WorldWideScience

Sample records for therapy induces autophagic

  1. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    International Nuclear Information System (INIS)

    Lyu, Qing; Tou, Fangfang; Su, Hong; Wu, Xiaoyong; Chen, Xinyi; Zheng, Zhi

    2015-01-01

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway

  2. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  3. Tetrandrine, an Activator of Autophagy, Induces Autophagic Cell Death via PKC-α Inhibition and mTOR-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Vincent Kam Wai Wong

    2017-06-01

    Full Text Available Emerging evidence suggests the therapeutic role of autophagic modulators in cancer therapy. This study aims to identify novel traditional Chinese medicinal herbs as potential anti-tumor agents through autophagic induction, which finally lead to autophagy mediated-cell death in apoptosis-resistant cancer cells. Using bioactivity-guided purification, we identified tetrandrine (Tet from herbal plant, Radix stephaniae tetrandrae, as an inducer of autophagy. Across a number of cancer cell lines, we found that breast cancer cells treated with tetrandrine show an increase autophagic flux and formation of autophagosomes. In addition, tetrandrine induces cell death in a panel of apoptosis-resistant cell lines that are deficient for caspase 3, caspase 7, caspase 3 and 7, or Bax-Bak respectively. We also showed that tetrandrine-induced cell death is independent of necrotic cell death. Mechanistically, tetrandrine induces autophagy that depends on mTOR inactivation. Furthermore, tetrandrine induces autophagy in a calcium/calmodulin-dependent protein kinase kinase-β (CaMKK-β, 5′ AMP-activated protein kinase (AMPK independent manner. Finally, by kinase profiling against 300 WT kinases and computational molecular docking analysis, we showed that tetrandrine is a novel PKC-α inhibitor, which lead to autophagic induction through PKC-α inactivation. This study provides detailed insights into the novel cytotoxic mechanism of an anti-tumor compound originated from the herbal plant, which may be useful in promoting autophagy mediated- cell death in cancer cell that is resistant to apoptosis.

  4. Sodium nitroprusside induces autophagic cell death in glutathione-depleted osteoblasts.

    Science.gov (United States)

    Son, Min Jeong; Lee, Seong-Beom; Byun, Yu Jeong; Lee, Hwa Ok; Kim, Ho-Shik; Kwon, Oh-Joo; Jeong, Seong-Whan

    2010-01-01

    Previous studies reported that high levels of nitric oxide (NO) induce apoptotic cell death in osteoblasts. We examined molecular mechanisms of cytotoxic injury induced by sodium nitroprusside (SNP), a NO donor, in both glutathione (GSH)-depleted and control U2-OS osteoblasts. Cell viability was reduced by much lower effective concentrations of SNP in GSH-depleted cells compared to normal cells. The data suggest that the level of intracellular GSH is critical in SNP-induced cell death processes of osteoblasts. The level of oxidative stress due to SNP treatments doubled in GSH-depleted cells when measured with fluorochrome H2DCFDA. Pretreatment with the NO scavenger PTIO preserved the viability of cells treated with SNP. Viability of cells treated with SNP was recovered by pretreatment with Wortmannin, an autophagy inhibitor, but not by pretreatment with zVAD-fmk, a pan-specific caspase inhibitor. Large increases of LC3-II were shown by immunoblot analysis of the SNP-treated cells, and the increase was blocked by pretreatment with PTIO or Wortmannin; this implies that under GSH-depleted conditions SNP induces different molecular signaling that lead to autophagic cell death. The ultrastructural morphology of SNP-treated cells in transmission electron microscopy showed numerous autophagic vacuoles. These data suggest NO produces oxidative stress and cellular damage that culminate in autophagic cell death of GSH-depleted osteoblasts. Copyright 2010 Wiley Periodicals, Inc.

  5. Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer.

    Science.gov (United States)

    Sun, Dejuan; Zhu, Lingjuan; Zhao, Yuqian; Jiang, Yingnan; Chen, Lixia; Yu, Yang; Ouyang, Liang

    2018-04-01

    Triple negative breast cancer (TNBC) is a complex and intrinsically aggressive tumour with poor prognosis, and the discovery of targeted small-molecule drugs for TNBC treatment still remains in its infancy. In this study, we aimed to discover a small-molecule agent for TNBC treatment and illuminate its potential mechanisms. Cell viability was detected by using methylthiazoltetrazolium (MTT) assay. Electron microscopy, GFP-LC3 transfection, monodansylcadaverine staining and apoptosis assay were performed to determine Fluoxetine-induced autophagy and apoptosis. Western blotting and siRNA transfection were carried out to investigate the mechanisms of Fluoxetine-induced autophagy. iTRAQ-based proteomics analysis was used to explore the underlying mechanisms. We have demonstrated that Fluoxetine had remarkable anti-proliferative activities and induced autophagic cell death in MDA-MB-231 and MDA-MB-436 cells. The mechanism for Fluoxetine-induced autophagic cell death was associated with inhibition of eEF2K and activation of AMPK-mTOR-ULK complex axis. Further iTRAQ-based proteomics and network analyses revealed that Fluoxetine-induced mechanism was involved in BIRC6, BNIP1, SNAP29 and Bif-1. These results demonstrate that Fluoxetine induces apoptosis and autophagic cell death in TNBC, which will hold a promise for the future TNBC therapy. © 2017 John Wiley & Sons Ltd.

  6. Curcumin induces autophagic cell death in Spodoptera frugiperda cells.

    Science.gov (United States)

    Veeran, Sethuraman; Shu, Benshui; Cui, Gaofeng; Fu, Shengjiao; Zhong, Guohua

    2017-06-01

    The increasing interest in the role of autophagy (type II cell death) in the regulation of insect toxicology has propelled study of investigating autophagic cell death pathways. Turmeric, the rhizome of the herb Curcuma longa (Mañjaḷ in Tamil, India and Jiānghuáng in Chinese) have been traditionally used for the pest control either alone or combination with other botanical pesticides. However, the mechanisms by which Curcuma longa or curcumin exerts cytotoxicity in pests are not well understood. In this study, we investigated the potency of Curcuma longa (curcumin) as a natural pesticide employing Sf9 insect line. Autophagy induction effect of curcumin on Spodoptera frugiperda (Sf9) cells was investigated using various techniques including cell proliferation assay, morphology analysis with inverted phase contrast microscope and Transmission Electron Microscope (TEM) analysis. Autophagy was evaluated using the fluorescent dye monodansylcadaverine (MDC). Cell death measurement was examined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) within the concentrations of 5-15μg/mL. Curcumin inhibited the growth of the Sf9 cells and induced autophagic cell death in a time and dose dependent manner. Staining the cells with MDC showed the presence of autophagic vacuoles while increased in a dose and time dependent manner. At the ultrastructural level transmission electron microscopy, cells revealed massive autophagy vacuole accumulation and absence of chromatin condensation. Protein expression levels of ATG8-I and ATG8-II, well-established markers of autophagy related protein were elevated in a time dependent manner after curcumin treatment. The present study proves that curcumin induces autophagic cell death in Sf9 insect cell line and this is the first report of cytotoxic effect of curcumin in insect cells and that will be utilized as natural pesticides in future. Copyright © 2017. Published by Elsevier Inc.

  7. Deoxycholate, an Endogenous Cytotoxin/Genotoxin, Induces the Autophagic Stress-Survival Pathway: Implications for Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Claire M. Payne

    2009-01-01

    Full Text Available We report that deoxycholate (DOC, a hydrophobic bile acid associated with a high-fat diet, activates the autophagic pathway in non-cancer colon epithelial cells (NCM-460, and that this activation contributes to cell survival. The DOC-induced increase in autophagy was documented by an increase in autophagic vacuoles (detected using transmission electron microscopy, increased levels of LC3-I and LC3-II (western blotting, an increase in acidic vesicles (fluorescence spectroscopy of monodansycadaverine and lysotracker red probes, and increased expression of the autophagic protein, beclin-1 (immunohistochemistry/western blotting. The DOC-induced increase in beclin-1 expression was ROS-dependent. Rapamycin (activator of autophagy pre-treatment of NCM-460 cells significantly (P<.05 decreased, and 3-MA (inhibitor of autophagy significantly (P<.05 increased the cell loss caused by DOC treatment, alone. Rapamycin pre-treatment of the apoptosis-resistant colon cancer cell line, HCT-116RC (developed in our laboratory, resulted in a significant decrease in DOC-induced cell death. Bafilomycin A1 and hydroxychloroquine (inhibitors of the autophagic process increased the DOC-induced percentage of apoptotic cells in HCT-116RC cells. It was concluded that the activation of autophagy by DOC has important implications for colon carcinogenesis and for the treatment of colon cancer in conjunction with commonly used chemotherapeutic agents.

  8. Deoxycholate, an Endogenous Cytotoxin/Geno toxin, Induces the Autophagic Stress-Survival Pathway: Implications for Colon Carcinogenesis

    International Nuclear Information System (INIS)

    Payne, C.M.; Skillicorn, C.C.; Holubec, H.; Bernstein, C.; Dvorak, K.; Bernstein, H.; Moyer, M.P.; Garewal, H.

    2009-01-01

    We report that deoxycholate (DOC), a hydrophobic bile acid associated with a high-fat diet, activates the autophagic pathway in non-cancer colon epithelial cells (NCM-460), and that this activation contributes to cell survival. The DOC-induced increase in autophagy was documented by an increase in autophagic vacuoles (detected using transmission electron microscopy, increased levels of LC3-I and LC3-II (western blotting), an increase in acidic vesicles (fluorescence spectroscopy of monodansylcadaverine and lyso tracker red probes), and increased expression of the autophagic protein, beclin-1 (immunohistochemistry/western blotting). The DOC-induced increase in beclin-1 expression was ROS-dependent. Rapa mycin (activator of autophagy) pre-treatment of NCM-460 cells significantly (P<.05) decreased, and 3-MA (inhibitor of autophagy) significantly (P<.05) increased the cell loss caused by DOC treatment, alone. Rapa mycin pre-treatment of the apoptosis-resistant colon cancer cell line, HCT-116RC (developed in our laboratory), resulted in a significant decrease in DOC-induced cell death. Bafilomycin A1 and hydroxychloroquine (inhibitors of the autophagic process) increased the DOC-induced percentage of apoptotic cells in HCT-116RC cells. It was concluded that the activation of autophagy by DOC has important implications for colon carcinogenesis and for the treatment of colon cancer in conjunction with commonly used chemotherapeutic agents.

  9. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88.

    Science.gov (United States)

    Shao, Fenli; Tan, Tao; Tan, Yang; Sun, Yang; Wu, Xingxin; Xu, Qiang

    2016-09-01

    Psoriasis is a chronic inflammatory skin disease with excessive activation of toll-like receptors (TLRs), which play important roles in developing psoriasis. Targeting TLR signaling remains a challenge for treating psoriasis. Here, we found that andrographolide (Andro), a small-molecule natural product, alleviated imiquimod- but not interleukin 23 (IL-23)-induced psoriasis in mice with reducing expressions of IL-23 and IL-1β in the skin. The improvement in imiquimod-induced psoriasis by Andro was not observed in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) knockout mice. Furthermore, Andro inhibited mRNA expressions of IL-23, IL-6 and IL-1β but not CD80 and CD86 in bone-marrow derived dendritic cells (BMDCs) treated with lipopolysaccharide (LPS) in a MAP1LC3B-dependent manner. In addition, Andro inhibited imiquimod-induced mRNA expressions of IL-23, IL-6, IL-1β, CD80 and CD86 in BMDCs from mice. Interestingly, Andro induced a degradation of myeloid differentiation factor 88 (MyD88) and blocked the recruitment of TNF receptor-associated factor 6 (TRAF6) to MyD88 upon LPS stimulation in BMDCs from mice. Blockade of autophagic proteolysis using NH4Cl or MAP1LC3B(-/-) BMDCs abolished the Andro-induced MyD88 degradation. In conclusion, Andro controls activation of MyD88-dependent cytokines and alleviates psoriasis in mice via inducing autophagic proteolysis of MyD88, which could be a novel strategy to treat psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux.

    Science.gov (United States)

    Zhou, Tianen; Liang, Lian; Liang, Yanran; Yu, Tao; Zeng, Chaotao; Jiang, Longyuan

    2017-09-15

    Mild hypothermia has been proven to be useful to treat brain ischemia/reperfusion injury. However, the underlying mechanisms have not yet been fully elucidated. The present study was undertaken to determine whether mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion(OGD/R)-induced injury via improving lysosomal function and autophagic flux. The results showed that OGD/R induced the occurrence of autophagy, while the acidic environment inside the lysosomes was altered. The autophagic flux assay with RFP-GFP tf-LC3 was impeded in hippocampal neurons after OGD/R. Mild hypothermia recovered the lysosomal acidic fluorescence and the lysosomal marker protein expression of LAMP2, which decreased after OGD/R.Furthermore, we found that mild hypothermia up-regulated autophagic flux and promoted the fusion of autophagosomes and lysosomes in hippocampal neurons following OGD/R injury, but could be reversed by treatment with chloroquine, which acts as a lysosome inhibitor. We also found that mild hypothermia improved mitochondrial autophagy in hippocampal neurons following OGD/R injury. Finally,we found that chloroquine blocked the protective effects of mild hypothermia against OGD/R-induced cell death and injury. Taken together, the present study indicates that mild hypothermia protects hippocampal neurons against OGD/R-induced injury by improving lysosomal function and autophagic flux. Copyright © 2017. Published by Elsevier Inc.

  11. Akebia saponin PA induces autophagic and apoptotic cell death in AGS human gastric cancer cells.

    Science.gov (United States)

    Xu, Mei-Ying; Lee, Dong Hwa; Joo, Eun Ji; Son, Kun Ho; Kim, Yeong Shik

    2013-09-01

    In this study, we investigated the anticancer mechanism of akebia saponin PA (AS), a natural product isolated from Dipsacus asperoides in human gastric cancer cell lines. It was shown that AS-induced cell death is caused by autophagy and apoptosis in AGS cells. The apoptosis-inducing effect of AS was characterized by annexin V/propidium (PI) staining, increase of sub-G1 phase and caspase-3 activation, while the autophagy-inducing effect was indicated by the formation of cytoplasmic vacuoles and microtubule-associated protein 1 light chain-3 II (LC3-II) conversion. The autophagy inhibitor bafilomycin A1 (BaF1) decreased AS-induced cell death and caspase-3 activation, but caspase-3 inhibitor Ac-DEVD-CHO did not affect LC3-II accumulation or AS-induced cell viability, suggesting that AS induces autophagic cell death and autophagy contributes to caspase-3-dependent apoptosis. Furthermore, AS activated p38/c-Jun N-terminal kinase (JNK), which could be inhibited by BaF1, and caspase-3 activation was attenuated by both SB202190 and SP600125, indicating that AS-induced autophagy promotes mitogen-activated protein kinases (MAPKs)-mediated apoptosis. Taken together, these results demonstrate that AS induces autophagic and apoptotic cell death and autophagy plays the main role in akebia saponin PA-induced cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Vitamin K3 attenuates cerulein-induced acute pancreatitis through inhibition of the autophagic pathway.

    Science.gov (United States)

    Chinzei, Ryo; Masuda, Atsuhiro; Nishiumi, Shin; Nishida, Masayuki; Onoyama, Mitsuko; Sanuki, Tsuyoshi; Fujita, Tsuyoshi; Moritoh, Satoshi; Itoh, Tomoo; Kutsumi, Hiromu; Mizuno, Shigeto; Azuma, Takeshi; Yoshida, Masaru

    2011-01-01

    The discovery of novel and effective treatment methods would be of great help to patients with acute pancreatitis. The aims of this study were to determine the inhibitory effects of vitamin K3 (VK3) against cerulein-induced acute pancreatitis in mice and to examine the mechanisms behind these effects. Acute pancreatitis in mice was induced by intraperitoneal injection of cerulein 6 times at hourly intervals. Vitamin K3 was administered once before the first injection of cerulein or twice before and after the first injection of cerulein. The degrees of inflammation and autophagy in the pancreatic tissue were estimated by histological examination, measurement of enzyme activity, confocal microscopy, and Western blotting. The inhibitory effects of VK3 against rapamycin-induced autophagy were also examined using HeLa cells stably expressing green fluorescent protein LC3. Cerulein-induced acute pancreatitis was markedly attenuated by the administration of VK3. In addition, VK3 led to the inhibition of cerulein-evoked autophagic changes and colocalization of autophagosomes and lysosomes in the pancreatic tissue. Vitamin K3 also reduced rapamycin-induced autophagy in HeLa/green fluorescent protein LC3 cells. Our data suggest that the administration of VK3 reduces pancreatic inflammation in acute pancreatitis through inhibition of the autophagic pathway. Vitamin K3 may be an effective therapeutic strategy against acute pancreatitis.

  13. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    Science.gov (United States)

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Hyperthermia enhances radiosensitivity of colorectal cancer cells through ROS inducing autophagic cell death.

    Science.gov (United States)

    Ba, Ming-Chen; Long, Hui; Wang, Shuai; Wu, Yin-Bing; Zhang, Bo-Huo; Yan, Zhao-Fei; Yu, Fei-Hong; Cui, Shu-Zhong

    2018-04-01

    Hyperthermia (HT) enhances the anti-cancer effects of radiotherapy (RT), but the precise biochemical mechanisms involved are unclear. This study was aim to investigate if mild HT sensitizes colorectal cancer cells to RT through reactive oxygen species (ROS)-inducing autophagic cell death in a mice model of HCT116 human colorectal cancer. HCT116 mice model were randomly divided into five groups: mock group, hyperthermia group (HT), radiotherapy group (RT), HT + RT group, and HT + RT +N-acetyl L-cysteine (NAC) group (HT + CT + NAC). After four weeks of treatment, cancer growth inhibition, rate and mitochondrial membrane potential were measured with MTT and JC-1 assays, respectively, while ROS were estimated fluorimetrically. The relationship of these parameters to expressions of autophagy-related genes Beclin1, LC3B, and mTOR was analyzed. Gene expression was measured by Real-Time polymerase chain reaction (RT-PCR). There were significant increases in ROS levels and mitochondrial membrane potential in the HT + RT group. ROS levels in the HT + RT group increased more significantly than in any other group. In contrast, ROS levels in the HT + RT + NAC group were significantly decreased relative to the HT + RT group. The number of autophagic bodies in HT + RT group was higher than that of mock group. There were significant increases in the expression of Beclin1 and LC3B genes, while mTOR expression was significantly decreased in the HT + CT group. Treatment with NAC reversed the pattern of these changes. These results indicate that HT enhances the radiosensitivity of colorectal cancer cells to RT through ROS inducing autophagic cell death. © 2017 Wiley Periodicals, Inc.

  15. The bifunctional autophagic flux by 2-deoxyglucose to control survival or growth of prostate cancer cells

    International Nuclear Information System (INIS)

    Jeon, Jeong Yong; Kim, Seung Won; Park, Ki Cheong; Yun, Mijin

    2015-01-01

    Recent reports using metabolism regulating drugs showed that nutrient deprivation was an efficient tool to suppress cancer progression. In addition, autophagy control is emerging to prevent cancer cell survival. Autophagy breaks down the unnecessary cytoplasmic components into anabolic units and energy sources, which are the most important sources for making the ATP that maintains homeostasis in cancer cell growth and survival. Therefore, the glucose analog 2-deoxyglucose (2DG) has been used as an anticancer reagent due to its inhibition of glycolysis. Prostate cancer cells (PC3) were treated with 2DG for 6 h or 48 h to analyze the changing of cell cycle and autophagic flux. Rapamycin and LC3B overexpressing vectors were administered to PC3 cells for autophagy induction and chloroquine and shBeclin1 plasmid were used to inhibit autophagy in PC3 cells to analyze PC3 cells growth and survival. The samples for western blotting were prepared in each culture condition to confirm the expression level of autophagy related and regulating proteins. We demonstrated that 2DG inhibits PC3 cells growth and had discriminating effects on autophagy regulation based on the different time period of 2DG treatment to control cell survival. Short-term treatment of 2DG induced autophagic flux, which increased microtubule associated protein 1 light chain 3B (LC3B) conversion rates and reduced p62 levels. However, 2DG induced autophagic flux is remarkably reduced over an extended time period of 2DG treatment for 48 h despite autophagy inducing internal signaling being maintained. The relationship between cell growth and autophagy was proved. Increased autophagic flux by rapamycin or LC3B overexpression powerfully reduced cell growth, while autophagy inhibition with shBeclin1 plasmid or chloroquine had no significant effect on regulating cell growth. Given these results, maintaining increased autophagic flux was more effective at inhibiting cancer cell progression than inhibition of

  16. An Autophagic Flux Probe that Releases an Internal Control.

    Science.gov (United States)

    Kaizuka, Takeshi; Morishita, Hideaki; Hama, Yutaro; Tsukamoto, Satoshi; Matsui, Takahide; Toyota, Yuichiro; Kodama, Akihiko; Ishihara, Tomoaki; Mizushima, Tohru; Mizushima, Noboru

    2016-11-17

    Macroautophagy is an intracellular degradation system that utilizes the autophagosome to deliver cytoplasmic components to the lysosome. Measuring autophagic activity is critically important but remains complicated and challenging. Here, we have developed GFP-LC3-RFP-LC3ΔG, a fluorescent probe to evaluate autophagic flux. This probe is cleaved by endogenous ATG4 proteases into equimolar amounts of GFP-LC3 and RFP-LC3ΔG. GFP-LC3 is degraded by autophagy, while RFP-LC3ΔG remains in the cytosol, serving as an internal control. Thus, autophagic flux can be estimated by calculating the GFP/RFP signal ratio. Using this probe, we re-evaluated previously reported autophagy-modulating compounds, performed a high-throughput screen of an approved drug library, and identified autophagy modulators. Furthermore, we succeeded in measuring both induced and basal autophagic flux in embryos and tissues of zebrafish and mice. The GFP-LC3-RFP-LC3ΔG probe is a simple and quantitative method to evaluate autophagic flux in cultured cells and whole organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Polysaccharide from Fuzi protects against Ox-LDL-induced calcification of human vascular smooth muscle cells by increasing autophagic activity

    Science.gov (United States)

    Liao, Lizhen; Zhuang, Xiaodong; Li, Weidong; Su, Qibiao; Zhao, Jie; Liu, Ying

    2018-01-01

    Polysaccharide from Fuzi (FPS) is a water-soluble polysaccharide isolated from the traditional Chinese herbal medicine Fuzi. It has been demonstrated to protect hepatocytes against ischemia-reperfusion injury through its potent antioxidant effects, and to attenuate starvation-induced cytotoxicity in H9c2 cells by increasing autophagic activity. In the present study, Alizarin Red S staining was used to detect mineral deposition and reverse transcription-quantitative polymerase chain reaction was used to detect the core binding factor α1 and smooth muscle 22α mRNA expression. To analyze autophagic activity, western blotting was used to detect microtubule-associated protein 1A/1B light chain 3 and nucleoporin P62 expression. In addition, green fluorescent protein-LC3 dots-per-cell was observed by fluorescence microscopy. It was demonstrated that oxidized low-density lipoprotein (Ox-LDL) could increase the calcification of human vascular smooth muscle cells (VSMCs) in a concentration-dependent manner, and that FPS treatment had a significant protective effect against Ox-LDL-induced calcification of human VSMCs. Furthermore, FPS treatment alleviated the Ox-LDL-induced downregulation of autophagic activity, and the protective effect of FPS on Ox-LDL-induced calcification was attenuated by the autophagy inhibitor 3-methyladenine. In conclusion, the present study demonstrated for the first time to the best of the authors' knowledge that FPS can protect against Ox-LDL-induced vascular calcification in human VSMCs, and that this likely occurs via the activation of autophagy. This supports the hypothesis that autophagy may be an endogenous protective mechanism counteracting vascular calcification, and that FPS may be used as a potential therapeutic for vascular calcification. PMID:29393437

  18. Autophagic machinery activated by dengue virus enhances virus replication

    International Nuclear Information System (INIS)

    Lee, Y.-R.; Lei, H.-Y.; Liu, M.-T.; Wang, J.-R.; Chen, S.-H.; Jiang-Shieh, Y.-F.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S.

    2008-01-01

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication

  19. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    Science.gov (United States)

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.

  20. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells

    Science.gov (United States)

    Ma, Yi; Yang, Hao-Zheng; Xu, Long-Mei; Huang, Yi-Ran; Dai, Hui-Li; Kang, Xiao-Nan

    2015-01-01

    Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells. PMID:25745956

  1. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Alexandre; Marceau, François, E-mail: francois.marceau@crchul.ulaval.ca

    2016-08-15

    Cation trapping in acidic cell compartments determines an antiproliferative effect that has a potential interest in oncology, as shown by clinical data and trials involving chloroquine and hydroxychloroquine. To further characterize the mechanism of this effect, we studied a series of 6 substituted triethylamine (s-Et{sub 3}N) drugs that encompasses a wide range of liposolubility (amiodarone, quinacrine, chloroquine, hydroxychloroquine, lidocaine, and procainamide). Three tumor cell lines and primary human endothelial cells were exploited in proliferation assays (48 h, cell counts). Accumulation of the autophagic effector LC3 II and the apoptotic marker cleaved PARP1 (immunoblots), cytotoxicity, cell cycle analysis and endocytic function were further tested in the p53-null histiocytic lymphoma U937 line. A profound and desynchronized antiproliferative effect was observed in response to all s-Et{sub 3}Ns with essentially no cell type specificity. Predictors of s-Et{sub 3}N potency were liposolubility and the acute accumulation of the autophagic effector LC3 II (6 h-treatments). For each s-Et{sub 3}N, there was an antiproliferative concentration range where cytotoxicity and apoptosis were not triggered in U937 cells (24–48 h-treatments). Quinacrine was the most potent cytostatic drug (1–5 μM). Co-treatment of cells with inhibitors of cholesterol, β-cyclodextrin or lovastatin, partially reversed the antiproliferative effect of each s-Et{sub 3}N. The cytopathology induced by cationic drug accumulation includes a cytostatic effect. Its intensity is cell type- and p53-independent, but predicted by the inhibition of autophagic flux and by the liposolubility of individual drugs and alleviated by cholesterol ablation. The superiority of quinacrine, biomarker value of LC3 II and antagonism by a statin may be clinically relevant. - Highlights: • Cation trapping in acidic cell compartments induces a cytostatic effect. • A series of substituted triethylamines has been

  2. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation

    International Nuclear Information System (INIS)

    Parks, Alexandre; Marceau, François

    2016-01-01

    Cation trapping in acidic cell compartments determines an antiproliferative effect that has a potential interest in oncology, as shown by clinical data and trials involving chloroquine and hydroxychloroquine. To further characterize the mechanism of this effect, we studied a series of 6 substituted triethylamine (s-Et 3 N) drugs that encompasses a wide range of liposolubility (amiodarone, quinacrine, chloroquine, hydroxychloroquine, lidocaine, and procainamide). Three tumor cell lines and primary human endothelial cells were exploited in proliferation assays (48 h, cell counts). Accumulation of the autophagic effector LC3 II and the apoptotic marker cleaved PARP1 (immunoblots), cytotoxicity, cell cycle analysis and endocytic function were further tested in the p53-null histiocytic lymphoma U937 line. A profound and desynchronized antiproliferative effect was observed in response to all s-Et 3 Ns with essentially no cell type specificity. Predictors of s-Et 3 N potency were liposolubility and the acute accumulation of the autophagic effector LC3 II (6 h-treatments). For each s-Et 3 N, there was an antiproliferative concentration range where cytotoxicity and apoptosis were not triggered in U937 cells (24–48 h-treatments). Quinacrine was the most potent cytostatic drug (1–5 μM). Co-treatment of cells with inhibitors of cholesterol, β-cyclodextrin or lovastatin, partially reversed the antiproliferative effect of each s-Et 3 N. The cytopathology induced by cationic drug accumulation includes a cytostatic effect. Its intensity is cell type- and p53-independent, but predicted by the inhibition of autophagic flux and by the liposolubility of individual drugs and alleviated by cholesterol ablation. The superiority of quinacrine, biomarker value of LC3 II and antagonism by a statin may be clinically relevant. - Highlights: • Cation trapping in acidic cell compartments induces a cytostatic effect. • A series of substituted triethylamines has been studied in 4 cell

  3. Autophagic effects of Hibiscus sabdariffa leaf polyphenols and epicatechin gallate (ECG) against oxidized LDL-induced injury of human endothelial cells.

    Science.gov (United States)

    Chen, Jing-Hsien; Lee, Ming-Shih; Wang, Chi-Ping; Hsu, Cheng-Chin; Lin, Hui-Hsuan

    2017-08-01

    Oxidized low-density lipoprotein (ox-LDL) contributes to the pathogenesis of atherosclerosis by promoting vascular endothelial cell injury. Hibiscus sabdariffa leaf polyphenols (HLP), rich in flavonoids, have been shown to possess antioxidant and antiatherosclerotic activities. In this study, we examined the protective role of HLP and its main compound (-)-epicatechin gallate (ECG) in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL in vitro. In a model of ox-LDL-impaired HUVECs, assessments of cell viability, cytotoxicity, cell proliferation, apoptosis, and autophagy were detected. To highlight the mechanisms of the antiapoptotic effects of HLP and ECG, the expressions of molecular proteins were measured by Western blotting, real-time PCR, and so on. HLP or ECG improved the survival of HUVECs from ox-LDL-induced viability loss. In addition, HLP or ECG showed potential in reducing ox-LDL-dependent apoptosis. Next, the ox-LDL-induced formation of acidic vesicular organelles and upregulation of the autophagy-related genes were increased by HLP or ECG. The HLP-triggered autophagic flux was further confirmed by increasing the LC3-II level under the pretreatment of an autophagy inhibitor chloroquine. Molecular data indicated the autophagic effect of HLP or ECG might be mediated via class III PI3K/Beclin-1 and PTEN/class I PI3K/Akt cascade signaling, as demonstrated by the usage of a class III PI3K inhibitor 3-methyladenine (3-MA) and a PTEN inhibitor SF1670. Our data imply that ECG-enriched HLP upregulates the autophagic pathway, which in turn led to reduce ox-LDL-induced HUVECs injury and apoptosis and provide a new mechanism for its antiatherosclerotic activity.

  4. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    Directory of Open Access Journals (Sweden)

    Chen YJ

    2016-07-01

    Full Text Available Yu-Jen Chen,1–4 Li-Wen Fang,5 Wen-Chi Su,6,7 Wen-Yi Hsu,1 Kai-Chien Yang,1 Huey-Lan Huang8 1Department of Medical Research, 2Department of Radiation Oncology, Mackay Memorial Hospital, 3Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 4Institute of Pharmacology, Taipei Medical University, Taipei, 5Department of Nutrition, I-Shou University, Kaohsiung, 6Research Center for Emerging Viruses, China Medical University Hospital, 7Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 8Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Republic of China Abstract: Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML, chronic myeloid leukemia (CML, and acute lymphoblastic leukemia (ALL cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of

  5. Ethambutol induces impaired autophagic flux and apoptosis in the rat retina

    Directory of Open Access Journals (Sweden)

    Shun-Ping Huang

    2015-08-01

    Full Text Available Ethambutol (EMB, an effective first-line antituberculosis agent, can cause serious visual impairment or irreversible vision loss in a significant number of patients. However, the mechanism underlying this ocular cytotoxicity remains to be elucidated. In this study, we found that there were statistically significant dose- and time-dependent increases in the number of cytoplasmic vacuoles and the level of cell death in EMB-treated RGC-5 cells (retinal ganglion cells. The protein kinase C (PKCδ inhibitor rottlerin markedly reduced the EMB-induced activation of caspase-3 and the subsequent apoptosis of RGC-5 cells. Western blot analysis revealed that the expression levels of class III PI3K, Beclin-1, p62 and LC3-II were upregulated, and LC3 immunostaining results showed activation of the early phase and inhibition of the late stage of autophagy in retinas of the EMB-intraperitoneal (IP-injected rat model. We further demonstrated that exposure to EMB induces autophagosome accumulation, which results from the impaired autophagic flux that is mediated by a PKCδ-dependent pathway, inhibits the PI3K/Akt/mTOR signaling pathway and leads to apoptotic death in retina neuronal cells. These results indicate that autophagy dysregulation in retinal neuronal cells might play a substantial role in EMB-induced optic neuroretinopathy.

  6. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine

    International Nuclear Information System (INIS)

    Zois, Christos E.; Giatromanolaki, Alexandra; Kainulainen, Heikki; Botaitis, Sotirios; Torvinen, Sira; Simopoulos, Constantinos; Kortsaris, Alexandros; Sivridis, Efthimios; Koukourakis, Michael I.

    2011-01-01

    Research highlights: → We investigated the effect 6 Gy of WBI on the autophagic machinery of normal mouse lung. → Irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. → The membrane bound LC3A-II protein levels increased in the cytosolic fraction (not in the pellet), contrasting the patterns noted after starvation-induced autophagy. → Administration of amifostine, reversed all the LC3A and p62 findings, suggesting protection of the normal autophagic function. -- Abstract: Purpose: The effect of ionizing irradiation on the autophagic response of normal tissues is largely unexplored. Abnormal autophagic function may interfere the protein quality control leading to cell degeneration and dysfunction. This study investigates its effect on the autophagic machinery of normal mouse lung. Methods and materials: Mice were exposed to 6 Gy of whole body γ-radiation and sacrificed at various time points. The expression of MAP1LC3A/LC3A/Atg8, beclin-1, p62/sequestosome-1 and of the Bnip3 proteins was analyzed. Results: Following irradiation, the LC3A-I and LC3A-II protein levels increased significantly at 72 h and 7 days. Strikingly, LC3A-II protein was increased (5.6-fold at 7 days; p < 0.001) only in the cytosolic fraction, but remained unchanged in the membrane fraction. The p62 protein, was significantly increased in both supernatant and pellet fraction (p < 0.001), suggesting an autophagosome turnover deregulation. These findings contrast the patterns of starvation-induced autophagy up-regulation. Beclin-1 levels remained unchanged. The Bnip3 protein was significantly increased at 8 h, but it sharply decreased at 72 h (p < 0.05). Administration of amifostine (200 mg/kg), 30 min before irradiation, reversed all the LC3A and p62 findings on blots, suggesting restoration of the normal autophagic function. The LC3A and Beclin1 m

  7. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death

    Directory of Open Access Journals (Sweden)

    Chang-Fang Chiu

    2016-08-01

    Full Text Available T315, an integrin-linked kinase (ILK inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML cell lines (HL-60 and THP-1 and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy.

  8. Autophagic cell death: Loch Ness monster or endangered species?

    Science.gov (United States)

    Shen, Han-Ming; Codogno, Patrice

    2011-05-01

    The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals.

  9. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle.

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin

    2016-06-28

    Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis.

  10. 8-C-(E-phenylethenyl)quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation.

    Science.gov (United States)

    Zhao, Yueliang; Fan, Daming; Zheng, Zong-Ping; Li, Edmund T S; Chen, Feng; Cheng, Ka-Wing; Wang, Mingfu

    2017-02-01

    Quercetin, a flavonoid, widely distributed in edible fruits and vegetables, was reported to effectively inhibit 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) formation in a food model (roast beef patties) with itself being converted into a novel compound 8-C-(E-phenylethenyl)quercetin (8-CEPQ). Here we investigated whether 8-CEPQ could be formed in a real food system, and tested its anticancer activity in human colon cancer cell lines. LC-MS was applied for the determination of 8-CEPQ formation in onion/beef soup. Anticancer activity of 8-CEPQ was evaluated by using cell viability assay and flow cytometry. Results showed that 8-CEPQ suppressed proliferation and caused G 2 phase arrest in colon cancer cells. Based on immunofluorescent staining assay, western blot assay, and RNA knockdown data, we found that 8-CEPQ did not cause apoptotic cell death. Instead, it induced autophagic cell death. Moreover, treatment with 8-CEPQ induced phosphorylation of extracellular signal-regulated kinase (ERK). Inhibition of ERK phosphorylation by the mitogen-activated protein kinase kinase (MEK)/ERK inhibitor U0126 attenuated 8-CEPQ-induced autophagy and reversed 8-CEPQ-mediated cell growth inhibition. Our results demonstrate that 8-CEPQ, a novel quercetin derivative, could be formed in onion/beef soup. 8-CEPQ inhibited colon cancer cell growth by inducing autophagic cell death through ERK activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Autophagic components contribute to hypersensitive cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Schultz-Larsen, Torsten; Joensen, Jan

    2009-01-01

    Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene...... expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through...... the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death...

  12. Eclalbasaponin II induces autophagic and apoptotic cell death in human ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Yoon Jin Cho

    2016-09-01

    Full Text Available Triterpenoids echinocystic acid and its glycosides, isolated from several Eclipta prostrata, have been reported to possess various biological activities such as anti-inflammatory, anti-bacterial, and anti-diabetic activity. However, the cytotoxicity of the triterpenoids in human cancer cells and their molecular mechanism of action are poorly understood. In the present study, we found that eclalbasaponin II with one glucose moiety has potent cytotoxicity in three ovarian cancer cells and two endometrial cancer cells compared to an aglycone echinocystic acid and eclalbasaponin I with two glucose moiety. Eclalbasaponin II treatment dose-dependently increased sub G1 population. Annexin V staining revealed that eclalbasaponin II induced apoptosis in SKOV3 and A2780 ovarian cancer cells. In addition, eclalbasaponin II-induced cell death was associated with characteristics of autophagy; an increase in acidic vesicular organelle content and elevation of the levels of LC3-II. Interestingly, autophagy inhibitor BaF1 suppressed the eclalbasaponin II-induced apoptosis. Moreover, eclalbasaponin II activated JNK and p38 signaling and inhibited the mTOR signaling. We further demonstrated that pre-treatment with a JNK and p38 inhibitor and mTOR activator attenuated the eclalbasaponin II-induced autophagy. This suggests that eclalbasaponin II induces apoptotic and autophagic cell death through the regulation of JNK, p38, and mTOR signaling in human ovarian cancer cells.

  13. Mild MPP+ exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    Science.gov (United States)

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP + suggest autophagy involvement in the pathogenesis of PD, the effect of MPP + on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP + exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP + toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP + exposure predominantly inhibited autophagosome degradation, whereas acute MPP + exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP + exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP + exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP + exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP + exposure and mechanistic differences between mild and acute MPP + toxicities. Mild MPP + toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP + on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP + exposure. Mechanistic differences between acute and mild MPP + toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause of Parkinson

  14. Natural Compounds from Herbs that can Potentially Execute as Autophagy Inducers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Shian-Ren Lin

    2017-07-01

    Full Text Available Accumulated evidence indicates that autophagy is a response of cancer cells to various anti-cancer therapies. Autophagy is designated as programmed cell death type II, and is characterized by the formation of autophagic vacuoles in the cytoplasm. Numerous herbs, including Chinese herbs, have been applied to cancer treatments as complementary and alternative medicines, supplements, or nutraceuticals to dampen the side or adverse effects of chemotherapy drugs. Moreover, the tumor suppressive actions of herbs and natural products induced autophagy that may lead to cell senescence, increase apoptosis-independent cell death or complement apoptotic processes. Hereby, the underlying mechanisms of natural autophagy inducers are cautiously reviewed in this article. Additionally, three natural compounds—curcumin, 16-hydroxycleroda-3,13-dien-15,16-olide, and prodigiosin—are presented as candidates for autophagy inducers that can trigger cell death in a supplement or alternative medicine for cancer therapy. Despite recent advancements in therapeutic drugs or agents of natural products in several cancers, it warrants further investigation in preclinical and clinical studies.

  15. Dynamic autophagic activity affected the development of thoracic aortic dissection by regulating functional properties of smooth muscle cells

    International Nuclear Information System (INIS)

    Wang, Yang; Zhao, Zhi-Min; Zhang, Guan-Xin; Yang, Fan; Yan, Yan; Liu, Su-Xuan; Li, Song-Hua; Wang, Guo-Kun; Xu, Zhi-Yun

    2016-01-01

    The aortic medial degeneration is the key histopathologic feature of Thoracic aortic dissection (TAD). The aim of this study was to identify the change of autophagic activity in the aortic wall during TAD development, and to explore the roles of autophagy on regulating functional properties of smooth muscle cells (SMCs). Firstly, compared with control group (n = 11), the increased expression of autophagic markers Beclin1 and LC3 was detected in the aortic wall from TAD group (n = 23) by immunochemistry and western blot. We found that more autophagic vacuoles were present in the aortic wall of TAD patients using Transmission electron microscopy. Next, autophagic activity was examined in AD mice model established by β-aminopropionitrile fumarate (BAPN) and angiotensin II. Immunochemistry proved that autophagic activity was dynamically changed during AD development. Beclin1 and LC3 were detected up-regulated in the aortic wall in the second week after BAPN feeding, earlier than the fragmentation or loss of elastic fibers. When AD occurred in the 4th week, the expression of Beclin1 and LC3 began to decrease, but still higher than the control. Furthermore, autophagy was found to inhibit starvation-induced apoptosis of SMCs. Meanwhile, blockage of autophagy could suppress PDGF-induced phenotypic switch of SMCs. Taken together, autophagic activity was dynamically changed in the aortic wall during TAD development. The abnormal autophagy could regulate the functional properties of aortic SMCs, which might be the potential pathogenesis of TAD. - Highlights: • Autophagy is up-regulated in aorta wall from thoracic aorta dissection (TAD) patient. • Autophagic activity is dynamically changed during TAD development. • Dynamically change of autophagy is associated with pathological process of TAD. • Autophagy participate in the development of TAD by regulating function of SMCs.

  16. Carbon and nitrogen depletion-induced nucleophagy and selective autophagic sequestration of a whole nucleus in multinucleate cells of the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Kikuma, Takashi; Mitani, Takahiro; Kohara, Takahiro; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2017-05-12

    Autophagy is a conserved cellular degradation process in eukaryotes, in which cytoplasmic components and organelles are digested in vacuoles/lysosomes. Recently, autophagic degradation of nuclear materials, termed "nucleophagy", has been reported. In the multinucleate filamentous fungus Aspergillus oryzae, a whole nucleus is degraded by nucleophagy after prolonged culture. While developing an H2B-EGFP processing assay for the evaluation of nucleophagy in A. oryzae, we found that nucleophagy is efficiently induced by carbon or nitrogen depletion. Microscopic observations in a carbon depletion condition clearly demonstrated that autophagosomes selectively sequester a particular nucleus, despite the presence of multiple nuclei in the same cell. Furthermore, AoNsp1, the A. oryzae homolog of the yeast nucleoporin Nsp1p, mainly localized at the nuclear periphery, but its localization was restricted to the opposite side of the autophagosome being formed around a nucleus. In contrast, the perinuclear ER visualized with the calnexin AoClxA was not morphologically affected by nucleophagy. The findings of nucleophagy-inducing conditions enabled us to characterize the morphological process of autophagic degradation of a whole nucleus in multinucleate cells.

  17. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Ju [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan (China); Chen, Ta-Liang [Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tseng, Yuan-Yun [Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Gong-Jhe [Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); Hsieh, Ming-Hui [Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan (China); Lin, Yung-Wei [Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan (China); Chen, Ruei-Ming, E-mail: rmchen@tmu.edu.tw [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan (China); Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan (China)

    2016-08-01

    Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- and time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway. - Highlights: • Exposure of mice with intracranial gliomas to honokiol induces cell apoptosis and autophagy. • Honokiol triggers autophagy of human glioma cells via the PISK/AKT/mTOR signaling pathway. • P53 induces autophagy via regulating the AKT/mTOR pathway in honokiol-treated glioma cells. • ROS participates

  18. Normal autophagic activity in macrophages from mice lacking Gαi3, AGS3, or RGS19.

    Directory of Open Access Journals (Sweden)

    Ali Vural

    Full Text Available In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1, and Regulator of G-protein Signaling 19 (RGS19. As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3(-/-, Gpsm1(-/-, or Rgs19(-/- mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3(-/-, and Gpsm1(-/- macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.

  19. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways.

    Science.gov (United States)

    Meng, Hongtao; Wang, Lan; He, Junhong; Wang, Zhufeng

    2016-03-25

    Lead (Pb) is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS) from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions.

  20. The Protective Effect of Gangliosides on Lead (Pb-Induced Neurotoxicity Is Mediated by Autophagic Pathways

    Directory of Open Access Journals (Sweden)

    Hongtao Meng

    2016-03-01

    Full Text Available Lead (Pb is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions.

  1. HBV subgenotypes F1b and F4 replication induces an incomplete autophagic process in hepatocytes: Role of BCP and preCore mutations.

    Science.gov (United States)

    Elizalde, María Mercedes; Pérez, Paula Soledad; Sevic, Ina; Grasso, Daniel; Ropolo, Alejandro; Barbini, Luciana; Campos, Rodolfo Héctor; Vaccaro, María Inés; Flichman, Diego Martín

    2018-01-01

    Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy.

  2. Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation.

    Science.gov (United States)

    Musolino, Vincenzo; Palus, Sandra; Tschirner, Anika; Drescher, Cathleen; Gliozzi, Micaela; Carresi, Cristina; Vitale, Cristiana; Muscoli, Carolina; Doehner, Wolfram; von Haehling, Stephan; Anker, Stefan D; Mollace, Vincenzo; Springer, Jochen

    2016-12-01

    Cachexia is a complex metabolic syndrome associated with cancer. One of the features of cachexia is the loss of muscle mass, characterized by an imbalance between protein synthesis and protein degradation. Muscle atrophy is caused by the hyperactivation of some of the main cellular catabolic pathways, including autophagy. Cachexia also affects the cardiac muscle. As a consequence of the atrophy of the heart, cardiac function is impaired and mortality is increased. Anti-cachectic therapy in patients with cancer cachexia is so far limited to nutritional support and anabolic steroids. The use of the appetite stimulant megestrol acetate (MA) has been discussed as a treatment for cachexia. In this study the effects of MA were tested in cachectic tumour-bearing rats (Yoshida AH-130 ascites hepatoma). Rats were treated daily with 100 mg/kg of MA or placebo starting one day after tumour inoculation, and for a period of 16 days. Body weight and body composition were assessed at baseline and at the end of the study. Cardiac function was analysed by echocardiography at baseline and at day 11. Locomotor activity and food intake were assessed before tumour inoculation and at day 11. Autophagic markers were assessed in gastrocnemius muscle and heart by western blot analysis. Treatment with 100 mg/kg/day MA significantly attenuated the loss of body weight (-9 ± 12%, P  cachexia-induced cardiomyopathy.

  3. Methods for assessing autophagy and autophagic cell death.

    Science.gov (United States)

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  4. Endurance exercise training induces fat depot-specific differences in basal autophagic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Goki; Kato, Hisashi; Izawa, Tetsuya, E-mail: tizawa@mail.doshisha.ac.jp

    2015-10-23

    autophagosome associated LC3-II in WAT. • Exercise-induced changes in p62 and ATG7 were WAT-type specific. • Exercise-induced basal autophagic activity shows fat depot-specific differences.

  5. Endurance exercise training induces fat depot-specific differences in basal autophagic activity

    International Nuclear Information System (INIS)

    Tanaka, Goki; Kato, Hisashi; Izawa, Tetsuya

    2015-01-01

    autophagosome associated LC3-II in WAT. • Exercise-induced changes in p62 and ATG7 were WAT-type specific. • Exercise-induced basal autophagic activity shows fat depot-specific differences.

  6. Oxygen-Glucose-Deprivation/Reoxygenation-Induced Autophagic Cell Death Depends on JNK-Mediated Phosphorylation of Bcl-2

    Directory of Open Access Journals (Sweden)

    Jin Fan

    2016-03-01

    Full Text Available Background/Aims: The purpose of this study was to investigate the role of autophagy in oxygen-glucose-deprivation/reoxygenation (OGD/R injury in rat neurons. Methods and results: Cortical neurons were isolated from Sprague-Dawley rats and identified by immunofluorescence. The cortical neurons were randomly assigned to one of four groups: control group (I, experimental group (OGD/R group, II, JNK inhibitor pretreatment group (III and JNK inhibitor pretreatment + OGD/R group (IV. Neuronal cell viability significantly decreased after 6h and 12h of reoxygenation in Group IV (P P Conclusion: The regulation of the JNK/Bcl-2/Beclin-1 signaling pathway may be one of the mechanisms underlying the OGD/R-induced autophagic cell death of neurons.

  7. The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons.

    Science.gov (United States)

    Camberos-Luna, Lucy; Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Massieu, Lourdes

    2016-03-01

    Glucose is the major energy substrate in brain, however, during ketogenesis induced by starvation or prolonged hypoglycemia, the ketone bodies (KB), acetoacetate and β-hydroxybutyrate (BHB) can substitute for glucose. KB improve neuronal survival in diverse injury models, but the mechanisms by which KB prevent neuronal damage are still not well understood. In the present study we have investigated whether protection by the D isomer of BHB (D-BHB) against neuronal death induced by glucose deprivation (GD), is related to autophagy. Autophagy is a lysosomal-dependent degradation process activated during nutritional stress, which leads to the digestion of damaged proteins and organelles providing energy for cell survival. Results show that autophagy is activated in cortical cultured neurons during GD, as indicated by the increase in the levels of the lipidated form of the microtubule associated protein light chain 3 (LC3-II), and the number of autophagic vesicles. At early phases of glucose reintroduction (GR), the levels of p62 declined suggesting that the degradation of the autophagolysosomal content takes place at this time. In cultures exposed to GD and GR in the presence of D-BHB, the levels of LC3-II and p62 rapidly declined and remained low during GR, suggesting that the KB stimulates the autophagic flux preventing autophagosome accumulation and improving neuronal survival.

  8. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    Science.gov (United States)

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  9. In vivo effect of an antilipolytic drug (3,5'-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver

    International Nuclear Information System (INIS)

    Donati, Alessio; Ventruti, Annamaria; Cavallini, Gabriella; Masini, Matilde; Vittorini, Simona; Chantret, Isabelle; Codogno, Patrice; Bergamini, Ettore

    2008-01-01

    Autophagy is an intracellular pathway induced by starvation, inhibited by nutrients, that is responsible for degradation of long-lived proteins and altered cell organelles. This process is involved in cell maintenance could be induced by antilipolytic drugs and may have anti-aging effects [A. Donati, The involvement of macroautophagy in aging and anti-aging interventions, Mol. Aspects Med. 27 (2006) 455-470]. We analyzed the effect of an intraperitoneal injection of an antilipolytic agent (3,5'-dimethylpyrazole, DMP, 12 mg/kg b.w.), that mimics nutrient shortage on autophagy and expression of autophagic genes in the liver of male 3-month-old Sprague-Dawley albino rats. Autophagy was evaluated by observing electron micrographs of the liver autophagosomal compartment and by monitoring protein degradation assessed by the release of valine into the bloodstream. LC3 gene expression, whose product is one of the best known markers of autophagy, was also monitored. As expected, DMP decreased the plasma levels of free fatty acids, glucose, and insulin and increased autophagic vacuoles and proteolysis. DMP treatment caused an increase in the expression of the LC3 gene although this occurred later than the induction of authophagic proteolysis caused by DMP. Glucose treatment rescued the effects caused by DMP on glucose and insulin plasma levels and negatively affected the rate of autophagic proteolysis, but did not suppress the positive regulatory effect on LC3 mRNA levels. In conclusion, antilipolytic drugs may induce both autophagic proteolysis and higher expression of an autophagy-related gene and the effect on autophagy gene expression might not be secondary to the stimulation of autophagic proteolysis

  10. Huaier Extract Induces Autophagic Cell Death by Inhibiting the mTOR/S6K Pathway in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Huaier extract is attracting increased attention due to its biological activities, including antitumor, anti-parasite and immunomodulatory effects. Here, we investigated the role of autophagy in Huaier-induced cytotoxicity in MDA-MB-231, MDA-MB-468 and MCF7 breast cancer cells. Huaier treatment inhibited cell viability in all three cell lines and induced various large membranous vacuoles in the cytoplasm. In addition, electron microscopy, MDC staining, accumulated expression of autophagy markers and flow cytometry revealed that Huaier extract triggered autophagy. Inhibition of autophagy attenuated Huaier-induced cell death. Furthermore, Huaier extract inhibited the mammalian target of the rapamycin (mTOR/S6K pathway in breast cancer cells. After implanting MDA-MB-231 cells subcutaneously into the right flank of BALB/c nu/nu mice, Huaier extract induced autophagy and effectively inhibited xenograft tumor growth. This study is the first to show that Huaier-induced cytotoxicity is partially mediated through autophagic cell death in breast cancer cells through suppression of the mTOR/S6K pathway.

  11. Autophagic pathways and metabolic stress.

    Science.gov (United States)

    Kaushik, S; Singh, R; Cuervo, A M

    2010-10-01

    Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. © 2010 Blackwell Publishing Ltd.

  12. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available Fusobacterium nucleatum (F. nucleatum plays a critical role in gastrointestinal inflammation. However, the exact mechanism by which F. nucleatum contributes to inflammation is unclear. In the present study, it was revealed that F. nucleatum could induce the production of proinflammatory cytokines (IL-8, IL-1β and TNF-α and reactive oxygen species (ROS in Caco-2 colorectal adenocarcinoma cells. Furthermore, ROS scavengers (NAC or Tiron could decrease the production of proinflammatory cytokines during F. nucleatum infection. In addition, we observed that autophagy is impaired in Caco-2 cells after F. nucleatum infection. The production of proinflammatory cytokines and ROS induced by F. nucleatum was enhanced with either autophagy pharmacologic inhibitors (3-methyladenine, bafilomycin A1 or RNA interference in essential autophagy genes (ATG5 or ATG12 in Caco-2 cells. Taken together, these results indicate that F. nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 Cells.

  13. In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells.

    Science.gov (United States)

    Hanamata, Shigeru; Kurusu, Takamitsu; Okada, Masaaki; Suda, Akiko; Kawamura, Koki; Tsukada, Emi; Kuchitsu, Kazuyuki

    2013-01-01

    Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli.

  14. The different roles of selective autophagic protein degradation in mammalian cells.

    Science.gov (United States)

    Wang, Da-wei; Peng, Zhen-ju; Ren, Guang-fang; Wang, Guang-xin

    2015-11-10

    Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.

  15. Autophagic cell death induced by reactive oxygen species is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Yuan, Guang-Jin; Deng, Jun-Jian; Cao, De-Dong; Shi, Lei; Chen, Xin; Lei, Jin-Ju; Xu, Xi-Ming

    2017-08-14

    To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism. Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species (ROS) were quantified using the fluorescent probe DCFH-DA. Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation. Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.

  16. Hydrogen peroxide impairs autophagic flux in a cell model of nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Pengtao [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049 (China); Huang, Zhen [Department of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021 (China); Zhao, Hong, E-mail: zhaohong9@sina.com [Department of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021 (China); Wei, Taotao, E-mail: weitt@moon.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2013-04-19

    Highlights: •Free fatty acids exposure induces elevated autophagy. •H{sub 2}O{sub 2} inhibits autophagic flux through impairing the fusion between autophagosomes and lysosomes. •Inhibition of autophagy potentiates H{sub 2}O{sub 2}-induced cell death. -- Abstract: Nonalcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver disease, but the pathogenesis of NAFLD is not fully clear. The aim of this study was to determine whether autophagy plays a role in the pathogenesis of NAFLD. We found that the levels of autophagy were elevated in hepatoma cells upon exposure to free fatty acids, as confirmed by the increase in the number of autophagosomes. However, exposure of hepatoma cells to H{sub 2}O{sub 2} and TNF-α, two typical “second hit” factors, increased the initiation of autophagy but inhibited the autophagic flux. The inhibition of autophagy sensitized cells to pro-apoptotic stimuli. Taken together, our results suggest that autophagy acts as a protective mechanism in the pathogenesis of NAFLD and that impairment of autophagy might induce more severe lesions of the liver. These findings will be a benefit to the understanding of the pathogenesis of NAFLD and might suggest a strategy for the prevention and cure of NAFLD.

  17. The Autophagic Machinery in Enterovirus Infection.

    Science.gov (United States)

    Lai, Jeffrey K F; Sam, I-Ching; Chan, Yoke Fun

    2016-01-27

    The Enterovirus genus of the Picornaviridae family comprises many important human pathogens, including polioviruses, rhinovirus, enterovirus A71, and enterovirus D68. They cause a wide variety of diseases, ranging from mild to severe life-threatening diseases. Currently, no effective vaccine is available against enteroviruses except for poliovirus. Enteroviruses subvert the autophagic machinery to benefit their assembly, maturation, and exit from host. Some enteroviruses spread between cells via a process described as autophagosome-mediated exit without lysis (AWOL). The early and late phases of autophagy are regulated through various lipids and their metabolizing enzymes. Some of these lipids and enzymes are specifically regulated by enteroviruses. In the present review, we summarize the current understanding of the regulation of autophagic machinery by enteroviruses, and provide updates on recent developments in this field.

  18. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis.

    Science.gov (United States)

    Jeong, Ji Heun; Yu, Kwang Sik; Bak, Dong Ho; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Dong Kwan; Kim, Jwa-Jin; Han, Seung-Yun

    2016-11-01

    Previous studies have demonstrated that autophagy induced by caloric restriction (CR) is neuroprotective against cerebral ischemia. However, it has not been determined whether intermittent fasting (IF), a variation of CR, can exert autophagy-related neuroprotection against cerebral ischemia. Therefore, the neuroprotective effect of IF was evaluated over the course of two weeks in a rat model of focal cerebral ischemia, which was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). Specifically, the role of autophagy modulation as a potential underlying mechanism for this phenomenon was investigated. It was demonstrated that IF reduced infarct volume and brain edema, improved neurobehavioral deficits, and rescued neuronal loss after MCAO/R. Furthermore, neuronal apoptosis was decreased by IF in the rat cortex. An increase in the number of autophagosomes (APs) was demonstrated in the cortices of IF-treated rats, using immunofluorescence staining and transmission electron microscopy. Using immunoblots, an IF-induced increase was detected in microtubule-associated protein 1 light chain 3 (LC3)-II, Rab7, and cathepsin D protein levels, which corroborated previous morphological studies. Notably, IF reduced the accumulation of APs and p62, demonstrating that IF attenuated the MCAO/R-induced disturbance of autophagic flux in neurons. The findings of the present study suggest that IF-induced neuroprotection in focal cerebral ischemia is due, at least in part, to the minimization of autophagic flux disturbance and inhibition of apoptosis.

  19. Absolute continuity of autophage measures on finite-dimensional vector spaces

    Energy Technology Data Exchange (ETDEWEB)

    Raja, C R.E. [Stat-Math Unit, Indian Statistical Institute, Bangalore (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: creraja@isibang.ac.in

    2002-06-01

    We consider a class of measures called autophage which was introduced and studied by Szekely for measures on the real line. We show that the autophage measures on finite-dimensional vector spaces over real or Q{sub p} are infinitely divisible without idempotent factors and are absolutely continuous with bounded continuous density. We also show that certain semistable measures on such vector spaces are absolutely continuous. (author)

  20. Exposure to low-dose X-rays promotes peculiar autophagic cell death in Drosophila melanogaster, an effect that can be regulated by the inducible expression of Hml dsRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kanao, Tomoko [Department of Radiological Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Ohtawara-shi, Tochigi-ken 324-8501 (Japan); Miyachi, Yukihisa [Department of Radiological Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Ohtawara-shi, Tochigi-ken 324-8501 (Japan)]. E-mail: ymiyachi@iuhw.ac.jp

    2006-03-20

    We previously reported that to induce an early emergence effect with low-dose X-irradiation in Drosophila, exposure during the prepupae stage is necessary. The present study examined the mechanism by which low-dose radiation rapidly eliminates larval cells and activates the formation of the imaginal discs during metamorphosis. Upon exposure to 0.5 Gy X-rays at 2 h after puparium formation (APF), the larval salivary glands swelled and were surrounded by remarkably thick structures containing an acid phosphatase (Acph) enzyme, implicating a peculiar autophagic cell death. TUNEL staining revealed the presence of DNA fragmentations compared with cells from sham controls which remained unchanged until 12 h APF. Additionally, the salivary glands of exposed flies were completely destroyed by 10 h APF. Furthermore, exposure to 0.5 Gy X-rays also facilitated the activity of the engulfment function of dendritic cells (DCs); they were generated in the larval salivary glands, engulfed the cell corpses and finally moved to the fat body. Data from an experiment demonstrating the inducible expression of Hml double-stranded RNA (dsRNA) indicate that a slow rate of engulfment of larval cells results in a longer time to emergence. Thus, the animals subjected to low-dose X-rays activated autophagic processes, resulting in significantly faster adult eclosion.

  1. Exposure to low-dose X-rays promotes peculiar autophagic cell death in Drosophila melanogaster, an effect that can be regulated by the inducible expression of Hml dsRNA

    International Nuclear Information System (INIS)

    Kanao, Tomoko; Miyachi, Yukihisa

    2006-01-01

    We previously reported that to induce an early emergence effect with low-dose X-irradiation in Drosophila, exposure during the prepupae stage is necessary. The present study examined the mechanism by which low-dose radiation rapidly eliminates larval cells and activates the formation of the imaginal discs during metamorphosis. Upon exposure to 0.5 Gy X-rays at 2 h after puparium formation (APF), the larval salivary glands swelled and were surrounded by remarkably thick structures containing an acid phosphatase (Acph) enzyme, implicating a peculiar autophagic cell death. TUNEL staining revealed the presence of DNA fragmentations compared with cells from sham controls which remained unchanged until 12 h APF. Additionally, the salivary glands of exposed flies were completely destroyed by 10 h APF. Furthermore, exposure to 0.5 Gy X-rays also facilitated the activity of the engulfment function of dendritic cells (DCs); they were generated in the larval salivary glands, engulfed the cell corpses and finally moved to the fat body. Data from an experiment demonstrating the inducible expression of Hml double-stranded RNA (dsRNA) indicate that a slow rate of engulfment of larval cells results in a longer time to emergence. Thus, the animals subjected to low-dose X-rays activated autophagic processes, resulting in significantly faster adult eclosion

  2. Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: Procainamide-induced autophagic cell vacuolization

    International Nuclear Information System (INIS)

    Morissette, Guillaume; Lodge, Robert; Marceau, Francois

    2008-01-01

    Cationic drugs frequently exhibit large apparent volumes of distribution, consistent with various forms of cellular sequestration. The contributions of organelles and metabolic processes that may mimic drug transport were defined in human vascular smooth muscle cells. We hypothesized that procainamide-induced vacuolar cytopathology is driven by intense pseudotransport mediated by the vacuolar (V)-ATPase and pursued the characterization of vesicular trafficking alterations in this model. Large amounts of procainamide were taken up by intact cells (maximal in 2 h, reversible upon washout, apparent K M 4.69 mM; fluorometric determination of cell-associated drug). Procainamide uptake was extensively prevented or reversed by pharmacological inhibition of the V-ATPase with bafilomycin A1 or FR 167356, decreased at low extracellular pH and preceded vacuolar cell morphology. However, the uptake of procainamide was unaffected by mitochondrial poisons that reduced the uptake of rhodamine 6G. Large vacuoles induced by millimolar procainamide were labeled with the late endosome/lysosome markers Rab7 and CD63 and the autophagy effector LC3; their osmotic formation (but not procainamide uptake) was reduced by extracellular mannitol and parallel to LC3 II formation. Procainamide-induced vacuolization is associated with defective endocytosis of fluorophore-labeled bovine serum albumin, but not with induction of the unfolded protein response. The contents of a vacuole subset slowly (≥ 24 h) become positive for Nile red staining (phospholipidosis-like response). V-ATPase-driven ion trapping is a form of intense cation pseudotransport that concerns the uncharged form of the drugs, and is associated with a vacuolar, autophagic and evolutive cytopathology and profound effects on vesicular trafficking

  3. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease.

    Science.gov (United States)

    Lee, Jong Kil; Jin, Hee Kyung; Park, Min Hee; Kim, Bo-ra; Lee, Phil Hyu; Nakauchi, Hiromitsu; Carter, Janet E; He, Xingxuan; Schuchman, Edward H; Bae, Jae-sung

    2014-07-28

    In Alzheimer's disease (AD), abnormal sphingolipid metabolism has been reported, although the pathogenic consequences of these changes have not been fully characterized. We show that acid sphingomyelinase (ASM) is increased in fibroblasts, brain, and/or plasma from patients with AD and in AD mice, leading to defective autophagic degradation due to lysosomal depletion. Partial genetic inhibition of ASM (ASM(+/-)) in a mouse model of familial AD (FAD; amyloid precursor protein [APP]/presenilin 1 [PS1]) ameliorated the autophagocytic defect by restoring lysosomal biogenesis, resulting in improved AD clinical and pathological findings, including reduction of amyloid-β (Aβ) deposition and improvement of memory impairment. Similar effects were noted after pharmacologic restoration of ASM to the normal range in APP/PS1 mice. Autophagic dysfunction in neurons derived from FAD patient induced pluripotent stem cells (iPSCs) was restored by partial ASM inhibition. Overall, these results reveal a novel mechanism of ASM pathogenesis in AD that leads to defective autophagy due to impaired lysosomal biogenesis and suggests that partial ASM inhibition is a potential new therapeutic intervention for the disease. © 2014 Lee et al.

  4. Inhibition of mTOR improves the impairment of acidification in autophagic vesicles caused by hepatic steatosis

    International Nuclear Information System (INIS)

    Nakadera, Eisuke; Yamashina, Shunhei; Izumi, Kousuke; Inami, Yoshihiro; Sato, Toshifumi; Fukushima, Hirofumi; Kon, Kazuyoshi; Ikejima, Kenichi; Ueno, Takashi; Watanabe, Sumio

    2016-01-01

    Recent investigations revealed that dysfunction of autophagy involved in the progression of chronic liver diseases such as alcoholic and nonalcoholic steatohepatitis and hepatocellular neoplasia. Previously, it was reported that hepatic steatosis disturbs autophagic proteolysis via suppression of both autophagic induction and lysosomal function. Here, we demonstrate that autophagic acidification was altered by a decrease in lysosomal proton pump vacuolar-ATPase (V-ATPase) in steatohepatitis. The number of autophagic vesicles was increased in hepatocytes from obese KKAy mice as compared to control. Similarly, autophagic membrane protein LC3-II and lysosomal protein LAMP-2 expression were enhanced in KKAy mice liver. Nevertheless, both phospho-mTOR and p62 expression were augmented in KKAy mice liver. More than 70% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, the percentage of acidic autolysosomes was decreased in hepatocytes from KKAy mice significantly (40.1 ± 3.48%). Both protein and RNA level of V-ATPase subunits ATP6v1a, ATP6v1b, ATP6v1d in isolated lysosomes were suppressed in KKAy mice as compared to control. Interestingly, incubation with mTOR inhibitor rapamycin increased in the rate of LTR-positive autolysosomes in hepatocytes from KKAy mice and suppressed p62 accumulation in the liver from KKAy mice which correlated to an increase in the V-ATPase subunits expression. These results indicate that down-regulation of V-ATPase due to hepatic steatosis causes autophagic dysfunction via disruption of lysosomal and autophagic acidification. Moreover, activation of mTOR plays a pivotal role on dysregulation of lysosomal and autophagic acidification by modulation of V-ATPase expression and could therefore be a useful therapeutic target to ameliorate dysfunction of autophagy in NAFLD. - Highlights: • Hepatic steatosis causes accumulation of autophagic vesicles in hepatocytes. • Hepatic steatosis disturbs

  5. Inhibition of mTOR improves the impairment of acidification in autophagic vesicles caused by hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Nakadera, Eisuke [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Izumi, Kousuke; Inami, Yoshihiro; Sato, Toshifumi; Fukushima, Hirofumi; Kon, Kazuyoshi; Ikejima, Kenichi [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Ueno, Takashi [Division of Proteomics and Biomolecular Science, Juntendo University, School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Watanabe, Sumio [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2016-01-22

    Recent investigations revealed that dysfunction of autophagy involved in the progression of chronic liver diseases such as alcoholic and nonalcoholic steatohepatitis and hepatocellular neoplasia. Previously, it was reported that hepatic steatosis disturbs autophagic proteolysis via suppression of both autophagic induction and lysosomal function. Here, we demonstrate that autophagic acidification was altered by a decrease in lysosomal proton pump vacuolar-ATPase (V-ATPase) in steatohepatitis. The number of autophagic vesicles was increased in hepatocytes from obese KKAy mice as compared to control. Similarly, autophagic membrane protein LC3-II and lysosomal protein LAMP-2 expression were enhanced in KKAy mice liver. Nevertheless, both phospho-mTOR and p62 expression were augmented in KKAy mice liver. More than 70% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, the percentage of acidic autolysosomes was decreased in hepatocytes from KKAy mice significantly (40.1 ± 3.48%). Both protein and RNA level of V-ATPase subunits ATP6v1a, ATP6v1b, ATP6v1d in isolated lysosomes were suppressed in KKAy mice as compared to control. Interestingly, incubation with mTOR inhibitor rapamycin increased in the rate of LTR-positive autolysosomes in hepatocytes from KKAy mice and suppressed p62 accumulation in the liver from KKAy mice which correlated to an increase in the V-ATPase subunits expression. These results indicate that down-regulation of V-ATPase due to hepatic steatosis causes autophagic dysfunction via disruption of lysosomal and autophagic acidification. Moreover, activation of mTOR plays a pivotal role on dysregulation of lysosomal and autophagic acidification by modulation of V-ATPase expression and could therefore be a useful therapeutic target to ameliorate dysfunction of autophagy in NAFLD. - Highlights: • Hepatic steatosis causes accumulation of autophagic vesicles in hepatocytes. • Hepatic steatosis disturbs

  6. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways.

    Directory of Open Access Journals (Sweden)

    Jonathan Wills

    Full Text Available SNCA and MAPT genes and environmental factors are important risk factors of Parkinson's disease [PD], the second-most common neurodegenerative disease. The agrichemicals maneb and paraquat selectively target dopaminergic neurons, leading to parkinsonism, through ill-defined mechanisms. In the current studies we have analyzed the ability of maneb and paraquat, separately and together, to induce synucleinopathy and tauopathy in wild type mice. Maneb was ineffective in increasing α-synuclein [α-Syn] or p-Tau levels. By contrast, paraquat treatment of mice resulted in robust accumulation of α-Syn and hyperphosphorylation of Tau in striata, through activation of p-GSK-3β, a major Tau kinase. Co-treatment with maneb did not enhance the effects of paraquat. Increased hyperacetylation of α-tubulin was observed in paraquat-treated mice, suggesting cytoskeleton remodeling. Paraquat, but not maneb, inhibited soluble proteasomal activity on a peptide substrate but this was not associated with a decreased expression of 26S proteasome subunits. Both paraquat and maneb treatments increased levels of the autophagy inhibitor, mammalian target of rapamycin, mTOR, suggesting impaired axonal autophagy, despite increases in certain autophagic proteins, such as beclin 1 and Agt12. Autophagic flux was also impaired, as ratios of LC3 II to LC3 I were reduced in treated animals. Increased mTOR was also observed in postmortem human PD striata, where there was a reduction in the LC3 II to LC3 I ratio. Heat shock proteins were either increased or unchanged upon paraquat-treatment suggesting that chaperone-mediated autophagy is not hampered by the agrichemicals. These studies provide novel insight into the mechanisms of action of these agrichemicals, which indicate that paraquat is much more toxic than maneb, via its inhibitory effects on proteasomes and autophagy, which lead to accumulation of α-Syn and p-Tau.

  7. Andrographolide Induces Autophagic Cell Death and Inhibits Invasion and Metastasis of Human Osteosarcoma Cells in An Autophagy-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2017-11-01

    Full Text Available Background/Aims: Osteosarcoma (OS is the most common primary malignant tumor of bone tissue. Although treatment effectiveness has improved, the OS survival rate has fluctuated in recent years. Andrographolide (AG has been reported to have antitumor activity against a variety of tumors. Our aim was to investigate the effects and potential mechanisms of AG in human osteosarcoma. Methods: Cell viability and morphological changes were assessed by MTT and live/dead assays. Apoptosis was detected using Annexin V-FITC/PI double staining, DAPI, and caspase-3 assays. Autophagy was detected with mRFP-GFP-LC3 adenovirus transfection and western blot. Cell migration and invasion were detected by wound healing assay and Transwell® experiments. Results: AG dose-dependently reduced the viability of osteosarcoma cells. No increase in apoptosis was detected in AG-treated human OS MG-63 and U-2OS cells, and the pan-caspase inhibitor z-VAD did not attenuate AG-induced cell death. However, AG induced autophagy by suppressing PI3K/Akt/mTOR and enhancing JNK signaling pathways. 3-MA and Beclin-1 siRNA could reverse the cytotoxic effects of AG. In addition, AG inhibited the invasion and metastasis of OS, and this effect could be reversed with Beclin-1 siRNA. Conclusion: AG inhibits viability and induces autophagic death in OS cells. AG-induced autophagy inhibits the invasion and metastasis of OS.

  8. Attenuation of Aβ25–35-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    International Nuclear Information System (INIS)

    Meng, Xiangbao; Wang, Min; Sun, Guibo; Ye, Jingxue; Zhou, Yanhui; Dong, Xi; Wang, Tingting; Lu, Shan; Sun, Xiaobo

    2014-01-01

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ 25–35 -induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ 25–35 (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ 25–35 treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio. Aβ 25–35 treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ 25–35 -induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ 25–35 -induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens or gypenosides

  9. PF-4708671, a specific inhibitor of p70 ribosomal S6 kinase 1, activates Nrf2 by promoting p62-dependent autophagic degradation of Keap1

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Su [Severance Biomedical Science Institute (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Dong Hoon [Department of Life Science and Ewha Research Center for Systems Biology (Korea, Republic of); The Research Center for Cell Homeostasis, Ewha Womans University, Seoul 127-750 (Korea, Republic of); Lee, Da Hyun [Severance Biomedical Science Institute (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Bae, Soo Han, E-mail: soohanbae@yuhs.ac [Severance Biomedical Science Institute (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-10-23

    p70 ribosomal S6 kinase 1 (S6K1) is an important serine/threonine kinase and downstream target of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. PF-4708671 is a specific inhibitor of S6K1, and prevents S6K1-mediated phosphorylation of the S6 protein. PF-4708671 treatment often leads to apoptotic cell death. However, the protective mechanism against PF-4708671-induced cell death has not been elucidated. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway is essential for protecting cells against oxidative stress. p62, an adaptor protein in the autophagic process, enhances Nrf2 activation through the impairment of Keap1 activity. In this study, we showed that PF-4708671 induces autophagic Keap1 degradation-mediated Nrf2 activation in p62-dependent manner. Furthermore, p62-dependent Nrf2 activation plays a crucial role in protecting cells from PF-4708671-mediated apoptosis. - Highlights: • PF-4708671, a S6K1-specific inhibitor, prevents S6K1-mediated S6 phosphorylation. • However, PF-4708671 treatment often leads to apoptotic cell death. • Protective mechanism against PF-4708671-induced cell death remains to be elucidated. • PF-4708671 induced p62-dependent, autophagic Keap1 degradation-mediated Nrf2 activation. • p62-dependent Nrf2 activation protects cells from PF-4708671-mediated apoptosis.

  10. Attenuation of Aβ{sub 25–35}-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangbao; Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China); Sun, Guibo, E-mail: sunguibo@126.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China); Ye, Jingxue [Jilin Agricultural University, Changchun, Jilin 130021 (China); Zhou, Yanhui [Center of Cardiology, People' s Hospital of Jilin Province, Changchun, 130021, Jilin (China); Dong, Xi [Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Wang, Tingting; Lu, Shan [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China); Sun, Xiaobo, E-mail: sun_xiaobo163@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China)

    2014-08-15

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ{sub 25–35}-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ{sub 25–35} (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ{sub 25–35} treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio. Aβ{sub 25–35} treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ{sub 25–35}-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ{sub 25–35}-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens

  11. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    International Nuclear Information System (INIS)

    Ristic, Biljana; Bosnjak, Mihajlo; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Bogdanovic, Andrija; Perovic, Vladimir; Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  12. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  13. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy.

    Science.gov (United States)

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-09-07

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y(2)O(3) and Yb(2)O(3) could cause massive vacuolization. Y(2)O(3) and Yb(2)O(3) treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects.

  14. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Johnson-Lyles, Denise N.; Peifley, Kimberly; Lockett, Stephen; Neun, Barry W.; Hansen, Matthew; Clogston, Jeffrey; Stern, Stephan T.; McNeil, Scott E.

    2010-01-01

    Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C 60 OH x ), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials.

  15. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus.

    Science.gov (United States)

    Khositseth, Sookkasem; Uawithya, Panapat; Somparn, Poorichaya; Charngkaew, Komgrid; Thippamom, Nattakan; Hoffert, Jason D; Saeed, Fahad; Michael Payne, D; Chen, Shu-Hui; Fenton, Robert A; Pisitkun, Trairak

    2015-12-17

    Hypokalemia (low serum potassium level) is a common electrolyte imbalance that can cause a defect in urinary concentrating ability, i.e., nephrogenic diabetes insipidus (NDI), but the molecular mechanism is unknown. We employed proteomic analysis of inner medullary collecting ducts (IMCD) from rats fed with a potassium-free diet for 1 day. IMCD protein quantification was performed by mass spectrometry using a label-free methodology. A total of 131 proteins, including the water channel AQP2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the down-regulated proteins were associated with the biological processes of generation of precursor metabolites and energy, actin cytoskeleton organization, and cell-cell adhesion. Targeted LC-MS/MS and immunoblotting studies further confirmed the down regulation of 18 selected proteins. Electron microscopy showed autophagosomes/autophagolysosomes in the IMCD cells of rats deprived of potassium for only 1 day. An increased number of autophagosomes was also confirmed by immunofluorescence, demonstrating co-localization of LC3 and Lamp1 with AQP2 and several other down-regulated proteins in IMCD cells. AQP2 was also detected in autophagosomes in IMCD cells of potassium-deprived rats by immunogold electron microscopy. Thus, enhanced autophagic degradation of proteins, most notably including AQP2, is an early event in hypokalemia-induced NDI.

  16. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification.

    Science.gov (United States)

    Li, Dan L; Wang, Zhao V; Ding, Guanqiao; Tan, Wei; Luo, Xiang; Criollo, Alfredo; Xie, Min; Jiang, Nan; May, Herman; Kyrychenko, Viktoriia; Schneider, Jay W; Gillette, Thomas G; Hill, Joseph A

    2016-04-26

    The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity. © 2016 American Heart Association, Inc.

  17. Insulin-induced enhancement of MCF-7 breast cancer cell response to 5-fluorouracil and cyclophosphamide.

    Science.gov (United States)

    Agrawal, Siddarth; Łuc, Mateusz; Ziółkowski, Piotr; Agrawal, Anil Kumar; Pielka, Ewa; Walaszek, Kinga; Zduniak, Krzysztof; Woźniak, Marta

    2017-06-01

    The study was designed to evaluate the potential use of insulin for cancer-specific treatment. Insulin-induced sensitivity of MCF-7 breast cancer cells to chemotherapeutic agents 5-fluorouracil and cyclophosphamide was evaluated. To investigate and establish the possible mechanisms of this phenomenon, we assessed cell proliferation, induction of apoptosis, activation of apoptotic and autophagic pathways, expression of glucose transporters 1 and 3, formation of reactive oxygen species, and wound-healing assay. Additionally, we reviewed the literature regarding theuse of insulin in cancer-specific treatment. We found that insulin increases the cytotoxic effect of 5-fluorouracil and cyclophosphamide in vitro up to two-fold. The effect was linked to enhancement of apoptosis, activation of apoptotic and autophagic pathways, and overexpression of glucose transporters 1 and 3 as well as inhibition of cell proliferation and motility. We propose a model for insulin-induced sensitization process. Insulin acts as a sensitizer of cancer cells to cytotoxic therapy through various mechanisms opening a possibility for metronomic insulin-based treatments.

  18. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors.

    Directory of Open Access Journals (Sweden)

    Alok De

    Full Text Available Patients with ovarian cancer (OC may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla, have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen - CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC.

  19. Adipose tissue conditioned media support macrophage lipid-droplet biogenesis by interfering with autophagic flux.

    Science.gov (United States)

    Bechor, Sapir; Nachmias, Dikla; Elia, Natalie; Haim, Yulia; Vatarescu, Maayan; Leikin-Frenkel, Alicia; Gericke, Martin; Tarnovscki, Tanya; Las, Guy; Rudich, Assaf

    2017-09-01

    Obesity promotes the biogenesis of adipose tissue (AT) foam cells (FC), which contribute to AT insulin resistance. Autophagy, an evolutionarily-conserved house-keeping process, was implicated in cellular lipid handling by either feeding and/or degrading lipid-droplets (LDs). We hypothesized that beyond phagocytosis of dead adipocytes, AT-FC biogenesis is supported by the AT microenvironment by regulating autophagy. Non-polarized ("M0") RAW264.7 macrophages exposed to AT conditioned media (AT-CM) exhibited a markedly enhanced LDs biogenesis rate compared to control cells (8.3 Vs 0.3 LDs/cells/h, p<0.005). Autophagic flux was decreased by AT-CM, and fluorescently following autophagosomes over time revealed ~20% decline in new autophagic vesicles' formation rate, and 60-70% decrease in autophagosomal growth rate, without marked alternations in the acidic lysosomal compartment. Suppressing autophagy by either targeting autophagosome formation (pharmacologically, with 3-methyladenine or genetically, with Atg12±Atg7-siRNA), decreased the rate of LD formation induced by oleic acid. Conversely, interfering with late autophago-lysosomal function, either pharmacologically with bafilomycin-A1, chloroquine or leupeptin, enhanced LD formation in macrophages without affecting LD degradation rate. Similarly enhanced LD biogenesis rate was induced by siRNA targeting Lamp-1 or the V-ATPase. Collectively, we propose that secreted products from AT interrupt late autophagosome maturation in macrophages, supporting enhanced LDs biogenesis and AT-FC formation, thereby contributing to AT dysfunction in obesity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. 1-Hydroxy-3-[(E)-4-(piperazine-diium)but-2-enyloxy]-9,10-anthraquinone ditrifluoroactate induced autophagic cell death in human PC3 cells.

    Science.gov (United States)

    Huang, A-Mei; Lin, Kai-Wei; Lin, Wei-Hong; Wu, Li-Hung; Chang, Hao-Chun; Ni, Chujun; Wang, Danny Ling; Hsu, Hsue-Yin; Su, Chun-Li; Shih, Chiaho

    2018-02-01

    The autophagy of human prostate cancer cells (PC3 cells) induced by a new anthraquinone derivative, 1-Hydroxy-3-[(E)-4-(piperazine-diium)but-2-enyloxy]-9,10-anthraquinone ditrifluoroactate (PA) was investigated, and the relationship between autophagy and reactive oxygen species (ROS) generation was studied. The results indicated that PA induced PC3 cell death in a time- and dose-dependent manner, could inhibit PC3 cell growth by G1 phase cell cycle arrest and corresponding decrease in the G2/M cell population and induced S-phase arrest accompanied by a significant decrease G2/M and G1 phase numbers after PC3 cells treated with PA for 48 h, and increased the accumulation of autophagolysosomes and microtubule-associated protein LC3-ll, a marker of autophagy. However, these phenomenon were not observed in the group pretreated with the autophagy inhibitor 3-MA or Bafilomycin A1 (BAF), suggesting that PA induced PC3 cell autophagy. In addition, we found that PA triggered ROS generation in cells, while the levels of ROS decreased in the N-acetylcysteine (NAC) co-treatment, indicating that PA-mediated autophagy was partly blocked by NAC. In summary, the autophagic cell death of human PC3 cells mediated by PA-triggered ROS generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Serratia marcescens Is Able to Survive and Proliferate in Autophagic-Like Vacuoles inside Non-Phagocytic Cells

    Science.gov (United States)

    Colombo, María Isabel; García Véscovi, Eleonora

    2011-01-01

    Serratia marcescens is an opportunistic human pathogen that represents a growing problem for public health, particularly in hospitalized or immunocompromised patients. However, little is known about factors and mechanisms that contribute to S. marcescens pathogenesis within its host. In this work, we explore the invasion process of this opportunistic pathogen to epithelial cells. We demonstrate that once internalized, Serratia is able not only to persist but also to multiply inside a large membrane-bound compartment. This structure displays autophagic-like features, acquiring LC3 and Rab7, markers described to be recruited throughout the progression of antibacterial autophagy. The majority of the autophagic-like vacuoles in which Serratia resides and proliferates are non-acidic and have no degradative properties, indicating that the bacteria are capable to either delay or prevent fusion with lysosomal compartments, altering the expected progression of autophagosome maturation. In addition, our results demonstrate that Serratia triggers a non-canonical autophagic process before internalization. These findings reveal that S. marcescens is able to manipulate the autophagic traffic, generating a suitable niche for survival and proliferation inside the host cell. PMID:21901159

  2. 4-Acetylantroquinonol B suppresses autophagic flux and improves cisplatin sensitivity in highly aggressive epithelial cancer through the PI3K/Akt/mTOR/p70S6K signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingche [Graduate Institute of Biomedical Materials and Tissue Engineering, College of biomedical engineering, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Urology, School of Medicine, college of Medicine, Taipei Medical University, Taipei, Taiwan (China); Bamodu, Oluwaseun Adebayo [Department of Hematology and Oncology, Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan (China); Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan (China); Huang, Wen-Chien [Institute of Traditional Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan (China); Department of Surgery, Division of Thoracic Surgery, MacKay Memorial Hospital, Taipei, Taiwan (China); Zucha, Muhammad Ary [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Lin, Yen-Kuang [Biostatistics and Research Consultation Center, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Alexander T.H. [The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (China); Huang, Chun-Chih [Center for General Education, National Taitung University, Taitung, Taiwan (China); Lee, Wei-Hwa [Department of Pathology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Yuan, Chiou-Chung [Obstetrics and Gynecology Department, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Hsiao, M. [Genomics Research Center, Academia Sinica, Taipei, Taiwan (China); Deng, Li [Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing (China); Amoy-BUCT Industrial Bio-technovation Institute, Amoy (China); and others

    2017-06-15

    Targeting residual self-renewing, chemoresistant cancerous cells may represent the key to overcoming therapy resistance. The entry of these quiescent cells into an activated state is associated with high metabolic demand and autophagic flux. Therefore, modulating the autophagy pathway in aggressive carcinomas may be beneficial as a therapeutic modality. In this study, we evaluated the anti-tumor activities of 4-acetylantroquinonol B (4-AAQB) in chemoresistant ovarian cancer cells, particularly its ability to modulate autophagy through autophagy-related genes (Atg). Atg-5 was overexpressed in invasive ovarian cancer cell lines and tissue (OR: 5.133; P = 0.027) and depleting Atg-5 in ES-2 cell lines significantly induced apoptosis. 4-AAQB effectively suppressed viability of various subtypes of ovarian cancer. Cells with higher cisplatin-resistance were more responsive to 4-AAQB. For the first time, we demonstrate that 4-AAQB significantly suppress Atg-5 and Atg-7 expression with decreased autophagic flux in ovarian cancer cells via inhibition of the PI3K/Akt/mTOR/p70S6K signaling pathway. Similar to Atg-5 silencing, 4-AAQB-induced autophagy inhibition significantly enhanced cell death in vitro. These results are comparable to those of hydroxychloroquine (HCQ). In addition, 4-AAQB/cisplatin synergistically induced apoptosis in ovarian cancer cells. In vivo, 4-AAQB/cisplatin also significantly induced apoptosis and autophagy in an ES-2 mouse xenografts model. This is the first report demonstrating the efficacy of 4-AAQB alone or in combination with cisplatin on the suppression of ovarian cancer via Atg-5-dependent autophagy. We believe these findings will be beneficial in the development of a novel anti-ovarian cancer therapeutic strategy. - Highlights: • Atg-5 is overexpressed in ovarian cancer and silencing Atg-5 induces apoptosis. • 4-AAQB suppresses autophagy and PI3K/Akt/mTOR pathway. • 4-AAQB + cisplatin synergistically suppresses ovarian cancer via

  3. 4-Acetylantroquinonol B suppresses autophagic flux and improves cisplatin sensitivity in highly aggressive epithelial cancer through the PI3K/Akt/mTOR/p70S6K signaling pathway

    International Nuclear Information System (INIS)

    Liu, Mingche; Bamodu, Oluwaseun Adebayo; Huang, Wen-Chien; Zucha, Muhammad Ary; Lin, Yen-Kuang; Wu, Alexander T.H.; Huang, Chun-Chih; Lee, Wei-Hwa; Yuan, Chiou-Chung; Hsiao, M.; Deng, Li

    2017-01-01

    Targeting residual self-renewing, chemoresistant cancerous cells may represent the key to overcoming therapy resistance. The entry of these quiescent cells into an activated state is associated with high metabolic demand and autophagic flux. Therefore, modulating the autophagy pathway in aggressive carcinomas may be beneficial as a therapeutic modality. In this study, we evaluated the anti-tumor activities of 4-acetylantroquinonol B (4-AAQB) in chemoresistant ovarian cancer cells, particularly its ability to modulate autophagy through autophagy-related genes (Atg). Atg-5 was overexpressed in invasive ovarian cancer cell lines and tissue (OR: 5.133; P = 0.027) and depleting Atg-5 in ES-2 cell lines significantly induced apoptosis. 4-AAQB effectively suppressed viability of various subtypes of ovarian cancer. Cells with higher cisplatin-resistance were more responsive to 4-AAQB. For the first time, we demonstrate that 4-AAQB significantly suppress Atg-5 and Atg-7 expression with decreased autophagic flux in ovarian cancer cells via inhibition of the PI3K/Akt/mTOR/p70S6K signaling pathway. Similar to Atg-5 silencing, 4-AAQB-induced autophagy inhibition significantly enhanced cell death in vitro. These results are comparable to those of hydroxychloroquine (HCQ). In addition, 4-AAQB/cisplatin synergistically induced apoptosis in ovarian cancer cells. In vivo, 4-AAQB/cisplatin also significantly induced apoptosis and autophagy in an ES-2 mouse xenografts model. This is the first report demonstrating the efficacy of 4-AAQB alone or in combination with cisplatin on the suppression of ovarian cancer via Atg-5-dependent autophagy. We believe these findings will be beneficial in the development of a novel anti-ovarian cancer therapeutic strategy. - Highlights: • Atg-5 is overexpressed in ovarian cancer and silencing Atg-5 induces apoptosis. • 4-AAQB suppresses autophagy and PI3K/Akt/mTOR pathway. • 4-AAQB + cisplatin synergistically suppresses ovarian cancer via

  4. 1,1-Bis(3'-indolyl-1-(p-substituted phenylmethanes induce autophagic cell death in estrogen receptor negative breast cancer

    Directory of Open Access Journals (Sweden)

    Chadalapaka Gayathri

    2010-12-01

    Full Text Available Abstract Background A novel series of methylene-substituted DIMs (C-DIMs, namely 1,1-bis(3'-indolyl-1-(p-substituted phenylmethanes containing t-butyl (DIM-C-pPhtBu and phenyl (DIM-C-pPhC6H5 groups inhibit proliferation of invasive estrogen receptor-negative MDA-MB-231 and MDA-MB-453 human breast cancer cell lines with IC50 values between 1-5 uM. The main purpose of this study was to investigate the pathways of C-DIM-induced cell death. Methods The effects of the C-DIMs on apoptotic, necrotic and autophagic cell death were determined using caspase inhibitors, measurement of lactate dehydrogenase release, and several markers of autophagy including Beclin and light chain associated protein 3 expression (LC3. Results The C-DIM compounds did not induce apoptosis and only DIM-C-pPhCF3 exhibited necrotic effects. However, treatment of MDA-MB-231 and MDA-MB-453 cells with C-DIMs resulted in accumulation of LC3-II compared to LC3-I protein, a characteristic marker of autophagy, and transient transfection of green fluorescent protein-LC3 also revealed that treatment with C-DIMs induced a redistribution of LC3 to autophagosomes after C-DIM treatment. In addition, the autofluorescent drug monodansylcadaverine (MDC, a specific autophagolysosome marker, accumulated in vacuoles after C-DIM treatment, and western blot analysis of lysates from cells treated with C-DIMs showed that the Beclin 1/Bcl-2 protein ratio increased. Conclusion The results suggest that C-DIM compounds may represent a new mechanism-based agent for treating drug-resistant ER-negative breast tumors through induction of autophagy.

  5. Modulation of apoptosis sensitivity through the interplay with autophagic and proteasomal degradation pathways

    Science.gov (United States)

    Delgado, M E; Dyck, L; Laussmann, M A; Rehm, M

    2014-01-01

    Autophagic and proteasomal degradation constitute the major cellular proteolysis pathways. Their physiological and pathophysiological adaptation and perturbation modulates the relative abundance of apoptosis-transducing proteins and thereby can positively or negatively adjust cell death susceptibility. In addition to balancing protein expression amounts, components of the autophagic and proteasomal degradation machineries directly interact with and co-regulate apoptosis signal transduction. The influence of autophagic and proteasomal activity on apoptosis susceptibility is now rapidly gaining more attention as a significant modulator of cell death signalling in the context of human health and disease. Here we present a concise and critical overview of the latest knowledge on the molecular interplay between apoptosis signalling, autophagy and proteasomal protein degradation. We highlight that these three pathways constitute an intricate signalling triangle that can govern and modulate cell fate decisions between death and survival. Owing to rapid research progress in recent years, it is now possible to provide detailed insight into the mechanisms of pathway crosstalk, common signalling nodes and the role of multi-functional proteins in co-regulating both protein degradation and cell death. PMID:24457955

  6. Lycium barbarum polysaccharide protects against oxygen glucose deprivation/reoxygenation-induced apoptosis and autophagic cell death via the PI3K/Akt/mTOR signaling pathway in primary cultured hippocampal neurons.

    Science.gov (United States)

    Yu, Yang; Wu, Xiuquan; Pu, Jingnan; Luo, Peng; Ma, Wenke; Wang, Jiu; Wei, Jialiang; Wang, Yuanxin; Fei, Zhou

    2018-01-01

    Lycium barbarum polysaccharide (LBP) is the main active ingredient of Lycium barbarum, which exhibits several beneficial effects, including neuroprotection, anti-aging and anti-oxidation. However, the mechanism by which LBP protects against cerebral ischemia/reperfusion-induced injury remains obscure. In this study, we found that LBP pretreatment greatly attenuated oxygen glucose deprivation/reperfusion (OGD/R) injury in primary cultured hippocampal neurons. LBP also suppressed OGD/R-induced lactate dehydrogenase (LDH) leakage, and ameliorated oxidative stress. In addition, LBP significantly reduced OGD/R-induced apoptosis and autophagic cell death. LBP caused the down-regulation of cleaved Caspase-3/Caspase-3, LC3II/LC3I and Beclin 1, as well as up-regulation of Bcl-2/Bax and p62. Furthermore, mechanistic studies indicated that LBP pretreatment increased p-Akt and p-mTOR levels after OGD/R. In summary, our results indicated that LBP protects against OGD/R-induced neuronal injury in primary hippocampal neurons by activating the PI3K/Akt/mTOR signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion.

    Science.gov (United States)

    Schiebler, Mark; Brown, Karen; Hegyi, Krisztina; Newton, Sandra M; Renna, Maurizio; Hepburn, Lucy; Klapholz, Catherine; Coulter, Sarah; Obregón-Henao, Andres; Henao Tamayo, Marcela; Basaraba, Randall; Kampmann, Beate; Henry, Katherine M; Burgon, Joseph; Renshaw, Stephen A; Fleming, Angeleen; Kay, Robert R; Anderson, Karen E; Hawkins, Phillip T; Ordway, Diane J; Rubinsztein, David C; Floto, Rodrigo Andres

    2015-02-01

    Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation.

    Science.gov (United States)

    Chang, Jaerak; Lee, Seongju; Blackstone, Craig

    2014-12-01

    Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration.

  9. HEPES activates a MiT/TFE-dependent lysosomal-autophagic gene network in cultured cells: A call for caution.

    Science.gov (United States)

    Tol, Marc J; van der Lienden, Martijn J C; Gabriel, Tanit L; Hagen, Jacob J; Scheij, Saskia; Veenendaal, Tineke; Klumperman, Judith; Donker-Koopman, Wilma E; Verhoeven, Arthur J; Overkleeft, Hermen; Aerts, Johannes M; Argmann, Carmen A; van Eijk, Marco

    2018-01-01

    In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of "master lysosomal regulators". Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members-TFEB, TFE3 and MITF-from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results.

  10. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Hugo J.R. Fernandes

    2016-03-01

    Full Text Available Heterozygous mutations in the glucocerebrosidase gene (GBA represent the strongest common genetic risk factor for Parkinson's disease (PD, the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets.

  11. Routine Western blot to check autophagic flux : Cautions and recommendations

    NARCIS (Netherlands)

    Gomez-Sanchez, Ruben; Pizarro-Estrella, Elisa; Yakhine-Diop, Sokhna M. S.; Rodriguez-Arribas, Mario; Bravo-San Pedro, Jose M.; Fuentes, Jose M.; Gonzalez-Polo, Rosa A.

    2015-01-01

    At present, the analysis of autophagic flux by Western blotting (WB), which measures two of the most important markers of autophagy, i.e., microtubule-associated protein 1 light chain 3 (LC3) and p62, is widely accepted in the scientific community. In this study, we addressed the possible

  12. Lithium chloride contributes to blood-spinal cord barrier integrity and functional recovery from spinal cord injury by stimulating autophagic flux.

    Science.gov (United States)

    Tong, Minji; He, Zili; Lin, Xiaoxiao; Zhou, Yulong; Wang, Qingqing; Zheng, Zengming; Chen, Jian; Xu, Huazi; Tian, Naifeng

    2018-01-22

    Blood-spinal cord barrier (BSCB) disruption following spinal cord injury (SCI) significantly compromises functional neuronal recovery. Autophagy is a potential therapeutic target when seeking to protect the BSCB. We explored the effects of lithium chloride (LiCl) on BSCB permeability and autophagy-induced SCI both in a rat model of SCI and in endothelial cells subjected to oxygen-glucose deprivation. We evaluated BSCB status using the Evans Blue dye extravasation test and measurement of tight junction (TJ) protein levels; we also assessed functional locomotor recovery. We detected autophagy-associated proteins in vivo and in vitro using both Western blotting and immunofluorescence staining. We found that, in a rat model of SCI, LiCl attenuated the elevation in BSCB permeability, improved locomotor recovery, and inhibited the degradation of TJ proteins including occludin and claudin-5. LiCl significantly induced the extent of autophagic flux after SCI by increasing LC3-II and ATG-5 levels, and abolishing p62 accumulation. In addition, a combination of LiCl and the autophagy inhibitor chloroquine not only partially eliminated the BSCB-protective effect of LiCl, but also exacerbated TJ protein degradation both in vivo and in vitro. Together, these findings suggest that LiCl treatment alleviates BSCB disruption and promotes locomotor recovery after SCI, partly by stimulating autophagic flux. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The role of HBV-induced autophagy in HBV replication and HBV related-HCC.

    Science.gov (United States)

    Xie, Mingjie; Yang, Zhenggang; Liu, Yanning; Zheng, Min

    2018-04-27

    Hepatitis B virus (HBV) is infecting about 364 million people around the world. It can cause various diseases, such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). However, the present anti-viral treatment in clinics is limited; studies for new therapies are highly desired. Autophagy is a crucial and major catabolic process in the maintenance of normal intracellular homeostasis in host cells. Host cells use this unique process to degrade and recycle long-lived proteins, damaged organelles, and various pathogens for keeping the normal physiological functions. Recently, published studies indicated that HBV can induce autophagy in host cells; this autophagic response is involved in viral replication and pathogenesis. Several viral proteins, such as surface and X proteins, are assumed to be responsible for inducing autophagy in HBV infection. This review briefly summarizes some important mechanisms involved in HBV-induced autophagy and provides a novel perspective on therapies of HBV infection and HBV-related HCC. Copyright © 2017. Published by Elsevier Inc.

  14. Coronary atherosclerosis: Significance of autophagic armour.

    Science.gov (United States)

    Arora, Mansi; Kaul, Deepak

    2012-09-26

    Autophagy is a lysosomal degradation pathway of cellular components such as organelles and long-lived proteins. Though a protective role for autophagy has been established in various patho-physiologic conditions such as cancer, neurodegeneration, aging and heart failure, a growing body of evidence now reveals a protective role for autophagy in atherosclerosis, mainly by removing oxidatively damaged organelles and proteins and also by promoting cholesterol egress from the lipid-laden cells. Recent studies by Razani et al and Liao et al unravel novel pathways that might be involved in autophagic protection and in this commentary we highlight the importance of autophagy in atherosclerosis in the light of these two recent papers.

  15. Tuning flux: autophagy as a target of heart disease therapy

    Science.gov (United States)

    Xie, Min; Morales, Cyndi R.; Lavandero, Sergio; Hill, Joseph A.

    2013-01-01

    Purpose of review Despite maximum medical and mechanical support therapy, heart failure remains a relentlessly progressive disorder with substantial morbidity and mortality. Autophagy, an evolutionarily conserved process of cellular cannibalization, has been implicated in virtually all forms of cardiovascular disease. Indeed, its role is context dependent, antagonizing or promoting disease depending on the circumstance. Here, we review current understanding of the role of autophagy in the pathogenesis of heart failure and explore this pathway as a target of therapeutic intervention. Recent findings In preclinical models of heart disease, cardiomyocyte autophagic flux is activated; indeed, its role in disease pathogenesis is the subject of intense investigation to define mechanism. Similarly, in failing human heart of a variety of etiologies, cardiomyocyte autophagic activity is upregulated, and therapy, such as with mechanical support systems, elicits declines in autophagy activity. However, when suppression of autophagy is complete, rapid and catastrophic cell death occurs, consistent with a model in which basal autophagic flux is required for proteostasis. Thus, a narrow zone of ‘optimal’ autophagy seems to exist. The challenge moving forward is to tune the stress-triggered autophagic response within that ‘sweet spot’ range for therapeutic benefit. Summary Whereas we have known for some years of the participation of lysosomal mechanisms in heart disease, it is only recently that upstream mechanisms (autophagy) are being explored. The challenge for the future is to dissect the underlying circuitry and titrate the response into an optimal, proteostasis-promoting range in hopes of mitigating the ever-expanding epidemic of heart failure. PMID:21415729

  16. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes induce autophagic cell death in estrogen receptor negative breast cancer

    International Nuclear Information System (INIS)

    Vanderlaag, Kathy; Su, Yunpeng; Frankel, Arthur E; Burghardt, Robert C; Barhoumi, Rola; Chadalapaka, Gayathri; Jutooru, Indira; Safe, Stephen

    2010-01-01

    A novel series of methylene-substituted DIMs (C-DIMs), namely 1,1-bis(3'-indolyl)-1-(p-substituted phenyl)methanes containing t-butyl (DIM-C-pPhtBu) and phenyl (DIM-C-pPhC6H5) groups inhibit proliferation of invasive estrogen receptor-negative MDA-MB-231 and MDA-MB-453 human breast cancer cell lines with IC50 values between 1-5 uM. The main purpose of this study was to investigate the pathways of C-DIM-induced cell death. The effects of the C-DIMs on apoptotic, necrotic and autophagic cell death were determined using caspase inhibitors, measurement of lactate dehydrogenase release, and several markers of autophagy including Beclin and light chain associated protein 3 expression (LC3). The C-DIM compounds did not induce apoptosis and only DIM-C-pPhCF 3 exhibited necrotic effects. However, treatment of MDA-MB-231 and MDA-MB-453 cells with C-DIMs resulted in accumulation of LC3-II compared to LC3-I protein, a characteristic marker of autophagy, and transient transfection of green fluorescent protein-LC3 also revealed that treatment with C-DIMs induced a redistribution of LC3 to autophagosomes after C-DIM treatment. In addition, the autofluorescent drug monodansylcadaverine (MDC), a specific autophagolysosome marker, accumulated in vacuoles after C-DIM treatment, and western blot analysis of lysates from cells treated with C-DIMs showed that the Beclin 1/Bcl-2 protein ratio increased. The results suggest that C-DIM compounds may represent a new mechanism-based agent for treating drug-resistant ER-negative breast tumors through induction of autophagy

  17. Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation.

    Science.gov (United States)

    Zhang, Jun-Xia; Qu, Xin-Liang; Chu, Peng; Xie, Du-Jiang; Zhu, Lin-Lin; Chao, Yue-Lin; Li, Li; Zhang, Jun-Jie; Chen, Shao-Liang

    2018-05-01

    Uncoupled endothelial nitric oxide synthase (eNOS) produces O 2 - instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O 2 - production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O 2 - burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O 2 - releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Graphene oxide quantum dots disrupt autophagic flux by inhibiting lysosome activity in GC-2 and TM4 cell lines

    International Nuclear Information System (INIS)

    Ji, Xiaoli; Xu, Bo; Yao, Mengmeng; Mao, Zhilei; Zhang, Yuqing; Xu, Guofeng; Tang, Qiusha; Wang, Xinru; Xia, Yankai

    2016-01-01

    Graphene oxide quantum dots (GOQDs) have broad application prospects in many areas including bioimaging, drug delivery, DNA cleavage system, sensors and photocatalyst. Recently, increasing concerns have been raised about their biocompatibility, but studies about the effects of GOQDs on male reproductive system are still lacking. In this work, we explored the effects and molecular mechanisms of GOQDs on GC-2 and TM4 cells. We found autophagosome accumulation in GC-2 and TM4 cells after GOQDs treatment. Both LC3-II/LC3-I ratio and p62 levels increased, and the chloroquine-induced accumulation of LC3-II didn’t enhance in the presence of GOQDs, which indicated that GOQDs blocked autophagic flux. Further studies found that the fusion between autophagosome and lysosome was not inhibited by GOQDs, but the proteolytic capacity of lysosome was weakened and both the expression and activity of cathepsin B reduced. Taken together, these results suggested that GOQDs blocked autophagic flux by decreasing the amount and enzymatic activity of cathepsin B and inhibiting lysosome proteolytic capacity in GC-2 and TM4 cells, which might have a potential hazard to male reproduction.

  19. The autophagy induced by curcumin via MEK/ERK pathway plays an early anti-leukemia role in human Philadelphia chromosome-positive acute lymphoblastic leukemia SUP-B15 cells

    Directory of Open Access Journals (Sweden)

    Yong Guo

    2018-01-01

    Conclusions: Curcumin induce autophagic cell death in SUP-B15 cells via activating RAF/MEK/ERK pathway. These findings suggest that autophagic mechanism contribute to the curcumin-induced early SUP-B15 cell death, and autophagy is another anti-leukemia mechanism of curcumin.

  20. Cytotoxic Autophagy in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Khushboo Sharma

    2014-06-01

    Full Text Available Autophagy is a process of cellular self-digestion, whereby the cell degrades subcellular materials in order to generate energy and metabolic precursors in order to prolong survival, classically under conditions of nutrient deprivation. Autophagy can also involve the degradation of damaged or aged organelles, and misfolded or damaged proteins to eliminate these components that might otherwise be deleterious to cellular survival. Consequently, autophagy has generally been considered a prosurvival response. Many, if not most chemotherapeutic drugs and radiation also promote autophagy, which is generally considered a cytoprotective response, in that its inhibition frequently promotes apoptotic cells death. Furthermore, it has been shown that conventional chemotherapeutic drugs and radiation alone rarely induce a form of autophagy that leads to cell death. However, there are multiple examples in the literature where newer chemotherapeutic agents, drug combinations or drugs in combination with radiation promote autophagic cell death. This review will describe autophagic cell death induced in breast tumor cells, lung cancer cells as well as glioblastoma, demonstrating that it cannot be concluded that stress induced autophagy is, of necessity, cytoprotective in function.

  1. (+)-Grandifloracin, an antiausterity agent, induces autophagic PANC-1 pancreatic cancer cell death.

    Science.gov (United States)

    Ueda, Jun-ya; Athikomkulchai, Sirivan; Miyatake, Ryuta; Saiki, Ikuo; Esumi, Hiroyasu; Awale, Suresh

    2014-01-01

    Human pancreatic tumors are known to be highly resistant to nutrient starvation, and this prolongs their survival in the hypovascular (austere) tumor microenvironment. Agents that retard this tolerance to nutrient starvation represent a novel antiausterity strategy in anticancer drug discovery. (+)-Grandifloracin (GF), isolated from Uvaria dac, has shown preferential toxicity to PANC-1 human pancreatic cancer cells under nutrient starvation, with a PC50 value of 14.5 μM. However, the underlying mechanism is not clear. In this study, GF was found to preferentially induce PANC-1 cell death in a nutrient-deprived medium via hyperactivation of autophagy, as evidenced by a dramatic upregulation of microtubule-associated protein 1 light chain 3. No change was observed in expression of the caspase-3 and Bcl-2 apoptosis marker proteins. GF was also found to strongly inhibit the activation of Akt, a key regulator of cancer cell survival and proliferation. Because pancreatic tumors are highly resistant to current therapies that induce apoptosis, the alternative cell death mechanism exhibited by GF provides a novel therapeutic insight into antiausterity drug candidates.

  2. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway.

    Science.gov (United States)

    Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav

    2017-01-01

    Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.

  3. Effects of Epigallocatechin-3-Gallate on Autophagic Lipolysis in Adipocytes

    Directory of Open Access Journals (Sweden)

    Sang-Nam Kim

    2017-06-01

    Full Text Available Previous studies demonstrated effects of green tea on weight loss; however, green tea-induced modulation of adipocyte function is not fully understood. Here, we investigated effects of the major green tea phytochemical, epigallocatechin-3-gallate (EGCG on triglyceride contents, lipolysis, mitochondrial function, and autophagy, in adipocytes differentiated from C3H10T1/2 cells and immortalized pre-adipocytes in vitro. EGCG reduced the triglycerol content significantly in adipocytes by 25%, comparable to the nutrient starvation state. EGCG did not affect protein kinase A signaling or brown adipocyte marker expression in adipocytes; however, EGCG increased autophagy, as measured by autophagy flux analysis and immunoblot analysis of LC3B, ATG7, and Beclin1. EGCG treatment reduced mitochondrial membrane potential by 56.8% and intracellular ATP levels by 49.1% compared to controls. Although mammalian target of rapamycin signaling was not upregulated by EGCG treatment, EGCG treatment induced AMP-activated protein kinase phosphorylation, indicating an energy-depleted state. In addition, EGCG increased the association between RAB7 and lipid droplets, suggesting that lipophagy was activated. Finally, knockdown of Rab7 attenuated the EGCG-dependent reduction in lipid contents. Collectively, these results indicated that EGCG upregulated autophagic lipolysis in adipocytes, supporting the therapeutic potential of EGCG as a caloric restriction mimetic to prevent obesity and obesity-related metabolic diseases.

  4. The reverse-mode NCX1 activity inhibitor KB-R7943 promotes prostate cancer cell death by activating the JNK pathway and blocking autophagic flux.

    Science.gov (United States)

    Long, Zhou; Chen, BaiJun; Liu, Qian; Zhao, Jiang; Yang, ZhenXing; Dong, XingYou; Xia, LiuBin; Huang, ShengQuan; Hu, XiaoYan; Song, Bo; Li, LongKun

    2016-07-05

    We explored the effects of KB-R7943, an inhibitor of reverse-mode NCX1 activity, in prostate cancer (PCa). NCX1 was overexpressed in PCa tissues and cell lines, and higher NCX1 levels were associated higher PCa grades. At concentrations greater than 10 μM, KB-R7943 dose-dependently decreased PC3 and LNCaP cell viability. KB-R7943 also increased cell cycle G1/S phase arrest and induced apoptosis in PC3 cells. KB-R7943 increased autophagosome accumulation in PCa cells as indicated by increases in LC3-II levels and eGFP-LC3 puncta. Combined treatment with chloroquine (CQ) and KB-R7943 decreased P62 and increased LC3-II protein levels in PC3 cells, indicating that KB-R7943 blocked autophagic flux. KB-R7943 induced autophagosome accumulation mainly by downregulating the PI3K/AKT/m-TOR pathway and upregulating the JNK pathway. In xenograft experiments, KB-R7943 inhibited tumor growth. Combined treatment with KB-R7943 and an autophagy inhibitor inhibited growth and increased apoptosis. These results indicate that KB-R7943 promotes cell death in PCa by activating the JNK signaling pathway and blocking autophagic flux.

  5. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  6. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  7. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation

    OpenAIRE

    Chang, Jaerak; Lee, Seongju; Blackstone, Craig

    2014-01-01

    Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common...

  8. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection.

    Science.gov (United States)

    Buckingham, Erin M; Carpenter, John E; Jackson, Wallen; Zerboni, Leigh; Arvin, Ann M; Grose, Charles

    2015-01-06

    Autophagy is a process by which misfolded and damaged proteins are sequestered into autophagosomes, before degradation in and recycling from lysosomes. We have extensively studied the role of autophagy in varicella-zoster virus (VZV) infection, and have observed that vesicular cells are filled with >100 autophagosomes that are easily detectable after immunolabeling for the LC3 protein. To confirm our hypothesis that increased autophagosome formation was not secondary to a block, we examined all conditions of VZV infection as well as carrying out two assessments of autophagic flux. We first investigated autophagy in human skin xenografts in the severe combined immunodeficiency (SCID) mouse model of VZV pathogenesis, and observed that autophagosomes were abundant in infected human skin tissues. We next investigated autophagy following infection with sonically prepared cell-free virus in cultured cells. Under these conditions, autophagy was detected in a majority of infected cells, but was much less than that seen after an infected-cell inoculum. In other words, inoculation with lower-titered cell-free virus did not reflect the level of stress to the VZV-infected cell that was seen after inoculation of human skin in the SCID mouse model or monolayers with higher-titered infected cells. Finally, we investigated VZV-induced autophagic flux by two different methods (radiolabeling proteins and a dual-colored LC3 plasmid); both showed no evidence of a block in autophagy. Overall, therefore, autophagy within a VZV-infected cell was remarkably different from autophagy within an HSV-infected cell, whose genome contains two modifiers of autophagy, ICP34.5 and US11, not present in VZV.

  9. A novel strategy inducing autophagic cell death in Burkitt's lymphoma cells with anti-CD19-targeted liposomal rapamycin

    International Nuclear Information System (INIS)

    Ono, K; Sato, T; Iyama, S; Tatekoshi, A; Hashimoto, A; Kamihara, Y; Horiguchi, H; Kikuchi, S; Kawano, Y; Takada, K; Hayashi, T; Miyanishi, K; Sato, Y; Takimoto, R; Kobune, M; Kato, J

    2014-01-01

    Relapsed or refractory Burkitt's lymphoma often has a poor prognosis in spite of intensive chemotherapy that induces apoptotic and/or necrotic death of lymphoma cells. Rapamycin (Rap) brings about autophagy, and could be another treatment. Further, anti-CD19-targeted liposomal delivery may enable Rap to kill lymphoma cells specifically. Rap was encapsulated by anionic liposome and conjugated with anti-CD19 antibody (CD19-GL-Rap) or anti-CD2 antibody (CD2-GL-Rap) as a control. A fluorescent probe Cy5.5 was also liposomized in the same way (CD19 or CD2-GL-Cy5.5) to examine the efficacy of anti-CD19-targeted liposomal delivery into CD19-positive Burkitt's lymphoma cell line, SKW6.4. CD19-GL-Cy5.5 was more effectively uptaken into SKW6.4 cells than CD2-GL-Cy5.5 in vitro. When the cells were inoculated subcutaneously into nonobese diabetic/severe combined immunodeficiency mice, intravenously administered CD19-GL-Cy5.5 made the subcutaneous tumor fluorescent, while CD2-GL-Cy5.5 did not. Further, CD19-GL-Rap had a greater cytocidal effect on not only SKW6.4 cells but also Burkitt's lymphoma cells derived from patients than CD2-GL-Rap in vitro. The specific toxicity of CD19-GL-Rap was cancelled by neutralizing anti-CD19 antibody. The survival period of mice treated with intravenous CD19-GL-Rap was significantly longer than that of mice treated with CD2-GL-Rap after intraperitoneal inoculation of SKW6.4 cells. Anti-CD19-targeted liposomal Rap could be a promising lymphoma cell-specific treatment inducing autophagic cell death

  10. cAMP and EPAC are key players in the regulation of the signal transduction pathway involved in the α-hemolysin autophagic response.

    Directory of Open Access Journals (Sweden)

    María Belén Mestre

    Full Text Available Staphylococcus aureus is a microorganism that causes serious diseases in the human being. This microorganism is able to escape the phagolysosomal pathway, increasing intracellular bacterial survival and killing the eukaryotic host cell to spread the infection. One of the key features of S. aureus infection is the production of a series of virulence factors, including secreted enzymes and toxins. We have shown that the pore-forming toxin α-hemolysin (Hla is the S. aureus-secreted factor responsible for the activation of the autophagic pathway and that this response occurs through a PI3K/Beclin1-independent form. In the present report we demonstrate that cAMP has a key role in the regulation of this autophagic response. Our results indicate that cAMP is able to inhibit the autophagy induced by Hla and that PKA, the classical cAMP effector, does not participate in this regulation. We present evidence that EPAC and Rap2b, through calpain activation, are the proteins involved in the regulation of Hla-induced autophagy. Similar results were obtained in cells infected with different S. aureus strains. Interestingly, in this report we show, for the first time to our knowledge, that both EPAC and Rap2b are recruited to the S. aureus-containing phagosome. We believe that our findings have important implications in understanding innate immune processes involved in intracellular pathogen invasion of the host cell.

  11. Nutrient Availability Alters the Effect of Autophagy on Sulindac Sulfide-Induced Colon Cancer Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Shiun-Kwei Chiou

    2012-01-01

    Full Text Available Autophagy is a catabolic process by which a cell degrades its intracellular materials to replenish itself. Induction of autophagy under various cellular stress stimuli can lead to either cell survival or cell death via apoptotic and/or autophagic (nonapoptotic pathways. The NSAID sulindac sulfide induces apoptosis in colon cancer cells. Here, we show that inhibition of autophagy under serum-deprived conditions resulted in significant reductions of sulindac sulfide-induced apoptosis in HT-29 colon cancer cells. In contrast, inhibition of autophagy under conditions where serum is available significantly increased sulindac sulfide-induced apoptosis in HT-29 cells. We previously showed that the apoptosis inhibitor, survivin, plays a role in regulating NSAID-induced apoptosis and autophagic cell death. Here, we show that survivin protein half-life is increased in the presence of autophagy inhibitors under serum-deprived conditions, but not under conditions when serum is available. Thus, the increased levels of survivin may be a factor contributing to inhibition of sulindac sulfide-induced apoptosis under serum-deprived conditions. These results suggest that whether a cell lives or dies due to autophagy induction depends on the balance of factors that regulate both autophagic and apoptotic processes.

  12. The Bcl-2-Beclin 1 interaction in (-)-gossypol-induced autophagy versus apoptosis in prostate cancer cells.

    Science.gov (United States)

    Lian, Jiqin; Karnak, David; Xu, Liang

    2010-11-01

    Bcl-2 is a key dual regulator of autophagy and apoptosis, but how the level of Bcl-2 influences the cellular decision between autophagy and apoptosis is unclear. The natural BH3-mimetic (-)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, whereas apoptosis is preferentially induced in androgen-dependent or -independent cells with low Bcl-2. (-)-Gossypol induces autophagy via blocking Bcl-2-Beclin 1 interaction at the endoplasmic reticulum (ER), together with downregulating Bcl-2, upregulating Beclin 1 and activating the autophagic pathway. Furthermore, (-)-gossypol-induced autophagy is Beclin 1- and Atg5-dependent. These results provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which could facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.

  13. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells.

    Science.gov (United States)

    Del Bello, Barbara; Toscano, Marzia; Moretti, Daniele; Maellaro, Emilia

    2013-01-01

    The interplay between a non-lethal autophagic response and apoptotic cell death is still a matter of debate in cancer cell biology. In the present study performed on human melanoma cells, we investigate the role of basal or stimulated autophagy in cisplatin-induced cytotoxicity, as well as the contribution of cisplatin-induced activation of caspases 3/7 and conventional calpains. The results show that, while down-regulating Beclin-1, Atg14 and LC3-II, cisplatin treatment inhibits the basal autophagic response, impairing a physiological pro-survival response. Consistently, exogenously stimulated autophagy, obtained with trehalose or calpains inhibitors (MDL-28170 and calpeptin), protects from cisplatin-induced apoptosis, and such a protection is reverted by inhibiting autophagy with 3-methyladenine or ATG5 silencing. In addition, during trehalose-stimulated autophagy, the cisplatin-induced activation of calpains is abrogated, suggesting the existence of a feedback loop between the autophagic process and calpains. On the whole, our results demonstrate that in human melanoma cells autophagy may function as a beneficial stress response, hindered by cisplatin-induced death mechanisms. In a therapeutic perspective, these findings suggest that the efficacy of cisplatin-based polychemotherapies for melanoma could be potentiated by inhibitors of autophagy.

  14. Fetoscopic laser coagulation of intertwin anastomoses reduces discordant placental autophagic activities in discordant twin growth

    Directory of Open Access Journals (Sweden)

    Yao-Lung Chang

    2015-10-01

    Conclusion: The discordance of placenta autophagic activity in the monochorionic twin with sIUGR was reduced after laser coagulation of the intertwin anastomoses, which may result from the effect of correction of the discordant intertwin placenta perfusion.

  15. Spermidine: a novel autophagy inducer and longevity elixir.

    Science.gov (United States)

    Madeo, Frank; Eisenberg, Tobias; Büttner, Sabrina; Ruckenstuhl, Christoph; Kroemer, Guido

    2010-01-01

    Spermidine is a ubiquitous polycation that is synthesized from putrescine and serves as a precursor of spermine. Putrescine, spermidine and spermine all are polyamines that participate in multiple known and unknown biological processes. Exogenous supply of spermidine prolongs the life span of several model organisms including yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans) and flies (Drosophila melanogaster) and significantly reduces age-related oxidative protein damage in mice, indicating that this agent may act as a universal anti-aging drug. Spermidine induces autophagy in cultured yeast and mammalian cells, as well as in nematodes and flies. Genetic inactivation of genes essential for autophagy abolishes the life span-prolonging effect of spermidine in yeast, nematodes and flies. These findings complement expanding evidence that autophagy mediates cytoprotection against a variety of noxious agents and can confer longevity when induced at the whole-organism level. We hypothesize that increased autophagic turnover of cytoplasmic organelles or long-lived proteins is involved in most if not all life span-prolonging therapies.

  16. Inhibition of autophagy induced by TSA sensitizes colon cancer cell to radiation.

    Science.gov (United States)

    He, Gang; Wang, Yan; Pang, Xueli; Zhang, Bo

    2014-02-01

    Radiotherapy is one of the main treatments for clinical cancer therapy. However, its application was limited due to lack of radiosensitivity in some cancers. Trichostatin A (TSA) is a classic histone deacetylases inhibitor (HDACi) that specifically inhibits the biochemical functions of HDAC and is demonstrated to be an active anticancer drug. However, whether it could sensitize colon cancer to radiation is not clear. Our results showed that TSA enhanced the radiosensitivity of colon cancer cells as determined by CCK-8 and clonogenic survival assay. Moreover, apoptotic cell death induced by radiation was enhanced by TSA treatment. Additionally, TSA also induced autophagic response in colon cancer cells, while autophagy inhibition led to cell apoptosis and enhanced the radiosensitivity of colon cancer cells. Our data suggested that inhibition of cytoprotective autophagy sensitizes cancer cell to radiation, which might be further investigated for clinical cancer radiotherapy.

  17. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins.

    Science.gov (United States)

    Wu, An-Guo; Wong, Vincent Kam-Wai; Zeng, Wu; Liu, Liang; Law, Betty Yuen-Kwan

    2015-11-24

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future.

  18. Factitious panniculitis induced by cupping therapy.

    Science.gov (United States)

    Moon, Suk-Ho; Han, Hyun-Ho; Rhie, Jong-Won

    2011-11-01

    Cupping therapy is an alternative medical procedure that has been widely performed in Asian countries to relieve pain. It is known that there is no complication to this therapy, so many non-health care professionals have performed this procedure. However, there have been few reports on complications, such as iron deficiency anemia, hemorrhagic bullae, kelloids, vasovagal syncope, and foreign body reactions. Masses associated with panniculitis induced by cupping are extremely rare, and they require a unique approach.A 56-year-old woman presented with a 10-month history of multiple masses in the posterior neck and right shoulder areas. The patient repeatedly attempted cupping therapy by herself, and multiple palpable masses developed in the posterior neck and right shoulder area where cupping therapy had been performed. The masses were enlarged by repeated cupping, and they decreased in size when cupping was stopped. Among all lesions, the 2 masses with tenderness were surgically excised. The remaining masses resolved after cupping therapy was ceased. When a patient with subcutaneous mass has a history of cupping or trace of cupping marks, panniculitis induced by cupping should be suspected. The lesion seems to spontaneously resolve unless they are repeatedly stimulated. However, surgical resection is considered in patients with infections or severe tenderness as a complication.

  19. 17-AAG post-treatment ameliorates memory impairment and hippocampal CA1 neuronal autophagic death induced by transient global cerebral ischemia.

    Science.gov (United States)

    Li, Jianxiong; Yang, Fei; Guo, Jia; Zhang, Rongrong; Xing, Xiangfeng; Qin, Xinyue

    2015-06-12

    Neuro-inflammation plays an important role in global cerebral ischemia (GCI). The 72-kDa heat shock protein (Hsp70) has been reported to be involved in the inflammatory response of many central nervous system diseases. Preclinical findings implicate that 17-allylamino-demethoxygeldanamycin (17-AAG), an anticancer drug in clinical, provide neuroprotection actions in a rat model of traumatic brain injury, and the beneficial effects of 17-AAG were specifically due to up-regulation of Hsp70. However, no experiments have tested whether 17-AAG has beneficial or harmful effects in the setting of GCI. The present study was designed to determine the hypothesis that administration of 17-AAG could attenuate cerebral infarction and improve neuronal survival, thereby ameliorating memory impairment in a rat model of GCI. Furthermore, to test whether any neuroprotective effect of 17-AAG was associated with inflammatory response and neuronal autophagy, we examined the expression of multiplex inflammatory cytokine levels as well as autophagy-associate protein in hippocampal CA1 of rat brain. Our results showed that post-GCI administration of 17-AAG significantly protected rats against GCI induced brain injury, and 17-AAG is also an effective antagonist of the inflammatory response and thereby ameliorates hippocampal CA1 neuronal autophagic death. We therefore believe that the present study provides novel clues in understanding the mechanisms by which 17-AAG exerts its neuroprotective activity in GCI. All data reveal that 17-AAG might be a potential neuroprotective agent for ischemic stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of natural uranium on the UMR-106 osteoblastic cell line: impairment of the autophagic process as an underlying mechanism of uranium toxicity.

    Science.gov (United States)

    Pierrefite-Carle, Valérie; Santucci-Darmanin, Sabine; Breuil, Véronique; Gritsaenko, Tatiana; Vidaud, Claude; Creff, Gaelle; Solari, Pier Lorenzo; Pagnotta, Sophie; Al-Sahlanee, Rasha; Auwer, Christophe Den; Carle, Georges F

    2017-04-01

    Natural uranium (U), which is present in our environment, exerts a chemical toxicity, particularly in bone where it accumulates. Generally, U is found at oxidation state +VI in its oxocationic form [Formula: see text] in aqueous media. Although U(VI) has been reported to induce cell death in osteoblasts, the cells in charge of bone formation, the molecular mechanism for U(VI) effects in these cells remains poorly understood. The objective of our study was to explore U(VI) effect at doses ranging from 5 to 600 µM, on mineralization and autophagy induction in the UMR-106 model osteoblastic cell line and to determine U(VI) speciation after cellular uptake. Our results indicate that U(VI) affects mineralization function, even at subtoxic concentrations (metal exposure. We observed that U(VI) was able to rapidly activate autophagy but an inhibition of the autophagic flux was observed after 24 h. Thus, our results indicate that U(VI) perturbs osteoblastic functions by reducing mineralization capacity. Our study identifies for the first time U(VI) in the form of meta-autunite in mammalian cells. In addition, U(VI)-mediated inhibition of the autophagic flux may be one of the underlying mechanisms leading to the decreased mineralization and the toxicity observed in osteoblasts.

  1. Pompe disease: from pathophysiology to therapy and back again

    Directory of Open Access Journals (Sweden)

    Jeong-A eLim

    2014-07-01

    Full Text Available Pompe disease is a lysosomal storage disorder in which acid alpha-glucosidase is deficient or absent. Deficiency of this lysosomal enzyme results in progressive expansion of glycogen-filled lysosomes in multiple tissues, with cardiac and skeletal muscle being the most severely affected. The clinical spectrum ranges from fatal hypertrophic cardiomyopathy and skeletal muscle myopathy in infants to relatively attenuated forms, which manifest as a progressive myopathy without cardiac involvement. The currently available enzyme replacement therapy proved to be successful in reversing cardiac but not skeletal muscle abnormalities. Although the overall understanding of the disease has progressed, the pathophysiology of muscle damage remains poorly understood. Lysosomal enlargement/rupture has long been considered a mechanism of relentless muscle damage in Pompe disease. In past years, it became clear that this simple view of the pathology is inadequate; the pathological cascade involves dysfunctional autophagy, a major lysosome-dependent intracellular degradative pathway. The autophagic process in Pompe skeletal muscle is affected at the termination stage - impaired autophagosomal-lysosomal fusion. Yet another abnormality in the diseased muscle is the accelerated production of large, unrelated to ageing, lipofuscin deposits - a marker of cellular oxidative damage and a sign of mitochondrial dysfunction. The massive autophagic buildup and lipofuscin inclusions appear to cause a greater effect on muscle architecture than the enlarged lysosomes outside the autophagic regions. Furthermore, the dysfunctional autophagy affects the trafficking of the replacement enzyme and interferes with its delivery to the lysosomes. Several new therapeutic approaches have been tested in Pompe mouse models: substrate reduction therapy, lysosomal exocytosis following the overexpression of transcription factor EB and a closely related but distinct factor E3, and genetic

  2. Cell survival under nutrient stress is dependent on metabolic conditions regulated by Akt and not by autophagic vacuoles.

    Science.gov (United States)

    Bruno, P; Calastretti, A; Priulla, M; Asnaghi, L; Scarlatti, F; Nicolin, A; Canti, G

    2007-10-01

    Akt activation assists tumor cell survival and promotes resistance to chemotherapy. Here we show that constitutively active Akt (CA-Akt) cells are highly sensitized to cell death induced by nutrient and growth factor deprivation, whereas dominant-negative Akt (DN-Akt) cells have a high rate of survival. The content of autophagosomes in starved CA-Akt cells was high, while DN-Akt cells expressed autophagic vacuoles constitutively, independently of nutrition conditions. Thus Akt down-regulation and downstream events can induce autophagosomes which were not directly determinants of cell death. Biochemical analysis in Akt-mutated cells show that (i) Akt and mTOR proteins were degraded more rapidly than the housekeeping proteins, (ii) mTOR phosphorylation at position Thr(2446) was relatively high in DN-Akt and low in CA-Akt cells, induced by starvation in mock cells only, which suggests reduced autoregulation of these pathways in Akt-mutated cells, (iii) both protein synthesis and protein degradation were significantly higher in starved CA-Akt cells than in starved DN-Akt cells or mock cells. In conclusion, constitutively active Akt, unable to control synthesis and wasting of proteins, accelerates the death of starved cells.

  3. MicroRNA-20a inhibits autophagic process by targeting ATG7 and ATG16L1 and favors mycobacterial survival in macrophage cells.

    Directory of Open Access Journals (Sweden)

    Le Guo

    2016-10-01

    Full Text Available Autophagy plays important roles in the host immune response against mycobacterial infection. Mycobacterium tuberculosis (M. tuberculosis can live in macrophages owing to its ability to evade attacks by regulating autophagic response. MicroRNAs (miRNAs are small noncoding, endogenously encoded RNA which plays critical roles in precise regulation of macrophage functions. Whether miRNAs specifically influence the activation of macrophage autophagy during M. tuberculosis infection are largely unknown. In this study, we demonstrate that BCG infection of macrophages resulted in enhanced expression of miRNA-20a, which inhibits autophagic process by targeting ATG7 and ATG16L1 and promotes BCG survival in macrophages. Forced overexpression of miR-20a decreased the expression levels of LC3-II and the number of LC3 puncta in macrophages, and promoted BCG survival in macrophages, while transfection with miR-20a inhibitor had the opposite effect. Moreover, the inhibitory effect of miR-20a on autophagy was further confimed by transmission electron microscopy (TEM analysis. Quantification of autophagosomes per cellular cross-section revealed a significant reduction upon transfection with miR-20a mimic, but transfection with miR-20a inhibitor increased the number of autophagosomes per cellular cross-section. Moreover, silencing of ATG7 significantly inhibited autophagic response, and transfection with ATG7 siRNA plus miR-20a mimic could further decrease autophagic response. Collectively, our data reveal that miR-20a inhibits autophagic response and promotes BCG survival in macrophages by targeting ATG7 and ATG16L1, which may have implications for a better understanding of pathogenesis of M. tuberculosis infection.

  4. microRNA-20a Inhibits Autophagic Process by Targeting ATG7 and ATG16L1 and Favors Mycobacterial Survival in Macrophage Cells.

    Science.gov (United States)

    Guo, Le; Zhao, Jin; Qu, Yuliang; Yin, Runting; Gao, Qian; Ding, Shuqin; Zhang, Ying; Wei, Jun; Xu, Guangxian

    2016-01-01

    Autophagy plays important roles in the host immune response against mycobacterial infection. Mycobacterium tuberculosis ( M. tuberculosis ) can live in macrophages owing to its ability to evade attacks by regulating autophagic response. MicroRNAs (miRNAs) are small noncoding, endogenously encoded RNA which plays critical roles in precise regulation of macrophage functions. Whether miRNAs specifically influence the activation of macrophage autophagy during M. tuberculosis infection are largely unknown. In this study, we demonstrate that BCG infection of macrophages resulted in enhanced expression of miRNA-20a, which inhibits autophagic process by targeting ATG7 and ATG16L1 and promotes BCG survival in macrophages. Forced overexpression of miR-20a decreased the expression levels of LC3-II and the number of LC3 puncta in macrophages, and promoted BCG survival in macrophages, while transfection with miR-20a inhibitor had the opposite effect. Moreover, the inhibitory effect of miR-20a on autophagy was further confirmed by transmission electron microscopy (TEM) analysis. Quantification of autophagosomes per cellular cross-section revealed a significant reduction upon transfection with miR-20a mimic, but transfection with miR-20a inhibitor increased the number of autophagosomes per cellular cross-section. Moreover, silencing of ATG7 significantly inhibited autophagic response, and transfection with ATG7 siRNA plus miR-20a mimic could further decrease autophagic response. Collectively, our data reveal that miR-20a inhibits autophagic response and promotes BCG survival in macrophages by targeting ATG7 and ATG16L1, which may have implications for a better understanding of pathogenesis of M. tuberculosis infection.

  5. Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness

    Czech Academy of Sciences Publication Activity Database

    Minina, E. A.; Moschou, P. N.; Vetukuri, R. R.; Sanchez-Vera, V.; Cardoso, C.; Liu, Q.; Elander, P. H.; Dalman, K.; Beganovic, M.; Lindberg Yilmaz, J.; Marmon, S.; Shabala, S.; Suarez, M.; Ljung, K.; Novák, Ondřej; Shabala, S.; Stymne, S.; Hofius, D.; Bozhkov, P. V.

    2018-01-01

    Roč. 69, č. 6 (2018), s. 1415-1432 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Aging * ATG genes * Autophagy * Autophagy-related ubiquitin-like conjugation systems * Biomass * Oil content * Ratelimiting components of autophagic flux * Seed yield * Stress resistance * Transcriptional regulation Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 5.830, year: 2016

  6. Cell death induced by ionizing radiations in human radio-resistant tumours: in-vitro and in-vivo study of mechanisms involved in its induction by different types of radiations and pharmacological modulation

    International Nuclear Information System (INIS)

    Altmeyer, Anais

    2010-01-01

    Whereas chemo-radiotherapy protocols revealed to be very efficient when taking tumours into care, the treatment of some tumours remains very limited due to their critical location or to the weak radio-sensitivity to conventional radiations. One way to work around this problem is to use high linear energy transfer radiations or hadron therapy, in combination with radio-sensitizers. This research thesis reports the assessment of radio-sensitizer effects of different molecules on human radio-resistant cell lines and more particularly the SK-Hep1 line from a hepatocellular carcinoma. In vitro studies have been performed and then in vivo studies by using fast neutron irradiation on a mice liver sample. Observations made by optic fibre confocal microscopy and transmission electronic microscopy confirmed in vitro observations: the prevailing cell death after such an irradiation is the autophagic cell death. It shows the importance of the autophagic phenomenon induced by radiations with high linear transfer energy. This could lead to new therapeutic protocols for radio-resistant cancers [fr

  7. Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells.

    Science.gov (United States)

    Tasaki, Maiko; Asatsuma, Satoru; Matsuoka, Ken

    2014-01-01

    We have developed a system for quantitative monitoring of autophagic degradation in transformed tobacco BY-2 cells using an aggregate-prone protein comprised of cytochrome b5 (Cyt b5) and a tetrameric red fluorescent protein (RFP). Unfortunately, this system is of limited use for monitoring the kinetics of autophagic degradation because the proteins synthesized before and after induction of autophagy cannot be distinguished. To overcome this problem, we developed a system using kikume green-red (KikGR), a photoconvertible and tetrameric fluorescent protein that changes its fluorescence from green to red upon irradiation with purple light. Using the fusion protein of Cyt b5 and KikGR together with a method for the bulk conversion of KikGR, which we had previously used to convert the Golgi-localized monomeric KikGR fusion protein, we were able to monitor both the growth and de novo formation of aggregates. Using this system, we found that tobacco cells do not cease protein synthesis under conditions of phosphate (Pi)-starvation. Induction of autophagy under Pi-starvation, but not under sugar- or nitrogen-starvation, was specifically inhibited by phosphite, which is an analog of Pi with a different oxidation number. Therefore, the mechanism by which BY-2 cells can sense Pi-starvation and induce autophagy does not involve sensing a general decrease in energy supply and a specific Pi sensor might be involved in the induction of autophagy under Pi-starvation.

  8. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    Science.gov (United States)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  9. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ahrum [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Neufeld, Thomas P. [Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Choe, Joonho, E-mail: jchoe@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-04

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.

  10. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Elliott M McMillan

    Full Text Available Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY and spontaneously hypertensive rats (SHR were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG of hypertensive rats had higher (p<0.05 caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05 ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05 Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05 Beclin-1 and ATG7 protein, as well as decreased (p<0.05 caspase-3, calpain, and cathepsin activity. Left ventricle (LV of hypertensive rats had reduced (p<0.05 AMPKα and LC3II protein, as well as elevated (p<0.05 p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05 proteasome activity but reduced (p<0.05 caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.

  11. Pollination induces autophagy in petunia petals via ethylene.

    Science.gov (United States)

    Shibuya, Kenichi; Niki, Tomoko; Ichimura, Kazuo

    2013-02-01

    Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence.

  12. Interplay of pathogenic forms of human tau with different autophagic pathways.

    Science.gov (United States)

    Caballero, Benjamin; Wang, Yipeng; Diaz, Antonio; Tasset, Inmaculada; Juste, Yves Robert; Stiller, Barbara; Mandelkow, Eva-Maria; Mandelkow, Eckhard; Cuervo, Ana Maria

    2018-02-01

    Loss of neuronal proteostasis, a common feature of the aging brain, is accelerated in neurodegenerative disorders, including different types of tauopathies. Aberrant turnover of tau, a microtubule-stabilizing protein, contributes to its accumulation and subsequent toxicity in tauopathy patients' brains. A direct toxic effect of pathogenic forms of tau on the proteolytic systems that normally contribute to their turnover has been proposed. In this study, we analyzed the contribution of three different types of autophagy, macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy to the degradation of tau protein variants and tau mutations associated with this age-related disease. We have found that the pathogenic P301L mutation inhibits degradation of tau by any of the three autophagic pathways, whereas the risk-associated tau mutation A152T reroutes tau for degradation through a different autophagy pathway. We also found defective autophagic degradation of tau when using mutations that mimic common posttranslational modifications in tau or known to promote its aggregation. Interestingly, although most mutations markedly reduced degradation of tau through autophagy, the step of this process preferentially affected varies depending on the type of tau mutation. Overall, our studies unveil a complex interplay between the multiple modifications of tau and selective forms of autophagy that may determine its physiological degradation and its faulty clearance in the disease context. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. AoAtg26, a putative sterol glucosyltransferase, is required for autophagic degradation of peroxisomes, mitochondria, and nuclei in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Kikuma, Takashi; Tadokoro, Takayuki; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2017-02-01

    Autophagy is a conserved process in eukaryotic cells for degradation of cellular proteins and organelles. In filamentous fungi, autophagic degradation of organelles such as peroxisomes, mitochondria, and nuclei occurs in basal cells after the prolonged culture, but its mechanism is not well understood. Here, we functionally analyzed the filamentous fungus Aspergillus oryzae AoAtg26, an ortholog of the sterol glucosyltransferase PpAtg26 involved in pexophagy in the yeast Pichia pastoris. Deletion of Aoatg26 caused a severe decrease in conidiation and aerial hyphae formation, which is typically observed in the autophagy-deficient A. oryzae strains. In addition, cup-shaped AoAtg8-positive membrane structures were accumulated in the Aoatg26 deletion strain, indicating that autophagic process is impaired. Indeed, the Aoatg26 deletion strain was defective in the degradation of peroxisomes, mitochondria, and nuclei. Taken together, AoAtg26 plays an important role for autophagic degradation of organelles in A. oryzae, which may physiologically contribute to the differentiation in filamentous fungi.

  14. Identification of autophagy genes participating in zinc-induced necrotic cell death in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dziedzic, Slawomir A; Caplan, Allan B

    2011-05-01

    Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.

  15. The integral membrane protein ITM2A, a transcriptional target of PKA-CREB, regulates autophagic flux via interaction with the vacuolar ATPase.

    Science.gov (United States)

    Namkoong, Sim; Lee, Kang Il; Lee, Jin I; Park, Rackhyun; Lee, Eun-Ju; Jang, Ik-Soon; Park, Junsoo

    2015-01-01

    The PKA-CREB signaling pathway is involved in many cellular processes including autophagy. Recent studies demonstrated that PKA-CREB inhibits autophagy in yeast; however, the role of PKA-CREB signaling in mammalian cell autophagy has not been fully characterized. Here, we report that the integral membrane protein ITM2A expression is positively regulated by PKA-CREB signaling and ITM2A expression interferes with autophagic flux by interacting with vacuolar ATPase (v-ATPase). The ITM2A promoter contains a CRE element, and mutation at the CRE consensus site decreases the promoter activity. Forskolin treatment and PKA expression activate the ITM2A promoter confirming that ITM2A expression is dependent on the PKA-CREB pathway. ITM2A expression results in the accumulation of autophagosomes and interferes with autolysosome formation by blocking autophagic flux. We demonstrated that ITM2A physically interacts with v-ATPase and inhibits lysosomal function. These results support the notion that PKA-CREB signaling pathway regulates ITM2A expression, which negatively regulates autophagic flux by interfering with the function of v-ATPase.

  16. Ceramides And Stress Signalling Intersect With Autophagic Defects In Neurodegenerative Drosophila blue cheese (bchs) Mutants.

    Science.gov (United States)

    Hebbar, Sarita; Sahoo, Ishtapran; Matysik, Artur; Argudo Garcia, Irene; Osborne, Kathleen Amy; Papan, Cyrus; Torta, Federico; Narayanaswamy, Pradeep; Fun, Xiu Hui; Wenk, Markus R; Shevchenko, Andrej; Schwudke, Dominik; Kraut, Rachel

    2015-12-07

    Sphingolipid metabolites are involved in the regulation of autophagy, a degradative recycling process that is required to prevent neuronal degeneration. Drosophila blue cheese mutants neurodegenerate due to perturbations in autophagic flux, and consequent accumulation of ubiquitinated aggregates. Here, we demonstrate that blue cheese mutant brains exhibit an elevation in total ceramide levels; surprisingly, however, degeneration is ameliorated when the pool of available ceramides is further increased, and exacerbated when ceramide levels are decreased by altering sphingolipid catabolism or blocking de novo synthesis. Exogenous ceramide is seen to accumulate in autophagosomes, which are fewer in number and show less efficient clearance in blue cheese mutant neurons. Sphingolipid metabolism is also shifted away from salvage toward de novo pathways, while pro-growth Akt and MAP pathways are down-regulated, and ER stress is increased. All these defects are reversed under genetic rescue conditions that increase ceramide generation from salvage pathways. This constellation of effects suggests a possible mechanism whereby the observed deficit in a potentially ceramide-releasing autophagic pathway impedes survival signaling and exacerbates neuronal death.

  17. Constraint-induced movement therapy after stroke

    NARCIS (Netherlands)

    Kwakkel, G.; Veerbeek, J.M.; van Wegen, E.E.H.; Wolf, S.L.

    2015-01-01

    Constraint-induced movement therapy (CIMT) was developed to overcome upper limb impairments after stroke and is the most investigated intervention for the rehabilitation of patients. Original CIMT includes constraining of the non-paretic arm and task-oriented training. Modified versions also apply

  18. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luciana O.; Goto, Renata N. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Neto, Marinaldo P.C. [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Sousa, Lucas O. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Curti, Carlos [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Leopoldino, Andréia M., E-mail: andreiaml@usp.br [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2015-03-06

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3.

  19. The role of tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) in mediating autophagy in myositis skeletal muscle: A potential non-immune mechanism of muscle damage

    Science.gov (United States)

    Alger, Heather M.; Raben, Nina; Pistilli, Emidio; Francia, Dwight; Rawat, Rashmi; Getnet, Derese; Ghimbovschi, Svetlana; Chen, Yi-Wen; Lundberg, Ingrid E.; Nagaraju, Kanneboyina

    2011-01-01

    Objective Multinucleated cells are relatively resistant to classical apoptosis, and the factors initiating cell-death and damage in myositis are not well defined. We hypothesized that non-immune autophagic cell death may play a role in muscle fiber damage. Recent literature indicates that tumor necrosis factor-alpha-related apoptosis inducing ligand (TRAIL) may induce both NFκB (nuclear factor kappa-light chain enhancer of activated B cells) activation and autophagic cell death in other systems. Here, we have investigated its role in cell death and pathogenesis in vitro and in vivo using myositis (human and mouse) muscle tissues. Methods Gene expression profiling indicated that expression of TRAIL and several autophagy markers was specifically upregulated in myositis muscle tissue; these results were confirmed by immunohistochemistry and immunoblotting. We also analyzed TRAIL-induced cell death (apoptosis and autophagy) and NFκB activation in vitro in cultured cells. Results TRAIL was expressed predominantly in muscle fibers of myositis, but not in biopsies from normal or other dystrophic-diseased muscle. Autophagy markers were upregulated in human and mouse models of myositis. TRAIL expression was restricted to regenerating/atrophic areas of muscle fascicles, blood vessels, and infiltrating lymphocytes. TRAIL induced NFκB activation and IκB degradation in cultured cells that are resistant to TRAIL-induced apoptosis but undergo autophagic cell death. Conclusion Our data demonstrate that TRAIL is expressed in myositis muscle and may mediate both activation of NFκB and autophagic cell death in myositis. Thus, this non-immune pathway may be an attractive target for therapeutic intervention in myositis. PMID:21769834

  20. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain.

    Science.gov (United States)

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-21

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases.

  1. Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis.

    Science.gov (United States)

    Namba, Tomoko; Takabatake, Yoshitsugu; Kimura, Tomonori; Takahashi, Atsushi; Yamamoto, Takeshi; Matsuda, Jun; Kitamura, Harumi; Niimura, Fumio; Matsusaka, Taiji; Iwatani, Hirotsugu; Matsui, Isao; Kaimori, Junya; Kioka, Hidetaka; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-10-01

    Metabolic acidosis, a common complication of CKD, causes mitochondrial stress by undefined mechanisms. Selective autophagy of impaired mitochondria, called mitophagy, contributes toward maintaining cellular homeostasis in various settings. We hypothesized that mitophagy is involved in proximal tubular cell adaptations to chronic metabolic acidosis. In transgenic mice expressing green fluorescent protein-tagged microtubule-associated protein 1 light chain 3 (GFP-LC3), NH4Cl loading increased the number of GFP puncta exclusively in the proximal tubule. In vitro, culture in acidic medium produced similar results in proximal tubular cell lines stably expressing GFP-LC3 and facilitated the degradation of SQSTM1/p62 in wild-type cells, indicating enhanced autophagic flux. Upon acid loading, proximal tubule-specific autophagy-deficient (Atg5-deficient) mice displayed significantly reduced ammonium production and severe metabolic acidosis compared with wild-type mice. In vitro and in vivo, acid loading caused Atg5-deficient proximal tubular cells to exhibit reduced mitochondrial respiratory chain activity, reduced mitochondrial membrane potential, and fragmented morphology with marked swelling in mitochondria. GFP-LC3-tagged autophagosomes colocalized with ubiquitinated mitochondria in proximal tubular cells cultured in acidic medium, suggesting that metabolic acidosis induces mitophagy. Furthermore, restoration of Atg5-intact nuclei in Atg5-deficient proximal tubular cells increased mitochondrial membrane potential and ammoniagenesis. In conclusion, metabolic acidosis induces autophagy in proximal tubular cells, which is indispensable for maintaining proper mitochondrial functions including ammoniagenesis, and thus for adapted urinary acid excretion. Our results provide a rationale for the beneficial effect of alkali supplementation in CKD, a condition in which autophagy may be reduced, and suggest a new therapeutic option for acidosis by modulating autophagy. Copyright

  2. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    Science.gov (United States)

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine ('ecstasy'--induced neurotoxicity in cultured cortical neurons.

    Directory of Open Access Journals (Sweden)

    I-Hsun Li

    Full Text Available Autophagic (type II cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I and necrotic (type III cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK and its downstream unc-51-like kinase 1 (ULK1, suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.

  4. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  5. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy

    International Nuclear Information System (INIS)

    Karakashev, Sergey V; Reginato, Mauricio J

    2015-01-01

    Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance

  6. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    International Nuclear Information System (INIS)

    Inami, Yoshihiro; Yamashina, Shunhei; Izumi, Kousuke; Ueno, Takashi; Tanida, Isei; Ikejima, Kenichi; Watanabe, Sumio

    2011-01-01

    Highlights: → Acidification of autophagosome was blunted in steatotic hepatocytes. → Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. → Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. → Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.

  7. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    Energy Technology Data Exchange (ETDEWEB)

    Inami, Yoshihiro [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Izumi, Kousuke [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Ueno, Takashi [Department of Biochemistry, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Tanida, Isei [Department of Biochemistry and Cell Biology, Laboratory of Biomembranes, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640 (Japan); Ikejima, Kenichi; Watanabe, Sumio [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2011-09-09

    Highlights: {yields} Acidification of autophagosome was blunted in steatotic hepatocytes. {yields} Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. {yields} Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. {yields} Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.

  8. Precise temporal regulation of roughest is required for correct salivary gland autophagic cell death in Drosophila.

    Science.gov (United States)

    Simon, Claudio R; Moda, Livia M R; Octacilio-Silva, Shirlei; Anhezini, Lucas; Machado-Gitai, Luciana C H; Ramos, Ricardo Guelerman P

    2009-07-01

    The Drosophila roughest (rst) locus encodes an immunoglobulin superfamily transmembrane glycoprotein implicated in a variety of embryonic and postembryonic developmental processes. Here we demonstrate a previously unnoticed role for this gene in the autophagic elimination of larval salivary glands during early pupal stages by showing that overexpression of the Rst protein ectodomain in early pupa leads to persistence of salivary glands up to at least 12 hours after head eversion, although with variable penetrance. The same phenotype is observed in individuals carrying the dominant regulatory allele rst(D), but not in loss of function alleles. Analysis of persistent glands at the ultrastructural level showed that programmed cell death starts at the right time but is arrested at an early stage of the process. Finally we describe the expression pattern and intracellular distribution of Rst in wild type and rst(D) mutants, showing that its downregulation in salivary glands at the beginning of pupal stage is an important factor in the correct implementation of the autophagic program of this tissue in space and time. 2009 Wiley-Liss, Inc.

  9. Adaptive T cell responses induced by oncolytic Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor therapy expanded by dendritic cell and cytokine-induced killer cell adoptive therapy.

    Science.gov (United States)

    Ren, Jun; Gwin, William R; Zhou, Xinna; Wang, Xiaoli; Huang, Hongyan; Jiang, Ni; Zhou, Lei; Agarwal, Pankaj; Hobeika, Amy; Crosby, Erika; Hartman, Zachary C; Morse, Michael A; H Eng, Kevin; Lyerly, H Kim

    2017-01-01

    Purpose : Although local oncolytic viral therapy (OVT) may enhance tumor lysis, antigen release, and adaptive immune responses, systemic antitumor responses post-therapy are limited. Adoptive immunotherapy with autologous dendritic cells (DC) and cytokine-induced killer cells (DC-CIK) synergizes with systemic therapies. We hypothesized that OVT with Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor (HSV-GM-CSF) would induce adaptive T cell responses that could be expanded systemically with sequential DC-CIK therapy. Patients and Methods : We performed a pilot study of intratumoral HSV-GM-CSF OVT followed by autologous DC-CIK cell therapy. In addition to safety and clinical endpoints, we monitored adaptive T cell responses by quantifying T cell receptor (TCR) populations in pre-oncolytic therapy, post-oncolytic therapy, and after DC-CIK therapy. Results : Nine patients with advanced malignancy were treated with OVT (OrienX010), of whom seven experienced stable disease (SD). Five of the OVT treated patients underwent leukapheresis, generation, and delivery of DC-CIKs, and two had SD, whereas three progressed. T cell receptor sequencing of TCR β sequences one month after OVT therapy demonstrates a dynamic TCR repertoire in response to OVT therapy in the majority of patients with the systematic expansion of multiple T cell clone populations following DC-CIK therapy. This treatment was well tolerated and long-term event free and overall survival was observed in six of the nine patients. Conclusions : Strategies inducing the local activation of tumor-specific immune responses can be combined with adoptive cellular therapies to expand the adaptive T cell responses systemically and further studies are warranted.

  10. Home-based Constraint Induced Movement Therapy Poststroke

    OpenAIRE

    Stephen Isbel HScD; Christine Chapparo PhD; David McConnell PhD; Judy Ranka PhD

    2014-01-01

    Background: This study examined the efficacy of a home-based Constraint Induced Movement Therapy (CI Therapy) protocol with eight poststroke survivors. Method: Eight ABA, single case experiments were conducted in the homes of poststroke survivors. The intervention comprised restraint of the intact upper limb in a mitt for 21 days combined with a home-based and self-directed daily activity regime. Motor changes were measured using The Wolf Motor Function Test (WMFT) and the Motor Activity L...

  11. Autophagic dysfunction in a lysosomal storage disorder due to impaired proteolysis.

    Science.gov (United States)

    Elrick, Matthew J; Lieberman, Andrew P

    2013-02-01

    Alterations in macroautophagy (hereafter referred to as "autophagy") are a common feature of lysosomal storage disorders, and have been hypothesized to play a major role in the pathogenesis of these diseases. We have recently reported multiple defects in autophagy contributing to the lysosomal storage disorder Niemann-Pick type C (NPC). These include increased formation of autophagosomes, slowed turnover of autophagosomes secondary to impaired lysosomal proteolysis, and delivery of stored lipids to the lysosome via autophagy. The study summarized here describes novel methods for the interrogation of individual stages of the autophagic pathway, and suggests mechanisms by which lipid storage may result in broader lysosomal dysfunction.

  12. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  13. Neuroplasticity in Constraint-Induced Movement Therapy

    DEFF Research Database (Denmark)

    Blicher, Jakob; Near, Jamie; Næss-Schmidt, Erhard

    2014-01-01

    In healthy subjects, decreasing GABA facilitates motor learning[1]. Recent studies, using PET[2], TMS[3-5], and pharmacological challenges[6], have pointed indirectly to a decrease in neuronal inhibitory activity after stroke. Therefore, we hypothesize that a suppression of GABA levels post strok...... might be beneficial to motor recovery during Constraint-Induced Movement Therapy (CIMT)....

  14. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaini, Ramesh R. [Department of Biochemistry and Molecular Biology and UNM Cancer and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM (United States); Hu, Chien-An A., E-mail: AHu@salud.unm.edu [Department of Biochemistry and Molecular Biology and UNM Cancer and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. Black-Right-Pointing-Pointer Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. Black-Right-Pointing-Pointer Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. Black-Right-Pointing-Pointer Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.

  15. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    International Nuclear Information System (INIS)

    Kaini, Ramesh R.; Hu, Chien-An A.

    2012-01-01

    Highlights: ► Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. ► Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. ► Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. ► Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showed that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.

  16. Drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy.

    Science.gov (United States)

    Gheorghe, Liana; Cotruta, Bogdan; Trifu, Viorel; Cotruta, Cristina; Becheanu, Gabriel; Gheorghe, Cristian

    2008-09-01

    Pegylated interferon-alpha in combination with ribavirin currently represents the therapeutic standard for the hepatitis C virus infection. Interferon based therapy may be responsible for many cutaneous side effects. We report a case of drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy. To our knowledge, this is the first reported case of Sweet's syndrome in association with pegylated interferon-alpha therapy.

  17. Hyperbaric oxygen therapy for the treatment of radiation-induced macular ischemia

    Directory of Open Access Journals (Sweden)

    Shamim A Haji

    2010-05-01

    Full Text Available Shamim A Haji1,2, Ronald EP Frenkel1,2,31Eye Research Foundation, Stuart, FL, USA; 2East Florida Eye Institute, Stuart, FL, USA; 3Bascom Palmer Eye Institute, Miami, FL, USAPurpose: To report a case of radiation-induced macular ischemia where vision and macular perfusion improved after hyperbaric oxygen (HBO therapy.Methods: A 62-year-old male patient developed radiation-induced macular ischemia after he was treated with radiation for brain glioma. The patient presented with best spectacle-corrected visual acuity (BSCVA acuity of 20/400 in his right eye. Optical coherence tomography (OCT showed central macular thickness of 468 μm. The patient received focal laser, intravitreal triamcinolone, and HBO therapy.Results: The patient’s vision improved from 20/400 to 20/100 after focal laser and intravitreal triamcinolone. His central macular thickness improved from 468 μm to 132 μm. After receiving HBO therapy, his VA improved to 20/50 and fluorescein angiography showed improvement in macular perfusion.Conclusion: HBO therapy improves macular perfusion in patients with radiation-induced macular ischemia.Keywords: macular ischemia, visual acuity, hyperbaric oxygen therapy, macular perfusion

  18. Benzyl isothiocyanate causes FoxO1-mediated autophagic death in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04 and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy and acidic vesicular organelles (acridine orange staining, cleavage of microtubule-associated protein 1 light chain 3 (LC3, and/or suppression of p62 (p62/SQSTM1 or sequestosome 1 expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1 in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy.

  19. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian

    2017-01-01

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of more red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-L-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. - Highlights: • Osimertinib induced the expressions of cytoplasmic vacuoles and autophagic markers in different cancer cells. • Osimertinib induced autophagic flux in NSCLC NCI-H1975 and HCC827 cell lines. • ROS generation contributed to osimertinib-induced cytoplasmic

  20. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian, E-mail: jinjianlu@umac.mo

    2017-04-15

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of more red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-L-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. - Highlights: • Osimertinib induced the expressions of cytoplasmic vacuoles and autophagic markers in different cancer cells. • Osimertinib induced autophagic flux in NSCLC NCI-H1975 and HCC827 cell lines. • ROS generation contributed to osimertinib-induced cytoplasmic

  1. Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells.

    Science.gov (United States)

    Jin, Shouheng; Tian, Shuo; Luo, Man; Xie, Weihong; Liu, Tao; Duan, Tianhao; Wu, Yaoxing; Cui, Jun

    2017-10-19

    Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Understanding and Prevention of “Therapy-” Induced Dyskinesias

    Directory of Open Access Journals (Sweden)

    Iciar Aviles-Olmos

    2012-01-01

    Full Text Available L-dopa is the most effective, currently available treatment for Parkinson’s disease (PD, but it leads to the development of involuntary movements known as L-dopa-induced dyskinesia (LID in the majority of patients after long-term use. Both gene and cell therapy approaches are the subject of multiple ongoing studies as potential ways of relieving symptoms of PD without the complication of dyskinesia. However, the spectre of dyskinesia in the absence of L-dopa, the so-called “off-phase” or graft-induced dyskinesia (GID, remains a major obstacle particularly in the further development of cell therapy in PD, but it is also a concern for proponents of gene therapy approaches. LID results from nonphysiological dopamine release, supersensitivity of dopamine receptors, and consequent abnormal signalling through mechanisms of synaptic plasticity. Restoration of physiological circuitry within the basal ganglia loops is ultimately the aim of all cell and gene therapy approaches but each using distinctive strategies and accompanied by risks of exacerbation of LID or development of “off-phase”/GID. In this paper we discuss the details of what is understood regarding the development of dyskinesias with relevance to cell and gene therapy and potential strategies to minimize their occurrence.

  3. Lipidation of BmAtg8 is required for autophagic degradation of p62 bodies containing ubiquitinated proteins in the silkworm, Bombyx mori.

    Science.gov (United States)

    Ji, Ming-Ming; Lee, Jae Man; Mon, Hiroaki; Iiyama, Kazuhiro; Tatsuke, Tsuneyuki; Morokuma, Daisuke; Hino, Masato; Yamashita, Mami; Hirata, Kazuma; Kusakabe, Takahiro

    2017-10-01

    p62/Sequestosome-1 (p62/SQSTM1, hereafter referred to as p62) is a major adaptor that allows ubiquitinated proteins to be degraded by autophagy, and Atg8 homologs are required for p62-mediated autophagic degradation, but their relationship is still not understood in Lepidopteran insects. Here it is clearly demonstrated that the silkworm homolog of mammalian p62, Bombyx mori p62 (Bmp62), forms p62 bodies depending on its Phox and Bem1p (PB1) and ubiquitin-associated (UBA) domains. These two domains are associated with Bmp62 binding to ubiquitinated proteins to form the p62 bodies, and the UBA domain is essential for the binding, but Bmp62 still self-associates without the PB1 or UBA domain. The p62 bodies in Bombyx cells are enclosed by BmAtg9-containing membranes and degraded via autophagy. It is revealed that the interaction between the Bmp62 AIM motif and BmAtg8 is critical for the autophagic degradation of the p62 bodies. Intriguingly, we further demonstrate that lipidation of BmAtg8 is required for the Bmp62-mediated complete degradation of p62 bodies by autophagy. Our results should be useful in future studies of the autophagic mechanism in Lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hyperbaric oxygen therapy for the treatment of radiation-induced xerostomia: a systematic review.

    Science.gov (United States)

    Fox, Nyssa F; Xiao, Christopher; Sood, Amit J; Lovelace, Tiffany L; Nguyen, Shaun A; Sharma, Anand; Day, Terry A

    2015-07-01

    Radiation-induced xerostomia is one of the most common morbidities of radiation therapy in patients with head and neck cancer. However, in spite of its high rate of occurrence, there are few effective therapies available for its management. The aim of this study was to assess the efficacy of hyperbaric oxygen on the treatment of radiation-induced xerostomia and xerostomia-related quality of life. PubMed, Google Scholar, and the Cochrane Library were searched for retrospective or prospective trials assessing subjective xerostomia, objective xerostomia, or xerostomia-related quality of life. To be included, patients had to have received radiation therapy for head and neck cancer, but not hyperbaric oxygen therapy (HBOT). The systematic review initially identified 293 potential articles. Seven studies, comprising 246 patients, qualified for inclusion. Of the included studies, 6 of 7 were prospective in nature, and 1 was a retrospective study; and 2 of the 7 were controlled studies. HBOT may have utility for treating radiation-induced xerostomia refractory to other therapies. Additionally, HBOT may induce long-term improvement in subjective assessments of xerostomia, whereas other therapies currently available only provide short-term relief. The strength of these conclusions is limited by the lack of randomized controlled clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. IR-induced autophagy plays a role in survival of HeLa cells

    International Nuclear Information System (INIS)

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong Min; Kim, Jin Hong; Kim, Jin Kyu

    2014-01-01

    Cells respond to stress with repair, or are diverted into irreversible cell cycle exit (senescence) or are eliminated through programmed cell death. There are two major morphologically distinctive forms of programmed cell death, apoptosis and autophagic cell death. Apoptosis contribute to cell death, whereas autophagy can play a dual role in mediating either cell survival or death in response to various stress stimuli. Here we analysed cellular responses induced by IR. The understanding of an appropriate cellular stress response is of crucial importance in foreseeing the cell fate. Apoptotic feagures were not detected in HeLa under our experimental irradiation condition. Autophagic cell death in HeLa may play an important role in cell protection and can result in cell survival

  6. Image Guidance and Assessment of Radiation Induced Gene Therapy

    National Research Council Canada - National Science Library

    Pelizzari, Charles

    2004-01-01

    Image guidance and assessment techniques are being developed for combined radiation/gene therapy, which utilizes a radiation-inducible gene promoter to cause expression of tumor necrosis factor alpha...

  7. Mulberry anthocyanins improves thyroid cancer progression mainly by inducing apoptosis and autophagy cell death

    Directory of Open Access Journals (Sweden)

    Hou-Long Long

    2018-05-01

    Full Text Available Dietary anthocyanin compounds have multiple biological effects, including antioxidant, anti-inflammatory, and anti-atherosclerotic characteristics. The present study evaluated the anti-tumor capacity of mulberry anthocyanins (MA in thyroid cancer cells. Our data showed that MA suppressed SW1736 and HTh-7 cell proliferation in a time- and dose-dependent manner. Meanwhile, flow cytometry results indicated that MA significantly increased SW1736 and HTh-7 cell apoptosis. We additionally observed that SW1736 and HTh-7 cell autophagy was markedly enhanced after MA treatment. Importantly, anthocyanin-induced cell death was largely abolished by 3-methyladenine (3-MA or chloroquine diphosphate salt (CQ treatment, suggesting that MA-induced SW1736 and HTh-7 cell death was partially dependent on autophagy. In addition, activation of protein kinase B (Akt, mammalian target of rapamycin (mTOR, and ribosomal protein S6 (S6 were significantly suppressed by anthocyanin exposure. In summary, MA may serve as an adjunctive therapy for thyroid cancer patients through induction of apoptosis and autophagy-dependent cell death. Keywords: Mulberry anthocyanins, Thyroid cancer, Apoptosis, Autophagic death

  8. Constraint-Induced Movement Therapy (CIMT): Pediatric Applications

    Science.gov (United States)

    Brady, Kathleen; Garcia, Teressa

    2009-01-01

    The purpose of this article is to describe theoretical and research bases for constraint-induced movement therapy (CIMT), to discuss key features and variations in protocols currently in use with children, and to review the results of studies of efficacy. CIMT has been found to be an effective intervention for increasing functional use of the…

  9. Direct manipulation of physiological arousal in induced anxiety therapy - biofeedback approach.

    Science.gov (United States)

    Sappington, A A

    1977-10-01

    This study investigated the role of physiological arousal in the affect induction phase of Induced Anxiety therapy by using biofeedback to facilitate arousal. Twenty-one college students who were suffering from free-floating anxiety were assigned randomly to one of three groups: (1) a no-treatment control group simply completed the measures before and after therapy; (2) a conventional Induced Anxiety group went through five standard Induced Anxiety sessions; and (3) biofeedback Induced Anxiety group went through a similar procedure except that biofeedback was used in the affect induction phase to facilitate heart rate increase. It was found that the biofeedback procedure did result in a greater heart rate increase during the affect induction phase arousal than did the conventional procedure (.01 level of significance), but did not facilitate subjective emotional arousal. Biofeedback Induced Anxiety resulted in a greater reduction of trait anxiety as measured by the Multiple Affect Adjective Check List than did the no-treatment group or the conventonal Induced Anxiety group. The conventional Induced Anxiety group did not differ significantly from the no-treatment control group.

  10. DJ-1 as a Modulator of Autophagy: An Hypothesis

    Directory of Open Access Journals (Sweden)

    Rosa A. González-Polo

    2010-01-01

    Full Text Available The etiology of Parkinson's disease (PD is not completely defined, although environmental factors (for example, exposure to the herbicide paraquat [PQ] and genetic susceptibility (such as DJ-1 mutations that have been associated with an autosomal-recessive form of early-onset PD have been demonstrated to contribute. Alterations in macroautophagy have been described in the pathogenesis of this neurodegenerative disease. We have established a model system to study the involvement of the DJ-1 protein in PQ-induced autophagy. When we transfected cells exposed to PQ with DJ-1–specific siRNA, we observed an inhibition of the autophagic events induced by the herbicide, as well as sensitization additive with PQ-induced apoptotic cell death and exacerbation of this cell death in the presence of the autophagy inhibitor 3-methyladenine. These results suggest, for the first time, an active role for DJ-1 in the autophagic response produced by PQ, opening the door to new strategies for PD therapy.

  11. Evaluation of the Cytotoxic and Autophagic Effects of Atorvastatin on MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tuğba Alarcon Martinez

    2018-05-01

    Full Text Available Background: Recently, cytotoxic effects of statins on breast cancer cells have been reported. However, the mechanism of anti-proliferative effects is currently unknown. Autophagy is non-apoptotic programmed cell death, which is characterized by degradation of cytoplasmic components and as having a role in cancer pathogenesis. Aims: To investigate the anti-proliferative effects of atorvastatin on MCF-7 human breast adenocarcinoma cells with respect to both autophagy and apoptosis. Study Design: Cell culture study. Methods: Cell viability was analyzed using WST-1 cell proliferation assay. Apoptosis was determined by the TUNEL method, whereas autophagy was assessed by Beclin-1 and LC3B immunofluorescence staining. Ultrastructural analysis of cells was performed by electron microscopy. Results: Atorvastatin reduced MCF-7 cell proliferation in a dose- and time-dependent manner inducing TUNEL-, Beclin-1-, and LC3B-positive cells. Moreover, ultrastructural analysis showed apoptotic, autophagic, and necrotic morphological changes in treatment groups. A statistically significant increase in the apoptotic index was detected with higher concentrations of atorvastatin at 24 h and 48 h (p<0.05. Conclusion: The anti-proliferative effects of atorvastatin on breast cancer cells is mediated by the induction of both apoptosis and autophagy which shows statins as a potential treatment option for breast cancer.

  12. Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway.

    Science.gov (United States)

    Hou, Lei; Wei, Li; Zhu, Shanshan; Wang, Jing; Quan, Rong; Li, Zixuan; Liu, Jue

    2017-10-03

    An increasing number of studies have demonstrated that macroautophagy/autophagy plays an important role in the infectious processes of diverse pathogens. However, it remains unknown whether autophagy is induced in avian metapneumovirus (aMPV)-infected host cells, and, if so, how this occurs. Here, we report that aMPV subgroup C (aMPV/C) induces autophagy in cultured cells. We demonstrated this relationship by detecting classical autophagic features, including the formation of autophagsomes, the presence of GFP-LC3 puncta and the conversation of LC3-I into LC3-II. Also, we used pharmacological regulators and siRNAs targeting ATG7 or LC3 to examine the role of autophagy in aMPV/C replication. The results showed that autophagy is required for efficient replication of aMPV/C. Moreover, infection with aMPV/C promotes autophagosome maturation and induces a complete autophagic process. Finally, the ATF6 pathway, of which one component is the unfolded protein response (UPR), becomes activated in aMPV/C-infected cells. Knockdown of ATF6 inhibited aMPV/C-induced autophagy and viral replication. Collectively, these results not only show that autophagy promotes aMPV/C replication in the cultured cells, but also reveal that the molecular mechanisms underlying aMPV/C-induced autophagy depends on regulation of the ER stress-related UPR pathway.

  13. Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review

    Directory of Open Access Journals (Sweden)

    Hsiu-Ching Chiu

    2016-07-01

    Full Text Available Questions: Does constraint-induced movement therapy improve activity and participation in children with hemiplegic cerebral palsy? Does it improve activity and participation more than the same dose of upper limb therapy without restraint? Is the effect of constraint-induced movement therapy related to the duration of intervention or the age of the children? Design: Systematic review of randomised trials with meta-analysis. Participants: Children with hemiplegic cerebral palsy with any level of motor disability. Intervention: The experimental group received constraint-induced movement therapy (defined as restraint of the less affected upper limb during supervised activity practice of the more affected upper limb. The control group received no intervention, sham intervention, or the same dose of upper limb therapy. Outcome measures: Measures of upper limb activity and participation were used in the analysis. Results: Constraint-induced movement therapy was more effective than no/sham intervention in terms of upper limb activity (SMD 0.63, 95% CI 0.20 to 1.06 and participation (SMD 1.21, 95% CI 0.41 to 2.02. However, constraint-induced movement therapy was no better than the same dose of upper limb therapy without restraint either in terms of upper limb activity (SMD 0.05, 95% CI –0.21 to 0.32 or participation (SMD –0.02, 95% CI –0.34 to 0.31. The effect of constraint-induced movement therapy was not related to the duration of intervention or the age of the children. Conclusions: This review suggests that constraint-induced movement therapy is more effective than no intervention, but no more effective than the same dose of upper limb practice without restraint. Registration: PROSPERO CRD42015024665. [Chiu H-C, Ada L (2016 Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review. Journal of Physiotherapy 62: 130–137

  14. Radiation-induced pseudotumor following therapy for soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lacey F.; Kransdorf, Mark J. [Mayo Clinic, Department of Radiology, Jacksonville, FL (United States); Buskirk, Steven J. [Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL (United States); O' Connor, Mary I. [Mayo Clinic, Department of Orthopedic Surgery, Jacksonville, FL (United States); Menke, David M. [Mayo Clinic, Department of Pathology, Jacksonville, FL (United States)

    2009-06-15

    The purpose of this study was to describe the prevalence and imaging appearance of radiation induced pseudotumors in patients following radiation therapy for extremity soft tissue sarcomas. We retrospectively reviewed the serial magnetic resonance (MR) images of 24 patients following radiation therapy for extremity soft tissue sarcomas. A total of 208 exams were reviewed (mean, 8.7 exams per patient) and included all available studies following the start of radiation therapy. Exams were analyzed for the identification of focal signal abnormalities within the surgical bed suggesting local tumor recurrence. Histopathologic correlation was available in nine patients suspected of having local tumor recurrence. Additional information recorded included patient demographics, tumor type and location, radiation type, and dose. The study group consisted of 12 men and 12 women, having an average age of 63 years (range, 39-88 years). Primary tumors were malignant fibrous histiocytoma (n = 13), leiomyosarcoma (n = 6), liposarcoma (n = 3), synovial sarcoma (n = 1), and extraskeletal chondrosarcoma (n = 1). All lesions were high-grade sarcomas, except for two myxoid liposarcomas. Average patient radiation dose was 5,658 cGy (range, 4,500-8,040 cGy). Average follow-up time was 63 months (range, 3-204 months). Focal signal abnormalities suggesting local recurrence were seen in nine (38%) patients. Three of the nine patients with these signal abnormalities were surgically proven to have radiation-induced pseudotumor. The pseudotumors developed between 11 and 61 months following the initiation of radiation therapy (mean, 38 months), with an average radiation dose of 5,527 cGy (range, 5,040-6,500 cGy). MR imaging demonstrated a relatively ill-defined ovoid focus of abnormal signal and intense heterogeneous enhancement with little or no associated mass effect. MR imaging of radiation-induced pseudotumor typically demonstrates a relatively ill-defined ovoid mass-like focus of intense

  15. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    DEFF Research Database (Denmark)

    Fernandes, H. J. R.; Hartfield, E. M.; Christian Kjeldsen, Hans

    2016-01-01

    -derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets. © 2016 The Authors....

  16. Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation.

    Science.gov (United States)

    Erenpreisa, Jekaterina; Salmina, Kristine; Huna, Anda; Kosmacek, Elizabeth A; Cragg, Mark S; Ianzini, Fiorenza; Anisimov, Alim P

    2011-07-01

    'Neosis' describes the process whereby p53 function-deficient tumour cells undergo self-renewal after genotoxic damage apparently via senescing ETCs (endopolyploid tumour cells). We previously reported that autophagic digestion and extrusion of DNA occurs in ETC and subsequently revealed that self-renewal transcription factors are also activated under these conditions. Here, we further studied this phenomenon in a range of cell lines after genotoxic damage induced by gamma irradiation, ETO (etoposide) or PXT (paclitaxel) treatment. These experiments revealed that chromatin degradation by autophagy was compatible with continuing mitotic activity in ETC. While the actively polyploidizing primary ETC produced early after genotoxic insult activated self-renewal factors throughout the polygenome, the secondary ETC restored after failed multipolar mitosis underwent subnuclei differentiation. As such, only a subset of subnuclei continued to express OCT4 and NANOG, while those lacking these factors stopped DNA replication and underwent degradation and elimination through autophagy. The surviving subnuclei sequestered nascent cytoplasm to form subcells, while being retained within the confines of the old ETC. Finally, the preformed paradiploid subcells became released from their linking chromosome bridges through autophagy and subsequently began cell divisions. These data show that 'neotic' ETC resulting from genotoxically damaged p53 function-deficient tumour cells develop through a heteronuclear system differentiating the polyploid genome into rejuvenated 'viable' subcells (which provide mitotically propagating paradiploid descendents) and subnuclei, which become degraded and eliminated by autophagy. The whole process reduces aneuploidy in descendants of ETC.

  17. Speech language pathologists' opinions of constraint-induced language therapy.

    Science.gov (United States)

    Page, Stephen J; Wallace, Sarah E

    2014-01-01

    Constraint-induced language therapy (CILT) has received recent attention as a possible intervention to improve expressive language in people with nonfluent aphasia. Difficulties have been reported with the practical implementation of constraint-induced movement therapy due to its intensive treatment parameters. It remains unknown whether similar challenges may exist with CILT. To determine the opinions of speech-language pathologists (SLPs) about CILT for people with nonfluent aphasia. One hundred sixty-seven SLPs completed an electronic survey assessing their opinions of various aspects of CILT. Over 60% of participants felt that people with aphasia would be very unlikely or somewhat unlikely to adhere to CILT. The majority felt that people with aphasia would hold high or moderate concerns with the number of hours spent in therapy (high, 41.8%; moderate, 31.4%), the number of days spent in therapy (high, 44.4%; moderate, 24.8%), likelihood for managed care reimbursement (high, 74.8%; moderate, 15.2%), and other logistical issues (high, 39.2%; moderate, 30.7%). With respect to providing CILT, participants cited the number of hours of therapy (high, 37.3%; moderate, 21.6%) and the number of consecutive days of therapy (high, 29.4%; moderate, 20.3%) as concerns. There were 70.6% who indicated that their facilities lacked resources to provide CILT, and 90.9% felt that most facilitates do not have the resources to provide CILT. Some SLPs hold significant concerns with the administration of CILT, particularly related to its dosing and reimbursement parameters. Additional work is needed to investigate the issues that were identified in this survey using qualitative methods with SLPs and people with aphasia and to examine modified CILT protocols.

  18. Home-based Constraint Induced Movement Therapy Poststroke

    Directory of Open Access Journals (Sweden)

    Stephen Isbel HScD

    2014-10-01

    Full Text Available Background: This study examined the efficacy of a home-based Constraint Induced Movement Therapy (CI Therapy protocol with eight poststroke survivors. Method: Eight ABA, single case experiments were conducted in the homes of poststroke survivors. The intervention comprised restraint of the intact upper limb in a mitt for 21 days combined with a home-based and self-directed daily activity regime. Motor changes were measured using The Wolf Motor Function Test (WMFT and the Motor Activity Log (MAL. Results: Grouped results showed statistically and clinically significant differences on the WMFT (WMFT [timed items]: Mean 7.28 seconds, SEM 1.41, 95% CI 4.40 – 10.18, p = 0.000; WMFT (Functional Ability: z = -4.63, p = 0.000. Seven out of the eight participants exceeded the minimal detectable change on both subscales of the MAL. Conclusion: This study offers positive preliminary data regarding the feasibility of a home-based CI Therapy protocol. This requires further study through an appropriately powered control trial.

  19. A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy

    Directory of Open Access Journals (Sweden)

    Miki Ando

    2015-10-01

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs has created promising new avenues for therapies in regenerative medicine. However, the tumorigenic potential of undifferentiated iPSCs is a major safety concern for clinical translation. To address this issue, we demonstrated the efficacy of suicide gene therapy by introducing inducible caspase-9 (iC9 into iPSCs. Activation of iC9 with a specific chemical inducer of dimerization (CID initiates a caspase cascade that eliminates iPSCs and tumors originated from iPSCs. We introduced this iC9/CID safeguard system into a previously reported iPSC-derived, rejuvenated cytotoxic T lymphocyte (rejCTL therapy model and confirmed that we can generate rejCTLs from iPSCs expressing high levels of iC9 without disturbing antigen-specific killing activity. iC9-expressing rejCTLs exert antitumor effects in vivo. The system efficiently and safely induces apoptosis in these rejCTLs. These results unite to suggest that the iC9/CID safeguard system is a promising tool for future iPSC-mediated approaches to clinical therapy.

  20. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    Directory of Open Access Journals (Sweden)

    David Ramonet

    2011-04-01

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  1. Acadesine kills chronic myelogenous leukemia (CML cells through PKC-dependent induction of autophagic cell death.

    Directory of Open Access Journals (Sweden)

    Guillaume Robert

    Full Text Available CML is an hematopoietic stem cell disease characterized by the t(9;22 (q34;q11 translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients.

  2. Antitumor bystander effect induced by radiation-inducible target gene therapy combined with α particle irradiation

    International Nuclear Information System (INIS)

    Liu Hui; Jin Chufeng; Wu Yican; Ge Shenfang; Wu Lijun; FDS Team

    2012-01-01

    In this work, we investigated the bystander effect of the tumor and normal cells surrounding the target region caused by radiation-inducible target gene therapy combined with α-particle irradiation. The receptor tumor cell A549 and normal cell MRC-5 were co-cultured with the donor cells irradiated to 0.5 Gy or the non-irradiated donor cells, and their survival and apoptosis fractions were evaluated. The results showed that the combined treatment of Ad-ET and particle irradiation could induce synergistic antitumor effect on A549 tumor cell, and the survival fraction of receptor cells co-cultured with the irradiated cells decreased by 6%, compared with receptor cells co-cultured with non-irradiated cells, and the apoptosis fraction increased in the same circumstance, but no difference was observed with the normal cells. This study demonstrates that Ad-ET combined with α-particle irradiation can significantly cause the bystander effect on neighboring tumor cells by inhibiting cell growth and inducing apoptosis, without obvious toxicity to normal cells. This suggests that combining radiation-inducible TRAIL gene therapy and irradiation may improve tumor treatment efficacy by specifically targeting tumor cells and even involving the neighboring tumor cells. (authors)

  3. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    Asai, Akio; Matsutani, Masao; Takakura, Kintomo.

    1987-01-01

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  4. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    International Nuclear Information System (INIS)

    Li, Kuiqing; Chen, Xu; Liu, Cheng; Gu, Peng; Li, Zhuohang; Wu, Shaoxu; Xu, Kewei; Lin, Tianxin; Huang, Jian

    2015-01-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway

  5. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiqing; Chen, Xu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Liu, Cheng [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Gu, Peng; Li, Zhuohang; Wu, Shaoxu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Xu, Kewei [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Lin, Tianxin, E-mail: tianxinl@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Huang, Jian, E-mail: urolhj@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China)

    2015-05-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway.

  6. Characterization of Autophagic Responses in Drosophila melanogaster.

    Science.gov (United States)

    Xu, T; Kumar, S; Denton, D

    2017-01-01

    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  7. Hyponatremia induced by hyperinsulinemia-euglycemia therapy.

    Science.gov (United States)

    Beavers, Jennifer R; Stollings, Joanna L; Rice, Todd W

    2017-07-15

    A case of symptomatic hyponatremia induced by hyperinsulinemia-euglycemia (HIE) therapy is reported. A 59-year-old, 81.65-kg woman with hypertension, major depressive disorder, and anxiety arrived at a tertiary medical center 1.5 hours after an intentional overdose of oral amlodipine 200 mg, metoprolol tartrate 2,000 mg, and isosorbide mononitrate 1,200 mg. Upon arrival, her pulse was 63 beats/min and blood pressure was 106/56 mm Hg. The patient's blood pressure was refractory to fluids, calcium gluconate, and norepinephrine, resulting in initiation of HIE therapy. She had recurrent episodes of hypoglycemia, which required increases of the dextrose infusion and resulted in the patient receiving a total of 6.9 L of dextrose with free water. Seventeen hours into the hospitalization, the patient became obtunded due to hyponatremia (serum sodium concentration, 121 mmol/L). HIE therapy was discontinued, an infusion of 5% dextrose injection with sodium bicarbonate added was started, and a bolus of 3% sodium chloride was administered. Nine hours after the presentation of hyponatremia, the patient's serum sodium concentration normalized (137 mmol/L), and her symptoms resolved. The patient's blood pressure, pulse, and mental status continued to improve, and the patient was transferred out of the medical intensive care unit 41 hours after her arrival at the hospital. A woman who overdosed on amlodipine, metoprolol tartrate, and isosorbide mononitrate was treated with HIE therapy and developed symptomatic hyponatremia. Hyponatremia resolved after administration of dextrose with sodium bicarbonate infusion and 3% sodium chloride infusion and cessation of HIE therapy. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. Ribavirin-induced anemia in hepatitis C virus patients undergoing combination therapy.

    Directory of Open Access Journals (Sweden)

    Sheeja M Krishnan

    2011-02-01

    Full Text Available The current standard of care for hepatitis C virus (HCV infection - combination therapy with pegylated interferon and ribavirin - elicits sustained responses in only ∼50% of the patients treated. No alternatives exist for patients who do not respond to combination therapy. Addition of ribavirin substantially improves response rates to interferon and lowers relapse rates following the cessation of therapy, suggesting that increasing ribavirin exposure may further improve treatment response. A key limitation, however, is the toxic side-effect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan during therapy, and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones, such as erythropoietin, that stimulate erythrocyte production and avert the reduction of ribavirin dosage, thereby improving treatment response. Our model thus facilitates, in

  9. Interplay between autophagy and apoptosis in lead(II)-induced cytotoxicity of primary rat proximal tubular cells.

    Science.gov (United States)

    Chu, Bing-Xin; Fan, Rui-Feng; Lin, Shu-Qian; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin

    2018-05-01

    Autophagy and apoptosis are two different biological processes that determine cell fates. We previously reported that autophagy inhibition and apoptosis induction are involved in lead(II)-induced cytotoxicity in primary rat proximal tubular (rPT) cells, but the interplay between them remains to be elucidated. Firstly, data showed that lead(II)-induced elevation of LC3-II protein levels can be significantly modulated by 3-methyladenine or rapamycin; moreover, protein levels of Autophagy-related protein 5 (Atg5) and Beclin-1 were markedly up-regulated by lead(II) treatment, demonstrating that lead(II) could promote the autophagosomes formation in rPT cells. Next, we applied three pharmacological agents and genetic method targeting the early stage of autophagy to validate that enhancement of autophagosomes formation can inhibit lead(II)-induced apoptotic cell death in rPT cells. Simultaneously, lead(II) inhibited the autophagic degradation of rPT cells, while the addition of autophagic degradation inhibitor bafilomycin A1 aggravated lead(II)-induced apoptotic death in rPT cells. Collectively, this study provided us a good model to know about the dynamic process of lead(II)-induced autophagy in rPT cells, and the interplay between autophagy and apoptosis highlights a new sight into the mechanism of lead(II)-induced nephrotoxicity. Copyright © 2018. Published by Elsevier Inc.

  10. Vacuolar H+ -ATPase c protects glial cell death induced by sodium nitroprusside under glutathione-depleted condition.

    Science.gov (United States)

    Byun, Yu Jeong; Lee, Seong-Beom; Lee, Hwa Ok; Son, Min Jeong; Kim, Ho-Shik; Kwon, Oh-Joo; Jeong, Seong-Whan

    2011-08-01

    We examined the role of the c subunit (ATP6L) of vacuolar H(+) -ATPase and its molecular mechanisms in glial cell death induced by sodium nitroprusside (SNP). ATP6L siRNA-transfected cells treated with SNP showed a significant increase in cytotoxicity under glutathione (GSH)-depleted conditions after pretreatment with buthionine sulfoximine, but reduction of ATP6L did not affect the regulation of lysosomal pH in analyses with lysosomal pH-dependent fluorescence probes. Photodegraded SNP and ferrous sulfate induced cytotoxicity with the same pattern as that of SNP, but SNAP and potassium cyanide did not show activity. Pretreatment of the transfected cells with deferoxamine (DFO) reduced ROS production and significantly inhibited the cytotoxicity, which indicates that primarily iron rather than nitric oxide or cyanide from SNP contributes to cell death. Involvement of apoptotic processes in the cells was not shown. Pretreatment with JNK or p38 chemical inhibitor significantly inhibited the cytotoxicity, and we also confirmed that the MAPKs were activated in the cells by immunoblot analysis. Significant increase of LC3-II conversion was observed in the cells, and the conversions were inhibited by cotransfection of the MAPK siRNAs and pretreatment with DFO. Introduction of Atg5 siRNA inhibited the cytotoxicity and inhibited the activation of MAPKs and the conversion of LC3. We finally confirmed autophagic cell death and involvement of MAPKs by observation of autophagic vacuoles via electron microscopy. These data suggest that ATP6L has a protective role against SNP-induced autophagic cell death via inhibition of JNK and p38 in GSH-depleted glial cells. Copyright © 2011 Wiley-Liss, Inc.

  11. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Tajeddine, Nicolas; Vitale, Ilio; Criollo, Alfredo; Vicencio, José Miguel; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-09-15

    When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation.

  12. Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes

    Science.gov (United States)

    2012-01-01

    Background Pichia pastoris is an established eukaryotic host for the production of recombinant proteins. Most often, protein production is under the control of the strong methanol-inducible aox1 promoter. However, detailed information about the physiological alterations in P. pastoris accompanying the shift from growth on glycerol to methanol-induced protein production under industrial relevant conditions is missing. Here, we provide an analysis of the physiological response of P. pastoris GS115 to methanol-induced high-level production of the Hepatitis B virus surface antigen (HBsAg). High product titers and the retention of the protein in the endoplasmic reticulum (ER) are supposedly of major impact on the host physiology. For a more detailed understanding of the cellular response to methanol-induced HBsAg production, the time-dependent changes in the yeast proteome and ultrastructural cell morphology were analyzed during the production process. Results The shift from growth on glycerol to growth and HBsAg production on methanol was accompanied by a drastic change in the yeast proteome. In particular, enzymes from the methanol dissimilation pathway started to dominate the proteome while enzymes from the methanol assimilation pathway, e.g. the transketolase DAS1, increased only moderately. The majority of methanol was metabolized via the energy generating dissimilatory pathway leading to a corresponding increase in mitochondrial size and numbers. The methanol-metabolism related generation of reactive oxygen species induced a pronounced oxidative stress response (e.g. strong increase of the peroxiredoxin PMP20). Moreover, the accumulation of HBsAg in the ER resulted in the induction of the unfolded protein response (e.g. strong increase of the ER-resident disulfide isomerase, PDI) and the ER associated degradation (ERAD) pathway (e.g. increase of two cytosolic chaperones and members of the AAA ATPase superfamily) indicating that potential degradation of HBsAg could

  13. Dendrobium nobile Lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Aβ25-35 in hippocampus neurons in vitro.

    Science.gov (United States)

    Li, Li-Sheng; Lu, Yan-Liu; Nie, Jing; Xu, Yun-Yan; Zhang, Wei; Yang, Wen-Jin; Gong, Qi-Hai; Lu, Yuan-Fu; Lu, Yang; Shi, Jing-Shan

    2017-04-01

    Axonal degeneration is a pathological symbol in the early stage of Alzheimer's disease (AD), which can be triggered by amyloid-β (Aβ) peptide deposition. Growing evidence indicates that deficit of autophagy eventually leads to the axonal degeneration. Our previous studies have shown that Dendrobium nobile Lindl alkaloid (DNLA) had protective effect on neuron impairment in vivo and in vitro; however, the underlying mechanisms is still unclear. We exposed cultured hippocampus neurons to Aβ 25-35 to investigate the effect of DNLA in vitro. Axonal degeneration was evaluated by immunofluorescence staining and MTT assay. Neurons overexpressing GFP-LC3B were used to measure the formation of autophagosome. Autophagosome-lysosome fusion, the lysosomal pH, and cathepsin activity were assessed to reflect autophagy process. Proteins of interest were analyzed by Western blot. DNLA pretreatment significantly inhibited axonal degeneration induced by Aβ 25-35 peptide in vitro. Further studies revealed DNLA treatment increased autophagic flux through promoting formation and degradation of autophagosome in hippocampus neurons. Moreover, enhancement of autophagic flux was responsible for the protective effects of DNLA on axonal degeneration. DNLA prevents Aβ 25-35 -induced axonal degeneration via activation of autophagy process and could be a novel therapeutic target. © 2017 John Wiley & Sons Ltd.

  14. Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells.

    Science.gov (United States)

    Delk, Nikki A; Farach-Carson, Mary C

    2012-04-01

    Autophagy reallocates nutrients and clears normal cells of damaged proteins and organelles. In the context of metastatic disease, invading cancer cells hijack autophagic processes to survive and adapt in the host microenvironment. We sought to understand how autophagy is regulated in the metastatic niche for prostate cancer (PCa) cells where bone marrow stromal cell (BMSC) paracrine signaling induces PCa neuroendocrine differentiation (NED). In PCa, this transdifferentiation of metastatic PCa cells to neuronal-like cells correlates with advanced disease. Because autophagy provides a survival advantage for cancer cells and promotes cell differentiation, we hypothesized that autophagy mediates PCa NED in the bone. Thus, we determined the ability of paracrine factors in conditioned media (CM) from two separate BMSC subtypes, HS5 and HS27a, to induce autophagy in C4-2 and C4-2B bone metastatic PCa cells by characterizing the autophagy marker, LC3. Unlike HS27a CM, HS5 CM induced LC3 accumulation in PCa cells, suggesting autophagy was induced and indicating that HS5 and HS27a secrete a different milieu of paracrine factors that influence PCa autophagy. We identified interleukin-6 (IL-6), a cytokine more highly expressed in HS5 cells than in HS27a cells, as a paracrine factor that regulates PCa autophagy. Pharmacological inhibition of STAT3 activity did not attenuate LC3 accumulation, implying that IL-6 regulates NED and autophagy through different pathways. Finally, chloroquine inhibition of autophagic flux blocked PCa NED; hence autophagic flux maintains NED. Our studies imply that autophagy is cytoprotective for PCa cells in the bone, thus targeting autophagy is a potential therapeutic strategy.

  15. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes.

    Science.gov (United States)

    Hughes, M A; Downs, R M; Webb, G W; Crocker, C L; Kinsey, S T; Baumgarner, Bradley L

    2017-04-01

    Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1-10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our analysis revealed that caffeine promoted a 40% increase in autolysosome formation and a 25% increase in autophagic flux. In contrast, caffeine treatment did not significantly increase the expression of the skeletal muscle specific ubiquitin ligases MAFbx and MuRF1 or 20S proteasome activity. Caffeine treatment significantly reduced mTORC1 signaling, total protein synthesis and myotube diameter in a CaMKKβ/AMPK-dependent manner. Further, caffeine promoted a CaMKII-dependent increase in myostatin mRNA expression that did not significantly contribute to the caffeine-dependent reduction in protein synthesis. Our results indicate that short-term caffeine exposure significantly reduced skeletal myotube diameter by increasing autophagic flux and promoting a CaMKKβ/AMPK-dependent reduction in protein synthesis.

  16. EFFECT OF MODIFIED CONSTRAINT INDUCED THERAPY ON UPPERLIMB FUNCTIONAL RECOVERY IN YOUNG STROKE SUBJECTS

    Directory of Open Access Journals (Sweden)

    Kiran Prakash Pappala

    2014-10-01

    Full Text Available Background: The aim of this study is to evaluate the effect of modified constraint induced therapy on upper limb functional recovery in young stroke subjects. Most of the stroke rehabilitation units following conventional rehabilitation methods for treatment of the stroke patients where these methods have been proved to be less useful especially in the young stroke subjects. Hence the purpose of this study is to see the effect of modified constraint induced therapy which is a task specific training method for upperlimb in young stroke subjects. Methods: Total of 40 young stroke subjects who is having minimal motor criterion and met other inclusion criteria were recruited from department of physiotherapy, g.s.l.general hospital. Pre and post intervention measures were taken using Wolf motor function test and Jebsen Taylor hand function test. Results: In this study had shown significant improvements in the modified constraint induced therapy group when compared to the conventional rehabilitation alone. P value between groups was < 0.05. Conclusion: In this study concludes that addition of 15 minutes modified constraint induced movement therapy to conventional physiotherapy is a useful adjunct in functional recovery of upper limb among young stroke subjects

  17. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these pathways...

  18. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Derong Cui

    Full Text Available Propofol exerts protective effects on neuronal cells, in part through the inhibition of programmed cell death. Autophagic cell death is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. We therefore studied whether propofol could attenuate the formation of autophagosomes, and if so, whether the inhibition of autophagic cell death mediates the neuroprotective effects observed with propofol.The cell model was established by depriving the cells of oxygen and glucose (OGD for 6 hours, and the rat model of ischemia was introduced by a transient two-vessel occlusion for 10 minutes. Transmission electron microscopy (TEM revealed that the formation of autophagosomes and autolysosomes in both neuronal PC12 cells and pyramidal rat hippocampal neurons after respective OGD and ischemia/reperfusion (I/R insults. A western blot analysis revealed that the autophagy-related proteins, such as microtubule-associated protein 1 light chain 3 (LC3-II, Beclin-1 and class III PI3K, were also increased accordingly, but cytoprotective Bcl-2 protein was decreased. The negative effects of OGD and I/R, including the formation of autophagosomes and autolysosomes, the increase in LC3-II, Beclin-1 and class III PI3K expression and the decline in Bcl-2 production were all inhibited by propofol and specific inhibitors of autophagy, such as 3-methyladenine (3-MA, LY294002 and Bafilomycin A1 (Baf,. Furthermore, in vitro OGD cultures and in vivo I/R rats showed an increase in cell survival following the administration of propofol, as assessed by an MTT assay or histochemical analyses.Our data suggest that propofol can markedly attenuate autophagic processes via the decreased expression of autophagy-related proteins in vitro and in vivo. This inhibition improves cell survival, which provides a novel explanation for the pleiotropic effects of propofol that benefit the nervous system.

  19. Organometallic Gold(III) Complexes Similar to Tetrahydroisoquinoline Induce ER-Stress-Mediated Apoptosis and Pro-Death Autophagy in A549 Cancer Cells.

    Science.gov (United States)

    Huang, Ke-Bin; Wang, Feng-Yang; Tang, Xiao-Ming; Feng, Hai-Wen; Chen, Zhen-Feng; Liu, Yan-Cheng; Liu, You-Nian; Liang, Hong

    2018-04-26

    Agents inducing both apoptosis and autophagic death can be effective chemotherapeutic drugs. In our present work, we synthesized two organometallic gold(III) complexes harboring C^N ligands that structurally resemble tetrahydroisoquinoline (THIQ): Cyc-Au-1 (AuL 1 Cl 2 , L 1 = 3,4-dimethoxyphenethylamine) and Cyc-Au-2 (AuL 2 Cl 2 , L 2 = methylenedioxyphenethylamine). In screening their in vitro activity, we found both gold complexes exhibited lower toxicity, lower resistance factors, and better anticancer activity than those of cisplatin. The organometallic gold(III) complexes accumulate in mitochondria and induce elevated ROS and an ER stress response through mitochondrial dysfunction. These effects ultimately result in simultaneous apoptosis and autophagy. Importantly, compared to cisplatin, Cyc-Au-2 exhibits lower toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Cyc-Au-2 is the first organometallic Au(III) compound that induces apoptosis and autophagic death. On the basis of our results, we believe Cyc-Au-2 to be a promising anticancer agent or lead compound for further anticancer drug development.

  20. Köebner phenomenon induced by cupping therapy in a psoriasis patient.

    Science.gov (United States)

    Yu, Rui-Xing; Hui, Yun; Li, Cheng-Rang

    2013-06-15

    Psoriasis is a chronic, immune-mediated inflammatory and refractory disease. The koebner phenomenon, which can be induced by trauma, is common in psoriasis patients. Herein, we report a patient with psoriasis who was treated by cupping therapy and subsequently developed the koebner phenomenon (KP) at the cupped sites. To our knowledge, it is the first report about cupping therapy leading to KP in a psoriasis patient.

  1. Chemo-tolerance and sensitization by short-term fasting: The autophagy connection

    Directory of Open Access Journals (Sweden)

    Gustav Van Niekerk

    2016-11-01

    Full Text Available Preclinical studies suggest that fasting prior to chemotherapy may be an effective strategy to protect patients against the adverse effects of chemo-toxicity. Fasting may also sensitize cancer cells to chemotherapy. It is further suggested that fasting may similarly augment the efficacy of oncolytic viral therapy. The primary mechanism mediating these beneficial effects is thought to relate to the fact that fasting results in a decrease of circulating growth factors. In turn, such fasting cues would prompt normal cells to redirect energy towards cell maintenance and repair processes, rather than growth and proliferation. However, fasting is also known to up-regulate autophagy, an evolutionarily conserved catabolic process that is up-regulated in response to various cell stressors. Here we review a number of mechanisms by which fasting-induced autophagy may have an impact on both chemo-tolerance and chemo-sensitization. Firstly, fasting may exert a protective effect by mobilizing autophagic components prior to chemo-induction. In turn, the autophagic apparatus can be repurposed for removing cellular components damaged by chemotherapy. Autophagy also plays a key role in epitope expression as well as in modulating inflammation. Chemo-sensitization resulting from fasting may in fact be an effect of enhanced immune surveillance as a result of better autophagy-dependent epitope processing. Finally, autophagy is involved in host defense against viruses, and aspects of the autophagic process are also often targets for viral subversion. Consequently, altering autophagic flux by fasting may alter viral infectivity. These observations suggest that fasting-induced autophagy may have an impact on therapeutic efficacy in various oncological contexts.

  2. TARGETED RADIOFREQUENCY THERAPY FOR TRAINING INDUCED MUSCLE FATIGUE EFFECTIVE OR NOT

    Directory of Open Access Journals (Sweden)

    Ondrej Prouza

    2016-12-01

    Full Text Available Background: Training induced muscle fatigue (hereinafter also referred as TIMF is leading to unwanted consequences among sportsmen and actively sporting people such as decreased muscle strength and additional painful discomfort and mobility issues. The knowledge about the mechanisms of influencing the fatigue induced processes in muscle tissue is not comprehensive. The conventional manual techniques, cold patches and conventional physiotherapy have some effect in improving these conditions, however, finding effective methods to influence these consequences appears beneficial in sports medicine. Such method could be Radiofrequency therapy up to 0.5 MHz, known as Targeted Radiofrequency Therapy (hereinafter also referred as TR-Therapy. Aim of this self-controlled study is to evaluate the effect of the TR-Therapy for over-exertion management including the effect on decreased muscle strength, limited range of motion and possible painful discomfort. Materials: 7 healthy and actively sporting participants underwent through 2 stages (Active stage – including overexertion of the forearm flexors and subsequent TR-Therapy session; and Control stage - including overexertion of the forearm flexors and subsequent resting period. Data for muscle strength in kg, active Range of Motion (ROM in (º and Pain and discomfort perception by 10 point Visual Analog Scale (VAS were obtained and evaluated. Results: 31% increase in the muscle strength during the active stage was observed and respectively 12% during the control stage, with level of significance p0.05. Conclusions: The results of this study suggest TR-Therapy as effective solution for muscle strength restoration after TIMF.

  3. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    Science.gov (United States)

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent. © 2015 Institute of Food Technologists®

  4. An autophagic mechanism is involved in the 6-hydroxydopamine-induced neurotoxicity in vivo.

    Science.gov (United States)

    He, Xin; Yuan, Wei; Li, Zijian; Feng, Juan

    2017-10-05

    6-hydroxydopamine (6-OHDA) is one of the most common agents for modeling dopaminergic neuron degeneration in Parkinson's disease (PD). So far, the role of autophagy in 6-OHDA-induced neurotoxicity remains controversial and most evidence is collected from in vitro studies. In this study, we determined the role of autophagy activation in 6-OHDA-induced neurotoxicity in a rat model of PD. Following 6-OHDA treatment, we observed a concomitant activation of autophagy and apoptosis. To further explore the interaction between autophagy and apoptosis induced by 6-OHDA, autophagy inhibitor 3-methylademine (3-MA) or cysteine protease inhibitor Z-FA-fmk was applied. We found that both 3-MA and Z-FA-fmk could not only exert immediate protection against 6-OHDA-induced neuronal apoptosis, but also prevent dopaminergic neuron loss in the long-term, which was related to reduced autophagosome formation. Furthermore, by monitoring the sequential changes of mTOR-related signaling pathways, we found that reactive oxygen species (ROS)-mediated AKT/AMPK-mTOR signaling pathway participated in but was not the initial cause of autophagy activation by 6-OHDA. Collectively, our data suggest that 6-OHDA-induced autophagy activation contributes to its neurotoxicity and targeting autophagy activation or cysteine proteases could be promising for developing neuroprotective agents for PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells

    DEFF Research Database (Denmark)

    Zheng, Lin; Terman, Alexei; Hallbeck, Martin

    2011-01-01

    and accumulation of Aβ within lysosomes, induced apoptosis in differentiated SH-SY5Y neuroblastoma cells. Cells under hyperoxia showed: (1) increased numbers of autophagic vacuoles that contained amyloid precursor protein (APP) as well as Aβ monomers and oligomers, (2) increased reactive oxygen species production...... and resulting lysosomal Aβ accumulation are essential for oxidant-induced apoptosis in cultured neuroblastoma cells and provide additional support for the interactive role of oxidative stress and the lysosomal system in AD-related neurodegeneration....

  6. Phospholipase C-related catalytically inactive protein participates in the autophagic elimination of Staphylococcus aureus infecting mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Kae Harada-Hada

    Full Text Available Autophagy is an intrinsic host defense system that recognizes and eliminates invading bacterial pathogens. We have identified microtubule-associated protein 1 light chain 3 (LC3, a hallmark of autophagy, as a binding partner of phospholipase C-related catalytically inactive protein (PRIP that was originally identified as an inositol trisphosphate-binding protein. Here, we investigated the involvement of PRIP in the autophagic elimination of Staphylococcus aureus in infected mouse embryonic fibroblasts (MEFs. We observed significantly more LC3-positive autophagosome-like vacuoles enclosing an increased number of S. aureus cells in PRIP-deficient MEFs than control MEFs, 3 h and 4.5 h post infection, suggesting that S. aureus proliferates in LC3-positive autophagosome-like vacuoles in PRIP-deficient MEFs. We performed autophagic flux analysis using an mRFP-GFP-tagged LC3 plasmid and found that autophagosome maturation is significantly inhibited in PRIP-deficient MEFs. Furthermore, acidification of autophagosomes was significantly inhibited in PRIP-deficient MEFs compared to the wild-type MEFs, as determined by LysoTracker staining and time-lapse image analysis performed using mRFP-GFP-tagged LC3. Taken together, our data show that PRIP is required for the fusion of S. aureus-containing autophagosome-like vacuoles with lysosomes, indicating that PRIP is a novel modulator in the regulation of the innate immune system in non-professional phagocytic host cells.

  7. Inducing Assertive Behavior in Chronic Schizophrenics: A Comparison of Socioenvironmental Desensitization, and Relaxation Therapies

    Science.gov (United States)

    Weinman, Bernard; And Others

    1972-01-01

    It is concluded that systematic desensitization or relaxation therapy is not effective in inducing assertive behavior in the male chronic schizophrenic. The treatment of choice for the older chronic male schizophrenic remains socioenvironmental therapy. (Author)

  8. Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy.

    Science.gov (United States)

    Qin, Si-Yong; Feng, Jun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Liu, Xiang-Ji; Luo, Guo-Feng; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2014-02-12

    Graphene oxide (GO)-based theranostic nanohybrid is designed for tumor induced imaging and potential combinational tumor therapy. The anti-tumor drug, Doxorubicin (DOX) is chemically conjugated to the poly(ethylenimine)-co-poly(ethylene glycol) (PEI-PEG) grafted GO via a MMP2-cleavable PLGLAG peptide linkage. The therapeutic efficacy of DOX is chemically locked and its intrinsic fluorescence is quenched by GO under normal physiological condition. Once stimulated by the MMP2 enzyme over-expressed in tumor tissues, the resulting peptide cleavage permits the unloading of DOX for tumor therapy and concurrent fluorescence recovery of DOX for in situ tumor cell imaging. Attractively, this PEI-bearing nanohybrid can mediate efficient DNA transfection and shows great potential for combinational drug/gene therapy. This tumor induced imaging and potential combinational therapy will open a window for tumor treatment by offering a unique theranostic approach through merging the diagnostic capability and pathology-responsive therapeutic function. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells.

    Science.gov (United States)

    Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2016-01-01

    The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. The drug-drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Our results provide rationale for

  10. Constraint-induced movement therapy for children with acquired brain injury

    DEFF Research Database (Denmark)

    Schmidt Pedersen, Kristina; Pallesen, H.; Kristensen, H. K.

    2016-01-01

    An estimated 125-137 Danish children with acquired brain injury (ABI) require rehabilitation annually, 30-40 of these at a highly specialized level. Constraint-induced movement therapy (CIMT) has shown significant effects in increasing function in children with cerebral palsy. More knowledge of h...

  11. Anti-retroviral therapy-induced status epilepticus in "pseudo-HIV serodeconversion".

    Science.gov (United States)

    Etgen, Thorleif; Eberl, Bernhard; Freudenberger, Thomas

    2010-01-01

    Diligence in the interpretation of results is essential as information gained from the psychiatric patient's history might often be restricted. Nonobservance of established guidelines may lead to a wrong diagnosis, induce a false therapy and result in life-threatening situations. Communication errors between hospitals and doctors and uncritical acceptance of prior diagnoses add substantially to this problem. We present a patient with alcohol-related dementia who received anti-retroviral therapy that promoted a non-convulsive status epilepticus. HIV serodeconversion was considered after our laboratory result yielded a HIV-negative status. Critical review of previous diagnostic investigations revealed several errors in the diagnosis of HIV infection leading to a "pseudo-serodeconversion." Finally, anti-retroviral therapy could be discontinued. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Modulators of Response to Tumor Necrosis-Related Apoptosis-Inducing Ligand (TRAIL) Therapy in Ovarian Cancer

    National Research Council Canada - National Science Library

    Behbakht, Kian

    2008-01-01

    .... More effective therapies are urgently needed. One of the most promising therapies in development for ovarian cancer is the use of either the Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL...

  13. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hui [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Zhuo, Liling [College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160 (China); Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China)

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  14. Muscle Recruitment and Coordination following Constraint-Induced Movement Therapy with Electrical Stimulation on Children with Hemiplegic Cerebral Palsy: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Kaishou Xu

    Full Text Available To investigate changes of muscle recruitment and coordination following constraint-induced movement therapy, constraint-induced movement therapy plus electrical stimulation, and traditional occupational therapy in treating hand dysfunction.In a randomized, single-blind, controlled trial, children with hemiplegic cerebral palsy were randomly assigned to receive constraint-induced movement therapy (n = 22, constraint-induced movement therapy plus electrical stimulation (n = 23, or traditional occupational therapy (n = 23. Three groups received a 2-week hospital-based intervention and a 6-month home-based exercise program following hospital-based intervention. Constraint-induced movement therapy involved intensive functional training of the involved hand during which the uninvolved hand was constrained. Electrical stimulation was applied on wrist extensors of the involved hand. Traditional occupational therapy involved functional unimanual and bimanual training. All children underwent clinical assessments and surface electromyography (EMG at baseline, 2 weeks, 3 and 6 months after treatment. Surface myoelectric signals were integrated EMG, root mean square and cocontraction ratio. Clinical measures were grip strength and upper extremity functional test.Constraint-induced movement therapy plus electrical stimulation group showed both a greater rate of improvement in integrated EMG of the involved wrist extensors and cocontraction ratio compared to the other two groups at 3 and 6 months, as well as improving in root mean square of the involved wrist extensors than traditional occupational therapy group (p<0.05. Positive correlations were found between both upper extremity functional test scores and integrated EMG of the involved wrist as well as grip strength and integrated EMG of the involved wrist extensors (p<0.05.Constraint-induced movement therapy plus electrical stimulation is likely to produce the best outcome in improving muscle recruitment

  15. Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Kamalini Ghosh

    Full Text Available Advancement in cancer therapy requires a better understanding of the detailed mechanisms that induce death in cancer cells. Besides apoptosis, themode of other types of cell death has been increasingly recognized in response to therapy. Paraptosis is a non-apoptotic alternative form of programmed cell death, morphologically distinct from apoptosis and autophagy. In the present study, Withaferin-A (WA induced hyperpolarization of mitochondrial membrane potential and formation of many cytoplasmic vesicles. This was due to progressive swelling and fusion of mitochondria and dilation of endoplasmic reticulum (ER, forming large vacuolar structures that eventually filled the cytoplasm in human breast cancer cell-lines MCF-7 and MDA-MB-231. The level of indigenous paraptosis inhibitor, Alix/AIP-1 (Actin Interacting Protein-1 was down-regulated by WA treatment. Additionally, prevention of WA-induced cell death and vacuolation on co-treatment with protein-synthesis inhibitor indicated requirement of de-novo protein synthesis. Co-treatment with apoptosis inhibitor resulted in significant augmentation of WA-induced death in MCF-7 cells, while partial inhibition in MDA-MB-231 cells; implyingthat apoptosis was not solely responsible for the process.WA-mediated cytoplasmic vacuolationcould not be prevented by autophagy inhibitor wortmanninas well, claiming this process to be a non-autophagic one. Early induction of ROS (Reactive Oxygen Speciesby WA in both the cell-lines was observed. ROS inhibitorabrogated the effect of WA on: cell-death, expression of proliferation-associated factor andER-stress related proteins,splicing of XBP-1 (X Box Binding Protein-1 mRNA and formation of paraptotic vacuoles.All these results conclusively indicate thatWA induces deathin bothMCF-7 and MDA-MB-231 cell lines byROS-mediated paraptosis.

  16. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  17. Constraint-induced movement therapy: some thoughts about theories and evidence

    NARCIS (Netherlands)

    van der Lee, Johanna H.

    2003-01-01

    Constraint-Induced Movement Therapy (CIMT) is a type of treatment for hemiparetic stroke patients in which the patient is strongly encouraged to use the affected arm. One way of doing this is to immobilise the unaffected arm. This treatment is meant to help patients overcome 'learned non-use'. The

  18. Amiodarone-induced hypothyroidism. A common complication of prolonged therapy: a report of eight cases

    International Nuclear Information System (INIS)

    Hawthorne, G.C.; Campbell, N.P.; Geddes, J.S.; Ferguson, W.R.; Postlethwaite, W.; Sheridan, B.; Atkinson, A.B.

    1985-01-01

    Amiodarone is a widely used antiarrhythmic drug, which contains 75 mg of iodide per 200 mg of active substance. Eight patients receiving long-term amiodarone therapy became hypothyroid. Seven of these patients had no previous history of thyroid dysfunction or goiter. Antithyroid antibodies were absent, and standard perchlorate discharge tests were positive in seven patients when hypothyroidism was diagnosed. In one patient, amiodarone therapy was withdrawn; over the next nine months, the hypothyroidism resolved, and results of the perchlorate discharge test reverted to normal. The authors conclude that amiodarone-induced hypothyroidism is similar to previously described iodide-induced hypothyroidism. It may develop in the absence of a previous history of thyroid disease, and all patients receiving long-term amiodarone therapy should therefore be regularly monitored for hypothyroidism

  19. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Directory of Open Access Journals (Sweden)

    Rita-Eva Varga

    2015-08-01

    Full Text Available Hereditary spastic paraplegia (HSP is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs. Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  20. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Monti, Paola; Fronza, Gilberto [Mutagenesis Unit, Istituto di Ricerca e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa (Italy); Pereira, Clara [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Saraiva, Lucília, E-mail: lucilia.saraiva@ff.up.pt [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal)

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.

  1. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    International Nuclear Information System (INIS)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana; Monti, Paola; Fronza, Gilberto; Pereira, Clara; Saraiva, Lucília

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73

  2. Models for radiation-induced tissue degeneration and conceptualization of rehabilitation of irradiated tissue by cell therapy

    International Nuclear Information System (INIS)

    Phulpin, Berengere

    2011-01-01

    Radiation therapy induced acute and late sequelae within healthy tissue included in the irradiated area. In general, lesions are characterized by ischemia, cell apoptosis and fibrosis. In this context, cell therapy using bone marrow mesenchymal stem cells (BMSC) might represent an attractive new therapeutic approach, based partly on their angiogenic ability and their involvement in the natural processes of tissue repair. The first part of this work consisted in the development of experimental mouse model of radio-induced tissue degeneration similar to that occurring after radiotherapy. The aim was to better understand the physiopathological mechanisms of radiation-induced tissue damage and to determine the best treatment strategy. The second part of this work investigated the feasibility of autologous BMSC therapy on the murine model of radiation previously established with emphasis on two pre-requisites: the retention of the injected cells within the target tissue and the evaluation of the graft on bone metabolism. This preclinical investigation in a mouse model constitutes an essential step allowing an evaluation of the benefit of cell therapy for the treatment of radiation-induced tissue injury. Data from these studies could allow the proposal of clinical studies [fr

  3. Sitaxsentan-Induced Acute Severe Hepatitis Treated with Glucocorticoid Therapy

    Directory of Open Access Journals (Sweden)

    Marcus W Chin

    2012-01-01

    Full Text Available Endothelin receptor antagonists are commonly used in the treatment of pulmonary hypertension. Sitaxsentan, a selective endothelin A receptor blocker, induces a mild transaminitis in approximately 3% to 5% of patients, but rarely an acute severe hepatitis. A case involving a 61-year-old female with sitaxsentan-induced acute severe liver failure is presented. Depite withdrawal of therapy, her liver tests failed to improve. After six weeks of monitoring, the patient was administered high-dose corticosteroids, with a good clinical and biochemical response. While endothelin receptor antagonists are postulated to cause hepatitis by inhibition of a bile salt transporter pump, an immune-mediated or idiosyncratic mechanism should be considered.

  4. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease?

    Science.gov (United States)

    Whyte, Lauren S; Lau, Adeline A; Hemsley, Kim M; Hopwood, John J; Sargeant, Timothy J

    2017-03-01

    Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence will increase significantly in the coming decades. Although important progress has been made, fundamental pathogenic mechanisms as well as most hereditary contributions to the sporadic form of the disease remain unknown. In this review, we examine the now substantial links between AD pathogenesis and lysosomal biology. The lysosome hydrolyses and processes cargo delivered by multiple pathways, including endocytosis and autophagy. The endo-lysosomal and autophagic networks are central to clearance of cellular macromolecules, which is important given there is a deficit in clearance of amyloid-β in AD. Numerous studies show prominent lysosomal dysfunction in AD, including perturbed trafficking of lysosomal enzymes and accumulation of the same substrates that accumulate in lysosomal storage disorders. Examination of the brain in lysosomal storage disorders shows the accumulation of amyloid precursor protein metabolites, which further links lysosomal dysfunction with AD. This and other evidence leads us to hypothesise that genetic variation in lysosomal genes modifies the disease course of sporadic AD. © 2016 International Society for Neurochemistry.

  5. A new concept in prophylaxis and therapy: paramunization by poxvirus inducers

    Directory of Open Access Journals (Sweden)

    Anton Mayr

    1999-07-01

    Full Text Available The so-called primitive, innate or paraspecific immune system is the phylogenetically older part of the complex immune system. It enables the organism to immediately attack various foreign substances, infectious pathogens, toxins and transformed cells of the organism itself. ,,Paramunity" is defined as an optimal regulated and activated, antigen-nonspecific defence, acquired through continuous active and succesful confrontation with endogenous and exogenous noxes or by means of ,,paramunization" with so called ,,paramunity inducers". Paramunity inducers based on different pox virus species (e.g. Baypamun®, Duphapind®, Conpind have turned out to be effective and safe when applied with human beings as well as with animals. Pox virus inducers activate phagocytosis and NK-cells in addition to regulation of various cytokines, notably interferon a and g, IL 1, 2, CSF and TNF which comprise the network of the complex paraspecific immune system. The results of experimental work as well as practical use in veterinary medicine have shown that paramunization by pox inducers goes far beyond the common understanding of so-called ,,immuno-therapy". They are ,,bioregulators", because they have 1. a regulatory effect on a disturbed immune system in the sense of an optimal homoeostasis, and 2. simultaneously a regulatory effect between the immune, nervous, circulatory and hormone system. Therefore, the use of paramunization by pox inducers opens a new way of prophylaxis and therapy, not only with regard to infections, but also with regard to different other indications.

  6. Enterovirus 71 induces autophagy by regulating has-miR-30a expression to promote viral replication.

    Science.gov (United States)

    Fu, Yuxuan; Xu, Wentao; Chen, Deyan; Feng, Chunhong; Zhang, Li; Wang, Xiaohui; Lv, Xiaowen; Zheng, Nan; Jin, Yu; Wu, Zhiwei

    2015-12-01

    Enterovirus 71 (EV71), the etiological agent of hand-foot-and-mouth disease, has increasingly become a public health challenge around the world. Previous studies reported that EV71 infection can induce autophagic machinery to enhance viral replication in vitro and in vivo, but did not address the underlying mechanisms. Increasing evidence suggests that autophagy, in a virus-specific manner, may function to degrade viruses or facilitate viral replication. In this study, we reported that EV71 infection of human epidermoid carcinoma (Hep2) and African green monkey kidney cells (Vero) induced autophagy, which is beneficial for viral replication. Our investigation of the mechanisms revealed that EV71 infection resulted in the reduction of cellular miR-30a, which led to the inhibition of Beclin-1, a key autophagy-promoting gene that plays important roles at the early phase of autophagosome formation. We provided further evidence that by modulating cellular miR-30a level through either overexpression or inhibition, one can inhibit or promote EV71 replication, respectively, through regulating autophagic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Renal replacement therapy in sepsis-induced acute renal failure

    Directory of Open Access Journals (Sweden)

    Rajapakse Senaka

    2009-01-01

    Full Text Available Acute renal failure (ARF is a common complication of sepsis and carries a high mortality. Renal replacement therapy (RRT during the acute stage is the mainstay of therapy. Va-rious modalities of RRT are available. Continuous RRT using convective methods are preferred in sepsis-induced ARF, especially in hemodynamically unstable patients, although clear evidence of benefit over intermittent hemodialysis is still not available. Peritoneal dialysis is clearly inferior, and is not recommended. Early initiation of RRT is probably advantageous, although the optimal timing of dialysis is yet unknown. Higher doses of RRT are more likely to be beneficial. Use of bio-compatible membranes and bicarbonate buffer in the dialysate are preferred. Anticoagulation during dialysis must be carefully adjusted and monitored.

  8. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    International Nuclear Information System (INIS)

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-01-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  9. Paris saponin-induced autophagy promotes breast cancer cell apoptosis via the Akt/mTOR signaling pathway.

    Science.gov (United States)

    Xie, Zhan-Zhi; Li, Man-Mei; Deng, Peng-Fei; Wang, Sheng; Wang, Lei; Lu, Xue-Ping; Hu, Liu-Bing; Chen, Zui; Jie, Hui-Yang; Wang, Yi-Fei; Liu, Xiao-Xiao; Liu, Zhong

    2017-02-25

    Paris saponins possess anticancer, anti-inflammatory, and antiviral effects. However, the anticancer effect of Paris saponins has not been well elucidated and the mechanisms underlying the potential function of Paris saponins in cancer therapy are needed to be further identify. In this study, we report that saponin compounds isolated from Paris polyphylla exhibited antitumor activity against breast cancer cell lines, MCF-7 and MDA-MB-231. Paris saponin XA-2 induced apoptosis in both cell lines, as evidenced by the activation of caspases and cleavage of Poly (ADP-ribose) polymerase. The ability of XA-2 to induce autophagy was confirmed by acridine orange staining, accumulation of autophagosome-bound Long chain 3 (LC3)-II, and measurement of autophagic flux. XA-2-induced autophagy was observed to promote apoptosis by the combined treatment of breast cancer cell lines with XA-2 and autophagy inhibitors 3-methyladenine and bafilomycin A1, respectively. Moreover, we report a decrease in the levels of Akt/mTOR signaling pathway proteins, such as the phosphorylated forms of Akt, mTOR, P70S6K, and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). Taken together, these results provide important insights explaining the anticancer activity of Paris saponins and the potential development of XA-2 as a new therapeutic agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Re-expression of ARHI (DIRAS3) induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel

    International Nuclear Information System (INIS)

    Zou, Chun-Fang; Yu, Yinhua; Jia, Luoqi; Jin, Hongyan; Yao, Ming; Zhao, Naiqing; Huan, Jin; Lu, Zhen; Bast, Robert C Jr; Feng, Youji

    2011-01-01

    ARHI is a Ras-related imprinted gene that inhibits cancer cell growth and motility. ARHI is downregulated in the majority of breast cancers, and loss of its expression is associated with its progression from ductal carcinoma in situ (DCIS) to invasive disease. In ovarian cancer, re-expression of ARHI induces autophagy and leads to autophagic death in cell culture; however, ARHI re-expression enables ovarian cancer cells to remain dormant when they are grown in mice as xenografts. The purpose of this study is to examine whether ARHI induces autophagy in breast cancer cells and to evaluate the effects of ARHI gene re-expression in combination with paclitaxel. Re-expression of ARHI was achieved by transfection, by treatment with trichostatin A (TSA) or by a combination of TSA and 5-aza-2'-deoxycytidine (DAC) in breast cancer cell cultures and by liposomal delivery of ARHI in breast tumor xenografts. ARHI re-expression induces autophagy in breast cancer cells, and ARHI is essential for the induction of autophagy. When ARHI was re-expressed in breast cancer cells treated with paclitaxel, the growth inhibitory effect of paclitaxel was enhanced in both the cell culture and the xenografts. Although paclitaxel alone did not induce autophagy in breast cancer cells, it enhanced ARHI-induced autophagy. Conversely, ARHI re-expression promoted paclitaxel-induced apoptosis and G2/M cell cycle arrest. ARHI re-expression induces autophagic cell death in breast cancer cells and enhances the inhibitory effects of paclitaxel by promoting autophagy, apoptosis, and G2/M cell cycle arrest

  11. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  12. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  13. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Su [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Dong Hoon [Department of Life Science and Ewha Research Center for Systems Biology (Korea, Republic of); The Research Center for Cell Homeostasis, Ewha Womans University, Seoul 127-750 (Korea, Republic of); Lee, Da Hyun [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Bae, Soo Han, E-mail: soohanbae@yuhs.ac [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-10-09

    Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-induced lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. - Highlights: • PA induces Keap1 downregulation and activates Nrf2 target gene transcription. • PA-induced Keap1 degradation is partly mediated by the autophagic pathway. • PA-induced Keap1 degradation depends on p62. • Ablation of p62 exacerbates PA-mediated apoptotic cell death.

  14. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity

    International Nuclear Information System (INIS)

    Park, Jeong Su; Kang, Dong Hoon; Lee, Da Hyun; Bae, Soo Han

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-induced lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. - Highlights: • PA induces Keap1 downregulation and activates Nrf2 target gene transcription. • PA-induced Keap1 degradation is partly mediated by the autophagic pathway. • PA-induced Keap1 degradation depends on p62. • Ablation of p62 exacerbates PA-mediated apoptotic cell death.

  15. The Bcr-Abl kinase inhibitor INNO-406 induces autophagy and different modes of cell death execution in Bcr-Abl-positive leukemias.

    Science.gov (United States)

    Kamitsuji, Y; Kuroda, J; Kimura, S; Toyokuni, S; Watanabe, K; Ashihara, E; Tanaka, H; Yui, Y; Watanabe, M; Matsubara, H; Mizushima, Y; Hiraumi, Y; Kawata, E; Yoshikawa, T; Maekawa, T; Nakahata, T; Adachi, S

    2008-11-01

    Bcr-Abl tyrosine kinase (TK) inhibitors are promising therapeutic agents for Bcr-Abl-positive (Bcr-Abl(+)) leukemias. Although they are known to promote caspase-mediated apoptosis, it remains unclear whether caspase-independent cell death-inducing mechanisms are also triggered. Here we demonstrated that INNO-406, a second-generation Bcr-Abl TK inhibitor, induces programmed cell death (PCD) in chronic myelogenous leukemia (CML) cell lines through both caspase-mediated and caspase-independent pathways. The latter pathways include caspase-independent apoptosis (CIA) and necrosis-like cell death (CIND), and the cell lines varied regarding which mechanism was elicited upon INNO-406 treatment. We also observed that the propensity toward CIA or CIND in cells was strongly associated with cellular dependency on apoptosome-mediated caspase activity. Cells that undergo CIND have a high apoptosome activity potential whereas cells that undergo CIA tend to have a lower potential. Moreover, we found that INNO-406 promotes autophagy. When autophagy was inhibited with chloroquine or gene knockdown of beclin1 by shRNA, INNO-406-induced cell death was enhanced, which indicates that the autophagic response of the tumor cells is protective. These findings suggest new insights into the biology and therapy of Bcr-Abl(+) leukemias.

  16. Ozone Therapy in the Management of Persistent Radiation-Induced Rectal Bleeding in Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Bernardino Clavo

    2015-01-01

    Full Text Available Introduction. Persistent radiation-induced proctitis and rectal bleeding are debilitating complications with limited therapeutic options. We present our experience with ozone therapy in the management of such refractory rectal bleeding. Methods. Patients (n=12 previously irradiated for prostate cancer with persistent or severe rectal bleeding without response to conventional treatment were enrolled to receive ozone therapy via rectal insufflations and/or topical application of ozonized-oil. Ten (83% patients had Grade 3 or Grade 4 toxicity. Median follow-up after ozone therapy was 104 months (range: 52–119. Results. Following ozone therapy, the median grade of toxicity improved from 3 to 1 (p<0.001 and the number of endoscopy treatments from 37 to 4 (p=0.032. Hemoglobin levels changed from 11.1 (7–14 g/dL to 13 (10–15 g/dL, before and after ozone therapy, respectively (p=0.008. Ozone therapy was well tolerated and no adverse effects were noted, except soft and temporary flatulence for some hours after each session. Conclusions. Ozone therapy was effective in radiation-induced rectal bleeding in prostate cancer patients without serious adverse events. It proved useful in the management of rectal bleeding and merits further evaluation.

  17. Burns induced by cupping therapy in a burn center in northeast china.

    Science.gov (United States)

    Jing-Chun, Zhao; Jia-Ao, Yu; Chun-Jing, Xian; Kai, Shi; Lai-Jin, Lu

    2014-07-01

    Cupping therapy as a curative skill has been developed and applied throughout history. Despite reports of adverse effects, this therapy is considered to be relatively safe with no systemic reviews documenting negative side effects. The aim of this study was to explore methods that avoid the adverse effects sometimes associated with this therapy. Clinical records of 14 outpatients and inpatients that visited the First Hospital of Jilin University (Changchun, China) for management of burn injuries caused by cupping therapy were retrospectively reviewed. Characteristics, history of injury, and treatment of each patient was collected and analyzed. Burn injury induced by cupping therapy was not uncommon. Most of the injuries were mild to moderate and cured by conservative methods without severe complications. The use of wet cupping was more prevalent among injured patients than dry cupping. Cupping therapy as an ancient alternative treatment is still popular with a large number of devoted practitioners. Although there is the potential for injury during the application of this therapy, this is mostly preventable. Standardized training for health care professionals and increased the awareness among the public about the proper methods to administer this therapy to avoid adverse effects is important.

  18. Assessing Basal and Acute Autophagic Responses in the Adult Drosophila Nervous System: The Impact of Gender, Genetics and Diet on Endogenous Pathway Profiles.

    Directory of Open Access Journals (Sweden)

    Eric P Ratliff

    Full Text Available The autophagy pathway is critical for the long-term homeostasis of cells and adult organisms and is often activated during periods of stress. Reduced pathway efficacy plays a central role in several progressive neurological disorders that are associated with the accumulation of cytotoxic peptides and protein aggregates. Previous studies have shown that genetic and transgenic alterations to the autophagy pathway impacts longevity and neural aggregate profiles of adult Drosophila. In this study, we have identified methods to measure the acute in vivo induction of the autophagy pathway in the adult fly CNS. Our findings indicate that the genotype, age, and gender of adult flies can influence pathway responses. Further, we demonstrate that middle-aged male flies exposed to intermittent fasting (IF had improved neuronal autophagic profiles. IF-treated flies also had lower neural aggregate profiles, maintained more youthful behaviors and longer lifespans, when compared to ad libitum controls. In summary, we present methodology to detect dynamic in vivo changes that occur to the autophagic profiles in the adult Drosophila CNS and that a novel IF-treatment protocol improves pathway response in the aging nervous system.

  19. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    International Nuclear Information System (INIS)

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W.; Komarnicky, Lydia T.

    2012-01-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15–84 years). The range of external-beam radiation delivered was 50.0–75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90–120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues—Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7–70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  20. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins

    OpenAIRE

    An-Guo Wu; Vincent Kam-Wai Wong; Wu Zeng; Liang Liu; Betty Yuen-Kwan Law

    2015-01-01

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-fligh...

  1. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    Science.gov (United States)

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  2. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells

    International Nuclear Information System (INIS)

    Li, Jun; Qin, Zhenghong; Liang, Zhongqin

    2009-01-01

    Previous study reported that resveratrol has anti-tumor activity. In this study, we investigated the involvement of autophagy in the resveratrol-induced apoptotic death of human U251 glioma cells. The growth inhibition of U251 cells induced by resveratrol was assessed with methyl thiazolyl tetrazolium (MTT). The activation of autophagy and proapoptotic effect were characterized by monodansylcadaverine labeling and Hoechst stain, respectively. Mitochondrialtransmembrane potential (ΔΨm) was measured as a function of drug treatment using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). The role of autophagy and apoptosis in the resveratrol-induced death of U251 cells was assessed using autophagic and caspase inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Methyl thiazolyl tetrazolium (MTT) assays indicated that resveratrol decreased the viability of U251 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that resveratrol increased cell population at sub-G1 phase, an index of apoptosis. Furthermore, resveratrol-induced cell death was associated with a collapse of the mitochondrial membrane potential. The pan-caspase inhibitor Z-VAD-fmk suppressed resveratrol-induced U251 cell death. Resveratrol stimulated autophagy was evidenced by punctuate monodansylcadaverine(MDC) staining and microtubule-associated protein light chain 3 (LC3) immunoreactivty. Resveratrol also increased protein levels of beclin 1 and membrane form LC3 (LC3-II). Autophagy inhibitors 3-methylademine (3-MA) and bafilomycin A1 sensitized the cytotoxicity of resveratrol. Together, these findings indicate that resveratrol induces autophagy in human U251 glioma cells and autophagy suppressed resveratrol-induced apoptosis. This study thus suggests that autophagy inhibitors can increase the cytotoxicity of resveratrol to glioma cells

  3. Induction of Autophagy and Apoptosis via PI3K/AKT/TOR Pathways by Azadirachtin A in Spodoptera litura Cells

    OpenAIRE

    Xuehua Shao; Duo Lai; Ling Zhang; Hanhong Xu

    2016-01-01

    Azadirachtin is one of the most effective botanical insecticides and has been widely used in pest control. Toxicological reports show that azadirachtin can induce apoptosis in various insect cell lines. However, studies of azadirachtin-induced autophagy in cultured insect cells are lacking. This study reports that azadirachtin A significantly inhibits cell proliferation by inducing autophagic and apoptotic cell death in Spodoptera litura cultured cell line (SL-1 cell). Characteristic autophag...

  4. Is cupping blister harmful?-A proteomical analysis of blister fluid induced by cupping therapy and scald.

    Science.gov (United States)

    Liu, Zhidan; Chen, Chunlan; Li, Xiaoyan; Zhao, Chuang; Li, Zunyuan; Liang, Wei; Lin, Yufang

    2018-02-01

    Cupping therapy has a long history in traditional medicine especially in Asian countries. It was controversial whether cupping induced blisters are beneficial to healing effects, and the formation and content in the blisters remain unexplored. We aimed to identify and compare the molecular components of the blister fluid from the cupping therapy and the scalds to explore the necessary of inducing cupping induced blisters. Fluid sample of blisters from fifteen patients receiving cupping therapy (Cupping group) and scald burns (Scald group) were collected in this study. Proteins from the blisters were separated by two-dimensional electrophoresis (2D-gel) and further analyzed by mass spectrometry. In addition, the changes in particular proteins were confirmed by Western blotting. The protein components are significantly different between blister from cupping therapy and scalds. The immune responses, oxidative stress and metabolic related proteins (Ig lambda-2 chain C regions, Ig gamma-1 chain C region, hemopexin, prdx2, calmodulin, succinyl-CoA ligase and tetranectin) were increased, whereas the hemoglobin subunit beta was decreased in the Cupping group compared with the Scald group. Cupping induced blisters contain several proteins which relate to the activation of certain immune pathways including anti-oxidation, anti-apoptosis, tissue repairing and metabolic regulation. This proteomic analysis may indicate a significant clue to the mechanism study of cupping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Shortened constraint-induced movement therapy in subacute stroke - no effect of using a restraint

    DEFF Research Database (Denmark)

    Brogårdh, Christina; Vestling, Monika; Sjölund, Bengt H

    2009-01-01

    OBJECTIVE: To examine the effect of using a mitt during shortened constraint-induced movement therapy for patients in the subacute phase after stroke. SUBJECTS: Twenty-four patients with stroke (mean age 57.6 (standard deviation (SD) 8.5) years; average 7 weeks post-stroke) with mild to moderate......, no statistically significant differences between the groups were found in any measures at any point in time. CONCLUSION: In this study, no effect of using a restraint in patients with subacute stroke was found. Thus, this component in the constraint-induced therapy concept seems to be of minor importance...... Scale, the Sollerman hand function test, the 2-Point Discrimination test and Motor Activity Log test. RESULTS: Patients in both groups showed significant improvements in arm and hand motor performance and on self-reported motor ability after 2 weeks of therapy and at 3 months follow-up. However...

  6. Constraint-induced aphasia therapy versus intensive semantic treatment in fluent aphasia.

    Science.gov (United States)

    Wilssens, Ineke; Vandenborre, Dorien; van Dun, Kim; Verhoeven, Jo; Visch-Brink, Evy; Mariën, Peter

    2015-05-01

    The authors compared the effectiveness of 2 intensive therapy methods: Constraint-Induced Aphasia Therapy (CIAT; Pulvermüller et al., 2001) and semantic therapy (BOX; Visch-Brink & Bajema, 2001). Nine patients with chronic fluent aphasia participated in a therapy program to establish behavioral treatment outcomes. Participants were randomly assigned to one of two groups (CIAT or BOX). Intensive therapy significantly improved verbal communication. However, BOX treatment showed a more pronounced improvement on two communication-namely, a standardized assessment for verbal communication, the Amsterdam Nijmegen Everyday Language Test (Blomert, Koster, & Kean, 1995), and a subjective rating scale, the Communicative Effectiveness Index (Lomas et al., 1989). All participants significantly improved on one (or more) subtests of the Aachen Aphasia Test (Graetz, de Bleser, & Willmes, 1992), an impairment-focused assessment. There was a treatment-specific effect. BOX treatment had a significant effect on language comprehension and semantics, whereas CIAT treatment affected language production and phonology. The findings indicate that in patients with fluent aphasia, (a) intensive treatment has a significant effect on language and verbal communication, (b) intensive therapy results in selective treatment effects, and (c) an intensive semantic treatment shows a more striking mean improvement on verbal communication in comparison with communication-based CIAT treatment.

  7. Bobath Concept versus constraint-induced movement therapy to improve arm functional recovery in stroke patients: a randomized controlled trial.

    Science.gov (United States)

    Huseyinsinoglu, Burcu Ersoz; Ozdincler, Arzu Razak; Krespi, Yakup

    2012-08-01

    To compare the effects of the Bobath Concept and constraint-induced movement therapy on arm functional recovery among stroke patients with a high level of function on the affected side. A single-blinded, randomized controlled trial. Outpatient physiotherapy department of a stroke unit. A total of 24 patients were randomized to constraint-induced movement therapy or Bobath Concept group. The Bobath Concept group was treated for 1 hour whereas the constraint-induced movement therapy group received training for 3 hours per day during 10 consecutive weekdays. Main measures were the Motor Activity Log-28, the Wolf Motor Function Test, the Motor Evaluation Scale for Arm in Stroke Patients and the Functional Independence Measure. The two groups were found to be homogeneous based on demographic variables and baseline measurements. Significant improvements were seen after treatment only in the 'Amount of use' and 'Quality of movement' subscales of the Motor Activity Log-28 in the constraint-induced movement therapy group over the the Bobath Concept group (P = 0.003; P = 0.01 respectively). There were no significant differences in Wolf Motor Function Test 'Functional ability' (P = 0.137) and 'Performance time' (P = 0.922), Motor Evaluation Scale for Arm in Stroke Patients (P = 0.947) and Functional Independence Measure scores (P = 0.259) between the two intervention groups. Constraint-induced movement therapy and the Bobath Concept have similar efficiencies in improving functional ability, speed and quality of movement in the paretic arm among stroke patients with a high level of function. Constraint-induced movement therapy seems to be slightly more efficient than the Bobath Concept in improving the amount and quality of affected arm use.

  8. Effectiveness of Physical Therapy as an Adjunctive Treatment for Trauma-induced Chronic Torticollis in Raptors.

    Science.gov (United States)

    Nevitt, Benjamin N; Robinson, Narda; Kratz, Gail; Johnston, Matthew S

    2015-03-01

    Management of trauma-induced chronic torticollis in raptors has historically been challenging. Euthanasia is common in affected birds because of their inability to maintain normal cervical position, although they may be able to function normally. To assess effectiveness of physical therapy of the neck and head as an adjunct treatment for this condition, a case-control study was done in raptors admitted to the Rocky Mountain Raptor Program from 2003 to 2010. Eleven cases were identified with a diagnosis of chronic torticollis resulting from traumatic brain injury. Five cases were treated with physical therapy of the head and neck, and 6 control cases did not receive any physical therapy for the torticollis. Of the control cases, 0 of 6 had resolution of the torticollis, 0 of 6 were released, and 5 of 6 were euthanatized. Of the treated cases, 4 of 5 had complete resolution of the torticollis and 5 of 5 were released. Resolution of torticollis differed significantly between cases receiving physical therapy and controls. These results indicate that physical therapy should be used as an adjunctive therapy in cases of chronic torticollis induced by trauma in raptors because it results in better resolution of the torticollis and increased likelihood of release.

  9. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    International Nuclear Information System (INIS)

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J.S.

    2009-01-01

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  10. Therapy and prophylaxis of acute and late radiation-induced sequelae of the esophagus

    International Nuclear Information System (INIS)

    Zimmermann, F.B.; Geinitz, H.; Feldmann, H.J.

    1998-01-01

    Background: Radiation-induced esophagitis is a frequent acute side effect in curative and palliative radiotherapy of thoracal and cervical tumors. Late reactions are rare but might be severe. Methods: A resarch for reports on prophylactic and supportive therapies of radiation-induced esophagitis was performed (Medline, Cancerlit, and others). Results: Nutrition must be ensured and symptomatic relief of sequelae is important, especially in the case of dysphagia. The latter can be improved by topic or systemic analgetics. If esophageal spasm occurs, calcium antagonists might help. In case of gastro-esophageal reflux proton pump inhibitors should be used. There is no effective prophylactic measure for radiation esophagitis. Late side effects with clinical relevance are rare in conventional radiotherapy. Chronic ulcera, fistula or stenosis may develop. Before any treatment, a tumor infiltration of the esophagus should be excluded by biopsy. This can lead more often to late complications than radiation therapy itself. Nutrition should be ensured by endoscopic dilation, stent-implantation, or endoscopic percutaneous gastrostomy. Local injection of steroids might be used to avoid an early restenosis. Conclusions: An intensive symptomatic therapy of acute esophagitis is reasonable. Effective prophylaxis do not exist. Late radiation induced sequelae is rare. Therefore, a tumor recurrence should be excluded in cases of dysphagia. Securing nutrition by PEG, stent, or port is well in the fore. (orig.) [de

  11. The Effects of Constraint-Induced Movement Therapy on Activities Important to Independent School Participation of Children with Hemiparesis

    Science.gov (United States)

    Carney, Joan

    2012-01-01

    This study investigated the efficacy of constraint-induced movement therapy (CI therapy) on activities important to school participation in children with hemiparesis. Four children, ages 4-0 to 7-10 participated in an intensive CI therapy program in a clinical setting. Constraining casts were worn 24 hours daily. Therapy was delivered 6 hours…

  12. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Gorman, Adrienne M; Samali, Afshin

    2013-07-01

    Macroautophagy (autophagy) is a cellular catabolic process which can be described as a self-cannibalism. It serves as an essential protective response during conditions of endoplasmic reticulum (ER) stress through the bulk removal and degradation of unfolded proteins and damaged organelles; in particular, mitochondria (mitophagy) and ER (reticulophagy). Autophagy is genetically regulated and the autophagic machinery facilitates removal of damaged cell components and proteins; however, if the cell stress is acute or irreversible, cell death ensues. Despite these advances in the field, very little is known about how autophagy is initiated and how the autophagy machinery is transcriptionally regulated in response to ER stress. Some three dozen autophagy genes have been shown to be required for the correct assembly and function of the autophagic machinery; however; very little is known about how these genes are regulated by cellular stress. Here, we will review current knowledge regarding how ER stress and the unfolded protein response (UPR) induce autophagy, including description of the different autophagy-related genes which are regulated by the UPR.

  13. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase

    OpenAIRE

    Brown, Charles O.; Salem, Kelley; Wagner, Brett A.; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R.; Goel, Apollina

    2012-01-01

    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plu...

  14. Graves Disease Induced by Radioiodine Therapy for Toxic Nodular Goiter: A Case Report

    Directory of Open Access Journals (Sweden)

    Yakup Yürekli

    2015-10-01

    Full Text Available Graves’ disease (GD may be observed as an infrequent adverse effect after radioiodine therapy (RAIT for toxic thyroid adenoma (TA and toxic multi nodular goiter (MNG. We present a case of a 55-year-old male with a toxic nodule who was treated with RAI. After therapy, the patient’s serum free triiodothyronine (fT3 and free thyroxine (fT4 levels gradually increased. Antithyroid peroxidase (TPOAb, antithyroglobulin (TgAb and TSH-receptor antibodies (TRAb were also positive. Thyroid scintigraphy revealed diffuse intense uptake after four months of RAIT. Radiation-induced GD should be considered in patients with aggravated hyperthyroidism 3-4 months after therapy.

  15. Interference with the Autophagic Process as a Viral Strategy to Escape from the Immune Control: Lesson from Gamma Herpesviruses

    Directory of Open Access Journals (Sweden)

    Roberta Santarelli

    2015-01-01

    Full Text Available We summarized the most recent findings on the role of autophagy in antiviral immune response. We described how viruses have developed strategies to subvert the autophagic process. A particular attention has been given to Epstein-Barr and Kaposi’s sarcoma associated Herpesvirus, viruses studied for many years in our laboratory. These two viruses belong to γ-Herpesvirus subfamily and are associated with several human cancers. Besides the effects on the immune response, we have described how autophagy subversion by viruses may also concur to the enhancement of their replication and to viral tumorigenesis.

  16. International Patterns of Practice in the Management of Radiation Therapy-induced Nausea and Vomiting

    International Nuclear Information System (INIS)

    Dennis, Kristopher; Zhang Liying; Lutz, Stephen; Baardwijk, Angela van; Linden, Yvette van der; Holt, Tanya; Arnalot, Palmira Foro; Lagrange, Jean-Léon; Maranzano, Ernesto; Liu, Rico; Wong, Kam-Hung; Wong, Lea-Choung; Vassiliou, Vassilios; Corn, Benjamin W.; De Angelis, Carlo; Holden, Lori; Wong, C. Shun; Chow, Edward

    2012-01-01

    Purpose: To investigate international patterns of practice in the management of radiation therapy-induced nausea and vomiting (RINV). Methods and Materials: Oncologists prescribing radiation therapy in the United States, Canada, The Netherlands, Australia, New Zealand, Spain, Italy, France, Hong Kong, Singapore, Cyprus, and Israel completed a Web-based survey that was based on 6 radiation therapy-only clinical cases modeled after the minimal-, low-, moderate-, and high-emetic risk levels defined in the antiemetic guidelines of the American Society of Clinical Oncology and the Multinational Association of Supportive Care in Cancer. For each case, respondents estimated the risks of nausea and vomiting separately and committed to an initial management approach. Results: In total, 1022 responses were received. Risk estimates and management decisions for the minimal- and high-risk cases varied little and were in line with guideline standards, whereas those for the low- and moderate-risk cases varied greatly. The most common initial management strategies were as follows: rescue therapy for a minimal-risk case (63% of respondents), 2 low-risk cases (56% and 80%), and 1 moderate-risk case (66%); and prophylactic therapy for a second moderate-risk case (75%) and a high-risk case (95%). The serotonin (5-HT) 3 receptor antagonists were the most commonly recommended prophylactic agents. On multivariate analysis, factors predictive of a decision for prophylactic or rescue therapy were risk estimates of nausea and vomiting, awareness of the American Society of Clinical Oncology antiemetic guideline, and European Society for Therapeutic Radiology and Oncology membership. Conclusions: Risk estimates and management strategies for RINV varied, especially for low- and moderate-risk radiation therapy cases. Radiation therapy-induced nausea and vomiting are under-studied treatment sequelae. New observational and translational studies are needed to allow for individual patient risk

  17. International Patterns of Practice in the Management of Radiation Therapy-induced Nausea and Vomiting

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Kristopher; Zhang Liying [Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Lutz, Stephen [Blanchard Valley Health Systems, Findlay, Ohio (United States); Baardwijk, Angela van [Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Linden, Yvette van der [Leiden University Medical Center, Leiden (Netherlands); Holt, Tanya [Radiation Oncology Mater Centre, Princess Alexandra Hospital, Brisbane (Australia); Arnalot, Palmira Foro [Parc de Salut Mar. Universitat Pompeu Fabra Barcelona (Spain); Lagrange, Jean-Leon [AP-HP Hopital Henri-Mondor, Universite Paris Est Creteil, Creteil (France); Maranzano, Ernesto [' S. Maria' Hospital, Terni (Italy); Liu, Rico [Queen Mary Hospital, Hong Kong (China); Wong, Kam-Hung [Queen Elizabeth Hospital, Hong Kong (Hong Kong); Wong, Lea-Choung [National University Cancer Institute (Singapore); Vassiliou, Vassilios [Bank of Cyprus Oncology Centre, Nicosia (Cyprus); Corn, Benjamin W. [Tel Aviv Medical Center, Tel Aviv (Israel); De Angelis, Carlo; Holden, Lori; Wong, C. Shun [Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Chow, Edward, E-mail: Edward.Chow@sunnybrook.ca [Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada)

    2012-09-01

    Purpose: To investigate international patterns of practice in the management of radiation therapy-induced nausea and vomiting (RINV). Methods and Materials: Oncologists prescribing radiation therapy in the United States, Canada, The Netherlands, Australia, New Zealand, Spain, Italy, France, Hong Kong, Singapore, Cyprus, and Israel completed a Web-based survey that was based on 6 radiation therapy-only clinical cases modeled after the minimal-, low-, moderate-, and high-emetic risk levels defined in the antiemetic guidelines of the American Society of Clinical Oncology and the Multinational Association of Supportive Care in Cancer. For each case, respondents estimated the risks of nausea and vomiting separately and committed to an initial management approach. Results: In total, 1022 responses were received. Risk estimates and management decisions for the minimal- and high-risk cases varied little and were in line with guideline standards, whereas those for the low- and moderate-risk cases varied greatly. The most common initial management strategies were as follows: rescue therapy for a minimal-risk case (63% of respondents), 2 low-risk cases (56% and 80%), and 1 moderate-risk case (66%); and prophylactic therapy for a second moderate-risk case (75%) and a high-risk case (95%). The serotonin (5-HT){sub 3} receptor antagonists were the most commonly recommended prophylactic agents. On multivariate analysis, factors predictive of a decision for prophylactic or rescue therapy were risk estimates of nausea and vomiting, awareness of the American Society of Clinical Oncology antiemetic guideline, and European Society for Therapeutic Radiology and Oncology membership. Conclusions: Risk estimates and management strategies for RINV varied, especially for low- and moderate-risk radiation therapy cases. Radiation therapy-induced nausea and vomiting are under-studied treatment sequelae. New observational and translational studies are needed to allow for individual patient risk

  18. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector.

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-11-01

    Full Text Available Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.

  19. Treatment of amiodarone-induced thyrotoxicosis resistant to conventional therapy

    Directory of Open Access Journals (Sweden)

    Nišić Tanja

    2017-01-01

    Full Text Available Introduction: Amiodarone as an antiarrhythmic medication is necessary in the prevention and treatment of malignant ventricular arrhythmias, however, it can induce thyroid dysfunction. Thyroid dysfunction may be either hypothyroidism or thyrotoxicosis, however, 50% of patients who have used amiodarone are euthyroid. Case report: A 27-year-old female patient, hospitalized at the Clinic for Endocrinology due to type 2 amiodarone-induced thyrotoxicosis. The patient had previously received amiodarone for two years. At age 25, the patient was diagnosed with dilated cardiomyopathy (EF 25%, EDD/ESD 56-57/47 mm with mild Ebstein’s anomaly, WPW Sy and recorded episodes of non-sustained VT. In order to reduce the risk of sudden death and prevent malignant ventricular arrhythmias, ICD-VR was implanted and amiodarone was prescribed. Treatment with propylthiouracil (PTU and dexamethasone was initiated after thyrotoxicosis was diagnosed. Three weeks after the introduction of PTU, hepatotoxicity was registered, thus the medication was discontinued. Thyrozol, which regulates the hepatotoxicity parameters, was introduced. Sodium perchlorate and glucocorticoid (per os, IV and intrathyroidal therapy was introduced. The treatment had lasted for fifty days and laboratory signs of thyrotoxicosis were still present, which is why a total of eight plasmapheresis sessions were performed. Each plasmapheresis resulted in a significant decrease in FT4 and a slight decrease in FT3. After seventy two days of treatment, an optimal hormonal status of the thyroid gland was established and total thyroidectomy was performed. Conclusion: Patient was treated for amiodarone-induced thyrotoxicosis (AIT type 2, which was resistant to conventional therapy for a long period of time. Successful treatment was achieved by applying plasmapheresis although the effect of perchlorate and glucocorticoids application cannot be disregarded.

  20. Anabolic therapy in b-thalassaemia major induced osteoporosis: case report and literature review

    Directory of Open Access Journals (Sweden)

    F.P. Cantatore

    2011-06-01

    Full Text Available Transfusion program and chelating therapy treatment has extended the life expectancy of thalassaemic patient; osteoporosis is considered an important cause of morbidity in adult patients who display increased fracture risk. This is a case report is about a thalassaemic young female with multiple spine fractures (D11, D12 e L2 and lumbar spine DEXA - Tscore = -3,1 and femoral = -3,4. This was in spite of therapy with alendronate 70 mg/week from January 2006 to September 2007. The patient was subsequentently treated for 18 months with 1-34 recombinant human parathyroid hormone and colecalciferol (100.000 U/monthly. After 4 months of therapy, the patient showed a decrease in spinal pain (Roland and Morris Disability Questionnaire and an improvement of quality of life (Qualeffo with normalization of osteocalcin and 25-OHcolecalciferol haematic levels after 6 months. Lumbar spine and femoral DEXA - Tscore, at 18 months, rose respectively to -2,5 and -2,4. Thalassaemia-induced osteoporosis is multifactorial and its management is very difficult. Bone marrow expansion, endocrine dysfunction, iron overload and genetic factors all seem to play important roles in the development of low bone mass in these patients. Bisphosfonates have been used in the management of thalassemia induced osteoporosis but there is no data about fracture risk. Anabolic therapy for thalassemic patients requests additional study on a large scale.

  1. Radiosensitization of renal cell carcinoma in vitro through the induction of autophagy

    International Nuclear Information System (INIS)

    Anbalagan, Selvakumar; Pires, Isabel M.; Blick, Christopher; Hill, Mark A.; Ferguson, David J.P.; Chan, Denise A.; Hammond, Ester M.

    2012-01-01

    Background and purpose: For patients diagnosed with advanced renal cell carcinoma (RCC), there are few therapeutic options. Radiation therapy is predominantly used to treat metastasis and has not proven effective in the adjuvant setting for renal cancer. Furthermore, RCC is resistant to standard cytotoxic chemotherapies. Targeted anti-angiogenics are the standard of care for RCC but are not curative. Newer agents, such as mTOR inhibitors and others that induce autophagy, have shown great promise for treating RCC. Here, we investigate the potential use of the small molecule STF-62247 to modulate radiation. Materials and methods: Using RCC cell lines, we evaluate sensitivity to radiation in addition to agents that induce autophagic cell death by clonogenic survival assays. Furthermore, these were also tested under physiological oxygen levels. Results: STF-62247 specifically induces autophagic cell death in cells that have lost VHL, an essential mutation in the development of RCC. Treatment with STF-62247 did not alter cell cycle progression but when combined with radiation increased cell killing under oxic and hypoxic/physiological conditions. Conclusions: This study highlights the possibility of combining targeted therapeutics such as STF-62247 or temsirolimus with radiation to reduce the reliance on partial or full nephrectomy and improve patient prognosis.

  2. Bacteroides fragilis Enterotoxin Induces Formation of Autophagosomes in Endothelial Cells but Interferes with Fusion with Lysosomes for Complete Autophagic Flux through a Mitogen-Activated Protein Kinase-, AP-1-, and C/EBP Homologous Protein-Dependent Pathway.

    Science.gov (United States)

    Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg

    2017-10-01

    Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.

  3. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K.; van Wijk, Albert C.; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C.; van Gulik, Thomas M.; Storm, Gert; Heger, Michal

    2016-01-01

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of

  4. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, R.; Broekgaarden, M.; Krekorian, M.; Alles, L.K.; van Wijk, A.C; Mackaaij, C.; Verheij, J.; van der Wal, A.C.; van Gullik, T.M.; Storm, Gerrit; Heger, M.

    2016-01-01

    Background: Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression

  5. Upfront triple combination therapy-induced pulmonary edema in a case of pulmonary arterial hypertension associated with Sjogren's syndrome

    Directory of Open Access Journals (Sweden)

    Kimikazu Takeuchi

    Full Text Available Clinical efficacy of combination therapy using vasodilators for pulmonary arterial hypertension (PAH is well established. However, information on its safety are limited. We experienced a case of primary Sjogren's syndrome associated with PAH where the patient developed pulmonary edema immediately after the introduction of upfront triple combination therapy. Although the combination therapy successfully stabilized her pre-shock state, multiple ground glass opacities (GGO emerged. We aborted the dose escalation of epoprostenol and initiated continuous furosemide infusion and noninvasive positive pressure ventilation (NPPV, but this did not prevent an exacerbation of pulmonary edema. Chest computed tomography showing diffuse alveolar infiltrates without inter-lobular septal thickening suggests the pulmonary edema was unlikely due to cardiogenic pulmonary edema and pulmonary venous occlusive disease. Acute respiratory distress syndrome was also denied from no remarkable inflammatory sign and negative results of drug-induced lymphocyte stimulation tests (DLST. We diagnosed the etiological mechanism as pulmonary vasodilator-induced trans-capillary fluid leakage. Following steroid pulse therapy dramatically improved GGO. We realized that overmuch dose escalation of epoprostenol on the top of dual upfront combination poses the risk of pulmonary edema. Steroid pulse therapy might be effective in cases of vasodilator-induced pulmonary edema in Sjogren's syndrome associated with PAH. Keywords: Steroid therapy, Ground glass opacity, Inter-lobular septal thickening, Epoprostenol, Acute respiratory distress syndrome, Trans-capillary fluid leakage

  6. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    Directory of Open Access Journals (Sweden)

    Cristina Cappelletti

    Full Text Available Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs. In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM, polymyositis (PM, dermatomyositis (DM and juvenile dermatomyositis (JDM. We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1. These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  7. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu, E-mail: chaperones@163.com [College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001 (China); Wang, XueQin; Miao, YiMing; Chen, ZhiQiang; Qiang, PengFei; Cui, LiuQing; Jing, Hongjuan [College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001 (China); Guo, YuQi [Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China)

    2016-03-05

    Highlights: • B-Fe{sub 3}O{sub 4}NPs did not induce cell apoptosis or necrosis in HUVECs within 24 h. • B-Fe{sub 3}O{sub 4}NPs induced HUVEC dysfunction and inflammation. • B-Fe{sub 3}O{sub 4}NPs induced enhanced autophagic activity and blockade of autophagy flux. • Suppression of autophagy dysfunction attenuated B-Fe{sub 3}O{sub 4}NP-induced HUVEC dysfunction. - Abstract: Despite the considerable use of magnetic ferroferric oxide nanoparticles (Fe{sub 3}O{sub 4}NPs) worldwide, their safety is still an important topic of debate. In the present study, we detected the toxicity and biological behavior of bare-Fe{sub 3}O{sub 4}NPs (B-Fe{sub 3}O{sub 4}NPs) on human umbilical vascular endothelial cells (HUVECs). Our results showed that B-Fe{sub 3}O{sub 4}NPs did not induce cell death within 24 h even at concentrations up to 400 μg/ml. The level of nitric oxide (NO) and the activity of endothelial NO synthase (eNOS) were decreased after exposure to B-Fe{sub 3}O{sub 4}NPs, whereas the levels of proinflammatory cytokines were elevated. Importantly, B-Fe{sub 3}O{sub 4}NPs increased the accumulation of autophagosomes and LC3-II in HUVECs through both autophagy induction and the blockade of autophagy flux. The levels of Beclin 1 and VPS34, but not phosphorylated mTOR, were increased in the B-Fe{sub 3}O{sub 4}NP-treated HUVECs. Suppression of autophagy induction or stimulation of autophagy flux, at least partially, attenuated the B-Fe{sub 3}O{sub 4}NP-induced HUVEC dysfunction. Additionally, enhanced autophagic activity might be linked to the B-Fe{sub 3}O{sub 4}NP-induced production of proinflammatory cytokines. Taken together, these results demonstrated that B-Fe{sub 3}O{sub 4}NPs disturb the process of autophagy in HUVECs, and eventually lead to endothelial dysfunction and inflammation.

  8. Macrophage migration inhibitory factor induces vascular leakage via autophagy

    Directory of Open Access Journals (Sweden)

    Hong-Ru Chen

    2015-01-01

    Full Text Available Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF, we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA, a ROS scavenger (NAC or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

  9. Constraint-induced movement therapy in treatment of acute and sub-acute stroke: a meta-analysis of 16 randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Xi-hua Liu

    2017-01-01

    Results: A total of 16 prospective randomized controlled trials (379 patients in the constraint-induced movement-therapy group and 359 in the control group met inclusion criteria. Analysis showed significant mean differences in favor of constraint-induced movement therapy for the Fugl–Meyer motor assessment of the arm (weighted mean difference (WMD = 10.822; 95% confidence intervals (95% CI: 7.419–14.226, the action research-arm test (WMD = 10.718; 95% CI: 5.704–15.733, the motor activity log for amount of use and quality of movement (WMD = 0.812; 95% CI: 0.331–1.293 and the modified Barthel index (WMD = 10.706; 95% CI: 4.417–16.966. Conclusion: Constraint-induced movement therapy may be more beneficial than traditional rehabilitation therapy for improving upper limb function after acute or sub-acute stroke.

  10. Cell therapy with bone marrow mononuclear cells in elastase-induced pulmonary emphysema.

    Science.gov (United States)

    Longhini-Dos-Santos, Nathalia; Barbosa-de-Oliveira, Valter Abraão; Kozma, Rodrigo Heras; Faria, Carolina Arruda de; Stessuk, Talita; Frei, Fernando; Ribeiro-Paes, João Tadeu

    2013-04-01

    Emphysema is characterized by destruction of alveolar walls with loss of gas exchange surface and consequent progressive dyspnea. This study aimed to evaluate the efficiency of cell therapy with bone marrow mononuclear cells (BMMC) in an animal model of elastase-induced pulmonary emphysema. Emphysema was induced in C57Bl/J6 female mice by intranasal instillation of elastase. After 21 days, the mice received bone marrow mononuclear cells from EGFP male mice with C57Bl/J6 background. The groups were assessed by comparison and statistically significant differences (p pulmonary emphysema.

  11. Deliberate total parathyroidectomy: a potentially novel therapy for tumor-induced hypophosphatemic osteomalacia.

    Science.gov (United States)

    Bhadada, Sanjay K; Palnitkar, Saroj; Qiu, Shijing; Parikh, Nayana; Talpos, Gary B; Rao, Sudhaker D

    2013-11-01

    Tumor-induced osteomalacia (TIO) is an acquired hypophosphatemic metabolic bone disorder that can be cured by removing or ablating the offending tumor. However, when the tumor cannot be localized, lifelong therapy with oral phosphate and calcitriol or cinacalcet with close monitoring is required. A 56-year-old man was diagnosed with TIO in 1990. Initial therapy consisted of oral phosphate and calcitriol with symptomatic and biochemical improvement and healing of osteomalacia. Eight years later, hypercalcemic hyperparathyroidism developed, requiring subtotal parathyroidectomy with a transient increase in serum phosphate and normalization of serum calcium and PTH. Recurrent hypercalcemic hyperparathyroidism developed after 10 years of medical therapy. A deliberate total parathyroidectomy produced a prompt rise in serum phosphate into the normal range > 3.0 mg/dL and remained normal during the next 4 years of follow-up, despite continued very high serum fibroblast growth factor-23 levels throughout the 23-year follow-up. We report an unusual case of a TIO patient with long-term follow-up who developed recurrent hypercalcemic hyperparathyroidism on long-term oral phosphate therapy. Deliberate total parathyroidectomy normalized serum phosphate despite persistently elevated fibroblast growth factor-23 levels. Total parathyroidectomy offers a potentially novel therapy in some patients with TIO in whom medical therapy is not feasible or the tumor is unresectable.

  12. Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer

    International Nuclear Information System (INIS)

    Hirst, D.G.; Worthington, J.; Adams, C.; Robson, T.; Scott, S.D.

    2003-01-01

    Full text: The free radical nitric oxide (NO) at nM concentrations performs multiple signaling roles that are essential for survival. These processes are regulated via the enzymes nNOS and eNOS, but another isoform, inducible nitric oxide synthase (iNOS) is capable of generating much higher concentrations (mM) over longer periods, resulting in the generation of very toxic species such as peroxynitrite. At high concentrations NO has many of the characteristics of an ideal anticancer molecule: it is cytotoxic (pro-apoptotic via peroxynitrite), it is a potent chemical radiosensitizer, it is anti-angiogenic and anti-metastatic. Thus, we see iNOS gene therapy as a strategy for targeting the generation of high concentrations of NO to tumours for therapeutic benefit. iNOS gene therapy should be used in combination with radiotherapy; so it is logical that the use of a radiation-inducible promoter should be part of the targeting strategy. We have tested several candidate promoters in vitro and in vivo. The WAF1 promoter has many of the properties desirable for therapeutic use including: rapid 3-4 fold induction at X-ray doses of 2 and 4Gy and no significant leakiness. WAF1 also has the advantage of being inducible by hypoxia and by the final product, NO. We have also tested the synthetic CArG promoter and demonstrated that, in addition to a high level of radiation inducibility, it is also inducible by NO. We have also been able to demonstrate potent radiosensitization (SER 2.0-2.5) in tumour cells in vitro and in vivo using iNOS gene transfer with constitutive or radiation-inducible promoters. We have also tested the use of iNOS gene therapy in combination with cisplatin and shown significant enhancement

  13. Effect of modified constraint induced movement therapy on weight bearing and protective extension in children with hemiplegic cerebral palsy

    Directory of Open Access Journals (Sweden)

    Masoud Gharib

    2012-01-01

    Full Text Available Background: Constraint induced movement therapy is one of the new therapeutic interventions that limits the performance of intact upper limb with increased use of the affected limb. Aim of this study was to investigate the effects of modified constraint induced movement therapy on weight bearing & protective extension in children with hemiplegic cerebral palsy.Methods: 21 hemiplegic children were selected and randomly divided into experimental and control groups. Common Practices of Occupational Therapy applied for 6 weeks in both groups equally and test group received constrain induced movement therapy for three hours every day. Weight-bearing and protective extension was measured based on quality of test skills of upper limbs (QUEST. Data analyzed using appropriated statistical methods. Results: 11 children in the experimental group (7 girls, 4 boys with mean age 47.2 ± 55.5 months and 10 children in the control group (5 girls, 5 boys with mean age 19.2 ± 10.5 months were studied. No significant difference observed before and after six weeks intervention between two groups (P>0.05. There was a significant change before and after six weeks intervention in both subscales (P<0.05.Conclusion: This study showed that modified constraint induced movement therapy may affect weight bearing, but has no effect on the protective extension.

  14. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling.

    Science.gov (United States)

    Han, Bing; Yu, Yi-Qun; Yang, Qi-Lian; Shen, Chun-Ying; Wang, Xiao-Juan

    2017-10-17

    In the present study, we demonstrate that Kaempferol inhibited survival and proliferation of established human hepatocellular carcinoma (HCC) cell lines (HepG2, Huh-7, BEL7402, and SMMC) and primary human HCC cells. Kaempferol treatment in HCC cells induced profound AMP-activated protein kinase (AMPK) activation, which led to Ulk1 phosphorylation, mTOR complex 1 inhibition and cell autophagy. Autophagy induction was reflected by Beclin-1/autophagy gene 5 upregulation and p62 degradation as well as light chain 3B (LC3B)-I to LC3B-II conversion and LC3B puncta formation. Inhibition of AMPK, via AMPKα1 shRNA or dominant negative mutation, reversed above signaling changes. AMPK inhibition also largely inhibited Kaempferol-induced cytotoxicity in HCC cells. Autophagy inhibition, by 3-methyaldenine or Beclin-1 shRNA, also protected HCC cells from Kaempferol. Kaempferol downregulated melanoma antigen 6, the AMPK ubiquitin ligase, causing AMPKα1 stabilization and accumulation. We conclude that Kaempferol inhibits human HCC cells via activating AMPK signaling.

  15. Shock Wave Therapy Promotes Cardiomyocyte Autophagy and Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    Ling Du

    2017-06-01

    Full Text Available Background: Autophagy plays an important role in cardiovascular disease. Controversy still exists regarding the effect of autophagy on ischemic/hypoxic myocardium. Cardiac shock wave therapy (CSWT is an effective alternative treatment for refractory ischemic heart disease. Whether CSWT can regulate cardiomyocyte autophagy under hypoxic conditions is not clear. We established a myocardial hypoxia model using the H9c2 cell line and performed shock waves (SWs treatment to evaluate the effect of SW on autophagy. Methods: The H9c2 cells were incubated under hypoxic conditions, and SW treatment was then performed at energies of 0.02, 0.05, or 0.10 mJ/mm2. The cell viability and intracellular ATP level were examined. Western blot analysis was used to assess the expression of LC3B, AMPK, mTOR, Beclin-1, Sirt1, and HIF-1α. Autophagic vacuoles were visualized by monodansylcadaverine staining. Results: After the 24-hour hypoxic period, cardiomyocyte viability and ATP levels were decreased and autophagy was significantly increased in H9c2 cells. SW treatment with an energy of 0.05 mJ/mm2 significantly increased the cellular viability, ATP level, LC3B-II/I, and number of autophagic vacuoles. In addition, phosphorylated AMPK and Sirt1 were increased and phosphorylated mTOR and HIF-1α were decreased after SW treatment. Conclusion: SW treatment can potentially promote cardiomyocyte autophagy during hypoxia and protect cardiomyocyte function by regulating the AMPK/mTOR pathway.

  16. High-mobility group box 1 released by autophagic cancer-associated fibroblasts maintains the stemness of luminal breast cancer cells.

    Science.gov (United States)

    Zhao, Xi-Long; Lin, Yong; Jiang, Jun; Tang, Zhuo; Yang, Shuai; Lu, Lu; Liang, Yan; Liu, Xue; Tan, Jiao; Hu, Xu-Gang; Niu, Qin; Fu, Wen-Juan; Yan, Ze-Xuan; Guo, De-Yu; Ping, Yi-Fang; Wang, Ji Ming; Zhang, Xia; Kung, Hsiang-Fu; Bian, Xiu-Wu; Yao, Xiao-Hong

    2017-11-01

    Cancer stem cells/cancer-initiating cells (CICs) and their microenvironmental niche play a vital role in malignant tumour recurrence and metastasis. Cancer-associated fibroblasts (CAFs) are major components of the niche of breast cancer-initiating cells (BCICs), and their interactions may profoundly affect breast cancer progression. Autophagy has been considered to be a critical process for CIC maintenance, but whether it is involved in the cross-talk between CAFs and CICs to affect tumourigenesis and pathological significance has not been determined. In this study, we found that the presence of CAFs containing high levels of microtubule-associated protein 1 light chain 3 (LC3II), a marker of autophagosomes, was associated with more aggressive luminal human breast cancer. CAFs in human luminal breast cancer tissues with high autophagy activity enriched BCICs with increased tumourigenicity. Mechanistically, autophagic CAFs released high-mobility group box 1 (HMGB1), which activated its receptor, Toll-like receptor (TLR) 4, expressed by luminal breast cancer cells, to enhance their stemness and tumourigenicity. Furthermore, immunohistochemistry of 180 luminal breast cancers revealed that high LC3II/TLR4 levels predicted an increased relapse rate and a poorer prognosis. Our findings demonstrate that autophagic CAFs play a critical role in promoting the progression of luminal breast cancer through an HMGB1-TLR4 axis, and that both autophagy in CAFs and TLR4 on breast cancer cells constitute potential therapeutic targets. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. Redefining Strategies to Introduce Tolerance-Inducing Cellular Therapy in Human beings to Combat Autoimmunity and Transplantation Reactions

    NARCIS (Netherlands)

    ten Brinke, Anja; Joosten, Irma; van Ham, S. Marieke; van Kooten, Cees; Prakken, Berent Jan

    2014-01-01

    Clinical translation of tolerance-inducing cell therapies requires a novel approach focused on innovative networks, patient involvement, and, foremost, a fundamental paradigm shift in thinking from both Academia, and Industry and Regulatory Agencies. Tolerance-inducing cell products differ

  18. Hypoxia-Inducible Regulation of a Prodrug-Activating Enzyme for Tumor-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Toru Shibata

    2002-01-01

    Full Text Available Previous studies have suggested that tumor hypoxia could be exploited for cancer gene therapy. Using hypoxia-responsive elements derived from the human vascular endothelial growth factor gene, we have generated vectors expressing a bacterial nitroreductase. (20NTR gene that can activate the anticancer prodrug CB1954. Stable transfectants of human HT1080 tumor cells with hypoxia-inducible vectors were established with G418 selection. Hypoxic induction of NTR protein correlated with increased sensitivity to in vitro exposure of HT 1080 cells to the prodrug. Growth delay assays were performed with established tumor xenografts derived from the same cells to detect the in vivo efficacy of CB1954 conversion to its cytotoxic form. Significant antitumor effects were achieved with intraperitoneal injections of CB1954 both in tumors that express NTR constitutively or with a hypoxia-inducible promoter. In addition, respiration of 10% O2 increased tumor hypoxia in vivo and enhanced the antitumor effects. Taken together, these results demonstrate that hypoxia-inducible vectors may be useful for tumor-selective gene therapy, although the problem of delivery of the vector to the tumors, particularly to the hypoxic cells in the tumors, is not addressed by these studies.

  19. Interventional therapy for gastrointestinal hemorrhage induced by Dieulafoy disease

    International Nuclear Information System (INIS)

    Su Xiuqin; Yu Shiping; Zhang Jin; Zhang Caizhen; Yuan Wei; Meng Xiangwen

    2008-01-01

    Objective: To investigate and assess the efficiency and clinical value of interventional therapy for gastrointestinal hemorrhage induced by Dieulafoy disease. Methods: Ten patients definitely diagnosed with Dieulafoy disease suffering from massive acute gastrointestinal hemorrhage received celiac arterial and left gastric arterial angiography, outcoming with 8 positively and 2 negative cases. Among them, 6 were embolized with gelfoam particles and the other two with aneurismal dilatation received gelfoam particles and spring steel coils; and one of the negtive cases was given hypophysin and without intervention to the other. Results: Among the 8 intra-arterial embolized cases, only 1 case rebleeded on the third day after gelfoam embolization, and then treated by surgical operation, and the rest 7 showed no rebleeding. One case with hypophysin treatment rehabilitated after one week. Conclusions: Interventional therapeutics is a safe and effective emergency management for gastrointestinal hemorrhage induced by Dieulafoy disease. (authors)

  20. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: management strategies and economic impact

    DEFF Research Database (Denmark)

    Jensen, S.B.; Pedersen, A.M.L.; Vissink, A.

    2010-01-01

    This systematic review aimed to assess the literature for management strategies and economic impact of salivary gland hypofunction and xerostomia induced by cancer therapies and to determine the quality of evidence-based management recommendations. The electronic databases of MEDLINE/PubMed and E......This systematic review aimed to assess the literature for management strategies and economic impact of salivary gland hypofunction and xerostomia induced by cancer therapies and to determine the quality of evidence-based management recommendations. The electronic databases of MEDLINE......, amifostine, muscarinic agonist stimulation, oral mucosal lubricants, acupuncture, and submandibular gland transfer. There is evidence that salivary gland hypofunction and xerostomia induced by cancer therapies can be prevented or symptoms be minimized to some degree, depending on the type of cancer treatment...... formulas, submandibular gland transfer, acupuncture, hyperbaric oxygen treatment, management strategies in pediatric cancer populations, and the economic consequences of salivary gland hypofunction and xerostomia...

  1. Kalman Filtered MR Temperature Imaging for Laser Induced Thermal Therapies

    OpenAIRE

    Fuentes, D.; Yung, J.; Hazle, J. D.; Weinberg, J. S.; Stafford, R. J.

    2011-01-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comp...

  2. Comparison of British Thoracic Society and American Thoracic Society reintroduction guidelines for anti-tuberculous therapy induced liver injury

    International Nuclear Information System (INIS)

    Zuberi, B. F.; Alvi, H.; Zuberi, F. F.; Salahuddin, J.

    2014-01-01

    Objective: To compare the efficacy of British Thoracic Society and American Thoracic Society guidelines for re-introduction of anti-tuberculous therapy after drug-induced liver injury, and to assess the ease of administration of each guideline on a scale of 1-10. Methods: The randomised prospective interventional study was conducted at the Department of Medicine and Pulmonology, Dow University of Health Sciences, Karachi, from December 2011 to November 2013. Patients with anti-tuberculous therapy drug-induced liver injury were selected. Hepatotoxic anti-tuberculous therapy was stopped and modified anti-tuberculous therapy was started. Patients were followed weekly till clinical and biochemical parameters got stabilised. After stabilisation, the patients were randomised to one of the two groups to receive re-introduction of anti-tuberculous therapy under the guidelines of British Thoracic Society (Group I) or those of American Thoracic Society (Group II). Means of the groups were analysed by Student's t test and proportions were compared by chi-square test. Multivariate analysis was done for age, body mass index and serum albumin for recurrence of drug-induced liver injury after the re-introduction. P value <0.05 was taken as significant. Results: Of the total 325 patients, 163(50.15%) were in Group I, while 162(49.84%) were in Group II. The frequency of recurrence of drug-induced liver injury in Group I was 16 (9.8%) and in Group II it was 18 (11.1%). There was no statistically significant difference between the two groups (p<0.7). Age was positively related with drug-induced liver injury, while body mass index and serum albumin were negatively associated. Conclusion: There was no significant difference between the two major guidelines though the American Thoracic Society guideline was easier to follow. (author)

  3. Neferine reduces cisplatin-induced nephrotoxicity by enhancing autophagy via the AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Li, Hui; Tang, Yuling; Wen, Long; Kong, Xianglong; Chen, Xuelian; Liu, Ping; Zhou, Zhiguo; Chen, Wenhang; Xiao, Chenggen; Xiao, Ping; Xiao, Xiangcheng

    2017-03-11

    Cisplatin is one of the most effective chemotherapeutic agents; however, its clinical use is limited by serious side effects of which nephrotoxicity is the most important. Nephrotoxicity induced by cisplatin is closely associated with autophagy reduction and caspase activation. In this study, we investigated whether neferine, an autophagy inducer, had a protective effect against cisplatin-induced nephrotoxicity. In an in vitro cisplatin-induced nephrotoxicity model, we determined that neferine was able to induce autophagy and that pretreatment with neferine not only attenuated cisplatin-induced cell apoptosis but further activated cell autophagy. This pro-survival effect was abolished by the autophagic flux inhibitor chloroquine. Furthermore, neferine pretreatment activated the AMPK/mTOR pathway; however, pharmacological inhibition of AMPK abolished neferine-mediated autophagy and nephroprotection against cisplatin-induced apoptosis. Collectively, our findings suggest for the first time the possible protective mechanism of neferine, which is crucial for its further development as a potential therapeutic agent for cisplatin-induced nephrotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions

    Directory of Open Access Journals (Sweden)

    Huang Po-Hsun

    2012-08-01

    Full Text Available Abstract Background Far infra-red (IFR therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process. Materials and methods Starting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group. The latter mice were placed in an IFR dry sauna at 34°C for 30 min once per day for 5 weeks. Results Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+ mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group. However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. Conclusions Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ-induced

  5. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    Science.gov (United States)

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  6. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenglong [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zheng, Haining [Department of Hyperbaric Oxygen, Nanjing General Hospital of Nanjing Military Command, Nanjing (China); Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Ding, Dafa, E-mail: dingdafa2004@aliyun.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Lu, Yibing, E-mail: luyibing2004@126.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  7. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    International Nuclear Information System (INIS)

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-01-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK

  8. Constraint-induced sound therapy for sudden sensorineural hearing loss – behavioral and neurophysiological outcomes

    OpenAIRE

    Hidehiko Okamoto; Munehisa Fukushima; Henning Teismann; Lothar Lagemann; Tadashi Kitahara; Hidenori Inohara; Ryusuke Kakigi; Christo Pantev

    2014-01-01

    Sudden sensorineural hearing loss is characterized by acute, idiopathic hearing deterioration. We report here the development and evaluation of “constraint-induced sound therapy”, which is based on a well-established neuro-rehabilitation approach, and which is characterized by the plugging of the intact ear (“constraint”) and the simultaneous, extensive stimulation of the affected ear with music. The sudden sensorineural hearing loss patients who received the constraint-induced sound therapy ...

  9. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis

    Science.gov (United States)

    Ruiz, A; Rockfield, S; Taran, N; Haller, E; Engelman, R W; Flores, I; Panina-Bordignon, P; Nanjundan, M

    2016-01-01

    In endometriosis, the increased survival potential of shed endometrial cells (which normally undergo anoikis) is suggested to promote lesion development. One mechanism that may alter anoikis is autophagy. Using an autophagic flux inhibitor hydroxychloroquine (HCQ), we identified that it reduces the in vitro survival capacity of human endometriotic and endometrial T-HESC cells. We also identified that HCQ could decrease lesion numbers and disrupt lesion histopathology, as well as increase the levels of peritoneal macrophages and the IP-10 (10 kDa interferon-γ-induced protein) chemokine in a mouse model of endometriosis. We noted that RNA levels of a subset of autophagic markers were reduced in lesions relative to uterine horns from endometriosis-induced (untreated) mice. In addition, the RNA levels of autophagic markers were decreased in uterine horns of endometriosis-induced mice compared with those from controls. However, we noted that protein expression of LC3B (microtubule-associated protein 1 light-chain 3β; an autophagic marker) was increased in uterine horns of endometriosis-induced mice compared with uterine horns of controls. By immunohistochemical staining of a human endometriosis-focused tissue microarray, we observed LC3B expression predominantly in epithelial relative to stromal cells in both eutopic and ectopic endometria. Via transmission electron microscopy, cells from eutopic endometria of endometriosis-induced mice contained more lipid droplets (rather than autophagosomes) compared with uterine horns from controls. Collectively, our findings indicate that the autophagic pathway is dysregulated in both ectopic and eutopic endometrium in a murine model of endometriosis and that HCQ has potential as a therapeutic agent for women afflicted with endometriosis. PMID:26775710

  10. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Directory of Open Access Journals (Sweden)

    Sagai Masaru

    2011-12-01

    Full Text Available Abstract The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not. Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB, resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2. Nrf2 then induces the transcription of antioxidant response elements (ARE. Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr, catalase (CAT, heme-oxygenase-1 (HO-1, NADPH-quinone-oxidoreductase (NQO-1, phase II enzymes of drug metabolism and heat shock proteins (HSP. Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT and activated protein-1 (AP-1. Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a, which is also induced via

  11. Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Yeh, Su-Peng; Lo, Wen-Jyi; Lin, Chiao-Lin; Liao, Yu-Min; Lin, Chen-Yuan; Bai, Li-Yuan; Liang, Ji-An; Chiu, Chang-Fang

    2012-02-01

    Both bone marrow hematopoietic cells (BM-HCs) and mesenchymal stem cells (BM-MSCs) may have cytogenetic aberrations in leukemic patients, and anti-leukemic therapy may induce cytogenetic remission of BM-HCs. The impact of anti-leukemic therapy on BM-MSCs remains unknown. Cytogenetic studies of BM-MSCs from 15 leukemic patients with documented cytogenetic abnormalities of BM-HCs were investigated. To see the influence of anti-leukemic therapy on BM-MSCs, cytogenetic studies were carried out in seven of them after the completion of anti-leukemic therapy, including anthracycline/Ara-C-based chemotherapy in two patients, high-dose busulfan/cyclophosphamide-based allogeneic transplantation in two patients, and total body irradiation (TBI)-based allogeneic transplantation in three patients. To simulate the effect of TBI in vitro, three BM-MSCs from one leukemic patient and two normal adults were irradiated using the same dosage and dosing schedule of TBI and cytogenetics were re-examined after irradiation. At the diagnosis of leukemia, two BM-MSCs had cytogenetic aberration, which were completely different to their BM-HCs counterpart. After the completion of anti-leukemic therapy, cytogenetic aberration was no longer detectable in one patient. Unexpectedly, BM-MSCs from three patients receiving TBI-based allogeneic transplantation acquired new, clonal cytogenetic abnormalities after transplantation. Similarly, complex cytogenetic abnormalities were found in all the three BM-MSCs exposed to in vitro irradiation. In conclusion, anti-leukemic treatments induce not only "cytogenetic remission" but also new cytogenetic abnormalities of BM-MSCs. TBI especially exerts detrimental effect on the chromosomal integrity of BM-MSCs and highlights the equal importance of investigating long-term adverse effect of anti-leukemic therapy on BM-MSCs as opposed to beneficial effect on BM-HCs.

  12. Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: a randomized controlled study.

    Science.gov (United States)

    Lin, K-C; Wu, C-Y; Wei, T-H; Lee, C-Y; Liu, J-S

    2007-12-01

    To evaluate changes in (1) motor control characteristics of the hemiparetic hand during the performance of a functional reach-to-grasp task and (2) functional performance of daily activities in patients with stroke treated with modified constraint-induced movement therapy. Two-group randomized controlled trial with pretreatment and posttreatment measures. Rehabilitation clinics. Thirty-two chronic stroke patients (21 men, 11 women; mean age=57.9 years, range=43-81 years) 13-26 months (mean 16.3 months) after onset of a first-ever cerebrovascular accident. Thirty-two patients were randomized to receive modified constraint-induced movement therapy (restraint of the unaffected limb combined with intensive training of the affected limb) or traditional rehabilitation for three weeks. Kinematic analysis was used to assess motor control characteristics as patients reached to grasp a beverage can. Functional outcomes were evaluated using the Motor Activity Log and Functional Independence Measure. There were moderate and significant effects of modified constraint-induced movement therapy on some aspects of motor control of reach-to-grasp and on functional ability. The modified constraint-induced movement therapy group preplanned reaching and grasping (P=0.018) more efficiently and depended more on the feedforward control of reaching (P=0.046) than did the traditional rehabilitation group. The modified constraint-induced movement therapy group also showed significantly improved functional performance on the Motor Activity Log (Pcontrol strategy during goal-directed reaching, a possible mechanism for the improved movement performance of stroke patients undergoing this therapy.

  13. Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy

    International Nuclear Information System (INIS)

    Pattani, Varun P.; Shah, Jay; Atalis, Alexandra; Sharma, Anirudh; Tunnell, James W.

    2015-01-01

    Current cancer therapies can cause significant collateral damage due to a lack of specificity and sensitivity. Therefore, we explored the cell death pathway response to gold nanorod (GNR)-mediated photothermal therapy as a highly specific cancer therapeutic to understand the role of apoptosis and necrosis during intense localized heating. By developing this, we can optimize photothermal therapy to induce a maximum of ‘clean’ cell death pathways, namely apoptosis, thereby reducing external damage. GNRs were targeted to several subcellular localizations within colorectal tumor cells in vitro, and the cell death pathways were quantitatively analyzed after photothermal therapy using flow cytometry. In this study, we found that the cell death response to photothermal therapy was dependent on the GNR localization. Furthermore, we demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm 2 laser fluence rate led to maximum cell destruction with the ‘cleaner’ method of apoptosis, at similar percentages as other anti-cancer targeted therapies. We believe that this indicates the therapeutic potential for GNR-mediated photothermal therapy to treat cancer effectively without causing damage to surrounding tissue

  14. Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pattani, Varun P., E-mail: varun.pattani@utexas.edu; Shah, Jay; Atalis, Alexandra; Sharma, Anirudh; Tunnell, James W. [The University of Texas at Austin, Department of Biomedical Engineering (United States)

    2015-01-15

    Current cancer therapies can cause significant collateral damage due to a lack of specificity and sensitivity. Therefore, we explored the cell death pathway response to gold nanorod (GNR)-mediated photothermal therapy as a highly specific cancer therapeutic to understand the role of apoptosis and necrosis during intense localized heating. By developing this, we can optimize photothermal therapy to induce a maximum of ‘clean’ cell death pathways, namely apoptosis, thereby reducing external damage. GNRs were targeted to several subcellular localizations within colorectal tumor cells in vitro, and the cell death pathways were quantitatively analyzed after photothermal therapy using flow cytometry. In this study, we found that the cell death response to photothermal therapy was dependent on the GNR localization. Furthermore, we demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm{sup 2} laser fluence rate led to maximum cell destruction with the ‘cleaner’ method of apoptosis, at similar percentages as other anti-cancer targeted therapies. We believe that this indicates the therapeutic potential for GNR-mediated photothermal therapy to treat cancer effectively without causing damage to surrounding tissue.

  15. Clinical investigation of predictors of radiation-induced bronchiolitis obliterans organizing pneumonia syndrome after breast-conserving therapy

    International Nuclear Information System (INIS)

    Matsuyama, Tomohiko; Furusawa, Mitsuhiro; Yasunaga, Tadamasa; Nishimura, Reiki; Ohya, Natsuo

    2011-01-01

    We investigated 710 patients with breast cancer who received radiotherapy after breast-conserving surgery at our institution to evaluate the incidence of radiation-induced bronchiolitis obliterans organizing pneumonia (BOOP) syndrome focusing on the interval from irradiation to onset and the clinical presentation. The predictive value of age (≤50 or >50), chemotherapy and hormone therapy was statistically analyzed to determine whether these are risk factors for BOOP syndrome. Radiation-induced BOOP syndrome was seen in 1.3% (9/710). In most cases, the symptoms were mild and none of the patients required hospitalization. Eight patients (88.9%) responded well to steroid administration, but 5 of these patients relapsed after or during tapering of steroids. Although we could not detect significant risk factors for BOOP syndrome, a higher patient age was associated with a higher incidence of radiation-induced BOOP syndrome after breast-conserving therapy. (author)

  16. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    Science.gov (United States)

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  17. [Side effects of the HMG-CoA reductase inhibitors (statins). Lupus erythematosus induced by Atorvastatin therapy].

    Science.gov (United States)

    Hydzik, Piotr; Szpak, Dorota

    2011-01-01

    The paper describes the case of 56 years old woman admitted to the Toxicology Department because of skin lesions, joint and muscle pain and elevated activity of transaminases and creatine phosfokinase as well in biochemical analysis. The symptoms occurred after 6 days of the Atorvastatin therapy. The clinical picture indicated side effects of the hipolipemic therapy, but the presence of the skin lesions suggested drug induced collagenosis (lupus erythrematosus, dermatomyositis). Immunological studies confirmed association with antinuclear antibodies (ANA) and anti-Mi-2 autoantibodies in the serum. Immunosuppressive therapy was ordered with clinical and biochemical improvement.

  18. Mustard vesicant-induced lung injury: Advances in therapy

    International Nuclear Information System (INIS)

    Weinberger, Barry; Malaviya, Rama; Sunil, Vasanthi R.; Venosa, Alessandro; Heck, Diane E.; Laskin, Jeffrey D.; Laskin, Debra L.

    2016-01-01

    Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.

  19. Mustard vesicant-induced lung injury: Advances in therapy

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Barry, E-mail: bweinberger@northwell.edu [Division of Neonatal and Perinatal Medicine, Hofstra Northwell School of Medicine, Cohen Children' s Medical Center of New York, New Hyde Park, NY 11040 (United States); Malaviya, Rama; Sunil, Vasanthi R.; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, School of Public Health, Valhalla, NY 10595 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2016-08-15

    Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.

  20. From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing.

    Science.gov (United States)

    Hotta, Akitsu; Yamanaka, Shinya

    2015-01-01

    The advent of induced pluripotent stem (iPS) cells has opened up numerous avenues of opportunity for cell therapy, including the initiation in September 2014 of the first human clinical trial to treat dry age-related macular degeneration. In parallel, advances in genome-editing technologies by site-specific nucleases have dramatically improved our ability to edit endogenous genomic sequences at targeted sites of interest. In fact, clinical trials have already begun to implement this technology to control HIV infection. Genome editing in iPS cells is a powerful tool and enables researchers to investigate the intricacies of the human genome in a dish. In the near future, the groundwork laid by such an approach may expand the possibilities of gene therapy for treating congenital disorders. In this review, we summarize the exciting progress being made in the utilization of genomic editing technologies in pluripotent stem cells and discuss remaining challenges toward gene therapy applications.

  1. Screening of microbial radiation-inducible promoter and study of its expression; Development of basic technique of radiogenic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Kim Dongho; Yang, Jaeseung

    2007-02-15

    In the search for new therapeutic modalities for cancer, gene therapy has attracted enormous interest over the last few years. Recently, the use of bacteria as a tumor specific protein transfer system has attracted interest. Attenuated Salmonella has been shown to provide selective colonization in tumors. This strategy to apply gene therapy for cancer has been defined as 'Radiogenic Therapy'. In this research, firstly, we screened a radiation inducible promoter of Salmonella responding to clinically relevant low dose of 10 Gy using microarray analysis. Of all genes showing a expression ratio of at least 2-fold changes relative to wild type, 168 genes were induced. To confirm the findings of the microarray by an alternative method, we investigated the transcriptional changes of radio-inducible genes using real time PCR analysis. To verify the ability of screened genes (fadB, narK, cyoA, STM1011, STM2617, and STM2632) to produce a downstream protein by irradiation, the reporter plasmids were constructed. Finally, we found that the promoter of fadB, cyoA, and STM2617 can be activated by irradiation within cancer cells. These results suggest that these genes may be the most probable candidate used in radiogenic therapy.

  2. Screening of microbial radiation-inducible promoter and study of its expression; Development of basic technique of radiogenic therapy

    International Nuclear Information System (INIS)

    Lim, Sangyong; Kim Dongho; Yang, Jaeseung

    2007-02-01

    In the search for new therapeutic modalities for cancer, gene therapy has attracted enormous interest over the last few years. Recently, the use of bacteria as a tumor specific protein transfer system has attracted interest. Attenuated Salmonella has been shown to provide selective colonization in tumors. This strategy to apply gene therapy for cancer has been defined as 'Radiogenic Therapy'. In this research, firstly, we screened a radiation inducible promoter of Salmonella responding to clinically relevant low dose of 10 Gy using microarray analysis. Of all genes showing a expression ratio of at least 2-fold changes relative to wild type, 168 genes were induced. To confirm the findings of the microarray by an alternative method, we investigated the transcriptional changes of radio-inducible genes using real time PCR analysis. To verify the ability of screened genes (fadB, narK, cyoA, STM1011, STM2617, and STM2632) to produce a downstream protein by irradiation, the reporter plasmids were constructed. Finally, we found that the promoter of fadB, cyoA, and STM2617 can be activated by irradiation within cancer cells. These results suggest that these genes may be the most probable candidate used in radiogenic therapy

  3. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy.

    Science.gov (United States)

    Ohulchanskyy, Tymish Y; Kopwitthaya, Atcha; Jeon, Mansik; Guo, Moran; Law, Wing-Cheung; Furlani, Edward P; Kim, Chulhong; Prasad, Paras N

    2013-11-01

    We present a magnetoplasmonic nanoplatform combining gold nanorods (GNR) and iron-oxide nanoparticles within phospholipid-based polymeric nanomicelles (PGRFe). The gold nanorods exhibit plasmon resonance absorbance at near infrared wavelengths to enable photoacoustic imaging and photothermal therapy, while the Fe3O4 nanoparticles enable magnetophoretic control of the nanoformulation. The fabricated nanoformulation can be directed and concentrated by an external magnetic field, which provides enhancement of a photoacoustic signal. Application of an external field also leads to enhanced uptake of the magnetoplasmonic formulation by cancer cells in vitro. Under laser irradiation at the wavelength of the GNR absorption peak, the PGRFe formulation efficiently generates plasmonic nanobubbles within cancer cells, as visualized by confocal microscopy, causing cell destruction. The combined magnetic and plasmonic functionalities of the nanoplatform enable magnetic field-directed, imaging-guided, enhanced photo-induced cancer therapy. In this study, a nano-formulation of gold nanorods and iron oxide nanoparticles is presented using a phospholipid micelle-based delivery system for magnetic field-directed and imaging-guided photo-induced cancer therapy. The gold nanorods enable photoacoustic imaging and photothermal therapy, while the Fe3O4 nanoparticles enable magnetophoretic control of the formulation. This and similar systems could enable more precise and efficient cancer therapy, hopefully in the near future, after additional testing. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A review of Constraint-Induced Therapy applied to aphasia rehabilitation in stroke patients

    Directory of Open Access Journals (Sweden)

    Joana Bisol Balardin

    Full Text Available Abstract Constraint-induced aphasia therapy (CIAT is an intensive therapy model based on the forced use of verbal oral language as the sole channel of communication, while any alternative communication mode such as writing, gesturing or pointing are prevented. Objectives: This critical review involved the analysis of studies examining CIAT applied to stroke patients. Methods and Results: Using keywords, the Medline database was searched for relevant studies published between 2001 and 2008 (Medline 2001-2008. The critical evaluation of the articles was based on the classifications described by the ASNS (Cicerone adaptation. Two studies were categorized as level Ia, two as level II and one study as level IV. Conclusions: These recommendations should be interpreted with caution, given the small number of studies involved, but serve as a guideline for future studies in aphasia therapy.

  5. Qianlie Xiaozheng Decoction Induces Autophagy in Human Prostate Cancer Cells via Inhibition of the Akt/mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Yuehua Xu

    2018-04-01

    Full Text Available Qianlie Xiaozheng decoction (QLXZD, a traditional Chinese medicinal formula, has been used clinically to treat advanced prostate cancer (PCa for more than 10 years. However, experimental evidence supporting its efficacy is lacking. Here, we investigated the anticancer properties and molecular mechanism of QLXZD in vitro in a human PCa cell line (PC3 and in vivo using PC3 xenografts in nude mice. We confirmed the antineoplastic activity of QLXZD by analyzing cell viability and tumor volume growth, which decreased significantly compared to that of the controls. Autophagy following QLXZD treatment was detected morphologically using transmission electron microscopy and was confirmed by measuring the expression of autophagy markers (LC3-II and p62 using fluorescence analysis, flow cytometry, and western blotting. Increasing autophagic flux induced by QLXZD was monitored via pmCherry-GFP-LC3 fluorescence analysis. QLXZD-induced autophagic cell death was alleviated by the autophagy inhibitors, 3-methyl adenine and hydroxychloroquine. We evaluated the total expression and phosphorylation levels of proteins involved in the Akt/mTOR pathway regulating autophagy. Phosphorylation of Akt, mTOR, and p70S6K, but not total protein levels, decreased following treatment. This is the first study to demonstrate the autophagy-related mechanistic pathways utilized during QLXZD-mediated antitumor activity both in vitro and in vivo. These findings support the clinical use of QLXZD for PCa treatment.

  6. Constraint-induced movement therapy for children with acquired brain injury

    DEFF Research Database (Denmark)

    Pedersen, Kristina Schmidt; Pallesen, Hanne; Kristensen, Hanne Kaae

    2016-01-01

    An estimated 125–137 Danish children with acquired brain injury (ABI) require rehabilitation annually, 30–40 of these at a highly specialized level. Constraint-induced movement therapy (CIMT) has shown significant effects in increasing function in children with cerebral palsy. More knowledge of how...... CIMT can be adapted for the rehabilitation of children with ABI is needed. The primary purpose of the study was to generate new knowledge about the pedagogical initiatives and frameworks involved in children’s participation in and activities during CIMT. Four children with ABI participated in the 60 h...

  7. Betulinic acid-induced mitochondria-dependent cell death is counterbalanced by an autophagic salvage response

    NARCIS (Netherlands)

    Potze, L.; Mullauer, F. B.; Colak, S.; Kessler, J. H.; Medema, J. P.

    2014-01-01

    Betulinic acid (BetA) is a plant-derived pentacyclic triterpenoid that exerts potent anti-cancer effects in vitro and in vivo. It was shown to induce apoptosis via a direct effect on mitochondria. This is largely independent of proapoptotic BAK and BAX, but can be inhibited by cyclosporin A (CsA),

  8. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML. In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag, in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  9. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    Science.gov (United States)

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  10. Liu Jun Zi Tang—A Potential, Multi-Herbal Complementary Therapy for Chemotherapy-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Chun-Tang Chiou

    2018-04-01

    Full Text Available Liu Jun Zi Tang (LJZT has been used to treat functional dyspepsia and depression, suggesting its effects on gastrointestinal and neurological functions. LJZT is currently used as a complementary therapy to attenuate cisplatin-induced side effects, such as dyspepsia. However, its effect on chemotherapy-induced neuropathic pain or neurotoxicity has rarely been studied. Thus, we explored potential mechanisms underlying LJZT protection against cisplatin-induced neurotoxicity. We observed that LJZT attenuated cisplatin-induced thermal hyperalgesia in mice and apoptosis in human neuroblastoma SH-SY5Y cells. Furthermore, it also attenuated cisplatin-induced cytosolic and mitochondrial free radical formation, reversed the cisplatin-induced decrease in mitochondrial membrane potential, and increased the release of mitochondrial pro-apoptotic factors. LJZT not only activated the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α promoter region, but also attenuated the cisplatin-induced reduction of PGC-1α expression. Silencing of the PGC-1α gene counteracted the protection of LJZT. Taken together, LJZT mediated, through anti-oxidative effect and mitochondrial function regulation, to prevent cisplatin-induced neurotoxicity.

  11. Pilot evaluation of Scrambler therapy for the treatment of chemotherapy-induced peripheral neuropathy.

    Science.gov (United States)

    Pachman, Deirdre R; Weisbrod, Breanna L; Seisler, Drew K; Barton, Debra L; Fee-Schroeder, Kelliann C; Smith, Thomas J; Lachance, Daniel H; Liu, Heshan; Shelerud, Randy A; Cheville, Andrea L; Loprinzi, Charles L

    2015-04-01

    Chemotherapy-induced peripheral neuropathy (CIPN), a common side effect of chemotherapy, needs better effective treatments. Preliminary data support the use of Scrambler therapy, a device which treats pain via noninvasive cutaneous electrostimulation, for the treatment of CIPN. The current manuscript reports data from a pilot trial, performed to investigate the effect of Scrambler therapy for the treatment of established CIPN. Eligible patients had CIPN symptoms of ≥1 month duration with tingling and/or pain ≥4/10 during the prior week. Patients were treated with Scrambler therapy to the affected area(s) for up to ten daily 30-min sessions. Symptoms were monitored using a neuropathy questionnaire consisting of numerical analog scales ranging from 0 to 10, daily before therapy as well as weekly for 10 weeks after therapy. Descriptive summary statistics formed the basis of data analysis. Thirty-seven patients were enrolled. Twenty-five patients were treated primarily on their lower extremities while 12 were treated primarily on their upper extremities. There was a 53 % reduction in pain score from baseline to day 10; a 44 % reduction in tingling; and a 37 % reduction in numbness. Benefit appeared to last throughout 10 weeks of follow-up. There were no substantial adverse events. Preliminary data support that Scrambler therapy may be effective for the treatment of CIPN: a prospective placebo-controlled clinical trial should be performed.

  12. Small-Molecule Sigma1 Modulator Induces Autophagic Degradation of PD-L1.

    Science.gov (United States)

    Maher, Christina M; Thomas, Jeffrey D; Haas, Derick A; Longen, Charles G; Oyer, Halley M; Tong, Jane Y; Kim, Felix J

    2018-02-01

    Emerging evidence suggests that Sigma1 ( SIGMAR1 , also known as sigma-1 receptor) is a unique ligand-regulated integral membrane scaffolding protein that contributes to cellular protein and lipid homeostasis. Previously, we demonstrated that some small-molecule modulators of Sigma1 alter endoplasmic reticulum (ER)-associated protein homeostasis pathways in cancer cells, including the unfolded protein response and autophagy. Programmed death-ligand 1 (PD-L1) is a type I integral membrane glycoprotein that is cotranslationally inserted into the ER and is processed and transported through the secretory pathway. Once at the surface of cancer cells, PD-L1 acts as a T-cell inhibitory checkpoint molecule and suppresses antitumor immunity. Here, we demonstrate that in Sigma1-expressing triple-negative breast and androgen-independent prostate cancer cells, PD-L1 protein levels were suppressed by RNAi knockdown of Sigma1 and by small-molecule inhibition of Sigma1. Sigma1-mediated action was confirmed by pharmacologic competition between Sigma1-selective inhibitor and activator ligands. When administered alone, the Sigma1 inhibitor decreased cell surface PD-L1 expression and suppressed functional interaction of PD-1 and PD-L1 in a coculture of T cells and cancer cells. Conversely, the Sigma1 activator increased PD-L1 cell surface expression, demonstrating the ability to positively and negatively modulate Sigma1 associated PD-L1 processing. We discovered that the Sigma1 inhibitor induced degradation of PD-L1 via autophagy, by a mechanism distinct from bulk macroautophagy or general ER stress-associated autophagy. Finally, the Sigma1 inhibitor suppressed IFNγ-induced PD-L1. Our data demonstrate that small-molecule Sigma1 modulators can be used to regulate PD-L1 in cancer cells and trigger its degradation by selective autophagy. Implications: Sigma1 modulators sequester and eliminate PD-L1 by autophagy, thus preventing functional PD-L1 expression at the cell surface. This

  13. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    Science.gov (United States)

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  14. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    Science.gov (United States)

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  15. IL-1β-Induced Accumulation of Amyloid: Macroautophagy in Skeletal Muscle Depends on ERK

    Directory of Open Access Journals (Sweden)

    Karsten Schmidt

    2017-01-01

    Full Text Available The pathology of inclusion body myositis (IBM involves an inflammatory response and β-amyloid deposits in muscle fibres. It is believed that MAP kinases such as the ERK signalling pathway mediate the inflammatory signalling in cells. Further, there is evidence that autophagic activity plays a crucial role in the pathogenesis of IBM. Using a well established in vitro model of IBM, the autophagic pathway, MAP kinases, and accumulation of β-amyloid were examined. We demonstrate that stimulation of muscle cells with IL-1β and IFN-γ led to an increased phosphorylation of ERK. The ERK inhibitor PD98059 diminished the expression of proinflammatory markers as well as the accumulation of β-amyloid. In addition, IL-1β and IFN-γ led to an increase of autophagic activity, upregulation of APP, and subsequent accumulation of β-sheet aggregates. Taken together, the data demonstrate that the ERK pathway contributes to formation of β-amyloid and regulation of autophagic activity in muscle cells exposed to proinflammatory cell stress. This suggests that ERK serves as an important mediator between inflammatory mechanisms and protein deposition in skeletal muscle and is a crucial element of the pathology of IBM.

  16. Therapy and prophylaxis of acute and late radiation-induced sequelae of the esophagus

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.B.; Geinitz, H.; Feldmann, H.J. [Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie, Klinikum rechts der Isar, Muenchen (Germany)

    1998-11-01

    Background: Radiation-induced esophagitis is a frequent acute side effect in curative and palliative radiotherapy of thoracal and cervical tumors. Late reactions are rare but might be severe. Methods: A resarch for reports on prophylactic and supportive therapies of radiation-induced esophagitis was performed (Medline, Cancerlit, and others). Results: Nutrition must be ensured and symptomatic relief of sequelae is important, especially in the case of dysphagia. The latter can be improved by topic or systemic analgetics. If esophageal spasm occurs, calcium antagonists might help. In case of gastro-esophageal reflux proton pump inhibitors should be used. There is no effective prophylactic measure for radiation esophagitis. Late side effects with clinical relevance are rare in conventional radiotherapy. Chronic ulcera, fistula or stenosis may develop. Before any treatment, a tumor infiltration of the esophagus should be excluded by biopsy. This can lead more often to late complications than radiation therapy itself. Nutrition should be ensured by endoscopic dilation, stent-implantation, or endoscopic percutaneous gastrostomy. Local injection of steroids might be used to avoid an early restenosis. Conclusions: An intensive symptomatic therapy of acute esophagitis is reasonable. Effective prophylaxis do not exist. Late radiation induced sequelae is rare. Therefore, a tumor recurrenc e should be excluded in cases of dysphagia. Securing nutrition by PEG, stent, or port is well in the fore. (orig.) [Deutsch] Hintergrund: Die radiogene Oesophagitis ist eine haeufige akute Nebenwirkung bei kurativen wie palliativen Bestrahlungen thorakaler und zervikaler Tumoren. Spaete Gewebereaktionen sind selten, koennen aber schwerwiegend sein. Methode: Es wurde eine Literaturrecherche nach prophylaktischen und supportiven Therapien der radiogen verursachten Oesophagitis durchgefuehrt (Medline, Cancerlit und andere). Ergebnisse: Therapeutisch stehen die Sicherung der Ernaehrung und die

  17. Characterizing the protocol for early modified constraint-induced movement therapy in the EXPLICIT-stroke trial

    NARCIS (Netherlands)

    Nijland, R van; Wegen, E. van; Krogt, H. van der; Bakker, C.D.; Buma, F.; Klomp, A.; Kordelaar, J. van; Kwakkel, G.; Geurts, A.C.; Kuijk, A.A. van; Lindeman, E.; Visser-Meily, J.M.A.; Arendzen, H.J.; Meskers, C.G.; Helm, F.C.T. van der; Vlugt, E. de

    2013-01-01

    Constraint-induced movement therapy (CIMT) is a commonly used rehabilitation intervention to improve upper limb function after stroke. CIMT was originally developed for patients with a chronic upper limb paresis. Although there are indications that exercise interventions should start as early as

  18. Pharmaco-induced vasospasm therapy for acute lower gastrointestinal bleeding: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Huei-Lung, E-mail: hlliang@vghks.gov.tw [Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); National Yang-Ming University, Taipei, Taiwan (China); Chiang, Chia-Ling [Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); Chen, Matt Chiung-Yu [Department of Radiology, Yuan' s General Hospital, Kaohsiung. Taiwan (China); Lin, Yih-Huie; Huang, Jer-Shyung; Pan, Huay-Ben [Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan (China); National Yang-Ming University, Taipei, Taiwan (China)

    2014-10-15

    Purpose: To report a novel technique and preliminary clinical outcomes in managing lower gastrointestinal bleeding (LGIB). Materials and methods: Eighteen LGIB patients (11 men and 7 women, mean age: 66.2 years) were treated with artificially induced vasospasm therapy by semi-selective catheterization technique. Epinephrine bolus injection was used to initiate the vascular spasm, and followed by a small dose vasopressin infusion (3–5 units/h) for 3 h. The technical success, clinical success, recurrent bleeding and major complications of this study were evaluated and reported. Results: Sixteen bleeders were in the superior mesenteric artery and 2 in the inferior mesenteric artery. All patients achieved successful immediate hemostasis. Early recurrent bleeding (<30 days) was found in 4 patients with local and new-foci re-bleeding in 2 (11.1%) each. Repeated vasospasm therapy was given to 3 patients, with clinical success in 2. Technical success for the 21 bleeding episodes was 100%. Lesion-based and patient-based primary and overall clinical successes were achieved in 89.4% (17/19) and 77.7% (14/18), and 94.7% (18/19) and 88.8% (16/18), respectively. None of our patients had complications of bowel ischemia or other major procedure-related complications. The one year survival of our patients was 72.2 ± 10.6%. Conclusions: Pharmaco-induced vasospasm therapy seems to be a safe and effective method to treat LGIB from our small patient-cohort study. Further evaluation with large series study is warranted. Considering the advanced age and complex medical problems of these patients, this treatment may be considered as an alternative approach for interventional radiologists in management of LGIB.

  19. Androgen-deprivation therapy-induced aggressive prostate cancer with neuroendocrine differentiation

    Directory of Open Access Journals (Sweden)

    Julia Lipianskaya

    2014-08-01

    Full Text Available Most prostate cancers (PCas are classified as acinar type (conventional adenocarcinoma which are composed of tumor cells with luminal differentiation including the expression of androgen receptor (AR and prostate-specific antigen (PSA. There are also scattered neuroendocrine (NE cells in every case of adenocarcinoma. The NE cells are quiesecent, do not express AR or PSA, and their function remains unclear. We have demonstrated that IL8-CXCR2-P53 pathway provides a growth-inhibitory signal and keeps the NE cells in benign prostate and adenocarcinoma quiescent. Interestingly, some patients with a history of adenocarcinoma recur with small cell neuroendocrine carcinoma (SCNC after hormonal therapy, and such tumors are composed of pure NE cells that are highly proliferative and aggressive, due to P53 mutation and inactivation of the IL8-CXCR2-P53 pathway. The incidence of SCNC will likely increase due to the widespread use of novel drugs that further inhibit AR function or intratumoral androgen synthesis. A phase II trial has demonstrated that platinum-based chemotherapy may be useful for such therapy-induced tumors.

  20. Constraint-Induced Movement Therapy (CIMT: Current Perspectives and Future Directions

    Directory of Open Access Journals (Sweden)

    Aimee P. Reiss

    2012-01-01

    Full Text Available Constraint-induced movement therapy (CIMT has gained considerable popularity as a treatment technique for upper extremity rehabilitation among patients with mild-to-moderate stroke. While substantial evidence has emerged to support its applicability, issues remain unanswered regarding the best and most practical approach. Following the establishment of what can be called the “signature” CIMT approach characterized by intense clinic/laboratory-based practice, several distributed forms of training, collectively known as modified constraint therapy (mCIMT, have emerged. There is a need to examine the strengths and limitations of such approaches, and based upon such information, develop the components of a study that would compare the signature approach to the best elements of mCIMT, referred to here as “alternative” CIMT. Based upon a PEDro review of literature, limitations in mCIMT studies for meeting criteria were identified and discussed. A suggestion for a “first effort” at a comparative study that would both address such limitations while taking practical considerations into account is provided.

  1. 17-AAG increases autophagic removal of mutant androgen receptor in spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Rusmini, Paola; Simonini, Francesca; Crippa, Valeria; Bolzoni, Elena; Onesto, Elisa; Cagnin, Monica; Sau, Daniela; Ferri, Nicola; Poletti, Angelo

    2011-01-01

    Several types of motorneuron diseases are linked to neurotoxic mutant proteins. These acquire aberrant conformations (misfolding) that trigger deleterious downstream events responsible for neuronal dysfunction and degeneration. The pharmacological removal of misfolded proteins might thus be useful in these diseases. We utilized a peculiar motorneuronal disease model, spinobulbar muscular atrophy (SBMA), in which the neurotoxicity of the protein involved, the mutant androgen receptor (ARpolyQ), can be modulated by its ligand testosterone (T). 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) has already been proven to exert beneficial action in SBMA. Here we demonstrated that 17-AAG exerts its pro-degradative activity on mutant ARpolyQ without impacting on proteasome functions. 17-AAG removes ARpolyQ misfolded species and aggregates by activating the autophagic system. We next analyzed the 17-AAG effects on two proteins (SOD1 and TDP-43) involved in related motorneuronal diseases, such as amyotrophic lateral sclerosis (ALS). In these models 17-AAG was unable to counteract protein aggregation. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Simvastatin inhibits smoke-induced airway epithelial injury: implications for COPD therapy.

    Science.gov (United States)

    Davis, Benjamin B; Zeki, Amir A; Bratt, Jennifer M; Wang, Lei; Filosto, Simone; Walby, William F; Kenyon, Nicholas J; Goldkorn, Tzipora; Schelegle, Edward S; Pinkerton, Kent E

    2013-08-01

    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death. The statin drugs may have therapeutic potential in respiratory diseases such as COPD, but whether they prevent bronchial epithelial injury is unknown. We hypothesised that simvastatin attenuates acute tobacco smoke-induced neutrophilic lung inflammation and airway epithelial injury. Spontaneously hypertensive rats were given simvastatin (20 mg·kg(-1) i.p.) daily for either 7 days prior to tobacco smoke exposure and during 3 days of smoke exposure, or only during tobacco smoke exposure. Pretreatment with simvastatin prior to and continued throughout smoke exposure reduced the total influx of leukocytes, neutrophils and macrophages into the lung and airways. Simvastatin attenuated tobacco smoke-induced cellular infiltration into lung parenchymal and airway subepithelial and interstitial spaces. 1 week of simvastatin pretreatment almost completely prevented smoke-induced denudation of the airway epithelial layer, while simvastatin given only concurrently with the smoke exposure had no effect. Simvastatin may be a novel adjunctive therapy for smoke-induced lung diseases, such as COPD. Given the need for statin pretreatment there may be a critical process of conditioning that is necessary for statins' anti-inflammatory effects. Future work is needed to elucidate the mechanisms of this statin protective effect.

  3. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge.

    Science.gov (United States)

    Song, Erfei; Jahng, James Ws; Chong, Lisa P; Sung, Hye K; Han, Meng; Luo, Cuiting; Wu, Donghai; Boo, Stellar; Hinz, Boris; Cooper, Matthew A; Robertson, Avril Ab; Berger, Thorsten; Mak, Tak W; George, Isaac; Schulze, P Christian; Wang, Yu; Xu, Aimin; Sweeney, Gary

    2017-01-01

    Lipocalin-2 (also known as NGAL) levels are elevated in obesity and diabetes yet relatively little is known regarding effects on the heart. We induced pressure overload (PO) in mice and found that lipocalin-2 knockout (LKO) mice exhibited less PO-induced autophagy and NLRP3 inflammasome activation than Wt. PO-induced mitochondrial damage was reduced and autophagic flux greater in LKO mice, which correlated with less cardiac dysfunction. All of these observations were negated upon adenoviral-mediated restoration of normal lipocalin-2 levels in LKO. Studies in primary cardiac fibroblasts indicated that lipocalin-2 enhanced priming and activation of NLRP3-inflammasome, detected by increased IL-1β, IL-18 and Caspase-1 activation. This was attenuated in cells isolated from NLRP3-deficient mice or upon pharmacological inhibition of NLRP3. Furthermore, lipocalin-2 induced release of HMGB1 from cells and NLRP3-inflammasome activation was attenuated by TLR4 inhibition. We also found evidence of increased inflammasome activation and reduced autophagy in cardiac biopsy samples from heart failure patients. Overall, this study provides new mechanistic insight on the detrimental role of lipocalin-2 in the development of cardiac dysfunction.

  4. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

    Directory of Open Access Journals (Sweden)

    Cristiane Miranda da Silva

    Full Text Available Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA, an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1% or vehicle (distillated water during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure. Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.

  5. [Anti-FGF23 antibody therapy for patients with tumor-induced osteomalacia].

    Science.gov (United States)

    Kinoshita, Yuka; Fukumoto, Seiji

    2014-08-01

    Tumor-induced osteomalacia (TIO) is a disease caused by fibroblast growth factor 23 (FGF23) secreted from the causative tumor. This disease is cured by complete surgical removal of the tumor. However, there are several difficult cases in which the responsible tumors cannot be found, are incompletely removed, or relapse after the surgery. Anti-FGF23 antibody is being studied as a novel therapy for FGF23-related hypophosphatemic diseases. The efficacy of anti-FGF23 antibodies were confirmed using a murine model of X-linked hypophosphatemic rickets (XLHR) , which is the most common heritable form of FGF23-related hypophosphatemic disease. In addition, results of phase I study of single injection of humanized anti-FGF23 antibody for adult patients with XLHR were recently published and the safety and effectiveness of this antibody was shown. This antibody therapy may be useful for patients with TIO with similar pathogenesis to that of XLHR.

  6. Attenuation of everolimus-induced cytotoxicity by a protective autophagic pathway involving ERK activation in renal cell carcinoma cells

    Science.gov (United States)

    Zeng, Yizhou; Tian, Xiaofang; Wang, Quan; He, Weiyang; Fan, Jing; Gou, Xin

    2018-01-01

    Aim The mammalian target of rapamycin (mTOR) pathway is a critical target for cancer treatment and the mTOR inhibitor everolimus (RAD001) has been approved for treatment of renal cell carcinoma (RCC). However, the limited efficacy of RAD001 has led to the development of drug resistance. Autophagy is closely related to cell survival and death, which may be activated under RAD001 stimulation. The aim of the present study was to identify the underlying mechanisms of RAD001 resistance in RCC cells through cytoprotective autophagy involving activation of the extracellular signal-regulated kinase (ERK) pathway. Methods and results: RAD001 strongly induced autophagy of RCC cells in a dose- and time-dependent manner, as confirmed by Western blot analysis. Importantly, suppression of autophagy by the pharmacological inhibitor chloroquine effectively enhanced RAD001-induced apoptotic cytotoxicity, as demonstrated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western blot analysis, indicating a cytoprotective role for RAD001-induced autophagy. In addition, as was shown by the MTT assay, flow cytometry, and Western blot analysis, RAD001 robustly activated ERK, but not c-Jun N-terminal kinase and p38. Activation of ERK was inhibited by the pharmacological inhibitor selumetinib (AZD6244), which effectively promoted RAD001-induced cell death. Moreover, employing AZD6244 markedly attenuated RAD001-induced autophagy and enhanced RAD001-induced apoptosis, which play a central role in RAD001-induced cell death. Furthermore, RAD001-induced autophagy is regulated by ERK-mediated phosphorylation of Beclin-1 and B-cell lymphoma 2, as confirmed by Western blot analysis. Conclusion These results suggest that RAD001-induced autophagy involves activation of the ERK, which may impair cytotoxicity of RAD001 in RCC cells. Thus, inhibition of the activation of ERK pathway-mediated autophagy may be useful to overcome chemoresistance to RAD001. PMID:29719377

  7. Adverse cutaneous reactions induced by TNF-alpha antagonist therapy.

    Science.gov (United States)

    Borrás-Blasco, Joaquín; Navarro-Ruiz, Andrés; Borrás, Consuelo; Casterá, Elvira

    2009-11-01

    To review adverse cutaneous drug reactions induced by tumor necrosis factor alpha (TNF-alpha) antagonist therapy. A literature search was performed using PubMed (1996-March 2009), EMBASE, and selected MEDLINE Ovid bibliography searches. All language clinical trial data, case reports, letters, and review articles identified from the data sources were used. Since the introduction of TNF-alpha antagonist, the incidence of adverse cutaneous drug reactions has increased significantly. A wide range of different skin lesions might occur during TNF-alpha antagonist treatment. New onset or exacerbation of psoriasis has been reported in patients treated with TNF-alpha antagonists for a variety of rheumatologic conditions. TNF-alpha antagonist therapy has been associated with a lupus-like syndrome; most of these case reports occurred in patients receiving either etanercept or infliximab. Serious skin reactions such as erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis have been reported rarely with the use of TNF-alpha antagonists. As the use of TNF-alpha antagonists continues to increase, the diagnosis and management of cutaneous side effects will become an increasingly important challenge. In patients receiving TNF-alpha antagonist treatment, skin disease should be considered, and clinicians need to be aware of the adverse reactions of these drugs.

  8. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma.

    Science.gov (United States)

    Vogl, Dan T; Stadtmauer, Edward A; Tan, Kay-See; Heitjan, Daniel F; Davis, Lisa E; Pontiggia, Laura; Rangwala, Reshma; Piao, Shengfu; Chang, Yunyoung C; Scott, Emma C; Paul, Thomas M; Nichols, Charles W; Porter, David L; Kaplan, Janeen; Mallon, Gayle; Bradner, James E; Amaravadi, Ravi K

    2014-08-01

    The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.

  9. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    Science.gov (United States)

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  10. Short-term outcome of fluoroscopic-guided steroid injection therapy of lumber facet cyst-induced radicular pain

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Mi Ri; Kwon, Jong Won; Lee, Jong Seo; Kim, Eu Sang [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-04-15

    To determine the short-term effect of fluoroscopic-guided steroid injection therapy of lumbar facet cyst-induced radicular pain. Seventeen patients with radiculopathy due to lumbar synovial cysts, who were treated with fluoroscopically guided injection, were retrospectively evaluated. All plain radiographic images and MR images before the therapy were reviewed. Five patients underwent only the facet joint injection, whereas twelve patients underwent the facet joint injection with perineural injection therapy. The clinical course of pain was evaluated on the first follow-up after therapy. Effective pain relief was achieved in 11 (64.7%) of the 17 patients. Among 12 patients who underwent facet joint injection with perineural injection, 9 patients (75%) had an effective pain relief. Of 5 patients, 2 (40%) patients only took the facet joint injection and had an effective pain relief. Fluoroscopic-guided steroid injection therapy shows a good short-term effect in patients with symptomatic lumbar facet joint synovial cysts.

  11. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

    Science.gov (United States)

    Xie, Xiaolei; Le, Li; Fan, Yanxin; Lv, Lin; Zhang, Junjie

    2012-07-01

    Mitoribosome in mammalian cells is responsible for synthesis of 13 mtDNA-encoded proteins, which are integral parts of four mitochondrial respiratory chain complexes (I, III, IV and V). ERAL1 is a nuclear-encoded GTPase important for the formation of the 28S small mitoribosomal subunit. Here, we demonstrate that knockdown of ERAL1 by RNA interference inhibits mitochondrial protein synthesis and promotes reactive oxygen species (ROS) generation, leading to autophagic vacuolization in HeLa cells. Cells that lack ERAL1 expression showed a significant conversion of LC3-I to LC3-II and an enhanced accumulation of autophagic vacuoles carrying the LC3 marker, all of which were blocked by the autophagy inhibitor 3-MA as well as by the ROS scavenger NAC. Inhibition of mitochondrial protein synthesis either by ERAL1 siRNA or chloramphenicol (CAP), a specific inhibitor of mitoribosomes, induced autophagy in HTC-116 TP53 (+/+) cells, but not in HTC-116 TP53 (-/-) cells, indicating that tumor protein 53 (TP53) is essential for the autophagy induction. The ROS elevation resulting from mitochondrial protein synthesis inhibition induced TP53 expression at transcriptional levels by enhancing TP53 promoter activity, and increased TP53 protein stability by suppressing TP53 ubiquitination through MAPK14/p38 MAPK-mediated TP53 phosphorylation. Upregulation of TP53 and its downstream target gene DRAM1, but not CDKN1A/p21, was required for the autophagy induction in ERAL1 siRNA or CAP-treated cells. Altogether, these data indicate that autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

  12. In-Home Delivery of Constraint-Induced Movement Therapy via Virtual Reality Gaming

    Directory of Open Access Journals (Sweden)

    Alexandra L. Borstad

    2018-01-01

    Full Text Available Purpose: People with chronic hemiparesis are frequently dissatisfied with the recovery of their hand and arm, yet many lack access to effective treatments. Constraint-induced movement therapy (CI therapy effectively increases arm function and spontaneous use in persons with chronic hemiparesis. The purpose of this study was to determine the feasibility and measure safety and outcomes of an in-home model of delivering CI therapy using a custom, avatar-based virtual reality game. Methods: Seventeen individuals with chronic hemiparesis participated in this pretest/posttest quasi-experimental design study. The 10-day intervention had three components: 1 high-repetition motor practice using virtual reality gaming; 2 constraint of the stronger arm via a padded restraint mitt; and 3 a transfer package to reinforce arm use. Feasibility of the intervention was evaluated through comparison to traditional CI therapy and through participants’ subjective responses. The primary outcome measures were the Wolf Motor Function Test (WMFT and the Motor Activity Log quality of movement scale (MAL-QOM. Results: On average, participants completed 17.2 ± 8 hours and 19,436 repetitions of motor practice. No adverse events were reported. Of 7 feasibility criteria, 4 were met. WMFT rate and MAL-QOM increased, with effect size (Cohen’s d of 1.5 and 1.1, respectively. Conclusions: This model of delivering CI therapy using a custom, avatar-based virtual reality game was feasible, well received, and showed preliminary evidence of being a safe intervention to use in the home for persons with chronic hemiparesis.

  13. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Suellen M. Andrade

    2017-01-01

    Full Text Available Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561.

  14. Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy.

    Science.gov (United States)

    Li, Ying-Ying; Feun, Lynn G; Thongkum, Angkana; Tu, Chiao-Hui; Chen, Shu-Mei; Wangpaichitr, Medhi; Wu, Chunjing; Kuo, Macus T; Savaraj, Niramol

    2017-06-19

    Autophagy, a self-eating machinery, has been reported as an adaptive response to maintain metabolic homeostasis when cancer cells encounter stress. It has been appreciated that autophagy acts as a double-edge sword to decide the fate of cancer cells upon stress factors, molecular subtypes, and microenvironmental conditions. Currently, the majority of evidence support that autophagy in cancer cells is a vital mechanism bringing on resistance to current and prospective treatments, yet whether autophagy affects the anticancer immune response remains unclear and controversial. Accumulated studies have demonstrated that triggering autophagy is able to facilitate anticancer immunity due to an increase in immunogenicity, whereas other studies suggested that autophagy is likely to disarm anticancer immunity mediated by cytotoxic T cells and nature killer (NK) cells. Hence, this contradiction needs to be elucidated. In this review, we discuss the role of autophagy in cancer cells per se and in cancer microenvironment as well as its dual regulatory roles in immune surveillance through modulating presentation of tumor antigens, development of immune cells, and expression of immune checkpoints. We further focus on emerging roles of autophagy induced by current treatments and its impact on anticancer immune response, and illustrate the pros and cons of utilizing autophagy in cancer immunotherapy based on preclinical references.

  15. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.

    Science.gov (United States)

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K

    2012-11-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.

  16. The Effects of Modified Constraint-Induced Movement Therapy in Acute Subcortical Cerebral Infarction

    OpenAIRE

    Yu, Changshen; Wang, Wanjun; Zhang, Yue; Wang, Yizhao; Hou, Weijia; Liu, Shoufeng; Gao, Chunlin; Wang, Chen; Mo, Lidong; Wu, Jialing

    2017-01-01

    Background: Constraint-induced movement therapy (CIMT) promotes upper extremity recovery post stroke, however, it is difficult to implement clinically due to its high resource demand and safety of the restraint. Therefore, we propose that modified CIMT (mCIMT) be used to treat individuals with acute subcortical infarction. Objective: To evaluate the therapeutic effects of mCIMT in patients with acute subcortical infarction, and investigate the possible mechanisms underlying the effect. ...

  17. Concanavalin A/IFN-gamma triggers autophagy-related necrotic hepatocyte death through IRGM1-mediated lysosomal membrane disruption.

    Directory of Open Access Journals (Sweden)

    Chih-Peng Chang

    Full Text Available Interferon-gamma (IFN-γ, a potent Th1 cytokine with multiple biological functions, can induce autophagy to enhance the clearance of the invading microorganism or cause cell death. We have reported that Concanavalin A (Con A can cause autophagic cell death in hepatocytes and induce both T cell-dependent and -independent acute hepatitis in immunocompetent and immunodeficient mice, respectively. Although IFN-γ is known to enhance liver injury in Con A-induced hepatitis, its role in autophagy-related hepatocyte death is not clear. In this study we report that IFN-γ can enhance Con A-induced autophagic flux and cell death in hepatoma cell lines. A necrotic cell death with increased lysosomal membrane permeabilization (LMP is observed in Con A-treated hepatoma cells in the presence of IFN-γ. Cathepsin B and L were released from lysosomes to cause cell death. Furthermore, IFN-γ induces immunity related GTPase family M member 1(IRGM1 translocation to lysosomes and prolongs its activity in Con A-treated hepatoma cells. Knockdown of IRGM1 inhibits the IFN-γ/Con A-induced LMP change and cell death. Furthermore, IFN-γ(-/- mice are resistant to Con A-induced autophagy-associated necrotic hepatocyte death. We conclude that IFN-γ enhances Con A-induced autophagic flux and causes an IRGM1-dependent lysosome-mediated necrotic cell death in hepatocytes.

  18. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655

  19. Neuroplasticity Changes on Human Motor Cortex Induced by Acupuncture Therapy: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-01-01

    Full Text Available While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245.

  20. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  1. Let-7i-Induced Atg4B Suppression Is Essential for Autophagy of Placental Trophoblast in Preeclampsia.

    Science.gov (United States)

    Xu, Yinyan; Huang, Xinyan; Xie, Juan; Chen, Yanni; Fu, Jing; Wang, Li

    2017-09-01

    Autophagy, identified as type II programmed cell death, has already been known to be involved in the pathophysiology of preeclampsia (PE), which is a gestational disease with high morbidity. The present study aims to investigate the functional role of let-7i, a miRNA, in trophoblastic autophagy. Placental tissue used in this study was collected from patients with severe preeclampsia (SPE) or normal pregnant women. A decreased level of let-7i was found in placenta of SPE. In addition, autophagic vacuoles were observed in SPE and the expression of microtubule associated protein 1 light chain 3 (LC3) II/I was elevated. In vitro, let-7i mimics suppressed the autophagic activities in human HTR-8/SVneo trophoblast cell line (HTR-8) and human placental choriocarcinoma cell line JEG-3, whereas let-7i inhibitor enhanced the activities. As a potential target of let-7i, autophagy-related 4B cysteine peptidase (Atg4B) had an increased expression level in SPE. As expected, the increased expression of Atg4B was negatively regulated by let-7i using dual luciferase reporter assay. Furthermore, these trophoblast-like cells transfected with the let-7i mimic or inhibitors resulted in a significant change of Atg4B in both mRNA and protein level. More importantly, Atg4B overexpression could partly reverse let-7i mimic-reduced LC3II/I levels; whereas Atg4B silencing partly attenuated let-7i inhibitor-induced the level of LC3II/I expression. Taken together, these findings suggest that let-7i is able to regulate autophagic activity via regulating Atg4B expression, which might contribute to the pathogenesis of PE. J. Cell. Physiol. 232: 2581-2589, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Stem cell therapy for the treatment of radiation-induced normal tissue damage

    International Nuclear Information System (INIS)

    Chapel, A.; Benderitter, M.; Gourmelon, P.; Lataillade, J.J.; Gorin, N.C.

    2013-01-01

    Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumour. In Europe, per year, 1.5 million patients undergo external radiotherapy. Acute adverse effect concern 80% of patients. The late adverse effect of radiotherapy concern 5 to 10% of them, which could be life threatening. Eradication of these manifestations is crucial. The French Institute of Radioprotection and Nuclear Safety (IRSN) contribute to understand effect of radiation on healthy tissue. IRSN is strongly implicated in the field of regeneration of healthy tissue after radiotherapy or radiological accident and in the clinical use of cell therapy in the treatment of irradiated patients. Our first success in cell therapy was the correction of deficient hematopoiesis in two patients. The intravenous injection of Mesenchymal Stem Cells (MSC) has restored bone marrow micro-environment after total body irradiation necessary to sustain hematopoiesis. Cutaneous radiation reactions play an important role in radiation accidents, but also as a limitation in radiotherapy and radio-oncology. We have evidenced for the first time, the efficiency of MSC therapy in the context of acute cutaneous and muscle damage following irradiation in five patients. Concerning the medical management of gastrointestinal disorder after irradiation, we have demonstrated the promising approach of the MSC treatment. We have shown that MSC migrate to damaged tissues and restore gut functions after radiation damage. The evaluation of stem cell therapy combining different sources of adult stem cells is under investigation

  3. Chloroquine enhances the efficacy of cisplatin by suppressing autophagy in human adrenocortical carcinoma treatment

    Directory of Open Access Journals (Sweden)

    Qin L

    2016-03-01

    Full Text Available Liang Qin,1,* Tianyuan Xu,1,* Leilei Xia,1 Xianjin Wang,1 Xiang Zhang,1 Xiaohua Zhang,1 Zhaowei Zhu,1 Shan Zhong,1 Chuandong Wang,2 Zhoujun Shen1 1Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 2Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: It has been demonstrated that chloroquine (CQ enhances the efficacy of chemotherapy. However, little is known about whether CQ could enhance the efficacy of cisplatin (DDP in the treatment of adrenocortical carcinoma (ACC. In this study, we explore the efficacy and mechanism by which CQ affects DDP sensitivity in human ACC in vitro and in vivo.Methods: The autophagic gene Beclin-1 expression was detected by immunohistochemistry, and the protein levels were analyzed using immunoblotting assays of ACC tissues and normal adrenal cortex tissues. The ACC SW13 cells were treated with DDP and/or CQ. The cell viability assay was performed using the MTT method. Qualitative autophagy detection was performed by monodansylcadaverine staining of autophagic vacuoles. Annexin V-fluorescein isothiocyanate/propidium iodide double staining was used to count cell apoptosis by flow cytometry. The autophagy-related protein (Beclin-1, LC3, and p62 and apoptosis relative protein (Bax and Bcl-2 levels were evaluated with Western blot analysis. Furthermore, a murine model of nude BALB/c mice bearing SW13 cell xenografts was established to evaluate the efficacy of concomitant therapy.Results: The expression of the autophagic gene Beclin-1 was significantly downregulated in ACC tissues compared to normal adrenal cortex tissues. The Beclin-1 protein level in ACC tissues was lower than that in normal adrenal cortex tissues (P<0.05. In vitro concomitant therapy (DDP and CQ was more

  4. A pilot study to assess the pharmacy impact of implementing a chemotherapy-induced nausea or vomiting collaborative disease therapy management in the outpatient oncology clinics.

    Science.gov (United States)

    Jackson, Kasey; Letton, Cathy; Maldonado, Andy; Bodiford, Andrew; Sion, Amy; Hartwell, Rebekah; Graham, Anastasia; Bondarenka, Carolyn; Uber, Lynn

    2018-01-01

    Background Collaborative drug therapy management is a formal partnership between a pharmacist and physician to allow the pharmacist to manage a patient's drug therapy. Literature supports collaborative disease therapy management can improve patient outcomes, improve medication adherence, enhance medication safety, and positively influence healthcare expenditures. Chemotherapy induced nausea or vomiting is considered one of the most distressing and feared adverse events among patients receiving chemotherapy. Chemotherapy induced nausea or vomiting can impact a patient's quality of life and may affect compliance with the treatment plan. Purpose The objective of this pilot study was to determine the pharmacy impact of implementing a chemotherapy induced nausea or vomiting collaborative disease therapy management protocol in the outpatient oncology clinics at a National Cancer Institute (NCI)-designated cancer center associated with an academic medical center. The primary endpoint was to determine the number and type of chemotherapy induced nausea or vomiting clinical interventions made by the oncology pharmacists. Secondary endpoints included comparing patient's Multinational Association for Supportive Care in Cancer scores and revenue of pharmacists' services. Methods The credentialed oncology pharmacists were consulted by an oncologist to manage chemotherapy induced nausea or vomiting. Patients were included in the chemotherapy induced nausea or vomiting collaborative disease therapy management if they were seen in an outpatient oncology clinic from October 2016 to January 2017 and had a referral from a qualified provider to help manage chemotherapy induced nausea or vomiting. Patients admitted to the hospital at the time of consult were excluded from the study. The pharmacists interviewed patients and provided recommendations. The pharmacists followed up with the patient via a telephone call or during the next scheduled clinic visit to assess their symptoms

  5. HIV-Antiretroviral Therapy Induced Liver, Gastrointestinal, and Pancreatic Injury

    Directory of Open Access Journals (Sweden)

    Manuela G. Neuman

    2012-01-01

    Full Text Available The present paper describes possible connections between antiretroviral therapies (ARTs used to treat human immunodeficiency virus (HIV infection and adverse drug reactions (ADRs encountered predominantly in the liver, including hypersensitivity syndrome reactions, as well as throughout the gastrointestinal system, including the pancreas. Highly active antiretroviral therapy (HAART has a positive influence on the quality of life and longevity in HIV patients, substantially reducing morbidity and mortality in this population. However, HAART produces a spectrum of ADRs. Alcohol consumption can interact with HAART as well as other pharmaceutical agents used for the prevention of opportunistic infections such as pneumonia and tuberculosis. Other coinfections that occur in HIV, such as hepatitis viruses B or C, cytomegalovirus, or herpes simplex virus, further complicate the etiology of HAART-induced ADRs. The aspect of liver pathology including liver structure and function has received little attention and deserves further evaluation. The materials used provide a data-supported approach. They are based on systematic review and analysis of recently published world literature (MedLine search and the experience of the authors in the specified topic. We conclude that therapeutic and drug monitoring of ART, using laboratory identification of phenotypic susceptibilities, drug interactions with other medications, drug interactions with herbal medicines, and alcohol intake might enable a safer use of this medication.

  6. Use of Human Cadaveric Mesenchymal Stem Cells for Cell Therapy of a Chronic Radiation-Induced Skin Lesion: A Case Report

    International Nuclear Information System (INIS)

    Portas, M.; Coppola, A.; Mansilla, E.; Drago, H.; Dubner, D.; Radl, A.; Di Giorgio, M.

    2016-01-01

    Acute and late radiation-induced injury on skin and subcutaneous tissues are associated with substantial morbidity in radiation therapy, interventional procedures and also are of concern in the context of nuclear or radiological accidents. Pathogenesis is initiated by depletion of acutely responding epithelial tissues and damage to vascular endothelial micro-vessels. Efforts for medical management of severe radiation-induced lesions have been made. Nevertheless, the development of strategies to promote wound healing, including stem cell therapy, is required. From 1997 to 2014, over 248 patients were referred to the Radio-pathology Committee of Hospital de Quemados del Gobierno de la Ciudad de Buenos Aires (Burns Hospital) for the diagnosis and therapy of radiation-induced localized lesions. As part of the strategies for the management of severe cases, there is an ongoing research and development protocol on 'Translational Clinical Trial phases I/II to evaluate the safety and efficacy of adult mesenchymal stem cells from bone marrow for the treatment of large burns and radiological lesions'. The object of this work was to describe the actions carried out by the Radio-pathology Committee of the Burns Hospital in a chronic case with more than 30 years of evolution without positive response to conventional treatments. The approach involved the evaluation of the tissular compromise of the lesion, the prognosis and the personalized treatment, including regenerative therapy. (authors)

  7. Autophagic dedifferentiation induced by cooperation between TOR inhibitor and retinoic acid signals in budding tunicates.

    Science.gov (United States)

    Kawamura, Kaz; Yoshida, Takuto; Sekida, Satoko

    2018-01-15

    Asexual bud development in the budding tunicate Polyandrocarpa misakiensis involves transdifferentiation of multipotent epithelial cells, which is triggered by retinoic acid (RA), and thrives under starvation after bud isolation from the parent. This study aimed to determine cell and molecular mechanisms of dedifferentiation that occur during the early stage of transdifferentiation. During dedifferentiation, the numbers of autophagosomes, lysosomes, and secondary lysosomes increased remarkably. Mitochondrial degradation and exosome discharge also occurred in the atrial epithelium. Autophagy-related gene 7 (Atg7) and lysosomal proton pump A gene (PumpA) were activated during the dedifferentiation stage. When target of rapamycin (TOR) inhibitor was administered to growing buds without isolating them from the parent, phagosomes and secondary lysosomes became prominent. TOR inhibitor induced Atg7 only in the presence of RA. In contrast, when growing buds were treated with RA, lysosomes, secondary lysosomes, and mitochondrial degradation were prematurely induced. RA significantly activated PumpA in a retinoid X receptor-dependent manner. Our results indicate that in P. misakiensis, TOR inhibition and RA signals act in synergy to accomplish cytoplasmic clearance for dedifferentiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Simultaneous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model

    Directory of Open Access Journals (Sweden)

    Jae-Hun Lee

    2016-07-01

    Full Text Available Noise-induced hearing loss is a common type of hearing loss. The effects of laser therapy have been investigated from various perspectives, including in wound healing, inflammation reduction, and nerve regeneration, as well as in hearing research. A promising feature of the laser is its capability to penetrate soft tissue; depending on the wavelength, laser energy can penetrate into the deepest part of the body without damaging non-target soft tissues. Based on this idea, we developed bilateral transtympanic laser therapy, which uses simultaneous laser irradiation in both ears, and evaluated the effects of bilateral laser therapy on cochlear damage caused by noise overexposure. Thus, the purpose of this research was to assess the benefits of simultaneous bilateral laser therapy compared with unilateral laser therapy and a control. Eighteen Sprague-Dawley rats were exposed to narrow-band noise at 115 dB SPL for 6 h. Multiple auditory brainstem responses were measured after each laser irradiation, and cochlear hair cells were counted after the 15th such irradiation. The penetration depth of the 808 nm laser was also measured after sacrifice. Approximately 5% of the laser energy reached the contralateral cochlea. Both bilateral and unilateral laser therapy decreased the hearing threshold after noise overstimulation in the rat model. The bilateral laser therapy group showed faster functional recovery at all tested frequencies compared with the unilateral laser therapy group. However, there was no difference in the endpoint ABR results or final hair cell survival, which was analyzed histologically.

  9. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis.

    Science.gov (United States)

    Khalil, Wagdy K B; Assaf, Naglaa; ElShebiney, Shaimaa A; Salem, Neveen A

    2015-01-01

    Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic neurodegeneration, mitochondrial impairment, and oxidative stress. Exposure of animals to rotenone induces a range of responses characteristic of PD, including reactive oxygen species production and dopaminergic cell death. Although l-dopa is the drug of choice for improving core symptoms of PD, it is associated with involuntary movements. The current study was directed to evaluate the neuroprotective effect of bee venom acupuncture therapy (BVA) against rotenone-induced oxidative stress, neuroinflammation, and apoptosis in PD mouse model. Forty male Swiss mice were divided into four groups: (1) received saline solution orally and served as normal control, (2) received rotenone (1.5 mg/kg, s.c. every other day for 6 doses), (3) received rotenone concomitantly with l-dopa (25 mg/kg, daily, p.o. for 6 days), and finally (4) received rotenone concomitantly with BVA (0.02 ml once every 3 days for two weeks). Rotenone-treated mice showed impairment in locomotor behavior and a significant reduction in brain dopamine, serotonin, norepinephrine, GSH levels, and paraoxonase activity, whereas a significant increase was observed in brain malondialdehyde, tumor necrosis factor-α, interleukin-β levels besides DNA damage, and over-expression of caspase-3, Bax, and Bcl-2 genes. Significant improvement of the aforementioned parameters was demonstrated after BVA compared to l-dopa therapy. In conclusion, bee venom normalized all the neuroinflammatory and apoptotic markers and restored brain neurochemistry after rotenone injury. Therefore, BVA is a promising neuroprotective therapy for PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Efficiency Of The Photodynamic Therapy Using Gold Nanoparticles (np-Au) And PpIX Induced And Not Induced

    International Nuclear Information System (INIS)

    Maldonado-Alvarado, Elizabeth; Ramon-Gallegos, Eva; Arenas-Huertero, Francisco jesus; Reyes-Arellano, Alicia; Tanori-Cordova, Judith; Sanchez-Espindola, Maria Esther; Jimenez-Perez, Jose Luis; Cruz-Orea, Alfredo

    2008-01-01

    The use of gold nanoparticles (np-Au) to eliminate cancer has proved to be very effective due to the fact that cancerous cells accumulate it 600% more than healthy cells. In addition they have a high capacity of absorption and dispersion of light. Therefore, the effectiveness of photodynamic therapy (PDT) could be improved by the simultaneous use of np-Au and photosensitizes (Ps), emphasizing the high efficiency of the PDT to diagnose and to treat pre-malignant and malignant processes. The aim of this work was to determine the efficiency of PDT using np-Au and protoporphyrin IX (PpIX) induced and not induced by the δ-aminolevulinic acid (ALA). It were found the conditions of synthesis of hydrosoluble np-Au, and were characterized by transmission electronic microscopy (TEM) and UV-VIS spectroscopy. It was realized a kinetic by TEM to determine the cellular incorporation time of np-Au, the maximum incorporation of np-Au was of 16 h. PDT was applied using different doses of np-Au and photosensitizers. It was observed that the use of PDT simultaneously with np-Au did not increase the mortality of HeLa cells. In the case of C33, when PpIX not induced is used as photosensitizer simultaneously with np-Au, the mortality increased 20%

  11. Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy.

    Science.gov (United States)

    Giordano, Courtney R; Roberts, Robin; Krentz, Kendra A; Bissig, David; Talreja, Deepa; Kumar, Ashok; Terlecky, Stanley R; Berkowitz, Bruce A

    2015-05-01

    Preclinical studies have highlighted retinal oxidative stress in the pathogenesis of diabetic retinopathy. We evaluated whether a treatment designed to enhance cellular catalase reduces oxidative stress in retinal cells cultured in high glucose and in diabetic mice corrects an imaging biomarker responsive to antioxidant therapy (manganese-enhanced magnetic resonance imaging [MEMRI]). Human retinal Müller and pigment epithelial cells were chronically exposed to normal or high glucose levels and treated with a cell-penetrating derivative of the peroxisomal enzyme catalase (called CAT-SKL). Hydrogen peroxide (H2O2) levels were measured using a quantitative fluorescence-based assay. For in vivo studies, streptozotocin (STZ)-induced diabetic C57Bl/6 mice were treated subcutaneously once a week for 3 to 4 months with CAT-SKL; untreated age-matched nondiabetic controls and untreated diabetic mice also were studied. MEMRI was used to analytically assess the efficacy of CAT-SKL treatment on diabetes-evoked oxidative stress-related pathophysiology in vivo. Similar analyses were performed with difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase. After catalase transduction, high glucose-induced peroxide production was significantly lowered in both human retinal cell lines. In diabetic mice in vivo, subnormal intraretinal uptake of manganese was significantly improved by catalase supplementation. In addition, in the peroxisome-rich liver of treated mice catalase enzyme activity increased and oxidative damage (as measured by lipid peroxidation) declined. On the other hand, DFMO was largely without effect in these in vitro or in vivo assays. This proof-of-concept study raises the possibility that augmentation of catalase is a therapy for treating the retinal oxidative stress associated with diabetic retinopathy.

  12. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model

    Directory of Open Access Journals (Sweden)

    Fang-Hui Li

    2018-05-01

    Full Text Available The effects of high-intensity interval (HIIT and moderate-intensity continuous training (MICT on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance (1H NMR spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague–Dawley rats were separated into three groups: sedentary control (SED, MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1H NMR spectroscopy and multivariate

  13. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model.

    Science.gov (United States)

    Li, Fang-Hui; Li, Tao; Ai, Jing-Yi; Sun, Lei; Min, Zhu; Duan, Rui; Zhu, Ling; Liu, Yan-Ying; Liu, Timon Cheng-Yi

    2018-01-01

    The effects of high-intensity interval (HIIT) and moderate-intensity continuous training (MICT) on basal autophagy and mitochondrial function in cardiac and skeletal muscle and plasma metabolic phenotypes have not been clearly characterized. Here, we investigated how 10-weeks HIIT and MICT differentially modify basal autophagy and mitochondrial markers in cardiac and skeletal muscle and conducted an untargeted metabolomics study with proton nuclear magnetic resonance ( 1 H NMR) spectroscopy and multivariate statistical analysis of plasma metabolic phenotypes. Male Sprague-Dawley rats were separated into three groups: sedentary control (SED), MICT, and HIIT. Rats underwent evaluation of exercise performance, including exercise tolerance and grip strength, and blood lactate levels were measured immediately after an incremental exercise test. Plasma samples were analyzed by 1 H NMR. The expression of autophagy and mitochondrial markers and autophagic flux (LC3II/LC3-I ratio) in cardiac, rectus femoris, and soleus muscle were analyzed by western blotting. Time to exhaustion and grip strength increased significantly following HIIT compared with that in both SED and MICT groups. Compared with those in the SED group, blood lactate level, and the expression of SDH, COX-IV, and SIRT3 significantly increased in rectus femoris and soleus muscle of both HIIT and MICT groups. Meanwhile, SDH and COX-IV content of cardiac muscle and COX-IV and SIRT3 content of rectus femoris and soleus muscle increased significantly following HIIT compared with that following MICT. The expression of LC3-II, ATG-3, and Beclin-1 and LC3II/LC3-I ratio were significantly increased only in soleus and cardiac muscle following HIIT. These data indicate that HIIT was more effective for improving physical performance and facilitating cardiac and skeletal muscle adaptations that increase mitochondrial function and basal autophagic activities. Moreover, 1 H NMR spectroscopy and multivariate statistical

  14. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    Science.gov (United States)

    Doulames, Vanessa M.; Plant, Giles W.

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  15. Radon therapy; Radon in der Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-04-01

    Radon therapies are used since more than 100 years in human medicine. Today this method is controversially discussed due to the possible increase of ionizing radiation induced tumor risk. Although the exact mode of biological radiation effect on the cell level is still not known new studies show the efficiency of the radon therapy without side effect for instance for rheumatic/inflammatory or respiratory disorders.

  16. Cellular therapy to treat ionizing radiation-induced cutaneous radiation syndrome: 2 cases report

    International Nuclear Information System (INIS)

    Benderitter, M.; Chapel, A.; Trompier, F.; Clairand, I.; Bottolier-Depois, J.F.; Gourmelon, P.; Bey, E.; Lataillade, J.J.

    2008-01-01

    Full Text: Localized irradiation at high dose exposition could induce severe radiation burns characterized by the occurrence of unpredictable successive inflammatory waves leading to the extension in surface and depth of necrotic processes. The medical management of these severe radiation burns remains today a challenging issue unresolved by the classical therapeutical approach. For the first time, two victims (accident of Chile, 2006 and accident of Senegal, 2007) accidentally exposed to an iridium gammagraphy radioactive source experienced a new and innovative therapeutic strategy combining dosimetry-guided surgery lesion excision and injection of MSC. The clinical evolution was remarkable. The clinical transfer of this therapeutic option was possible based on the research perform in the Institute and the IRSN/Percy hospital cooperation. Our data suggested that cellular therapy based on Mesenchymal Stem Cell (MSC) injection could be used to repair numerous injured tissues. We have studied the potential use of human MSC (hMSC) in order to limit radiation-induced skin lesions. Our pre-clinical data suggest a possible use of hMSC for the treatment of the early phase of the cutaneous radiation syndrome. The understanding of the precise healing mechanisms of hMSC in animal model is under investigation. These results will be helpful to generalize this innovative therapy to the treatment of other radiological complications. (author)

  17. Use of Human Cadaveric Mesenchymal Stem Cells for Cell Therapy of a Chronic Radiation-Induced Skin Lesion: A Case Report.

    Science.gov (United States)

    Portas, M; Mansilla, E; Drago, H; Dubner, D; Radl, A; Coppola, A; Di Giorgio, M

    2016-09-01

    Acute and late radiation-induced injury on skin and subcutaneous tissues are associated with substantial morbidity in radiation therapy, interventional procedures and also are of concern in the context of nuclear or radiological accidents. Pathogenesis is initiated by depletion of acutely responding epithelial tissues and damage to vascular endothelial microvessels. Efforts for medical management of severe radiation-induced lesions have been made. Nevertheless, the development of strategies to promote wound healing, including stem cell therapy, is required. From 1997 to 2014, over 248 patients were referred to the Radiopathology Committee of Hospital de Quemados del Gobierno de la Ciudad de Buenos Aires (Burns Hospital) for the diagnosis and therapy of radiation-induced localized lesions. As part of the strategies for the management of severe cases, there is an ongoing research and development protocol on 'Translational Clinical Trial phases I/II to evaluate the safety and efficacy of adult mesenchymal stem cells from bone marrow for the treatment of large burns and radiological lesions'. The object of this work was to describe the actions carried out by the Radiopathology Committee of the Burns Hospital in a chronic case with more than 30 years of evolution without positive response to conventional treatments. The approach involved the evaluation of the tissular compromise of the lesion, the prognosis and the personalized treatment, including regenerative therapy. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  18. Restoration of radiation therapy-induced salivary gland dysfunction in mice by post therapy IGF-1 administration

    International Nuclear Information System (INIS)

    Grundmann, Oliver; Fillinger, Jamia L; Victory, Kerton R; Burd, Randy; Limesand, Kirsten H

    2010-01-01

    therapy protocols or drugs for the treatment of radiation-induced salivary gland dysfunction in patients who have completed their anti-cancer therapies

  19. Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237 on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway

    Directory of Open Access Journals (Sweden)

    Niu NK

    2015-03-01

    mesenchymal transition (EMT and the underlying mechanisms in two human OS cell lines U-2 OS and MG-63. The results showed that ALS had potent growth inhibitory, pro-apoptotic, pro-autophagic, and EMT inhibitory effects on U-2 OS and MG-63 cells. ALS remarkably induced G2/M arrest and down-regulated the expression levels of cyclin-dependent kinases 1 and 2 and cyclin B1 in both U-2 OS and MG-63 cells. ALS markedly induced mitochondria-mediated apoptosis with a significant increase in the expression of key pro-apoptotic proteins and a decrease in main anti-apoptotic proteins. Furthermore, ALS promoted autophagic cell death via the inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR and p38 mitogen-activated protein kinase (p38 MAPK signaling pathways, and activation of 5'-AMP-dependent kinase (AMPK signaling pathway. Inducers or inhibitors of apoptosis or autophagy simultaneously altered ALS-induced apoptotic and autophagic death in both U-2 OS and MG-63 cells, suggesting a crosstalk between these two primary modes of programmed cell death. Moreover, ALS suppressed EMT-like phenotypes with a marked increase in the expression of E-cadherin but a decrease in N-cadherin in U-2 OS and MG-63 cells. ALS treatment also induced reactive oxygen species (ROS generation but inhibited the expression levels of sirtuin 1 and nuclear factor-erythroid-2-related factor 2 (Nrf2 in both cell lines. Taken together, these findings show that ALS promotes apoptosis and autophagy but inhibits EMT via PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways with involvement of ROS- and sirtuin 1-associated pathways in U-2 OS and MG-63 cells. ALS is a promising anticancer agent in OS treatment and further studies are needed to confirm its efficacy and safety in OS chemotherapy. Keywords: ALS, autophagy, apoptosis, osteosarcoma, PI3K/Akt/mTOR pathway, EMT

  20. SU-C-303-01: Activation-Induced Cytidine Deaminase Confers Cancer Resistance to Radiation Therapy

    International Nuclear Information System (INIS)

    Yi, S; La Count, S; Liu, J; Bai, X; Lu, L

    2015-01-01

    Purpose: To study the role of activation-induced cytidine deaminase (AID) in malignant cell resistance to radiation therapy. Methods: We first developed several small devices that could be used to adopt radiation beams from clinical high dose rate brachy therapy (HDR) or linac-based megavoltage machines to perform pre-clinical cell and mouse experiments. Then we used these devices to deliver radiation to AID-positive and AID-silenced cancer cells or tumors formed by these cells in mice. Cells and mice bearing tumors received the same dose under the same experimental conditions. For cells, we observed the apoptosis and the cell survival rate over time. For mice bearing tumors, we measured and recorded the tumor sizes every other day for 4 weeks. Results: For cell experiments, we found that the AID-positive cells underwent much less apoptosis compared with AID-silenced cells upon radiation. And for mouse experiments, we found that AID-positive tumors grew significantly faster than the AID-silenced tumors despite of receiving the same doses of radiation. Conclusion: Our study suggests that AID may confer cancer resistance to radiation therapy, and AID may be a significant biomarker predicting cancer resistance to radiation therapy for certain cancer types

  1. Using the cost-effectiveness of allogeneic islet transplantation to inform induced pluripotent stem cell-derived β-cell therapy reimbursement.

    Science.gov (United States)

    Archibald, Peter R T; Williams, David J

    2015-11-01

    In the present study a cost-effectiveness analysis of allogeneic islet transplantation was performed and the financial feasibility of a human induced pluripotent stem cell-derived β-cell therapy was explored. Previously published cost and health benefit data for islet transplantation were utilized to perform the cost-effectiveness and sensitivity analyses. It was determined that, over a 9-year time horizon, islet transplantation would become cost saving and 'dominate' the comparator. Over a 20-year time horizon, islet transplantation would incur significant cost savings over the comparator (GB£59,000). Finally, assuming a similar cost of goods to islet transplantation and a lack of requirement for immunosuppression, a human induced pluripotent stem cell-derived β-cell therapy would dominate the comparator over an 8-year time horizon.

  2. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  3. Polycystin-2-dependent control of cardiomyocyte autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Altamirano, Francisco; Pedrozo, Zully; Schiattarella, Gabriele G; Li, Dan L; Rivera-Mejías, Pablo; Sotomayor-Flores, Cristian; Parra, Valentina; Villalobos, Elisa; Battiprolu, Pavan K; Jiang, Nan; May, Herman I; Morselli, Eugenia; Somlo, Stefan; de Smedt, Humbert; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A

    2018-05-01

    Considerable evidence points to critical roles of intracellular Ca 2+ homeostasis in the modulation and control of autophagic activity. Yet, underlying molecular mechanisms remain unknown. Mutations in the gene (pkd2) encoding polycystin-2 (PC2) are associated with autosomal dominant polycystic kidney disease (ADPKD), the most common inherited nephropathy. PC2 has been associated with impaired Ca 2+ handling in cardiomyocytes and indirect evidence suggests that this protein may be involved in autophagic control. Here, we investigated the role for PC2 as an essential regulator of Ca 2+ homeostasis and autophagy. Activation of autophagic flux triggered by mTOR inhibition either pharmacologically (rapamycin) or by means of nutrient depletion was suppressed in cells depleted of PC2. Moreover, cardiomyocyte-specific PC2 knockout mice (αMhc-cre;Pkd2 F/F mice) manifested impaired autophagic flux in the setting of nutrient deprivation. Stress-induced autophagy was blunted by intracellular Ca 2+ chelation using BAPTA-AM, whereas removal of extracellular Ca 2+ had no effect, pointing to a role of intracellular Ca 2+ homeostasis in stress-induced cardiomyocyte autophagy. To determine the link between stress-induced autophagy and PC2-induced Ca 2+ mobilization, we over-expressed either wild-type PC2 (WT) or a Ca 2+ -channel deficient PC2 mutant (PC2-D509V). PC2 over-expression increased autophagic flux, whereas PC2-D509V expression did not. Importantly, autophagy induction triggered by PC2 over-expression was attenuated by BAPTA-AM, supporting a model of PC2-dependent control of autophagy through intracellular Ca 2+ . Furthermore, PC2 ablation was associated with impaired Ca 2+ handling in cardiomyocytes marked by partial depletion of sarcoplasmic reticulum Ca 2+ stores. Finally, we provide evidence that Ca 2+ -mediated autophagy elicited by PC2 is a mechanism conserved across multiple cell types. Together, this study unveils PC2 as a novel regulator of autophagy acting

  4. Induced Pluripotent Stem Cell Therapies for Degenerative Disease of the Outer Retina: Disease Modeling and Cell Replacement.

    Science.gov (United States)

    Di Foggia, Valentina; Makwana, Priyanka; Ali, Robin R; Sowden, Jane C

    2016-06-01

    Stem cell therapies are being explored as potential treatments for retinal disease. How to replace neurons in a degenerated retina presents a continued challenge for the regenerative medicine field that, if achieved, could restore sight. The major issues are: (i) the source and availability of donor cells for transplantation; (ii) the differentiation of stem cells into the required retinal cells; and (iii) the delivery, integration, functionality, and survival of new cells in the host neural network. This review considers the use of induced pluripotent stem cells (iPSC), currently under intense investigation, as a platform for cell transplantation therapy. Moreover, patient-specific iPSC are being developed for autologous cell transplantation and as a tool for modeling specific retinal diseases, testing gene therapies, and drug screening.

  5. Role of p38 MAPK in enhanced human cancer cells killing by the combination of aspirin and ABT-737

    Science.gov (United States)

    Zhang, Chong; Shi, Jing; Mao, Shi-ying; Xu, Ya-si; Zhang, Dan; Feng, Lin-yi; Zhang, Bo; Yan, You-you; Wang, Si-cong; Pan, Jian-ping; Yang, You-ping; Lin, Neng-ming

    2015-01-01

    Regular use of aspirin after diagnosis is associated with longer survival among patients with mutated-PIK3CA colorectal cancer, but not among patients with wild-type PIK3CA cancer. In this study, we showed that clinically achievable concentrations of aspirin and ABT-737 in combination could induce a synergistic growth arrest in several human PIK3CA wild-type cancer cells. In addition, our results also demonstrated that long-term combination treatment with aspirin and ABT-737 could synergistically induce apoptosis both in A549 and H1299 cells. In the meanwhile, short-term aspirin plus ABT-737 combination treatment induced a greater autophagic response than did either drug alone and the combination-induced autophagy switched from a cytoprotective signal to a death-promoting signal. Furthermore, we showed that p38 acted as a switch between two different types of cell death (autophagy and apoptosis) induced by aspirin plus ABT-737. Moreover, the increased anti-cancer efficacy of aspirin combined with ABT-737 was further validated in a human lung cancer A549 xenograft model. We hope that this synergy may contribute to failure of aspirin cancer therapy and ultimately lead to efficacious regimens for cancer therapy. PMID:25388762

  6. Inhibition of autophagy overcomes the nanotoxicity elicited by cadmium-based quantum dots.

    Science.gov (United States)

    Fan, Jiajun; Sun, Yun; Wang, Shaofei; Li, Yubin; Zeng, Xian; Cao, Zhonglian; Yang, Ping; Song, Ping; Wang, Ziyu; Xian, Zongshu; Gao, Hongjian; Chen, Qicheng; Cui, Daxiang; Ju, Dianwen

    2016-02-01

    Cadmium-based quantum dots (QDs) have shown their values in disease diagnosis, cellular and molecular tracking, small-animal imaging, and therapeutic drug delivery. However, the potential safety problems of QDs, mainly due to their nanotoxicities by unclear mechanisms, have greatly limited its applications. To reverse this situation, we investigated the underlying biological mechanisms of the toxicity of Quantum Dots CdTe/CdS 655 (QDs 655) in this work. QDs 655 was found to elicit nanotoxicity in vitro and in vivo. During the process, autophagy was activated, which was characterized by three main stages of autophagic flux including formation of autophagosomes, lysosomes fused with autophagosomes, and degradation of autophagosomes by lysosomes. Furthermore, the autophagic cell death was demonstrated in vitro under QDs 655 treatment while inhibition of autophagy by pharmacological inhibitors or genetic approaches could attenuate the toxicity induced by QDs 655 in vitro and in vivo. These results indicated that autophagic flux and autophagic cell death were triggered by QDs 655, which elucidated the critical role of autophagy in QDs 655 induced toxicity. Our data may suggest the approach to overcome the toxicity of QDs and other nanoparticles by autophagy inhibition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. PELATIHAN MIRROR NEURON SYSTEM SAMA DENGAN PELATIHAN CONSTRAINT INDUCED MOVEMENT THERAPY DALAM MENINGKATKAN KEMAMPUAN FUNGSIONAL ANGGOTA GERAK ATAS PASIEN STROKE

    Directory of Open Access Journals (Sweden)

    Abdul chalik meidian

    2014-03-01

    Full Text Available Stroke is an interruption of blood vasculature system in the brain that causes suddenly neurological dysfunction, resulted in clinically brain tissue damage in a relatively long time period, decreased physical mobility and functional ability impaired of upper limb. The purpose of this study is to know an increasing in upper limb functional ability among stroke patients after mirror neuron system exercise and constraint induced movement therapy exercise and to know the comparison of both exercise. This study uses an experimental research with pre-test and post-test control group design. Number of samples of the first group is 13 patients given mirror neuron system exercise for 30-60 minutes , while the second group 13 patients were given constraint induced movement therapy exercise for 30-60 minutes. The research was conducted in 2 month period time. Each patient is taught a variety of upper limb functional ability in accordance with the operational concept guidance and patients were asked to repeat the exercise independently at home as directed. Measuring test of upper limb functional ability is using the wolf motor function test instruments. The result is an increase the upper limb functional ability of 21.7% in the mirror neuron system exercise group and proved a significant difference (p<0.05 and an increase in the upper limb functional ability of 17.1% in the constraint induced movement therapy exercise group and proved a significant difference (p<0.05 while the difference of increasing of upper limb functional ability of the two groups showed no significant difference (p>0,05. It was concluded that the mirror neuron system exercise is similar with constraint induced movement therapy exercise in increasing the upper limb functional ability among stroke patients.

  8. The natural insect peptide Neb-colloostatin induces ovarian atresia and apoptosis in the mealworm Tenebrio molitor.

    Science.gov (United States)

    Czarniewska, Elżbieta; Rosiński, Grzegorz; Gabała, Elżbieta; Kuczer, Mariola

    2014-01-30

    The injection of Neb-colloostatin into T. molitor females causes gonadoinhibitory effects on ovarian development. This peptide inhibits intercellular space formation (patency) in follicular epithelium and results in slowed vitellogenesis, delayed ovulation, reduced number of eggs laid and presumably cell death in the terminal follicles. However, as does the form of cell death in the terminal follicle, the mode of action of Neb-colloostatin remains unknown. We tested Neb-colloostatin for a sterilizing effect on females of Tenebrio molitor. We report that injection of nanomolar doses of Neb-colloostatin induce ovarian follicle atresia in 4-day old females during their first gonadotropic cycle. Light microscope observations revealed morphological changes in the ovary: after Neb-colloostatin injection the terminal oocytes are significantly smaller and elicit massive follicle resorption, but the control terminal follicles possess translucent ooplasm in oocytes at different stages of vitellogenesis. A patency is visible in follicular epithelium of the control vitellogenic oocytes, whereas peptide injection inhibits intercellular space formation and, in consequence, inhibits vitellogenesis. Confocal and electron microscope examination showed that peptide injection causes changes in the morphology indicating death of follicular cells. We observed F-actin cytoskeleton disorganization, induction of caspase activity, changes in chromatin organization and autophagic vacuole formation. Moreover, the apical cytoplasm of follicular cells is filled with numerous free ribosomes, probably indicating a higher demand for protein biosynthesis, especially in preparation for autophagic vacuole formation. On the other hand, the process of polyribosomes formation is inhibited, indicating the contributing effect of this hormone. Neb-colloostatin induces atresia in the mealworm ovary. Degeneration of T. molitor follicles includes changes in morphology and viability of follicular cells, and

  9. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress

    International Nuclear Information System (INIS)

    Sakitani, Kosuke; Hirata, Yoshihiro; Hikiba, Yohko; Hayakawa, Yoku; Ihara, Sozaburo; Suzuki, Hirobumi; Suzuki, Nobumi; Serizawa, Takako; Kinoshita, Hiroto; Sakamoto, Kei; Nakagawa, Hayato; Tateishi, Keisuke; Maeda, Shin; Ikenoue, Tsuneo; Kawazu, Shoji; Koike, Kazuhiko

    2015-01-01

    has potential in the treatment of colon cancer by inducing apoptosis via p53 and ER stress, and suppressing the UPR pathway is a valid strategy to overcome resistance to autophagic inhibition

  10. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase.

    Science.gov (United States)

    Brown, Charles O; Salem, Kelley; Wagner, Brett A; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R; Goel, Apollina

    2012-06-15

    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-κB (nuclear factor κB) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-κB activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-α, IL-6 induced an early perturbation in reduced glutathione level and increased NF-κB-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy.

  11. Herbal Medicine for Hot Flushes Induced by Endocrine Therapy in Women with Breast Cancer: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yuanqing Li

    2016-01-01

    Full Text Available Objective. This systematic review was conducted to evaluate the clinical effectiveness and safety of herbal medicine (HM as an alternative management for hot flushes induced by endocrine therapy in breast cancer patients. Methods. Key English and Chinese language databases were searched from inception to July 2015. Randomized Controlled Trials (RCTs evaluating the effects of HM on hot flushes induced by endocrine therapy in women with breast cancer were retrieved. We conducted data collection and analysis in accordance with the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analysis was performed with the software (Review Manager 5.3. Results. 19 articles were selected from the articles retrieved, and 5 articles met the inclusion criteria for analysis. Some included individual studies showed that HM can relieve hot flushes as well as other menopausal symptoms induced by endocrine therapy among women with breast cancer and improve the quality of life. There are minor side effects related to HM which are well tolerated. Conclusion. Given the small number of included studies and relatively poor methodological quality, there is insufficient evidence to draw positive conclusions regarding the objective benefit of HM. Additional high quality studies are needed with more rigorous methodological approach to answer this question.

  12. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    Science.gov (United States)

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  13. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome.

    Science.gov (United States)

    Morselli, Eugenia; Mariño, Guillermo; Bennetzen, Martin V; Eisenberg, Tobias; Megalou, Evgenia; Schroeder, Sabrina; Cabrera, Sandra; Bénit, Paule; Rustin, Pierre; Criollo, Alfredo; Kepp, Oliver; Galluzzi, Lorenzo; Shen, Shensi; Malik, Shoaib Ahmad; Maiuri, Maria Chiara; Horio, Yoshiyuki; López-Otín, Carlos; Andersen, Jens S; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2011-02-21

    Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy independent of SIRT1 in human and yeast cells as well as in nematodes. Although resveratrol and spermidine ignite autophagy through distinct mechanisms, these compounds stimulate convergent pathways that culminate in concordant modifications of the acetylproteome. Both agents favor convergent deacetylation and acetylation reactions in the cytosol and in the nucleus, respectively. Both resveratrol and spermidine were able to induce autophagy in cytoplasts (enucleated cells). Moreover, a cytoplasm-restricted mutant of SIRT1 could stimulate autophagy, suggesting that cytoplasmic deacetylation reactions dictate the autophagic cascade. At doses at which neither resveratrol nor spermidine stimulated autophagy alone, these agents synergistically induced autophagy. Altogether, these data underscore the importance of an autophagy regulatory network of antagonistic deacetylases and acetylases that can be pharmacologically manipulated.

  14. Emerging therapies for patients with symptoms of opioid-induced bowel dysfunction

    Directory of Open Access Journals (Sweden)

    Leppert W

    2015-04-01

    Full Text Available Wojciech Leppert Chair and Department of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland Abstract: Opioid-induced bowel dysfunction (OIBD comprises gastrointestinal (GI symptoms, including dry mouth, nausea, vomiting, gastric stasis, bloating, abdominal pain, and opioid-induced constipation, which significantly impair patients’ quality of life and may lead to undertreatment of pain. Traditional laxatives are often prescribed for OIBD symptoms, although they display limited efficacy and exert adverse effects. Other strategies include prokinetics and change of opioids or their administration route. However, these approaches do not address underlying causes of OIBD associated with opioid effects on mostly peripheral opioid receptors located in the GI tract. Targeted management of OIBD comprises purely peripherally acting opioid receptor antagonists and a combination of opioid receptor agonist and antagonist. Methylnaltrexone induces laxation in 50%–60% of patients with advanced diseases and OIBD who do not respond to traditional oral laxatives without inducing opioid withdrawal symptoms with similar response (45%–50% after an oral administration of naloxegol. A combination of prolonged-release oxycodone with prolonged-release naloxone (OXN in one tablet (a ratio of 2:1 provides analgesia with limited negative effect on the bowel function, as oxycodone displays high oral bioavailability and naloxone demonstrates local antagonist effect on opioid receptors in the GI tract and is totally inactivated in the liver. OXN in daily doses of up to 80 mg/40 mg provides equally effective analgesia with improved bowel function compared to oxycodone administered alone in patients with chronic non-malignant and cancer-related pain. OIBD is a common complication of long-term opioid therapy and may lead to quality of life deterioration and undertreatment of pain. Thus, a complex assessment and management that addresses underlying

  15. Maternal Melatonin Therapy Attenuated Maternal High-Fructose Combined with Post-Weaning High-Salt Diets-Induced Hypertension in Adult Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2018-04-01

    Full Text Available Consumption of food high in fructose and salt is associated with the epidemic of hypertension. Hypertension can originate from early life. Melatonin, a pleiotropic hormone, regulates blood pressure. We examined whether maternal melatonin therapy can prevent maternal high-fructose combined with post-weaning high-salt diet-induced programmed hypertension in adult offspring. Pregnant Sprague-Dawley rats received either a normal diet (ND or a 60% fructose diet (HF during pregnancy and the lactation period. Male offspring were on either the ND or a high-salt diet (HS, 1% NaCl from weaning to 12 weeks of age and were assigned to five groups (n = 8/group: ND/ND, HF/ND, ND/HS, HF/HS, and HF/HS+melatonin. Melatonin (0.01% in drinking water was administered during pregnancy and lactation. We observed that maternal HF combined with post-weaning HS diets induced hypertension in male adult offspring, which was attenuated by maternal melatonin therapy. The beneficial effects of maternal melatonin therapy on HF/HS-induced hypertension related to regulating several nutrient-sensing signals, including Sirt1, Sirt4, Prkaa2, Prkab2, Pparg, and Ppargc1a. Additionally, melatonin increased protein levels of mammalian targets of rapamycin (mTOR, decreased plasma asymmetric dimethylarginine (ADMA and symmetric dimethylarginine levels, and increased the l-arginine-to-ADMA ratio. The reprogramming effects by which maternal melatonin therapy protects against hypertension of developmental origin awaits further elucidation.

  16. Immunotherapy of murine leukemia. Efficacy of passive serum therapy of Friend leukemia virus-induced disease in immunocompromised mice

    International Nuclear Information System (INIS)

    Genovesi, E.V.; Livnat, D.; Collins, J.J.

    1983-01-01

    Previous studies have demonstrated that the passive therapy of Friend murine leukemia virus (F-MuLV)-induced disease with chimpanzee anti-F-MuLV serum is accompanied by the development of host antiviral humoral and cellular immunity, the latter measurable in adoptive transfer protocols and by the ability of serum-protected mice to resist virus rechallenge. The present study was designed to further examine the contribution of various compartments of the host immune system to serum therapy itself, as well as to the acquired antiviral immunity that develops in serum-protected mice, through the use of naturally immunocompromised animals [e.g., nude athymic mice and natural killer (NK)-deficient beige mutant mice] or mice treated with immunoabrogating agents such as sublethal irradiation, cyclophosphamide [Cytoxan (Cy)], cortisone, and 89 Sr. The studies in nude mice indicate that while mature T-cells are not needed for effective serum therapy, they do appear to be necessary for the long-term resistance of serum-protected mice to virus rechallenge and for the generation of the cell population(s) responsible for adoptive transfer of antiviral immunity. Furthermore, this acquired resistance is not due to virus neutralization by serum antibodies since antibody-negative, Cy-treated, serum-protected mice still reject the secondary virus infection. Lastly, while the immunocompromise systems examined did effect various host antiviral immune responses, none of them, including the NK-deficient beige mutation, significantly diminished the efficacy of the passive serum therapy of F-MuLV-induced disease

  17. Molecular targeting of gene therapy and radiotherapy

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Kufe, D.W.; Advani, S.J.; Roizman, B.

    2001-01-01

    The full promise of gene therapy has been limited by the lack of specificity of vectors for tumor tissue as well as the lack of antitumor efficacy of transgenes encoded by gene delivery systems. In this paper we review our studies investigating two modifications of gene therapy combined with radiotherapy. The first investigations described include studies of radiation inducible gene therapy. In this paradigm, radio-inducible DNA sequences from the CarG elements of the Egr-1 promoter are cloned upstream of a cDNA encoding TNFa. The therapeutic gene (TNFa) is induced by radiation within the tumor microenvironment. In the second paradigm, genetically engineered herpes simplex virus (HSV-1) is induced by ionizing radiation to proliferate within the tumor volume. These modifications of radiotherapy and gene therapy may enhance the efficacy of both treatments

  18. ATG13: just a companion, or an executor of the autophagic program?

    Science.gov (United States)

    Alers, Sebastian; Wesselborg, Sebastian; Stork, Björn

    2014-06-01

    During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.

  19. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    Science.gov (United States)

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  20. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    You-Lin eTain

    2015-12-01

    Full Text Available Prenatal dexamethasone (DEX exposure and high-fat (HF intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg or vehicle from gestational day 16 to 22. In the melatonin-treatment groups (M, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Male offspring were assigned to five groups: control, DEX, HF, DEX+HF, and DEX+HF+M. Male offspring in the HF group were fed a HF diet from weaning to 4 months of age. Prenatal DEX and postnatal HF diet synergistically induced programmed hypertension in adult offspring, which melatonin prevented. Maternal melatonin treatment modified over 3000 renal transcripts in the developing offspring kidney. Our NGS data indicate that PPAR signaling and fatty acid metabolism are two significantly regulated pathways. In addition, maternal melatonin therapy elicits longstanding alterations on renal programming, including regulation of the melatonin signaling pathway and upregulation of Agtr1b and Mas1 expression in the renin-angiotensin system (RAS, to protect male offspring against programmed hypertension. Postnatal HF aggravates prenatal DEX induced programmed hypertension in adult offspring, which melatonin prevented. The protective effects of melatonin on programmed hypertension is associated with regulation of the RAS and melatonin receptors. The long-term effects of maternal melatonin therapy on renal transcriptome require further clarification.

  1. Dance movement therapy in the concept of expressive arts-therapy

    OpenAIRE

    Martinec, Renata

    2013-01-01

    Dance Movement Therapy is a complementary method which includes using and analyzing of different aspects of body-experience and body-expression such us movement, mimics, pantomime, touch… In Dance Movement Therapy body is dominant media of therapeutic process. So this kind of therapy may have positive influence on physiological awareness, body expression of emotions, inducing unconscious impulses, and improving new strategies of behaviour through exploring new patterns and qualities of mov...

  2. Effect of Child Friendly Constraint Induced Movement Therapy on Unimanual and Bimanual Function in Hemiplegia

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Sadegh Hosseini

    2010-10-01

    Full Text Available Objectives: Hemiplegia is a non-progressive damage in premature growing brain which causes movement disorders in one side of the body. The objective of present research is to study the method of modified constraints induced movement therapy (CIMT which can be appropriate on unimanual and bimanual functions of children with Hemiplegia. Methods: This single-blinded, randomized, control trial study performed on twenty-eight participants who were selected based on specific inclusion criteria and divided into two groups of CIMT and conventional therapy. Intervention at CIMT was done six hours every day, for 10 days, whereas another group received conventional occupational therapy. Results: To analyze the data, independent-sample t-test and paired-sample t-test were used. Results showed that significant differences in variables of unimanual function, Jebson Taylor test and dexterity of involved hand in CIMT group, but, these variables did not show any difference in conventional group. Also bimanual functions in CIMT demonstrated significant difference in variables of bimanual function, bilateral coordination, and caregivers’ perception (how much and (how well, whereas this variables did not show any difference in pre-test and post-test of conventional therapy. Discussion: Child friendly CIMT has fairly good effects on unimanual function and some variables of bimanual function of children with hemiplegia.

  3. A Case of Probable Amisulpride Induced Mania after Eight Months of Therapy

    Directory of Open Access Journals (Sweden)

    Prakash Thapa

    2017-01-01

    Full Text Available Development of manic symptoms during treatment with atypical antipsychotics can be a troublesome side effect that has been described with most atypical antipsychotics. However, reports of amisulpride induced mania have been rare. Here, we report the case of an 18-year-old male patient diagnosed with schizophrenia, who developed manic symptoms while on treatment with amisulpride. While previous reports have described occurrence of mania within days to three months of treatment with amisulpride, we report a case where manic symptoms occurred after around eight months of therapy. We have also attempted to describe the possible risk factors based on the available case studies.

  4. Photodynamic therapy induces antifibrotic alterations in primary human vocal fold fibroblasts.

    Science.gov (United States)

    Zhang, Chi; Wang, Jiajia; Chou, Adriana; Gong, Ting; Devine, Erin E; Jiang, Jack J

    2018-04-18

    Photodynamic therapy (PDT) is a promising treatment modality for laryngeal dysplasia, early-stage carcinoma, and papilloma, and was reported to have the ability to preserve laryngeal function and voice quality without clinical fibrotic response. We aimed to investigate the mechanism behind the antifibrotic effects of PDT on primary human vocal fold fibroblasts (VFFs) in vitro. In vitro analysis from one human donor. Cell viability of VFFs in response to varying doses of PDT was investigated by the Cell Counting Kit-8 method. Sublethal-dose PDT (SL-PDT) was used for the following experiments. Expression of genes related to vocal fold extracellular matrix formation was analyzed by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting. Effects of PDT on cell migration, collagen contraction, and transforming growth factor β-1 (TGF-β1)-induced myofibroblast differentiation were also analyzed. PDT affects the viability of VFFs in a dose-dependent manner. SL-PDT significantly changed the expression profile of VFFs with antifibrotic effects. It also inhibited cell migration, reduced collagen contraction, and reversed the fibroblast-myofibroblast differentiation induced by TGF-β1. SL-PDT induces antifibrotic alterations in VFFs. This could explain the low incidence of vocal fold scar associated with PDT. Moreover, PDT may be useful in treating existing vocal fold scars. Further studies should focus on the in vivo effect of PDT on vocal fold wound healing and scar remodeling. NA Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Chemotherapy-Induced Macrophage Infiltration into Tumors Enhances Nanographene-Based Photodynamic Therapy.

    Science.gov (United States)

    Zhao, Yang; Zhang, Chenran; Gao, Liquan; Yu, Xinhe; Lai, Jianhao; Lu, Dehua; Bao, Rui; Wang, Yanpu; Jia, Bing; Wang, Fan; Liu, Zhaofei

    2017-11-01

    Increased recruitment of tumor-associated macrophages (TAM) to tumors following chemotherapy promotes tumor resistance and recurrence and correlates with poor prognosis. TAM depletion suppresses tumor growth, but is not highly effective due to the effects of tumorigenic mediators from other stromal sources. Here, we report that adoptive macrophage transfer led to a dramatically enhanced photodynamic therapy (PDT) effect of 2-(1-hexyloxyethyl)-2-devinyl pyropheophor-bide-alpha (HPPH)-coated polyethylene glycosylated nanographene oxide [GO(HPPH)-PEG] by increasing its tumor accumulation. Moreover, tumor treatment with commonly used chemotherapeutic drugs induced an increase in macrophage infiltration into tumors, which also enhanced tumor uptake and the PDT effects of GO(HPPH)-PEG, resulting in tumor eradication. Macrophage recruitment to tumors after chemotherapy was visualized noninvasively by near-infrared fluorescence and single-photon emission CT imaging using F4/80-specific imaging probes. Our results demonstrate that chemotherapy combined with GO(HPPH)-PEG PDT is a promising strategy for the treatment of tumors, especially those resistant to chemotherapy. Furthermore, TAM-targeted molecular imaging could potentially be used to predict the efficacy of combination therapy and select patients who would most benefit from this treatment approach. Cancer Res; 77(21); 6021-32. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy.

    Science.gov (United States)

    Eftekhari, Mohammad; Anbiaei, Robabeh; Zamani, Hanie; Fallahi, Babak; Beiki, Davood; Ameri, Ahmad; Emami-Ardekani, Alireza; Fard-Esfahani, Armaghan; Gholamrezanezhad, Ali; Seid Ratki, Kazem Razavi; Roknabadi, Alireza Momen

    2015-01-01

    Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right-sided cancer. To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring) were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT) to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions) over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol) was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed) and 36 patients with right-sided cancer (controls)] were enrolled. Dose-volume histogram (DVH) [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46). In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03) and anterolateral (17.1% versus 2.8%, P=0.049) walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS) of>3 was observed in twelve cases (34.3%), while in five of the controls (13.9%),(Odds ratio=1.3). There was no significant difference between the groups regarding left ventricular ejection fraction. The risk of radiation induced myocardial perfusion abnormality in patients treated with CRT on the

  7. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    Science.gov (United States)

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  8. Neem oil limonoids induces p53-independent apoptosis and autophagy

    Science.gov (United States)

    Chandra, Dhyan

    2012-01-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  9. THERAPY-RELATED MYELOID MALIGNANCIES IN MYELOMA

    Directory of Open Access Journals (Sweden)

    Xenofon Papanikolaou

    2011-10-01

    Full Text Available Therapy related myeloid malignancies are an increasingly recognized treatment complication in patients undergoing therapy for multiple myeloma. The main predisposing factors are the alkylating agents, topoisomerase II inhibitors and radiotherapy, but recently questions have been raised regarding the immunomodulatory agent lenalidomide. Little is known about the new antimyeloma agents in the context of therapy related myeloid malignanices. The duration of treatment and the time from diagnosis are the main contributing factors in alkylating induced myeloid malignancies which occur 5-10 years after treatment, chromosome 5 and 7 abnormalities being the characteristic finding. High dose therapy (HDT does not seem to be a major contributing factor per se in multiple myeloma. In a number of large published series, all the factors related with therapy-induced myelodysplasia were defined prior to HDT. Topoisomerase II inhibitors induce mainly acute leukemias which invariably correlate with dysregulation of the MLL gene. Radiotherapy causes therapy related myelodysplasia if applied in bone marrow producing areas, especially if combined with chemotherapy. Therapy related myeloid malignancies generally herald a poor prognosis. Karyotypic abnormalities seem to be the main prognostic factor. In all cases the risk for therapy related myeloid malignancies drops sharply by 10 years after the treatment.

  10. THERAPY-RELATED MYELOID MALIGNANCIES IN MYELOMA

    Directory of Open Access Journals (Sweden)

    Bart Barlogie

    2011-01-01

    Full Text Available

    Therapy related myeloid malignancies are an increasingly recognized treatment complication in patients undergoing therapy for multiple myeloma. The main predisposing factors are the alkylating agents, topoisomerase II inhibitors and radiotherapy, but recently questions have been raised regarding the immunomodulatory agent lenalidomide. Little is known about the new antimyeloma agents in the context of therapy related myeloid malignanices. The duration of treatment and the time from diagnosis are the main contributing factors in alkylating induced myeloid malignancies which occur 5-10 years after treatment, chromosome 5 and 7 abnormalities being the characteristic finding. High dose therapy (HDT does not seem to be a major contributing factor per se in multiple myeloma. In a number of large published series, all the factors related with therapy-induced myelodysplasia were defined prior to HDT. Topoisomerase II inhibitors induce mainly acute leukemias which invariably correlate with dysregulation of the MLL gene. Radiotherapy causes therapy related myelodysplasia if applied in bone marrow producing areas, especially if combined with chemotherapy. Therapy related myeloid malignancies generally herald a poor prognosis. Karyotypic abnormalities seem to be the main prognostic factor. In all cases the risk for therapy related myeloid malignancies drops sharply by 10 years after the treatment.

  11. Cerebral palsy in adult patients: constraint-induced movement therapy is effective to reverse the nonuse of the affected upper limb

    Directory of Open Access Journals (Sweden)

    Ana Cecília P. Oliveira

    2016-01-01

    Full Text Available ABSTRACT Objective To determine if the original protocol of Constraint-Induced Movement Therapy (CIMT, is adequate to reverse the nonuse of the affected upper limb (AUL in patients with Cerebral Palsy (CP in adulthood. Method The study included 10 patients diagnosed with CP hemiparesis had attended the adult protocol CIMT, from January/August 2009/2014. Results Average age 24.6 (SD 9.44; MAL average pretreatment How Often (HO = 0.72 and How Well (HW = 0.68 and post-treatment HO = 3.77 and HW = 3.60 (p ≤ 0.001 and pretreatment WMFT average = 21.03 and post-treatment average = 18.91 (p = 0.350. Conclusion The constraint-induced movement therapy is effective to reverse the nonuse learn of the AUL in adult patients with CP.

  12. Combined statin-fibrate therapy-induced rhabdomyolysis: Case report

    Directory of Open Access Journals (Sweden)

    Jozić Tanja L.

    2014-01-01

    Full Text Available Introduction Rhabdomyolysis is a rare, but serious and potentially fatal adverse reaction of the statin application that may be developed in any time of therapy. It is characterized by massive destruction of muscles associated with the large increase of creatine kinase (CK leading to myoglobinuria and potential acute renal failure. Combined statin-fibrate therapy increases the risk of rhabdomyolysis, especially in elderly and diabetic patients. Case report An 81-year-old male was admitted to Coronary Care Unit of the Emergency Center, Clinical Center of Serbia (CCS with the clinical picture and electrocardiogram of the acute anterior wall myocardial infarction complicated with pulmonary edema. Laboratory tests on admission showed higher elevated values of serum creatinine 179 μmol/L and BUN 9.2 mmol/L (eGFR 32 mL/min/1.73m2, CK 309 U/L (on day 2: 3476 U/L and mixed hyperlipidemia (total cholesterol 10.3 mmol/L, HDL 2.26 mmol/L, TG 4.85 mmol/L. The patient was treated with thrombolysis medication therapy (Alteplase, anticoagulant and dual antiplatelet therapy, diuretics, organic nitrates, angiotensin-converting enzyme (ACE inhibitors, antibiotics, and proton pump inhibitors. During seven days, his therapy included combined pravastatin 20 mg and fenofibrate (160 mg, which was discontinued due to pains and weakness of muscles and significantly elevated CC to 7080 U/L (upper limit 200 U/L, but no significant deterioration of renal function was observed. Discontinuation of therapy resulted in CC level normalization and improvement of clinical condition. Conclusion Combined statin and fibrate therapy requires strict clinical control and monitoring of CK i transaminases. Four-time or higher increase of CK requires discontinuation of therapy. In addition, patients are advised to report immediately any pains in muscles, sensibility, weakness or cramps.

  13. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice.

    Science.gov (United States)

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-09-10

    Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity.

  14. The natural insect peptide Neb-colloostatin induces ovarian atresia and apoptosis in the mealworm Tenebrio molitor

    Science.gov (United States)

    2014-01-01

    Background The injection of Neb-colloostatin into T. molitor females causes gonadoinhibitory effects on ovarian development. This peptide inhibits intercellular space formation (patency) in follicular epithelium and results in slowed vitellogenesis, delayed ovulation, reduced number of eggs laid and presumably cell death in the terminal follicles. However, as does the form of cell death in the terminal follicle, the mode of action of Neb-colloostatin remains unknown. Results We tested Neb-colloostatin for a sterilizing effect on females of Tenebrio molitor. We report that injection of nanomolar doses of Neb-colloostatin induce ovarian follicle atresia in 4-day old females during their first gonadotropic cycle. Light microscope observations revealed morphological changes in the ovary: after Neb-colloostatin injection the terminal oocytes are significantly smaller and elicit massive follicle resorption, but the control terminal follicles possess translucent ooplasm in oocytes at different stages of vitellogenesis. A patency is visible in follicular epithelium of the control vitellogenic oocytes, whereas peptide injection inhibits intercellular space formation and, in consequence, inhibits vitellogenesis. Confocal and electron microscope examination showed that peptide injection causes changes in the morphology indicating death of follicular cells. We observed F-actin cytoskeleton disorganization, induction of caspase activity, changes in chromatin organization and autophagic vacuole formation. Moreover, the apical cytoplasm of follicular cells is filled with numerous free ribosomes, probably indicating a higher demand for protein biosynthesis, especially in preparation for autophagic vacuole formation. On the other hand, the process of polyribosomes formation is inhibited, indicating the contributing effect of this hormone. Conclusion Neb-colloostatin induces atresia in the mealworm ovary. Degeneration of T. molitor follicles includes changes in morphology and

  15. Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model.

    Science.gov (United States)

    Aryanpour, Roya; Pasbakhsh, Parichehr; Zibara, Kazem; Namjoo, Zeinab; Beigi Boroujeni, Fatemeh; Shahbeigi, Saeed; Kashani, Iraj Ragerdi; Beyer, Cordian; Zendehdel, Adib

    2017-10-01

    Demyelination of the central nervous system (CNS) has been associated to reactive microglia in neurodegenerative disorders, such as multiple sclerosis (MS). The M1 microglia phenotype plays a pro-inflammatory role while M2 is involved in anti-inflammatory processes in the brain. In this study, CPZ-induced demyelination mouse model was used to investigate the effect of progesterone (PRO) therapy on microglia activation and neuro-inflammation. Results showed that progesterone therapy (CPZ+PRO) decreased neurological behavioral deficits, as demonstrated by significantly decreased escape latencies, in comparison to CPZ mice. In addition, CPZ+PRO caused a significant reduction in the mRNA expression levels of M1-markers (iNOS, CD86, MHC-II and TNF-α) in the corpus callosum region, whereas the expression of M2-markers (Trem-2, CD206, Arg-1 and TGF-β) was significantly increased, in comparison to CPZ mice. Moreover, CPZ+PRO resulted in a significant decrease in the number of iNOS + and Iba-1 + /iNOS + cells (M1), whereas TREM-2 + and Iba-1 + /TREM-2 + cells (M2) significantly increased, in comparison to CPZ group. Furthermore, CPZ+PRO caused a significant decrease in mRNA and protein expression levels of NLRP3 and IL-18 (~2-fold), in comparison to the CPZ group. Finally, CPZ+PRO therapy was accompanied with reduced levels of demyelination, compared to CPZ, as confirmed by immunofluorescence to myelin basic protein (MBP) and Luxol Fast Blue (LFB) staining, as well as transmission electron microscopy (TEM) analysis. In summary, we reported for the first time that PRO therapy causes polarization of M2 microglia, attenuation of M1 phenotype, and suppression of NLRP3 inflammasome in a CPZ-induced demyelination model of MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Skeletal muscle myotubes of the severely obese exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux

    Science.gov (United States)

    Bollinger, Lance M.; Powell, Jonathan J. S.; Houmard, Joseph A.; Witczak, Carol A.; Brault, Jeffrey J.

    2015-01-01

    Objective Whole-body protein metabolism is dysregulated with obesity. Our goal was to determine if activity and expression of major protein degradation pathways are compromised specifically in human skeletal muscle with obesity. Methods We utilized primary Human Skeletal Muscle cell (HSkM) cultures since cellular mechanisms can be studied absent of hormones and contractile activity that could independently influence metabolism. HSkM from 10 lean (BMI ≤ 26.0 kg/m2) and 8 severely obese (BMI ≥ 39.0) women were examined basally and when stimulated to atrophy (serum and amino acid starvation). Results HSkM from obese donors had a lower proportion of type I myosin heavy chain and slower flux through the autophagic/lysosomal pathway. During starvation, flux through the ubiquitin-proteasome system diverged according to obesity status, with a decrease in the lean and an increase in HSkM from obese subjects. HSkMC from the obese also displayed elevated proteasome activity despite no difference in proteasome content. Atrophy-related gene expression and myotube area were similar in myotubes derived from lean and obese individuals under basal and starved conditions. Conclusions Our data indicate that muscle cells of the lean and severely obese have innate differences in management of protein degradation, which may explain their metabolic differences. PMID:26010327

  17. High-Protein Intake during Weight Loss Therapy Eliminates the Weight-Loss-Induced Improvement in Insulin Action in Obese Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Gordon I. Smith

    2016-10-01

    Full Text Available High-protein (HP intake during weight loss (WL therapy is often recommended because it reduces the loss of lean tissue mass. However, HP intake could have adverse effects on metabolic function, because protein ingestion reduces postprandial insulin sensitivity. In this study, we compared the effects of ∼10% WL with a hypocaloric diet containing 0.8 g protein/kg/day and a hypocaloric diet containing 1.2 g protein/kg/day on muscle insulin action in postmenopausal women with obesity. We found that HP intake reduced the WL-induced decline in lean tissue mass by ∼45%. However, HP intake also prevented the WL-induced improvements in muscle insulin signaling and insulin-stimulated glucose uptake, as well as the WL-induced adaptations in oxidative stress and cell structural biology pathways. Our data demonstrate that the protein content of a WL diet can have profound effects on metabolic function and underscore the importance of considering dietary macronutrient composition during WL therapy for people with obesity.

  18. Detoxication and antiproteolytic therapy of radiation complications

    International Nuclear Information System (INIS)

    Yakhontov, N.E.; Klimov, I.A.; Lavrikova, L.P.; Martynov, A.D.; Provorova, T.P.; Serdyukov, A.S.; Shestakov, A.F.

    1984-01-01

    49 patients with uterine cervix and ovarian carcinomas were treated with detoxication and antiproteolytic therapy of radiation-induced side-effects. The therapy permits to complete without interruption the remote gamma-therapy course and to reduce patients in-hospital periods by 10+- 1 days. The prescription of hemoder intravenous injection in a dose of 450 ml and contrical intramuscular injection (10000 AtrE) in cases of pronounced manifestations of radiation-induced side-effects (asthenia, leukopenia, enterocolitis) for 3 days should be considered an efficient therapy

  19. Non-invasive treatment efficacy evaluation for high-intensity focused ultrasound therapy using magnetically induced magnetoacoustic measurement

    Science.gov (United States)

    Guo, Gepu; Wang, Jiawei; Ma, Qingyu; Tu, Juan; Zhang, Dong

    2018-04-01

    Although the application of high intensity focused ultrasound (HIFU) has been demonstrated to be a non-invasive treatment technology for tumor therapy, the real-time temperature monitoring is still a key issue in the practical application. Based on the temperature-impedance relation, a fixed-point magnetically induced magnetoacoustic measurement technology of treatment efficacy evaluation for tissue thermocoagulation during HIFU therapy is developed with a sensitive indicator of critical temperature monitoring in this study. With the acoustic excitation of a focused transducer in the magnetoacoustic tomography with the magnetic induction system, the distributions of acoustic pressure, temperature, electrical conductivity, and acoustic source strength in the focal region are simulated, and the treatment time dependences of the peak amplitude and the corresponding amplitude derivative under various acoustic powers are also achieved. It is proved that the strength peak of acoustic sources is generated by tissue thermocoagulation with a sharp conductivity variation. The peak amplitude of the transducer collected magnetoacoustic signal increases accordingly along with the increase in the treatment time under a fixed acoustic power. When the temperature in the range with the radial and axial widths of about ±0.46 mm and ±2.2 mm reaches 69 °C, an obvious peak of the amplitude derivative can be achieved and used as a sensitive indicator of the critical status of treatment efficacy. The favorable results prove the feasibility of real-time non-invasive temperature monitoring and treatment efficacy evaluation for HIFU ablation using the magnetically induced magnetoacoustic measurement, and might provide a new strategy for accurate dose control during HIFU therapy.

  20. Changes of right-hemispheric activation after constraint-induced, intensive language action therapy in chronic aphasia: fMRI evidence from auditory semantic processing1

    Science.gov (United States)

    Mohr, Bettina; Difrancesco, Stephanie; Harrington, Karen; Evans, Samuel; Pulvermüller, Friedemann

    2014-01-01

    The role of the two hemispheres in the neurorehabilitation of language is still under dispute. This study explored the changes in language-evoked brain activation over a 2-week treatment interval with intensive constraint induced aphasia therapy (CIAT), which is also called intensive language action therapy (ILAT). Functional magnetic resonance imaging (fMRI) was used to assess brain activation in perilesional left hemispheric and in homotopic right hemispheric areas during passive listening to high and low-ambiguity sentences and non-speech control stimuli in chronic non-fluent aphasia patients. All patients demonstrated significant clinical improvements of language functions after therapy. In an event-related fMRI experiment, a significant increase of BOLD signal was manifest in right inferior frontal and temporal areas. This activation increase was stronger for highly ambiguous sentences than for unambiguous ones. These results suggest that the known language improvements brought about by intensive constraint-induced language action therapy at least in part relies on circuits within the right-hemispheric homologs of left-perisylvian language areas, which are most strongly activated in the processing of semantically complex language. PMID:25452721

  1. Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors.

    Directory of Open Access Journals (Sweden)

    Eric P Ratliff

    Full Text Available Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies. Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors.

  2. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  3. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  4. Kalman filtered MR temperature imaging for laser induced thermal therapies.

    Science.gov (United States)

    Fuentes, D; Yung, J; Hazle, J D; Weinberg, J S; Stafford, R J

    2012-04-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3-D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comparing predictions in these regions to the original measurements. Performance was quantitatively evaluated in terms of a dimensionless L(2) (RMS) norm of the temperature error weighted by acquisition uncertainty. During periods of no data corruption, observed error histories demonstrate that the Kalman algorithm does not alter the high quality temperature measurement provided by MR thermal imaging. The KF-MRTI implementation considered is seen to predict the bioheat transfer with RMS error 10 sec.

  5. Modifications of cell cycle according to conditions of photodynamic therapy induced by hypericin

    International Nuclear Information System (INIS)

    Mikes, J.; Kleban, J.; Szilardiova, B.; Sackova, V; Fedorocko, P.; Horvath, V.; Brezani, P.

    2004-01-01

    Photodynamic therapy (PDT) is becoming a rapidly developing method in cancer therapy, recently. PDT is based on administration of nontoxic/weakly toxic photosensitive compound and its activation with light of appropriate wave length. Although PDT is of use in clinical practise, new promising photosensitive compounds with advantageous attributes are discovered continuously. Hypericin, one of these compounds, is known to induce cell cycle arrest in G 2 /M phase at low doses. This arrest is caused by microtubules destruction linked to Bcl-2 phosphorylation as a consequence of CDK-1/cyclin B1 complex activation, but data about combinations of different hypericin concentrations and light doses are missing. PDT effect is effected by multiple factors. In our experiment, we have been shown, by cytokinetical and flow-cytometric analysis, the way how the cells response to photo-cytotoxic effect of hypericin. By combination of two factors, light doses and concentrations of hypericin, we eliminated inappropriate combinations and chose for another analysis narrow ranges of both factors. We discovered a breakpoint between a controlled cell death - apoptosis and cell signalling disaster followed by necrosis. (authors)

  6. Androgen Induces Adaptation to Oxidative Stress in Prostate Cancer: Implications for Treatment with Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Jehonathan H. Pinthus

    2007-01-01

    Full Text Available Radiation therapy is a standard treatment for prostate cancer (PC. The postulated mechanism of action for radiation therapy is the generation of reactive oxygen species (ROS. Adjuvant androgen deprivation (AD therapy has been shown to confer a survival advantage over radiation alone in high-risk localized PC. However, the mechanism of this interaction is unclear. We hypothesize that androgens modify the radioresponsiveness of PC through the regulation of cellular oxidative homeostasis. Using androgen receptor (AR+ 22rv1 and AR− PC3 human PC cell lines, we demonstrated that testosterone increased basal reactive oxygen species (bROS levels, resulting in dose-dependent activation of phospho-p38 and pAKT, increased expression of clusterin, catalase, manganese superoxide dismutase. Similar data were obtained in three human PC xenografts; WISH-PC14, WISH-PC23, CWR22, growing in testosterone-supplemented or castrated SCID mice. These effects were reversible through AD or through incubation with a reducing agent. Moreover, testosterone increased the activity of catalase, superoxide dismutases, glutathione reductase. Consequently, AD significantly facilitated the response of AR+ cells to oxidative stress challenge. Thus, testosterone induces a preset cellular adaptation to radiation through the generation of elevated bROS, which is modified by AD. These findings provide a rational for combined hormonal and radiation therapy for localized PC.

  7. Modified constraint-induced movement therapy or bimanual occupational therapy following injection of Botulinum toxin-A to improve bimanual performance in young children with hemiplegic cerebral palsy: a randomised controlled trial methods paper

    Directory of Open Access Journals (Sweden)

    Imms Christine

    2010-07-01

    Full Text Available Abstract Background Use of Botulinum toxin-A (BoNT-A for treatment of upper limb spasticity in children with cerebral palsy has become routine clinical practice in many paediatric treatment centres worldwide. There is now high-level evidence that upper limb BoNT-A injection, in combination with occupational therapy, improves outcomes in children with cerebral palsy at both the body function/structure and activity level domains of the International Classification of Functioning, Disability and Health. Investigation is now required to establish what amount and specific type of occupational therapy will further enhance functional outcomes and prolong the beneficial effects of BoNT-A. Methods/Design A randomised, controlled, evaluator blinded, prospective parallel-group trial. Eligible participants were children aged 18 months to 6 years, diagnosed with spastic hemiplegic cerebral palsy and who were able to demonstrate selective motor control of the affected upper limb. Both groups received upper limb injections of BoNT-A. Children were randomised to either the modified constraint-induced movement therapy group (experimental or bimanual occupational therapy group (control. Outcome assessments were undertaken at pre-injection and 1, 3 and 6 months following injection of BoNT-A. The primary outcome measure was the Assisting Hand Assessment. Secondary outcomes included: the Quality of Upper Extremity Skills Test; Pediatric Evaluation of Disability Inventory; Canadian Occupational Performance Measure; Goal Attainment Scaling; Pediatric Motor Activity Log; modified Ashworth Scale and; the modified Tardieu Scale. Discussion The aim of this paper is to describe the methodology of a randomised controlled trial comparing the effects of modified constraint-induced movement therapy (a uni-manual therapy versus bimanual occupational therapy (a bimanual therapy on improving bimanual upper limb performance of children with hemiplegic cerebral palsy following

  8. A Critical Review of Constraint-Induced Movement Therapy and Forced Use in Children With Hemiplegia

    Directory of Open Access Journals (Sweden)

    Jeanne Charles

    2005-01-01

    Full Text Available Hemiplegia is a physical impairment that can occur in childhood following head trauma, cerebral vascular accident or transient ischemic attack (stroke, brain tumor, or congenital or perinatal injury. One of the most disabling symptoms of hemiplegia is unilaterally impaired hand and arm function. Sensory and motor impairments in children with hemiplegia compromise movement efficiency. Such children often tend not to use the affected extremity, which may further exacerbate the impairments, resulting in a developmentally learned non-use of the involved upper extremity, termed ‘developmental disuse’. Recent studies suggest that children with hemiplegia benefit from intensive practice. Forced use and Constraint-lnduced Movement Therapy (CI therapy are recent therapeutic interventions involving the restraint of the non-involved upper extremity and intensive practice with the involved upper extremity. These approaches were designed for adults with hemiplegia, and increasing evidence suggests that they are efficacious in this population. Recently, forced use and constraint-induced therapy have been applied to children with hemiplegia. In this review, we provide a brief description of forced use and CI therapy and their historical basis, provide a summary of studies of these interventions in children, and discuss a number of important theoretical considerations, as well as implications for postural control. We will show that whereas the studies to date suggest that both forced use and CI therapy appear to be promising for improving hand function in children with hemiplegia, the data are limited. Substantially more work must be performed before this approach can be advocated for general clinical use.

  9. Inhibition of Autophagy via Activation of PI3K/Akt Pathway Contributes to the Protection of Ginsenoside Rb1 against Neuronal Death Caused by Ischemic Insults

    Directory of Open Access Journals (Sweden)

    Tianfei Luo

    2014-09-01

    Full Text Available Lethal autophagy is a pathway leading to neuronal death caused by transient global ischemia. In this study, we examined the effect of Ginsenoside Rb1 (GRb1 on ischemia/reperfusion-induced autophagic neuronal death and investigated the role of PI3K/Akt. Ischemic neuronal death in vitro was induced by using oxygen glucose deprivation (OGD in SH-SY5Y cells, and transient global ischemia was produced by using two vessels occlusion in rats. Cellular viability of SH-SY5Y cells was assessed by MTT assay, and CA1 neuronal death was evaluated by Hematoxylin-eosin staining. Autophagic vacuoles were detected by using both fluorescent microscopy in combination with acridine orange (AO and Monodansylcadaverine (MDC staining and transmission electronic microscopy. Protein levels of LC3II, Beclin1, total Akt and phosphor-Akt at Ser473 were examined by western blotting analysis. GRb1 inhibited both OGD and transient ischemia-induced neuronal death and mitigated OGD-induced autophagic vacuoles in SH-SY5Y cells. By contrast, PI3K inhibitor LY294002 counteracted the protection of GRb1 against neuronal death caused by either OGD or transient ischemia. LY294002 not only mitigated the up-regulated protein level of phosphor Akt at Ser473 caused by GRb1, but also reversed the inhibitory effect of GRb1 on OGD and transient ischemia-induced elevation in protein levels of LC3II and Beclin1.

  10. SU-E-J-122: Detecting Treatment-Induced Metabolic Abnormalities in Craniopharyngioma Patients Undergoing Surgery and Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C; Shulkin, B; Li, Y; LI, X; Merchant, T [St. Jude Children' s Research Hospital, Memphis, TN (United States); Indelicato, D [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Boop, F [Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States)

    2014-06-01

    Purpose: To identify treatment-induced defects in the brain of children with craniopharyngioma receiving surgery and proton therapy using fluorodeoxyglucose positron emission tomography (FDG PET). Methods: Forty seven patients were enrolled on a clinical trial for craniopharyngioma with serial imaging and functional evaluations. Proton therapy was delivered using the double-scattered beams with a prescribed dose of 54 Cobalt Gray Equivalent. FDG tracer uptake in each of 63 anatomical regions was computed after warping PET images to a 3D reference template in Talairach coordinates. Regional uptake was deemed significantly low or high if exceeding two standard deviations of normal population from the mean. For establishing the normal ranges, 132 children aged 1–20 years with noncentral nervous system related diseases and normal-appearing cerebral PET scans were analyzed. Age- and gender-dependent regional uptake models were developed by linear regression and confidence intervals were calculated. Results: Most common PET abnormality before proton therapy was significantly low uptake in the frontal lobe, the occipital lobe (particularly in cuneus), the medial and ventral temporal lobe, cingulate gyrus, caudate nuclei, and thalamus. They were related to injury from surgical corridors, tumor mass effect, insertion of a ventricular catheter, and the placement of an Ommaya reservoir. Surprisingly a significantly high uptake was observed in temporal gyri and the parietal lobe. In 13 patients who already completed 18-month PET scans, metabolic abnormalities improved in 11 patients from baseline. One patient had persistent abnormalities. Only one revealed new uptake abnormalities in thalamus, brainstem, cerebellum, and insula. Conclusion: Postoperative FDG PET of craniopharyngioma patients revealed metabolic abnormalities in specific regions of the brain. Proton therapy did not appear to exacerbate these surgery- and tumor-induced defects. In patients with persistent and

  11. SU-E-J-122: Detecting Treatment-Induced Metabolic Abnormalities in Craniopharyngioma Patients Undergoing Surgery and Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C; Shulkin, B; Li, Y; LI, X; Merchant, T; Indelicato, D; Boop, F

    2014-01-01

    Purpose: To identify treatment-induced defects in the brain of children with craniopharyngioma receiving surgery and proton therapy using fluorodeoxyglucose positron emission tomography (FDG PET). Methods: Forty seven patients were enrolled on a clinical trial for craniopharyngioma with serial imaging and functional evaluations. Proton therapy was delivered using the double-scattered beams with a prescribed dose of 54 Cobalt Gray Equivalent. FDG tracer uptake in each of 63 anatomical regions was computed after warping PET images to a 3D reference template in Talairach coordinates. Regional uptake was deemed significantly low or high if exceeding two standard deviations of normal population from the mean. For establishing the normal ranges, 132 children aged 1–20 years with noncentral nervous system related diseases and normal-appearing cerebral PET scans were analyzed. Age- and gender-dependent regional uptake models were developed by linear regression and confidence intervals were calculated. Results: Most common PET abnormality before proton therapy was significantly low uptake in the frontal lobe, the occipital lobe (particularly in cuneus), the medial and ventral temporal lobe, cingulate gyrus, caudate nuclei, and thalamus. They were related to injury from surgical corridors, tumor mass effect, insertion of a ventricular catheter, and the placement of an Ommaya reservoir. Surprisingly a significantly high uptake was observed in temporal gyri and the parietal lobe. In 13 patients who already completed 18-month PET scans, metabolic abnormalities improved in 11 patients from baseline. One patient had persistent abnormalities. Only one revealed new uptake abnormalities in thalamus, brainstem, cerebellum, and insula. Conclusion: Postoperative FDG PET of craniopharyngioma patients revealed metabolic abnormalities in specific regions of the brain. Proton therapy did not appear to exacerbate these surgery- and tumor-induced defects. In patients with persistent and

  12. Galectin-1-Induced Autophagy Facilitates Cisplatin Resistance of Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Yu-Chi Su

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common cancers in Taiwan. Although chemotherapy is the primary treatment for HCC patients, drug resistance often leads to clinical failure. Galectin-1 is a beta-galactoside binding lectin which is up-regulated in HCC patients and promotes tumor growth by mediating cancer cell adhesion, migration and proliferation, but its role in chemoresistance of HCC is poorly understood. In this study we found that galectin-1 is able to lead to chemoresistance against cisplatin treatment, and subsequent inhibition has reversed the effect of cell death in HCC cells. Moreover, galectin-1 was found to induce autophagic flux in HCC cells. Inhibition of autophagy by inhibitors or knockdown of Atg5 cancels galectin-1-induced cisplatin resistance in HCC cells. Increase of mitophagy triggered by galectin-1 was found to reduce the mitochondrial potential loss and apoptosis induced by cisplatin treatment. Finally, using an in situ hepatoma mouse model, we clearly demonstrated that inhibition of galectin-1 by thiodigalactoside could significantly augment the anti-HCC effect of cisplatin. Taken together, our findings offer a new insight into the chemoresistance galectin-1 causes against cisplatin treatment, and points to a potential approach to improve the efficacy of cisplatin in the treatment of HCC patients.

  13. Cantharidin Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing Autophagy and Inducing Apoptosis in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Hong-chang Li

    2017-10-01

    Full Text Available Background/Aims: Cantharidin, a type of terpenoid secreted by the blister beetle Mylabris phalerata (Pallas, has attracted great attention in cancer therapy because of its potential anti-cancer activities. Here, we report the effects on apoptosis and autophagy in human triple-negative breast cancer (TNBC cell lines after treatment with cantharidin and attempt to elucidate the underlying mechanisms. Methods: MDA-MB-231 and MDA-MB-468 cells were treated with cantharidin and cell proliferation was examined using CCK-8 and clone formation assays. The expression of apoptosis- and autophagy-associated proteins was detected by western blotting. Cells were infected with lentivirus carrying the Beclin-1 gene, and MDA-MB-231-beclin1 (MB231-Bec and MDA-MB-468-beclin-1(MB468-Bec cells stably expressing Beclin-1 were established. Autophagic vacuoles in cells were observed with LC3 staining using fluorescence microscopy, and apoptotic cells were detected via flow cytometry. Tumor growth was assessed by subcutaneous inoculation of TNBC cells into BALB/c nude mice. Results: Cantharidin inhibited the proliferation of MDA-MB-231 and MDA-MB-468 cells, and induced cell apoptosis. Cantharidin additionally inhibited the conversion of LC3 I to LC3 II and autophagosome formation by suppressing the expression of Beclin-1. Furthermore, overexpression of Beclin-1 in TNBC cells attenuated the cytotoxicity of cantharidin. In vivo, cantharidin inhibited the growth of MDA-MB-231 and MDA-MB-468 xenografts in nude mice by suppressing autophagy and inducing apoptosis, and Beclin-1 overexpression in TNBC cells reduced the efficacy of cantharidin. Conclusions: Cantharidin inhibits autophagy by suppressing Beclin-1 expression and inducing apoptosis of TNBC cells in vitro and in vivo, thereby representing a potential strategy for the treatment of TNBC.

  14. Measurement of feline cytokines interleukin-12 and interferon- g produced by heat inducible gene therapy adenoviral vector using real time PCR

    International Nuclear Information System (INIS)

    Siddiqui, F.; Avery, P.R.; Ullrich, R.L.; LaRue, S.M.; Dewhirst, M.W.; Li, C.-Y.

    2003-01-01

    Biologic tumor therapy using Interleukin-12 (IL-12) has shown promise as an adjuvant to radiation therapy. The goals for cancer gene immunotherapy include effective eradication of established tumors and generation of a lasting systemic immune response. Among the cytokines, IL-12 has been found to be most effective gene in eradicating experimental tumors, preventing the development of metastases, and eliciting long-term antitumor immunity. Depending on the tumor model, IL-12 can exert antitumor activities via T cells, NK cells or NKT cells. It induces the production of IFN-g and IFN-inducible protein-10. It is also postulated to have antiangiogenic effects, thus inhibiting tumor formation and metastases. However, its use in clinical trials has been restricted largely owing to its systemic hematologic and hepatotoxicity. We tested the efficacy of adenovirus mediated expression of feline IL-12 gene placed under the control of an inducible promoter, the heat shock proteins (hsp70B). This places gene expression under the control of an external physical agent (hyperthermia), thus offering an 'on-off' switch and potentially reducing systemic toxicity by restricting its expression locally to the tumor. Crandell Feline Kidney (CrFK) cells were infected using the construct and the supernatant was then used to stimulate production of interferon g (IFN-g) in feline peripheral blood mononuclear cells (PBMC). As there is no commercially available ELISA kit currently available to detect or measure feline cytokines, we used real time-PCR to measure cytokine mRNA. These results will be used to initiate a clinical trial in cats with soft tissue sarcomas examining hyperthermia Induced gene therapy in conjunction with radiation therapy. The real time- PCR techniques developed here will be used to quantitatively measure cytokine mRNA levels in the punch biopsy samples obtained from the cats during the clinical trial. Support for this study was in part by NCI grant CA72745

  15. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

    Science.gov (United States)

    Busschaert, Nathalie; Park, Seong-Hyun; Baek, Kyung-Hwa; Choi, Yoon Pyo; Park, Jinhong; Howe, Ethan N. W.; Hiscock, Jennifer R.; Karagiannidis, Louise E.; Marques, Igor; Félix, Vítor; Namkung, Wan; Sessler, Jonathan L.; Gale, Philip A.; Shin, Injae

    2017-07-01

    Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.

  16. A platycoside-rich fraction from the root of Platycodon grandiflorum enhances cell death in A549 human lung carcinoma cells via mainly AMPK/mTOR/AKT signal-mediated autophagy induction.

    Science.gov (United States)

    Yim, Nam-Hui; Hwang, Youn-Hwan; Liang, Chun; Ma, Jin Yeul

    2016-12-24

    The root of Platycodon grandiflorum (PG), commonly known as Kilkyong in Korea, Jiegeng in China, and Kikyo in Japan, has been extensively used as a traditional anti-inflammatory medicine in Asia for the treatment of respiratory conditions, such as bronchitis, asthma, and tonsillitis. Platycosides isolated from PG are especially well-known for their anti-cancer effects. We investigated the involvement of autophagic cell death and other potential molecular mechanisms induced by the platycoside-containing butanol fraction of PG (PGB) in human lung carcinoma cells. PGB-induced growth inhibition and cell death were measured using a 5-diphenyl-tetrazolium bromide (MTT) assay. The effects of PGB on autophagy were determined by observing microtubule-associated protein 1 light chain 3 (LC3) redistribution with confocal microscopy. The PGB-mediated regulation of autophagy-associated proteins was investigated using Western blotting analysis. Furthermore, the anti-cancer mechanism of PGB was confirmed using chemical inhibitors. A high-performance liquid chromatography (HPLC)-DAD system was used to analyze the platycosides in PGB. In A549 cells, PGB induced significant autophagic cell death. Specifically, PGB upregulated LC3-II in a time- and dose-dependent manner, and it redistributed LC3 via autophagosome formation in the cytoplasm. PGB treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and subsequently suppressed the AKT/mammalian target of the rapamycin (mTOR) pathway. Furthermore, PGB inhibited cell proliferation by regulating the mitogen-activated protein kinase (MAPK) pathways. In this study, six types of platycosides were identified in the PGB using HPLC. PGB efficiently induced cancer cell death via autophagy and the modulation of the AMPK/mTOR/AKT and MAPK signaling pathways in A549 cells. Therefore, PGB may be an efficacious herbal anti-cancer therapy. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. Management of pain induced by exercise and mobilization during physical therapy programs: views of patients and care providers

    Directory of Open Access Journals (Sweden)

    Rannou François

    2011-07-01

    Full Text Available Abstract Background The expectations of patients for managing pain induced by exercise and mobilization (PIEM have seldom been investigated. We identified the views of patients and care providers regarding pain management induced by exercise and mobilization during physical therapy programs. Methods We performed a qualitative study based on semi-structured interviews with a stratified sample of 12 patients (7 women and 14 care providers (6 women: 4 general practitioners [GPs], 1 rheumatologist, 1 physical medicine physician, 1 geriatrician, 2 orthopedic surgeons, and 5 physical therapists. Results Patients and care providers have differing views on PIEM in the overall management of the state of disease. Patients' descriptions of PIEM were polymorphic, and they experienced it as decreased health-related quality of life. The impact of PIEM was complex, and patient views were sometimes ambivalent, ranging from denial of symptoms to discontinuation of therapy. Care providers agreed that PIEM is generally not integrated in management strategies. Care providers more often emphasized the positive and less often the negative dimensions of PIEM than did patients. However, the consequences of PIEM cited included worsened patient clinical condition, fears about physical therapy, rejection of the physical therapist and refusal of care. PIEM follow-up is not optimal and is characterized by poor transmission of information. Patients expected education on how better to prevent stress and anxiety generated by pain, education on mobilization, and adaptations of physical therapy programs according to pain intensity. Conclusion PIEM management could be optimized by alerting care providers to the situation, improving communication among care providers, and providing education to patients and care providers.

  18. Skin reactions after photodynamic therapy are unaffected by 839 nm photobiomodulation therapy

    DEFF Research Database (Denmark)

    Bay, Christiane; Vissing, Anne-Cathrine; Thaysen-Petersen, Daniel

    2017-01-01

    BACKGROUND AND OBJECTIVE: Photodynamic therapy (PDT) is associated with erythema and edema. Photobiomodulation (PBM) therapy may stimulate the skin recovery process. We investigated the potential of PBM to reduce PDT-induced skin reactions. STUDY DESIGN AND METHODS: Healthy volunteers (n = 20) were...

  19. Study of the in line measurements of β+ activity induced during hadron-therapy treatments for their ballistic control

    International Nuclear Information System (INIS)

    Lestand, L.

    2012-01-01

    Cancer remains the main cause of death in France which constitutes a major public heath care issue. Among all therapeutic alternatives currently used in clinical routine there are all external radiation therapy techniques. A new type of highly conformational radiation therapy, called hadron-therapy has been developed over almost 50 years. Ballistic accuracy relies on a set of parameters which can be affected by different sources of uncertainties that remain hardly predictable. Therefore, this technic requires the definition of quality assurance (QA) procedures to prevent any deleterious health consequences for the patient. Such QA procedures can be achieved by measuring the induced β + activity by means of Positron Emission Tomography. The first results obtained by simulations and through different experiments performed on proton and carbon ion beams have lead to define a methodology of data acquisition and analysis compatible with in-beam QA of hadron-therapy treatments. Moreover, experiment performed at GANIL (carbon beam) and CPO Orsay (proton beam) have helped to initiate the construction of a larger detector which could be used within different clinical routine treatments. (author)

  20. Radiation-induced myocardial perfusion abnormalities in breast cancer patients following external beam radiation therapy

    Directory of Open Access Journals (Sweden)

    Mohammad Eftekhari

    2015-01-01

    Full Text Available Objective(s: Radiation therapy for breast cancer can induce myocardial capillary injury and increase cardiovascular morbidity and mortality. A prospective cohort was conducted to study the prevalence of myocardial perfusion abnormalities following radiation therapy of left-sided breast cancer patients as compared to those with right–sided cancer. Methods: To minimize potential confounding factors, only those patients with low 10-year risk of coronary artery disease (based on Framingham risk scoring were included. All patients were initially treated by modified radical mastectomy and then were managed by postoperative 3D Conformal Radiation Therapy (CRT to the surgical bed with an additional 1-cm margin, delivered by 46-50 Gy (in 2 Gy daily fractions over a 5-week course. The same dose-adjusted chemotherapy regimen (including anthracyclines, cyclophosphamide and taxol was given to all patients. Six months after radiation therapy, all patients underwent cardiac SPECT for the evaluation of myocardial perfusion. Results: A total of 71 patients with a mean age of 45.3±7.2 years [35 patients with leftsided breast cancer (exposed and 36 patients with right-sided cancer (controls] were enrolled. Dose-volume histogram (DVH [showing the percentage of the heart exposed to >50% of radiation] was significantly higher in patients with left-sided breast cancer. Visual interpretation detected perfusion abnormalities in 42.9% of cases and 16.7% of controls (P=0.02, Odds ratio=1.46. In semiquantitative segmental analysis, only apical (28.6% versus 8.3%, P=0.03 and anterolateral (17.1% versus 2.8%, P=0.049 walls showed significantly reduced myocardial perfusion in the exposed group. Summed Stress Score (SSS of>3 was observed in twelve cases (34.3%, while in five of the controls (13.9%,(Odds ratio=1.3. There was no significant difference between the groups regarding left ventricular ejection fraction. Conclusion: The risk of radiation induced myocardial

  1. The Effects of Modified Constraint-Induced Movement Therapy in Acute Subcortical Cerebral Infarction.

    Science.gov (United States)

    Yu, Changshen; Wang, Wanjun; Zhang, Yue; Wang, Yizhao; Hou, Weijia; Liu, Shoufeng; Gao, Chunlin; Wang, Chen; Mo, Lidong; Wu, Jialing

    2017-01-01

    Background : Constraint-induced movement therapy (CIMT) promotes upper extremity recovery post stroke, however, it is difficult to implement clinically due to its high resource demand and safety of the restraint. Therefore, we propose that modified CIMT (mCIMT) be used to treat individuals with acute subcortical infarction. Objective : To evaluate the therapeutic effects of mCIMT in patients with acute subcortical infarction, and investigate the possible mechanisms underlying the effect. Methods : The role of mCIMT was investigated in 26 individuals experiencing subcortical infarction in the preceding 14 days. Patients were randomly assigned to either mCIMT or standard therapy. mCIMT group was treated daily for 3 h over 10 consecutive working days, using a mitt on the unaffected arm for up to 30% of waking hours. The control group was treated with an equal dose of occupational therapy and physical therapy. During the 3-month follow-up, the motor functions of the affected limb were assessed by the Wolf Motor Function Test (WMFT) and Motor Activity Log (MAL). Altered cortical excitability was assessed via transcranial magnetic stimulation (TMS). Results : Treatment significantly improved the movement in the mCIMT group compared with the control group. The mean WMF score was significantly higher in the mCIMT group compared with the control group. Further, the appearance of motor-evoked potentials (MEPs) were significantly higher in the mCIMT group compared with the baseline data. A significant change in ipsilesional silent period (SP) occurred in the mCIMT group compared with the control group. However, we found no difference between two groups in motor function or electrophysiological parameters after 3 months of follow-up. Conclusions : mCIMT resulted in significant functional changes in timed movement immediately following treatment in patients with acute subcortical infarction. Further, early mCIMT improved ipsilesional cortical excitability. However, no long

  2. The Effects of Modified Constraint-Induced Movement Therapy in Acute Subcortical Cerebral Infarction

    Directory of Open Access Journals (Sweden)

    Changshen Yu

    2017-05-01

    Full Text Available Background: Constraint-induced movement therapy (CIMT promotes upper extremity recovery post stroke, however, it is difficult to implement clinically due to its high resource demand and safety of the restraint. Therefore, we propose that modified CIMT (mCIMT be used to treat individuals with acute subcortical infarction.Objective: To evaluate the therapeutic effects of mCIMT in patients with acute subcortical infarction, and investigate the possible mechanisms underlying the effect.Methods: The role of mCIMT was investigated in 26 individuals experiencing subcortical infarction in the preceding 14 days. Patients were randomly assigned to either mCIMT or standard therapy. mCIMT group was treated daily for 3 h over 10 consecutive working days, using a mitt on the unaffected arm for up to 30% of waking hours. The control group was treated with an equal dose of occupational therapy and physical therapy. During the 3-month follow-up, the motor functions of the affected limb were assessed by the Wolf Motor Function Test (WMFT and Motor Activity Log (MAL. Altered cortical excitability was assessed via transcranial magnetic stimulation (TMS.Results: Treatment significantly improved the movement in the mCIMT group compared with the control group. The mean WMF score was significantly higher in the mCIMT group compared with the control group. Further, the appearance of motor-evoked potentials (MEPs were significantly higher in the mCIMT group compared with the baseline data. A significant change in ipsilesional silent period (SP occurred in the mCIMT group compared with the control group. However, we found no difference between two groups in motor function or electrophysiological parameters after 3 months of follow-up.Conclusions: mCIMT resulted in significant functional changes in timed movement immediately following treatment in patients with acute subcortical infarction. Further, early mCIMT improved ipsilesional cortical excitability. However, no long

  3. High-intensity laser therapy during chronic degenerative tenosynovitis experimentally induced in broiler chickens

    Science.gov (United States)

    Fortuna, Damiano; Rossi, Giacomo; Bilotta, Teresa W.; Zati, Allesandro; Gazzotti, Valeria; Venturini, Antonio; Pinna, Stefania; Serra, Christian; Masotti, Leonardo

    2002-10-01

    The aims of this study was the safety and the efficacy of High Intensity Laser Therapy (HILT) on chronic degenerative tenosynovitis. We have effectuated the histological evaluation and seroassay (C reactive protein) on 18 chickens affect by chronic degenerative tenosynovitis experimentally induced. We have been employed a Nd:YAG laser pulsed wave; all irradiated subjects received the same total energy (270 Joule) with a fluence of 7,7 J/cm2 and intensity of 10,7 W/cm2. The histological findings revealed a distinct reduction of the mineralization of the choral matrix, the anti-inflammatory effect of the laser, the hyperplasia of the synoviocytes and ectasia of the lymphatic vessels.

  4. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation

    Science.gov (United States)

    Bettoun, Audrey; Surdez, Didier; Vallerand, David; Gundogdu, Ramazan; Sharif, Ahmad A.D.; Gomez, Marta; Cascone, Ilaria; Meunier, Brigitte; White, Michael A.; Codogno, Patrice; Parrini, Maria Carla; Camonis, Jacques H.; Hergovich, Alexander

    2016-01-01

    Oncogenic Ras signalling occurs frequently in many human cancers. However, no effective targeted therapies are currently available to treat patients suffering from Ras-driven tumours. Therefore, it is imperative to identify downstream effectors of Ras signalling that potentially represent promising new therapeutic options. Particularly, considering that autophagy inhibition can impair the survival of Ras-transformed cells in tissue culture and mouse models, an understanding of factors regulating the balance between autophagy and apoptosis in Ras-transformed human cells is needed. Here, we report critical roles of the STK38 protein kinase in oncogenic Ras transformation. STK38 knockdown impaired anoikis resistance, anchorage-independent soft agar growth, and in vivo xenograft growth of Ras-transformed human cells. Mechanistically, STK38 supports Ras-driven transformation through promoting detachment-induced autophagy. Even more importantly, upon cell detachment STK38 is required to sustain the removal of damaged mitochondria by mitophagy, a selective autophagic process, to prevent excessive mitochondrial reactive oxygen species production that can negatively affect cancer cell survival. Significantly, knockdown of PINK1 or Parkin, two positive regulators of mitophagy, also impaired anoikis resistance and anchorage-independent growth of Ras-transformed human cells, while knockdown of USP30, a negative regulator of PINK1/Parkin-mediated mitophagy, restored anchorage-independent growth of STK38-depleted Ras-transformed human cells. Therefore, our findings collectively reveal novel molecular players that determine whether Ras-transformed human cells die or survive upon cell detachment, which potentially could be exploited for the development of novel strategies to target Ras-transformed cells. PMID:27283898

  5. Radiation-induced caries as the late effect of radiation therapy in the head and neck region

    Directory of Open Access Journals (Sweden)

    Katarzyna Dobroś

    2015-10-01

    Full Text Available Overall improvement in the nationwide system of medical services has consequently boosted the number of successfully treated patients who suffer from head and neck cancer. It is essential to effectively prevent development of radiation-induced caries as the late effect of radiation therapy. Incidence and severity of radiation-induced changes within the teeth individually vary depending on the patient’s age, actual radiation dose, size of radiation exposure field, patient’s general condition and additional risk factors. Inadequately managed treatment of caries may lead to loss of teeth, as well as prove instrumental in tangibly diminishing individual quality of life in patients. Furthermore, the need to have the teeth deemed unyielding or unsuitable for the application of conservative methods of treatment duly extracted is fraught for a patient with an extra hazard of developing osteoradionecrosis (ORN, while also increasing all attendant therapeutic expenditures. The present paper aims to offer some practical insights into currently available methods of preventing likely development of radiation-induced caries.

  6. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    International Nuclear Information System (INIS)

    Miyamae, Yusaku; Nishito, Yukina; Nakai, Naomi; Nagumo, Yoko; Usui, Takeo; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2016-01-01

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A_1. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  7. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  8. Efficacy of Curcumin as Adjuvant Therapy to Induce or Maintain Remission in Ulcerative Colitis Patients: an Evidence-based Clinical Review

    Directory of Open Access Journals (Sweden)

    Marcellus Simadibrata

    2018-01-01

    Full Text Available Background: treatment guidelines for ulcerative colitis (UC not yet established. Currently, mesalazine, corticosteroids, and immunomodulators are treatment options for UC. However, they are known to have unpleaseant side effects such as nausea, vomiting, headaches, hepatitis, and male infertility. Curcumin is found in Turmeric plants (Curcuma longa L., which possesses both anti-inflammatory and antioxidant properties. This study aimed to determine whether curcumin as adjuvant therapy can induce or maintain remission in UC patients. Methods: structured search in three database (Cochrane, PubMed, Proquest using “Curcumin”, “remission” and “Ulcerative Colitis” as keywords. Inclusion criteria is randomized controlled trials (RCTs, meta-analysis, or systematic review using curcumin as adjuvant therapy in adult UC patients. Results: we found 49 articles. After exclusion, three RCTs were reviewed; two examined curcumin efficacy to induce remission and one for remision maintenance in UC. Curcumin was significantly more effective than placebo in all RCTs. The efficacy of curcumin could be explained by its anti-inflammatory properties, which inhibit NF-kB pathway. Regulation of oxidant/anti-oxidant balance can modify the release of cytokines. However, methods varied between RCTs. Therefore, they cannot be compared objectively. Futhermore, the sample size were small (n= 50, 45, 89 therefore the statistical power was not enough to generate representative results in all UC patients. Conclusion: Available evidence showed that curcumin has the potential to induce and maintain remission in UC patients with no serious side effects. However, further studies with larger sample size are needed to recommend it as adjuvant therapy of ulcerative colitis.

  9. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Directory of Open Access Journals (Sweden)

    Lim Sung-Chul

    2011-09-01

    Full Text Available Abstract Background In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1, and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood. Results In the present study, we show that Distal-less 2 (Dlx-2, a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS in response to glucose deprivation (GD, one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an in vitro model of solid tumors. Dlx-2 short hairpin RNA (shRNA inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH release, indicating the important role(s of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis. Conclusions These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.

  10. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  11. Potential mechanism in sonodynamic therapy and focused ultrasound induced apoptosis in sarcoma 180 cells in vitro.

    Science.gov (United States)

    Tang, Wei; Liu, Quanhong; Wang, Xiaobing; Wang, Pan; Zhang, Jing; Cao, Bing

    2009-12-01

    Sonodynamic therapy employs a combination of ultrasound and a sonosensitizer to enhance the cytotoxic effect of ultrasound and promote apoptosis. However, the mechanism underlying the synergistic effect of ultrasound and hematoporphyrin is still unclear. In this study, we investigated mechanism of the induction of apoptosis by sonodynamic therapy in Sarcoma 180 cells. The cell suspension was treated by 1.75-MHz focused continuous ultrasound at an acoustic power (I(SATA)) of 1.4+/-0.07 W/cm(2) for 3 min in the absence or presence of 20 microg/ml hematoporphyrin. The proportion of apoptotic cells was determined by flow cytometry. We then analyzed the reactive oxygen species generation and localization by confocal microscopy. Western blotting and reverse transcriptase-polymerase chain reaction were used to analyze the expression of caspase-8, caspase-9, poly(ADP)-ribose polymerase, and nuclear factor-kappaB. The findings of our study indicate that ultrasound treatment induced the activation of nuclear factor-kappaB as an early stress response. When cells were pretreated with hematoporphyrin, the initial response to the therapy was the formation of (1)O(2) in the mitochondria. Our results primarily demonstrate that the mechanisms of induction of apoptosis by ultrasound and hematoporphyrin-sonodynamic therapies are very different. Our findings can provide a basis for explaining the synergistic effect of ultrasound and hematoporphyrin.

  12. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. [UNC School of Medicine (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  13. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    International Nuclear Information System (INIS)

    Chang, S.

    2015-01-01

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  14. Comparative study of the effects of photodynamic therapy and conventional therapy on ligature induced peri-implantitis in dogs

    International Nuclear Information System (INIS)

    Hayek, Ricardo Rada Ahmad

    2004-01-01

    Progressive peri-implanter bone losses, which are accompanied by inflammatory process in the soft tissues is referred to as peri-implantitis. The aim of this study was to compare the effects of lethal photosensitisation with the conventional technique on bacterial reduction in ligature induced peri-implantitis in dogs. Seventeen third pre-molars of Labrador dogs were extracted and, immediately after, the implants were submerged. After osteointegration, peri-implantitis was induced. After 4 months, ligature were removed and the same period was waited for natural induction of bacterial plaque. The dogs were randomly divided into two groups. In the conventional group, they were treated with the conventional techniques of mucoperiosteal flaps for scaling the implant surface and irrigate it. In the laser group, only mucoperiosteal scaling was carried out before photodynamic therapy. On the peri-implanter pocket an azulene paste was injected and a GaAlAs low-power laser (λ= 660 nm, P= 30 mW, E= 5,4 J and Δt= 3 min.). Microbiological samples were obtained before and immediately after treatment. One implant was removed to be analyzed by scan electron microscopy to verify contamination on the implant surface. The results of this study showed that Prevotella sp., Fusobacterium e S. Beta-haemolyticus were significantly reduced for the conventional and laser groups. (author)

  15. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    Science.gov (United States)

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  16. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells.

    Science.gov (United States)

    Huang, Qiu; Ou, Yun-Sheng; Tao, Yong; Yin, Hang; Tu, Ping-Hua

    2016-06-01

    Pyropheophorbide-α methyl ester (MPPa) was a second-generation photosensitizer with many potential applications. Here, we explored the impact of MPPa-mediated photodynamic therapy (MPPa-PDT) on the apoptosis and autophagy of human osteosarcoma (MG-63) cells as well as the relationships between apoptosis and autophagy of the cells, and investigated the related molecular mechanisms. We found that MPPa-PDT demonstrated the ability to inhibit MG-63 cell viability in an MPPa concentration- and light dose-dependent manner, and to induce apoptosis via the mitochondrial apoptosis pathway. Additionally, MPPa-PDT could also induce autophagy of MG-63 cell. Meanwhile, the ROS scavenger N-acetyl-L-cysteine (NAC) and the Jnk inhibitor SP600125 were found to inhibit the MPPa-PDT-induced autophagy, and NAC could also inhibit Jnk phosphorylation. Furthermore, pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine showed the potential in reducing the apoptosis rate induced by MPPa-PDT in MG-63 cells. Our results indicated that the mitochondrial pathway was involved in MPPa-PDT-induced apoptosis of MG-63 cells. Meanwhile the ROS-Jnk signaling pathway was involved in MPPa-PDT-induced autophagy, which further promoted the apoptosis in MG-63 cells.

  17. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Derek; Zhang, Rui, E-mail: rzhang@marybird.com [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States); Sanders, Mary [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Newhauser, Wayne [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States)

    2015-04-13

    Cancer of the brain and central nervous system (CNS) is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN) can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT) compared to passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT). Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV) and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  18. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Directory of Open Access Journals (Sweden)

    Derek Freund

    2015-04-01

    Full Text Available Cancer of the brain and central nervous system (CNS is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT compared to passively scattered proton therapy (PSPT and intensity modulated proton therapy (IMPT. Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  19. Boron neutron capture therapy induces cell cycle arrest and DNA fragmentation in murine melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, F. [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)] [Faculty of Medicine, University of Sao Paulo, 455 Doutor Arnaldo Avenue, Sao Paulo (Brazil); Coelho, P.R.P. [Institute for Nuclear and Energy Research, 2242 Lineu Prestes Avenue, Sao Paulo (Brazil); Arruda-Neto, J. [Physics Institute, University of Sao Paulo, 187 Matao Street, Sao Paulo (Brazil)] [FESP, Sao Paulo Engineering School, 5520 Nove de Julho Avenue, Sao Paulo (Brazil); Maria, Durvanei A., E-mail: durvaneiaugusto@yahoo.br [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)

    2011-12-15

    The melanoma is a highly lethal skin tumor, with a high incidence. Boron Neutron Capture Therapy (BNCT) is a radiotherapy which combines Boron with thermal neutrons, constituting a binary system. B16F10 melanoma and L929 fibroblasts were treated with Boronophenylalanine and irradiated with thermal neutron flux. The electric potential of mitochondrial membrane, cyclin D1 and caspase-3 markers were analyzed. BNCT induced a cell death increase and cyclin D1 amount decreased only in B16F10 melanoma. Besides, there was not caspase-3 phosphorylation.

  20. Cognitive-behavioral therapy induces sensorimotor and specific electrocortical changes in chronic tic and Tourette's disorder.

    Science.gov (United States)

    Morand-Beaulieu, Simon; O'Connor, Kieron P; Sauvé, Geneviève; Blanchet, Pierre J; Lavoie, Marc E

    2015-12-01

    Tic disorders, such as the Gilles de la Tourette syndrome and persistent tic disorder, are neurodevelopmental movement disorders involving impaired motor control. Hence, patients show repetitive unwanted muscular contractions in one or more parts of the body. A cognitive-behavioral therapy, with a particular emphasis on the psychophysiology of tic expression and sensorimotor activation, can reduce the frequency and intensity of tics. However, its impact on motor activation and inhibition is not fully understood. To study the effects of a cognitive-behavioral therapy on electrocortical activation, we recorded the event-related potentials (ERP) and lateralized readiness potentials (LRP), before and after treatment, of 20 patients with tic disorders and 20 healthy control participants (matched on age, sex and intelligence), during a stimulus-response compatibility inhibition task. The cognitive-behavioral therapy included informational, awareness training, relaxation, muscle discrimination, cognitive restructuration and relapse prevention strategies. Our results revealed that prior to treatment; tic patients had delayed stimulus-locked LRP onset latency, larger response-locked LRP peak amplitude, and a frontal overactivation during stimulus inhibition processing. Both stimulus-locked LRP onset latency and response-locked LRP peak amplitude normalized after the cognitive behavioral therapy completion. However, the frontal overactivation related to inhibition remained unchanged following therapy. Our results showed that P300 and reaction times are sensitive to stimulus-response compatibility, but are not related to tic symptoms. Secondly, overactivity of the frontal LPC and impulsivity in TD patients were not affected by treatment. Finally, CBT had normalizing effects on the activation of the pre-motor and motor cortex in TD patients. These results imply specific modifications of motor processes following therapy, while inhibition processes remained unchanged. Given

  1. Application of Induced Containment Therapy with adapted protocol for home care and its contributions to the motor condition and patient rehabilitation after encephalic vascular accident

    Directory of Open Access Journals (Sweden)

    Daniela Tonús

    2015-09-01

    Full Text Available Introduction: Encephalic Vascular Accident (EVA is among the most important diseases that cause physical and functional limitations. Hemiplegia is the most common physical changes post-EVA, as compromises the upper and lower limbs at the same side of the body, characterized by a rigid pattern of the flexor muscles of the upper limb and the extensor muscles of the lower limb. The Induced Containment Therapy has been a major rehabilitation technique recently aiming to promote functional improvement of the hemiplegic limb of those who suffered EVA and enable performance and quality of life of the individual. Objective: This study aimed to identify the possible contributions of Induced Containment Therapy using a protocol adapted to technique application to the hemiplegic limb. Moreover, this research points out the influence of the environment interventions, which on the present study, occurred in the participant’s home. Method: this is a case study with exploratory feature. Results and Conclusion: The results indicated improvements in functional ability at the time of execution of the tasks and increased use of hemiplegic limb, increasing motor performance after applying the Induced Containment Therapy adapted protocol compared to the start of treatment

  2. Effect of Time Constraind Induced Therapy on Function, Coordination and Movements of Upper Limb on Hemiplegic Adults

    Directory of Open Access Journals (Sweden)

    Masoud Gharib

    2011-10-01

    Full Text Available Objectives: Stroke, is one of the major causes of disability in adults. So, the patient may prefer to use the non-involved limb to perfom selfcare & named this phenomen learned non used. Constraint induced therapy is one of the rehabilitative interventions that can be effective in restoration of the function of the involved limb in some hemiparetic post stroke patients. purpose of this study was to investigate effect of time constraind induced therapy on function, coordination and movements of upper limb on hemiplegic adults. Methods: In an interventional design, 15 hemiplegic patients attended in stracture exrcises for 2 hours a day, 5 days a week for 12 weeks in during while for 5 hours a day, 5 days a week for 12 weeks, the sound limb was restricted within an arm sling for movement & dextrity assessment were used Fugl-Meyer & Minnesota Manual Dexterity Test. Results: the results of Fugl-Meyer & Minnesota Manual Dexterity Test were significantly improved in patients, after the intervention (P<0.05. Discussion: Our study shows that using CIT in involved limb encouraged the patients to use their involved limb and improved function by conquering learned non-use of the limb. more research is necessary to define baselines or golden times for rehabilitation of the patients using CIT method.

  3. Successful switch from bilateral brief pulse to right unilateral ultrabrief pulse electroconvulsive therapy after failure to induce seizures

    Directory of Open Access Journals (Sweden)

    Kawashima H

    2018-02-01

    Full Text Available Hirotsugu Kawashima,1 Yuko Kobayashi,1 Taro Suwa,2 Toshiya Murai,2 Ryuichi Yoshioka1 1Department of Psychiatry, Toyooka Hospital, Toyooka, Hyogo, Japan; 2Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan Abstract: Inducing adequate therapeutic seizures during electroconvulsive therapy (ECT is sometimes difficult due to a high seizure threshold, even at the maximum stimulus charge. Previous studies have demonstrated that seizure threshold is lower in patients treated with right unilateral ultrabrief pulse (RUL-UBP ECT than in those treated with bilateral or brief pulse (BL-BP ECT. Therefore, switching to RUL-UBP ECT may be beneficial for patients in whom seizure induction is difficult with conventional ECT. In the present report, we discuss the case of a patient suffering from catatonic schizophrenia in whom BL-BP ECT failed to induce seizures at the maximum charge. However, RUL-UBP ECT successfully elicited therapeutic seizures and enabled the patient to achieve complete remission. This case illustrates that, along with other augmentation strategies, RUL-UBP ECT represents an alternative for seizure induction in clinical practice. Keywords: electroconvulsive therapy, augmentation, ultrabrief pulse, electrode placement, seizure threshold

  4. Music therapy inhibits morphine-seeking behavior via GABA receptor and attenuates anxiety-like behavior induced by extinction from chronic morphine use.

    Science.gov (United States)

    Kim, Ki Jin; Lee, Sang Nam; Lee, Bong Hyo

    2018-05-01

    Morphine is a representative pain killer. However, repeated use tends to induce addiction. Music therapy has been gaining interest as a useful type of therapy for neuropsychiatric diseases. The present study examined whether Korean traditional music (KT) could suppress morphine-seeking behavior and anxiety-like behavior induced by extinction from chronic morphine use and additionally investigated a possible neuronal mechanism. Male Sprague-Dawley rats were trained to intravenously self-administer morphine hydrochloride (1.0 mg/kg) using a fixed ratio 1 schedule in daily 2 h session during 3 weeks. After training, rats who established baseline (variation less than 20% of the mean of infusion for 3 consecutive days) underwent extinction. Music was played twice a day during extinction. In the second experiment, the selective antagonists of GABA A and GABA B receptors were treated before the last playing to investigate the neuronal mechanism focusing on the GABA receptor pathway. Another experiment of elevated plus maze was performed to investigate whether music therapy has an anxiolytic effect at the extinction phase. KT but not other music (Indian road or rock music) reduced morphine-seeking behavior induced by a priming challenge with morphine. And, this effect was blocked by the GABA receptor antagonists. In addition, KT showed anxiolytic effects against withdrawal from morphine. Results of this study suggest that KT suppresses morphine-seeking behavior via GABA receptor pathway. In addition, KT showed to have anxiolytic effects, suggesting it has bi-directional effects on morphine. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    Directory of Open Access Journals (Sweden)

    Imène Achour

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE, the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA. We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.

  6. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    DEFF Research Database (Denmark)

    Klysner, René; Bjerg Bendsen, Birgitte; Hansen, Maja Soon

    2014-01-01

    The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.......The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine....

  7. Distribution of stress on TMJ disc induced by use of chincup therapy: assessment by the finite element method

    Science.gov (United States)

    Calçada, Flávio Siqueira; Guimarães, Antônio Sérgio; Teixeira, Marcelo Lucchesi; Takamatsu, Flávio Atsushi

    2017-01-01

    ABSTRACT Objective: To assess the distribution of stress produced on TMJ disc by chincup therapy, by means of the finite element method. Methods: a simplified three-dimensional TMJ disc model was developed by using Rhinoceros 3D software, and exported to ANSYS software. A 4.9N load was applied on the inferior surface of the model at inclinations of 30, 40, and 50 degrees to the mandibular plane (GoMe). ANSYS was used to analyze stress distribution on the TMJ disc for the different angulations, by means of finite element method. Results: The results showed that the tensile and compressive stresses concentrations were higher on the inferior surface of the model. More presence of tensile stress was found in the middle-anterior region of the model and its location was not altered in the three directions of load application. There was more presence of compressive stress in the middle and mid-posterior regions, but when a 50o inclined load was applied, concentration in the middle region was prevalent. Tensile and compressive stresses intensities progressively diminished as the load was more vertically applied. Conclusions: stress induced by the chincup therapy is mainly located on the inferior surface of the model. Loads at greater angles to the mandibular plane produced distribution of stresses with lower intensity and a concentration of compressive stresses in the middle region. The simplified three-dimensional model proved useful for assessing the distribution of stresses on the TMJ disc induced by the chincup therapy. PMID:29160348

  8. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2012-10-15

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examined the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.

  9. Anti-retroviral therapy induced diabetes in a Nigerian | Bakari ...

    African Journals Online (AJOL)

    African Health Sciences ... Background:Anti-retroviral therapy (ART) using Highly Active Anti-retroviral Therapy (HAART) has led to ... HIV infected individuals on one hand, and side effects of chronic administration of these drugs on the other.

  10. Dual Functional Capability of Dendritic Cells - Cytokine-Induced Killer Cells in Improving Side Effects of Colorectal Cancer Therapy.

    Science.gov (United States)

    Mosińska, Paula; Gabryelska, Agata; Zasada, Malwina; Fichna, Jakub

    2017-01-01

    The aim of cancer therapy is to eradicate cancer without affecting healthy tissues. Current options available for treating colorectal cancer (CRC), including surgery, chemotherapy or radiotherapy, usually elicit multiple adverse effects and frequently fail to completely remove the tumor cells. Thus, there is a constant need for seeking cancer cell-specific therapeutics to improve the course of cancer therapy and reduce the risk of relapse. In this review we elaborate on the mechanisms underlying the immunotherapy with dendritic cells (DCs) and cytokine-induced killer (CIK) cells, and summarize their effectiveness and tolerability available clinical studies. Finally, we discuss the up-to-date combinatorial adoptive anti-cancer immunotherapy with CIK cells co-cultured with DCs that recently showed encouraging efficacy and usefulness in treating malignant disease, including CRC.

  11. Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT

    International Nuclear Information System (INIS)

    Lee, Boram; Sung, Jiwon; Yoon, Myonggeun; Lee, Sunyoung

    2014-01-01

    This study evaluated the secondary cancer risk to various organs due to radiation treatment for breast cancer. Organ doses to an anthropomorphic phantom were measured using a photoluminescent dosimeter (PLD) for breast cancer treatment with 3D conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Cancer risk based on the measured dose was calculated using the BEIR (Biological Effects of Ionizing Radiation) VII models. The secondary dose per treatment dose (50.4 Gy) to various organs ranged from 0.02 to 0.36 Gy for 3D-CRT, but from 0.07 to 8.48 Gy for IMRT and VMAT, indicating that the latter methods are associated with higher secondary radiation doses than 3D-CRT. The result of the homogeneity index in the breast target shows that the dose homogeneity of 3D-CRT was worse than those of IMRT and VMAT. The organ specific lifetime attributable risks (LARs) to the thyroid, contralateral breast and ipsilateral lung per 100 000 population were 0.02, 19.71, and 0.76 respectively for 3D-CRT, much lower than the 0.11, 463.56, and 10.59 respectively for IMRT and the 0.12, 290.32, and 12.28 respectively for VMAT. The overall estimation of LAR indicated that the radiation-induced cancer risk due to breast radiation therapy was lower with 3D-CRT than with IMRT or VMAT. (paper)

  12. A case of sarcoma of the chest wall after radiation therapy for breast cancer

    International Nuclear Information System (INIS)

    Izumi, Junko; Nishi, Tsunehiro; Fukuuchi, Atsushi; Takanashi, Riichiro

    1998-01-01

    A case of radiation-induced sarcoma of the chest wall after radiation therapy for breast cancer is reported. A 69-year-old woman underwent mastectomy with axillary lymph node dissection followed by linac therapy of 50 Gy delivered to the left axilla, left supraclavicular area, and parasternal area. During therapy for bone and liver metastases, a tumor was noted in the left chest wall 15 years after radiation therapy. Incisional biopsy was performed. Histological diagnosis was spindle cell sarcoma. Radiation-induced sarcoma was suspected because the tumor developed 15 years after radiation therapy within the same area. Radiation-induced sarcoma is a rare tumor, but radiation therapy following breast-conserving therapy is widely employed. It is important to be aware of the possibility of radiation-induced sarcoma. (author)

  13. Effect of immunomodulatory therapy on the endometrial inflammatory response to induced infectious endometritis in susceptible mares

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Woodward, Elizabeth; Bojesen, Anders Miki

    2012-01-01

    endometritis based on their endometrial histopathology and ability to clear an induced uterine inflammation. To investigate the effect of immunomodulatory therapy, the mares were inoculated with 10(5) colony forming units (CFU) Escherichia coli in three consecutive estrus cycles in a modified cross-over study...... inoculation. Endometrial biopsies were recovered 3, 24 and 72 h post inoculation. Relative gene-expression analyses were performed by quantitative reverse transcriptase PCR (qRT-PCR). Endometrial gene expression of inflammatory cytokines was modulated by administration of GC. Expression of proinflammatory...

  14. Hyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Sigal Tal

    2017-10-01

    Full Text Available Background: Recent clinical studies in stroke and traumatic brain injury (TBI victims suffering chronic neurological injury present evidence that hyperbaric oxygen therapy (HBOT can induce neuroplasticity.Objective: To assess the neurotherapeutic effect of HBOT on prolonged post-concussion syndrome (PPCS due to TBI, using brain microstructure imaging.Methods: Fifteen patients afflicted with PPCS were treated with 60 daily HBOT sessions. Imaging evaluation was performed using Dynamic Susceptibility Contrast-Enhanced (DSC and Diffusion Tensor Imaging (DTI MR sequences. Cognitive evaluation was performed by an objective computerized battery (NeuroTrax.Results: HBOT was initiated 6 months to 27 years (10.3 ± 3.2 years from injury. After HBOT, DTI analysis showed significantly increased fractional anisotropy values and decreased mean diffusivity in both white and gray matter structures. In addition, the cerebral blood flow and volume were increased significantly. Clinically, HBOT induced significant improvement in the memory, executive functions, information processing speed and global cognitive scores.Conclusions: The mechanisms by which HBOT induces brain neuroplasticity can be demonstrated by highly sensitive MRI techniques of DSC and DTI. HBOT can induce cerebral angiogenesis and improve both white and gray microstructures indicating regeneration of nerve fibers. The micro structural changes correlate with the neurocognitive improvements.

  15. Hyperbaric oxygen therapy attenuates central sensitization induced by a thermal injury in humans

    DEFF Research Database (Denmark)

    Rasmussen, V M; Borgen, A E; Jansen, E C

    2015-01-01

    BACKGROUND: Hyperbaric oxygen (HBO2 ) treatment has in animal experiments demonstrated antinociceptive effects. It was hypothesized that these effects would attenuate secondary hyperalgesia areas (SHAs), an expression of central sensitization, after a first-degree thermal injury in humans. METHODS...... was demonstrated. However, in the nine volunteers starting with the control session, a statistical significant attenuation of SHAs was demonstrated in the HBO2 session (P = 0.004). CONCLUSIONS: The results indicate that HBO2 therapy in humans attenuates central sensitization induced by a thermal skin injury......, compared with control. These new and original findings in humans corroborate animal experimental data. The thermal injury model may give impetus to future human neurophysiological studies exploring the central effects of hyperbaric oxygen treatment....

  16. Alternative Therapy of Animals – Homeopathy and Other Alternative Methods of Therapy

    Directory of Open Access Journals (Sweden)

    Løken Torleiv

    2002-03-01

    Full Text Available Alternative therapy of animals is described, in the meaning of alternatives to veterinary therapy traditionally accepted by veterinary faculties and schools and included in their curricula. Alternative therapy composes of different disciplines, of which homeopathy is emphasised in this presentation. Information is given on the use and interest of such therapy among veterinarians and animal owners. Homeopathy as other alternative therapies, may offer great advances, if they induce any effect. Some of the disciplines are based on a scientifically accepted documentation. Others, and homeopathy in particular, are missing such a documentation of effect. The justification of including alternative therapy in treating animals is discussed. Research in alternative therapy of animals is greatly needed, in particular to evaluate therapeutic methods which are in extensive use without any documented effect. An ongoing research project in Norway on the effect of homeopathic treatment of mastitis in cows is shortly presented.

  17. Neuroprotective effect of TAT-14-3-3ε fusion protein against cerebral ischemia/reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Yuanjun Zhu

    Full Text Available Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB due to its large size. A protein transduction domain (PTD of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP, which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic

  18. Systematic immunosuppression induced by photodynamic therapy (PDT) is adoptively transferred by macrophages

    International Nuclear Information System (INIS)

    Lynch, D.H.; Haddad, S; King, V.J.; Ott, M.J.; Jolles, C.J.; Straight, R. C.

    1989-01-01

    The purpose of this study was to determine whether photodynamic therapy induced suppression of contact hypersensitivity (CHS) responses was an active phenomenon that could be adoptively transferred by viable splenocytes from PDT-treated mice. Although induction of adoptively transferable suppressor cells in PDT-treated mice required exposure to antigen, the suppressor cells were found to be antigen nonspecific in their function. Furthermore, splenocytes from PDT-treated mice were capable of generating levels of allospecific cytotoxic T lymphocyte (CTL) activity which were comparable to those generated by normal control mice, but the ability of irradiated spleen cells from PDT-treated mice to stimulate a mixed lymphocyte response (MLR) was dramatically impaired. Finally, chromatographic separation of T cells, B cells and macrophages showed that the cell type which mediates adoptively transferable suppression of CHS responsiveness is in the macrophage lineage. (author)

  19. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    International Nuclear Information System (INIS)

    Kanbe, Takamasa; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Murawaki, Yoshikazu; Kawasaki, Hironaka; Shiota, Goshi

    2006-01-01

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SRα promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes

  20. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues.

    Directory of Open Access Journals (Sweden)

    Leonie Harmse

    Full Text Available Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05. Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05, with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues.

  1. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues.

    Science.gov (United States)

    Harmse, Leonie; Dahan-Farkas, Nurit; Panayides, Jenny-Lee; van Otterlo, Willem; Penny, Clement

    2015-01-01

    Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05). Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05), with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues.

  2. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring

    OpenAIRE

    Tain, You-Lin; Sheen, Jiunn-Ming; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Mao-Meng; Hsu, Chien-Ning; Lin, Yu-Ju; Kuo, Kuang-Che; Huang, Li-Tung

    2015-01-01

    Prenatal dexamethasone (DEX) exposure and high-fat (HF) intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg) or vehicle from gestational day 16 to 22. In ...

  3. Melatonin reverses H2 O2 -induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-κB.

    Science.gov (United States)

    Nopparat, Chutikorn; Sinjanakhom, Puritat; Govitrapong, Piyarat

    2017-08-01

    Autophagy, a degradation mechanism that plays a major role in maintaining cellular homeostasis and diminishes in aging, is considered an aging characteristic. Melatonin is an important hormone that plays a wide range of physiological functions, including the anti-aging effect, potentially via the regulation of the Sirtuin1 (SIRT1) pathway. The deacetylation ability of SIRT1 is important for controlling the function of several transcription factors, including nuclear factor kappa B (NF-ĸB). Apart from inflammation, NF-ĸB can regulate autophagy by inhibiting Beclin1, an initiator of autophagy. Although numerous studies have revealed the role of melatonin in regulating autophagy, very limited experiments have shown that melatonin can increase autophagic activity via SIRT1 in a senescent model. This study focuses on the effect of melatonin on autophagy via the deacetylation activity of SIRT1 on RelA/p65, a subunit of NF-ĸB, to determine whether melatonin can attenuate the aging condition. SH-SY5Y cells were treated with H 2 O 2 to induce the senescent state. These results demonstrated that melatonin reduced a number of beta-galactosidase (SA-βgal)-positive cells, a senescent marker. In addition, melatonin increased the protein levels of SIRT1, Beclin1, and LC3-II, a hallmark protein of autophagy, and reduced the levels of acetylated-Lys310 in the p65 subunit of NF-ĸB in SH-SY5Y cells treated with H 2 O 2 . Furthermore, in the presence of SIRT1 inhibitor, melatonin failed to increase autophagic markers. The present data indicate that melatonin enhances autophagic activity via the SIRT1 signaling pathway. Taken together, we propose that in modulating autophagy, melatonin may provide a therapeutically beneficial role in the anti-aging processes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    Science.gov (United States)

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  5. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-01-01

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  6. Preclinical and clinical experience in vascular gene therapy: advantages over conservative/standard therapy.

    Science.gov (United States)

    Nikol, S; Huehns, T Y

    2001-04-01

    No systemic pharmacological treatment has been shown to convincingly reduce the incidence of restenosis after angioplasty or increase the formation of collaterals in ischemic tissue in patients. The lack of success of many pharmaceutical agents in reducing restenosis rates or in inducing angiogenesis post-angioplasty and following stent implantation has encouraged the development of new technological treatment approaches. Gene therapy is a novel strategy with the potential to prevent some of the sequelae after arterial injury, particularly cell proliferation, and to induce growth of new vessels or remodeling of pre-existing vessel branches, which may help patients with critical ischemia. Gene therapy strategies have the advantage of minimizing systemic side effects and may have a long-term effect as the encoded protein is released. Most clinical trials investigating gene therapy for vascular disease have been uncontrolled phase I and IIa trials. Gene therapy into vessels with the genes for growth factors has been demonstrated to be feasible and efficient. Local drug delivery devices have been used in combination with gene therapy in several trials to maximize safety and efficiency. Data from experimental animal work indicates that gene therapy may modify intimal hyperplasia after arterial injury, but there are few clinical trials on restenosis in patients. Preliminary clinical results show only limited success in altering restenosis rates. In vitro and experimental in vivo investigations into gene therapy for angiogenesis demonstrate increased formation of collaterals and functional improvement of limb ischemia. There is some evidence of increased collateral formation and clinical improvement in patients with critical limb ischemia. Results of placebo-controlled and double-blind trials of gene therapy for vascular disease are awaited.

  7. Adaptive therapy.

    Science.gov (United States)

    Gatenby, Robert A; Silva, Ariosto S; Gillies, Robert J; Frieden, B Roy

    2009-06-01

    A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant

  8. Severe Dextran-Induced Anaphylactic Shock during Induction of Hypertension-Hypervolemia-Hemodilution Therapy following Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Tohru Shiratori

    2015-01-01

    Full Text Available Dextran is a colloid effective for volume expansion; however, a possible side effect of its use is anaphylaxis. Dextran-induced anaphylactoid reaction (DIAR is a rare but severe complication, with a small dose of dextran solution sufficient to induce anaphylaxis. An 86-year-old female who underwent clipping for a ruptured cerebral aneurysm was admitted to the intensive care unit. Prophylactic hypertension-hypervolemia-hemodilution therapy was induced for cerebral vasospasm following a subarachnoid hemorrhage. The patient went into severe shock after administration of dextran for volume expansion, and dextran administration was immediately discontinued. The volume administered at that time was only 0.8 mL at the most. After fluid resuscitation with a crystalloid solution, circulatory status began to recover. However, cerebral vasospasm occurred and the patient’s neurological condition deteriorated. Five weeks after the shock, she was diagnosed with hypersensitivity to dextran by a skin test. When severe hypotension occurs after dextran administration, appropriate treatments for shock should be performed immediately with discontinuation of dextran solution. Although colloid administration is recommended in some guidelines and researches, it is necessary to consider concerning the indication for volume expansion as well as the risk of colloid administration.

  9. The efficacy of octreotide in the therapy of acute radiation-induced diarrhea: a randomized controlled study

    International Nuclear Information System (INIS)

    Yavuz, Melek N.; Yavuz, A. Aydin; Aydin, Fazil; Can, Gamze; Kavgaci, Halil

    2002-01-01

    Purpose: Although the somatostatin analog octreotide is currently used in the treatment of chemotherapy-induced diarrhea and secretory diarrhea associated with various disorders, its role in the management of radiation enteritis is not well defined. We performed a randomized study that compared octreotide acetate with diphenoxylate hydrochloride plus atropine sulfate, the drug commonly used as therapy for acute radiation-induced diarrhea (ARID). Methods and Materials: Sixty-one patients with Grade 2 (four to six stools per day) or Grade 3 (≥ seven stools per day, National Cancer Institute Common Toxicity Criteria) diarrhea associated with pelvic radiotherapy were assigned randomly to receive octreotide s.c., 100 μg three times daily (n=33) or diphenoxylate and atropine orally, 2.5 mg four times daily (n = 28). Radiotherapy was delivered to all patients in a conventional manner, with high-energy photons in a total dose ≥45 Gy, which exceeds the tolerance of intestine. Overall, there was no significant difference in patient characteristics or radiotherapy applied between the two arms. Patients were evaluated daily for the primary study end point, resolution of diarrhea, as well as for interruption of pelvic radiotherapy. Results: Within 3 days, ARID completely resolved in 20 patients in the octreotide arm (2 within the first day, 11 within the second day, and 7 within the third day) vs. only 4 (all within the second day of therapy) in the diphenoxylate arm (p=0.002). On the diphenoxylate arm, 15/28 patients were required to discontinue pelvic radiotherapy; on the octreotide arm, 6/33 patients were required to discontinue pelvic radiotherapy for an average of 1.89±0.5 and 0.45±0.2 days, respectively (p=0.003). No side effects were observed in either arm. Three patients on the diphenoxylate arm and only 1 on the octreotide arm required further treatment for parenteral replenishment of fluids and electrolytes or other antidiarrheal treatments. Conclusion

  10. Changes in T-cell subsets after radiation therapy

    International Nuclear Information System (INIS)

    Yang, S.J.; Rafla, S.; Youssef, E.; Selim, H.; Salloum, N.; Chuang, J.Y.

    1988-01-01

    The T-cell subsets of 129 patients with cancer were counted before and after radiation therapy. The cells were labeled with monoclonal antibodies that were specific for each type of T cell. Significant changes after therapy were decreases in the proportion of T-helper/inducer cells, pan-T cells, and in the ratio of T-helper/inducer to T-suppressor/cytotoxic cells. There was an increase in the percentage of T-suppressor/cytotoxic cells. When the site of the primary cancer was considered, genitourinary cancer and cancer of the head and neck both showed a decreased percentage of T-helper/inducer cells and a reduced ratio of T-helper/inducer to T-suppressor/cytotoxic cells. The percentage of pan-T cells in head and neck cancer and the ratio of T-helper/inducer to T-suppressor/cytotoxic cells in breast cancer were decreased. The percentage of T-helper cells was particularly decreased by radiation therapy in advanced stages of cancer, in higher grade tumors, and in larger tumors. The absolute numbers of various T-cell subsets were decreased in all groups

  11. Induction of cytosine arabinoside-resistant human myeloid leukemia cell death through autophagy regulation by hydroxychloroquine.

    Science.gov (United States)

    Kim, Yundeok; Eom, Ju-In; Jeung, Hoi-Kyung; Jang, Ji Eun; Kim, Jin Seok; Cheong, June-Won; Kim, Young Sam; Min, Yoo Hong

    2015-07-01

    We investigated the effects of the autophagy inhibitor hydroxychloroquine (HCQ) on cell death of cytosine arabinoside (Ara-C)-resistant human acute myeloid leukemia (AML) cells. Ara-C-sensitive (U937, AML-2) and Ara-C-resistant (U937/AR, AML-2/AR) human AML cell lines were used to evaluate HCQ-regulated cytotoxicity, autophagy, and apoptosis as well as effects on cell death-related signaling pathways. We found that HCQ-induced dose- and time-dependent cell death in Ara-C-resistant cells compared to Ara-C-sensitive cell lines. The extent of cell death and features of HCQ-induced autophagic markers including increase in microtubule-associated protein light chain 3 (LC3) I conversion to LC3-II, beclin-1, ATG5, as well as green fluorescent protein-LC3 positive puncta and autophagosome were remarkably greater in U937/AR cells. Also, p62/SQSTM1 was increased in response to HCQ. p62/SQSTM1 protein interacts with both LC3-II and ubiquitin protein and is degraded in autophagosomes. Therefore, a reduction of p62/SQSTM1 indicates increased autophagic degradation, whereas an increase of p62/SQSTM1 by HCQ indicates inhibited autophagic degradation. Knock down of p62/SQSTM1 using siRNA were prevented the HCQ-induced LC3-II protein level as well as significantly reduced the HCQ-induced cell death in U937/AR cells. Also, apoptotic cell death and caspase activation in U937/AR cells were increased by HCQ, provided evidence that HCQ-induced autophagy blockade. Taken together, our data show that HCQ-induced apoptotic cell death in Ara-C-resistant AML cells through autophagy regulation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Alpha-tocopheryl succinate inhibits autophagic survival of prostate cancer cells induced by vitamin K3 and ascorbate to trigger cell death.

    Science.gov (United States)

    Tomasetti, Marco; Nocchi, Linda; Neuzil, Jiri; Goodwin, Jacob; Nguyen, Maria; Dong, Lanfeng; Manzella, Nicola; Staffolani, Sara; Milanese, Claudio; Garrone, Beatrice; Alleva, Renata; Borghi, Battista; Santarelli, Lory; Guerrieri, Roberto

    2012-01-01

    The redox-silent vitamin E analog α-tocopheryl succinate (α-TOS) was found to synergistically cooperate with vitamin K3 (VK3) plus ascorbic acid (AA) in the induction of cancer cell-selective apoptosis via a caspase-independent pathway. Here we investigated the molecular mechanism(s) underlying cell death induced in prostate cancer cells by α-TOS, VK3 and AA, and the potential use of targeted drug combination in the treatment of prostate cancer. The generation of ROS, cellular response to oxidative stress, and autophagy were investigated in PC3 prostate cancer cells by using drugs at sub-toxic doses. We evaluated whether PARP1-mediated apoptosis-inducing factor (AIF) release plays a role in apoptosis induced by the combination of the agents. Next, the effect of the combination of α-TOS, VK3 and AA on tumor growth was examined in nude mice. VK3 plus AA induced early ROS formation associated with induction of autophagy in response to oxidative stress, which was reduced by α-TOS, preventing the formation of autophagosomes. α-TOS induced mitochondrial destabilization leading to the release of AIF. Translocation of AIF from mitochondria to the nucleus, a result of the combinatorial treatment, was mediated by PARP1 activation. The inhibition of AIF as well as of PARP1 efficiently attenuated apoptosis triggered by the drug combination. Using a mouse model of prostate cancer, the combination of α-TOS, VK3 and AA was more efficient in tumor suppression than when the drugs were given separately, without deleterious side effects. α-TOS, a mitochondria-targeting apoptotic agent, switches at sub-apoptotic doses from autophagy-dependent survival of cancer cells to their demise by promoting the induction of apoptosis. Given the grim prognosis for cancer patients, this finding is of potential clinical relevance.

  13. Alpha-tocopheryl succinate inhibits autophagic survival of prostate cancer cells induced by vitamin K3 and ascorbate to trigger cell death.

    Directory of Open Access Journals (Sweden)

    Marco Tomasetti

    Full Text Available BACKGROUND: The redox-silent vitamin E analog α-tocopheryl succinate (α-TOS was found to synergistically cooperate with vitamin K3 (VK3 plus ascorbic acid (AA in the induction of cancer cell-selective apoptosis via a caspase-independent pathway. Here we investigated the molecular mechanism(s underlying cell death induced in prostate cancer cells by α-TOS, VK3 and AA, and the potential use of targeted drug combination in the treatment of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: The generation of ROS, cellular response to oxidative stress, and autophagy were investigated in PC3 prostate cancer cells by using drugs at sub-toxic doses. We evaluated whether PARP1-mediated apoptosis-inducing factor (AIF release plays a role in apoptosis induced by the combination of the agents. Next, the effect of the combination of α-TOS, VK3 and AA on tumor growth was examined in nude mice. VK3 plus AA induced early ROS formation associated with induction of autophagy in response to oxidative stress, which was reduced by α-TOS, preventing the formation of autophagosomes. α-TOS induced mitochondrial destabilization leading to the release of AIF. Translocation of AIF from mitochondria to the nucleus, a result of the combinatorial treatment, was mediated by PARP1 activation. The inhibition of AIF as well as of PARP1 efficiently attenuated apoptosis triggered by the drug combination. Using a mouse model of prostate cancer, the combination of α-TOS, VK3 and AA was more efficient in tumor suppression than when the drugs were given separately, without deleterious side effects. CONCLUSIONS/SIGNIFICANCE: α-TOS, a mitochondria-targeting apoptotic agent, switches at sub-apoptotic doses from autophagy-dependent survival of cancer cells to their demise by promoting the induction of apoptosis. Given the grim prognosis for cancer patients, this finding is of potential clinical relevance.

  14. Photodynamic therapy induced vascular damage: an overview of experimental PDT

    International Nuclear Information System (INIS)

    Wang, W; Moriyama, L T; Bagnato, V S

    2013-01-01

    Photodynamic therapy (PDT) has been developed as one of the most important therapeutic options in the treatment of cancer and other diseases. By resorting to the photosensitizer and light, which convert oxygen into cytotoxic reactive oxygen species (ROS), PDT will induce vascular damage and direct tumor cell killing. Another consequence of PDT is the microvascular stasis, which results in hypoxia and further produces tumor regression. To improve the treatment with PDT, three promising strategies are currently attracting much interest: (1) the combination of PDT and anti-angiogenesis agents, which more effectively prevent the proliferation of endothelial cells and the formation of new blood vessels; (2) the nanoparticle-assisted delivery of photosensitizer, which makes the photosensitizer more localized in tumor sites and thus renders minimal damage to the normal tissues; (3) the application of intravascular PDT, which can avoid the loss of energy during the transmission and expose the target area directly. Here we aim to review the important findings on vascular damage by PDT on mice. The combination of PDT with other approaches as well as its effect on cancer photomedicine are also reviewed. (review)

  15. Radiation therapy induces circulating serum Hsp72 in patients with prostate cancer

    International Nuclear Information System (INIS)

    Hurwitz, Mark D.; Kaur, Punit; Nagaraja, Ganachari M.; Bausero, Maria A.; Manola, Judith; Asea, Alexzander

    2010-01-01

    Background and purpose: Hsp72 found in the extracellular milieu has been shown to play an important role in immune regulation. The impact of common cancer therapies on extracellular release of Hsp72 however, has been to date undefined. Materials and methods: Serum from 13 patients undergoing radiation therapy (XRT) for prostate cancer with or without hormonal therapy (ADT) was measured for levels of circulating serum Hsp72 and pro-inflammatory cytokines (IL-6 and TNF-α) using the classical sandwich ELISA technique and the relative expression of CD8 + T lymphocytes and natural killer (NK) cells was measured using flow cytometry. Mouse orthotopic xenograft of human prostate cancer tumors (DU-145 and PC-3) were used to validate and further characterize the response noted in the clinical setting. The biological significance of tumor released Hsp72 was studied in human dendritic cells (DC) in vitro. Results: Circulating serum Hsp72 levels increased an average of 3.5-fold (median per patient 4.8-fold) with XRT but not with ADT (p = 0.0002). Increases in IL-6 (3.3-fold), TNF-α (1.8-fold), CD8 + CTL (2.1-fold) and NK cells (3.2-fold) also occurred. Using PC-3 and DU-145 human prostate cancer xenograft models in mice, we confirmed that XRT induces Hsp72 release primarily from implanted tumors. In vitro studies using supernatant recovered from irradiated human prostate cancer cells point to exosomes containing Hsp72 as a possible stimulator of pro-inflammatory cytokine production and costimulatory molecules expression in human DC. Conclusions: The current study confirms for the first time in an actual clinical setting elevation of circulating serum Hsp72 with XRT. The accompanying studies in mice and in vitro identify the released exosomes containing Hsp72 as playing a pivotal role in stimulating pro-inflammatory immune responses. These findings, if validated, may lead to new treatment paradigms for common human malignancies.

  16. NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death

    Directory of Open Access Journals (Sweden)

    Lim Chuan

    2012-07-01

    Full Text Available Abstract Background Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. Methods To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. Results We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. Conclusions Taken together, these results show

  17. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors

    International Nuclear Information System (INIS)

    Wang, Changdong; Ma, Yongping; Hu, Qiongwen; Xie, Tingting; Wu, Jiayan; Zeng, Fan; Song, Fangzhou

    2016-01-01

    Directly targeting therapeutic suicide gene to a solid tumor is a hopeful approach for cancer gene therapy. Treatment of a solid tumor by an effective vector for a suicide gene remains a challenge. Given the lack of effective treatments, we constructed a bifidobacterial recombinant thymidine kinase (BF-rTK) -ganciclovir (GCV) targeting system (BKV) to meet this requirement and to explore antitumor mechanisms. Bifidobacterium (BF) or BF-rTK was injected intratumorally with or without ganciclovir in a human colo320 intestinal xenograft tumor model. The tumor tissues were analyzed using apoptosis antibody arrays, real time PCR and western blot. The colo320 cell was analyzed by the gene silencing method. Autophagy and necroptosis were also detected in colo320 cell. Meanwhile, three human digestive system xenograft tumor models (colorectal cancer colo320, gastric cancer MKN-45 and liver cancer SSMC-7721) and a breast cancer (MDA-MB-231) model were employed to validate the universality of BF-rTK + GCV in solid tumor gene therapy. The survival rate was evaluated in three human cancer models after the BF-rTK + GCV intratumor treatment. The analysis of inflammatory markers (TNF-α) in tumor indicated that BF-rTK + GCV significantly inhibited TNF-α expression. The results suggested that BF-rTK + GCV induced tumor apoptosis without autophagy and necroptosis occurrence. The apoptosis was transduced by multiple signaling pathways mediated by FasL and TNFR2 and mainly activated the mitochondrial control of apoptosis via Bid and Bim, which was rescued by silencing Bid or/and Bim. However, BF + GCV only induced apoptosis via Fas/FasL signal pathway accompanied with increased P53 expression. We further found that BF-rTK + GCV inhibited the expression of the inflammatory maker of TNF-α. However, BF-rTK + GCV did not result in necroptosis and autophagy. BF-rTK + GCV induced tumor apoptosis mediated by FasL and TNFR2 through the mitochondrial control of apoptosis via Bid and Bim

  18. Anti-tachycardia therapy can improve altered cardiac adrenergic function in tachycardia-induced cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ohkusu, Yasuo; Takahashi, Nobukazu; Ishikawa, Toshiyuki [Yokohama City Univ. (Japan). School of Medicine] [and others

    2002-11-01

    We investigated whether anti-tachycardia therapy might improve the altered cardiac adrenergic and systolic function in tachycardia-induced cardiomyopathy (TC) in contrast to dilated cardiomyopathy (DCM). The subjects were 23 patients with heart failure, consisting of 8 patients with TC (43.6{+-}10.0 yrs) and 15 with DCM (45.3{+-}8.2 yrs). TC was determined as impairment of left ventricular function secondary to chronic or very frequent arrhythmia during more than 10% of the day. All patients were receiving anti-tachycardia treatment. Cardiac {sup 123}I-MIBG uptake was assessed as the heart/mediastinum activity ratio (H/M) before and after treatment. Left ventricular ejection fraction (LVEF) was also assessed. In the baseline study, H/M and LVEF showed no difference between TC and DCM (2.21{+-}0.44 vs. 2.10{+-}0.42, 35.3{+-}13.1 vs. 36.0{+-}10.9%, respectively). After treatment, the degree of change in H/M and LVEF differed significantly (0.41{+-}0.34 vs. 0.08{+-}0.20, 20.5{+-}14.4 vs. -2.1{+-}9.6%, p<0.01). In TC, heart failure improved after a shorter duration of treatment (p<0.05). In conclusion, anti-tachycardia therapy can improve altered cardiac adrenergic function and systolic function in patients with TC over a shorter period than in those with DCM. (author)

  19. Atorvastatin Protects Vascular Smooth Muscle Cells From TGF-β1-Stimulated Calcification by Inducing Autophagy via Suppression of the β-Catenin Pathway

    Directory of Open Access Journals (Sweden)

    Demin Liu

    2014-01-01

    Full Text Available Background: Arterial calcification is a major event in the progression of atherosclerosis. It is reported that statins exhibit various protective effects against vascular smooth muscle cell (VSMC inflammation and proliferation in cardiovascular remodeling. Although statins counteract atherosclerosis, the molecular mechanisms of statins on the calcium release from VSMCs have not been clearly elucidated. Methods: Calcium content of VSMCs was measured using enzyme-linked immunosorbent assay (ELISA. The expression of proteins involved in cellular transdifferentiation was analyzed by western blot. Cell autophagy was measured by fluorescence microscopic analysis for acridine orange staining and transmission electron microscopy analysis. The autophagic inhibitors (3-MA, chloroquine, NH4Cl and bafilomycin A1 and β-catenin inhibitor JW74 were used to assess the effects of atorvastatin on autophagy and the involvement of β-catenin on cell calcification respectively. Furthermore, cell transfection was performed to overexpress β-catenin. Results: In VSMCs, atorvastatin significantly suppressed transforming growth factor-β1 (TGF-β1-stimulated calcification, accompanied by the induction of autophagy. Downregulation of autophagy with autophagic inhibitors significantly suppressed the inhibitory effect of atorvastatin on cell calcification. Moreover, the beneficial effect of atorvastatin on calcification and autophagy was reversed by β-catenin overexpression. Conversely, JW74 supplement enhanced this effect. Conclusion: These data demonstrated that atorvastatin protect VSMC from TGF-β1-stimulated calcification by inducing autophagy through suppression of the β-catenin pathway, identifying autophagy induction might be a therapeutic strategy for use in vascular calcification.

  20. Targeting Oxidatively Induced DNA Damage Response in Cancer: Opportunities for Novel Cancer Therapies

    Directory of Open Access Journals (Sweden)

    Pierpaola Davalli

    2018-01-01

    Full Text Available Cancer is a death cause in economically developed countries that results growing also in developing countries. Improved outcome through targeted interventions faces the scarce selectivity of the therapies and the development of resistance to them that compromise the therapeutic effects. Genomic instability is a typical cancer hallmark due to DNA damage by genetic mutations, reactive oxygen and nitrogen species, ionizing radiation, and chemotherapeutic agents. DNA lesions can induce and/or support various diseases, including cancer. The DNA damage response (DDR is a crucial signaling-transduction network that promotes cell cycle arrest or cell death to repair DNA lesions. DDR dysregulation favors tumor growth as downregulated or defective DDR generates genomic instability, while upregulated DDR may confer treatment resistance. Redox homeostasis deeply and capillary affects DDR as ROS activate/inhibit proteins and enzymes integral to DDR both in healthy and cancer cells, although by different routes. DDR regulation through modulating ROS homeostasis is under investigation as anticancer opportunity, also in combination with other treatments since ROS affect DDR differently in the patients during cancer development and treatment. Here, we highlight ROS-sensitive proteins whose regulation in oxidatively induced DDR might allow for selective strategies against cancer that are better tailored to the patients.

  1. Alkaloids from Juglans Mandshurica maxim induce distinctive cell death in hepatocellular carcinoma cells.

    Science.gov (United States)

    Lou, Li-Li; Cheng, Zhuo-Yang; Guo, Rui; Yao, Guo-Dong; Song, Shao-Jiang

    2017-12-15

    The aim of this work was to further investigate the anticancer potential of Juglans mandshurica Maxim, including the separation of active constituents and their anti-proliferative effects with underlying mechanism of action. Five alkaloids (1-5) were isolated from the bark of J. mandshurica. Among them, 1 showed the highest cytotoxic activities against Hep3B and HepG2 cells with an IC50 values of 61.80 and 56.24 μM, respectively. Therefore, the cellular mechanism involved 1 was subsequently studied. Our results showed that 1 markedly caused apoptosis and autophagy, but without cell cycle arrest in HepG2 cells. Interestingly, only autophagic cell death was induced in 1-treated Hep3B cells. It is concluded that the isolated alkaloids exerted a certain anti-hepatoma potential, and our results may provide a basis for the further investigation of the alkaloids extracted from J. mandshurica.

  2. Enhanced Autophagy and Reduced Expression of Cathepsin D Are Related to Autophagic Cell Death in Epstein-Barr Virus-Associated Nasal Natural Killer/T-Cell Lymphomas: An Immunohistochemical Analysis of Beclin-1, LC3, Mitochondria (AE-1), and Cathepsin D in Nasopharyngeal Lymphomas

    International Nuclear Information System (INIS)

    Hasui, Kazuhisa; Wang, Jia; Jia, Xinshan; Tanaka, Masashi; Nagai, Taku; Matsuyama, Takami; Eizuru, Yoshito

    2011-01-01

    This study investigated autophagy in 37 cases of nasopharyngeal lymphomas including 23 nasal natural killer (NK)/T-cell lymphomas (NKTCL), 3 cytotoxic T-cell lymphomas (cytotoxic-TML) and 9 B-cell lymphomas (BML) by means of antigen-retrieval immunohistochemistry of beclin-1, LC3, mitochondria (AE-1) and cathepsin D. Peculiar necrosis was noted in EBV + lymphomas comprising 21 NKTCL, 2 cytotoxic-TML and 1 BML. Lymphomas without peculiar necrosis showed high expression of beclin-1, macrogranular cytoplasmal stain of LC3 with sporadic nuclear stain, a hallmark of autophagic cell death (ACD), some aggregated mitochondria and high expression of cathepsin D, suggesting a state of growth with enhanced autophagy with sporadic ACD. EBV + NKTCL with the peculiar necrosis, showed significantly low level of macrogranular staining of LC3, aggregated mitochondria and low expression of cathepsin D in the cellular areas when degenerative lymphoma cells showed decreased beclin-1, significantly advanced LC3-labeled autophagy, residual aggregated mitochondria and significantly reduced expression of cathepsin D, suggesting advanced autophagy with regional ACD. Consequently it was suggested that enhanced autophagy and reduced expression of lysosomal enzymes induced regional ACD under EBV infection in NKTCL

  3. SD118-Xanthocillin X (1, a Novel Marine Agent Extracted from Penicillium commune, Induces Autophagy through the Inhibition of the MEK/ERK Pathway

    Directory of Open Access Journals (Sweden)

    Caiguo Huang

    2012-06-01

    Full Text Available A compound named SD118-xanthocillin X (1 (C18H12N2O2, isolated from Penicillium commune in a deep-sea sediment sample, has been shown to inhibit the growth of several cancer cell lines in vitro. In the present study, we employed a growth inhibition assay and apoptotic analysis to identify the biological effect and detailed mechanism of SD118-xanthocillin X (1 in human hepatocellular carcinoma (HepG2 cells. SD118-xanthocillin X (1 demonstrated a concentration-dependent inhibitory effect on the growth of HepG2 cells and caused slight cellular apoptosis and significantly induced autophagy. Autophagy was detected as early as 12 h by the conversion of microtubule-associated protein 1 light chain 3 (LC3-I to LC3-II, following cleavage and lipid addition to LC3-I. The pharmacological autophagy inhibitor 3-methyladenine largely attenuates the growth inhibition and autophagic effect of SD118-xanthocillin X (1 in HepG2 cells. Our data also indicated that the autophagic effect of SD118-xanthocillin X (1 occurs via the down-regulation of the MEK/ERK signaling pathway and the up-regulated class III PI3K/Beclin 1 signaling pathway.

  4. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy

    Directory of Open Access Journals (Sweden)

    Watanabe Hirotsuna

    2009-11-01

    Full Text Available Abstract Background The chemopreventive effects of dietary phytochemicals on malignant tumors have been studied extensively because of a relative lack of toxicity. To achieve desirable effects, however, treatment with a single agent mostly requires high doses. Therefore, studies on effective combinations of phytochemicals at relatively low concentrations might contribute to chemopreventive strategies. Results Here we found for the first time that co-treatment with I3C and genistein, derived from cruciferous vegetables and soy, respectively, synergistically suppressed the viability of human colon cancer HT-29 cells at concentrations at which each agent alone was ineffective. The suppression of cell viability was due to the induction of a caspase-dependent apoptosis. Moreover, the combination effectively inhibited phosphorylation of Akt followed by dephosphorylation of caspase-9 or down-regulation of XIAP and survivin, which contribute to the induction of apoptosis. In addition, the co-treatment also enhanced the induction of autophagy mediated by the dephosphorylation of mTOR, one of the downstream targets of Akt, whereas the maturation of autophagosomes was inhibited. These results give rise to the possibility that co-treatment with I3C and genistein induces apoptosis through the simultaneous inhibition of Akt activity and progression of the autophagic process. This possibility was examined using inhibitors of Akt combined with inhibitors of autophagy. The combination effectively induced apoptosis, whereas the Akt inhibitor alone did not. Conclusion Although in vivo study is further required to evaluate physiological efficacies and toxicity of the combination treatment, our findings might provide a new insight into the development of novel combination therapies/chemoprevention against malignant tumors using dietary phytochemicals.

  5. Integrin inhibitor (Cilengitide) as radiosensitization strategy for malignant tumors

    International Nuclear Information System (INIS)

    Silva, Felipe Henrique de Souza

    2017-01-01

    Radiotherapy is effective in tumor control, but several tumors have molecular characteristics that lead to radioresistance and possible posttreatment recurrence. Many tumors have overexpression of integrin receptors. Integrins play a central role in growth, motility, regulation of adhesion and survival, leading to increased proliferation, invasion and metastasis of tumors, making these receptors excellent targets for the development of new therapies. Studies have shown that inhibiting the interaction of matrix proteins with integrin receptors may increase the cytotoxic effect of ionizing radiation by demonstrating the radiosensitizing potential of combination therapy in tumoral lines. Cilengitide an inhibitor of integrins receptors α Vβ3 and αVβ5 stands out for its great antitumor potential against gliomas. Thus, the combination of ionizing radiation with cilengitide is an alternative therapeutic strategy. However, the effect of this combination is little studied in Glioblastomas (U87 and T98) and not studied in melanoma (UACC). The objective of this study was to evaluate the radiosensitising potential of the RGD molecule cilengitida by means of the combined treatment with gamma radiation in different tumor lines, as well as to compare the effect of this combination therapy with cisplatin, a molecule already used in clinical practice. Our panel of tumor cell lines was composed of U87 (wild-type p53 malignant glioblastoma) T98 (malignant glioblastoma mutant p53), MCF7 (mammary carcinoma) and UACC (melanoma). The radiosensitizer effect of cilengitide was evaluated by the quantification of metabolic cell viability through the MTT assay. Inhibition of colony formation was investigated in clonogenicity assays. The flow cytometer was used to investigate cell cycle distribution and the type of cell death induced. We observed that in all cell lines examined, cilengitida promoted detachment, metabolic alterations and reduction of proliferation, as well as alteration of

  6. Integrin inhibitor (Cilengitide) as radiosensitization strategy for malignant tumors; Inibidor de integrina (Cilengitida) como estratégia de radiossensibilização de tumores malignos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Felipe Henrique de Souza

    2017-07-01

    Radiotherapy is effective in tumor control, but several tumors have molecular characteristics that lead to radioresistance and possible posttreatment recurrence. Many tumors have overexpression of integrin receptors. Integrins play a central role in growth, motility, regulation of adhesion and survival, leading to increased proliferation, invasion and metastasis of tumors, making these receptors excellent targets for the development of new therapies. Studies have shown that inhibiting the interaction of matrix proteins with integrin receptors may increase the cytotoxic effect of ionizing radiation by demonstrating the radiosensitizing potential of combination therapy in tumoral lines. Cilengitide an inhibitor of integrins receptors α Vβ3 and αVβ5 stands out for its great antitumor potential against gliomas. Thus, the combination of ionizing radiation with cilengitide is an alternative therapeutic strategy. However, the effect of this combination is little studied in Glioblastomas (U87 and T98) and not studied in melanoma (UACC). The objective of this study was to evaluate the radiosensitising potential of the RGD molecule cilengitida by means of the combined treatment with gamma radiation in different tumor lines, as well as to compare the effect of this combination therapy with cisplatin, a molecule already used in clinical practice. Our panel of tumor cell lines was composed of U87 (wild-type p53 malignant glioblastoma) T98 (malignant glioblastoma mutant p53), MCF7 (mammary carcinoma) and UACC (melanoma). The radiosensitizer effect of cilengitide was evaluated by the quantification of metabolic cell viability through the MTT assay. Inhibition of colony formation was investigated in clonogenicity assays. The flow cytometer was used to investigate cell cycle distribution and the type of cell death induced. We observed that in all cell lines examined, cilengitida promoted detachment, metabolic alterations and reduction of proliferation, as well as alteration of

  7. Resting State and Diffusion Neuroimaging Predictors of Clinical Improvements Following Constraint-Induced Movement Therapy in Children With Hemiplegic Cerebral Palsy.

    Science.gov (United States)

    Manning, Kathryn Y; Fehlings, Darcy; Mesterman, Ronit; Gorter, Jan Willem; Switzer, Lauren; Campbell, Craig; Menon, Ravi S

    2015-10-01

    The aim was to identify neuroimaging predictors of clinical improvements following constraint-induced movement therapy. Resting state functional magnetic resonance and diffusion tensor imaging data was acquired in 7 children with hemiplegic cerebral palsy. Clinical and magnetic resonance imaging (MRI) data were acquired at baseline and 1 month later following a 3-week constraint therapy regimen. A more negative baseline laterality index characterizing an atypical unilateral sensorimotor resting state network significantly correlated with an improvement in the Canadian Occupational Performance Measure score (r = -0.81, P = .03). A more unilateral network with decreased activity in the affected hemisphere was associated with greater improvements in clinical scores. Higher mean diffusivity in the posterior limb of the internal capsule of the affect tract correlated significantly with improvements in the Jebsen-Taylor score (r = -0.83, P = .02). Children with more compromised networks and tracts improved the most following constraint therapy. © The Author(s) 2015.

  8. Induced pluripotent stem cells for regenerative cardiovascular therapies and biomedical discovery.

    Science.gov (United States)

    Nsair, Ali; MacLellan, W Robb

    2011-04-30

    The discovery of induced pluripotent stem cells (iPSC) has, in the short time since their discovery, revolutionized the field of stem cell biology. This technology allows the generation of a virtually unlimited supply of cells with pluripotent potential similar to that of embryonic stem cells (ESC). However, in contrast to ESC, iPSC are not subject to the same ethical concerns and can be easily generated from living individuals. For the first time, patient-specific iPSC can be generated and offer a supply of genetically identical cells that can be differentiated into all somatic cell types for potential use in regenerative therapies or drug screening and testing. As the techniques for generation of iPSC lines are constantly evolving, new uses for human iPSC are emerging from in-vitro disease modeling to high throughput drug discovery and screening. This technology promises to revolutionize the field of medicine and offers new hope for understanding and treatment of numerous diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    International Nuclear Information System (INIS)

    Park, Jae Hyeon; Lee, Jeong Eun; Shin, In Chul; Koh, Hyun Chul

    2013-01-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  10. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyeon [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  11. Type 1 Diabetes and Interferon Therapy

    OpenAIRE

    Nakamura, Kan; Kawasaki, Eiji; Imagawa, Akihisa; Awata, Takuya; Ikegami, Hiroshi; Uchigata, Yasuko; Kobayashi, Tetsuro; Shimada, Akira; Nakanishi, Koji; Makino, Hideichi; Maruyama, Taro; Hanafusa, Toshiaki

    2011-01-01

    OBJECTIVE Interferon therapy can trigger induction of several autoimmune diseases, including type 1 diabetes. To assess the clinical, immunologic, and genetic characteristics of type 1 diabetes induced by interferon therapy, we conducted a nationwide cross-sectional survey. RESEARCH DESIGN AND METHODS Clinical characteristics, anti-islet autoantibodies, and HLA-DR typing were examined in 91 patients for whom type 1 diabetes developed during or shortly after interferon therapy. RESULTS Median ...

  12. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    Science.gov (United States)

    Shu, Hui-Kuo G; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung

  13. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Hui-Kuo G Shu

    Full Text Available A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12 may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process.The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process.CXCR4 inhibition by drugs such as MSX-122 may alleviate potential

  14. Asthma and Therapeutics: Recombinant Therapies in Asthma

    Directory of Open Access Journals (Sweden)

    Cockcroft Donald W

    2005-03-01

    Full Text Available Abstract Numerous recombinant therapies are being investigated for the treatment of asthma. This report reviews the current status of several of these novel agents. Anti-immunoglobulin (IgE (omalizumab, Xolair markedly inhibits all aspects of the allergen challenge in subjects who have reduction of free serum IgE to undetectable levels. Several clinical studies in atopic asthma have demonstrated benefit by improved symptoms and lung function and a reduction in corticosteroid requirements. Early use in atopic asthmatics may be even more effective. Several approaches target interleukin (IL-4. Soluble IL-4 receptor has been shown to effectively replace inhaled corticosteroid; further studies are under way. Recombinant anti-IL-5 and recombinant IL-12 inhibit blood and sputum eosinophils and allergen-induced eosinophilia without any effect on airway responsiveness, allergen-induced airway responses, or allergen-induced airway hyperresponsiveness. Efalizumab, a recombinant antibody that inhibits lymphocyte trafficking, is effective in psoriasis. A bronchoprovocation study showed a reduction in allergen-induced late asthmatic response and allergen-induced eosinophilia, which suggests that it should be effective in clinical asthma. These exciting novel therapies provide not only promise of new therapies for asthma but also valuable tools for investigation of asthma mechanisms.

  15. XRCC3 polymorphisms are associated with the risk of developing radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with intensity modulation radiated therapy.

    Science.gov (United States)

    Zou, Yan; Song, Tao; Yu, Wei; Zhao, Ruping; Wang, Yong; Xie, Ruifei; Chen, Tian; Wu, Bo; Wu, Shixiu

    2014-03-01

    The incidence of radiation-induced late xerostomia varies greatly in nasopharyngeal carcinoma patients treated with radiotherapy. The single-nucleotide polymorphisms in genes involved in DNA repair and fibroblast proliferation may be correlated with such variability. The purpose of this paper was to evaluate the association between the risk of developing radiation-induced late xerostomia and four genetic polymorphisms: TGFβ1 C-509T, TGFβ1 T869C, XRCC3 722C>T and ATM 5557G>A in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. The severity of late xerostomia was assessed using a patient self-reported validated xerostomia questionnaire. Polymerase chain reaction-ligation detection reaction methods were performed to determine individual genetic polymorphism. The development of radiation-induced xerostomia associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for equivalent uniform dose. A total of 43 (41.7%) patients experienced radiation-induced late xerostomia. Univariate Cox proportional hazard analyses showed a higher risk of late xerostomia for patients with XRCC3 722 TT/CT alleles. In multivariate analysis adjusted for clinical and dosimetric factors, XRCC3 722C>T polymorphisms remained a significant factor for higher risk of late xerostomia. To our knowledge, this is the first study that demonstrated an association between genetic polymorphisms and the risk of radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. Our findings suggest that the polymorphisms in XRCC3 are significantly associated with the risk of developing radiation-induced late xerostomia.

  16. BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage.

    Directory of Open Access Journals (Sweden)

    Katja Storch

    Full Text Available Each year more than 450,000 Germans are expected to be diagnosed with cancer subsequently receiving standard multimodal therapies including surgery, chemotherapy and radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to intrinsic and acquired resistance to these therapeutic approaches, both the better molecular understanding of tumor biology and the consideration of alternative and complementary therapeutic support are warranted and open up broader and novel possibilities for therapy personalization. Particularly the latter is underpinned by the increasing utilization of non-invasive complementary and alternative medicine by the population. One investigated approach is the application of low-dose electromagnetic fields (EMF to modulate cellular processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for which a normalization of the microcirculation has been demonstrated by a low-frequency, pulsed EMF pattern. Open remains whether this EMF pattern impacts on cancer cell survival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-dimensional, matrix-based cell culture models and cancer cell lines originating from lung, head and neck, colorectal and pancreas, we show significant changes in distinct intermediates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab. Further studies are necessary to better understand the mechanisms underlying the cellular alterations induced by the BEMER EMF pattern and to clarify the application areas for human disease.

  17. Speech production gains following constraint-induced movement therapy in children with hemiparesis.

    Science.gov (United States)

    Allison, Kristen M; Reidy, Teressa Garcia; Boyle, Mary; Naber, Erin; Carney, Joan; Pidcock, Frank S

    2017-01-01

    The purpose of this study was to investigate changes in speech skills of children who have hemiparesis and speech impairment after participation in a constraint-induced movement therapy (CIMT) program. While case studies have reported collateral speech gains following CIMT, the effect of CIMT on speech production has not previously been directly investigated to the knowledge of these investigators. Eighteen children with hemiparesis and co-occurring speech impairment participated in a 21-day clinical CIMT program. The Goldman-Fristoe Test of Articulation-2 (GFTA-2) was used to assess children's articulation of speech sounds before and after the intervention. Changes in percent of consonants correct (PCC) on the GFTA-2 were used as a measure of change in speech production. Children made significant gains in PCC following CIMT. Gains were similar in children with left and right-sided hemiparesis, and across age groups. This study reports significant collateral gains in speech production following CIMT and suggests benefits of CIMT may also spread to speech motor domains.

  18. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies

    Science.gov (United States)

    Zimna, Agnieszka; Kurpisz, Maciej

    2015-01-01

    The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy. PMID:26146622

  19. Effect of Child Friendly Constraint Induced Movement Therapy on Unimanual and Bimanual Functions in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Sadegh Hosseini

    2013-07-01

    Full Text Available Objective: Effectiveness of Constraint Induced Movement Therapy (CIMT has been approved in adult persons, while it seems that we need many researches with higher levels of evidences in children. This research aimed to identify the efficacy of CIMT on unimanual and bimanual functions in children with Cerebral Palsy. Materials & Methods: In this interventional study, twenty eight participants were selected that had the inclusion and exclusion criteria and then divided into two groups ofCIMT and control. The intervention was provided on 10 out of 12 consecutive days in CIMT group and another group was received occupational therapy services. Assessment tools which were utilized in the survey were Bruininks-Oseretsky Motor Proficiency Test, Caregiver Functional Use Survey (CFUS, Jebsen-Taylor Test in Hand Function. In order to compare two groups Independent t-test was used and to compare each group from pre-test to post-test paired t-test was utilized. Results: Data showed significant differences between two groups in dexterity, bilateral coordination, bimanual coordination, bimanual function, unimanual function and Caregiver Functional Use Survey (how well & how frequently (P<0.05. Also comparison between pre-test and post-test in each group showed improvement in most of variables in research. Conclusion: protocol of child friendly Constraint Induced Movement Therapywas lead to improvement in either unimanual or bimanual hand functions in children with cerebral palsy.

  20. Inhibiting ROS-TFEB-Dependent Autophagy Enhances Salidroside-Induced Apoptosis in Human Chondrosarcoma Cells.

    Science.gov (United States)

    Zeng, Wei; Xiao, Tao; Cai, Anlie; Cai, Weiliang; Liu, Huanhuan; Liu, Jingling; Li, Jie; Tan, Miduo; Xie, Li; Liu, Ying; Yang, Xiangcheng; Long, Yi

    2017-01-01

    Autophagy modulation has been considered a potential therapeutic strategy for human chondrosarcoma, and a previous study indicated that salidroside exhibits significant anti-carcinogenic activity. However, the ability of salidroside to induce autophagy and its role in human chondrosarcoma cell death remains unclear. We exposed SW1353 cells to different concentrations of salidroside (0.5, 1 and 2 mM) for 24 h. RT-PCR, Western-blotting, Immunocytofluorescence, and Luciferase Reporter Assays were used to evaluate whether salidroside activated the TFEB-dependent autophagy. We show that salidroside induced significant apoptosis in the human chondrosarcoma cell line SW1353. In addition, we demonstrate that salidroside-induced an autophagic response in SW1353 cells, as evidenced by the upregulation of LC3-II and downregulation of P62. Moreover, pharmacological or genetic blocking of autophagy enhanced salidroside -induced apoptosis, indicating the cytoprotective role of autophagy in salidroside-treated SW1353 cells. Salidroside also induced TFEB (Ser142) dephosphorylation, subsequently to activated TFEB nuclear translocation and increase of TFEB reporter activity, which contributed to lysosomal biogenesis and the expression of autophagy-related genes. Importantly, we found that salidroside triggered the generation of ROS in SW1353 cells. Furthermore, NAC, a ROS scavenger, abrogated the effects of salidroside on TFEB-dependent autophagy. These data demonstrate that salidroside increased TFEB-dependent autophagy by activating ROS signaling pathways in human chondrosarcoma cells. These data also suggest that blocking ROS-TFEB-dependent autophagy to enhance the activity of salidroside warrants further attention in treatment of human chondrosarcoma cells. © 2017 The Author(s). Published by S. Karger AG, Basel.