported an inverse correlation between systemic levels of antioxidants and several diseases, primarily cardiovascular diseases, but also diabetes and neurological disorders, antioxidant supplementation has been foreseen as an effective preventive and therapeutic intervention for aging-associated pathologies. However, the expectations of this therapeutic approach have often been partially disappointed by clinical trials. The interplay of both endogenous and exogenous antioxidants with the systemic redox system is very complex and represents an issue that is still under debate. In this review a selection of recent clinical studies concerning antioxidants supplementation and the evaluation of their influence in aging-related diseases is analyzed. The controversial outcomes of the antioxidants supplementation therapy that might partially depend, among others, from an underestimation of the patient specific metabolic demand and genetic background, are presented.

  10. Investigation on thermal oxidative aging of nitrile rubber (NBR) O-rings under compression stress

    Science.gov (United States)

    Liu, X. R.; Zhang, W. F.; Lou, W. T.; Huang, Y. X.; Dai, W.

    2017-11-01

    The degradation behaviors of nitrile rubber O-rings exposure to air under compression were investigated at three elevated temperatures. The physical and mechanical properties of the aging samples before and after exposure at selected time were studied by measuring weight loss, tensile strength and elongation at break. The Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and fracture morphology were used to reveal the microstructural changes of the aging samples. The results indicate that the weight decreased with exposure time and temperature. Based on the results of the crosslinking density, the crosslinking predominates during the most of aging process. The significant changes in tensile strength and elongation at break also indicate the severe degradation in air. The fracture morphology results show that the fracture surface after 64 days of exposure to air turns rough and present defects. The ATR-FTIR results demonstrate that the hydroxyl groups were formed for the samples aged in air.

  11. Mutagenicity of an aged gasworks soil during bioslurry treatment.

    Science.gov (United States)

    Lemieux, Christine L; Lynes, Krista D; White, Paul A; Lundstedt, Staffan; Oberg, Lars; Lambert, Iain B

    2009-06-01

    This study investigated changes in the mutagenic activity of organic fractions from soil contaminated with polycyclic aromatic hydrocarbons (PAHs) during pilot-scale bioslurry remediation. Slurry samples were previously analyzed for changes in PAH and polycyclic aromatic compound content, and this study examined the correspondence between the chemical and toxicological metrics. Nonpolar neutral and semipolar aromatic fractions of samples obtained on days 0, 3, 7, 24, and 29 of treatment were assayed for mutagenicity using the Salmonella mutation assay. Most samples elicited a significant positive response on Salmonella strains TA98, YG1041, and YG1042 with and without S9 metabolic activation; however, TA100 failed to detect mutagenicity in any sample. Changes in the mutagenic activity of the fractions across treatment time and metabolic activation conditions suggests a pattern of formation and transformation of mutagenic compounds that may include a wide range of PAH derivatives such as aromatic amines, oxygenated PAHs, and S-heterocyclic compounds. The prior chemical analyses documented the formation of oxygenated PAHs during the treatment (e.g., 4-oxapyrene-5-one), and the mutagenicity analyses showed high corresponding activity in the semipolar fraction with and without metabolic activation. However, it could not be verified that these specific compounds were the underlying cause of the observed changes in mutagenic activity. The results highlight the need for concurrent chemical and toxicological profiling of contaminated sites undergoing remediation to ensure elimination of priority contaminants as well as a reduction in toxicological hazard. Moreover, the results imply that remediation efficacy and utility be evaluated using both chemical and toxicological metrics.

  12. Epidemiology and treatment of eating disorders in men and women of middle and older age.

    Science.gov (United States)

    Mangweth-Matzek, Barbara; Hoek, Hans W

    2017-11-01

    We summarized recent literature on the epidemiology and treatment of eating disorders in middle-aged and older women and men. The prevalence of eating disorders according to DSM-5 criteria is around 3.5% in older (>40 years) women and around 1-2% in older men. The majority of those eating disordered persons are not in treatment. There are new terms like 'perimenopausal eating disorders' and 'muscularity-oriented eating disorders' indicating the impact of the aging process and sex-specific differences. Disordered eating and eating disorders occur in both women and men of all ages. Medical complications because of age, the stigma of eating disorders in a still 'untypical' age, and the glorification of sports activity often hinder the recognition of eating disorders in midlife and older persons. Treatment approaches should consider treatment strategies tailored for older women and men, addressing the context of midlife and aging.

  13. Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment.

    Science.gov (United States)

    Christel, Wibke; Bruun, Sander; Magid, Jakob; Jensen, Lars Stoumann

    2014-10-01

    The alteration of easily available phosphorus (P) from the separated solid fraction of pig slurry by composting and thermal processing (pyrolysis or combustion at 300-1000 °C) was investigated by water and acidic extractions and the diffusive gradients in thin films (DGT) technique. Temporal changes in P availability were monitored by repeated DGT application in three amended temperate soils over 16 weeks. P availability was found to decrease in the order: drying>composting>pyrolysis>combustion with increasing degree of processing. Water extractions suggested that no P would be available after pyrolysis above 700 °C or combustion above 400 °C, respectively, but during soil incubation, even char and ash, processed at 800 °C, increased P availability. Low-temperature pyrolysis vs. combustion was found to favor P availability as did application to acidic vs. neutral soil. Composting and thermal treatment produced a slow-release P fertilizer, with P availability being governed by abiotic and biotic mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment.

    Science.gov (United States)

    Zhao, C; Mumford, K G; Kueper, B H

    2014-08-01

    In situ thermal treatment technologies, such as electrical resistance heating and thermal conductive heating, use subsurface temperature measurements in addition to the analysis of soil and groundwater samples to monitor remediation performance. One potential indication of non-aqueous phase liquid (NAPL) removal is an increase in temperature following observations of a co-boiling plateau, during which subsurface temperatures remain constant as NAPL and water co-boil. However, observed co-boiling temperatures can be affected by the composition of the NAPL and the proximity of the NAPL to the temperature measurement location. Results of laboratory heating experiments using single-component and multi-component NAPLs showed that local-scale temperature measurements can be mistakenly interpreted as an indication of the end of NAPL-water co-boiling, and that significant NAPL saturations (1% to 9%) remain despite observed increases in temperature. Furthermore, co-boiling of multi-component NAPL results in gradually increasing temperature, rather than a co-boiling plateau. Measurements of gas production can serve as a complementary metric for assessing NAPL removal by providing a larger-scale measurement integrated over multiple smaller-scale NAPL locations. Measurements of the composition of the NAPL condensate can provide ISTT operators with information regarding the progress of NAPL removal for multi-component sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effect of thermal treatments on phytochemicals in conventionally and organically grown berries.

    Science.gov (United States)

    Sablani, Shyam S; Andrews, Preston K; Davies, Neal M; Walters, Thomas; Saez, Hector; Syamaladevi, Roopesh M; Mohekar, Pallavi R

    2010-04-15

    Consumer demand for organic foods is increasing despite a lack of conclusive evidence of nutritional superiority of organically grown produce. The objective of this investigation was to evaluate the effects of thermal treatments on phytochemicals in conventionally and organically grown berries. Two cultivars of conventionally and organically grown red raspberries and blueberries were analysed for total anthocyanins, total and specific phenolic compounds and total antioxidant activity. Fresh berries were thermally processed into cans and juice/puree with and without blanching, and the changes in phytochemicals were monitored. Total anthocyanin and phenolic contents of berries were not influenced by the agricultural production system. Total antioxidant activity of berries was also not influenced by the production system, but antioxidant activity varied significantly between cultivars. After canning, total anthocyanins decreased by up to 44%, while phenolic contents and antioxidant activity of both berries generally increased by up to 50 and 53% respectively. The level of changes in phytochemicals during berry puree/juice processing was influenced by blanching and type of berries. Phenolic contents and antioxidant activities of berries increased while total anthocyanins decreased during canning. Blanching prior to puree/juice processing improved the retention of phytochemicals in blueberries. (c) 2010 Society of Chemical Industry.

  16. Effect of thermal annealing treatment with titanium chelate on buffer layer in inverted polymer solar cells

    Science.gov (United States)

    Liu, Zhiyong; Wang, Ning; Fu, Yan

    2016-12-01

    The solution processable electron extraction layer (EEL) is crucial for polymer solar cells (PSCs). Here, we investigated titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as an EEL and fabricated inverted PSCs with a blend of poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) acting as the photoactive layer, with a structure of ITO/TIPD/P3HT:ICBA/MoO3/Ag. After thermal annealing treatment at 150 °C for 15 min, the PSC performances increased from 3.85% to 6.84% and they achieve stable power conversion efficiency (PCE), with a similar PCE compared with TiO2 as an EEL by the vacuum evaporated method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet photoelectron spectroscopy (UPS) confirmed that the TIPD decomposed and formed the Tidbnd O bond, and the energy level of the lowest unoccupied molecular orbital and the highest occupied molecular orbital increased. The space charge limited current (SCLC) measurements further confirmed the improvement in electron collection and the transport ability using TIPD as the EEL and thermal annealing.

  17. Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    Full Text Available A simple thermal treatment was used to synthesize ZnSe nanoparticles at different calcination temperatures in a nitrogen flowing. The samples of ZnSe nanoparticles were prepared by reacting zinc nitrate (source of zinc and selenium powder with Polyvinylpyrrolidone (capping agent. Analysis of their X-ray diffraction patterns suggested the formation of an amorphous phase of the unheated material before calcination, which then transformed into a cubic crystalline structure of ZnSe nanoparticles after calcination. The phase analyses using energy-dispersive X-ray spectroscopy and Fourier-transform infrared spectroscopy confirmed the presence of Zn and Se as the original compounds of prepared ZnSe nanoparticle samples. The average particle size of the samples increased from 7 ± 5 to 18 ± 3 nm as the calcination temperature was increased from 450 to 700 °C, which is also supported by the transmission electron microscopy results. Diffuse UV–visible reflectance spectra were used to determine the optical band gap through the Kubelka–Munk equation; the energy band gap was found to decrease from 4.24 to 3.95 eV with increasing calcination temperature. Keywords: Metals, Calcination, Differential thermal analysis (DTA, Fourier transform infrared spectroscopy (FTIR

  18. Local treatment of coal-water slurries from thermal power plants with the use of coagulants

    Science.gov (United States)

    Sarapulova, G. I.; Logunova, N. I.

    2015-04-01

    The coagulation of coal particles in a coal-water slurry from the Novo-Irkutsk thermal power plant was studied. The advisability of the application of highly basic aluminum hydroxochloride of grade B for the treatment of contaminated water with a concentration of suspended particles of 30 g/dm3 was shown. The granulometric analysis of coal particles was performed. The application of the reagent was revealed to be efficient for the coagulation of both coarse particles and a finely dispersed fraction. Carbonate hardness values of up to 1.5 mmol-equiv/dm3 and pH ≤ 7.8 were shown to be typical for the contaminated water from the fuel supply shop. They were the most optimal parameters for hydrolysis and efficient flocculation and did not require the addition of sodium bicarbonate and flocculants. The process flowsheet of the separate purification of a coal-water slurry was developed for the fuel supply shop. Among the advantages of this purification method are the return of rather highly purified water for thermal power plant needs, and also the production of additional fuel in the form of recovered coal particles. The product was characterized by improved engineering parameters in comparison with the initial fuel, i.e., had a higher calorific value and a lower sulfur content. The purified water corresponded to the normative requirements to the content of residual aluminum. This technology of purification was resource-saving, environmental-friendly, and economically profitable.

  19. Advanced thermal hydrolysis: optimization of a novel thermochemical process to aid sewage sludge treatment.

    Science.gov (United States)

    Abelleira, Jose; Pérez-Elvira, Sara I; Portela, Juan R; Sánchez-Oneto, Jezabel; Nebot, Enrique

    2012-06-05

    The aim of this work was to study in depth the behavior and optimization of a novel process, called advanced thermal hydrolysis (ATH), to determine its utility as a pretreatment (sludge solubilization) or postreatment (organic matter removal) for anaerobic digestion (AD) in the sludge line of wastewater treatment plants (WWTPs). ATH is based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H(2)O(2)) addition and takes advantage of a peroxidation/direct steam injection synergistic effect. On the basis of the response surface methodology (RSM) and a modified Doehlert design, an empirical second-order polynomial model was developed for the total yield of: (a) disintegration degree [DD (%)] (solubilization), (b) filtration constant [F(c) (cm(2)/min)] (dewaterability), and (c) organic matter removal (%). The variables considered were operation time (t), temperature reached after initial heating (T), and oxidant coefficient (n = oxygen(supplied)/oxygen(stoichiometric)). As the model predicts, in the case of the ATH process with high levels of oxidant, it is possible to achieve an organic matter removal of up to 92%, but the conditions required are prohibitive on an industrial scale. ATH operated at optimal conditions (oxygen amount 30% of stoichiometric, 115 °C and 24 min) gave promising results as a pretreatment, with similar solubilization and markedly better dewaterability levels in comparison to those obtained with TH at 170 °C. The empirical validation of the model was satisfactory.

  20. Effects of thermal treatments with a curling iron on hair fiber.

    Science.gov (United States)

    Ruetsch, S B; Kamath, Y K

    2004-01-01

    The effect of curling hair with a curling iron has been investigated. Possibilities of thermal damage with repeated curling according to, and in violation of, the manufacturer's specifications have been studied. The propensity of hair surface to damage depends on the moisture content of the hair, and these experiments have been conducted in both wet and dry conditions, with and without application of tension, and with short or prolonged times. Scanning electron microscopic (SEM) examination revealed that fibers treated under the dry condition (50% RH) show radial and axial cracking along with scale edge fusion. Similar thermal treatment on wet hair resulted in severe damage of the type described above, as well as bubbling and buckling of the cuticle due to the formation and escaping of steam from the fiber. Fibers subjected to repeated curling in the dry condition show slight increases in tensile mechanical properties, characteristic of a crosslinked fiber. Fibers treated with conditioners show an improvement in characteristic life, especially in the case of low-molecular-weight conditioners, such as CETAB, which can penetrate into the hair fiber (shown by TOF-SIMS analysis).

  1. Design and Construction of Concrete Structures in View of Early-Age Thermal Effects

    DEFF Research Database (Denmark)

    Andersen, Mette Elbæk

    1997-01-01

    The report is the result of a Ph.D. study conducted at DTU. The subject is early-age concrete with focus on the influence of heat development on the cracking risc of concrete.......The report is the result of a Ph.D. study conducted at DTU. The subject is early-age concrete with focus on the influence of heat development on the cracking risc of concrete....

  2. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  3. Thermal Performance of Aged and Weathered Spray-On Foam Insulation (SOFI) Materials Under Cryogenic Vacuum Conditions (Cryostat-4)

    Science.gov (United States)

    2008-01-01

    The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.

  4. Ozonation and thermal pre-treatment of municipal sewage sludge – Implications for toxicity and methane potential

    DEFF Research Database (Denmark)

    Davidsson, A.; Eriksson, Eva; Fick, J.

    The aim of this study was to determine the effects on the methane potential and the overall sludge quality from two different sludge pre-treatment technologies (ozonation high/low dosage and thermal treatment 55/70 °C). In general both treatments gave an increased methane potential. The thermal...... treatment resulted in higher chemical oxygen demand (COD)-solubilisation, while the highest volatile fatty acids (VFA) increase was obtained with ozonation. The sludges had inhibiting effects in a barley seed germination assay and a yeast oestrogen screen both before and after pre......-treatment, but the inhibition was reduced by ozone treatment and digestion. No statistical significant reduction in concentrations of the included pharmaceuticals could be seen....

  5. Age-related macular degeneration: prevention and treatment. A review

    Directory of Open Access Journals (Sweden)

    K. A. Mirzabekova

    2014-07-01

    Full Text Available Age-related macular degeneration (AMD is a multifactorial disease. Age, light exposure, smoking, melanin levels and low-antioxidant diet are contributed to AMD development and progression. Cardiovascular disorders are of considerable importance as well. In macula, photoreceptor outer segments that are rich in polyunsaturated fatty acids (FA, particularly, docosahexaenoic acid (DHA, are susceptible to free radicals damage. High blood flow velocity and oxygen partial pressure as well as direct sunlight exposure induce oxidative processes. The source of free radicals in photoreceptor cells and retinal pigment epithelium (RPE is an extensive mitochondrial metabolism, photoreceptor outer segments phagocytosis, lipofuscin phototoxic activity and hemoglobin or protoporphyrin precursors photosensitization. Oxidative stress is considered as an universal component of cell depth in necrosis, apoptosis and toxic damage. Antioxidant protective system consists of enzymes (superoxide dismutase, glutathione peroxidase and catalase and non-enzymatic factors (ascorbic acid, alpha tocopherol, retinol, carotenoids. Specific antioxidant food supplement containing ascorbic acid (500 mg, vitamin E (400 IU and beta carotene (15 mg coupled with zinc (80 mg of zinc oxide and copper (2 mg of copper oxide results in 25 % decrease in late-stage AMD development rate. Amongst the agents that can protect retina from oxidative stress and AMD development, carotenoids are of special importance. Lutein and zeaxanthin containing in retina and lens screen blue light from central area of the retina. They also absorb blue light and inhibit free radicals generation thus preventing polyunsaturated FA light destruction. Association between lutein and zeaxanthin intake and late-stage AMD risk was revealed. Amongst the most important factors which deficiency favors macular degeneration are omega-3 FAs, i.e., DHA. DHA is the key component of visual pigment rhodopsin transformation. It

  6. Age-related macular degeneration: prevention and treatment. A review

    Directory of Open Access Journals (Sweden)

    K. A. Mirzabekova

    2014-01-01

    Full Text Available Age-related macular degeneration (AMD is a multifactorial disease. Age, light exposure, smoking, melanin levels and low-antioxidant diet are contributed to AMD development and progression. Cardiovascular disorders are of considerable importance as well. In macula, photoreceptor outer segments that are rich in polyunsaturated fatty acids (FA, particularly, docosahexaenoic acid (DHA, are susceptible to free radicals damage. High blood flow velocity and oxygen partial pressure as well as direct sunlight exposure induce oxidative processes. The source of free radicals in photoreceptor cells and retinal pigment epithelium (RPE is an extensive mitochondrial metabolism, photoreceptor outer segments phagocytosis, lipofuscin phototoxic activity and hemoglobin or protoporphyrin precursors photosensitization. Oxidative stress is considered as an universal component of cell depth in necrosis, apoptosis and toxic damage. Antioxidant protective system consists of enzymes (superoxide dismutase, glutathione peroxidase and catalase and non-enzymatic factors (ascorbic acid, alpha tocopherol, retinol, carotenoids. Specific antioxidant food supplement containing ascorbic acid (500 mg, vitamin E (400 IU and beta carotene (15 mg coupled with zinc (80 mg of zinc oxide and copper (2 mg of copper oxide results in 25 % decrease in late-stage AMD development rate. Amongst the agents that can protect retina from oxidative stress and AMD development, carotenoids are of special importance. Lutein and zeaxanthin containing in retina and lens screen blue light from central area of the retina. They also absorb blue light and inhibit free radicals generation thus preventing polyunsaturated FA light destruction. Association between lutein and zeaxanthin intake and late-stage AMD risk was revealed. Amongst the most important factors which deficiency favors macular degeneration are omega-3 FAs, i.e., DHA. DHA is the key component of visual pigment rhodopsin transformation. It

  7. Kinetic vaporization of heavy metals during fluidized bed thermal treatment of municipal solid waste.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng

    2013-02-01

    Heavy metals volatilization during thermal treatment of model solid waste was theoretically and experimentally investigated in a fluidized bed reactor. Lead, cadmium, zinc and copper, the most four conventional heavy metals were investigated. Particle temperature model and metal diffusion model were established to simulate the volatilization of CdCl(2) evaporation and investigate the possible influencing factors. The diffusion coefficient, porosity and particle size had significant effects on metal volatilization. The higher diffusion coefficient and porosity resulted in the higher metal evaporation. The influence of redox conditions, HCl, water and mineral matrice were also investigated experimentally. The metal volatilization can be promoted by the injection of HCl, while oxygen played a negative role. The diffusion process of heavy metals within particles also had a significant influence on kinetics of their vaporization. The interaction between heavy metals and mineral matter can decrease metal evaporation amount by forming stable metallic species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The effect of thermal treatment on the mechanical properties of PLLA tubular specimens

    Directory of Open Access Journals (Sweden)

    Arbeiter Daniela

    2016-09-01

    Full Text Available Conventional permanent stent systems for vascular applications are associated with long-term risks, such as restenosis and thrombosis. To overcome these limitations, novel approaches using various biodegradable materials for stent construction have been investigated. In this context, thermal treatment of polymer materials is investigated to adjust the mechanical properties of biodegradable stents. In this work polymeric tubular specimens of biodegradable poly(L-lactide (PLLA were extruded and subjected to a molding process using different temperatures above glass transition temperature TG. Physicochemical properties of the molded samples were analyzed using DSC measurements and uniaxial tensile tests. The molding process resulted in a weakening of the PLLA tubular specimens with a simultaneous increase in the degree of crystallinity (χ.

  9. Sanitising black water by auto-thermal aerobic digestion (ATAD) combined with ammonia treatment.

    Science.gov (United States)

    Nordin, Annika C; Vinnerås, Björn

    2015-01-01

    The effect of a two-step process on the concentration of pathogens and indicator microorganisms in black water (0.9-1% total solids) was studied. The treatment combined auto-thermal aerobic digestion (ATAD) and ammonia sanitisation. First, the temperature of the black water was increased through ATAD and when a targeted temperature was reached (33, 41 and 45.5 °C studied), urea was added to a 0.5% concentration (total ammonia nitrogen >2.9 g L⁻¹). Escherichia coli and Salmonella spp. were reduced to non-detectable levels within 3 days following urea addition at temperatures above 40 °C, whereas when urea was added at 33 °C E. coli was still present after 8 days. By adding urea at temperatures of 40 °C and above, a 5 log10 reduction in Enterococcus spp. and a 3 log10 reduction in Ascaris suum eggs was achieved 1 week after the addition. With combined ATAD and ammonia treatment using 0.5% ww urea added at an aerobic digestion temperature >40 °C, black water was sanitised regarding the pathogens studied in 2 weeks of total treatment time.

  10. Volatile profile of breast milk subjected to high-pressure processing or thermal treatment.

    Science.gov (United States)

    Contador, R; Delgado, F J; García-Parra, J; Garrido, M; Ramírez, R

    2015-08-01

    The effect of Holder pasteurisation (HoP) (62.5°C for 30 min) or high-pressure treatments (400 or 600 MPa for 3 or 6 min) on the volatile compound profile of human breast milk was evaluated, in order to compare both preservation technologies. A total of 46 different volatile compounds was found in milk samples. The most abundant compounds detected were aliphatic hydrocarbons. In general, the effect of some high-pressure treatments on the volatile profile of human milk was less intense than that caused by HoP. The treatments at 400 and 600 MPa for 3 min maintained the volatile compounds at similar levels to those found in control milk samples. However, the application of 600 MPa for 6 min changed the original volatile compounds of human milk, even more than HoP. Since, HPP at 400 or 600 MPa for 3 min preserved the original volatile compounds of human milk, this novel process may be an alternative to thermal pasteurisation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Quality and microbial safety evaluation of new isotonic beverages upon thermal treatments.

    Science.gov (United States)

    Gironés-Vilaplana, Amadeo; Huertas, Juan-Pablo; Moreno, Diego A; Periago, Paula M; García-Viguera, Cristina

    2016-03-01

    In the present study, it was evaluated how two different thermal treatments (Mild and Severe) may affect the anthocyanin content, antioxidant capacity (ABTS(+), DPPH, and FRAP), quality (CIELAB colour parameters), and microbiological safety of a new isotonic drink made of lemon and maqui berry over a commercial storage simulation using a shelf life of 56days at two preservation temperature (7°C and 37°C). Both heat treatments did not affect drastically the anthocyanins content and their percentage of retention. The antioxidant capacity, probably because of the short time, was also not affected. The CIELAB colour parameters were affected by the heat, although the isotonic drinks remained with attractive red colour during shelf life. From a microbiological point of view, the Mild heat treatment with storage at 7°C is the ideal for the preservation of microbial growth, being useful for keeping the quality and safety of beverages in commercial life. Copyright © 2015. Published by Elsevier Ltd.

  12. Application of thermal plasma technology for the treatment of solid wastes in China: An overview.

    Science.gov (United States)

    Li, Jun; Liu, Kou; Yan, Shengjun; Li, Yaojian; Han, Dan

    2016-12-01

    With its enormous social and economical development, China is now experiencing a rapid increase in solid wastes generation and growing pressure for solid wastes management. Today solid wastes in China are mainly managed by a combination of landfill, incineration, and composting. Within different possible treatment routes, thermal plasma technology (TPT) offers the advantages of efficiently gasifying the organic contents of solid wastes into syngas that can be used for heat and power generation, and vitrifying the inorganics simultaneously into glassy slag with very low leachabilities. This process makes it feasible for near-zero emission into the environment while making use of all the useful components. Encouraged by the industrial operations of solid wastes treatment plants using TPT in some countries, several plasma demonstration projects have already been undertaken in China. This paper provides a preliminary overview of the current laboratory researches and industrial developments status of TPT for the treatment of solid wastes in China and analyzes the existing challenges. Furthermore, the future prospects for TPT in China are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Problems of reliability and economy work of thermal power plants water treatment based on baromembrane technologies

    Science.gov (United States)

    Chichirova, N. D.; Chichirov, A. A.; Saitov, S. R.

    2017-11-01

    The introduction of baromembrane water treatment technologies for water desalination at Russian thermal power plants was beganed more than 25 years ago. These technologies have demonstrated their definite advantage over the traditional technologies of additional water treatment for steam boilers. However, there are problems associated with the reliability and economy of their work. The first problem is a large volume of waste water (up to 60% of the initial water). The second problem a expensive and unique chemical reagents complex (biocides, antiscalants, washing compositions) is required for units stable and troublefree operation. Each manufacturer develops his own chemical composition for a certain membrane type. This leads to a significant increase in reagents cost, as well as creates dependence of the technology consumer on the certain supplier. The third problem is that the reliability of the baromembrane units depends directly on the water preliminary treatment. The popular pre-cleaning technology with coagulation of aluminum oxychloride proves to be unacceptable during seasonal changes in the quality of the source water at a number of stations. As a result, pollution, poisoning and lesion of the membrane structure or deterioration of their mechanical properties are observed. The report presents ways to solve these problems.

  14. Surface Pre-treatment for Thermally Sprayed ZnAl15 Coatings

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Knoch, M. A.

    2017-02-01

    Pre-treatment of substrates is an important step in thermal spraying. It is widely accepted that mechanical interlocking is the dominant adhesion mechanism for most substrate-coating combinations. To prevent premature failure, minimum coating adhesion strength, surface preparation grades, and roughness parameters are often specified. For corrosion-protection coatings for offshore wind turbines, an adhesion strength ≥ 5 MPa is commonly assumed to ensure adhesion over service lifetime. In order to fulfill this requirement, Rz > 80 µm and a preparation grade of Sa3 are common specifications. In this study, the necessity of these requirements is investigated using the widely used combination of twin-wire arc-sprayed ZnAl15 on S355J2 + N as a test case. By using different blasting media and parameters, the correlation between coating adhesion and roughness parameters is analyzed. The adhesion strength of these systems is measured using a test method allowing measurements on real parts. The results are compared to DIN EN 582:1993, the European equivalent of ASTM-C633. In another series of experiments, the influence of surface pre-treatment grades Sa2.5 and Sa3 is considered. By combining the results of these three sets of experiments, a guideline for surface pre-treatment and adhesion testing on real parts is proposed for the considered system.

  15. A replica technique for extracting precipitates from neutron-irradiated or thermal-aged vanadium alloys for TEM analysis

    Science.gov (United States)

    Fukumoto, K.; Iwasaki, M.

    2014-06-01

    A carbon replica technique has been developed to extract precipitates from vanadium alloys. Using this technique, precipitation phases can be extracted from neutron-irradiated or thermal-aged V-4Cr-4Ti alloys. Precipitate identification using EDS X-ray analysis and electron diffraction was facilitated. Only NaCl type of Ti(OCN) precipitate was formed in the thermal-aged V-4Cr-4Ti alloys at 600 °C for 20 h and cation sub-lattice was only occupied by Ti atoms. However, the thin plate of precipitates with NaCl type of crystallographic structure could be seen in the V-4Cr-4Ti alloys irradiated at 593 °C in the JOYO fast reactor. The precipitate contained chromium and vanadium atoms on the cation sub-lattice as well as titanium atoms. It is considered that the phase of MX type (M = Ti, V, Cr and X = O, N, C) is a metastable phase under neutron irradiation.

  16. The effect of thermal aging and color pigments on the Egyptian linen properties evaluated by physicochemical methods

    Science.gov (United States)

    El-Gaoudy, H.; Kourkoumelis, N.; Varella, E.; Kovala-Demertzi, D.

    2011-11-01

    Archaeologists in Egypt discovered ancient colored textiles in great quantities in comparison with the analogous uncolored ones. Furthermore, the latter are far more deteriorated. Most research investigations into archaeological linen have been concerned with manufacture, restoration, and conservation but little information is available about the properties of the fibers, and particularly their chemical and physical properties after dyeing with natural dyes or painted with pigments. The aim of this study is to evaluate the physicochemical properties of Egyptian linen textiles coloring with a variety of pigments used in painting in ancient times after thermally aged to get linen samples which are similar as possible to the ancient linen textiles. The evaluations were based on Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction and tensile strength, and elongation measurements. Results showed that beyond cosmetic reasons, colored textiles did indeed play a role as protecting agents affecting strength and reducing thermal deterioration. Specifically, in the molecular level, pigments under study seem to interact to cellulose and lignin compounds of the aged linen while in the macroscopic level tensile and elongation parameters are altered. Electron microscopy confirms that pigment particles are deposited on and between the fibers' surfaces.

  17. Flame retardant treated flax fibre reinforced phenolic composites: Ageing and thermal characteristics

    CSIR Research Space (South Africa)

    Molaba, TP

    2018-01-01

    Full Text Available In this study, flax composites were prepared from flax fabric and phenolic resin. Chemical treatments were imparted to the fabric to improve adhesion between the fabric and the phenolic matrix. Diammonium phosphate was applied to improve...

  18. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    Science.gov (United States)

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  19. Triglyceride Treatment in the Age of Cholesterol Reduction

    Science.gov (United States)

    Agrawal, Nidhi; Corradi, Patricia Freitas; Gumaste, Namrata; Goldberg, Ira J.

    2017-01-01

    Cholesterol reduction has markedly reduced major cardiovascular disease (CVD) events and shown regression of atherosclerosis in some studies. However, CVD has for decades also been associated with increased levels of circulating triglyceride (TG)-rich lipoproteins. Whether this is due to a direct toxic effect of these lipoproteins on arteries or whether this is merely an association is unresolved. More recent genetic analyses have linked genes that modulate TG metabolism with CVD. Moreover, analyses of subgroups of hypertriglyceridemic (HTG) subjects in clinical trials using fibric acid drugs have been interpreted as evidence that TG reduction reduces CVD events. This review will focus on how HTG might cause CVD, whether TG reduction makes a difference, what pathophysiological defects cause HTG, and what options are available for treatment. PMID:27544319

  20. Revisiting the Integrated Pressurized Thermal Shock Studies of an Aging Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryson, J.W.; Dickson, T.L.; Malik, S.N.M.; Simonen, F.A.

    1999-08-01

    The Integrated Pressurized Thermal Shock (IPTS) studies were a series of studies performed in the early-mid 1980s as part of an NRC-organized comprehensive research project to confirm the technical bases for the pressurized thermal shock (PTS) rule, and to aid in the development of guidance for licensee plant-specific analyses. The research project consisted of PTS pilot analyses for three PWRs: Oconee Unit 1, designed by Babcock and Wilcox; Calvert Cliffs Unit 1, designed by Combustion Engineering; and H.B. Robinson Unit 2, designed by Westinghouse. The primary objectives of the IPTS studies were (1) to provide for each of the three plants an estimate of the probability of a crack propagating through the wall of a reactor pressure vessel (RPV) due to PTS; (2) to determine the dominant overcooling sequences, plant features, and operator actions and the uncertainty in the plant risk due to PTS; and (3) to evaluate the effectiveness of potential corrective actions. The NRC is currently evaluating the possibility of revising current PTS regulatory guidance. Technical bases must be developed to support any revisions. In the years since the results of IPTS studies were published, the fracture mechanics model, the embrittlement database, embrittlement correlation, inputs for flaw distributions, and the probabilistic fracture mechanics (PFM) computer code have been refined. An ongoing effort is underway to determine the impact of these fracture-technology refinements on the conditional probabilities of vessel failure calculated in the IPTS Studies. This paper discusses the results of these analyses performed for one of these plants.

  1. IMPACT OF THERMAL TREATMENT ON THE PROPERTIES OF THE PROTEIC FOAMS

    Directory of Open Access Journals (Sweden)

    Alain Riaublanc

    2011-02-01

    Full Text Available The food foams are "whipped" products that have recently experienced significant growth in the food industry. They are appreciated by consumers for their creamy texture, taste and visual aspect. Whey proteins are particularly common ingredients in the formulation of food foams because of their functional properties (foaming properties, interfacial, emulsifying. Denaturation and aggregation of whey proteins further to a heat treatment, allows the improvement of these properties by creating protein aggregates with targeted properties. The objective of this study is to understand the impact of the intensity of heat treatment applied to a protein solution on the aggregation of proteins (proportion, size and morphology of protein assemblies and on their foaming properties in order to better control the use properties of foamed products stabilized by whey protein aggregates (WPI. In this work, a 2% w/v of whey proteins in the presence of salt (50 mM NaCl was heated in an Actijoule type tubular heat exchanger at 80, 90 and 100 °C. Native and denatured solutions of WPI were characterized by microcalorimetry ( DSC, size exclusion chromatography (SEC, diffusion light scattering (DLS, electrophoresis (SDS-PAGE, optical microscopy and atomic force microscopy (AFM. To assess the impact of thermal treatment on the foaming ability of protein solutions, a bubbling method has been employed. The experimental results showed that as far as the heating temperature is increased, it promotes the aggregation of proteins into oligomers which then are forming soluble aggregates of about 160 nm in diameter. We have also observed that the increase of this fraction is a continuous function of temperature for solutions treated up to 100 °C. However, the amount of insoluble aggregates formed reaches a maximum when the heat treatment temperature is 90 °C. Finally, we showed by SDS-PAGE that the soluble and insoluble aggregates are stabilized by disulfide bridges and

  2. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  3. Crystal River 3 Cable Materials for Thermal and Gamma Radiation Aging

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Correa, Miguel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zwoster, Andy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-07

    The Expanded Materials Degradation Assessment Volume 5: Aging of Cables and Cable Systems (EMDA) summarizes the state of knowledge of materials, constructions, operating environments, and aging behavior of low voltage and medium cables in nuclear power plants (NPPs) and identifies potential knowledge gaps with regard to cable operation beyond 60 years. The greatest area of uncertainty relates to how well the accelerated aging used in the original equipment qualification (EQ) processes predicts the performance of cable materials in extended operation. General opinion and utility experience have indicated that actual operating environments of in-plant cables are not as severe, however, as the operating and design basis environments used in the qualification process. Better understanding of the long term aging behavior of cable insulation materials in service conditions and the analysis of actual cable operating environments are the objectives of ongoing research to support subsequent license renewal activities in particular and long term cable aging management in general. A key component of the effort to better understand cable material aging behavior is the availability of representative samples of cables that have been installed in operating light water reactors and have experienced long term service. Unique access to long term service cables, including relatively rich information on cable identity and history, occurred in 2016 through the assistance of the Electric Power Research Institute (EPRI). EPRI facilitated DOE receipt of harvested cables from the decommissioned Crystal River Unit 3 (CR3) pressurized water reactor representing six of the nine most common low voltage cable manufacturers (EPRI 103841R1): Rockbestos, Anaconda Wire and Cable Company (Anaconda), Boston Insulated Wire (BIW), Brand-Rex, Kerite and Okonite. Cable samples received had been installed in the operating plant for durations ranging from 10 years to 36 years. These cables provide the

  4. Mechanical Response of Al-1.09Mg2Si Alloy under Varying Mould and Thermal Ageing Conditions

    Directory of Open Access Journals (Sweden)

    O. I. Sekunowo

    2012-01-01

    Full Text Available Samples of the 6063 (Al-1.09Mg2Si alloy ingot were melted in a crucible furnace and cast in metal and sand moulds, respectively. Standard tensile, hardness, and microstructural test specimens were prepared from cast samples, solution treated at 520∘C, soaked for 6 hrs, and immediately quenched at ambient temperature in a trough containing water to assume a supersaturated structure. The quenched specimens were then thermally aged at 175∘C for 3–7 hrs. Results show that at different ageing time, varied fractions of precipitates and intermetallics evolved in the specimens’ matrices which affect the resulting mechanical properties. The metal mould specimens aged for four hours (MTA-4 exhibited superior ultimate tensile strength of 247.8 MPa; microhardness, 68.5 HV; elongation, 28.2% . It is concluded that the extent of improvement in mechanical properties depends on the fractions, coherence, and distribution of precipitates along with the type of intermetallics developed in the alloy during ageing process.

  5. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice.

    Science.gov (United States)

    Roos, Carolyn M; Zhang, Bin; Palmer, Allyson K; Ogrodnik, Mikolaj B; Pirtskhalava, Tamar; Thalji, Nassir M; Hagler, Michael; Jurk, Diana; Smith, Leslie A; Casaclang-Verzosa, Grace; Zhu, Yi; Schafer, Marissa J; Tchkonia, Tamara; Kirkland, James L; Miller, Jordan D

    2016-10-01

    While reports suggest a single dose of senolytics may improve vasomotor function, the structural and functional impact of long-term senolytic treatment is unknown. To determine whether long-term senolytic treatment improves vasomotor function, vascular stiffness, and intimal plaque size and composition in aged or hypercholesterolemic mice with established disease. Senolytic treatment (intermittent treatment with Dasatinib + Quercetin via oral gavage) resulted in significant reductions in senescent cell markers (TAF(+) cells) in the medial layer of aorta from aged and hypercholesterolemic mice, but not in intimal atherosclerotic plaques. While senolytic treatment significantly improved vasomotor function (isolated organ chamber baths) in both groups of mice, this was due to increases in nitric oxide bioavailability in aged mice and increases in sensitivity to NO donors in hypercholesterolemic mice. Genetic clearance of senescent cells in aged normocholesterolemic INK-ATTAC mice phenocopied changes elicited by D+Q. Senolytics tended to reduce aortic calcification (alizarin red) and osteogenic signaling (qRT-PCR, immunohistochemistry) in aged mice, but both were significantly reduced by senolytic treatment in hypercholesterolemic mice. Intimal plaque fibrosis (picrosirius red) was not changed appreciably by chronic senolytic treatment. This is the first study to demonstrate that chronic clearance of senescent cells improves established vascular phenotypes associated with aging and chronic hypercholesterolemia, and may be a viable therapeutic intervention to reduce morbidity and mortality from cardiovascular diseases. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Laser interstitial thermal therapy: A first line treatment for seizures due to hypothalamic hamartoma?

    Science.gov (United States)

    Du, Victor X; Gandhi, Shashank V; Rekate, Harold L; Mehta, Ashesh D

    2017-06-01

    Successful treatment of hypothalamic hamartoma (HH) can result in the resolution of its sequelae including epilepsy and rage attacks. Risks and morbidity of open surgical management of this lesion have motivated the development of laser interstitial thermal therapy (LITT) as a less invasive treatment approach to the disease. Although overall morbidity and risk would appear to be lower, complications related to LITT therapy have been reported, and the longer-term follow-up that is now possible after initial experience helps address the question of whether LITT provides equivalent efficacy compared to other treatment options. We conducted a retrospective analysis of clinical outcomes in eight patients undergoing LITT for HH at our center using the Visualase/Medtronic device. Five patients had refractory epilepsy, one had rage attacks, and two had both. We also compared the published seizure-free outcomes over time and the complication rates for different interventional approaches to the treatment of epilepsy due to HH including open craniotomy, neuroendoscopic, radiosurgical, and radiofrequency approaches. With a mean follow-up of 19.1 months in our series of eight patients, six of seven epilepsy patients achieved seizure freedom, whereas the one patient with rage attacks only did not have improvement of his symptoms. A length of hospital stay of 2.6 days reflects low morbidity and rapid postoperative recuperation with LITT. Considering other reported series and case reports, the overall published seizure freedom rate of 21 of 25 patients is superior to published outcomes of HH cases treated by stereotactic radiosurgery (SRS), craniotomy, or neuroendoscopy, and comparable to radiofrequency ablation. The cumulative experience of our center with other published series supports relatively lower operative morbidity than more invasive approaches and efficacy that is as good or better than open craniotomy procedures and SRS. Although morbidity appears to be lower than

  7. Thermal aging effects on the microstructure, oxidation behavior, and mechanical properties of as-cast nickel aluminide alloys

    Science.gov (United States)

    Lee, Dongyun

    The thermal aging effects on the microstructure, oxidation behavior at 900° and 1100°C, and mechanical properties of IC221M (Ni3Al based intermetallic alloy, ASTM A1002-99) were investigated. The microstructure consists of dendritic arms of the gamma (nickel solid solution) phase containing cube-shape gamma' (Ni3Al precipitates. The interdendritic regions are mostly gamma' (Ni3Al with up to 8 vol.% gamma + Ni5Zr eutectic constituents. Thermal aging effects on the microstructures and how microsegregation affects the oxidation behavior were examined. Four primary changes in the microstructures were observed: (1) there is considerable homogenization of the cast microstructures with aging, (2) the volume fraction of gamma' increases with aging time and temperature, (3) the gamma' phase coarsens, and (4) the volume fraction of the gamma + Ni5Zr eutectic constituents decreases. During the initial stages of oxidation at 900°C, surface oxides form along the microsegregation patterns, revealing the cast microstructures. The first oxide to form is mostly NiO with small amounts of Cr2O 3, ZrO2, NiCr2O4, and theta-Al 2O3. Initial oxidation occurs primarily in the interdendritic regions due to microsegregation of alloying elements during casting. With further aging, the predominant surface oxides become NiO and NiAl2O 4 spinel, with a continuous film of alpha-Al2O3 forming immediately beneath them. Although these oxides are constrained to the near surface region, other oxides penetrate to greater depths, facilitated by oxidation of the gamma + Ni5Zr eutectic constituents. These oxides appear in the microstructure as long, thin spikes of ZrO2 surrounded by a sheath of Al2O3. They can penetrate to depths greater than 10 times that of the continuous surface oxide. The oxidation behavior at 1100°C is similar to that at 900°C, but the oxidation kinetics are faster, NiO dominates at all aging periods, and the surface oxides do not adhere to the matrix meaning that a protective

  8. [Occlusion treatment for amblyopia. Age dependence and dose-response relationship].

    Science.gov (United States)

    Fronius, M

    2016-04-01

    Based on clinical experience and studies on animal models the age of 6-7 years was regarded as the limit for treatment of amblyopia, although functional improvement was also occasionally reported in older patients. New technical developments as well as insights from clinical studies and the neurosciences have attracted considerable attention to this topic. Various aspects of the age dependence of amblyopia treatment are discussed in this article, e. g. prescription, electronic monitoring of occlusion dosage, calculation of indicators for age-dependent plasticity of the visual system, and novel, alternative treatment approaches. Besides a discussion of the recent literature, results of studies by our "Child Vision Research Unit" in Frankfurt are presented: results of a questionnaire about prescription habits concerning age limits of patching, electronic recording of occlusion in patients beyond the conventional treatment age, calculation of dose-response function and efficiency of patching and their age dependence. The results of the questionnaire illustrate the uncertainty about age limits of prescription with significant deviations from the guideline of the German Ophthalmological Society (DOG). Electronic recording of occlusion allowed the quantification of declining dose-response function and treatment efficiency between 5 and 16 years of age. Reports about successful treatment with conventional and novel methods in adults are at variance with the notion of a rigid adult visual system lacking plasticity. Electronic recording of patching allowed new insights into the age-dependent susceptibility of the visual system and contributes to a more evidence-based treatment of amblyopia. Alternative approaches for adults challenge established notions about age limits of amblyopia therapy. Further studies comparing different treatment options are urgently needed.

  9. The impact of younger age on treatment discontinuation in insured IVF patients.

    Science.gov (United States)

    Dodge, Laura E; Sakkas, Denny; Hacker, Michele R; Feuerstein, Rachael; Domar, Alice D

    2017-02-01

    This retrospective cohort study aimed to determine whether age influences treatment discontinuation among insured patients undergoing in vitro fertilization (IVF). We hypothesized that the youngest patients would be the least likely to discontinue treatment. All women age 18-42 who underwent their first fresh, non-donor IVF cycle from 2002 to 2013 were followed until a live birth was achieved, until they discontinued treatment at our center (not presenting for treatment for a one-year period), or until they completed six fresh or frozen embryo transfer cycles, whichever occurred first. Of 11,361 women included, 4336 (38.2 %) discontinued treatment at our center before achieving a live birth or undergoing six IVF cycles. Discontinuation differed by age for cycles 2-4 (all P ≤ 0.004), with the proportion among women age 40-42 averaging 6-7 % higher than the other groups; discontinuation per cycle was similar among women <30 compared to women age 30-<35 and 35-<40. This continued in cycles 5 and 6, and in the sixth, 35.2, 32.0, 32.3, and 40.2 % of women among the four age groups discontinued treatment, respectively (P = 0.17). In cycles 2-5, women in the oldest two age groups with secondary infertility consistently discontinued treatment more frequently than those with primary infertility. We found that women in the oldest age group were more likely to discontinue IVF treatment than younger women. Surprisingly, we found that the youngest women discontinued treatment in a similar fashion to women age 30-<40.

  10. Determination of stability characteristics for electrochemical biosensors via thermally accelerated ageing.

    Science.gov (United States)

    Panjan, Peter; Virtanen, Vesa; Sesay, Adama Marie

    2017-08-01

    Biosensors are devices that are prone to ageing; this phenomenon can be characterized as a decrease in signal over time. Biosensor stability is of a crucial importance for commercial success and as biosensors are presently being applied to an increasing and variety of applications. Stability characteristics related to shelf life, reusability and/or continuous use stability are often poorly investigated or unreported in literature, yet are important factors. Instability or ageing can be accelerated at an elevated temperature; Arrhenius (exponential) and linear models were investigated in order to propose a novel method for rapid ageing characteristics determination. Linear correlation proved more suitable with higher coefficients of determination than exponential correlation. Degradation rate is linearly dependent on temperature and by utilizing the proposed models, long term shelf life of a biosensor can be determined in 4 days and continuous use stability in less than 24h. Reusability studies are found to correlate poorly due to the unpredictable nature of biosensor handling. Basic constructed screen printed electrode glucose oxidase biosensors were used as a model biosensor in order to propose models for shelf life, reusability and continuous use stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage.

    Science.gov (United States)

    Calugaru, Iuliana Laura; Neculita, Carmen Mihaela; Genty, Thomas; Bussière, Bruno; Potvin, Robin

    2016-06-05

    Intensive research is ongoing for developing low-cost and highly efficient materials in metal removal from contaminated effluents. The present study evaluated dolomite [CaMg(CO3)2], both raw and modified by thermal activation (charring), for Ni and Zn treatment in contaminated neutral drainage (CND). Batch adsorption testing (equilibrium and kinetics) were conducted at pH 6, to evaluate the performance of initial vs. modified dolomite, and to assess potential mechanisms of metal removal. Charring of dolomite led to a rigid and porous material, mainly consisting of CaCO3 and MgO, which showed a sorption capacity increased sevenfold for Zn and doubled for Ni, relative to the raw material. In addition, Freundlich model best described the sorption of the both metals by dolomite, whereas the Langmuir model best described their sorption on charred dolomite. Plausible mechanisms of metal removal include cation exchange, surface precipitation and sorption processes, with carbonate ions and magnesium oxides acting as active centers. Based on these results, charred dolomite seems a promising option for the efficient treatment of Ni and Zn in CND. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    Science.gov (United States)

    Shcherbina, Natalia; Kivel, Niko; Günther-Leopold, Ines

    2013-06-01

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H2/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  13. Risk-Based Approach for Thermal Treatment of Soils Contaminated with Heavy Metals

    Directory of Open Access Journals (Sweden)

    Cocârţă D. M.

    2013-04-01

    Full Text Available In the actual context of limited soil resources and the significant degree of environmental pollution, public administrations and authorities are interested in restoring contaminated sites paying attention to the impact of these soils on human health. This paper aims to present the efficiency of the the incineration as a method for treatment of the contaminated soils t based on human health risk assessment. Through various experimentations, the following metals have been studied: Zn, Cu, Fe, Mn, Ni, Pb, Cr, Co, Cd, Hg, As and Be. The most important and interesting results concerning both thermal treatment removal efficiency and associated human health risk assessments were achieved concerning Cd, Pb and Ni contaminants. The behavior of Cadmium (Cd, Lead (Pb and Nickel (Ni concentrations from heavy metals incineration soil has been analyzed for three incineration temperatures (600°C, 800°C and 1000°C and two resident times of soil within the incineration reactor (30 min. and 60 min.. In this case, the level of contaminants in the treated soil can be reduced but not enough to ensure an acceptable risk for human health.

  14. Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method

    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Naseri, Mahmoud, E-mail: mahmoud.naseri55@gmail.com [Department of Physics, Faculty of Science, Malayer University, Malayer (Iran, Islamic Republic of); Ara, Mohammad Hossein Majles [Department of Physics, Faculty of Science, Kharazmi University, Shahid Mofatteh Ave. No. 49, Tehran (Iran, Islamic Republic of); Saion, Elias B.; Shaari, Abdul Halim [Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2014-01-15

    This study investigated the synthesis of magnesium ferrite (MgFe2O4) nanoparticles with cubic symmetry that were prepared by a thermal-treatment method by using a solution that contained poly (vinyl alcohol) (PVA) as a capping agent and Mg and Fe nitrates as alternative sources of metal. Heat treatment was conducted using an electric cylinder furnace in an air atmosphere at temperatures between 673 and 973 K, and magnesium ferrite nanoparticles were produced that had different crystallite sizes ranging from5 to 8 nm. The products were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), X-ray analysis (EDXA), and Fourier transform infrared spectroscopy (FT-IR). All the samples calcined from 673 to 973 K exhibited super paramagnetic behavior with unpaired electrons spins, which was confirmed by using a vibrating sample magnetometer (VSM) and electron paramagnetic resonance (EPR) spectroscopy. - Highlights: • An aqueous solution of PVA and metal nitrates was prepared at 353 K. • The mixed solution was heated at 373 K to evaporate the water and the resulting solid was crushed to powder. • The influence of calcination temperature on different parameters was characterizated.

  15. A time-resolved current method and TSC under vacuum conditions of SEM: Trapping and detrapping processes in thermal aged XLPE insulation cables

    Energy Technology Data Exchange (ETDEWEB)

    Boukezzi, L. [Materials Science and Informatics Laboratory, MSIL, University of Djelfa, Djelfa (Algeria); Rondot, S., E-mail: sebastien.rondot@univ-reims.fr [Laboratoire d’Ingénierie & Sciences des Matériaux, UFR Sciences, BP1039, 51687 Reims cedex 2 (France); Jbara, O. [Laboratoire d’Ingénierie & Sciences des Matériaux, UFR Sciences, BP1039, 51687 Reims cedex 2 (France); Boubakeur, A. [L.R.E./Laboratory of High Voltage, Polytechnic National School, BP182, EL-Harrach, Algiers (Algeria)

    2017-03-01

    Thermal aging of cross-linked polyethylene (XLPE) can cause serious concerns in the safety operation in high voltage system. To get a more detailed picture on the effect of thermal aging on the trapping and detrapping process of XLPE in the melting temperature range, Thermal Stimulated Current (TSC) have been implemented in a Scanning Electron Microscope (SEM) with a specific arrangement. The XLPE specimens are molded and aged at two temperatures (120 °C and 140 °C) situated close to the melting temperature of the material. The use of SEM allows us to measure both leakage and displacement currents induced in samples under electron irradiation. The first represents the conduction process of XLPE and the second gives information on the trapping of charges in the bulk of the material. TSC associated to the SEM leads to show spectra of XLPE discharge under thermal stimulation using both currents measured after electron irradiation. It was found that leakage current in the charging process may be related to the physical defects resulting in crystallinity variation under thermal aging. However the trapped charge can be affected by the carbonyl groups resulting from the thermo-oxidation degradation and the disorder in the material. It is evidenced from the TSC spectra of unaged XLPE that there is no detrapping charge under heat stimulation. Whereas the presence of peaks in the TSC spectra of thermally aged samples indicates that there is some amount of trapped charge released by heating. The detrapping behavior of aged XLPE is supported by the supposition of the existence of two trap levels: shallow traps and deep traps. Overall, physico-chemical reactions under thermal aging at high temperatures leads to the enhancement of shallow traps density and changes in range of traps depth. These changes induce degradation of electrical properties of XLPE.

  16. Evaluation of Energy Consumption in the Mercury Treatment of Phosphor Powder from Spent Fluorescent Lamps Using a Thermal Process

    Directory of Open Access Journals (Sweden)

    Yong Choi

    2017-11-01

    Full Text Available In a pilot-plant-scale thermal mercury treatment of phosphor powder from spent fluorescent lamps, energy consumption was estimated to control mercury content by the consideration of reaction kinetics. Mercury content was analyzed as a function of treatment temperature and time. The initial mercury content of the phosphor powder used in the thermal process was approximately 3500 mg/kg. The target mercury content in the phosphor powder thermal process of the phosphor powder was 5 mg/kg or less at 400 °C or higher because the target mercury content was recommended by Minamata Convention and Basel Convention. During thermal processing, the reaction rate was represented by a first order reaction with the Arrhenius equation. The reaction rate constant increased with temperature from 0.0112 min−1 at 350 °C to 0.0558 min−1 at 600 °C. The frequency factor was 2.51 min−1, and the activation energy was 6509.11 kcal/kg. Reaction rate constants were used to evaluate the treatment time required to reduce mercury content in phosphor powder to be less than 5 mg/kg. The total energy consumption in a pilot-plant-scale thermal process was evaluated to determine the optimal temperature for removing mercury in phosphor powder.

  17. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice

    OpenAIRE

    Roos, Carolyn M.; Zhang, Bin; Palmer, Allyson K.; Ogrodnik, Mikolaj B.; Pirtskhalava, Tamar; Thalji, Nassir M.; Hagler, Michael; Jurk, Diana; Smith, Leslie A.; Casaclang?Verzosa, Grace; Zhu, Yi; Schafer, Marissa J.; Tchkonia, Tamara; Kirkland, James L.; Miller, Jordan D.

    2016-01-01

    Summary While reports suggest a single dose of senolytics may improve vasomotor function, the structural and functional impact of long?term senolytic treatment is unknown. To determine whether long?term senolytic treatment improves vasomotor function, vascular stiffness, and intimal plaque size and composition in aged or hypercholesterolemic mice with established disease. Senolytic treatment (intermittent treatment with Dasatinib + Quercetin via oral gavage) resulted in significant reductions...

  18. Nanocomposite containing CaF2 nanoparticles: Thermal cycling, wear and long-term water-aging

    Science.gov (United States)

    Weir, Michael D.; Moreau, Jennifer L.; Levine, Eric D.; Strassler, Howard D.; Chow, Laurence C.; Xu, Hockin H. K.

    2012-01-01

    Objectives Fluoride (F) releasing dental restoratives are promising to promote remineralization and combat caries. The objectives of this study were to develop nanocomposite containing calcium fluoride nanoparticles (nCaF2), and to investigate the long-term mechanical durability including wear, thermal-cycling and long-term water-aging behavior. Methods Two types of fillers were used: nCaF2 with a diameter of 53 nm, and glass particles of 1.4 μm. Four composites were fabricated with fillers of: (1) 0% nCaF2 + 65% glass; (2) 10% nCaF2 + 55% glass; (3) 20% nCaF2 + 45% glass; (4) 30% nCaF2 + 35% glass. Three commercial materials were also tested. Specimens were subjected to thermal-cycling between 5 °C and 60 °C for 105 cycles, three-body wear for 4×105 cycles, and water-aging for 2 years. Results After thermal-cycling, the nCaF2 nanocomposites had flexural strengths in the range of 100-150 MPa, five times higher than the 20-30 MPa for resin-modified glass ionomer (RMGI). The wear scar depth showed an increasing trend with increasing nCaF2 filler level. Wear of nCaF2 nanocomposites was within the range of wear for commercial controls. Water-aging decreased the strength of all materials. At 2 years, flexural strength was 94 MPa for nanocomposite with 10% nCaF2, 60 MPa with 20% nCaF2, and 48 MPa with 30% nCaF2. They are 3-6 fold higher than the 15 MPa for RMGI (p nanocomposites appeared dense and solid. Significance Combining nCaF2 with glass particles yielded nanocomposites with long-term mechanical properties that were comparable to those of a commercial composite with little F release, and much better than those of RMGI controls. These strong long-term properties, together with their F release being comparable to RMGI as previously reported, indicate that the nCaF2 nanocomposites are promising for load-bearing and caries-inhibiting restorations. PMID:22429937

  19. Thermal aging effect in oxi-reduction properties and catalytic activity of CZ and Pd-CZ catalyst; O efeito da desativacao termica nas propriedades oxirredutoras e na atividade catalitica de catalisadores CZ e Pd-CZ

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Daniela Cruz Damasceno da; Zotin, Fatima Maria Zanon, E-mail: fmzzotin@gmail.com [Departamento de Operacoes e Projetos Industriais, Instituto de Quimica, Universidade do Estado do Rio de Janeiro, RJ (Brazil); Neumann, Reiner [Coordenacao de Analises Minerais, Centro de Tecnologia Mineral, Rio de Janeiro, RJ (Brazil); Hori, Carla Eponina [Faculdade de Engenharia Quimica, Universidade Federal de Uberlandia, MG (Brazil); Cardoso, Mauri Jose Baldini [Centro de Pesquisas e Desenvolvimento Leopoldo Americo Miguez de Melo - PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Automotive catalyst, using in Brazil since 1992, is a essential technology for vehicular emissions control. Noble metals are the active phase of these catalysts, and cerium zirconium mixed oxides (CZ), responsible for the oxygen storage capacity (OSC), one of the most important aspect for the operational performance of the catalyst. In this context, the oxireduction properties analysis of CZ and Pd/CZ (palladium supported in CZ) system are the objective of this study, as well as, the impact of the thermal aging in the OSC. Aging consisted of treatments at 900 or 1200 degree C, for 12 or 36 h, in oxidizing condition. (author)

  20. Influence of mechanical and thermal treatments on raw materials containing pyrophyllite

    Directory of Open Access Journals (Sweden)

    Sánchez Soto, P. J.

    2000-02-01

    Full Text Available In the present work results obtained in a study on the influence of thermal, mechanical by dry grinding, and their combination, in raw materials containing pyrophyllite, are discussed. First of all, it is studied the influence of thermal treatment concerning the development and evolution of crystalline phases (mullite and cristobalite from dehydroxylated pyrophyllite. On the basis of these results, it is analyzed what happens in a natural raw mixture of pyrophyllite with kaolinite and mica (sericite submitted to thermal treatments. The raw pyrophyllite materials are altered under laboratory conditions using mechanical treatments by dry grinding. It is noted that the increase of surface area and particle size reduction is produced by grinding, but other effects are produced on the structure and properties of the solid submitted to grinding. In general, grinding leads to a progressive destruction of the original crystal structure of the present layered silicates, but it is preferentially produced along the “c” axis. In other words, mechanochemical reactions are induced by dry grinding due to the increase of reactivity of the system. Between these reactions, it is enhanced the reagglomeration process that occurs above a determinate limit of grinding time. The grinding treatment can be combined with a subsequent thermal treatment that enhances the increase of reactivity, producing the formation of crystalline phases (mullite and cristobalite at lower temperatures that in unground samples with energy saving. The results are compared taking into account the crystal structures of both kaolinite and pyrophyllite, the thermal transformation of kaolinite to mullite, and the process of grinding kaolinite because this layer silicate is present in the raw materials containing pyrophyllite.

    En el presente trabajo se exponen y discuten resultados obtenidos en el estudio de la influencia de tratamientos térmicos, tratamientos mecánicos por molienda

  1. Impact And Thermal Treatment Of Clays: Implications For The Surface Properties Of Mars

    Science.gov (United States)

    Gavin, Patricia; Chevrier, V.

    2007-10-01

    CRISM has recently confirmed OMEGA's previous detection of clays on the surface of Mars, mainly in the Nili Fossae and Mawrth Vallis regions in the Noachian terrains. It has been proposed that transformations of clays through meteoritic impacts and thermal metamorphism may be responsible for Mars’ red color. We thermally treated several samples of nontronite (Fe-rich clay) and montmorillonite (Al-rich clay) in both air and in a CO2 atmosphere to various temperatures (from 500°C to 1100°C) for various durations (4 to 24 hrs) and impacted each clay sample at 2.5 km/s. X-Ray Diffraction (XRD), infrared spectrometry (FT-IR), ESEM, TEM, and magnetic properties analyses were performed on each sample. XRD of heated samples showed the formation of hematite, sillimanite, and cristobalite in high temperature samples. The same phases with corundum and quartz formed in the medium temperature samples. ESEM and EDX analyses confirmed these results. No secondary phase was observed on the XRD spectra of the impacted samples. Magnetic analyses showed properties of hematite at high temperature, spinel only in the CO2 atmosphere at 850°C and the systematic formation of a distinct unknown magnetic phase around 900-1000°C, also observed in TEM. FT-IR analysis in the MIR range showed the loss of interlayer water and a quartz/silica-forming phase. NIR spectra of the shocked samples were of particular interest because of the formation of a pair of unidentified peaks at 3.4 and 3.5 μm. These two peaks did not appear in any other spectrum, indicating they are the result of the shock treatment only. Such result, combined with XRD results, suggests potential amorphisation of the impacted clays. Such a specific feature could help determine if clays were affected by shock on Mars.

  2. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  3. Dissolution of alpha-prime precipitates in thermally embrittled S2205-duplex steels during reversion-heat treatment

    Directory of Open Access Journals (Sweden)

    V. Shamanth

    2015-01-01

    Full Text Available Duplex stainless steels offer an attractive combination of strength, corrosion resistance and cost. In annealed condition duplex steels will be in thermodynamically metastable condition but when they are subjected to intermediate homologous temperature of ∼475 °C and below significant embrittlement occurs, which is one of the key material degradation properties that limits its upper service temperature in many applications. Hence the present study is aimed to study the effect of reversion heat treatment and its time on mechanical properties of the thermally embrittled steel. The results showed that 60 min reversion heat treated samples were able to recover the mechanical properties which were very close to annealed properties because when the embrittled samples were reversion heat treated at an elevated temperature of 550 °C which is above the (α + α′ miscibility gap, the ferritic phase was homogenized again. In other words, Fe-rich α and Cr-rich α′ prime precipitates which were formed during ageing become thermodynamically unstable and dissolve inside the ferritic phase.

  4. Influence of different treatments of the ceramic surface and thermal cycling on the bond strength of brackets to ceramic

    Directory of Open Access Journals (Sweden)

    Fernando Guerra SÁEZ

    Full Text Available Abstract Objective To evaluate in vitro the effect of different treatments of the ceramic surface and thermal cycling on the shear bond strength (SBS of metallic brackets bonded to feldspathic ceramic. Material and method Ceramic cylinders were divided into four groups (n=4 according to the treatment of ceramic surface: G1-Clearfil Ceramic Primer silane and Transbond XT (CCPT; G2-etched with 10% hydrofluoric acid (HFA for 60 s, CCP and Transbond XT (ACCPT; G3-etched with 10% HFA for 60 s, Ambar Adhesive and Transbond XT (AAAT; and, G4 - etched with 10% HFA for 60 s, RelyX Ceramic Primer silane -RCP, adhesive primer Transbond and Transbond XT (ACPPT. Brackets were bonded to the cylinders with Transbond XT and light-activated for 40 s with LED Radii Plus. All specimens were stored in deionized water at 37 °C for 24 h, and two cylinders from each group were subject to 7,000 thermal cycles in a thermal cycler (5 °C/55 °C. After storage and thermal cycling, the SBS test was performed at a crosshead speed of 1 mm/min. Data were subjected to two-way ANOVA and Tukey’s post hoc test (α=0.05. Result The SBS of ACCPT was significantly higher than the other groups (p<0.05. The specimens submitted to thermal cycling showed significantly lower SBS than those without thermal cycling (p<0.05, regardless the ceramic surface treatment. The ARI showed predominance of score 0 for all groups. Conclusion Acid etching, CCP silane and Transbond XT method obtained the best results for bracket bonding. Thermal cycling reduced SBS for all groups. Score 0 was predominant for ARI in all groups.

  5. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing

    Science.gov (United States)

    Larsson, Fredrik; Bertilsson, Simon; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2018-01-01

    Commercial 6.8 Ah lithium-ion cells with different ageing/status have been abused by external heating in an oven. Prior to the abuse test, selected cells were aged either by C/2 cycling up to 300 cycles or stored at 60 °C. Gas emissions were measured by FTIR and three separate vents were identified, two well before the thermal runaway while the third occurred simultaneously with the thermal runaway releasing heavy smoke and gas. Emissions of toxic carbon monoxide (CO), hydrogen fluoride (HF) and phosphorous oxyfluoride (POF3) were detected in the third vent, regardless if there was a fire or not. All abused cells went into thermal runaway and emitted smoke and gas, the working cells also released flames as well as sparks. The dead cells were however less reactive but still underwent thermal runaway. For about half of the working cells, for all levels of cycle ageing, ignition of the accumulated battery released gases occurred about 15 s after the thermal runaway resulting in a gas explosion. The thermal runaway temperature, about 190 °C, varied somewhat for the different cell ageing/status where a weak local minimum was found for cells cycled between 100 and 200 times.

  6. Effect of thermally growth oxides (TGO) on adhesion strength for high purity yitria stabilised zirconia (YSZ) and rare - Earth lanthanum zirconates (LZ) multilayer thermal barrier coating before and after isothermal heat treatment

    Science.gov (United States)

    Yunus, Salmi Mohd; Johari, Azril Dahari; Husin, Shuib

    2017-12-01

    Investigation on the effect of Thermally Growth Oxides (TGO) on the adhesion strength for thermal barrier coating (TBC) was carried out. The TBC under studied was the multilayer systems which consist of NiCrAlY bond coat and YSZ/LZ ceramic coating deposited on Ni-based superalloy substrates. The development of thermally growth oxides (TGO) for both TBC systems after isothermal heat treatment was measured. Isothermal heat treatment was carried out at 1100 ˚C for 100 hours to age the samples. ASTM D4541: Standard Test Method for Pull-off Strength of Coatings using Portable Adhesion Tester was used to measure the adhesion strength of both TBC systems before and after heat treatment. The effect of the developed TGO on the measured adhesion strength was examined and correlation between them was established individually for both TBC systems. The failure mechanism of the both system was also identified; either cohesive or adhesive or the combination of both. The results showed that TGO has more than 50% from the bond coat layer for rare-earth LZ system compared to the typical YSZ system, which was less than 10 % from the bond coat layer. This leads to the lower adhesion strength of rare-earth LZ coating system compared to typical YSZ system. Failure mechanism during the pull-off test also was found to be different for both TBC systems. The typical YSZ system experienced cohesive failure whereas the rare-earth LZ system experienced the combination of cohesive and adhesive failure.

  7. Performance evaluation of a conformal thermal monitoring sheet sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments.

    Science.gov (United States)

    Arunachalam, K; Maccarini, P; Juang, T; Gaeta, C; Stauffer, P R

    2008-06-01

    This paper presents a novel conformal thermal monitoring sheet (TMS) sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self-heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. A prototype with 4 x 4 array of fiber-optic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter-based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self-heating was observed when irradiated with 915 MHz microwave and 3.4 MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease.

  8. Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control.

    Science.gov (United States)

    Prakash, Punit; Diederich, Chris J

    2012-01-01

    To determine the impact of including dynamic changes in tissue physical properties during heating on feedback controlled thermal ablation with catheter-based ultrasound. Additionally, we compared the impact of several indicators of thermal damage on predicted extents of ablation zones for planning and monitoring ablations with this modality. A 3D model of ultrasound ablation with interstitial and transurethral applicators incorporating temperature-based feedback control was used to simulate thermal ablations in prostate and liver tissue. We investigated five coupled models of heat dependent changes in tissue acoustic attenuation/absorption and blood perfusion of varying degrees of complexity. Dimensions of the ablation zone were computed using temperature, thermal dose, and Arrhenius thermal damage indicators of coagulative necrosis. A comparison of the predictions by each of these models was illustrated on a patient-specific anatomy in the treatment planning setting. Models including dynamic changes in blood perfusion and acoustic attenuation as a function of thermal dose/damage predicted near-identical ablation zone volumes (maximum variation models using constant values for acoustic attenuation predicted ablation zone volumes up to 50% larger or 47% smaller in liver and prostate tissue, respectively. Thermal dose (t(43) ≥ 240 min) and thermal damage (Ω ≥ 4.6) thresholds for coagulative necrosis are in good agreement for all heating durations, temperature thresholds in the range of 54°C for short (thermal dose and Arrhenius damage measures of ablation zone dimensions are in good agreement, while appropriately selected temperature thresholds provide a computationally cheaper surrogate.

  9. Effects of Thermal Aging on Type 316H Stainless Steel for Reactor Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Hyun; Hong, Seok Min; Lee, Bong Sang; Koo, Gyeong Hoi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Type 316H stainless steel is a prime candidate for reactor vessel material of sodium-cooled fast reactor (SFR) which has been developed as one of the Gen IV nuclear reactors in Korea. The reactor vessel steel will be exposed to higher temperature for an extended design life time. It is known that austenitic stainless steel such as Type 316H stainless steel shows excellent toughness and adequate strength at a moderate temperature. However, the previous researches reported the mechanical properties of Type 316H stainless weld would be deteriorated by the aging at the elevated temperature range.

  10. Effects of MAPP Compatibilization and Acetylation Treatment Followed by Hydrothermal Aging on Polypropylene Alfa Fiber Composites

    Directory of Open Access Journals (Sweden)

    Noura Hamour

    2015-01-01

    Full Text Available This work investigates the effect of hydrothermal aging on the properties of polypropylene/alfa fiber composites. Hydrothermal aging was induced in an environmental testing chamber at 65°C and 75% relative humidity (RH over a 1000 h period. At the beginning (t=0 h, the results showed that Young’s moduli of the untreated alfa fibers and the acetylation-treated fibers increased by 21% and 36%, respectively, compared with the virgin polypropylene (PP. Additionally, Young’s moduli decreased by 7% for the compatibilized composites composed of maleic anhydride grafted polypropylene (MAPP. After 1000 h of aging, Young’s moduli decreased by 36% for untreated alfa fibers and 29% for the acetylation-treated alfa fibers and the compatibilized composites. Significant degradation was observed in the untreated alfa fiber samples. The Fourier transformed infrared (FTIR allows us to distinguish the characteristic absorption bands of the main chemical functions present in the composite material before and after aging. The thermal properties showed that the thermal stability and the degree of crystallinity of the composites decreased after hydrothermal aging; this result was corroborated by the dynamical mechanical analysis (DMA results.

  11. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Small, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, T. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, R. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.

  12. Modeling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications to device design, feedback control, and treatment planning

    Science.gov (United States)

    Prakash, Punit; Salgaonkar, Vasant A.; Diederich, Chris J.

    2014-01-01

    Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in in device design and optimization, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modeling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimization of inverse treatment plans are presented. PMID:23738697

  13. Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications for device design, feedback control and treatment planning.

    Science.gov (United States)

    Prakash, Punit; Salgaonkar, Vasant A; Diederich, Chris J

    2013-06-01

    Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in device design and optimisation, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modelling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimisation of inverse treatment plans are presented.

  14. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, S. [Materials Science and Engineering Department, Universidad de Cantabria (Spain)], E-mail: ciceros@unican.es; Setien, J. [Materials Science and Engineering Department, Universidad de Cantabria (Spain); Gorrochategui, I. [Centro Tecnologico de Componentes, Gobierno de Cantabria (Spain)

    2009-01-15

    This paper analyzes the thermal aging embrittlement occurred in a cast stainless steel valve, which is part of the reactor water clean-up (RWCU) system of a Spanish boiling water reactor (BWR) nuclear power plant. The aim is to estimate the current and future state of the material and the corresponding structural integrity of the valve. Given that there is no data available for the experimental characterization of the material, the evolution of the mechanical properties (fracture toughness, yield stress, flow stress and Ramberg-Osgood parameters) has been estimated using the ANL procedure. With the obtained estimations, the critical crack size has been calculated using the European procedure FITNET FFS and the ASME Code. This analysis considers not only the evolution of the mechanical properties up to now but also its future evolution in case there is a life extension of the plant until year 2029.

  15. Ovarian reserve in women of late reproductive age by the method of treatment of PCOS

    National Research Council Canada - National Science Library

    Beltadze, Ketevan; Barbakadze, Ludmila

    2015-01-01

    .... Very few longitudinal follow-up for assessment of ovarian reserve in women of late reproductive age with previously confirmed PCOS have been conducted, especially after its diagnosis and treatment in adolescence...

  16. Consensus of diagnosis and treatment of obesity in women in reproductive age and climacterium

    National Research Council Canada - National Science Library

    Ortega-González, Carlos; Aguilera-Pérez, Jesús Rafael; Arce-Sánchez, Lidia; Barquera-Cervera, Simón; Díaz-Polanco, Araceli; Fernández-Sánchez, Mónica; Ferreira-Hermosillo, Aldo; Martínez-Cruz, Nayeli; Medina-García, Catalina; Molina-Ayala, Mario Antonio; Muñoz-Manrique, Cinthya Guadalupe; Pantoja-Millán, Juan Pablo; Perichart-Perera, Otilia; Pimentel-Nieto, Dian; Reyes-Rodríguez, Eduardo Armando; Romero-Zazueta, Alejandro; Ruiz-Padilla, Claudia Lorena; Vergara-López, Alma; Vidrio-Velázquez, Maricela; Villagordoa-Mesa, Juan; Zúñiga-González, Sergio Antonio

    2015-01-01

    ...vascular mortality and it is a major determinant factor of the metabolic syndrome. To homologate and to apply concepts of evidence-based clinical practice in diagnosis and treatment of obesity in women in reproductive age and climacterium...

  17. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment.

    Science.gov (United States)

    Ruffino, Barbara; Campo, Giuseppe; Genon, Giuseppe; Lorenzi, Eugenio; Novarino, Daniel; Scibilia, Gerardo; Zanetti, Mariachiara

    2015-01-01

    Performances of mechanical and low-temperature (plant (2,300,000p.e.). Thermal pre-treatments returned disintegration rates of one order of magnitude higher than mechanical ones (about 25% vs. 1.5%). The methane specific production increased by 21% and 31%, with respect to untreated samples, for treatment conditions of respectively 70 and 90°C, 3h. Thermal pre-treatments also decreased WAS viscosity. Preliminary energy and economic assessments demonstrated that a WAS final total solid content of 5% was enough to avoid the employment of auxiliary methane for the pre-treatment at 90°C and the subsequent AD process, provided that all the heat generated was transferred to WAS through heat exchangers. Moreover, the total revenues from sale of the electricity produced from biogas increased by 10% with respect to the present scenario. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Ambient aging of rhenium filaments used in thermal ionization mass spectrometry: Growth of oxo-rhenium crystallites and anti-aging strategies

    Directory of Open Access Journals (Sweden)

    Joseph M. Mannion

    2017-01-01

    Full Text Available Degassing is a common preparation technique for rhenium filaments used for thermal ionization mass spectrometric analysis of actinides, including plutonium. Although optimization studies regarding degassing conditions have been reported, little work has been done to characterize filament aging after degassing. In this study, the effects of filament aging after degassing were explored to determine a “shelf-life” for degassed rhenium filaments, and methods to limit filament aging were investigated. Zone-refined rhenium filaments were degassed by resistance heating under high vacuum before exposure to ambient atmosphere for up to 2 months. After degassing the nucleation and preferential growth of oxo-rhenium crystallites on the surface of polycrystalline rhenium filaments was observed by atomic force microscopy and scanning electron microscopy (SEM. Compositional analysis of the crystallites was conducted using SEM-Raman spectroscopy and SEM energy dispersive X-ray spectroscopy, and grain orientation at the metal surface was investigated by electron back-scatter diffraction mapping. Spectra collected by SEM-Raman suggest crystallites are composed primarily of perrhenic acid. The relative extent of growth and crystallite morphology were found to be grain dependent and affected by the dissolution of carbon into filaments during annealing (often referred to as carbonization or carburization. Crystallites were observed to nucleate in region specific modes and grow over time through transfer of material from the surface. Factors most likely to affect the rates of crystallite growth include rhenium substrate properties such as grain size, orientation, levels of dissolved carbon, and relative abundance of defect sites; as well as environmental factors such as length of exposure to oxygen and relative humidity. Thin (∼180 nm hydrophobic films of poly(vinylbenzyl chloride were found to slow the growth of oxo-rhenium crystallites on the filament

  19. Effect of thermal treatments on the structural and magnetic transitions in melt-spun Ni-Fe-Ga-(Co) ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Tolea, F.; Sofronie, M.; Crisan, A.D.; Enculescu, M.; Kuncser, V.; Valeanu, M., E-mail: valeanu@infim.ro

    2015-11-25

    The effect of thermal treatments on the martensitic transformation in three representative Ni-Fe-Ga alloys with or without Co substitutions has been studied by calorimetry, X-ray diffractometry, scanning electron microscopy and magnetometry. The alloys were prepared as ribbons, by the melt spinning technique. The thermal treatments promote a reduction of the martensitic transformation temperature in all investigated samples, with the most pronounced decrease for the alloys with lower Ga content. Three different mechanisms induced by specific thermal treatments and responsible for the characteristic behaviour of the martensitic transformation, with respect to temperature and heat of transition, were observed and discussed in details. - Highlights: • Thermal treatments were applied to Ni-Fe-Ga-(Co) ribbons with different Ga content. • Changes of the martensite transformation characteristics are evidenced by in situ DSC. • For low Ga content, the MT temperatures may be tuned in a large temperature range. • The effect of TTs on the structural and magnetic properties is discussed. • Three processes responsible for the reduction of the MT temperatures were highlighted.

  20. Temperature Evaluation of Heat Transferring Body while Preparing Temperature Chart of Heating Technologies and Metal Thermal Treatment

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2011-01-01

    Full Text Available The paper considers problems pertaining to temperature evaluation of a heat transferring body in the operational space of high temperature installations. A formula for evaluation of this temperature has been written down in the paper. Calculation of a heating transferring body (furnace makes it possible to realize temperature chart parameters in the plant heating technologies and steel thermal treatment.

  1. Effects of thermal treatment on mineralogy and heavy metal behavior in iron oxide stabilized air pollution control residues

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Bender-Koch, C.; Starckpoole, M. M.

    2000-01-01

    Stabilization of air pollution control residues by coprecipitation with ferrous iron and subsequent thermal treatment (at 600 and 900 °C) has been examined as a means to reduce heavy metal leaching and to improve product stability. Changes in mineralogy and metal binding were analyzed using various...

  2. Mechanical properties of amorphous alloys ribbons prepared by rapid quenching of the melt after different thermal treatments before quenching

    NARCIS (Netherlands)

    Tabachnikova, ED; Bengus, VZ; Egorov, D V; Tsepelev, VS; Ocelik, Vaclav

    1997-01-01

    The mechanical properties of amorphous alloy are greatly influenced by the thermal treatment of its melt before rapid quenching. The strength and the fracture toughness of some amorphous alloys obtained after melt beating above the melt critical temperature T-CR are essentially higher than those

  3. Effect of Cambi Thermal Hydrolysis Process-Anaerobic digestion treatment on concentrations on phthalate plasticisers in wastewater sludge

    Science.gov (United States)

    The impact of the recently implemented Cambi Thermal Hydrolysis Process™-Anaerobic Digestion (TH-AD) solids treatment method on concentrations of 4 phthalate plasticisers in wastewater sludge samples was explored in this study. Samples were analysed for diisononyl phthalate (DiNP), diisodecyl phthal...

  4. Combined high-pressure and thermal treatments for processing of tomato puree : evaluation of microbial inactivation and quality parameters

    NARCIS (Netherlands)

    Krebbers, B.; Matser, A.M.; Hoogerwerf, S.W.; Moezelaar, R.; Tomassen, M.M.M.; Berg, van den R.W.

    2003-01-01

    The effects of combined high-pressure thermal treatments on consistency, viscosity, colour, lycopene content, enzyme activity and micro-organisms were determined, and compared to conventional pasteurisation and sterilisation processes of tomato puree. High-pressure processing at ambient temperature

  5. The Potential Impact of Biofield Energy Treatment on the Physical and Thermal Properties of Silver Oxide Powder

    OpenAIRE

    Mahendra, Trivedi; Alice, Branton; Dahryn, Trivedi; Gopal, Nayak

    2015-01-01

    Silver oxide has gained significant attention due to its antimicrobial activities. The purpose of this study was to evaluate the impact of biofield energy treatment on the physical and thermal properties of silver oxide (Ag2O). The silver oxide powder was divided into two parts, one part was kept as control and another part was received Mr. Trivedi's biofield energy treatment. The control and treated samples were analyzed using X-ray diffraction (XRD), differential scanning calorimetry (DSC),...

  6. Oral cavity infection: an adverse effect after the treatment of oral cancer in aged individuals

    OpenAIRE

    Pan, Jie; Zhao, Jun; Jiang, Ning

    2014-01-01

    Objective: The immune compromised patients after treatment of oral cancer may have a chance of infection by drug-resistant opportunistic microbes. We investigated the occurrence of opportunistic microorganisms in aged individuals receiving follow-up examinations after treatment of oral cancer in China. Material and Methods: These patients were used as test group and the respective age grouped healthy individuals as control group. In this study, the oral cavity microorganisms such as bact...

  7. Effects of Thermal and Solvent Aging on Breakdown Voltage of TPE, PBT/PET Alloy, and PBT Insulated Low Voltage Electric Wire

    Directory of Open Access Journals (Sweden)

    Eun-Soo Park

    2013-01-01

    Full Text Available Tests were performed to evaluate the effects of thermal and solvent aging on the mechanical and dielectric breakdown properties of four types of polyester resins, namely, the insulation layer of poly(butylene terephthalat (PBT- based thermoplastic elastomer (TPE, TPE1, poly(butylene 2,6-naphthalate-based TPE (TPE2, PBT/poly(ethylene terephthalate alloy (Alloy, and PBT extruded onto a copper conductor of low voltage electric wire. The tensile specimens used in this series were prepared from the same extruded resins. The prepared electric wires and tensile specimens were thermally aged in air and in toluene, xylene, TCB, and NMP. When Alloy and PBT were thermally aged in toluene, xylene and TCB at 120°C for 6 h, the tensile properties were significantly decreased compared to TPE1 and TPE2 at the same condition. The reduction of elongation at break of Alloy was more discernible than that of PBT. This result indicated that Alloy is more affected by thermal and solvent ageing. Among them, TPE2 showed the highest breakdown voltage (BDV, and it has also the highest BDV after thermal and solvent aging.

  8. Suzaku Observations of Thermal and Non-Thermal X-Ray Emission from the Middle-Aged Supernova Remnant G156.2+5.7

    Science.gov (United States)

    Katsuda, Satoru; Petre, Robert; Hwang, Una; Yamaguchi, Hiroya; Mori, Koji; Tsunemi, Hiroshi

    2008-01-01

    We present results from X-ray analysis of a Galactic middle-aged supernova remnant (SNR) G156.2+5.7 which is bright and largely extended in X-ray wavelengths, showing a clear circular shape (radius approx.50'). Using the Suzaku satellite, we observed this SNR in three pointings; partially covering the northwestern (NW) rim, the eastern (E) rim, and the central portion of this SNR. In the NW rim and the central portion, we confirm that the X-ray spectra consist of soft and hard-tail emission, while in the E rim we find no significant hard-tail emission. The soft emission is well fitted by either a one-component or two-component non-equilibrium ionization (NEI) model. In the NW and E rims, a one-component (the swept-up interstellar medium) NEI model well represents the soft emission. On the other hand, in the central portion, a two-component (the interstellar medium and the metal-rich ejecta) NEI model fits the soft emission better than the one-component NEI model from a statistical point of view. The relative abundances in the ejecta component suggest that G156.2+5.7 is a remnant from a core-collapse SN explosion whose progenitor mass is less than 15 Solar Mass. The origin of the hard-tail emission detected in the NW rim and the central portion of the SNR is highly likely non-thermal synchrotron emission from relativistic electrons. In the NW rim, the relativistic electrons seems to be accelerated by a forward shock with a slow velocity of APPROX.500 km/sec.

  9. Importance of age for 3-year continuous behavioral obesity treatment success and dropout rate.

    Science.gov (United States)

    Danielsson, Pernilla; Svensson, Viktoria; Kowalski, Jan; Nyberg, Gisela; Ekblom, Orjan; Marcus, Claude

    2012-01-01

    To assess whether first year weight loss, age, and socioeconomic background correlate with the success rate of continuous long-term behavioral obesity treatment. In a 3-year longitudinal study, obese children (n = 684) were divided into three groups based on age at the start of treatment, age 6-9 years, 10-13 years, and 14-16 years. The mean BMI standard deviation score (BMI-SDS) decline was age-dependent (p = 0.001), independently of adjustment for missing data: -1.8 BMI-SDS units in the youngest, -1.3 in the middle age group, and -0.5 in the oldest age group. SES and parental BMI status did not affect the results. 30% of the adolescents remained in treatment at year 3. There was only a weak correlation between BMI-SDS change after 1 and 3 years: r = 0.51 (p treatment should be initiated at an early age to increase the chance for good results. Childhood obesity treatment should be continued for at least 3 years, regardless of the initial change in BMI-SDS. Copyright © 2012 S. Karger GmbH, Freiburg.

  10. Effects of Early Onset of Nimodipine Treatment on Microvascular Integrity in the Aging Rat Brain

    NARCIS (Netherlands)

    de Jong, Giena; Horváth, E.; Luiten, P.G.M.

    1990-01-01

    We studied the effects of long-term treatment with 1,4-dihydropyridine nimodipine on age-related changes of the cerebral microvasculature in layers I, III, and V of the frontoparietal motor cortex of aged (30 months) male Wistar rats. Ultrastructural alterations of microvessels can either be

  11. New Treatment Greatly Improves Prognosis for Patients with AMD (Age-Related Macular Degeneration)

    Science.gov (United States)

    ... page please turn JavaScript on. Feature: Age-related Macular Degeneration New Treatment Greatly Improves Prognosis for Patients with ... study of nearly 650 people with age-related macular degeneration (AMD), half still had 20/40 vision or ...

  12. Assessment of radicular dentin permeability after irradiation with CO2 laser and endodontic irrigation treatments with thermal imaging

    Science.gov (United States)

    Cho, Heajin; Lee, Robert C.; Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have demonstrated that the permeability changes due to the surface modification of dentin can be quantified via thermal imaging during dehydration. The CO2 laser has been shown to remove the smear layer and disinfect root canals. Moreover, thermal modification via CO2 laser irradiation can be used to convert dentin into a highly mineralized enamel-like mineral. The purpose of this study is to evaluate the radicular dentin surface modification after CO2 laser irradiation by measuring the permeability with thermal imaging. Human molar specimens (n=12) were sectioned into 4 axial walls of the pulp chamber and treated with either 10% NaClO for 1 minute, 5% EDTA for 1 minute, CO2 laser or none. The CO2 laser was operated at 9.4 μm with a pulse duration of 26 μs, pulse repetition rate of 300 Hz and a fluence of 13 J/cm2. The samples were dehydrated using an air spray for 60 seconds and imaged using a thermal camera. The resulting surface morphological changes were assessed using 3D digital microscopy. The images from digital microscopy confirmed melting of the mineral phase of dentin. The area enclosed by the time-temperature curve during dehydration, ▵Q, measured with thermal imaging increased significantly with treatments with EDTA and the CO2 laser (P<0.05). These results indicate that the surface modification due to CO2 laser treatment increases permeability of radicular dentin.

  13. Influence of age on outcome of psychological treatments in first-episode psychosis.

    Science.gov (United States)

    Haddock, Gillian; Lewis, Shôn; Bentall, Richard; Dunn, Graham; Drake, Richard; Tarrier, Nicholas

    2006-03-01

    Psychological treatments have been shown to be effective in patients with psychosis. However, the studies published to date have included participants across wide age ranges, so few conclusions can be reached about the effectiveness of such treatments in relation to age. To evaluate outcomes by age in a randomised controlled trial designed to evaluate the effectiveness of cognitive-behavioural therapy (CBT), supportive counselling and treatment as usual. Outcomes were evaluated in terms of symptoms, social functioning, insight and therapeutic alliance according to age at 3- and 18-month follow-up. Younger participants responded better to supportive counselling than to treatment as usual and CBTover 3 months. Older participants responded better to CBT than to supportive counselling over 18 months. Younger participants showed a greater increase in insight after CBT compared with treatment as usual and supportive counselling, and were more difficult to engage in therapy. Young people may have different needs with regard to engagement in psychological treatments. Treatment providers need to take age-specific factors into account.

  14. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    Science.gov (United States)

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  15. Significance of age and comorbidity on treatment modality, treatment adherence, and prognosis in elderly ovarian cancer patients

    DEFF Research Database (Denmark)

    Jørgensen, Trine Lembrecht; Teiblum, Sandra; Paludan, Merete

    2012-01-01

    BACKGROUND: Age is associated with poor prognosis in ovarian cancer patients. Reasons could be increased comorbidity, more advanced stage, or nonoptimal surgery or chemotherapy. Objectives of this study were to evaluate the significance of comorbidity and age ≥70years on receiving cytoreductive...... surgery, standard combination chemotherapy (TC), adherence to TC treatment, and prognosis. METHODS: A retrospective cohort study of all women registered in a nation-wide database with ovarian or peritoneal cancer in 2005-2006. Logistic regression was employed for determining the predictive value of age...

  16. Study of the Impact of Initial Moisture Content in Oil Impregnated Insulation Paper on Thermal Aging Rate of Condenser Bushing

    Directory of Open Access Journals (Sweden)

    Youyuan Wang

    2015-12-01

    Full Text Available This paper studied the impact of moisture on the correlated characteristics of the condenser bushings oil-paper insulation system. The oil-impregnated paper samples underwent accelerated thermal aging at 130 °C after preparation at different initial moisture contents (1%, 3%, 5% and 7%. All the samples were extracted periodically for the measurement of the moisture content, the degree of polymerization (DP and frequency domain dielectric spectroscopy (FDS. Next, the measurement results of samples were compared to the related research results of transformer oil-paper insulation, offering a theoretical basis of the parameter analysis. The obtained results show that the moisture fluctuation amplitude can reflect the different initial moisture contents of insulating paper and the mass ratio of oil and paper has little impact on the moisture content fluctuation pattern in oil-paper but has a great impact on moisture fluctuation amplitude; reduction of DP presents an accelerating trend with the increase of initial moisture content, and the aging rate of test samples is higher under low moisture content but lower under high moisture content compared to the insulation paper in transformers. Two obvious “deceleration zones” appeared in the dielectric spectrum with the decrease of frequency, and not only does the integral value of dielectric dissipation factor (tan δ reflect the aging degree, but it reflects the moisture content in solid insulation. These types of research in this paper can be applied to evaluate the condition of humidified insulation and the aging state of solid insulation for condenser bushings.

  17. Old age and forgoing treatment: a nationwide mortality follow-back study in the Netherlands.

    Science.gov (United States)

    Martins Pereira, Sandra; Pasman, H Roeline; van der Heide, Agnes; van Delden, Johannes J M; Onwuteaka-Philipsen, Bregje D

    2015-09-01

    The ageing of the population raises the need to study forgoing treatment decisions among older people. To describe the incidence and decision-making of forgoing treatment and identify age-related differences. A nationwide study of a stratified sample from the Statistics Netherlands death registry to which all deaths were reported in 2010. All attending physicians of those deaths received a questionnaire about end-of-life decisions. 6600 cases were studied. We examined three age groups: 17-64, 65-79, and 80 and above. Logistic regression analyses were performed to identify age-related differences controlling for other patient characteristics. Forgoing treatment occurred in 37% of the total population, with a significant increase in the incidence across age. The most common treatments withheld/withdrawn were artificial hydration/nutrition, medication and antibiotics. Age-related differences were found, especially for withholding artificial hydration/nutrition among patients aged 65-79 (OR 2.04), and for withdrawing medication (OR 2.51) and antibiotics (OR 2.10) among the oldest when compared to the youngest patients. The most common reason for making the decision was 'no chance of improvement'. The likelihood of forgoing treatment due to 'loss of dignity' was higher for the oldest (OR 2.32), as well as due to the request/wish of the patient (OR 1.97), when compared to the youngest patients. Forgoing treatment occurred in a substantial proportion of older people, and more often than in younger age groups. The avoidance of burdensome treatment solely to prolong life suggests a better acceptance that these patients are nearing death. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Picrocrocin kinetics in aqueous saffron spice extracts (Crocus sativus L.) upon thermal treatment.

    Science.gov (United States)

    Sánchez, Ana M; Carmona, Manuel; Jarén-Galán, Manuel; Mosquera, M Isabel Mínguez; Alonso, Gonzalo L

    2011-01-12

    The kinetics of picrocrocin degradation in aqueous extracts of saffron upon thermal treatment from 5 to 70 °C have been studied, together with the degradation of purified picrocrocin in water at 100 °C. The best fits to experimental data were found for a second-order kinetics model. Picrocrocin showed high stability with half-life periods (t(1/2)) ranging from >3400 h at 5 °C in saffron extracts to 9 h in the experiments with purified picrocrocin at 100 °C. In saffron extracts, the evolution of the rate constant (k) with temperature showed maximum values at 35 °C, and filtration of the extracts contributed to picrocrocin stability. In the case of purified picrocrocin, the generation of safranal in the first 5 h (yield up to 7.4%) was confirmed. Spectrometric parameters used in saffron quality control (E(1cm)(1%) 257 nm and ΔΕ(pic)) were not appropriate for documenting the evolution of picrocrocin.

  19. Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments

    Science.gov (United States)

    Ball, R.; McIntosh, A. C.; Brindley, J.

    2004-06-01

    A simple dynamical system that models the competitive thermokinetics and chemistry of cellulose decomposition is examined, with reference to evidence from experimental studies indicating that char formation is a low activation energy exothermal process and volatilization is a high activation energy endothermal process. The thermohydrolysis chemistry at the core of the primary competition is described. Essentially, the competition is between two nucleophiles, a molecule of water and an -OH group on C6 of an end glucosyl cation, to form either a reducing chain fragment with the propensity to undergo the bond-forming reactions that ultimately form char, or a levoglucosan end-fragment that depolymerizes to volatile products. The results of this analysis suggest that promotion of char formation under thermal stress can actually increase the production of flammable volatiles. Thus, we would like to convey an important safety message in this paper: in some situations where heat and mass transfer is restricted in cellulosic materials, such as furnishings, insulation, and stockpiles, the use of char-promoting treatments for fire retardation may have the effect of increasing the risk of flaming combustion.

  20. The potential of vacuum therapy in the treatment of a newborn infant with severe thermal injury

    Directory of Open Access Journals (Sweden)

    L. I. Budkevich

    2015-01-01

    Full Text Available The paper describes a clinical case of successful combination therapy in a newborn infant with severe thermal injury. When admitted to the hospital, the infant was diagnosed with third-degree flame burn covering 75% of the body surface and shock. Specialized emergency care involved antishock measures and replacement of vital functions, stepwise surgical interventions aimed to excise necrotic tissues and to restore lost skin tissue, and antimicrobial and symptomatic therapies. Topical treatment included the use of current wound coatings. Skin autocells were used for significant skin defect. Aacuum therapy was performed to stimulate repair processes and to prepare wounds for further skin plasty. The techniques of vacuum therapy included RENAS\\S-GO and PICO apparatuses. Its efficiency was evaluated by microbiological, immunohistochemical, and planimetric examinations. Analysis of the decontaminating impact of a vacuum coating could establish its substantial effect in reducing wound bacterial contamination by 65% in the study group and by an average of 21% in the comparison group. That of immunohistochemical findings during vacuum therapy could reveal the high expression of two markers characterizing wound an-giogenesis. Comparative analysis of planimetric readings showed no significant differences in the use of vacuum therapy and current wound coatings. Thus, negative-pressure therapy creates favorable conditions for a wound healing process, providing effective wound decontamination and stimulating granulation tissue maturation as a factor to prepare for skin plasty.

  1. Vaporization of zinc during thermal treatment of ZnO with tetrabromobisphenol A (TBBPA)

    Energy Technology Data Exchange (ETDEWEB)

    Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Aoba-ku, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, M. Sklodowska-Curie 34, 41-819 Zabrze (Poland); Oleszek-Kudlak, Sylwia [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Aoba-ku, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, M. Sklodowska-Curie 34, 41-819 Zabrze (Poland); Shibata, Etsuro; Nakamura, Takashi [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Aoba-ku, Sendai 980-8577 (Japan)

    2011-03-15

    In the present work we investigate the vaporization of zinc or its compounds during thermal treatment of ZnO with tetrabromobisphenol A. Samples of 2 g of ZnO:TBBPA (3.34:1) were isothermally heated in a laboratory-scale furnace at temperatures from 490 deg, C to 950 deg. C, and the solid, condensed and gaseous products formed were analyzed by X-ray diffraction analysis, electron probe microanalysis, inductively coupled plasma analysis, ion chromatography, and gas chromatography coupled with mass spectrometry. The results obtained indicate that the vaporization of ZnBr{sub 2} formed strongly depends on heating time and temperature, yet is restrained by char, if formed with sufficient yield (above 15 wt%). Starting from 850 deg. C, this char commences carbothermic reduction of any remaining ZnO, which from then begins to evaporate as zinc metal vapor. Volatilization of zinc is completed at 950 deg. C. The presence of 5 vol.% of oxygen has no significant effect on the vaporization of formed ZnBr{sub 2}, the carbothermic reduction or the volatilization of metallic zinc. Strongly oxidizing conditions (20 vol.% of oxygen), however, boost the oxidation of char and thus the vaporization of ZnBr{sub 2}, but prevent carbothermic reduction of any un-reacted ZnO by depleting this char.

  2. Microstructure and thermal stability of bulk nanocrystalline alloys produced by surface mechanical attrition treatment

    Science.gov (United States)

    Liu, Wenbo; Zhang, Chi; Yang, Zhigang; Xia, Zhixin

    2014-02-01

    Bulk nanocrystalline has been produced in the surface of a tempered reduced activation ferrite/martensite (RAFM) steel by means of surface mechanical attrition treatment (SMAT), the grain size decreases gradually from the strain-free matrix to the treated surface with the increase of deformation strains. Both XRD and SEM results indicate the dissolving or refinement of carbides during SMAT. The nanocrystalline has excellent thermal stability when annealing at 823 K; the average grain sizes calculated from statistical analysis of the TEM images after annealing for 5 min, 30 min, 120 min and 240 min are 67.6 nm, 87.1 nm, 93.8 nm and 109.6 nm, respectively. Because of the large volume fraction of grain boundaries (GBs) and enhanced diffusion rates in the nanocrystalline (NC) steels, fast grain growth and small precipitated carbides are observed after annealing for 5 min at 823 K, while the existence of numerous second-phase particles hinders grain growth after annealing for longer times.

  3. Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodisk-Shaped SnS Photocathodes.

    Science.gov (United States)

    Patel, Malkeshkumar; Kumar, Mohit; Kim, Joondong; Kim, Yu Kwon

    2017-12-21

    Photocathodes made from the earth-abundant, ecofriendly mineral tin monosulfide (SnS) can be promising candidates for p/n-type photoelectrochemical cells because they meet the strict requirements of energy band edges for each individual photoelectrode. Herein we fabricated SnS-based cell that exhibited a prolonged photocurrent for 3 h at -0.3 V vs the reversible hydrogen electrode (RHE) in a 0.1 M HCl electrolyte. An enhancement of the cathodic photocurrent from 2 to 6 mA cm-2 is observed through a rapid thermal treatment. Mott-Schottky analysis of SnS samples revealed an anodic shift of 0.7 V in the flat band potential under light illumination. Incident photon-to-current conversion efficiency (IPCE) analysis indicates that an efficient charge transfer appropriate for solar hydrogen generation occurs at the -0.3 V vs RHE potential. This work shows that SnS is a promising material for photocathode in PEC cells and its performance can be enhanced via simple postannealing.

  4. Effect of Thermal Treatment of Veneer on Formaldehyde Emission of Poplar Plywood

    Directory of Open Access Journals (Sweden)

    Takato Nakano

    2013-01-01

    Full Text Available A large amount of poplar plywood is now being imported into Japan from China, and as a result, formaldehyde emitted from this plywood represents an undesirable chemical that must be controlled using a chemical catching agent. The aim of this study is to find an approach to reduce the formaldehyde emission of poplar plywood using thermal treatment without employing any chemicals. The experimental results obtained show that heating veneer sheets in the temperature range of 150 °C to 170 °C effectively reduced the formaldehyde emission of plywood, without diminishing the mechanical properties of the veneer. By applying Langmuir’s theory and Hailwood-Horrobin theory to the adsorption isotherm obtained in this study, the relationship between the formaldehyde emission of plywood and the adsorption properties of veneer as a material is discussed. When veneer sheets were heated in the temperature range of 150 °C to 170 °C, the amount of hydrated water (monomolecular layer decreased slightly and that of dissolved water (polymolecular layer did not change. It is hypothesized that the formaldehyde emission of plywood is related to the condition of the adsorption site of the wood.

  5. Isolation and recovery of glycomacropeptide from milk whey by means of thermal treatment

    Directory of Open Access Journals (Sweden)

    Evelin Rojas

    2013-03-01

    Full Text Available During enzymatic process of cheese manufacturing, rennin cleaves κ-casein releasing two fractions: para-κ-casein and glycomacropeptide (GMP, which remains soluble in milk whey. GMP is a peptide with structural particularities such as chain carbohydrates linked to specific threonine residues, to which a great variety of biological activities is attributed. Worldwide cheese production has increased generating high volumes of milk whey that could be efficiently used as an alternative source of high quality peptide or protein in foodstuff formulations. In order to evaluate isolation and recovery on whey GMP by means of thermal treatment (90 °C, 18 samples (2 L each of sweet whey, resuspended commercial whey (positive control and acid whey (negative control were processed. Indirect presence of GMP was verified using chemical tests and PAGE-SDS 15%. At 90 °C treated sweet whey, 14, 20 and 41 kDa bands were observed. These bands may correspond to olygomers of GMP. Peptide recovery showed an average of 1.5 g/L (34.08%. The results indicate that industrial scale GMP production is feasible; however, further research must be carried out for the biological and nutritional evaluation of GMP's incorporation to foodstuff as a supplement.

  6. Fabrication of Octahedral Gold Nanoparticle embedded Polymer Pattern based on Electron Irradiation and Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Nam; Lee, Hyeok Moo; Cho, Sung Oh [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2011-05-15

    Noble metal nanoparticles (NPs) such as gold (Au), silver, and copper have been a hot research issue due to their unique optical, electronic, and catalytic properties. On account of the size- and shape- dependent properties of the noble metal NPs, most researches are concentrated on tailoring sizes and shapes of the noble metal NPs. In particular, noble metal NPs with Platonic shapes such as tetrahedron, cube, octahedron, dodecahedron, and icosahedron have significant impact on a variety of applications including surface-enhancement spectroscopy, biochemical sensing, and nanodevice fabrication because sharp corners of the metals lead to high local electric-field enhancement. In addition, patterning or controlled assembly of noble metal NPs is indispensible for biological sensors, micro-/nano-electronic devices, photonic and photovoltaic devices, and surface-enhanced Raman scattering (SERS)-active substrates. Although Platonic noble metal NPs with well defined sizes have been intensively studied, patterning of Platonic noble metal NPs has been rarely demonstrated. Here, we present a strategy to fabricate patterned Au nano-octahedra embedded polymer films by selectively irradiating an electron beam onto HAuCl{sub 4}-loadaed poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) block copolymer (BCP) precursor films followed by thermal treatment. The BCP plays a important role for the patterning of the precursor film due to a cross-linking behavior under electron irradiation

  7. A new concept of high flow rate non-thermal plasma reactor for air treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, V.; Tatibouet, J.M. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Although several non-thermal plasma reactors have been tested for air treatment at the laboratory scale, up-scaling to pilot or industrial scale remains a challenge because several parameters must be considered, such as hydrodynamic behaviour, maximum voltage in an industrial environment, and maintenance of the system. This paper presented a newly developed reactor which consists to a DBD plasma generated on individual supports that could be directly inserted in gas pipes where air flow must be treated. Elimination of 40 percent of 15 ppm of propene was obtained with a energy density as low as 10 J/L. The propene conversion increased when a manganese oxide based catalyst was used because the ozone produced by the plasma was used as an as an oxidant. A simple model of the plasma-catalyst reactor behaviour showed that more than 90 percent of propene conversion can be expected for an input energy density of 10 J/L and residual ozone concentration less than 100 ppb.

  8. Structural, Optical, and Magnetic Characterization of Spinel Zinc Chromite Nanocrystallines Synthesised by Thermal Treatment Method

    Directory of Open Access Journals (Sweden)

    Salahudeen A. Gene

    2014-01-01

    Full Text Available The present study reports the structural and magnetic characterization of spinel zinc chromite (ZnCr2O4 nanocrystallines synthesized by thermal treatment method. The samples were calcined at different temperatures in the range of 773 to 973 K. Polyvinylpyrrolidone was used to control the agglomeration of the nanoparticles. The average particle size of the synthesized nanocrystals was determined by powder X-ray diffraction which shows that the crystallite size increases from 19 nm at 773 K to 24 nm at 973 K and the result was in good agreement with the transmission electron microscopy images. The elemental composition of the samples was determined by energy dispersed X-ray spectroscopy which confirmed the presence of Zn, Cr, and O in the final products. Fourier transform infrared spectroscopy also confirmed the presence of metal oxide bands for all the samples calcined at different temperature. The band gap energy was calculated from UV-vis reflectance spectra using the Kubelka-Munk function and the band gap energy of the samples was found to decrease from 4.03 eV at 773 K to 3.89 eV at 973 K. The magnetic properties were also demonstrated by electron spin resonance spectroscopy, the presence of unpaired electrons was confirmed, and the resonant magnetic field and the g-factor of the calcined samples were also studied.

  9. Thermal treatment of starch slurry in Couette-Taylor flow apparatus

    Directory of Open Access Journals (Sweden)

    Hubacz Robert

    2017-09-01

    Full Text Available In this paper, thermal processing of starch slurry in a Couette-Taylor flow (CTF apparatus was investigated. Gelatinized starch dispersion, after treatment in the CTF apparatus, was characterized using such parameters like starch granule diameters (or average diameter, starch granule swelling degree (quantifying the amount of water absorbed by starch granules and concentration of dissolved starch. These parameters were affected mostly by the process temperature, although the impact of the axial flow or rotor rotation on them was also observed. Moreover, the analysis of results showed a relatively good correlation between these parameters, as well as, between those parameter and apparent viscosity of gelatinized starch dispersion. Meanwhile, the increase in the value of the apparent viscosity and in shear-tinning behaviour of dispersion was associated with the progress of starch processing in the CTF apparatus. Finally, the CTF apparatuses of different geometries were compared using numerical simulation of the process. The results of the simulation indicated that the apparatus scaling-up without increasing the width of the gap between cylinders results in higher mechanical energy consumption per unit of processed starch slurry.

  10. Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng; Qiu, Jianrong

    2012-03-01

    This paper investigated the volatilization behavior of heavy metals during thermal treatment of model solid waste in a fluidized bed reactor. Four metal chlorides (Cd, Pb, Cu and Zn) were chosen as metal sources. The influence of redox conditions, water and mineral matrice on heavy metal volatilization was investigated. In general, Cd shows significant vaporization especially when HCl was injected, while Cu and Pb vaporize moderately and Zn vaporization is negligible. Increasing oxygen concentration can lower heavy metal vaporization. Heavy metal interactions with the mineral matter can result in the formation of stable metallic species thus playing a negative effect on their behavior. However, HCl can promote the heavy metal release by preventing the formation of stable metallic species. The chemical sorption (either physical or chemical) inside the pores, coupled with the internal diffusion of gaseous metal species, may also control the vaporization process. With SO(2) injected, Cd and Pb show a higher volatility as a result of SO(2) reducing characteristics. From the analysis, the subsequent order of heavy metal volatility can be found: Cd>Cu≥Pb≫Zn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Hypoxia-driven immunosuppression: a new reason to use thermal therapy in the treatment of cancer?

    Science.gov (United States)

    Lee, Chen-Ting; Mace, Thomas; Repasky, Elizabeth A

    2010-01-01

    Hypoxia within the tumour microenvironment is correlated with poor treatment outcome after radiation and chemotherapy, and with decreased overall survival in cancer patients. Several molecular mechanisms by which hypoxia supports tumour growth and interferes with effective radiation and chemotherapies are now well established. However, several new lines of investigation are pointing to yet another ominous outcome of hypoxia in the tumour microenvironment: suppression of anti-tumour immune effector cells and enhancement of tumour escape from immune surveillance. This review summarises this important information, and highlights mechanistic data by which hypoxia incapacitates several different types of immune effector cells, enhances the activity of immunosuppressive cells and provides new avenues which help 'blind' immune cells to detect the presence of tumour cells. Finally, we discuss data which indicates that mild thermal therapy, through its physiologically regulated ability to alter vascular perfusion and oxygen tensions within the tumour microenvironment, as well as its ability to enhance the function of some of the same immune effector activities that are inhibited by hypoxia, could be used to rapidly and safely release the tight grip of hypoxia in the tumour microenvironment thereby reducing barriers to more effective immune-based therapies.

  12. Potential of different mechanical and thermal treatments to control off-flavour generation in broccoli puree.

    Science.gov (United States)

    Koutidou, Maria; Grauwet, Tara; Van Loey, Ann; Acharya, Parag

    2017-02-15

    The aim of this study was scientifically investigate the impact of the sequence of different thermo-mechanical treatments on the volatile profile of differently processed broccoli puree, and to investigate if any relationship persists between detected off-flavour changes and microstructural changes as a function of selected process conditions. Comparison of the headspace GC-MS fingerprinting of the differently processed broccoli purees revealed that an adequate combination of processing steps allows to reduce the level of off-flavour volatiles. Moreover, applying mechanical processing before or after the thermal processing at 90°C determines the pattern of broccoli tissue disruption, resulting into different microstructures and various enzymatic reactions inducing volatile generation. These results may aid the identification of optimal process conditions generating a reduced level of off-flavour in processed broccoli. In this way, broccoli can be incorporated as a food ingredient into mixed food products with limited implications on sensorial consumer acceptance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Can children aged 12 years or more refuse life-saving treatment ...

    African Journals Online (AJOL)

    The Children's Act[1] provides that a child who: (i) is. 12 years of age or older; (ii) is of sufficient maturity; and (iii) has the mental capacity to understand the benefits, risks, social and other implications of the treatment may consent to medical treatment without consent from a parent, guardian or caregiver or the assistance.

  14. Gender and Age Differences in Trauma and PTSD Among Dutch Treatment-Seeking Police Officers

    NARCIS (Netherlands)

    van der Meer, Christianne A. I.; Bakker, Anne; Smit, Annika S.; van Buschbach, Susanne; den Dekker, Melissa; Westerveld, Gré J.; Hutter, Renée C.; Gersons, Berthold P. R.; Olff, Miranda

    2017-01-01

    Little is known about how age and gender are associated with posttraumatic stress disorder (PTSD) symptoms and traumatic experiences in treatment-seeking police offers. In this study, we examined 967 diagnostic files of police officers seeking treatment for PTSD. Six hundred twelve (63%) of the

  15. Effects of five silvicultural treatments on Loblolly pine in the Georgia Piedmont at age 20

    Science.gov (United States)

    M. Boyd Edwards; Barry D. Shiver; Stephen R. Logan

    2003-01-01

    Age 20data from a designed experimental study installed on 24 plots at one location in the LowerPiediizont in Jones County, Georgia, were used to evaluate the effect of six silviculrural treatments on survival, growth, and yield of cutover site-prepared loblolly pine plantations in the Georgia Piedmont. The following silvicultural treatments were included in the study...

  16. Intensification of heat transfer during mild thermal treatment of dry-cured ham by using airborne ultrasound.

    Science.gov (United States)

    Contreras, M; Benedito, J; Bon, J; Garcia-Perez, J V

    2018-03-01

    The application of power ultrasound (PuS) could be used as a novel technology with which to intensify thermal treatments using hot air. Mild thermal treatments have been applied to improve the soft texture of dry-cured ham caused by defective processing. In this regard, the aim of this study was to assess the kinetic intensification linked to the application of airborne PuS in the mild thermal treatment using hot air of dry-cured ham. For this purpose, vacuum packed cylindrical samples (2.52±0.11cm in diameter and 1.90±0.14cm in height) of dry-cured ham were heated using hot air at different temperatures (40, 45, 50°C) and air velocities (1, 2, 3, 4, 6m/s) with (22.3kHz, 50W) and without PuS application. Heat transfer was analyzed by considering that it was entirely controlled by conduction and the apparent thermal diffusivity was identified by fitting the model to the heating kinetics. The obtained results revealed that PuS application sped up the heat transfer, showing an increase in the apparent thermal diffusivity (up to 37%). The improvement in the apparent thermal diffusivity produced by PuS application was greater at high temperatures (50°C) but negligible at high air velocities (6m/s). Heating caused an increase in the hardness and elasticity of dry-cured ham, which would correct ham pastiness defects, while the influence of PuS on such textural parameters was negligible. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Efficacy of irradiation vs thermal methods as quarantine treatments for tropical fruits

    Science.gov (United States)

    Moy, James H.

    1993-07-01

    Ionizing radiation can be effectively applied to fruits and vegetables for several purposes. The most feasible and potentially useful application is probably for disinfestation as a quarantine treatment. All stages of a fruit fly will become sterile upon being irradiated at a minimum dose of 0.15 kGy, the dose level approved by the USDA in January 1989 for treating Hawaiian papayas as a quarantine procedure. This is also well below the dose level approved in April, 1986 by the U.S. Food and Drug Administration for irradiating fresh foods for disinfestation and delaying maturation. Research on irradiation of several tropical fruits such as papayas, mangoes, lychees showed that the chemical, sensory and nutrient qualities of these fruits were well retained at 1.0 kGy, and the fruits would ripen normally or slightly delayed. Since September, 1984, thermal methods used by the papaya industry after ethylene dibromide was banned require treatment time of up to 7 hrs and have caused quality problems. Some of the fruits treated by the hot air or the double-dip hot water method lack flavor and had lumpy texture. The vapor heat method as now used is quite expensive. Irradiation studies have proved the efficacy of the process to disinfest tropical fruits of fruit files. Market test of irradiated Hawaiian papayas in 1987 showed that consumers preferred irradiated papayas over hot water treated papayas by 11 to 1. Thus the only hurdle to overcome in using irradiation for tropical fruits is to convince the consumers that irradiated fruits are wholesome and safe for human consumption, which has been amply proven with scientific data obtained during the past three decades, and further proven with the marketing of irradiated fruits in the U.S.A. since early 1992.

  18. Properties of nylon 12 balloons after thermal and liquid carbon dioxide treatments.

    Science.gov (United States)

    Ro, Andrew J; Davé, Vipul

    2013-03-01

    Critical design attributes of angioplasty balloons include the following: tear resistance, high burst pressures, controlled compliance, and high fatigue. Balloons must have tear resistance and high burst pressures because a calcified stenosis can be hard and nominal pressures of up to 16 atm can be used to expand the balloon. The inflated balloon diameter must be a function of the inflation pressure, thus compliance is predictable and controlled. Reliable compliance is necessary to prevent damage to vessel walls, which may be caused by over-inflation. Balloons are often inflated multiple times in a clinical setting and they must be highly resistant to fatigue. These design attributes are dependent on the mechanical properties and polymer morphology of the balloon. The effects of residual stresses on shrinkage, crystallite orientation, balloon compliance, and mechanical properties were studied for angioplasty nylon 12 balloons. Residual stresses of these balloons were relieved by oven heat treatment and liquid CO2 exposure. Residual stresses were measured by quantifying shrinkage at 80 °C of excised balloon samples using a dynamic mechanical analyzer. Shrinkage was lower after oven heat treatment and liquid CO2 exposure compared to the as-received balloons, in the axial and radial directions. As-received, oven heat treated, and liquid CO2-exposed balloon samples exhibited similar thermal properties (T(g), T(m), X(t)). Crystallite orientation was not observed in the balloon cylindrical body using X-ray scattering and polarized light microscopy, which may be due to balloon fabrication conditions. Significant differences were not observed between the stress-strain curves, balloon compliance, and average burst pressures of the as-received, oven heat treated, and liquid CO2-exposed balloons. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Solid-state thermal behavior and stability studies of theophylline-citric acid cocrystals prepared by neat cogrinding or thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Po-Chun; Lin, Hong-Liang [Department of Biotechnology, Yuanpei University, Hsin Chu, Taiwan (China); Wang, Shun-Li, E-mail: wangshunli@mail.ncyu.edu.tw [Department of Applied Chemistry, National Chia Yi University, Chia Yi, Taiwan (China); Lin, Shan-Yang, E-mail: sylin@mail.ypu.edu.tw [Department of Biotechnology, Yuanpei University, Hsin Chu, Taiwan (China)

    2012-08-15

    To investigate the thermal behavior of cocrystal formed between anhydrous theophylline (TP) and anhydrous citric acid (CA) by neat manual cogrinding or thermal treatment, DSC and FTIR microspectroscopy with curve-fitting analysis were applied. The physical mixture and 60-min ground mixture were stored at 55{+-}0.5 Degree-Sign C/40{+-}2% RH condition to determine their stability behavior. Typical TP-CA cocrystals were prepared by slow solvent evaporation method. Results indicate that the cogrinding process could gradually induce the cocrystal formation between TP and CA. The IR spectral peak shift from 3495 to 3512 cm{sup -1} and the stepwise appearance of several new IR peaks at 1731, 1712, 1676, 1651, 1557 and 1265 cm{sup -1} with cogrinding time suggest that the mechanism of TP-CA cocrystal formation was evidenced by interacting TP with CA through the intermolecular O-H{center_dot}{center_dot}{center_dot}O hydrogen bonding. The stability of 60-min ground mixture of TP-CA was confirmed at 55{+-}0.5 Degree-Sign C/40{+-}2% RH condition over a storage time of 60 days. - Garphical abstract: Cogrinding, thermal and solvent-evaporation methods might easily induce the theophylline-citric acid cocrystal formation. Highlights: Black-Right-Pointing-Pointer Cogrinding process could gradually induce the cocrystal formation between TP and CA. Black-Right-Pointing-Pointer The TP-CA cocrystal was formed through the intermolecular O-H{center_dot}{center_dot}{center_dot}O hydrogen bonding. Black-Right-Pointing-Pointer The 60-min TP-CA ground mixture was similar to the solvent-evaporated cocrystal. Black-Right-Pointing-Pointer The thermal-induced TP-CA cocrystal formation was confirmed by pre-heating the physical mixture to 152 Degree-Sign C. Black-Right-Pointing-Pointer The 60-min TP-CA ground mixture was stable at accelerated condition over a storage time of 60 days.

  20. Thermal mineralization. Pyreg - a method for decentralized sewage sludge treatment; Thermisch mineralisiert. Pyreg - ein Verfahren zur dezentralen Klaerschlammaufbereitung

    Energy Technology Data Exchange (ETDEWEB)

    Sehn, Winfried [Fachhochschule Bingen (Germany). Energie- und Motorentechnik; Gerber, Helmut [Fachhochschule Bingen (Germany); Institut fuer Innovation, Transfer und Beratung (ITB) gGmbH, Bingen (Germany); Pyreg GmbH, Gemuenden (Germany); Siekmann, Klaus [Ingenieurgesellschaft Dr.-Ing. K. Siekmann und Partner mbH, Thuer, Westerburg Simmern, Bad Ems (Germany); Scherer, Jochen [Metallbau Scherer GmbH, Gemuenden (Germany); Pyreg GmbH, Gemuenden (Germany)

    2010-07-01

    Sewage sludge produced during wastewater treatment has to be considered as waste that usually causes high technical and energetic effort for thermal utilization and disposal. Even the agricultural use cannot be continued in the traditional way when the coming sewage sludge regulation will tighten measures for harmful substances and pathogenic germs. The thermal pyrolysis of regenerative substances in the Pyreg-plant that is described in this paper enables the mineralization of sewage sludge using the biomass energy and generates the requirements for cheap disposal and for the recycling of the useful components like phosphor. (orig.)

  1. Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    In the present study, the sludge was pretreated with microwave irradiation and low-temperature thermal method, both conducted under the same temperature range (30–100°C). Microwave pretreatment was found to be superior over the thermal treatment with respect to sludge solubilization and biogas...... experiments indicated that pre-treated sludge (microwave irradiation: 900W, temperature: 60–70°C) gave 35% more methane, compared to untreated sludge. Moreover, the results of this study clearly demonstrated that microwave pretreated sludge showed better degree of sanitation....

  2. Efficacy and safety of growth hormone treatment for children born small for gestational age

    OpenAIRE

    Hwang, Il Tae

    2014-01-01

    Recombinant growth hormone (GH) is an effective treatment for short children who are born small for gestational age (SGA). Short children born SGA who fail to demonstrate catch-up growth by 2-4 years of age are candidates for GH treatment initiated to achieve catch-up growth to a normal height in early childhood, maintain a normal height gain throughout childhood, and achieve an adult height within the normal target range. GH treatment at a dose of 35-70 µg/kg/day should be considered for tho...

  3. Radiofrequency thermal ablation of hepatocellular carcinoma: using contrast-enhanced harmonic power doppler sonography to assess treatment outcome.

    Science.gov (United States)

    Cioni, D; Lencioni, R; Rossi, S; Garbagnati, F; Donati, F; Crocetti, L; Bartolozzi, C

    2001-10-01

    We evaluated the accuracy of contrast-enhanced harmonic power Doppler sonography in assessing the outcome of radiofrequency thermal ablation of hepatocellular carcinoma. Fifty patients with 65 hepatocellular carcinoma nodules (1-5 cm in diameter; mean diameter, 2.5 cm) were studied using unenhanced and contrast-enhanced harmonic power Doppler sonography before and after IV administration of a microbubble contrast agent. The examinations were repeated after treatment of the tumors with radiofrequency ablation. Findings of the Doppler studies were compared with those of dual-phase helical CT, which were used as points of reference for assessing treatment outcome. Before radiofrequency treatment, intratumoral blood flow was revealed by unenhanced power Doppler sonography in 48 (74%) of 65 hepatocellular carcinoma nodules. After injection of the contrast agent, intratumoral enhancement was observed in 61 (94%) of 65 hepatocellular carcinomas (p enhancement on power Doppler sonograms. In nine of the 10 lesions that showed a residual viable tumor on helical CT scans, persistent intratumoral enhancement-matching the enhancing areas on helical CT images-was revealed by power Doppler sonography. These nine hepatocellular carcinomas were subjected to repeated radiofrequency thermal ablation with the guidance of contrast-enhanced power Doppler sonography. Complete necrosis was seen after the second treatment session in six of the nine lesions. Contrast-enhanced harmonic power Doppler sonography is an accurate technique for assessing the outcome of radiofrequency thermal ablation of hepatocellular carcinoma and may be useful in guiding additional treatment in patients with incomplete response to initial efforts.

  4. Thermal Treatment Temperature and Time Dependence of Contact Angle of Water on Fluorinated Polystyrene as Hydrophobic Film Coating

    Science.gov (United States)

    Tolentino, M. S.; Carpena, J. F.; Javier, R. M.; Aquino, R. R.

    2017-06-01

    The study focuses on the synthesis of fluorinated polystyrene (F-PS) as a hydrophobic film coating and on the investigation of the consequent effects of thermal treatment time and treatment temperature on its contact angle. The fluorinated polystyrene is synthesized via Friedel-Crafts acylation of the benzoic rings by electrophilic substitution of trifluoroacetic anhydride in the presence of AlCl3 in an environment of dichloromethane as the aprotic solvent with a reaction temperature of 36°C. The reaction yielded fluorinated polystyrene characterized by a solid brown substance. FT-IR analysis of the substance had shown band peaks at 1150 cm-1, a wavenumber indicating the presence of fluorine in the synthesized material, which lowers its surface energy. SEM images of the F-PS show nucleation sites giving rise to hierarchical structures on the surface of the material due to the action of fluorination. The contact angle of fluorinated polystyrene, upon application of thermal treatment, increased to as much as 29.26% when compared to the unmodified polystyrene manifesting a preferentially more hydrophobic behavior. It was also found that the contact angle increases linearly with treatment temperature while statistical analysis shows that thermal treatment time has no significant effect on the hydrophobicity of the F- PS.

  5. Volatile composition and aroma activity of guava puree before and after thermal and dense phase carbon dioxide treatments.

    Science.gov (United States)

    Plaza, Maria Lourdes; Marshall, Maurice R; Rouseff, Russell Lee

    2015-02-01

    Volatiles from initially frozen, dense phase carbon dioxide (DPCD)- and thermally treated guava purees were isolated by solid phase microextraction (SPME), chromatographically separated and identified using a combination of gas chromatography-mass spectrometry (GC-MS), GC-olfactometry (GC-O), and GC-pulsed flame photometric detector (GC-PFPD, sulfur mode). Fifty-eight volatiles were identified using GC-MS consisting of: 6 aldehydes, 2 acids, 15 alcohols, 6 ketones, 21 esters, and 8 terpenes. Eleven volatiles were newly identified in guava puree. Hexanal was the most abundant volatile in all 3 types of guava puree. Ten sulfur compounds were identified using GC-PFPD of which 3 possessed aroma activity and 3 were not previously reported in guava puree. Both treatments profoundly reduced total sulfur peak areas and produced different peak patterns compared to control. Thermal treatment reduced total sulfur peak area 47.9% compared to a loss of 34.7% with DPCD treatment. Twenty-six volatiles possessed aroma activity. (Z)-3-Hexenyl hexanoate was the major contributor to the aroma of the freshly thawed and DPCD-treated guava puree. DPCD treatment reduced total MS ion chromatogram (MS TIC) peak area 35% but produced a GC-O aroma profile very similar to control. Whereas thermal treatment reduced total TIC peak area only 8.7% compared to control but produced a 35% loss in total GC-O peak intensities. © 2015 Institute of Food Technologists®

  6. Combined treatment for skin rejuvenation and soft-tissue augmentation of the aging face.

    Science.gov (United States)

    Beer, Kenneth R

    2011-02-01

    Multiple types of anti-aging treatments are required to address the various etiologies of facial aging. Soft-tissue augmentation provides a minimally invasive option for patients seeking to look younger. However, due to changes in facial skin, musculature, fat and bone, anti-aging treatment requires a multifaceted approach. Injectable fillers may be combined with neurotoxins to resolve superficial wrinkles and restore facial volume. These modalities may be used with laser resurfacing or chemical peels to address epidermal and superficial dermal problems. Combining injectable soft-tissue augmentation treatments allows clinicians and patients to take advantage of the benefits of each modality and to address the multiple effects of facial aging. This review is based on clinical experience and a MEDLINE search for articles about volume replacement and soft-tissue augmentation. It provides a rationale that supports the use of combination techniques/products for soft-tissue augmentation.

  7. Treatment of nocturnal leg cramps by primary care patients over the age of 60.

    Science.gov (United States)

    Lorenzo, Mathieu; Schaeffer, Mickaël; Haller, Dagmar M; Maisonneuve, Hubert

    2017-07-24

    Approximately one out of two individuals over the age of 60 suffers from nocturnal leg cramps. These often have an important impact on the person's quality of life. Different drug and non-drug treatments are proposed to treat these cramps, but none to date have been shown to be both safe and effective. The objective of this study was to describe the drug and non-drug treatments used by primary care patients suffering from cramps. We used data collected as part of two cross-sectional surveys of patients aged 60 years and older attending general practices in the French region of Alsace. We asked the participants suffering from cramps if they were currently using a treatment for their cramps. We distinguished potentially harmful from unharmful treatments. Overall, 632 patients suffering from cramps were included in our study. Only 133 patients (19.5%) were taking a treatment for cramps. 82 patients used one or several of 17 different drug treatments. 58 patients used one or several of 13 different types of non-drug treatments. Potentially harmful treatments, mostly Quinine made up 16,7% (n = 25) of all treatments used for cramps. This study sheds light on the great diversity of therapeutic practices for cramps in outpatient care. Many of the treatments reported by patients have not previously been described in the medical literature. We recommend GPs to ask their patients about the treatments they take for cramps in order to make sure that they are safe.

  8. Minimization of thermal impact by application of electrode cooling in a co-linear PEF treatment chamber.

    Science.gov (United States)

    Meneses, Nicolas; Jaeger, Henry; Knorr, Dietrich

    2011-10-01

    A co-linear pulsed electric field (PEF) treatment chamber was analyzed and optimized considering electrical process conditions, temperature, and retention of heat-sensitive compounds during a continuous PEF treatment of peach juice. The applicability of a jacket heat-exchanger device surrounding the ground electrode was studied in order to provide active cooling and to avoid temperature peaks within the treatment chamber thus reducing the total thermal load to which the product is exposed. Simulation of the PEF process was performed using a finite element method prior to experimental verification. Inactivation of polyphenoloxydase (PPO) and peroxidase (POD) as well as the degradation of ascorbic acid (AA) in peach juice was quantified and used as indirect indicators for the temperature distribution. Peaks of product temperature within the treatment chamber were reduced, that is, from 98 to 75 °C and retention of the indicators PPO, POD, and AA increased by more than 10% after application of the active electrode cooling device. Practical Application:  The co-linear PEF treatment chamber is widely used for continuous PEF treatment of liquid products and also suitable for industrial scale application; however, Joule heating in combination with nonuniform electric field distribution may lead to unwanted thermal effects. The proposed design showed potential to reduce the thermal load, to which the food is exposed, allowing the retention of heat-sensitive components. The design is applicable at laboratory or industrial scale to perform PEF trials avoiding temperature peaks, which is also the basis for obtaining inactivation kinetic models with minimized thermal impact on the kinetic variables. © 2011 Institute of Food Technologists®

  9. Broccoli glucosinolate degradation is reduced performing thermal treatment in binary systems with other food ingredients

    NARCIS (Netherlands)

    Giambanelli, E.; Verkerk, R.; Fogliano, V.; Capuano, E.; Antuono, D' L.F.; Oliviero, T.

    2015-01-01

    Glucosinolate (GL) stability has been widely studied in different Brassica species. However, the matrix effect determined by the presence of other ingredients occurred in many broccoli-based traditional recipes may affect GL thermal degradation. In this study, the matrix effect on GL thermal

  10. Thermal dosimetry analysis combined with patient-specific thermal modeling of clinical interstitial ultrasound hyperthermia integrated within HDR brachytherapy for treatment of locally advanced prostate cancer

    Science.gov (United States)

    Salgaonkar, Vasant A.; Wootton, Jeff; Prakash, Punit; Scott, Serena; Hsu, I. C.; Diederich, Chris J.

    2017-03-01

    This study presents thermal dosimetry analysis from clinical treatments where ultrasound hyperthermia (HT) was administered following high-dose rate (HDR) brachytherapy treatment for locally advanced prostate cancer as part of a clinical pilot study. HT was administered using ultrasound applicators from within multiple 13-g brachytherapy catheters implanted along the posterior periphery of the prostate. The heating applicators were linear arrays of sectored tubular transducers (˜7 MHz), with independently powered array elements enabling energy deposition with 3D spatial control. Typical heat treatments employed time-averaged peak acoustic intensities of 1 - 3 W/cm2 and lasted for 60 - 70 minutes. Throughout the treatments, temperatures at multiple points were monitored using multi-junction thermocouples, placed within available brachytherapy catheters throughout mid-gland prostate and identified as the hyperthermia target volume (HTV). Clinical constraints allowed placement of 8 - 12 thermocouple sensors in the HTV and patient-specific 3D thermal modeling based on finite element methods (FEM) was used to supplement limited thermometry. Patient anatomy, heating device positions, orientations, and thermometry junction locations were obtained from patient CT scans and HDR and hyperthermia planning software. The numerical models utilized the applied power levels recorded during the treatments. Tissue properties such as perfusion and acoustic absorption were varied within physiological ranges such that squared-errors between measured and simulated temperatures were minimized. This data-fitting was utilized for 6 HT treatments to estimate volumetric temperature distributions achieved in the HTV and surrounding anatomy devoid of thermocouples. For these treatments, the measured and simulated T50 values in the hyperthermia target volume (HTV) were between 40.1 - 43.9 °C and 40.3 - 44.9 °C, respectively. Maximum temperatures between 46.8 - 49.8 °C were measured during

  11. Cancer Treatment as an Accelerated Aging Process: Assessment, Biomarkers, and Interventions.

    Science.gov (United States)

    Hurria, Arti; Jones, Lee; Muss, Hyman B

    2016-01-01

    An accumulating body of evidence supports the hypothesis that cancer and/or cancer treatment is associated with accelerated aging. The majority of these data come from the pediatric literature; however, a smaller yet growing body of literature points toward similar findings in the geriatric population. This is a key survivorship issue the growing number of older adults with cancer face, along with the short- and long-term impact of cancer therapy on the aging process. This article will review clinical and biologic markers of aging in older adults with cancer, use cardiovascular disease as a model of accelerated aging, and discuss potential interventions to decrease the risk.

  12. Breast cancer in women under age 40 years: treatment by total mastectomy and reconstruction.

    Science.gov (United States)

    Vogel, Jeffery E; Chu, Carrie; McCullough, Meghan; Anderson, Erica; Losken, Albert; Carlson, Grant W

    2011-05-01

    Breast cancer in women under 40 years of age is rare, accounting for approximately 5% of cases. The disease tends to be more aggressive in younger women. Younger age has been shown to be an independent predictive of breast reconstruction after total mastectomy. Treatment by total mastectomy and reconstruction is examined in relation to patient age. A retrospective review of all breast cancer patients treated by total mastectomy and reconstruction between 2005 and 2009 was performed by querying a prospective database. A total of 671 patients underwent total mastectomy and reconstruction; of them, 106 (16%) aged mastectomy (P mastectomy.

  13. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    Science.gov (United States)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  14. [Age-, gender- and diagnosis-specific changes of body concept during stationary psychosomatic treatment].

    Science.gov (United States)

    Stumpf, Astrid; Braunheim, Michael; Heuft, Gereon; Schneider, Gudrun

    2011-01-01

    This study investigates body concept with respect to psychiatric diagnosis, age and gender of inpatients before and after treatment. We examined 153 inpatients with 131 complete datasets. The examination was done at the beginning and at the end of the treatment using the Frankfurt Body Concept Scale (FKKS, Deusinger 1998). The results were calculated by t-test for dependent samples, posthoc Scheffé-tests and univariate variance analysis. The diagnoses indicated a more positive body concept at the end of the treatment (patients with somatoform disorder had effect sizes between -0.2 and -0.4, patients with depressions between -0.4 and -0.7, and patients with eating disorders between -0.3 and -0.7). Gender and age had only little influence on the positive changes. The improvement of body concept through inpatient treatment represents a challenge especially for somatoform disorders. The duration of this improvement after inpatient treatment needs further investigation.

  15. Magnetic resonance imaging-guided focused ultrasound surgery for symptomatic uterine fibroids: estimation of treatment efficacy using thermal dose calculations.

    Science.gov (United States)

    Yoon, Sang-Wook; Cha, Sun Hee; Ji, Young Geon; Kim, Hyun Cheol; Lee, Mee Hwa; Cho, Jin Ho

    2013-07-01

    To study the correlation between the predicted thermal dose volume (TDV) and the actual ablation volumes in MR-guided focused ultrasound surgery (MRgFUS) for symptomatic uterine fibroids, and to follow up the outcome for 12 months post-treatment. Phase-difference fast spoiled gradient-echo MR images were used to analyze thermal change during the energy deliveries of MRgFUS in 60 consecutive patients treated for symptomatic uterine fibroids. The TDV obtained through analysis of these MR images was compared with the non-perfused volume (NPV) measured on post-treatment contrast enhanced T1-weighted images. Final values of TDV ratio and NPV ratio were obtained by dividing these values by original fibroid volume. Patients were followed for 12 months post-treatment to assess symptomatic relief using the symptom severity score (SSS). Treatments in which we managed to reach a TDV ratio larger than 2