WorldWideScience

Sample records for therapeutics targeting macromolecules

  1. Genetically targeted fluorogenic macromolecules for subcellular imaging and cellular perturbation.

    Science.gov (United States)

    Magenau, Andrew J D; Saurabh, Saumya; Andreko, Susan K; Telmer, Cheryl A; Schmidt, Brigitte F; Waggoner, Alan S; Bruchez, Marcel P

    2015-10-01

    The alteration of cellular functions by anchoring macromolecules to specified organelles may reveal a new area of therapeutic potential and clinical treatment. In this work, a unique phenotype was evoked by influencing cellular behavior through the modification of subcellular structures with genetically targetable macromolecules. These fluorogen-functionalized polymers, prepared via controlled radical polymerization, were capable of exclusively decorating actin, cytoplasmic, or nuclear compartments of living cells expressing localized fluorgen-activating proteins. The macromolecular fluorogens were optimized by establishing critical polymer architecture-biophysical property relationships which impacted binding rates, binding affinities, and the level of internalization. Specific labeling of subcellular structures was realized at nanomolar concentrations of polymer, in the absence of membrane permeabilization or transduction domains, and fluorogen-modified polymers were found to bind to protein intact after delivery to the cytosol. Cellular motility was found to be dependent on binding of macromolecular fluorogens to actin structures causing rapid cellular ruffling without migration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Increased Plasma Colloid Osmotic Pressure Facilitates the Uptake of Therapeutic Macromolecules in a Xenograft Tumor Model

    Directory of Open Access Journals (Sweden)

    Matthias Hofmann

    2009-08-01

    Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin: (20% HSA, used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml and cetuximab (2.0 mg/ml was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20%HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  3. Increased plasma colloid osmotic pressure facilitates the uptake of therapeutic macromolecules in a xenograft tumor model.

    Science.gov (United States)

    Hofmann, Matthias; McCormack, Emmet; Mujić, Maja; Rossberg, Maila; Bernd, August; Bereiter-Hahn, Jürgen; Gjertsen, Bjørn Tore; Wiig, Helge; Kippenberger, Stefan

    2009-08-01

    Elevated tumor interstitial fluid pressure (TIFP) is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP) pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin (20% HSA), used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml) and cetuximab (2.0 mg/ml) was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20% HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  4. Therapeutic Targeting of Telomerase

    Directory of Open Access Journals (Sweden)

    Kathrin Jäger

    2016-07-01

    Full Text Available Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT, which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination

  5. Increased Plasma Colloid Osmotic Pressure Facilitates the Uptake of Therapeutic Macromolecules in a Xenograft Tumor Model1

    Science.gov (United States)

    Hofmann, Matthias; McCormack, Emmet; Mujiç, Maja; Roßberg, Maila; Bernd, August; Bereiter-Hahn, Jürgen; Gjertsen, Bjørn Tore; Wiig, Helge; Kippenberger, Stefan

    2009-01-01

    Elevated tumor interstitial fluid pressure (TIFP) is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP) pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin (20% HSA), used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml) and cetuximab (2.0 mg/ml) was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20% HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies. PMID:19649211

  6. Therapeutic targeting of replicative immortality.

    Science.gov (United States)

    Yaswen, Paul; MacKenzie, Karen L; Keith, W Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-12-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. Copyright © 2015 The Authors

  7. Recent Patents in Pulmonary Delivery of Macromolecules.

    Science.gov (United States)

    Ray, Animikh; Mandal, Abhirup; Mitra, Ashim K

    2015-01-01

    Pulmonary delivery is a non-invasive form of delivery that holds tremendous therapeutic promise for topical and systemic administration of several macromolecules. Oral administration of macromolecules has several limitations such as low bioavailability, degradation of drug before reaching circulation and insufficient absorption across intestinal membrane. Administration of macromolecules such as proteins, peptides and nucleic acids via inhalation offers great potential due to the avoidance of first pass metabolism, higher surface area and rapid clinical response. However, delivery of reproducible, uniform and safe doses of inhaled particles remains a major challenge for clinical translation. Recent advances in the fields of biotechnology and particle engineering led to progress in novel pulmonary drug delivery systems. Moreover, significant developments in carriers and delivery devices prevent denaturation of macromolecules and control their release within the lungs. This article reviews the advances in pulmonary drug delivery systems by focusing on the recent patents in delivery of macromolecules. Furthermore, recent patents in gene delivery to the lungs have also been discussed. List of patents included in this review is comprehensive in terms of pulmonary delivery of therapeutics. It includes inventions related to proteins and peptides, DNA therapeutics, siRNA and other genetic materials with therapeutic applications. The diseases targeted by these therapeutic molecules are varied including but not limited to different forms of cancer, respiratory diseases etc.

  8. Metabolic Alterations of Thyroid Cancer as Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Domenico Ciavardelli

    2017-01-01

    Full Text Available Thyroid cancer (TC is the most frequent endocrine tumor with a growing incidence worldwide. Besides the improvement of diagnosis, TC increasing incidence is probably due to environmental factors and lifestyle modifications. The actual diagnostic criteria for TC classification are based on fine needle biopsy (FNAB and histological examination following thyroidectomy. Since in some cases it is not possible to make a proper diagnosis, classical approach needs to be supported by additional biomarkers. Recently, new emphasis has been given to the altered cellular metabolism of proliferating cancer cells which require high amount of glucose for energy production and macromolecules biosynthesis. Also TC displays alteration of energy metabolism orchestrated by oncogenes activation and tumor suppressors inactivation leading to abnormal proliferation. Furthermore, TC shows significant metabolic heterogeneity within the tumor microenvironment and metabolic coupling between cancer and stromal cells. In this review we focus on the current knowledge of metabolic alterations of TC and speculate that targeting TC metabolism may improve current therapeutic protocols for poorly differentiated TC. Future studies will further deepen the actual understandings of the metabolic phenotype of TC cells and will give the chance to provide novel prognostic biomarkers and therapeutic targets in tumors with a more aggressive behavior.

  9. Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA: Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Martin Koller

    2018-02-01

    Full Text Available Polyhydroxyalkanoates (PHA are bio-based microbial biopolyesters; their stiffness, elasticity, crystallinity and degradability are tunable by the monomeric composition, selection of microbial production strain, substrates, process parameters during production, and post-synthetic processing; they display biological alternatives for diverse technomers of petrochemical origin. This, together with the fact that their monomeric and oligomeric in vivo degradation products do not exert any toxic or elsewhere negative effect to living cells or tissue of humans or animals, makes them highly stimulating for various applications in the medical field. This article provides an overview of PHA application in the therapeutic, surgical and tissue engineering area, and reviews strategies to produce PHA at purity levels high enough to be used in vivo. Tested applications of differently composed PHA and advanced follow-up products as carrier materials for controlled in vivo release of anti-cancer drugs or antibiotics, as scaffolds for tissue engineering, as guidance conduits for nerve repair or as enhanced sutures, implants or meshes are discussed from both a biotechnological and a material-scientific perspective. The article also describes the use of traditional processing techniques for production of PHA-based medical devices, such as melt-spinning, melt extrusion, or solvent evaporation, and emerging processing techniques like 3D-printing, computer-aided wet-spinning, laser perforation, and electrospinning.

  10. Targeting of microRNAs for therapeutics

    DEFF Research Database (Denmark)

    Stenvang, Jan; Lindow, Morten; Kauppinen, Sakari

    2008-01-01

    and cardiovascular diseases, and thus miRNAs have rapidly emerged as potential targets for therapeutics. LNAs (locked nucleic acids) comprise a class of bicyclic conformational analogues of RNA, which exhibit high binding affinity to complementary RNA molecules and high stability in blood and tissues in vivo. Recent...

  11. Targeted Cancer Diagnostic and Therapeutic Agents: Delivery by Carriers or Conjugation

    Directory of Open Access Journals (Sweden)

    Mohsen Mohammadgholi

    2016-07-01

    Full Text Available Receptors and proteins are overexpressed in many human cancer cell membranes rather than normal tissues and are considered as the main molecular targets. Specific tumor- targeting molecules which have high affinity for these receptors can be valuable tools as carrier molecules for targeted cancer therapy and imaging. Pharmacokinetics and bioavailability of diagnostic and therapeutic agents are very important. Poor selectivity of cancer therapeutic agents causes toxicity on normal cells that limits maximum effective dose. The Attachment of these agents to macromolecules or their installation on carriers is currently under investigation. This article presents recent developments in the field of targeting agents and introduces different carriers and their applications in the diagnosis and treatment of cancer.

  12. Targeted Secretion Inhibitors—Innovative Protein Therapeutics

    Directory of Open Access Journals (Sweden)

    Foster Keith

    2010-12-01

    Full Text Available Botulinum neurotoxins are highly effective therapeutic products. Their therapeutic success results from highly specific and potent inhibition of neurotransmitter release with a duration of action measured in months. These same properties, however, make the botulinum neurotoxins the most potent acute lethal toxins known. Their toxicity and restricted target cell activity severely limits their clinical utility. Understanding the structure-function relationship of the neurotoxins has enabled the development of recombinant proteins selectively incorporating specific aspects of their pharmacology. The resulting proteins are not neurotoxins, but a new class of biopharmaceuticals, Targeted Secretion Inhibitors (TSI, suitable for the treatment of a wide range of diseases where secretion plays a major role. TSI proteins inhibit secretion for a prolonged period following a single application, making them particularly suited to the treatment of chronic diseases. A TSI for the treatment of chronic pain is in clinical development.

  13. PAK1 AS A THERAPEUTIC TARGET

    Science.gov (United States)

    Kichina, Julia V; Goc, Anna; Al-Husein, Belal; Somanath, Payaningal R; Kandel, Eugene S

    2011-01-01

    Importance of the field P21-activated kinases (PAKs) are involved in multiple signal transduction pathways in mammalian cells. PAKs, and PAK1 in particular, play a role in such disorders as cancer, mental retardation and allergy. Cell motility, survival and proliferation, the organization and function of cytoskeleton and extracellular matrix, transcription and translation are among the processes affected by PAK1. Areas covered in this review We discuss the mechanisms that control PAK1 activity; its involvement in physiological and pathophysiological processes; the benefits and the drawbacks of the current tools to regulate PAK1 activity; the evidences that point to PAK1 as a therapeutic target; and the likely directions of future research. What the reader will gain The reader will gain a better knowledge and understanding of the areas covered in this review. Take-home message PAK1 is a promising therapeutic target in cancer and allergen-induced disorders. Its suitability as a target in vascular, neurological and infectious diseases remains ambiguous. Further advancement of this field requires progress on such issues as the development of specific and clinically acceptable inhibitors, the choice between targeting one or multiple PAK isoforms, elucidation of the individual roles of PAK1 targets and the mechanisms that may circumvent inhibition of PAK1. PMID:20507214

  14. Novel therapeutic targets for pancreatic cancer.

    Science.gov (United States)

    Tang, Shing-Chun; Chen, Yang-Chao

    2014-08-21

    Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor prognosis and tumour relapse contributed to the malignancies and difficulties in treating pancreatic cancer. The current standard chemotherapy for pancreatic cancer is gemcitabine, however its efficacy is far from satisfactory, one of the reasons is due to the complex tumour microenvironment which decreases effective drug delivery to target cancer cell. Studies of the molecular pathology of pancreatic cancer have revealed that activation of KRAS, overexpression of cyclooxygenase-2, inactivation of p16(INK4A) and loss of p53 activities occurred in pancreatic cancer. Co-administration of gemcitabine and targeting the molecular pathological events happened in pancreatic cancer has brought an enhanced therapeutic effectiveness of gemcitabine. Therefore, studies looking for novel targets in hindering pancreatic tumour growth are emerging rapidly. In order to give a better understanding of the current findings and to seek the direction in future pancreatic cancer research; in this review we will focus on targets suppressing tumour metastatsis and progression, KRAS activated downstream effectors, the relationship of Notch signaling and Nodal/Activin signaling with pancreatic cancer cells, the current findings of non-coding RNAs in inhibiting pancreatic cancer cell proliferation, brief discussion in transcription remodeling by epigenetic modifiers (e.g., HDAC, BMI1, EZH2) and the plausible therapeutic applications of cancer stem cell and hyaluronan in tumour environment.

  15. The apelinergic system: a promising therapeutic target.

    Science.gov (United States)

    Falcão-Pires, Inês; Ladeiras-Lopes, Ricardo; Leite-Moreira, Adelino F

    2010-06-01

    Apelin is a bioactive peptide known as the ligand of the G-protein-coupled receptor APJ. In recent years, there has been a growing body of evidence regarding the importance of apelin and APJ in the pathophysiology of cardiovascular, metabolic and gastrointestinal diseases, brain signalling, HIV infection and tumor angiogenesis. Therefore, the apelinergic system is involved in the pathogenesis of several diseases that represent a major burden to our society. The goal of this paper is to give an up-to-date review of existing information on apelin/APJ since the discovery of apelin in 1998, with particular focus on their involvement in the regulation of human body systems and potential therapeutic applications. An overview of the most important physiological functions of the apelinergic system and the diseases that may benefit in the future from its modulation as a therapeutic target. Today, the established biological effects of apelin involve major cardiovascular actions, neoangiogenesis, immunologic modulation and insulinemia control as well as body fluid and glucose homeostasis. However, the physiological and pathophysiological role of endogenous apelin is still unsettled and a better and profound knowledge of this system in humans is necessary for the development of novel apelinergic-based therapeutic targets.

  16. Protein tyrosine phosphatases as potential therapeutic targets.

    Science.gov (United States)

    He, Rong-Jun; Yu, Zhi-Hong; Zhang, Ruo-Yu; Zhang, Zhong-Yin

    2014-10-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.

  17. OXavidin for Tissue Targeting Biotinylated Therapeutics

    Directory of Open Access Journals (Sweden)

    Rita De Santis

    2009-01-01

    Full Text Available Avidin is a glycoprotein from hen egg white that binds biotin with very high affinity. Here we describe OXavidin, a product containing aldehyde groups, obtained by ligand-assisted sugar oxidation of avidin by sodium periodate. OXavidin chemically reacts with cellular and tissue proteins through Schiff's base formation thus residing in tissues for weeks while preserving the biotin binding capacity. The long tissue residence of OXavidin as well as that of OXavidin/biotinylated agent complex occurs in normal and neoplastic tissues and immunohistochemistry shows a strong and homogenous stromal localization. Once localized in tissue/tumor, OXavidin becomes an “artificial receptor” for intravenous injected biotin allowing tumor targeting with biotinylated therapeutics like radioisotopes or toxins. Moreover, present data also suggest that OXavidin might be useful for the homing of biotinylated cells. Overall, OXavidin exhibits a remarkable potential for many different therapeutic applications.

  18. Novel therapeutic targets for primary biliary cholangitis

    Directory of Open Access Journals (Sweden)

    CHEN Rongbin

    2017-05-01

    Full Text Available Primary biliary cholangitis (PBC is a chronic autoimmune-mediated liver disease manifesting as progressive cholestasis and non-purulent inflammation in small- and medium-sized intrahepatic bile ducts. It finally progresses to liver cirrhosis and liver cancer and greatly threatens patient's life. Studies have found that ursodeoxycholic acid (UDCA can treat PBC effectively. There is a constant increase in the proportion of patients with poor response to UDCA who have undergone transplantation or died, and therefore, new therapeutic regimens should be developed as soon as possible. It is necessary to develop new drugs which act on the key processes of disease progression, such as the "upstream" immune response, the "midstream" bile duct injury, and the "downstream" fibrotic process. Combination treatment with drugs targeting different pathways is a trend for future development. This article summarizes current potential therapeutic regimens for PBC and assesses the challenges in the treatment of PBC.

  19. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  20. Epigenetics and Therapeutic Targets Mediating Neuroprotection

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  1. Therapeutic Strategies Targeting Cariogenic Biofilm Microenvironment.

    Science.gov (United States)

    Liu, Y; Ren, Z; Hwang, G; Koo, H

    2018-02-01

    Cariogenic biofilms are highly structured microbial communities embedded in an extracellular matrix, a multifunctional scaffold that is essential for the existence of the biofilm lifestyle and full expression of virulence. The extracellular matrix provides the physical and biological properties that enhance biofilm adhesion and cohesion, as well as create a diffusion-modulating milieu, protecting the resident microbes and facilitating the formation of localized acidic pH niches. These biochemical properties pose significant challenges for the development of effective antibiofilm therapeutics to control dental caries. Conventional approaches focusing solely on antimicrobial activity or enhancing remineralization may not achieve maximal efficacy within the complex biofilm microenvironment. Recent approaches disrupting the biofilm microbial community and the microenvironment have emerged, including specific targeting of cariogenic pathogens, modulation of biofilm pH, and synergistic combination of bacterial killing and matrix degradation. Furthermore, new "smart" nanotechnologies that trigger drug release or activation in response to acidic pH are being developed that could enhance the efficacy of current and prospective chemical modalities. Therapeutic strategies that can locally disrupt the pathogenic niche by targeting the biofilm structure and its microenvironment to eliminate the embedded microorganism and facilitate the action of remineralizing agents may lead to enhanced and precise anticaries approaches.

  2. Fibromyalgia syndrome--novel therapeutic targets.

    Science.gov (United States)

    Ablin, Jacob N; Buskila, Dan

    2013-08-01

    Fibromyalgia is a syndrome characterized by the presence of chronic widespread pain, representing sensitization of the central nervous system. The pthophysiology of fibromyalgia is a complex and remains in evolution, encompassing diverse issues such as disturbed patterns of sleep, alter processing and decreased conditioned pain modulation at the spinal level, as well as increased connectivity between various pain - processing areas of the brain. This evolution is continuously uncovering potential novel therapeutic targets. Treatment of fibromyalgia is a multi - faceted endeavor, inevitably combining pharmacological as well as non - pharmacological approaches. 2δ ligands and selective nor-epinephrine - serotonin reuptake inhibitors are the current mainstays of pharmacological treatment. Novel re-uptake inhibitors targeting both nor -epinephrine and dopamine are potential additions to this armamentarium as are substance P antagonists, Opiod antagonism is another intriguing possibility. Canabinoid agonists hold promise in the treatment of fibromyalgia although current evidence is incomplete. Sodium Oxybate is a unique sleep - promoting medication while drugs those promot arousals such as modafilnil are also under investigation. In the current review, current and emerging therapeutic options for the syndrome of fibromyalgia are covered. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Integrins as Therapeutic Targets: Successes and Cancers

    Directory of Open Access Journals (Sweden)

    Sabine Raab-Westphal

    2017-08-01

    Full Text Available Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGFβ, they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US$3.5 billion, mainly from inhibitors of α4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments.

  4. Epigenetics and therapeutic targets mediating neuroprotection.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-02

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Kisspeptin as a therapeutic target in reproduction.

    Science.gov (United States)

    Yang, Lisa; Dhillo, Waljit

    2016-01-01

    Kisspeptins are a family of neuropeptides whose identification has become one of the biggest discoveries in reproductive endocrinology during the past decade. Kisspeptins act upstream of GnRH as high-level mediators of the reproductive axis. The authors performed a search of all publications on kisspeptin since its discovery in 1996. A full appraisal of the expanding literature concerning kisspeptin is beyond the scope of this review. This article therefore aims to cover the principle human studies outlining kisspeptin action in human physiology and to discuss the key findings, describing kisspeptin's potential as a therapeutic target in human reproduction. The identification of the kisspeptin signaling pathway has greatly advanced the study of reproductive endocrinology. Building on a large body of animal data, a growing number of human studies have shown that exogenous kisspeptin can stimulate physiological gonadotropin responses in both healthy subjects and those with disorders of reproduction. There is an increasing appreciation that kisspeptin may act as a signal transmitter between metabolic status and reproductive function. Future work is likely to involve investigation of novel kisspeptin analogs and further exploration of role of neurokinin B and dynorphin on the kisspeptin-GnRH axis.

  6. Improving the targeting of therapeutics with single-domain antibodies.

    Science.gov (United States)

    Turner, Kendrick B; Alves, Nathan J; Medintz, Igor L; Walper, Scott A

    2016-01-01

    The targeted delivery of therapeutic agents greatly increases their effectiveness while simultaneously reducing negative side effects. In the past, targeting of therapeutics has been accomplished with nucleic acids, peptides/proteins, and conventional antibodies. A promising alternative to the conventional antibodies often used in therapeutic targeting are significantly smaller-sized antibody fragments known as single-domain antibodies (sdAbs). Recent advances in the utility of sdAbs for targeting of therapeutic agents along with relevant examples from the literature are discussed. Their advantages when compared to other targeting strategies as well as their challenges and limitations is also covered. The development of sdAb-based targeted therapeutics will likely continue. The identification of novel protein modification techniques will provide more options for sdAb modification (conjugation, immobilization, functionalization), allowing a wider array of therapeutic agents to be successfully targeted and delivered using sdAbs. This will also spur the selection of sdAbs with specificity for other targets having relevance towards therapeutics.

  7. Targeting the endocannabinoid system for therapeutic purposes

    OpenAIRE

    Busquets Garcia, Arnau

    2013-01-01

    The endocannabinoid system is an endogenous neuromodulatory system that regulates a plethora of physiological functions, including the modulation of memory, anxiety, pain, synaptic plasticity and neuronal excitability, among others. The activation of this system through exogenous or endogenous cannabinoid agonists has been proposed as a therapeutic strategy in different pathological states, although an important caveat to their use is the possible central adverse effects, such as memory impai...

  8. Therapeutic Approaches to Target Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Arlhee, E-mail: arlhee@cim.sld.cu; Leon, Kalet [Department of Systems Biology, Center of Molecular Immunology, 216 Street, PO Box 16040, Atabey, Havana 11600 (Cuba)

    2011-08-15

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.

  9. EGFR/HER-targeted therapeutics in ovarian cancer

    Science.gov (United States)

    Wilken, Jason A; Badri, Tayf; Cross, Sarah; Raji, Rhoda; Santin, Alessandro D; Schwartz, Peter; Branscum, Adam J; Baron, Andre T; Sakhitab, Adam I; Maihle, Nita J

    2013-01-01

    Despite decades of research and evolving treatment modalities, survival among patients with epithelial ovarian cancer has improved only incrementally. During this same period, the development of biologically targeted therapeutics has improved survival for patients with diverse malignancies. Many of these new drugs target the human epidermal growth factor receptor (EGFR/HER/ErbB) family of tyrosine kinases, which play a major role in the etiology and progression of many carcinomas, including epithelial ovarian cancer. While several HER-targeted therapeutics are US FDA approved for the treatment of various malignancies, none have gained approval for the treatment of ovarian cancer. Here, we review the published literature on HER-targeted therapeutics for the treatment of ovarian cancer, including novel HER-targeted therapeutics in various stages of clinical development, as well as the challenges that have limited the use of these inhibitors in clinical settings. PMID:22416774

  10. GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics.

    NARCIS (Netherlands)

    Mujić-Delić, A.; de Wit, R.H.; Verkaar, F.; Smit, M.J.

    2014-01-01

    G-protein-coupled receptors (GPCRs) represent a major therapeutic target class. A large proportion of marketed drugs exert their effect through modulation of GPCR function, and GPCRs have been successfully targeted with small molecules. Yet, the number of small new molecular entities targeting GPCRs

  11. Metalloproteinases: potential therapeutic targets for rheumatoid arthritis.

    Science.gov (United States)

    Itoh, Yoshifumi

    2015-01-01

    In different inflammatory diseases, many metalloproteinases are over expressed and thought to promote progression of the disease. Understanding roles of these enzymes in disease progression as well as in normal homeostasis is crucial to identify target enzymes for the disease. Rheumatoid arthritis (RA) is one of the autoimmune inflammatory diseases in which around 1-2 % of the world populations are suffered from. Roles of metalloproteinases are well documented in RA, but so far none of them is proposed to be a target enzyme. However, there are at least three enzymes that can potentially be molecular targets to inhibit progression of RA. Understanding roles of these enzymes in more detail and developing highly selective inhibitors to these enzymes would be essential for novel antimetalloproteinase therapies in future.

  12. Therapeutic approaches to drug targets in atherosclerosis.

    Science.gov (United States)

    Jamkhande, Prasad G; Chandak, Prakash G; Dhawale, Shashikant C; Barde, Sonal R; Tidke, Priti S; Sakhare, Ram S

    2014-07-01

    Non-communicable diseases such as cancer, atherosclerosis and diabetes are responsible for major social and health burden as millions of people are dying every year. Out of which, atherosclerosis is the leading cause of deaths worldwide. The lipid abnormality is one of the major modifiable risk factors for atherosclerosis. Both genetic and environmental components are associated with the development of atherosclerotic plaques. Immune and inflammatory mediators have a complex role in the initiation and progression of atherosclerosis. Understanding of all these processes will help to invent a range of new biomarkers and novel treatment modalities targeting various cellular events in acute and chronic inflammation that are accountable for atherosclerosis. Several biochemical pathways, receptors and enzymes are involved in the development of atherosclerosis that would be possible targets for improving strategies for disease diagnosis and management. Earlier anti-inflammatory or lipid-lowering treatments could be useful for alleviating morbidity and mortality of atherosclerotic cardiovascular diseases. However, novel drug targets like endoglin receptor, PPARα, squalene synthase, thyroid hormone analogues, scavenger receptor and thyroid hormone analogues are more powerful to control the process of atherosclerosis. Therefore, the review briefly focuses on different novel targets that act at the starting stage of the plaque form to the thrombus formation in the atherosclerosis.

  13. Pathways and therapeutic targets in melanoma

    Science.gov (United States)

    Shtivelman, Emma; Davies, Michael A.; Hwu, Patrick; Yang, James; Lotem, Michal; Oren, Moshe; Flaherty, Keith T.; Fisher, David E.

    2014-01-01

    This review aims to summarize the current knowledge of molecular pathways and their clinical relevance in melanoma. Metastatic melanoma was a grim diagnosis, but in recent years tremendous advances have been made in treatments. Chemotherapy provided little benefit in these patients, but development of targeted and new immune approaches made radical changes in prognosis. This would not have happened without remarkable advances in understanding the biology of disease and tremendous progress in the genomic (and other “omics”) scale analyses of tumors. The big problems facing the field are no longer focused exclusively on the development of new treatment modalities, though this is a very busy area of clinical research. The focus shifted now to understanding and overcoming resistance to targeted therapies, and understanding the underlying causes of the heterogeneous responses to immune therapy. PMID:24743024

  14. Targeting inflammation in diabetes: Newer therapeutic options

    Science.gov (United States)

    Agrawal, Neeraj Kumar; Kant, Saket

    2014-01-01

    Inflammation has been recognised to both decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can affect beta cell function directly leading to secretory dysfunction and increased apoptosis. These cytokines can also indirectly affect beta cell function by increasing adipocyte inflammation.The resulting glucotoxicity and lipotoxicity further enhance the inflammatory process resulting in a vicious cycle. Weight reduction and drugs such as metformin have been shown to decrease the levels of C-Reactive Protein by 31% and 13%, respectively. Pioglitazone, insulin and statins have anti-inflammatory effects. Interleukin 1 and tumor necrosis factor-α antagonists are in trials and NSAIDs such as salsalate have shown an improvement in insulin sensitivity. Inhibition of 12-lipo-oxygenase, histone de-acetylases, and activation of sirtuin-1 are upcoming molecular targets to reduce inflammation. These therapies have also been shown to decrease the conversion of pre-diabetes state to diabetes. Drugs like glicazide, troglitazone, N-acetylcysteine and selective COX-2 inhibitors have shown benefit in diabetic neuropathy by decreasing inflammatory markers. Retinopathy drugs are used to target vascular endothelial growth factor, angiopoietin-2, various proteinases and chemokines. Drugs targeting the proteinases and various chemokines are pentoxifylline, inhibitors of nuclear factor-kappa B and mammalian target of rapamycin and are in clinical trials for diabetic nephropathy. Commonly used drugs such as insulin, metformin, peroxisome proliferator-activated receptors, glucagon like peptide-1 agonists and dipeptidyl peptidase-4 inhibitors also decrease inflammation. Anti-inflammatory therapies represent a potential approach for the therapy of diabetes and its complications. PMID:25317247

  15. New Therapeutic Targets for Mood Disorders

    OpenAIRE

    Machado-Vieira, Rodrigo; Salvadore, Giacomo; DiazGranados, Nancy; Ibrahim, Lobna; Latov, David; Wheeler-Castillo, Cristina; Baumann, Jacqueline; Henter, Ioline D.; Zarate, Carlos A.

    2010-01-01

    Existing pharmacological treatments for bipolar disorder (BPD) and major depressive disorder (MDD) are often insufficient for many patients. Here we describe a number of targets/compounds that clinical and preclinical studies suggest could result in putative novel treatments for mood disorders. These include: (1) glycogen synthase kinase-3 (GSK-3) and protein kinase C (PKC), (2) the purinergic system, (3) histone deacetylases (HDACs), (4) the melatonergic system, (5) the tachykinin neuropepti...

  16. Therapeutics targeting Bcl-2 in hematological malignancies.

    Science.gov (United States)

    Ruefli-Brasse, Astrid; Reed, John C

    2017-10-23

    Members of the B-cell lymphoma 2 (BCL-2) gene family are attractive targets for cancer therapy as they play a key role in promoting cell survival, a long-since established hallmark of cancer. Clinical utility for selective inhibition of specific anti-apoptotic Bcl-2 family proteins has recently been realized with the Food and Drug Administration (FDA) approval of venetoclax (formerly ABT-199/GDC-0199) in relapsed chronic lymphocytic leukemia (CLL) with 17p deletion. Despite the impressive monotherapy activity in CLL, such responses have rarely been observed in other B-cell malignancies, and preclinical data suggest that combination therapies will be needed in other indications. Additional selective antagonists of Bcl-2 family members, including Bcl-XL and Mcl-1, are in various stages of preclinical and clinical development and hold the promise of extending clinical utility beyond CLL and overcoming resistance to venetoclax. In addition to direct targeting of Bcl-2 family proteins with BH3 mimetics, combination therapies that aim at down-regulating expression of anti-apoptotic BCL-2 family members or restoring expression of pro-apoptotic BH3 family proteins may provide a means to deepen responses to venetoclax and extend the utility to additional indications. Here, we review recent progress in direct and selective targeting of Bcl-2 family proteins for cancer therapy and the search for rationale combinations. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Particulate Systems for Targeting of Macrophages: Basic and Therapeutic Concepts

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moien; Parhamifar, Ladan; Ahmadvand, Davoud

    2012-01-01

    Particulate systems in the form of liposomes, polymeric micelles, polymeric nano- and microparticles, and many others offer a rational approach for selective delivery of therapeutic agents to the macrophage from different physiological portals of entry. Particulate targeting of macrophages and in...... at a particular subset of macrophages. Advances in basic and therapeutic concepts of particulate targeting of macrophages and related nanotechnology approaches for immune cell modifications are discussed.Copyright © 2012 S. Karger AG, Basel...

  18. Novel Therapeutic Target for the Treatment of Lupus

    Science.gov (United States)

    2014-09-01

    AWARD NUMBER: W81XWH-12-1-0205 TITLE: Novel Therapeutic Target for the Treatment of Lupus PRINCIPAL INVESTIGATOR: Lisa Laury-Kleintop...SUBTITLE 5a. CONTRACT NUMBER Novel Therapeutic Target for the Treatment of Lupus 5b. GRANT NUMBER W81XWH-12-1-0205 5c. PROGRAM ELEMENT NUMBER 6...Systemic lupus erythematosus, autoantibodies. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 7 19a. NAME OF

  19. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Simon A. Young

    2012-01-01

    Full Text Available Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions.

  20. Neutrophils: potential therapeutic targets in tularemia?

    Directory of Open Access Journals (Sweden)

    Lee-Ann H Allen

    2013-12-01

    Full Text Available The central role of neutrophils in innate immunity and host defense has long been recognized, and the ability of these cells to efficiently engulf and kill invading bacteria has been extensively studied, as has the role of neutrophil apoptosis in resolution of the inflammatory response. In the past few years additional immunoregulatory properties of neutrophils were discovered, and it is now clear that these cells play a much greater role in control of the immune response than was previously appreciated. In this regard, it is noteworthy that Francisella tularensis is one of relatively few pathogens that can successfully parasitize neutrophils as well as macrophages, DC and epithelial cells. Herein we will review the mechanisms used by F. tularensis to evade elimination by neutrophils. We will also reprise effects of this pathogen on neutrophil migration and lifespan as compared with other infectious and inflammatory disease states. In addition, we will discuss the evidence which suggests that neutrophils contribute to disease progression rather than effective defense during tularemia, and consider whether manipulation of neutrophil migration or turnover may be suitable adjunctive therapeutic strategies.

  1. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    Science.gov (United States)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  2. Therapeutic Potential of Targeting the Ghrelin Pathway.

    Science.gov (United States)

    Colldén, Gustav; Tschöp, Matthias H; Müller, Timo D

    2017-04-11

    Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems' metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.

  3. Targeting and therapeutic peptides in nanomedicine for atherosclerosis.

    Science.gov (United States)

    Chung, Eun Ji

    2016-05-01

    Peptides in atherosclerosis nanomedicine provide structural, targeting, and therapeutic functionality and can assist in overcoming delivery barriers of traditional pharmaceuticals. Moreover, their inherent biocompatibility and biodegradability make them especially attractive as materials intended for use in vivo In this review, an overview of nanoparticle-associated targeting and therapeutic peptides for atherosclerosis is provided, including peptides designed for cellular targets such as endothelial cells, monocytes, and macrophages as well as for plaque components such as collagen and fibrin. An emphasis is placed on recent advances in multimodal strategies and a discussion on current challenges and barriers for clinical applicability is presented. © 2016 by the Society for Experimental Biology and Medicine.

  4. Zebrafish: predictive model for targeted cancer therapeutics from nature.

    Science.gov (United States)

    Zulkhernain, Nursafwana Syazwani; Teo, Soo Hwang; Patel, Vyomesh; Tan, Pei Jean

    2014-01-01

    Targeted therapy, the treatment of cancer based on an underlying genetic alteration, is rapidly gaining favor as the preferred therapeutic approach. To date, although natural products represent a rich resource of bio-diverse drug candidates, only a few have been identified to be effective as targeted cancer therapies largely due to the incompatibilities to current high-throughput screening methods. In this article, we review the utility of a zebrafish developmental screen for bioactive natural product-based compounds that target signaling pathways that are intimately shared with those in humans. Any bioactive compound perturbing signaling pathways identified from phenotypic developmental defects in zebrafish embryos provide an opportunity for developing targeted therapies for human cancers. This model provides a promising tool in the search for targeted cancer therapeutics from natural products.

  5. Targeted Therapeutic Nanoparticles: An Immense Promise to Fight against Cancer

    Directory of Open Access Journals (Sweden)

    Sheikh Tasnim Jahan

    2017-01-01

    Full Text Available In nanomedicine, targeted therapeutic nanoparticle (NP is a virtual outcome of nanotechnology taking the advantage of cancer propagation pattern. Tying up all elements such as therapeutic or imaging agent, targeting ligand, and cross-linking agent with the NPs is the key concept to deliver the payload selectively where it intends to reach. The microenvironment of tumor tissues in lymphatic vessels can also help targeted NPs to achieve their anticipated accumulation depending on the formulation objectives. This review accumulates the application of poly(lactic-co-glycolic acid (PLGA and polyethylene glycol (PEG based NP systems, with a specific perspective in cancer. Nowadays, PLGA, PEG, or their combinations are the mostly used polymers to serve the purpose of targeted therapeutic NPs. Their unique physicochemical properties along with their biological activities are also discussed. Depending on the biological effects from parameters associated with existing NPs, several advantages and limitations have been explored in teaming up all the essential facts to give birth to targeted therapeutic NPs. Therefore, the current article will provide a comprehensive review of various approaches to fabricate a targeted system to achieve appropriate physicochemical properties. Based on such findings, researchers can realize the benefits and challenges for the next generation of delivery systems.

  6. MicroRNA-targeted therapeutics for lung cancer treatment.

    Science.gov (United States)

    Xue, Jing; Yang, Jiali; Luo, Meihui; Cho, William C; Liu, Xiaoming

    2017-02-01

    Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.

  7. Therapeutic targeting of epigenetic components in amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Lee, J; Ryu, H; Keum, G; Yoon, Y J; Kowall, N W; Ryu, H

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease characterized by degeneration of motor neuron and glial activation followed by the progressive muscle loss and paralysis. Numerous distinct therapeutic interventions have been examined but currently ALS does not have a cure or an efficacious treatment for the disorder. Glutamate- induced excitotoxicity, inflammation, mitochondrial dysfunction, oxidative stress, protein aggregation, transcription deregulation, and epigenetic modifications are associated with the pathogenesis of ALS and known to be therapeutic targets in ALS. In this review, we discuss translational pharmacological studies targeting epigenetic components to ameliorate ALS. Understanding of the epigenetic mechanisms will provide novel insights that will further identify potential biological markers and therapeutic approaches for treating ALS. A combination of treatments that modulate epigenetic components and multiple targets may prove to be the most effective therapy for ALS.

  8. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics

    Science.gov (United States)

    Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory

    2011-01-01

    Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor–ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited. PMID:21984960

  9. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    Science.gov (United States)

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mitochondria: A Novel Therapeutic Target in Diabetic Nephropathy.

    Science.gov (United States)

    Yang, Shikun; Han, Yachun; Liu, Jun; Song, Panai; Xu, Xiaoxuan; Zhao, Li; Hu, Chun; Xiao, Li; Liu, Fuyou; Zhang, Hao; Sun, Lin

    2017-01-01

    Diabetic nephropathy (DN) is an important diabetic microvascular complication, and it is becoming the leading cause of end-stage renal disease worldwide. Unfortunately, there are no effective therapies to treat established DN. Therefore, new therapeutic targets are urgently required. Accumulating studies indicate that mitochondrial dysfunction is central to the pathogenesis of DN, and therapies targeted mitochondria might effectively delay the progression of DN. A structured search of previously research literature about mitochondrial structure and function, mitochondrial DNA, mitochondrial biogenesis, mitochondrial dynamics change, mitophagy, mitochondrial ROS, mitochondrial apoptosis and therapies targeted mitochondria has been performed in several databases. 176 papers were included in this review, the results from these papers indicated that mitochondrial dysfunction is a pivotal issue for the development of DN, such as elevated oxidative stress induced by disorders of the mitochondrial respiratory chain complex and mitochondrial dynamic disorders, mutation of mitochondrial DNA, mitochondrial abnormal biogenesis, mitochondrial excessive fission, mitochondrial ROS overproduction. In addition, several therapeutic agents targeting the mitochondria (e.g mitochondrial ROS modulators, mitochondrial fragmentation inhibitors and mitochondrial biogenesis activators) have shown perfect therapeutic effect and security for DN. The finding of this review has further confirmed the vital role of mitochondrial dysfunction in the progression of DN, management strategies for recovering the normal mitochondrial function will offer potential novel therapeutic targets for DN. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Glypican-3 antibodies: a new therapeutic target for liver cancer

    OpenAIRE

    Ho, Mingqian Feng, Mitchell

    2013-01-01

    Glypican-3 (GPC3) is an emerging therapeutic target in hepatocellular carcinoma (HCC), even though the biological function of GPC3 remains elusive. Currently human (MDX-1414 and HN3) and humanized mouse (GC33 and YP7) antibodies that target GPC3 for HCC treatment are under different stages of preclinical or clinical development. Humanized mouse antibody GC33 is being evaluated in a phase II clinical trial. Human antibodies MDX-1414 and HN3 are under different stages of preclinical evaluation....

  12. Recent developments in emerging therapeutic targets of osteoarthritis.

    Science.gov (United States)

    Sun, Margaret Man-Ger; Beier, Frank; Pest, Michael A

    2017-01-01

    Despite the tremendous individual suffering and socioeconomic burden caused by osteoarthritis, there are currently no effective disease-modifying treatment options. This is in part because of our incomplete understanding of osteoarthritis disease mechanism. This review summarizes recent developments in therapeutic targets identified from surgical animal models of osteoarthritis that provide novel insight into osteoarthritis pathology and possess potential for progression into preclinical studies. Several candidate pathways and processes that have been identified include chondrocyte autophagy, growth factor signaling, inflammation, and nociceptive signaling. Major strategies that possess therapeutic potential at the cellular level include inhibiting autophagy suppression and decreasing reactive oxygen species (ROS) production. Cartilage anabolism and prevention of cartilage degradation has been shown to result from growth factor signaling modulation, such as TGF-β, TGF-α, and FGF; however, the results are context-dependent and require further investigation. Pain assessment studies in rodent surgical models have demonstrated potential in employing anti-NGF strategies for minimizing osteoarthritis-associated pain. Studies of potential therapeutic targets in osteoarthritis using animal surgical models are helping to elucidate osteoarthritis pathology and propel therapeutics development. Further studies should continue to elucidate pathological mechanisms and therapeutic targets in various joint tissues to improve overall joint health.

  13. Current progress on aptamer-targeted oligonucleotide therapeutics

    Science.gov (United States)

    Dassie, Justin P; Giangrande, Paloma H

    2014-01-01

    Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted. PMID:24304250

  14. Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma

    Science.gov (United States)

    2013-07-01

    experiments using rat model of human Mesothelioma should also provide leads into the immuno-preventive and immuno- therapeutic approaches to treatments ...experiments involving injection of rat Mesothelioma cells and treatments of the resulting tumors. These experiments will begin as soon as we have...Targets of Mesothelioma PRINCIPAL INVESTIGATOR: Harvey Pass, M.D. CONTRACTING ORGANIZATION: New York University School of Medicine

  15. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  16. Mitochondrial damage: a target for new therapeutic horizons.

    Science.gov (United States)

    Soustiel, Jean F; Larisch, Sarit

    2010-01-01

    Traumatic brain injury (TBI) represents a leading cause of death and morbidity, as well as a considerable social and economical burden in western countries, and has thus emerged as a formidable therapeutic challenge. Yet despite tremendous efforts enlightening the mechanisms of neuronal death, hopes for the "magic bullet" have been repeatedly deceived, and TBI management has remained focused on the control of increased intracranial pressure. Indeed, impairment of cerebral metabolism is traditionally attributed to impaired oxygen delivery mediated by reduced cerebral perfusion in the swollen cerebral parenchyma. Although intuitively appealing, this hypothesis is not entirely supported by physiological facts and does not take into consideration mitochondrial dysfunction that has been repeatedly reported in both human and animal TBI. Although the nature and origin of the events leading to mitochondrial damage may be different, most share a permeabilization of mitochondrial membrane, which therefore may represent a logical target for new therapeutic strategies. Therefore, the proteins mediating these events may represent promising targets for new TBI therapies. Furthermore, mimicking anti-apoptotic proteins, such as Bcl-2 or XIAP, or inhibiting mitochondrial pro-apoptotic proteins, such as Smac/DIABLO, Omi/HTRA2, and ARTS (septin 4 isoform 2) may represent useful novel therapeutic strategies. This review focuses on mechanisms of the mitochondrial membrane permeabilization and its consequences and discusses the current and possible future therapeutic implications of this key event of neuronal death. Copyright 2010 The American Society for Experimental NeuroTherapeutics, Inc. Published by Elsevier Inc. All rights reserved.

  17. Cancer stem cells: constantly evolving and functionally heterogeneous therapeutic targets.

    Science.gov (United States)

    Yang, Tao; Rycaj, Kiera; Liu, Zhong-Min; Tang, Dean G

    2014-06-01

    Elucidating the origin of and dynamic interrelationship between intratumoral cell subpopulations has clear clinical significance in helping to understand the cellular basis of treatment response, therapeutic resistance, and tumor relapse. Cancer stem cells (CSC), together with clonal evolution driven by genetic alterations, generate cancer cell heterogeneity commonly observed in clinical samples. The 2013 Shanghai International Symposium on Cancer Stem Cells brought together leaders in the field to highlight the most recent progress in phenotyping, characterizing, and targeting CSCs and in elucidating the relationship between the cell-of-origin of cancer and CSCs. Discussions from the symposium emphasize the urgent need in developing novel therapeutics to target the constantly evolving CSCs. ©2014 American Association for Cancer Research.

  18. ROCK as a therapeutic target for ischemic stroke.

    Science.gov (United States)

    Sladojevic, Nikola; Yu, Brian; Liao, James K

    2017-12-01

    Stroke is a major cause of disability and the fifth leading cause of death. Currently, the only approved acute medical treatment of ischemic stroke is tissue plasminogen activator (tPA), but its effectiveness is greatly predicated upon early administration of the drug. There is, therefore, an urgent need to find new therapeutic options for acute stroke. Areas covered: In this review, we summarize the role of Rho-associated coiled-coil containing kinase (ROCK) and its potential as a therapeutic target in stroke pathophysiology. ROCK is a major regulator of cell contractility, motility, and proliferation. Many of these ROCK-mediated processes in endothelial cells, vascular smooth muscle cells, pericytes, astrocytes, glia, neurons, leukocytes, and platelets are important in stroke pathophysiology, and the inhibition of such processes could improve stroke outcome. Expert commentary: ROCK is a potential therapeutic target for cardiovascular disease and ROCK inhibitors have already been approved for human use in Japan and China for the treatment of acute stroke. Further studies are needed to determine the role of ROCK isoforms in the pathophysiology of cerebral ischemia and whether there are further therapeutic benefits with selective ROCK inhibitors.

  19. Breast Cancer: Current Molecular Therapeutic Targets and New Players.

    Science.gov (United States)

    Nagini, Siddavaram

    2017-01-01

    Breast cancer is the most common cancer and the most frequent cause of cancer death among women worldwide. Breast cancer is a complex, heterogeneous disease classified into hormone-receptor-positive, human epidermal growth factor receptor-2 overexpressing (HER2+) and triple-negative breast cancer (TNBC) based on histological features. Endocrine therapy, the mainstay of treatment for hormone-responsive breast cancer involves use of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs) and aromatase inhibitors (AIs). Agents that target estrogen receptor (ER) and HER2 such as tamoxifen and trastuzumab have been the most extensively used therapeutics for breast cancer. Crosstalk between ER and other signalling networks as well as epigenetic mechanisms have been envisaged to contribute to endocrine therapy resistance. TNBC, a complex, heterogeneous, aggressive form of breast cancer in which the cells do not express ER, progesterone receptor or HER2 is refractory to therapy. Several molecular targets are being explored to target TNBC including androgen receptor, epidermal growth factor receptor (EGFR), poly(ADP-ribose) polymerase (PARP), and vascular endothelial growth factor (VEGF). Receptors, protein tyrosine kinases, phosphatases, proteases, PI3K/Akt signalling pathway, microRNAs (miRs) and long noncoding RNAs (lncRNAs) are potential therapeutic targets. miR-based therapeutic approaches include inhibition of oncomiRs by antisense oligonucleotides, restoration of tumour suppressors using miR mimics, and chemical modification of miRs. The lnRNAs HOTAIR, SPRY4-IT1, GAS5, and PANDAR, new players in tumour development and prognosis may have theranostic applications in breast cancer. Several novel classes of mechanism-based drugs have been designed and synthesised for treatment of breast cancer. Integration of nucleic acid sequencing studies with mass spectrometry-based peptide sequencing and posttranslational modifications as

  20. [Gap junctions: A new therapeutic target in major depressive disorder?].

    Science.gov (United States)

    Sarrouilhe, D; Dejean, C

    2015-11-01

    Major depressive disorder is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and is associated with excess mortality, especially from cardiovascular diseases and through suicide. The treatments of this disease with tricyclic antidepressants and monoamine oxidase inhibitors are poorly tolerated and those that selectively target serotonin and norepinephrine re-uptake are not effective in all patients, showing the need to find new therapeutic targets. Post-mortem studies of brains from patients with major depressive disorders described a reduced expression of the gap junction-forming membrane proteins connexin 30 and connexin 43 in the prefrontal cortex and the locus coeruleus. The use of chronic unpredictable stress, a rodent model of depression, suggests that astrocytic gap junction dysfunction contributes to the pathophysiology of major depressive disorder. Chronic treatments of rats with fluoxetine and of rat cultured cortical astrocytes with amitriptyline support the hypothesis that the upregulation of gap junctional intercellular communication between brain astrocytes could be a novel mechanism for the therapeutic effect of antidepressants. In conclusion, astrocytic gap junctions are emerging as a new potential therapeutic target for the treatment of patients with major depressive disorder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    Science.gov (United States)

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Therapeutic Impact of Nanoparticle Therapy Targeting Tumor Associate Macrophages.

    Science.gov (United States)

    Penn, Courtney; Yang, Kun; Zong, Hong; Lim, Jae-Young; Cole, Alex; Yang, Dongli; Baker, James; Goonewardena, Sascha N; Buckanovich, Ronald J

    2017-11-13

    Antiangiogenic therapies, despite initial encouragement, have demonstrated a limited benefit in ovarian cancer. Laboratory studies suggest anti-angiogenic therapy induced hypoxia can induce tumor "stemness' as resistance to antiangiogenic therapy develops and limits the therapeutic benefit. Resistance to antiangiogenic therapy and an induction of tumor stemness may be mediated by proangiogenic tumor associated macrophages (TAMs). As such TAMs have been proposed as a therapeutic target. We demonstrate here that ovarian TAMs express high levels of the folate receptor-2 (FOLR2) and can be selectively targeted using G5-dendrimer nanoparticles using methotrexate as both a ligand and a toxin. G5-methotrexate (G5-MTX) Nps deplete tumor associated macrophages in both solid tumor and ascites models of ovarian cancer. As a therapeutic these nanoparticles are more effective than cisplatin. Importantly, these nanoparticles could (i) overcome resistance to anti-angiogenic therapy, (ii) prevent antiangiogenic therapy induced increases in cancer stem-like cells in both murine and human tumor cell models, and (iii) prevent anti-angiogenic therapy induced increases in VEGF-C (iv) prevent anti-angiogenic therapy induce BRCA1 gene expression. Combine this work strongly supports the development of TAM targeted nanoparticle therapy. Copyright ©2017, American Association for Cancer Research.

  3. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    Science.gov (United States)

    Oishi, Naoki; Wang, Xin Wei

    2011-01-01

    The cancer stem cell (CSC) hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment. Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is believed that hepatic progenitor cells (HPCs) could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC. Here we provide a brief review of

  4. Protein and Peptide in Drug Targeting and its Therapeutic Approach

    Directory of Open Access Journals (Sweden)

    Raj K. Keservani

    2015-09-01

    Full Text Available Aim: The main aim of this review article is to provide information like advantages of protein and peptides via different routes of drug administration, targeted to a particular site and its implication in drug delivery system. Methods: To that aim, from the web sites of PubMed, HCAplus, Thomson, and Registry were used as the main sources to perform the search for the most significant research articles published on the subject. The information was then carefully analyzed, highlighting the most important results in the development of protein and peptide drug targeting as well as its therapeutic activity. Results: In recent years many researchers use protein and peptide as a target site of drug by a different delivery system. Proteins and peptides are used as specific and effective therapeutic agents, due to instability and side effects their use is complicated. Protein kinases are important regulators of most, if not all, biological processes. Abnormal activity of proteins and peptides has been implicated in many human diseases, such as diabetes, cancer and neurodegenerative disorders. Conclusions: It is concluded that the protein and peptide were used in drug targeting to specific site and also used in different diseased states like cancer, diabetes, immunomodulating, neurodegenerative effects and antimicrobial activity.

  5. Targeting cancer cell mitochondria as a therapeutic approach: recent updates.

    Science.gov (United States)

    Cui, Qingbin; Wen, Shijun; Huang, Peng

    2017-06-01

    Mitochondria play a key role in ATP generation, redox homeostasis and regulation of apoptosis. Due to the essential role of mitochondria in metabolism and cell survival, targeting mitochondria in cancer cells is considered as an attractive therapeutic strategy. However, metabolic flexibility in cancer cells may enable the upregulation of compensatory pathways, such as glycolysis to support cancer cell survival when mitochondrial metabolism is inhibited. Thus, compounds capable of both targeting mitochondria and inhibiting glycolysis may be particularly useful to overcome such drug-resistant mechanism. This review provides an update on recent development in the field of targeting mitochondria and novel compounds that impact mitochondria, glycolysis or both. Key challenges in this research area and potential solutions are also discussed.

  6. Therapeutic target for cognition enhancers: diagnosis and clinical phenomenology.

    Science.gov (United States)

    Allain, H; Boyer, P; Kossmann, L; Lépine, J P; Kanowski, S

    1990-02-01

    Uncertainty concerning therapeutic targets has probably retarded the development of cognition-enhancing drugs. While enhancement of normal cognitive function may be a legitimate goal it is unlikely that drugs developed without a clear clinical indication will ever be approved by regulatory authorities. Normal aging as a target would also appear to be excluded. The main debate is whether drugs should be developed for specific disease states (e.g., Alzheimer's), particular syndromes (e.g., AAMI) or for treating symptoms (e.g., memory deficits). Although targeting disease states appears the least problematic, it would be difficult to include many potentially treatable patients in such studies. In this respect, the status of AAMI is still the subject of much debate. In any case, it is important that trial populations be as homogeneous as possible, with clear diagnostic criteria (e.g., defined memory impairment, Hachinski score, CT scans) and that patients be moderately to severely affected.

  7. S100-alarmins: potential therapeutic targets for arthritis.

    Science.gov (United States)

    Austermann, Judith; Zenker, Stefanie; Roth, Johannes

    2017-07-01

    In arthritis, inflammatory processes are triggered by numerous factors that are released from joint tissues, promoting joint destruction and pathological progression. During inflammation, a novel family of pro-inflammatory molecules called alarmins is released, amplifying inflammation and joint damage. Areas covered: With regard to the role of the alarmins S100A8 and S100A9 in the pathogenesis of arthritis, recent advances and the future prospects in terms of therapeutic implications are considered. Expert opinion: There is still an urgent need for novel treatment strategies addressing the local mechanisms of joint inflammation and tissue destruction, offering promising therapeutic alternatives. S100A8 and S100A9, which are the most up-regulated alarmins during arthritis, are endogenous triggers of inflammation, defining these proteins as promising targets for local suppression of arthritis. In murine models, the blockade of S100A8/S100A9 ameliorates inflammatory processes, including arthritis, and there are several lines of evidence that S100-alarmins may already be targeted in therapeutic approaches in man.

  8. Toll-like receptors as therapeutic targets in cystic fibrosis.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2008-12-01

    Background: Toll-like receptors (TLRs) are pattern recognition receptors that act as a first-line of defence in the innate immune response by recognising and responding to conserved molecular patterns in microbial factors and endogenous danger signals. Cystic fibrosis (CF)-affected airways represent a milieu potentially rich in TLR agonists and the chronic inflammatory phenotype evident in CF airway epithelial cells is probably due in large part to activation of TLRs. Objective\\/methods: To examine the prospects of developing novel therapies for CF by targeting TLRs. We outline the expression and function of TLRs and explore the therapeutic potential of naturally-occurring and synthetic TLR inhibitors for CF. Results\\/conclusion: Modulation of TLRs has therapeutic potential for the inflammatory lung manifestations of CF.

  9. Therapeutic strategies for targeting the ovarian tumor stroma.

    Science.gov (United States)

    Ko, Song Yi; Naora, Honami

    2014-06-16

    Epithelial ovarian cancer is the most lethal type of gynecologic malignancy. Sixty percent of women who are diagnosed with ovarian cancer present with advanced-stage disease that involves the peritoneal cavity and these patients have a 5-year survival rate of less than 30%. For more than two decades, tumor-debulking surgery followed by platinum-taxane combination chemotherapy has remained the conventional first-line treatment of ovarian cancer. Although the initial response rate is 70%-80%, most patients with advanced-stage ovarian cancer eventually relapse and succumb to recurrent chemoresistant disease. A number of molecular aberrations that drive tumor progression have been identified in ovarian cancer cells and intensive efforts have focused on developing therapeutic agents that target these aberrations. However, increasing evidence indicates that reciprocal interactions between tumor cells and various types of stromal cells also play important roles in driving ovarian tumor progression and that these stromal cells represent attractive therapeutic targets. Unlike tumor cells, stromal cells within the tumor microenvironment are in general genetically stable and are therefore less likely to become resistant to therapy. This concise review discusses the biological significance of the cross-talk between ovarian cancer cells and three major types of stromal cells (endothelial cells, fibroblasts, macrophages) and the development of new-generation therapies that target the ovarian tumor microenvironment.

  10. Polyamine Transport and Synthesis in Trichomonas vaginalis: Potential Therapeutic Targets.

    Science.gov (United States)

    Alvarez-Sanchez, Maria Elizbeth; Villalpando, Jose Luis; Quintas-Granados, Laura Itzel; Arroyo, Rossana

    2017-01-01

    Polyamines are essential for many biological processes in all organisms. Here we show a current landscape of studies and strategies implemented for the study of polyamine metabolism, as well as molecular aspects that implicate the role of key enzymes, transport proteins, inhibitors, and the study of novel molecules as potential therapeutic targets. This review focused on the synthesis, interconversion and function of these molecules in Trichomonas vaginalis, a common sexually transmitted parasite of humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. T cells as a therapeutic target in SLE

    Science.gov (United States)

    Comte, Denis; Karampetsou, Maria P.; Tsokos, George C.

    2014-01-01

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by a loss of tolerance to multiple endogenous antigens. SLE etiology remains largely unknown, despite recent insight into the immunopathogenesis of the disease. T cells are important in the development of the disease by amplifying the immune response and contributing to organ damage. Aberrant signaling, cytokine secretion and tissue homing displayed by SLE T cells have been extensively studied and the underlying pathogenic molecular mechanisms are starting to be elucidated. T-cell targeted treatments are being explored in SLE patients. This review is an update on the T-cell abnormalities and related therapeutic options in SLE. PMID:25801878

  12. In Search of New Therapeutic Targets in Obesity Treatment: Sirtuins

    Directory of Open Access Journals (Sweden)

    Alina Kurylowicz

    2016-04-01

    Full Text Available Most of the available non-invasive medical therapies for obesity are non-efficient in a long-term evaluation; therefore there is a constant need for new methods of treatment. Research on calorie restriction has led to the discovery of sirtuins (silent information regulators, SIRTs, enzymes regulating different cellular pathways that may constitute potential targets in the treatment of obesity. This review paper presents the role of SIRTs in the regulation of glucose and lipid metabolism as well as in the differentiation of adipocytes. How disturbances of SIRTs’ expression and activity may lead to the development of obesity and related complications is discussed. A special emphasis is placed on polymorphisms in genes encoding SIRTs and their possible association with susceptibility to obesity and metabolic complications, as well as on data regarding altered expression of SIRTs in human obesity. Finally, the therapeutic potential of SIRTs-targeted strategies in the treatment of obesity and related disorders is discussed.

  13. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Meena K. Sakharkar

    2013-01-01

    Full Text Available PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer.

  14. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral.The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%.This is the first report to describe a new concept of a narrowly-dispersed combined polymer therapeutic designed to target both tumor and

  15. MicroRNA as therapeutic targets for treatment of depression

    Directory of Open Access Journals (Sweden)

    Hansen KF

    2013-07-01

    Full Text Available Katelin F Hansen, Karl Obrietan Department of Neuroscience, Ohio State University, Columbus, OH, USA Abstract: Depression is a potentially life-threatening mental disorder affecting approximately 300 million people worldwide. Despite much effort, the molecular underpinnings of clinical depression remain poorly defined, and current treatments carry limited therapeutic efficacy and potentially burdensome side effects. Recently, small noncoding RNA molecules known as microRNA (miRNA have gained prominence as a target for therapeutic intervention, given their capacity to regulate neuronal physiology. Further, mounting evidence suggests a prominent role for miRNA in depressive molecular signaling. Recent studies have demonstrated that dysregulation of miRNA expression occurs in animal models of depression, and in the post-mortem tissue of clinically depressed patients. Investigations into depression-associated miRNA disruption reveals dramatic effects on downstream targets, many of which are thought to contribute to depressive symptoms. Furthermore, selective serotonin reuptake inhibitors, as well as other antidepressant drugs, have the capacity to reverse aberrant depressive miRNA expression and their downstream targets. Given the powerful effects that miRNA have on the central nervous system transcriptome, and the aforementioned studies, there is a compelling rationale to begin to assess the potential contribution of miRNA to depressive etiology. Here, we review the molecular biology of miRNA, our current understanding of miRNA in relation to clinical depression, and the utility of targeting miRNA for antidepressant treatment. Keywords: depression, microRNA, miRNA, BDNF, Dicer, serotonin

  16. Achievement of therapeutic targets in Mexican patients with diabetes mellitus.

    Science.gov (United States)

    Lavalle-González, Fernando J; Chiquete, Erwin; de la Luz, Julieta; Ochoa-Guzmán, Ana; Sánchez-Orozco, Laura V; Godínez-Gutiérrez, Sergio A

    2012-12-01

    Complications of diabetes comprise the leading cause of death in Mexico. We aimed to describe the characteristics of management and achievement of therapeutic targets in Mexican patients with diabetes mellitus. We analyzed data from 2642 Mexican patients with type 1 (T1D, n=203, 7.7%) and type 2 diabetes (T2D, n=2439, 92.3%) included in the third wave of the International Diabetes Management Practices Study. Of T2D patients, 63% were on oral glucose-lowering drugs (OGLD) exclusively (mostly metformin), 11% on insulin, 22% on OGLD plus insulin, and 4% on diet and exercise exclusively. T2D patients on insulin were more likely to be trained on diabetes, but they were older, had worse control, longer disease duration and more chronic complications than patients on OGLD only. Glycated hemoglobin (HbA1c) diabetes did not reach therapeutic targets. Insulin was used mostly in complicated cases with advanced disease. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.

  17. Massively parallel de novo protein design for targeted therapeutics

    Science.gov (United States)

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2017-10-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  18. Massively parallel de novo protein design for targeted therapeutics

    KAUST Repository

    Chevalier, Aaron

    2017-09-26

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  19. DEPDC5 as a potential therapeutic target for epilepsy.

    Science.gov (United States)

    Myers, Kenneth A; Scheffer, Ingrid E

    2017-06-01

    Dishevelled, Egl-10 and Pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a protein subunit of the GTPase-activating proteins towards Rags 1 (GATOR1) complex. GATOR1 is a recently identified modulator of mechanistic target of rapamycin (mTOR) activity. mTOR is a key regulator of cell proliferation and metabolism; disruption of the mTOR pathway is implicated in focal epilepsy, both acquired and genetic. Tuberous sclerosis is the prototypic mTOR genetic syndrome with epilepsy, however GATOR1 gene mutations have recently been shown to cause lesional and non-lesional focal epilepsy. Areas covered: This review summarizes the mTOR pathway, including regulators and downstream effectors, emphasizing recent developments in the understanding of the complex role of the GATOR1 complex. We review the epilepsy types associated with mTOR overactivity, including tuberous sclerosis, polyhydramnios megalencephaly symptomatic epilepsy, cortical dysplasia, non-lesional focal epilepsy and post-traumatic epilepsy. Currently available mTOR inhibitors are discussed, primarily rapamycin analogs and ATP competitive mTOR inhibitors. Expert opinion: DEPDC5 is an attractive therapeutic target in focal epilepsy, as effects of DEPDC5 agonists would likely be anti-epileptogenic and more selective than currently available mTOR inhibitors. Therapeutic effects might be synergistic with certain existing dietary therapies, including the ketogenic diet.

  20. Current and novel therapeutic molecules and targets in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2016-01-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline, i.e., dementia. The disease starts with mild symptoms and gradually becomes severe. AD is one of the leading causes of mortality worldwide. Several different hallmarks of the disease have been reported such as deposits of β-amyloid around neurons, hyperphosphorylated tau protein, oxidative stress, dyshomeostasis of bio-metals, low levels of acetylcholine, etc. AD is not simple to diagnose since there is no single diagnostic test for it. Pharmacotherapy for AD currently provides only symptomatic relief and mostly targets cognitive revival. Computational biology approaches have proved to be reliable tools for the selection of novel targets and therapeutic ligands. Molecular docking is a key tool in computer-assisted drug design and development. Docking has been utilized to perform virtual screening on large libraries of compounds, and propose structural hypotheses of how the ligands bind with the target with lead optimization. Another potential application of docking is optimization stages of the drug-discovery cycle. This review summarizes the known drug targets of AD, in vivo active agents against AD, state-of-the-art docking studies done in AD, and future prospects of the docking with particular emphasis on AD.

  1. Astrocytes pathology in ALS: A potential therapeutic target?

    Science.gov (United States)

    Johann, Sonja

    2017-06-15

    The mechanisms underlying neurodegeneration in amyotrophic lateral sclerosis (ALS) are multifactorial and include genetic and environmental factors. Nowadays, it is well accepted that neuronal loss is driven by non-cell autonomous toxicity. Non-neuronal cells, such as astrocytes, have been described to significantly contribute to motoneuron cell death and disease progression in cell culture experiments and animal models of ALS. Astrocytes are essential for neuronal survival and function by regulating neurotransmitter and ion homeostasis, immune response, blood flow and glucose uptake, antioxidant defence and growth factor release. Based on their significant functions in "housekeeping" the central nervous system (CNS), they are no longer thought to be passive bystanders but rather contributors to ALS pathogenesis. Findings from animal models have broadened our knowledge about different pathomechanisms in ALS, but therapeutic approaches to impede disease progression failed. So far, there is no cure for ALS and effective medication to slow down disease progression is limited. Targeting only a single aspect of this multifactorial disease may exhibit therapeutic limitations. Hence, novel cellular targets must be defined and new pharmaceutical strategies, such as combinatorial drug therapies are urgently needed. The present review discusses the physiological role of astrocytes and current hypotheses of astrocyte pathology in ALS. Furthermore, recent investigation of potential drug candidates in astrocyte cell culture systems and animal models, as well as data obtained from clinical trials, will be addressed. The central role of astrocytes in ALS pathogenesis makes them a promising target for pharmaceutical interventions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Therapeutic Targeting of Fibroblast Growth Factor Receptors in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Mikito Inokuchi

    2015-01-01

    Full Text Available Chemotherapy has become the global standard treatment for patients with metastatic or unresectable gastric cancer (GC, although outcomes remain unfavorable. Many molecular-targeted therapies inhibiting signaling pathways of various tyrosine kinase receptors have been developed, and monoclonal antibodies targeting human epidermal growth factor receptor 2 (HER2 have become standard therapy for HER2-positive GC. An inhibitor of vascular endothelial growth factor receptor 2 or MET has also produced promising results in patients with GC. Fibroblast growth factor receptors (FGFR play key roles in tumor growth via activated signaling pathways in GC. Genomic amplification of FGFR2 leads to the aberrant activation found in GC tumors and is related to survival in patients with GC. This review discusses the clinical relevance of FGFR in GC and examines FGFR as a potential therapeutic target in patients with GC. Preclinical studies in animal models suggest that multitargeted tyrosine kinase inhibitors (TKIs, including FGFR inhibitor, suppress tumor cell proliferation and delay tumor progression. Several TKIs are now being evaluated in clinical trials as treatment for metastatic or unresectable GC harboring FGFR2 amplification.

  3. Macrophages associated with tumors as potential targets and therapeutic intermediates.

    Science.gov (United States)

    Vinogradov, Serguei; Warren, Galya; Wei, Xin

    2014-04-01

    Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In this review, we compare features of macrophages and TAMs that are essential for TAM-directed therapies, and illustrate the advantages of nanomedicine that are related to the preferential capture of nanocarriers by Mϕ in the process of drug delivery. We discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and potential strategies to increase efficacy of conventional chemotherapy by combining with macrophage-associated delivery of nanodrugs.

  4. Autophagy as a Therapeutic Target in Cardiovascular Disease

    Science.gov (United States)

    Nemchenko, Andriy; Chiong, Mario; Turer, Aslan; Lavandero, Sergio; Hill, Joseph A.

    2011-01-01

    The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels – or perhaps distinct forms of autophagic flux – contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. PMID:21723289

  5. PTP1B: a new therapeutic target for Rett syndrome.

    Science.gov (United States)

    Tautz, Lutz

    2015-08-03

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that is characterized by successive loss of acquired cognitive, social, and motor skills and development of autistic behavior. RTT affects approximately 1 in 10,000 live female births and is the second most common cause of severe mental retardation in females, after Down syndrome. Currently, there is no cure or effective therapy for RTT. Approved treatment regimens are presently limited to supportive management of specific physical and mental disabilities. In this issue, Krishnan and colleagues reveal that the protein tyrosine phosphatase PTP1B is upregulated in patients with RTT and in murine models and provide strong evidence that targeting PTP1B has potential as a viable therapeutic strategy for the treatment of RTT.

  6. [NADPH oxidase Nox4, a putative therapeutic target in osteoarthritis].

    Science.gov (United States)

    Morel, Françoise; Rousset, Francis; Vu Chuong Nguyen, Minh; Trocme, Candice; Grange, Laurent; Lardy, Bernard

    2015-01-01

    The NADPH oxidases, Nox, are transmembrane hemoproteins, whose exclusive function is to reduce molecular oxygen to produce superoxide anion O2°- and consequently highly reactive oxidant and toxic oxygen species, ROS. Among the 7 NADPH oxidases expressed in humans, Nox4 is the sole Nox isoform present in human primary chondrocytes. Nox4 was suggested as one of the main actors involved in cartilage degradation in osteoarthritis. The stimulation of chondrocytes, the only cell present in cartilage, by IL-1β results in the activation of Nox4. This leads to an increase of ROS production which in turn could regulate signaling pathways sensitive to oxidative stress such as gene-encoding matrix metalloproteases MMP1, MMP13 and Adamalysin ADAMTS4. A deep understanding of Nox4 structure/function and mechanisms of regulation could lead both to the identification of new therapeutic targets and to the development of innovative strategies for appropriate osteoarthritis treatment.

  7. EZH2 in Bladder Cancer, a Promising Therapeutic Target

    Science.gov (United States)

    Martínez-Fernández, Mónica; Rubio, Carolina; Segovia, Cristina; López-Calderón, Fernando F.; Dueñas, Marta; Paramio, Jesús M.

    2015-01-01

    Bladder Cancer (BC) represents a current clinical and social challenge. The recent studies aimed to describe the genomic landscape of BC have underscored the relevance of epigenetic alterations in the pathogenesis of these tumors. Among the epigenetic alterations, histone modifications occupied a central role not only in cancer, but also in normal organism homeostasis and development. EZH2 (Enhancer of Zeste Homolog 2) belongs to the Polycomb repressive complex 2 as its catalytic subunit, which through the trimethylation of H3 (Histone 3) on K27 (Lysine 27), produces gene silencing. EZH2 is frequently overexpressed in multiple tumor types, including BC, and plays multiple roles besides the well-recognized histone mark generation. In this review, we summarize the present knowledge on the oncogenic roles of EZH2 and its potential use as a therapeutic target, with special emphasis on BC pathogenesis and management. PMID:26580594

  8. Cytokines: Roles in atherosclerosis disease progression and potential therapeutic targets

    Science.gov (United States)

    Moss, Joe W. E.; Ramji, Dipak P.

    2017-01-01

    Atherosclerosis, the primary cause of cardiovascular disease (CVD), is a chronic inflammatory disorder in the walls of medium and large arteries. CVD is currently responsible for about one in three global deaths and this is expected to rise in the future due to an increase in the prevalence of obesity and diabetes. Current therapies for atherosclerosis mainly modulate lipid homeostasis and whilst successful at reducing the risk of a CVD-related death, they are associated with considerable residual risk and various side effects. There is therefore a need for alternative therapies aimed at regulating inflammation in order to reduce atherogenesis. This review will highlight the key role cytokines play during disease progression as well as potential therapeutic strategies to target them. PMID:27357616

  9. Regulators of innate immunity as novel targets for panviral therapeutics.

    Science.gov (United States)

    Es-Saad, Salwa; Tremblay, Nicolas; Baril, Martin; Lamarre, Daniel

    2012-10-01

    Interferons (IFNs) have long been used as an immunomodulatory therapy for a large array of acute and chronic viral infections. However, IFN therapies have been plagued by severe side effects. The discovery of pathogen recognition receptors (PRR) rejuvenated the interest for immunomodulatory therapies. The successes obtained with Toll-like receptor (TLR) agonists in activating immune cells and as adjuvant for prophylactic vaccines against different viruses paved the way to targeted immunomodulatory therapy. Better characterization of pathogen-induced immune disorders and newly discovered regulators of innate immunity have now the potential to specifically withdraw prevailing subversion mechanisms and to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. EZH2 in Bladder Cancer, a Promising Therapeutic Target.

    Science.gov (United States)

    Martínez-Fernández, Mónica; Rubio, Carolina; Segovia, Cristina; López-Calderón, Fernando F; Dueñas, Marta; Paramio, Jesús M

    2015-11-13

    Bladder Cancer (BC) represents a current clinical and social challenge. The recent studies aimed to describe the genomic landscape of BC have underscored the relevance of epigenetic alterations in the pathogenesis of these tumors. Among the epigenetic alterations, histone modifications occupied a central role not only in cancer, but also in normal organism homeostasis and development. EZH2 (Enhancer of Zeste Homolog 2) belongs to the Polycomb repressive complex 2 as its catalytic subunit, which through the trimethylation of H3 (Histone 3) on K27 (Lysine 27), produces gene silencing. EZH2 is frequently overexpressed in multiple tumor types, including BC, and plays multiple roles besides the well-recognized histone mark generation. In this review, we summarize the present knowledge on the oncogenic roles of EZH2 and its potential use as a therapeutic target, with special emphasis on BC pathogenesis and management.

  11. EZH2 in Bladder Cancer, a Promising Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Mónica Martínez-Fernández

    2015-11-01

    Full Text Available Bladder Cancer (BC represents a current clinical and social challenge. The recent studies aimed to describe the genomic landscape of BC have underscored the relevance of epigenetic alterations in the pathogenesis of these tumors. Among the epigenetic alterations, histone modifications occupied a central role not only in cancer, but also in normal organism homeostasis and development. EZH2 (Enhancer of Zeste Homolog 2 belongs to the Polycomb repressive complex 2 as its catalytic subunit, which through the trimethylation of H3 (Histone 3 on K27 (Lysine 27, produces gene silencing. EZH2 is frequently overexpressed in multiple tumor types, including BC, and plays multiple roles besides the well-recognized histone mark generation. In this review, we summarize the present knowledge on the oncogenic roles of EZH2 and its potential use as a therapeutic target, with special emphasis on BC pathogenesis and management.

  12. Autobiographical Memory Disturbances in Depression: A Novel Therapeutic Target?

    Directory of Open Access Journals (Sweden)

    Cristiano A. Köhler

    2015-01-01

    Full Text Available Major depressive disorder (MDD is characterized by a dysfunctional processing of autobiographical memories. We review the following core domains of deficit: systematic biases favoring materials of negative emotional valence; diminished access and response to positive memories; a recollection of overgeneral memories in detriment of specific autobiographical memories; and the role of ruminative processes and avoidance when dealing with autobiographical memories. Furthermore, we review evidence from functional neuroimaging studies of neural circuits activated by the recollection of autobiographical memories in both healthy and depressive individuals. Disruptions in autobiographical memories predispose and portend onset and maintenance of depression. Thus, we discuss emerging therapeutics that target memory difficulties in those with depression. We review strategies for this clinical domain, including memory specificity training, method-of-loci, memory rescripting, and real-time fMRI neurofeedback training of amygdala activity in depression. We propose that the manipulation of the reconsolidation of autobiographical memories in depression might represent a novel yet largely unexplored, domain-specific, therapeutic opportunity for depression treatment.

  13. Autonomic Dysregulation as a Therapeutic Target for Acute HF.

    Science.gov (United States)

    Bhardwaj, Anju; Dunlap, Mark E

    2015-10-01

    Despite major advances that have led to effective therapeutic modalities for the treatment of heart failure (HF), this syndrome has continued to be a staggering health problem associated with significant mortality and morbidity. The increasing number of hospital admissions and readmissions related to acute HF continues to pose a fiscal challenge leading to constant interest in development of novel approaches. These point to multiple areas of unmet needs especially in acute HF, thus, necessitating further efforts to develop novel strategies for prevention and treatment of acute HF. One area of continuing focus is targeting the role of autonomic imbalance associated with the development of HF. Autonomic dysregulation, manifested by increased sympathetic drive and reduced parasympathetic activity, has been recognized as a mediator of increased mortality and morbidity in HF and myocardial infarction. Furthermore, vagal withdrawal has been shown to precede acute decompensation, though whether this represents cause or effect is unknown. This review discusses the potential role of autonomic dysregulation as a therapeutic modality for patients with acute decompensated HF.

  14. Type I interferon: potential therapeutic target for psoriasis?

    Directory of Open Access Journals (Sweden)

    Yihong Yao

    Full Text Available BACKGROUND: Psoriasis is an immune-mediated disease characterized by aberrant epidermal differentiation, surface scale formation, and marked cutaneous inflammation. To better understand the pathogenesis of this disease and identify potential mediators, we used whole genome array analysis to profile paired lesional and nonlesional psoriatic skin and skin from healthy donors. METHODOLOGY/PRINCIPAL FINDINGS: We observed robust overexpression of type I interferon (IFN-inducible genes and genomic signatures that indicate T cell and dendritic cell infiltration in lesional skin. Up-regulation of mRNAs for IFN-alpha subtypes was observed in lesional skin compared with nonlesional skin. Enrichment of mature dendritic cells and 2 type I IFN-inducible proteins, STAT1 and ISG15, were observed in the majority of lesional skin biopsies. Concordant overexpression of IFN-gamma and TNF-alpha-inducible gene signatures occurred at the same disease sites. CONCLUSIONS/SIGNIFICANCE: Up-regulation of TNF-alpha and elevation of the TNF-alpha-inducible gene signature in lesional skin underscore the importance of this cytokine in psoriasis; these data describe a molecular basis for the therapeutic activity of anti-TNF-alpha agents. Furthermore, these findings implicate type I IFNs in the pathogenesis of psoriasis. Consistent and significant up-regulation of type I IFNs and their associated gene signatures in psoriatic skin suggest that type I IFNs may be potential therapeutic targets in psoriasis treatment.

  15. Type I interferon: potential therapeutic target for psoriasis?

    Science.gov (United States)

    Yao, Yihong; Richman, Laura; Morehouse, Chris; de los Reyes, Melissa; Higgs, Brandon W; Boutrin, Anmarie; White, Barbara; Coyle, Anthony; Krueger, James; Kiener, Peter A; Jallal, Bahija

    2008-07-16

    Psoriasis is an immune-mediated disease characterized by aberrant epidermal differentiation, surface scale formation, and marked cutaneous inflammation. To better understand the pathogenesis of this disease and identify potential mediators, we used whole genome array analysis to profile paired lesional and nonlesional psoriatic skin and skin from healthy donors. We observed robust overexpression of type I interferon (IFN)-inducible genes and genomic signatures that indicate T cell and dendritic cell infiltration in lesional skin. Up-regulation of mRNAs for IFN-alpha subtypes was observed in lesional skin compared with nonlesional skin. Enrichment of mature dendritic cells and 2 type I IFN-inducible proteins, STAT1 and ISG15, were observed in the majority of lesional skin biopsies. Concordant overexpression of IFN-gamma and TNF-alpha-inducible gene signatures occurred at the same disease sites. Up-regulation of TNF-alpha and elevation of the TNF-alpha-inducible gene signature in lesional skin underscore the importance of this cytokine in psoriasis; these data describe a molecular basis for the therapeutic activity of anti-TNF-alpha agents. Furthermore, these findings implicate type I IFNs in the pathogenesis of psoriasis. Consistent and significant up-regulation of type I IFNs and their associated gene signatures in psoriatic skin suggest that type I IFNs may be potential therapeutic targets in psoriasis treatment.

  16. Autobiographical Memory Disturbances in Depression: A Novel Therapeutic Target?

    Science.gov (United States)

    Köhler, Cristiano A.; Carvalho, André F.; Alves, Gilberto S.; McIntyre, Roger S.; Hyphantis, Thomas N.; Cammarota, Martín

    2015-01-01

    Major depressive disorder (MDD) is characterized by a dysfunctional processing of autobiographical memories. We review the following core domains of deficit: systematic biases favoring materials of negative emotional valence; diminished access and response to positive memories; a recollection of overgeneral memories in detriment of specific autobiographical memories; and the role of ruminative processes and avoidance when dealing with autobiographical memories. Furthermore, we review evidence from functional neuroimaging studies of neural circuits activated by the recollection of autobiographical memories in both healthy and depressive individuals. Disruptions in autobiographical memories predispose and portend onset and maintenance of depression. Thus, we discuss emerging therapeutics that target memory difficulties in those with depression. We review strategies for this clinical domain, including memory specificity training, method-of-loci, memory rescripting, and real-time fMRI neurofeedback training of amygdala activity in depression. We propose that the manipulation of the reconsolidation of autobiographical memories in depression might represent a novel yet largely unexplored, domain-specific, therapeutic opportunity for depression treatment. PMID:26380121

  17. Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma.

    Science.gov (United States)

    Tateishi, Kensuke; Iafrate, A John; Ho, Quan; Curry, William T; Batchelor, Tracy T; Flaherty, Keith T; Onozato, Maristela L; Lelic, Nina; Sundaram, Sudhandra; Cahill, Daniel P; Chi, Andrew S; Wakimoto, Hiroaki

    2016-09-01

    Deregulated Myc drives an oncogenic metabolic state, including pseudohypoxic glycolysis, adapted for the constitutive production of biomolecular precursors to feed rapid tumor cell growth. In glioblastoma, Myc facilitates renewal of the tumor-initiating cell reservoir contributing to tumor maintenance. We investigated whether targeting the Myc-driven metabolic state could be a selectively toxic therapeutic strategy for glioblastoma. The glycolytic dependency of Myc-driven glioblastoma was tested using (13)C metabolic flux analysis, glucose-limiting culture assays, and glycolysis inhibitors, including inhibitors of the NAD(+) salvage enzyme nicotinamide phosphoribosyl-transferase (NAMPT), in MYC and MYCN shRNA knockdown and lentivirus overexpression systems and in patient-derived glioblastoma tumorspheres with and without MYC/MYCN amplification. The in vivo efficacy of glycolyic inhibition was tested using NAMPT inhibitors in MYCN-amplified patient-derived glioblastoma orthotopic xenograft mouse models. Enforced Myc overexpression increased glucose flux and expression of glycolytic enzymes in glioblastoma cells. Myc and N-Myc knockdown and Myc overexpression systems demonstrated that Myc activity determined sensitivity and resistance to inhibition of glycolysis. Small-molecule inhibitors of glycolysis, particularly NAMPT inhibitors, were selectively toxic to MYC/MYCN-amplified patient-derived glioblastoma tumorspheres. NAMPT inhibitors were potently cytotoxic, inducing apoptosis and significantly extended the survival of mice bearing MYCN-amplified patient-derived glioblastoma orthotopic xenografts. Myc activation in glioblastoma generates a dependency on glycolysis and an addiction to metabolites required for glycolysis. Glycolytic inhibition via NAMPT inhibition represents a novel metabolically targeted therapeutic strategy for MYC or MYCN-amplified glioblastoma and potentially other cancers genetically driven by Myc. Clin Cancer Res; 22(17); 4452-65. ©2016 AACR

  18. Gli as a novel therapeutic target in malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available Malignant pleural mesothelioma (MPM is a highly aggressive tumor with poor prognosis. Current treatment is rarely curative, thus novel meaningful therapies are urgently needed. Inhibition of Hedgehog (Hh signaling at the cell membrane level in several cancers has shown anti-cancer activity in recent clinical studies. Evidence of Hh-independent Gli activation suggests Gli as a more potent therapeutic target. The current study is aimed to evaluate the potential of Gli as a therapeutic target to treat MPM. The expression profiles of Gli factors and other Hh signaling components were characterized in 46 MPM patient tissue samples by RT-PCR and immunohistochemistry. Cultured cell lines were employed to investigate the requirement of Gli activation in tumor cell growth by inhibiting Gli through siRNA or a novel small molecule Gli inhibitor (Gli-I. A xenograft model was used to evaluate Gli-I in vivo. In addition, a side by side comparison between Gli and Smoothened (Smo inhibition was conducted in vitro using siRNA and small molecule inhibitors. Our study reported aberrant Gli1 and Gli2 activation in a large majority of tissues. Inhibition of Gli by siRNAs or Gli-I suppressed cell growth dramatically both in vitro and in vivo. Inhibition of Gli exhibited better cytotoxicity than that of Smo by siRNA and small molecule inhibitors vismodegib and cyclopamine. Combination of Gli-I and pemetrexed, as well as Gli-I and vismodegib demonstrated synergistic effects in suppression of MPM proliferation in vitro. In summary, Gli activation plays a critical role in MPM. Inhibition of Gli function holds strong potential to become a novel, clinically effective approach to treat MPM.

  19. Pathogenic Inflammation and Its Therapeutic Targeting in Systemic Lupus Erythematosus

    Science.gov (United States)

    Gottschalk, Timothy A.; Tsantikos, Evelyn; Hibbs, Margaret L.

    2015-01-01

    Systemic lupus erythematosus (SLE, lupus) is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues, including skin, kidneys, and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B- and T-lymphocyte activation, and, with the single exception of an agent known as belimumab which targets the B-cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immunosuppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B-cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here, we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and review the known

  20. Localized Hyperthermia for Enhanced Targeted Delivery of Polymer Therapeutics

    Science.gov (United States)

    Frazier, Nicholas

    It is estimated that in 2016, more than 848,000 new cases of cancer will be diagnosed in men with more than a quarter being prostate cancer and more than 26,000 deaths attributed to this disease. Prostate cancer poses a limited risk when detected at an early stage and treatment of stages II-III has a 5-year survival rate of almost 100%. However, these early-stage cancers can eventually progress and develop into stage IV, dramatically dropping the 5-year survival rate to 28%. Thus, development of a new therapy is needed to fully eliminate these tumors. Combination of heat and chemotherapy improves therapeutic efficacy while allowing for reduced dosing of drugs and limiting side effects. Localized hyperthermia has been used to enhance the delivery of polymer therapeutics to prostate tumors through increased blood flow, vascular permeability, and incorporation of heat shock targeting. This strategy has been shown to increase the delivery and retention of polymer-drug conjugates leading to enhanced efficacy. Although much work has been done using this strategy, the effects of different thermal dosing on polymer accumulation are unknown. The first aim of this research is to examine how altering heating parameters influences polymer tumor accumulation. The hypothesis for this aim is that there is an optimal thermal treatment that leads to the maximal amount of polymer accumulation in the tumors. Additionally, the previously used heating method of plasmonic photothermal therapy (PPTT) can result in long-term accumulation of gold nanoparticles in healthy organs, potentially limiting clinical applicability. The second aim of this proposal will be focused on investigating the alternative method of high intensity focused ultrasound (HIFU) for selective heating of tumors and enhancing macromolecular delivery. HIFU has shown the capability for precise, noninvasive heating of specific regions within the prostate through magnetic resonance imaging (MRI) guidance. The hypothesis

  1. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    Science.gov (United States)

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  2. Aptamer-Mediated Targeted Delivery of Therapeutics: An Update

    Science.gov (United States)

    Catuogno, Silvia; Esposito, Carla L.; de Franciscis, Vittorio

    2016-01-01

    The selective delivery of drugs in a cell- or tissue-specific manner represents the main challenge for medical research; in order to reduce the occurrence of unwanted off-target effects. In this regard, nucleic acid aptamers have emerged as an attractive class of carrier molecules due to their ability to bind with high affinity to specific ligands; their high chemical flexibility; as well as tissue penetration capability. To date, different aptamer-drug systems and aptamer–nanoparticles systems, in which nanoparticles function together with aptamers for the targeted delivery, have been successfully developed for a wide range of therapeutics, including toxins; peptides; chemotherapeutics and oligonucleotides. Therefore, aptamer-mediated drug delivery represents a powerful tool for the safe and effective treatment of different human pathologies, including cancer; neurological diseases; immunological diseases and so on. In this review, we will summarize recent progress in the field of aptamer-mediated drug delivery and we will discuss the advantages, the achieved objectives and the challenges to be still addressed in the near future, in order to improve the effectiveness of therapies. PMID:27827876

  3. Henipavirus Mediated Membrane Fusion, Virus Entry and Targeted Therapeutics

    Directory of Open Access Journals (Sweden)

    Dimitar B. Nikolov

    2012-02-01

    Full Text Available The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G and class I fusion (F envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins.

  4. Transcription Inhibition as a Therapeutic Target for Cancer

    Directory of Open Access Journals (Sweden)

    Christine M. Stellrecht

    2011-11-01

    Full Text Available During tumorigenesis the transformed cells lose their normal growth control mechanisms and become dependent on oncogenes’ products and pathways for survival. Treatments tailored to block the expression or function of transforming genes have shown efficacy in eliminating neoplastic cells. The mRNAs of many oncogenes, as well as regulators of other key processes such as cell proliferation, angiogenesis, and apoptosis, typically have shorter half-lives. Agents that impede mRNA synthesis are expected to selectively hinder the expression of these genes and, therefore, be detrimental to neoplastic cells that are physiologically dependent on them. In addition to exploiting the tumor cells’ dependency on short-lived transcripts, RNA-directed agents also take advantage of the differential sensitivity between transformed and non-transformed cells, as the cytotoxic effects of inhibiting RNA synthesis have not been seen in non-transformed cells. The abrogation of the formation of oncotranscripts provides a new concept in cancer therapeutics and numerous agents have been developed which are able to target transcription. The focus of this review is to give an overview of transcription and the different inhibitory strategies that target various aspects of the transcriptional process.

  5. Crystallization of Macromolecules

    Science.gov (United States)

    Friedmann, David; Messick, Troy; Marmorstein, Ronen

    2014-01-01

    X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560

  6. Voltage-gated sodium channels: therapeutic targets for pain.

    Science.gov (United States)

    Dib-Hajj, Sulayman D; Black, Joel A; Waxman, Stephen G

    2009-10-01

    To provide an overview of the role of voltage-gated sodium channels in pathophysiology of acquired and inherited pain states, and of recent developments that validate these channels as therapeutic targets for treating chronic pain. Neuropathic and inflammatory pain conditions are major medical needs worldwide with only partial or low efficacy treatment options currently available. An important role of voltage-gated sodium channels in many different pain states has been established in animal models and, empirically, in humans, where sodium channel blockers partially ameliorate pain. Animal studies have causally linked changes in sodium channel expression and modulation that alter channel gating properties or current density in nociceptor neurons to different pain states. Biophysical and pharmacological studies have identified the sodium channel isoforms Na(v)1.3, Na(v)1.7, Na(v)1.8, and Na(v)1.9 as particularly important in the pathophysiology of different pain syndromes. Recently, gain-of-function mutations in SCN9A, the gene which encodes Na(v)1.7, have been linked to two human-inherited pain syndromes, inherited erythromelalgia and paroxysmal extreme pain disorder, while loss-of-function mutations in SCN9A have been linked to complete insensitivity to pain. Studies on firing properties of sensory neurons of dorsal root ganglia demonstrate that the effects of gain-of-function mutations in Na(v)1.7 on the excitability of these neurons depend on the presence of Na(v)1.8, which suggests a similar physiological interaction of these two channels in humans carrying the Na(v)1.7 pain mutation. These studies suggest that isoform-specific blockers of these channels or targeting of their modulators may provide novel approaches to treatment of pain.

  7. Lipoprotein Nanoplatform for Targeted Delivery of Diagnostic and Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Jerry D. Glickson

    2008-03-01

    Full Text Available Low-density lipoprotein (LDL provides a highly versatile natural nanoplatform for delivery of visible or near-infrared fluorescent optical and magnetic resonance imaging (MRI contrast agents and photodynamic therapy and chemotherapeutic agents to normal and neoplastic cells that overexpress low-density lipoprotein receptors (LDLRs. Extension to other lipoproteins ranging in diameter from about 10 nm (high-density lipoprotein [HDL] to over a micron (chylomicrons is feasible. Loading of contrast or therapeutic agents onto or into these particles has been achieved by protein loading (covalent attachment to protein side chains, surface loading (intercalation into the phospholipid monolayer, and core loading (extraction and reconstitution of the triglyceride/cholesterol ester core. Core and surface loading of LDL have been used for delivery of optical imaging agents to tumor cells in vivo and in culture. Surface loading was used for delivery of gadolinium-bis-stearylamide contrast agents for in vivo MRI detection in tumor-bearing mice. Chlorin and phthalocyanine near-infrared photodynamic therapy agents (≤ 400/LDL have been attached by core loading. Protein loading was used to reroute the LDL from its natural receptor (LDLR to folate receptors and could be used to target other receptors. A semisynthetic nanoparticle has been constructed by coating magnetite iron oxide nanoparticles with carboxylated cholesterol and overlaying a monolayer of phospholipid to which apolipoprotein A1 or E was adsorbed for targeting HDL or adsorbing synthetic amphipathic helical peptides ltargeting LDL or folate receptors. These particles can be used for in situ loading of magnetite into cells for MRI-monitored cell tracking or gene expression.

  8. Connexin-Dependent Neuroglial Networking as a New Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Mathieu Charvériat

    2017-06-01

    networking may emerge as new therapeutic targets in neurological and psychiatric disorders.

  9. Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Craig, Vanessa J.; Zhang, Li; Hagood, James S.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF. PMID:26121236

  10. AMPK activation: a therapeutic target for type 2 diabetes?

    Directory of Open Access Journals (Sweden)

    Coughlan KA

    2014-06-01

    Full Text Available Kimberly A Coughlan, Rudy J Valentine, Neil B Ruderman, Asish K Saha Endocrinology and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, USA Abstract: Type 2 diabetes (T2D is a metabolic disease characterized by insulin resistance, β-cell dysfunction, and elevated hepatic glucose output. Over 350 million people worldwide have T2D, and the International Diabetes Federation projects that this number will increase to nearly 600 million by 2035. There is a great need for more effective treatments for maintaining glucose homeostasis and improving insulin sensitivity. AMP-activated protein kinase (AMPK is an evolutionarily conserved serine/threonine kinase whose activation elicits insulin-sensitizing effects, making it an ideal therapeutic target for T2D. AMPK is an energy-sensing enzyme that is activated when cellular energy levels are low, and it signals to stimulate glucose uptake in skeletal muscles, fatty acid oxidation in adipose (and other tissues, and reduces hepatic glucose production. There is substantial evidence suggesting that AMPK is dysregulated in animals and humans with metabolic syndrome or T2D, and that AMPK activation (physiological or pharmacological can improve insulin sensitivity and metabolic health. Numerous pharmacological agents, natural compounds, and hormones are known to activate AMPK, either directly or indirectly – some of which (for example, metformin and thiazolidinediones are currently used to treat T2D. This paper will review the regulation of the AMPK pathway and its role in T2D, some of the known AMPK activators and their mechanisms of action, and the potential for future improvements in targeting AMPK for the treatment of T2D. Keywords: adenosine monophosphate-activated protein kinase, type 2 diabetes, insulin resistance, drug therapy

  11. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.

  12. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  13. Nrf2: a potential therapeutic target for diabetic neuropathy.

    Science.gov (United States)

    Kumar, Anil; Mittal, Ruchika

    2017-08-01

    Different aspects involved in pathophysiology of diabetic neuropathy are related to inflammatory and apoptotic pathways. This article summarizes evidence that Nrf2 acts as a bridging link in various inflammatory and apoptotic pathways impacting progression of diabetic neuropathy. Nrf2 is involved in expression of various antioxidant proteins (such as detoxifying enzymes) via antioxidant response element (ARE) binding site. Under normal conditions, Nrf2 is inactive and remains in the cytosol. Hyperglycemia is a strong stimulus for oxidative stress and inflammation that downregulates the activity of Nrf2 through various neuroinflammatory pathways. Acute hyperglycemia increases the expression of Nrf2, but persistent hyperglycemia decreases its expression. This downregulation of Nrf2 causes various microvascular changes, which result in diabetic neuropathy. The key contribution of Nrf2 in progression of diabetic neuropathy has been summarized in the article. Despite involvement of Nrf2 in progression of diabetic neuropathy, targeting Nrf2 activators as a therapeutic potential will provide important new insights into the ways that influence treatment of diabetic neuropathy.

  14. [From pathogenesis of giant cell arteritis to new therapeutic targets].

    Science.gov (United States)

    Samson, M; Bonnotte, B

    2017-10-01

    Giant cell arteritis (GCA) is the most common vasculitis in adults. GCA is a granulomatous large-vessel vasculitis involving the aorta and its major branches in people>50 years. Glucocorticoids (GC) remain the cornerstone of GCA treatment. Prednisone is usually started at 0.7 or 1mg/kg/day depending on the occurrence of ischemic complications. Then, GC are progressively tapered and stopped after a mean duration of 18 months. GC are very efficient but relapses often occur during their tapering. Moreover, GC-related side effects are very common during this long term GC therapy. Thus, it can be assumed that GC are not the ideal treatment for GCA and that GC-sparing strategies have to be developed. The pathogenesis of GCA is not fully understood but major advances have been achieved in the recent years. If the trigger of GCA, which is suspected to be infectious, is still not identified, mechanisms triggering the granulomatous inflammation of the arterial wall and the progressive vascular remodeling leading to the occurrence of ischemic events have been better and better deciphered. Thanks to these advances in the knowledge of GCA pathogenesis, new therapeutic targets have emerged such as blockade of the activation of T cells or inhibition of the interleukin-6 (IL-6), IL-12/23 or IL-1β pathways. Copyright © 2017 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  15. Purinoceptors as therapeutic targets for lower urinary tract dysfunction

    Science.gov (United States)

    Ford, Anthony P D W; Gever, Joel R; Nunn, Philip A; Zhong, Yu; Cefalu, Joseph S; Dillon, Michael P; Cockayne, Debra A

    2006-01-01

    Lower urinary tract symptoms (LUTS) are present in many common urological syndromes. However, their current suboptimal management by muscarinic and α1-adrenoceptor antagonists leaves a significant opportunity for the discovery and development of superior medicines. As potential targets for such therapeutics, purinoceptors have emerged over the last two decades from investigations that have established a prominent role for ATP in the regulation of urinary bladder function under normal and pathophysiological conditions. In particular, evidence suggests that ATP signaling via P2X1 receptors participates in the efferent control of detrusor smooth muscle excitability, and that this function may be heightened in disease and aging. ATP also appears to be involved in bladder sensation, via activation of P2X3 and P2X2/3 receptors on sensory afferent neurons, both within the bladder itself and possibly at central synapses. Such findings are based on results from classical pharmacological and localization studies in non-human and human tissues, knockout mice, and studies using recently identified pharmacological antagonists – some of which possess attributes that offer the potential for optimization into candidate drug molecules. Based on recent advances in this field, it is clearly possible that the development of selective antagonists for these receptors will occur that could lead to therapies offering better relief of sensory and motor symptoms for patients, while minimizing the systemic side effects that limit current medicines. PMID:16465177

  16. Risk Factors and Therapeutic Targets in Pancreatic Cancer

    Science.gov (United States)

    Wörmann, Sonja Maria; Algül, Hana

    2013-01-01

    Pancreatic cancer (PC) is one of the most challenging tumor entities worldwide, characterized as a highly aggressive disease with dismal overall prognosis and an incidence rate equalling mortality rate. Over the last decade, substantial progress has been made to define the morphological changes and key genetic events in pancreatic carcinogenesis. And yet, it is still unclear what factors trigger PC. Some risk factors appear to be associated with sex, age, race/ethnicity, or other rare genetic conditions. Additionally, modifying factors such as smoking, obesity, diabetes, occupational risk factors, etc., increase the potential for acquiring genetic mutations that may result in PC. Another hallmark of PC is its poor response to radio- and chemo-therapy. Current chemotherapeutic regimens could not provide substantial survival benefit with a clear increase in overall survival. Recently, several new approaches to significantly improve the clinical outcome of PC have been described involving downstream signaling cascades desmoplasia and stromal response as well as tumor microenvironment, immune response, vasculature, and angiogenesis. This review summarizes major risk factors for PC and tries to illuminate relevant targets considerable for new therapeutic approaches. PMID:24303367

  17. Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers

    Directory of Open Access Journals (Sweden)

    Nam Ho Jeoung

    2015-06-01

    Full Text Available Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4 and pyruvate dehydrogenase phosphatases (PDP1 and 2. PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases.

  18. Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Amadou K. S. Camara

    2017-06-01

    Full Text Available Mitochondria are the key source of ATP that fuels cellular functions, and they are also central in cellular signaling, cell division and apoptosis. Dysfunction of mitochondria has been implicated in a wide range of diseases, including neurodegenerative and cardiac diseases, and various types of cancer. One of the key proteins that regulate mitochondrial function is the voltage-dependent anion channel 1 (VDAC1, the most abundant protein on the outer membrane of mitochondria. VDAC1 is the gatekeeper for the passages of metabolites, nucleotides, and ions; it plays a crucial role in regulating apoptosis due to its interaction with apoptotic and anti-apoptotic proteins, namely members of the Bcl-2 family of proteins and hexokinase. Therefore, regulation of VDAC1 is crucial not only for metabolic functions of mitochondria, but also for cell survival. In fact, multiple lines of evidence have confirmed the involvement of VDAC1 in several diseases. Consequently, modulation or dysregulation of VDAC1 function can potentially attenuate or exacerbate pathophysiological conditions. Understanding the role of VDAC1 in health and disease could lead to selective protection of cells in different tissues and diverse diseases. The purpose of this review is to discuss the role of VDAC1 in the pathogenesis of diseases and as a potentially effective target for therapeutic management of various pathologies.

  19. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention

    Directory of Open Access Journals (Sweden)

    Heather S. Smallwood

    2017-05-01

    Full Text Available Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1 and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.

  20. MPS1 kinase as a potential therapeutic target in medulloblastoma.

    Science.gov (United States)

    Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D; Foreman, Nicholas K; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-11-01

    Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma.

  1. Regression of Pathological Cardiac Hypertrophy: Signaling Pathways and Therapeutic Targets

    Science.gov (United States)

    Hou, Jianglong; Kang, Y. James

    2012-01-01

    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. PMID:22750195

  2. GEMINs: Potential Therapeutic Targets for Spinal Muscular Atrophy?

    Directory of Open Access Journals (Sweden)

    Rebecca eBorg

    2014-10-01

    Full Text Available The motor neuron degenerative disease spinal muscular atrophy (SMA remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1 gene but retain one or more copies of SMN2, a homologue that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs, which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development.

  3. Risk Factors and Therapeutic Targets in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sonja Maria Wörmann

    2013-11-01

    Full Text Available Pancreatic cancer (PC is one of the most challenging tumor entities worldwide, characterized as a highly aggressive disease with dismal overall prognosis and an incidence rate equalling mortality rate. Over the last decade, substantial progress has been made to define the morphological changes and key genetic events in pancreatic carcinogenesis. And yet, it is still unclear what factors trigger PC. Some risk factors appear to be associated with sex, age, race/ethnicity, or other rare genetic conditions. Additionally, modifying factors such as smoking, obesity, diabetes, occupational risk factors, etc. increase the potential for acquiring genetic mutations that may result in PC.Another hallmark of PC is its poor response to radio- and chemotherapy. Current chemotherapeutic regimens could not provide substantial survival benefit with a clear increase in overall survival. Recently, several new approaches to significantly improve the clinical outcome of PC have been described involving downstream signalling cascades desmoplasia and stromal response as well as tumor microenvironment, immune response, vasculature, and angiogenesis. This review summarizes major risk factors for PC and tries to illuminate relevant targets considerable for new therapeutic approaches.

  4. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?

    Science.gov (United States)

    Harrison, Ian F; Dexter, David T

    2013-10-01

    Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD? Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Nutrient sensing pathways as therapeutic targets for healthy ageing.

    Science.gov (United States)

    Aiello, Anna; Accardi, Giulia; Candore, Giuseppina; Gambino, Caterina Maria; Mirisola, Mario; Taormina, Giusi; Virruso, Claudia; Caruso, Calogero

    2017-04-01

    In the present paper, the authors have discussed anti-aging strategies which aim to slow the aging process and to delay the onset of age-related diseases, focusing on nutrient sensing pathways (NSPs) as therapeutic targets. Indeed, several studies have already demonstrated that both in animal models and humans, dietary interventions might have a positive impact on the aging process through the modulation of these pathways. Areas covered: Achieving healthy aging is the main challenge of the twenty-first century because lifespan is increasing, but not in tandem with good health. The authors have illustrated different approaches that can act on NSPs, modulating the rate of the aging process. Expert opinion: Humanity's lasting dream is to reverse or, at least, postpone aging. In recent years, increasing attention has been devoted to anti-aging therapies. The subject is very popular among the general public, whose imagination runs wild with all the possible tools to delay aging and to gain immortality. Some approaches discussed in the present review should be able to substantially slow down the aging process, extending our productive, youthful lives, without frailty.

  6. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; Duan, Susu; Morfouace, Marie; Rezinciuc, Svetlana; Shulkin, Barry L.; Shelat, Anang; Zink, Erika E.; Milasta, Sandra; Bajracharya, Resha; Oluwaseum, Ajayi J.; Roussel, Martine F.; Green, Douglas R.; Pasa-Tolic, Ljiljana; Thomas, Paul G.

    2017-05-01

    Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1 and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.

  7. Oxidative Stress and Liver Cancer: Etiology and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Zhanpeng Wang

    2016-01-01

    Full Text Available Accumulating evidence has indicated that oxidative stress (OS is associated with the development of hepatocellular carcinoma (HCC. However, the mechanisms remain largely unknown. Normally, OS occurs when the body receives any danger signal—from either an internal or external source—and further induces DNA oxidative damage and abnormal protein expression, placing the body into a state of vulnerability to the development of various diseases such as cancer. There are many factors involved in liver carcinogenesis, including hepatitis B virus (HBV and hepatitis C virus (HCV infection, alcohol abuse, and nonalcoholic fatty liver disease (NAFLD. The relationship between OS and HCC has recently been attracting increasing attention. Therefore, elucidation of the impact of OS on the development of liver carcinogenesis is very important for the prevention and treatment of liver cancer. This review focuses mainly on the relationship between OS and the development of HCC from the perspective of cellular and molecular mechanisms and the etiology and therapeutic targets of HCC.

  8. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail: meena_jhanwar@nymc.edu; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)

    2015-03-25

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  9. Macromolecular therapeutics: emerging strategies for drug discovery in the postgenome era.

    Science.gov (United States)

    Juliano, R L; Astriab-Fisher, A; Falke, D

    2001-04-01

    The postgenome era offers a plethora of potential therapeutic targets. Many of these targets will be addressable using small organic molecules as drug candidates. However, certain aspects of cell function, particularly those that rely on protein-protein or protein-nucleic acid interactions, will be difficult to influence using small molecules. Thus, the possibility of using highly specific macromolecules as potential therapeutic agents is an intriguing concept. Recent developments in several areas of research have brought this possibility closer to fruition. Peptide and nucleic acid combinatorial libraries allow the generation of novel molecules having exquisite selectivity. Structural information and molecular modeling also contribute to the design of new macromolecules with therapeutic potential. Perhaps most importantly, approaches for delivering macromolecules into the cell interior have been developed and applied with considerable success. Thus, the therapeutic use of macromolecules, including oligonucleotides, peptides, and proteins, may be an idea whose time has come.

  10. MicroRNAs in Parkinson's disease and emerging therapeutic targets

    Directory of Open Access Journals (Sweden)

    Bridget Martinez

    2017-01-01

    Full Text Available Parkinson's disease (PD is the second most common age-related neurodegenerative disorder, with the clinical main symptoms caused by a loss of dopaminergic neurons in the substantia nigra, corpus striatum and brain cortex. Over 90% of patients with PD have sporadic PD and occur in people with no known family history of the disorder. Currently there is no cure for PD. Treatment with medications to increase dopamine relieves the symptoms but does not slow down or reverse the damage to neurons in the brain. Increasing evidence points to inflammation as a chief mediator of PD with inflammatory response mechanisms, involving microglia and leukocytes, activated following loss of dopaminergic neurons. Oxidative stress is also recognized as one of the main causes of PD, and excessive reactive oxygen species (ROS and reactive nitrogen species can lead to dopaminergic neuron vulnerability and eventual death. MicroRNAs control a range of physiological and pathological functions, and may serve as potential targets for intervention against PD to mitigate damage to the brain. Several studies have demonstrated that microRNAs can regulate oxidative stress and prevent ROS-mediated damage to dopaminergic neurons, suggesting that specific microRNAs may be putative targets for novel therapeutic strategies in PD. Recent human and animal studies have identified a large number of dysregulated microRNAs in PD brain tissue samples, many of which were downregulated. The dysregulated microRNAs affect downstream targets such as SNCA, PARK2, LRRK2, TNFSF13B, LTA, SLC5A3, PSMB2, GSR, GBA, LAMP-2A, HSC. Apart from one study, none of the studies reviewed had used agomirs or antagomirs to reverse the levels of downregulated or upregulated microRNAs, respectively, in mouse models of PD or with isolated human or mouse dopaminergic cells. Further large-scale studies of brain tissue samples collected with short postmortem interval from human PD patients are warranted to provide more

  11. Targeted liposomes for delivery of protein-based drugs into the cytoplasm of tumor cells

    NARCIS (Netherlands)

    Mastrobattista, E; Crommelin, DJA; Wilschut, J; Storm, G

    2002-01-01

    Our goal was to deliver therapeutically active macromolecules into the cytosol of target cells. First, attempts were made to prepare virosomes that specifically interact with OVCAR-3 cells (human ovarian cancer cells). Detergent solubilized influenza virus envelopes were reconstituted forming

  12. MYC as therapeutic target in leukemia and lymphoma

    Directory of Open Access Journals (Sweden)

    Cortiguera MG

    2015-07-01

    Full Text Available Maria G Cortiguera,1 Ana Batlle-López,1,2 Marta Albajar,1,2 M Dolores Delgado,1,3 Javier León1,3 1Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC, CSIC-University of Cantabria, 2Department of Hemathology, Hospital Universitario Marqués de Valdecilla, 3Department of Molecular Biology, University of Cantabria, Santander, Spain Abstract: MYC is a transcription factor that is involved in the expression of many genes. Deregulated MYC is found in about half of human tumors, being more prevalent in hematological neoplasms. Deregulation mechanisms include chromosomal translocation (particularly in lymphoma, amplification, and hyperactivation of MYC transcription. Here we review MYC involvement in the major types of leukemia and lymphoma. MYC rearrangements appear in all Burkitt lymphomas and are common in other lymphoma types, whereas in acute lymphoblastic leukemia, acute myeloid leukemia, lymphoproliferative, and myeloproferative diseases, they are less frequent. However, MYC overexpression is present in all types of hematological malignancies and often correlates with a worse prognosis. Data in leukemia-derived cells and in animal models of lymphomagenesis and leukemogenesis suggest that MYC would be a good therapeutic target. Several MYC-directed therapies have been assayed in preclinical settings and even in clinical trials. First, peptides and small molecules that interrupt the MYC–MAX interaction impair MYC-mediated tumorogenesis in several mouse models of solid tumors, although not yet in lymphoma and leukemia models. Second, there are a number of small molecules inhibiting the interaction of MYC–MAX heterodimers with DNA, still in the preclinical research phase. Third, inhibitors of MYC expression via the inhibition of BRD4 (a reader of acetylated histones have been shown to control the growth of MYC-transformed leukemia and lymphoma cells and are being used in clinic trials. Finally, we review a number of promising MYC

  13. Aging of the Immune System. Mechanisms and Therapeutic Targets.

    Science.gov (United States)

    Weyand, Cornelia M; Goronzy, Jörg J

    2016-12-01

    Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.

  14. GABAergic signaling as therapeutic target for Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Giada eCellot

    2014-07-01

    Full Text Available GABA, the main inhibitory neurotransmitter in the adult brain, early in postnatal life exerts a depolarizing and excitatory action. This depends on accumulation of chloride inside the cell via the cation-chloride importer NKCC1, being the expression of the chloride exporter KCC2 very low at birth. The developmentally regulated expression of KCC2 results in extrusion of chloride with age and a shift of GABA from the depolarizing to the hyperpolarizing direction. The depolarizing action of GABA leads to intracellular calcium rise through voltage-dependent calcium channels and/or NMDA receptors. GABA-mediated calcium signals regulate a variety of developmental processes from cell proliferation migration, differentiation, synapse maturation and neuronal wiring. Therefore, it is not surprising that some forms of neuro-developmental disorders such as Autism Spectrum Disorders (ASDs are associated with alterations of GABAergic signaling and impairment of the excitatory/inhibitory balance in selective neuronal circuits. In this review we will discuss how changes of GABAA-mediated neurotransmission affect several forms of ASDs including the Fragile X, the Angelman and Rett syndromes. Then, we will describe various animal models of ASDs with GABAergic dysfunctions, highlighting their behavioral deficits and the possibility to rescue them by targeting selective components of the GABAergic synapse. In particular, we will discuss how in some cases, reverting the polarity of GABA responses from the depolarizing to the hyperpolarizing direction with the diuretic bumetanide, a selective blocker of NKCC1, may have beneficial effects on ASDs, thus opening new therapeutic perspectives for the treatment of these devastating disorders.

  15. RhoA: A therapeutic target for chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Molli Poonam R

    2012-03-01

    therapeutic target in CML.

  16. Glycoprotein Targeted Therapeutics: A New Era of Anti-Herpes Simplex Virus-1 Therapeutics

    Science.gov (United States)

    Antoine, Thessicar; Park, Paul J.; Shukla, Deepak

    2013-01-01

    Herpes simplex virus type-1 (HSV-1) is among the most common human pathogens worldwide. Its entry into host cells is an intricate process that relies heavily on the ability of the viral glycoproteins to bind host cellular proteins and to efficiently mediate fusion of the virus envelope with the cell membrane. Acquisition of HSV-1 results in a lifelong latent infection. Due to the cycles of reactivation from a latent state, much emphasis has been placed on the management of infection through the use of DNA synthesis inhibitors. However, new methods are needed to provide more effective treatment at earlier phases of the viral infection and to prevent the development of drug resistance by the virus. This review outlines the infection process and the common therapeutics currently used against the fundamental stages of HSV-1 replication and fusion. The remainder of this article will focus on a new approach for HSV-1 infection control and management, the concept of glycoprotein-receptor targeting. PMID:23440920

  17. Cancer therapeutic target genes identified on chromosome 20q

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2016-08-01

    , Snijders and Mao described that and “when the selection pressure is removed, amplifications are not maintained and eventually disappear. Thus, amplifications focus on those genes that are important for tumor development,” they said. Their analysis showed that, as tumorous cells progress toward malignancy, the DNA copy number plays a major role in the mechanism of increased expression levels for the 18-gene signature on chromosome 20q. “Strong associations between the DNA copy number and gene expression were observed in the majority of tumor types,” the researchers said. “For example, the RAE1 expression was found to be significantly associated with DNA copy number in 20 tumor types,” the study reported. “Elevated DNA copy numbers of MMP9 and SULF2 were associated with increased gene expressions in only two and seven tumor types, respectively,” it added. With their integrated multi-omics analysis of genes on chromosome 20q, Snijders and Mao believed that the 18-gene signature could become new molecular targets for cancer therapy. “Gene ontology analysis revealed significant enrichment of cell cycle and mitosis-related biological processes in our 18-gene, suggesting that a cluster of functionally related genes localize to chromosome 20q,” they said. The identification of good targets such as theirs is a critical step for the development of targeted therapies for cancer treatment, according to the researchers. Microarray and next generation sequencing technologies have become invaluable tools in cataloging genomic abnormalities in human cancers and identifying new potential therapeutic targets, in addition to the availability of large cancer genomic data sets which allows for unbiased approaches to identify genes that are important in tumor progression, the research study noted. “Here, we aggregated available cancer databases to identify cancer driver genes across tumor types by combining gene transcript and DNA copy number across chromosome 20q to

  18. Photosensitizer-mediated mitochondria-targeting nanosized drug carriers: Subcellular targeting, therapeutic, and imaging potentials.

    Science.gov (United States)

    Choi, Yeon Su; Kwon, Kiyoon; Yoon, Kwonhyeok; Huh, Kang Moo; Kang, Han Chang

    2017-03-30

    Mitochondria-targeting drug carriers have considerable potential because of the presence of many molecular drug targets in the mitochondria and their pivotal roles in cellular viability, metabolism, maintenance, and death. To compare the mitochondria-targeting abilities of triphenylphosphonium (TPP) and pheophorbide a (PhA) in nanoparticles (NPs), this study prepared mitochondria-targeting NPs using mixtures of methoxy poly(ethylene glycol)-(SS-PhA)2 [mPEG-(SS-PhA)2 or PPA] and TPP-b-poly(ε-caprolactone)-b-TPP [TPP-b-PCL-b-TPP or TPCL], which were designated PPAn-TPCL4-n (0≤n≤4) NPs. With increasing TPCL content, the formed PPAn-TPCL4-n NPs decreased in size from 33nm to 18nm and increased in terms of positive zeta-potentials from -12mV to 33mV. Although the increased TPCL content caused some dark toxicity of the PPAn-TPCL4-n NPs due to the intrinsic positive character of TPCL, the NPs showed strong light-induced killing effects in tumor cells. In addition, the mitochondrial distribution of the PPAn-TPCL4-n NPs was analyzed and imaged by flow cytometry and confocal microscopy, respectively. Thus, the PhA-containing NPs specifically targeted the mitochondria, and light stimulation caused PhA-mediated therapeutic effects and imaging functions. Expanding the capabilities of these nanocarriers by incorporating other drugs should enable multiple potential applications (e.g., targeting, therapy, and imaging) for combination and synergistic treatments. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Degradation of MSCRAMM target macromolecules in VLU slough by Lucilia sericata chymotrypsin 1 (ISP) persists in the presence of tissue gelatinase activity.

    Science.gov (United States)

    Pritchard, David I; Brown, Alan P

    2015-08-01

    Venous leg ulcer slough is unpleasant to the patient and difficult to manage clinically. It harbours infection, also preventing wound management materials and dressings from supporting the underlying viable tissues. In other words, slough has significant nuisance value in the tissue viability clinic. In this study, we have sought to increase our knowledge of slough by building upon a previous but limited analysis of this necrotic tissue. In particular, slough has been probed using Western blotting for the presence of proteins with the capacity to engage microbial surface components recognising adhesive matrix macromolecules. Although the samples were difficult to resolve, we detected fibrinogen, fibronectin, IgG, collagen, human serum albumin and matrix metalloproteinase-9. Furthermore, the effect of a maggot-derived debridement enzyme, chymotrypsin 1 on macromolecules in slough was confirmed across seven patient samples. The effect of chymotrypsin 1 on slough confirms our thesis that this potential debridement enzyme could be effective in removing slough along with its associated bacteria, given its observed resistance to intrinsic gelatinase activity. In summary, we believe that the data provide scientists and clinicians with further insights into the potential molecular interactions between bacteria, wound tissue and Lucilia sericata in a clinically problematic yet scientifically interesting wound ecosystem. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  20. Siglec-15 is a potential therapeutic target for postmenopausal osteoporosis.

    Science.gov (United States)

    Kameda, Yusuke; Takahata, Masahiko; Mikuni, Shintaro; Shimizu, Tomohiro; Hamano, Hiroki; Angata, Takashi; Hatakeyama, Shigetsugu; Kinjo, Masataka; Iwasaki, Norimasa

    2015-02-01

    organization of osteoclasts in both RANKL and TNF-α induced osteoclastogenesis. The present findings indicate that Siglec-15 is involved in estrogen deficiency-induced differentiation of osteoclasts and is thus a potential therapeutic target for postmenopausal osteoporosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Periostin: a promising target of therapeutical intervention for prostate cancer

    Directory of Open Access Journals (Sweden)

    Ding Weihong

    2011-06-01

    RNA-Periostin LNCap cells growed slowly in vitro and in vivo. The tissues of xenografts as PCa were verificated by HE staining. Additionally, the weak positive Periostin expressed tumor cells could be seen in the tissues of 6 xenografts from the group of down-regulated Periostin LNCap cells which had a significant decrease of the amount of Periostin compared to the other two group. Furthermore, our results demonstrated that sliencing Periostin could inhibit migration of LNCap cells in vitro. Conclusions Our data indicates that Periostin as an up-regulated protein in PCa may be a promising target of therapeutical intervention for PCa in future.

  2. Cognition As a Therapeutic Target in the Suicidal Patient Approach

    Directory of Open Access Journals (Sweden)

    Antônio Geraldo da Silva

    2018-02-01

    Full Text Available The current considerations about completed suicides and suicide attempts in different cultures call the attention of professionals to this serious public health problem. Integrative approaches have shown that the confluence of multiple biological and social factors modulate various psychopathologies and dysfunctional behaviors, such as suicidal behavior. Considering the level of intermediate analysis, personality traits and cognitive functioning are also of great importance for understanding the suicide phenomenon. About cognitive factors, we can group them into cognitive schemas of reality interpretation and underlying cognitive processes. On the other hand, different types of primary cognitive alterations are related to suicidal behavior, especially those resulting from changes in frontostriatal circuits. Among such cognitive mechanisms can be highlighted the attentional bias for environmental cues related to suicide, impulsive behavior, verbal fluency deficits, non-adaptive decision-making, and reduced planning skills. Attentional bias consists in the effect of thoughts and emotions, frequently not conscious, about the perception of environmental stimuli. Suicidal ideation and hopelessness can make the patient unable to find alternative solutions to their problems other than suicide, biasing their attention to environmental cues related to such behavior. Recent research efforts are directed to assess the possible use of attention bias as a therapeutic target in patients presenting suicide behavior. The relationship between impulsivity and suicide has been largely investigated over the last decades, and there is still controversy about the theme. Although there is strong evidence linking impulsivity to suicide attempts. Effective interventions address to reduce impulsivity in clinical populations at higher risk for suicide could help in the prevention. Deficits in problem-solving ability also seem to be distorted in patients who attempt

  3. Therapeutic Targets for Management of Periodontitis and Diabetes

    Science.gov (United States)

    Sima, Corneliu; Van Dyke, Thomas E.

    2016-01-01

    The increasing incidence of diabetes mellitus (DM) and chronic periodontitis (CP) worldwide imposes a rethinking of individualized therapy for patients with both conditions. Central to bidirectional links between DM and CP is deregulated systemic inflammation and dysfunctional immune responses to altered-self and non-self. Control of blood glucose levels and metabolic imbalances associated with hyperglycemia in DM, and disruption of pathogenic subgingival biofilms in CP are currently the main therapeutic approaches for these conditions. Mounting evidence suggests the need to integrate immune modulatory therapeutics in treatment regimens that address the unresolved inflammation associated with DM and CP. The current review discusses the pathogenesis of DM and CP with emphasis on deregulated inflammation, current therapeutic approaches and the novel pro-resolution lipid mediators derived from Ω-3 polyunsaturated fatty acids.

  4. Therapeutic Targets for Management of Periodontitis and Diabetes

    Science.gov (United States)

    Sima, Corneliu; Van Dyke, Thomas E.

    2016-01-01

    The increasing incidence of diabetes mellitus (DM) and chronic periodontitis (CP) worldwide imposes a rethinking of individualized therapy for patients with both conditions. Central to bidirectional links between DM and CP is deregulated systemic inflammation and dysfunctional immune responses to altered-self and non-self. Control of blood glucose levels and metabolic imbalances associated with hyperglycemia in DM, and disruption of pathogenic subgingival biofilms in CP are currently the main therapeutic approaches for these conditions. Mounting evidence suggests the need to integrate immune modulatory therapeutics in treatment regimens that address the unresolved inflammation associated with DM and CP. The current review discusses the pathogenesis of DM and CP with emphasis on deregulated inflammation, current therapeutic approaches and the novel pro-resolution lipid mediators derived from n-3 polyunsaturated fatty acids. PMID:26881443

  5. Repurposed Therapeutic Agents Targeting the Ebola Virus: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Hussein Sweiti, MD, MSc, FACS

    2017-01-01

    Conclusions: Several established drugs may have therapeutic effects on EVD, but the quality and quantity of current scientific evidence is lacking. This review highlights the need for well-designed and conducted preclinical and clinical research to establish the efficacy of potential repurposed drugs against EVD.

  6. DNA Repair Proteins as Molecular Targets for Cancer Therapeutics

    OpenAIRE

    Kelley, M.R.; Fishel, M.L.

    2008-01-01

    Cancer therapeutics include an ever-increasing array of tools at the disposal of clinicians in their treatment of this disease. However, cancer is a tough opponent in this battle and current treatments which typically include radiotherapy, chemotherapy and surgery are not often enough to rid the patient of his or her cancer. Cancer cells can become resistant to the treatments directed at them and overcoming this drug resistance is an important research focus. Additionally, increasing discussi...

  7. Tumor-Targeting Peptides for Therapeutic Gene Delivery

    National Research Council Canada - National Science Library

    Pasqualini, Renata

    2000-01-01

    The identification of markers expressed on specific tumors would give valuable insights into the specialization of tumor vasculature, and would also provide a means of targeting distinct tumor sites...

  8. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  9. ROCK as a Therapeutic Target of Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Ryoichi Arita

    2010-01-01

    Full Text Available The increasing global prevalence of diabetes is a critical problem for public health. In particular, diabetic retinopathy, a prevalent ocular complication of diabetes mellitus, causes severe vision loss in working population. A better understanding of the pathogenesis and the development of new pharmacologic treatments are needed. This paper describes the relevance between Rho/ROCK pathway and the pathogenesis of diabetic retinopathy from its early to late stages. Moreover, the therapeutic potential of ROCK inhibitor in the total management of diabetic retinopathy is discussed.

  10. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt

    2011-01-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...... better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein...

  11. Aptamer-targeted DNA nanostructures for therapeutic delivery.

    Science.gov (United States)

    Charoenphol, Phapanin; Bermudez, Harry

    2014-05-05

    DNA-based nanostructures have been widely used in various applications due to their structural diversity, programmability, and uniform structures. Their intrinsic biocompatibility and biodegradability further motivates the investigation of DNA-based nanostructures as delivery vehicles. Incorporating AS1411 aptamers into DNA pyramids leads to enhanced intracellular uptake and selectively inhibits the growth of cancer cells, achieved without the use of transfection reagents. Furthermore, aptamer-displaying pyramids are found to be substantially more resistant to nuclease degradation than single-stranded aptamers. These findings, along with their modularity, reinforce the potential of DNA-based nanostructures for therapeutic applications.

  12. Molecular pathways and therapeutic targets in lung cancer

    Science.gov (United States)

    Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi

    2014-01-01

    Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523

  13. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma.

    Science.gov (United States)

    Serakinci, Nedime; Christensen, Rikke; Fahrioglu, Umut; Sorensen, Flemming Brandt; Dagnæs-Hansen, Frederik; Hajek, Miroslav; Jensen, Tinna Herløv; Kolvraa, Steen; Keith, Nicol W

    2011-12-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because of their easiness of both ex vivo expansion in culture dishes and genetic manipulation. Despite many extensive isolation and expansion studies, relatively little has been done with regard to hMSCs' therapeutic potential. Although clinical trials using hMSCs are underway, their use in cancer therapy still needs better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein and the contribution and distribution of hMSCs to the tumor stroma were investigated by immunohistochemistry and PCR specific to the telomerase gene. Results show that exogenously administered hMSCs preferentially home, engraft, and proliferate at tumor sites and contribute to the population of stromal fibroblasts. In conclusion, this study provides support for the capacity of hMSCs to home to tumor site and serve as a delivery platform for chemotherapeutic agents.

  14. MicroRNAs: role and therapeutic targets in viral hepatitis

    NARCIS (Netherlands)

    van der Ree, Meike H.; de Bruijne, Joep; Kootstra, Neeltje A.; Jansen, Peter Lm; Reesink, Hendrik W.

    2014-01-01

    MicroRNAs regulate gene expression by binding to the 3'-untranslated region (UTR) of target messenger RNAs (mRNAs). The importance of microRNAs has been shown for several liver diseases, for example, viral hepatitis. MicroRNA-122 is highly abundant in the liver and is involved in the regulation of

  15. Therapeutically Targeting Neuroinflammation and Microglia after Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Youngjeon Lee

    2014-01-01

    Full Text Available Inflammation has a pivotal role in the pathogenesis of ischemic stroke, and recent studies posit that inflammation acts as a double-edged sword, not only detrimentally augmenting secondary injury, but also potentially promoting recovery. An initial event of inflammation in ischemic stroke is the activation of microglia, leading to production of both pro- and anti-inflammatory mediators acting through multiple receptor signaling pathways. In this review, we discuss the role of microglial mediators in acute ischemic stroke and elaborate on preclinical and clinical studies focused on microglia in stroke models. Understanding how microglia can lead to both pro- and anti-inflammatory responses may be essential to implement therapeutic strategies using immunomodulatory interventions in ischemic stroke.

  16. Targeting the Fanconi Anemia Pathway to Identify Tailored Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Chelsea Jenkins

    2012-01-01

    Full Text Available The Fanconi Anemia (FA pathway consists of proteins involved in repairing DNA damage, including interstrand cross-links (ICLs. The pathway contains an upstream multiprotein core complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and a downstream pathway that converges with a larger network of proteins with roles in homologous recombination and other DNA repair pathways. Selective killing of cancer cells with an intact FA pathway but deficient in certain other DNA repair pathways is an emerging approach to tailored cancer therapy. Inhibiting the FA pathway becomes selectively lethal when certain repair genes are defective, such as the checkpoint kinase ATM. Inhibiting the FA pathway in ATM deficient cells can be achieved with small molecule inhibitors, suggesting that new cancer therapeutics could be developed by identifying FA pathway inhibitors to treat cancers that contain defects that are synthetic lethal with FA.

  17. Overview of Nrf2 as Therapeutic Target in Epilepsy

    Directory of Open Access Journals (Sweden)

    Liliana Carmona-Aparicio

    2015-08-01

    Full Text Available Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2, which plays a central role in the regulation of antioxidant response elements (ARE and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.

  18. Gastric cancer stem cells: A novel therapeutic target

    Science.gov (United States)

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  19. Vocal Tremor: Novel Therapeutic Target for Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Vinod K. Ravikumar

    2016-10-01

    Full Text Available Tremulous voice is characteristically associated with essential tremor, and is referred to as essential vocal tremor (EVT. Current estimates suggest that up to 40% of individuals diagnosed with essential tremor also present with EVT, which is associated with an impaired quality of life. Traditional EVT treatments have demonstrated limited success in long-term management of symptoms. However, voice tremor has been noted to decrease in patients receiving deep brain stimulation (DBS with the targeting of thalamic nuclei. In this study, we describe our multidisciplinary procedure for awake, frameless DBS with optimal stimulation targets as well as acoustic analysis and laryngoscopic assessment to quantify tremor reduction. Finally, we investigate the most recent clinical evidence regarding the procedure.

  20. Mesenchymal Migration as a Therapeutic Target in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Jessie Zhong

    2010-01-01

    Full Text Available Extensive infiltration of the surrounding healthy brain tissue is a cardinal feature of glioblastomas, highly lethal brain tumors. Deep infiltration by the glioblastoma cells renders complete surgical excision difficult and contemporary adjuvant therapies have had little impact on long-term survival. Thus, deep infiltration and resistance to irradiation and chemotherapy remain a major cause of patient mortality. Modern therapies specifically targeted to this unique aspect of glioblastoma cell biology hold significant promise to substantially improve survival rates for glioblastoma patients. In the present paper, we focus on the role of adhesion signaling molecules and the actin cytoskeleton in the mesenchymal mode of motility that characterizes invading glioblastoma cells. We then review current approaches to targeting these elements of the glioblastoma cell migration machinery and discuss other aspects of cell migration that may improve the treatment of infiltrating glioblastoma.

  1. Mitochondrial function as a therapeutic target in heart failure

    Science.gov (United States)

    Brown, David A.; Perry, Justin B.; Allen, Mitchell E.; Sabbah, Hani N.; Stauffer, Brian L.; Shaikh, Saame Raza; Cleland, John G. F.; Colucci, Wilson S.; Butler, Javed; Voors, Adriaan A.; Anker, Stefan D.; Pitt, Bertram; Pieske, Burkert; Filippatos, Gerasimos; Greene, Stephen J.; Gheorghiade, Mihai

    2017-01-01

    Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria. PMID:28004807

  2. The Endocannabinoid System as a Therapeutic Target in Glaucoma

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Cairns

    2016-01-01

    Full Text Available Glaucoma is an irreversible blinding eye disease which produces progressive retinal ganglion cell (RGC loss. Intraocular pressure (IOP is currently the only modifiable risk factor, and lowering IOP results in reduced risk of progression of the disorder. The endocannabinoid system (ECS has attracted considerable attention as a potential target for the treatment of glaucoma, largely due to the observed IOP lowering effects seen after administration of exogenous cannabinoids. However, recent evidence has suggested that modulation of the ECS may also be neuroprotective. This paper will review the use of cannabinoids in glaucoma, presenting pertinent information regarding the pathophysiology of glaucoma and how alterations in cannabinoid signalling may contribute to glaucoma pathology. Additionally, the mechanisms and potential for the use of cannabinoids and other novel agents that target the endocannabinoid system in the treatment of glaucoma will be discussed.

  3. Alzheimer’s disease: Risk factors and therapeutic targets

    Directory of Open Access Journals (Sweden)

    Laxman Pokhrel

    2015-09-01

    Full Text Available Alzheimer’s disease (AD, a neurodegenerative disorder, has been determined as an outcome of genetic as well as behavioral conditions. The complete understanding of its generation and progress is yet to be understood. However, there has been a significant progress in the diagnosis and identification of the associated risk factors of AD. Several of the risk factors were found connected with cholesterol. Scientists are mainly focusing on the reduction of amyloid β and stabilization of tau protein towards the development of its drugs. To modulate amyloid β, the key components of cholesterol metabolism have been attractive targets and the enzymes involved in the phosphorylation of tau have been tried to stabilize tau protein. This review article briefly highlights the symptoms, risk factors, and drug targets of AD.

  4. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease

    Science.gov (United States)

    Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter

    2016-01-01

    Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799

  5. GM-CSF as a therapeutic target in autoimmune diseases.

    Science.gov (United States)

    Shiomi, Aoi; Usui, Takashi; Mimori, Tsuneyo

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been known as a hematopoietic growth factor and immune modulator. Recent studies revealed that GM-CSF also had pro-inflammatory functions and contributed to the pathogenicity of Th17 cells in the development of Th17-mediated autoimmune diseases. GM-CSF inhibition in some animal models of autoimmune diseases showed significant beneficial effects. Therefore, several agents targeting GM-CSF are being developed and are expected to be a useful strategy for the treatment of autoimmune diseases. Particularly, in clinical trials for rheumatoid arthritis (RA) patients, GM-CSF inhibition showed rapid and significant efficacy with no serious side effects. This article summarizes recent findings of GM-CSF and information of clinical trials targeting GM-CSF in autoimmune diseases.

  6. Voltage-gated Potassium Channels as Therapeutic Drug Targets

    Science.gov (United States)

    Wulff, Heike; Castle, Neil A.; Pardo, Luis A.

    2009-01-01

    The human genome contains 40 voltage-gated potassium channels (KV) which are involved in diverse physiological processes ranging from repolarization of neuronal or cardiac action potentials, over regulating calcium signaling and cell volume, to driving cellular proliferation and migration. KV channels offer tremendous opportunities for the development of new drugs for cancer, autoimmune diseases and metabolic, neurological and cardiovascular disorders. This review first discusses pharmacological strategies for targeting KV channels with venom peptides, antibodies and small molecules and then highlights recent progress in the preclinical and clinical development of drugs targeting KV1.x, KV7.x (KCNQ), KV10.1 (EAG1) and KV11.1 (hERG) channels. PMID:19949402

  7. Translational Nano-Medicines: Targeted Therapeutic Delivery for Cancer and Inflammatory Diseases

    National Research Council Canada - National Science Library

    Talekar, Meghna; Tran, Thanh-Huyen; Amiji, Mansoor

    2015-01-01

    ... with the current therapeutic strategies. Nanoparticle-based delivery of drugs has provided means of overcoming some of these limitations by ensuring the drug payload is directed to the disease site and insuring reduced off-target activity...

  8. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma

    National Research Council Canada - National Science Library

    Howarth, P H; Babu, K S; Arshad, H S; Lau, L; Buckley, M; McConnell, W; Beckett, P; Al Ali, M; Chauhan, A; Wilson, S J; Reynolds, A; Davies, D E; Holgate, S T

    2005-01-01

    Tumour necrosis factor alpha (TNFalpha) is a major therapeutic target in a range of chronic inflammatory disorders characterised by a Th1 type immune response in which TNFalpha is generated in excess...

  9. MicroRNAs: a novel therapeutic target for schizophrenia.

    LENUS (Irish Health Repository)

    Bravo, Javier A

    2011-01-01

    Schizophrenia is one of the most disabling psychiatric conditions. Current treatments target monoamine receptors but this approach does not address the full complexity of the disorder. Here we explore the possibility of developing new anti-psychotics by targeting microRNAs (miRNAs), single stranded RNA molecules, 21-23 nucleotides in length that are not translated into proteins and regulate gene expression. The present review reveals that research involving schizophrenia and miRNA is very recent (the earliest report from 2007) and miRNAs add a significant layer of complexity to the pathophysiology of the disorder. However, miRNAs offer an exciting potential not only to understand the underlying mechanisms of schizophrenia, but also for the future development of antipsychotics, as the human miRNA system provides a rich and diverse opportunity for pharmacological targeting. However, technology is still developing in order to produce effective strategies to modulate specific and localized changes in miRNA, particularly in relation to the central nervous system and schizophrenia.

  10. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015)

    Science.gov (United States)

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim

    2015-01-01

    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  11. Adhesion Molecules in CNS Disorders: Biomarker and Therapeutic Targets

    Science.gov (United States)

    Ma, Qingyi; Chen, Sheng; Klebe, Damon; Zhang, John H.; Tang, Jiping

    2015-01-01

    Mounting evidence has been provided regarding the crucial role of leukocyte extravasation and subsequent inflammatory response in several central nervous system (CNS) disorders. The infiltrated leukocytes release pro-inflammatory mediators and activate resident cells, leading to tissue injury. Leukocyte-endothelia interaction is critical for leukocyte extravasation and migration from the intravascular space into the tissue during inflammation. The basic physiology of leukocyte-endothelia interaction has been investigated extensively. Traditionally, three kinds of adhesion molecules, selectin, integrin, and immunoglobulin families, are responsible for this multiple-step interaction. Furthermore, blocking adhesion molecule function by genetic knockout, antagonizing antibodies, or inhibitory pharmacological drugs provides neuroprotection, which is associated with a reduction in leukocyte accumulation with in the tissue. Detection of the soluble form of adhesion molecules has also been proven to predict outcomes in CNS disorders. Lately, vascular adhesion protein-1 (VAP-1), a novel adhesion molecule and endothelial cell surface enzyme, has been implicated as a brake during leukocyte extravasation. In this review, we summarize the functions of traditional adhesion molecules as well as VAP-1 in the leukocyte adhesion cascade. We also discuss the diagnostic and therapeutic potential of adhesion molecules in CNS disorders. PMID:23469854

  12. Exosomes: From Garbage Bins to Promising Therapeutic Targets.

    Science.gov (United States)

    H Rashed, Mohammed; Bayraktar, Emine; K Helal, Gouda; Abd-Ellah, Mohamed F; Amero, Paola; Chavez-Reyes, Arturo; Rodriguez-Aguayo, Cristian

    2017-03-02

    Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents.

  13. V-ATPase as an effective therapeutic target for sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Perut, Francesca, E-mail: francesca.perut@ior.it [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Avnet, Sofia; Fotia, Caterina; Baglìo, Serena Rubina; Salerno, Manuela [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Hosogi, Shigekuni [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kusuzaki, Katsuyuki [Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Baldini, Nicola [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy)

    2014-01-01

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity.

  14. PPARγ as a Novel Therapeutic Target in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Aravind T. Reddy

    2016-01-01

    Full Text Available Lung cancer is the leading cause of cancer-related death, with more than half the patients having advanced-stage disease at the time of initial diagnosis and thus facing a poor prognosis. This dire situation poses a need for new approaches in prevention and treatment. Peroxisome proliferator-activated receptor γ (PPARγ is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. Its involvement in adipocyte differentiation and glucose and lipid homeostasis is well-recognized, but accumulating evidence now suggests that PPARγ may also function as a tumor suppressor, inhibiting development of primary tumors and metastases in lung cancer and other malignancies. Besides having prodifferentiation, antiproliferative, and proapoptotic effects, PPARγ agonists have been shown to prevent cancer cells from acquiring the migratory and invasive capabilities essential for successful metastasis. Angiogenesis and secretion of certain matrix metalloproteinases and extracellular matrix proteins within the tumor microenvironment are also regulated by PPARγ. This review of the current literature highlights the potential of PPARγ agonists as novel therapeutic modalities in lung cancer, either as monotherapy or in combination with standard cytotoxic chemotherapy.

  15. TSHR as a therapeutic target in Graves' disease.

    Science.gov (United States)

    Smith, Terry

    2017-04-01

    Graves' disease (GD) and thyroid-associated ophthalmopathy (TAO) are thought to result from actions of pathogenic antibodies mediated through the thyrotropin receptor (TSHR). This leads to the unregulated consequences of the antibody-mediated receptor activity in the thyroid and connective tissues of the orbit. Recent studies reveal antibodies that appear to be directed against the insulin-like growth factor-I receptor (IGF-IR). Areas covered: In this brief article, I attempt to review the fundamental characteristics of the TSHR, its role in GD and TAO, and its relationship to IGF-IR. Strong evidence supports the concept that the two receptors form a physical and functional complex and that IGF-IR activity is required for some of the down-stream signaling initiated through TSHR. Recently developed small molecules and monoclonal antibodies that block TSHR and IGF-IR signaling are also reviewed in the narrow context of their potential utility as therapeutics in GD and TAO. The Pubmed database was searched from its inception for relevant publications. Expert opinion: Those agents that can interrupt the TSHR and IGF-IR pathways possess the potential for offering more specific and better tolerated treatments of both hyperthyroidism and TAO. This would spare patients exposure to toxic drugs, ionizing radiation and potentially hazardous surgeries.

  16. Rho-associated kinase is a therapeutic target in neuroblastoma.

    Science.gov (United States)

    Dyberg, Cecilia; Fransson, Susanne; Andonova, Teodora; Sveinbjörnsson, Baldur; Lännerholm-Palm, Jessika; Olsen, Thale K; Forsberg, David; Herlenius, Eric; Martinsson, Tommy; Brodin, Bertha; Kogner, Per; Johnsen, John Inge; Wickström, Malin

    2017-08-08

    Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN-driven neuroblastoma growth in TH-MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma.

  17. Therapeutic targets of brain insulin resistance in sporadic Alzheimer's disease.

    Science.gov (United States)

    de la Monte, Suzanne M

    2012-01-01

    Growing evidence supports roles for brain insulin and insulin-like growth factor (IGF) resistance and metabolic dysfunction in the pathogenesis of Alzheimer's disease (AD). Whether the underlying problem stems from a primary disorder of central nervous system (CNS) neurons and glia, or secondary effects of systemic diseases such as obesity, Type 2 diabetes, or metabolic syndrome, the end-results include impaired glucose utilization, mitochondrial dysfunction, increased oxidative stress, neuroinflammation, and the propagation of cascades that result in the accumulation of neurotoxic misfolded, aggregated, and ubiquitinated fibrillar proteins. This article reviews the roles of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism, and discusses therapeutic strategies and lifestyle approaches that could be used to prevent, delay the onset, or reduce the severity of AD. Finally, it is critical to recognize that AD is heterogeneous and has a clinical course that fully develops over a period of several decades. Therefore, early and multi-modal preventive and treatment approaches should be regarded as essential.

  18. [Cancer stem cells: Radiotherapeutic features and therapeutic targets].

    Science.gov (United States)

    Méry, Benoîte; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Wozny, Anne-Sophie; Simonet, Stéphanie; Vallard, Alexis; Alphonse, Gersende; Ardail, Dominique; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2016-01-01

    Recent evidences suggest that many types of cancers contain a cell population presenting stem cell properties. While the great majority of tumor cells are destined to differentiate, and eventually stop dividing, only a minority population of cells, termed cancer stem cells (CSCs), possesses extensive self-renewal capability and can recapitulate tumor pathophysiology in an immune-compromised animal model. Tumor initiating cells have been identified and isolated in many tumor types including brain, colon and prostate. They are virtually resistant to radiation and may contribute to treatment resistance and recurrence. Therefore, therapies specifically targeting CSCs will likely be needed for complete tumor eradication. The present study reviews published reports identifying the mechanisms of radioresistance of CSCs and potential targets based on the pathways of self-renewal. Further elucidation of pathways that regulate CSCs may provide insights into the development of novel innovative therapies. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  19. Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Science.gov (United States)

    Arzumanyan, Alla; Kulathinal, Rob J.; Blain, Stacy W.; Holcombe, Randall F.; Mahajna, Jamal; Marino, Maria; Martinez-Chantar, Maria L.; Nawroth, Roman; Sanchez-Garcia, Isidro; Sharma, Dipali; Saxena, Neeraj K.; Singh, Neetu; Vlachostergios, Panagiotis J.; Guo, Shanchun; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Amedei, Amedeo; Niccolai, Elena; Amin, Amr; Ashraf, S. Salman; Boosani, Chandra S.; Guha, Gunjan; Ciriolo, Maria Rosa; Aquilano, Katia; Chen, Sophie; Mohammed, Sulma I.; Azmi, Asfar S.; Bhakta, Dipita; Halicka, Dorota; Nowsheen, Somaira

    2016-01-01

    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). This data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression. PMID:25892662

  20. Cannabidiol in Humans—The Quest for Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Stéphane Potvin

    2012-05-01

    Full Text Available Cannabidiol (CBD, a major phytocannabinoid constituent of cannabis, is attracting growing attention in medicine for its anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, up to this point, a comprehensive literature review of the effects of CBD in humans is lacking. The aim of the present systematic review is to examine the randomized and crossover studies that administered CBD to healthy controls and to clinical patients. A systematic search was performed in the electronic databases PubMed and EMBASE using the key word “cannabidiol”. Both monotherapy and combination studies (e.g., CBD + ∆9-THC were included. A total of 34 studies were identified: 16 of these were experimental studies, conducted in healthy subjects, and 18 were conducted in clinical populations, including multiple sclerosis (six studies, schizophrenia and bipolar mania (four studies, social anxiety disorder (two studies, neuropathic and cancer pain (two studies, cancer anorexia (one study, Huntington’s disease (one study, insomnia (one study, and epilepsy (one study. Experimental studies indicate that a high-dose of inhaled/intravenous CBD is required to inhibit the effects of a lower dose of ∆9-THC. Moreover, some experimental and clinical studies suggest that oral/oromucosal CBD may prolong and/or intensify ∆9-THC-induced effects, whereas others suggest that it may inhibit ∆9-THC-induced effects. Finally, preliminary clinical trials suggest that high-dose oral CBD (150–600 mg/d may exert a therapeutic effect for social anxiety disorder, insomnia and epilepsy, but also that it may cause mental sedation. Potential pharmacokinetic and pharmacodynamic explanations for these results are discussed.

  1. Proteomic approaches and identification of novel therapeutic targets for alcoholism.

    Science.gov (United States)

    Gorini, Giorgio; Harris, R Adron; Mayfield, R Dayne

    2014-01-01

    Recent studies have shown that gene regulation is far more complex than previously believed and does not completely explain changes at the protein level. Therefore, the direct study of the proteome, considerably different in both complexity and dynamicity to the genome/transcriptome, has provided unique insights to an increasing number of researchers. During the past decade, extraordinary advances in proteomic techniques have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. When combined with complementary approaches, these advances provide the contextual information for decoding large data sets into meaningful biologically adaptive processes. Neuroproteomics offers potential breakthroughs in the field of alcohol research by leading to a deeper understanding of how alcohol globally affects protein structure, function, interactions, and networks. The wealth of information gained from these advances can help pinpoint relevant biomarkers for early diagnosis and improved prognosis of alcoholism and identify future pharmacological targets for the treatment of this addiction.

  2. ADAM10 as a therapeutic target for cancer and inflammation.

    Science.gov (United States)

    Crawford, Howard C; Dempsey, Peter J; Brown, Gordon; Adam, Liana; Moss, Marcia L

    2009-01-01

    Both cancer and chronic inflammatory diseases are often marked by homeostatic signal transduction pathways run amok. Cleavage of membrane-bound substrates by extracellular metalloproteinases is frequently the rate limiting step in activating many of these pathways, resulting either in liberation of active ligands (shedding) or initiating further processing into bioactive cytoplasmic domains (regulated intramembrane proteolysis or RIP). ADAM10 is a member of the ADAM (A Disintegrin And Metalloproteinase) family of transmembrane metalloproteinases implicated in the RIPing and shedding of dozens of substrates that drive cancer progression and inflammatory disease, including Notch, E-cadherin, EGF, ErbB2 and inflammatory cytokines. ADAM10's emerging role as a significant contributor to these pathologies has led to intense interest in it as a potential drug target for disease treatment. Here we discuss some of the established functions of ADAM10 and the implications of its inhibition in disease progression.

  3. BMI-1, a promising therapeutic target for human cancer

    Science.gov (United States)

    WANG, MIN-CONG; LI, CHUN-LI; CUI, JIE; JIAO, MIN; WU, TAO; JING, LI; NAN, KE-JUN

    2015-01-01

    BMI-1 oncogene is a member of the polycomb-group gene family and a transcriptional repressor. Overexpression of BMI-1 has been identified in various human cancer tissues and is known to be involved in cancer cell proliferation, cell invasion, distant metastasis, chemosensitivity and patient survival. Accumulating evidence has revealed that BMI-1 is also involved in the regulation of self-renewal, differentiation and tumor initiation of cancer stem cells (CSCs). However, the molecular mechanisms underlying these biological processes remain unclear. The present review summarized the function of BMI-1 in different human cancer types and CSCs, and discussed the signaling pathways in which BMI-1 is potentially involved. In conclusion, BMI-1 may represent a promising target for the prevention and therapy of various cancer types. PMID:26622537

  4. Endocannabinoid signaling in female reproductive events: a potential therapeutic target?

    Science.gov (United States)

    Maccarrone, Mauro

    2015-01-01

    Nearly 30 years after the discovery in 1964 of the psychoactive ingredient of cannabis (Cannabis sativa), Δ(9)-tetrahydrocannabinol, its endogenous counterparts were discovered and collectively termed endocannabinoids (eCBs): N-arachidonoylethanolamine (anandamide) in 1992 and 2-arachidonoylglycerol in 1995. Since then, intense research has identified additional eCBs and an ensemble of proteins that bind, synthesize and degrade them, the so-called eCB system. Altogether, these new compounds have been recognized as key mediators of several aspects of human pathophysiology, and in particular of female fertility. Here, the main features of the eCB system are presented, in order to put in a better perspective the relevance of eCB signaling in virtually all steps of human reproduction and to highlight emerging hopes that elements of this system might indeed become novel targets to combat fertility problems.

  5. REV-ERB and ROR: therapeutic targets for treating myopathies

    Science.gov (United States)

    Welch, Ryan D.; Flaveny, Colin A.

    2017-08-01

    Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.

  6. Targeting nicotine addiction: the possibility of a therapeutic vaccine

    Directory of Open Access Journals (Sweden)

    Escobar-Chávez JJ

    2011-04-01

    Full Text Available José Juan Escobar-Chávez1, Clara Luisa Domínguez-Delgado2, Isabel Marlen Rodríguez-Cruz21Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México; 2División de Estudios de Posgrado (Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, MéxicoAbstract: Cigarette smoking is the primary cause of lung cancer, cardiovascular diseases, reproductive disorders, and delayed wound healing all over the world. The goals of smoking cessation are both to reduce health risks and to improve quality of life. The development of novel and more effective medications for smoking cessation is crucial in the treatment of nicotine dependence. Currently, first-line smoking cessation therapies include nicotine replacement products and bupropion. The partial nicotinic receptor agonist, varenicline, has recently been approved by the US Food and Drug Administration (FDA for smoking cessation. Clonidine and nortriptyline have demonstrated some efficacy, but side effects may limit their use to second-line treatment products. Other therapeutic drugs that are under development include rimonabant, mecamylamine, monoamine oxidase inhibitors, and dopamine D3 receptor antagonists. Nicotine vaccines are among newer products seeking approval from the FDA. Antidrug vaccines are irreversible, provide protection over years and need booster injections far beyond the critical phase of acute withdrawal symptoms. Interacting with the drug in the blood rather than with a receptor in the brain, the vaccines are free of side effects due to central interaction. For drugs like nicotine, which interacts with different types of receptors in many organs, this is a further advantage. Three anti-nicotine vaccines are today in an advanced stage of clinical evaluation. Results

  7. Aquaporin-4: A Potential Therapeutic Target for Cerebral Edema

    Directory of Open Access Journals (Sweden)

    Guanghui Tang

    2016-09-01

    Full Text Available Aquaporin-4 (AQP4 is a family member of water-channel proteins and is dominantly expressed in the foot process of glial cells surrounding capillaries. The predominant expression at the boundaries between cerebral parenchyma and major fluid compartments suggests the function of aquaporin-4 in water transfer into and out of the brain parenchyma. Accumulating evidences have suggested that the dysregulation of aquaporin-4 relates to the brain edema resulting from a variety of neuro-disorders, such as ischemic or hemorrhagic stroke, trauma, etc. During edema formation in the brain, aquaporin-4 has been shown to contribute to the astrocytic swelling, while in the resolution phase, it has been seen to facilitate the reabsorption of extracellular fluid. In addition, aquaporin-4-deficient mice are protected from cytotoxic edema produced by water intoxication and brain ischemia. However, aquaporin-4 deletion exacerbates vasogenic edema in the brain of different pathological disorders. Recently, our published data showed that the upregulation of aquaporin-4 in astrocytes probably contributes to the transition from cytotoxic edema to vasogenic edema. In this review, apart from the traditional knowledge, we also introduce our latest findings about the effects of mesenchymal stem cells (MSCs and microRNA-29b on aquaporin-4, which could provide powerful intervention tools targeting aquaporin-4.

  8. Squalene synthase as a target for Chagas disease therapeutics.

    Directory of Open Access Journals (Sweden)

    Na Shang

    2014-05-01

    Full Text Available Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.

  9. CD30 is a potential therapeutic target in malignant mesothelioma

    Science.gov (United States)

    Dabir, Snehal; Kresak, Adam; Yang, Michael; Fu, Pingfu; Wildey, Gary; Dowlati, Afshin

    2015-01-01

    CD30 is a cytokine receptor belonging to the tumor necrosis factor superfamily (TNFRSF8) that acts as a regulator of apoptosis. The presence of CD30 antigen is important in the diagnosis of Hodgkin’s disease and anaplastic large cell lymphoma. There have been sporadic reports of CD30 expression in non-lymphoid tumors, including malignant mesothelioma. Given the remarkable success of brentuximab vedotin, an antibody-drug conjugate directed against CD30 antigen, in lymphoid malignancies, we undertook a study to examine the incidence of CD30 in mesothelioma and to investigate the ability to target CD30 antigen in mesothelioma. Mesothelioma tumor specimens (N = 83) were examined for CD30 expression by immunohistochemistry. Positive CD30 expression was noted in 13 mesothelioma specimens, primarily those of epithelial histology. There was no significant correlation of CD30 positivity with either tumor grade, stage or survival. Examination of four mesothelioma cell lines (H28, H2052, H2452, and 211H) for CD30 expression by both FACS analysis and confocal microscopy showed that CD30 antigen localized to the cell membrane. Brentuximab vedotin treatment of cultured mesothelioma cells produced a dose-dependent decrease in cell growth and viability at clinically relevant concentrations. Our studies validate the presence of CD30 antigen in a subgroup of epithelial-type mesothelioma tumors and indicate that selected mesothelioma patients may derive benefit from brentuximab vedotin treatment. PMID:25589494

  10. The Meninges: New Therapeutic Targets For Multiple Sclerosis

    Science.gov (United States)

    Russi, Abigail E.; Brown, Melissa A.

    2014-01-01

    The CNS is largely comprised of non-regenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an “immune specialized” status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data has established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood barrier integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting of the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the blood brain barrier. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments. PMID:25241937

  11. Adhesion receptors as therapeutic targets for circulating tumor cells.

    Science.gov (United States)

    Li, Jiahe; King, Michael R

    2012-01-01

    Metastasis contributes to >90% of cancer-associated mortality. Though primary tumors can be removed by surgical resection or chemo/radiotherapy, metastatic disease is a great challenge to treatment due to its systemic nature. As metastatic "seeds," circulating tumor cells (CTCs) are believed to be responsible for dissemination from a primary tumor to anatomically distant organs. Despite the possibility of physical trapping of CTCs in microvessels, recent advances have provided insights into the involvement of a variety of adhesion molecules on CTCs. Such adhesion molecules facilitate direct interaction with the endothelium in specific tissues or indirectly through leukocytes. Importantly, significant progress has been made in understanding how these receptors confer enhanced invasion and survival advantage during hematogenous circulation of CTCs through recruitment of macrophages, neutrophils, platelets, and other cells. This review highlights the identification of novel adhesion molecules and how blocking their function can compromise successful seeding and colonization of CTCs in new microenvironment. Encouraged by existing diagnostic tools to identify and isolate CTCs, strategic targeting of these adhesion molecules to deliver conventional chemotherapeutics or novel apoptotic signals is discussed for the neutralization of CTCs in the circulation.

  12. Adhesion receptors as therapeutic targets for circulating tumor cells

    Directory of Open Access Journals (Sweden)

    Jiahe eLi

    2012-07-01

    Full Text Available Metastasis contributes to >90% of cancer-associated mortality. Though primary tumors can be removed by surgical resection or chemo/radiotherapy, metastatic disease is a great challenge to treatment due to its systemic nature. As metastatic seeds, circulating tumor cells (CTCs are believed to be responsible for dissemination from a primary tumor to anatomically distant organs. Despite the possibility of physical trapping of CTCs in microvessels, recent advances have provided insights into the involvement of a variety of adhesion molecules on CTCs. Such adhesion molecules facilitate direct interaction with the endothelium in specific tissues or indirectly through leukocytes. Importantly, significant progress has been made in understanding how these receptors confer enhanced invasion and survival advantage during hematogenous circulation of CTCs through recruitment of macrophages, neutrophils, platelets, and other cells. This review highlights the identification of novel adhesion molecules and how blocking their function can compromise successful seeding and colonization of CTCs in new microenvironment. Encouraged by existing diagnostic tools to identify and isolate CTCs, strategic targeting of these adhesion molecules to deliver conventional chemotherapeutics or novel apoptotic signals is discussed for the neutralization of CTCs in the circulation.

  13. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy

    Science.gov (United States)

    Hernández, Cristina; Simó, Rafael

    2016-01-01

    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed. PMID:27123463

  14. High Density Lipoprotein: A Therapeutic Target in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Philip J. Barter

    2013-09-01

    Full Text Available High density lipoproteins (HDLs have a number of properties that have the potential to inhibit the development of atherosclerosis and thus reduce the risk of having a cardiovascular event. These protective effects of HDLs may be reduced in patients with type 2 diabetes, a condition in which the concentration of HDL cholesterol is frequently low. In addition to their potential cardioprotective properties, HDLs also increase the uptake of glucose by skeletal muscle and stimulate the synthesis and secretion of insulin from pancreatic β cells and may thus have a beneficial effect on glycemic control. This raises the possibility that a low HDL concentration in type 2 diabetes may contribute to a worsening of diabetic control. Thus, there is a double case for targeting HDLs in patients with type 2 diabetes: to reduce cardiovascular risk and also to improve glycemic control. Approaches to raising HDL levels include lifestyle factors such as weight reduction, increased physical activity and stopping smoking. There is an ongoing search for HDL-raising drugs as agents to use in patients with type 2 diabetes in whom the HDL level remains low despite lifestyle interventions.

  15. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets.

    Science.gov (United States)

    Vasconcelos, Luiz H C; Souza, Iara L L; Pinheiro, Lílian S; Silva, Bagnólia A

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.

  16. Therapeutic options targeting angiogenesis in nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Lucio Crinò

    2014-03-01

    Full Text Available There is a major unmet medical need for effective and well-tolerated treatment options for patients with advanced nonsmall cell lung cancer (NSCLC, in both first-line and relapsed/refractory settings. Experimental evidence has validated signalling pathways that regulate tumour angiogenesis, including the vascular endothelial growth factor (VEGF, platelet-derived growth factor (PDGF and fibroblast growth factor (FGF pathways, as valid anti-cancer drug targets. However, to date, bevacizumab (an anti-VEGF monoclonal antibody is the only antiangiogenic agent to be approved for the treatment of NSCLC. Many other agents, including antibodies, small-molecule tyrosine kinase inhibitors and vascular disrupting agents, have been assessed in phase III trials but have generally failed to demonstrate clinically meaningful benefits. This lack of success probably reflects the redundancy of proangiogenic pathways and the molecular and clinical heterogeneity of NSCLC. In this review we summarise recently completed and ongoing randomised clinical trials of emerging antiangiogenic agents in patients with NSCLC. We highlight recent promising data with agents that simultaneously inhibit multiple proangiogenic pathways, including the PDGF and FGF pathways, as well as the VEGF pathway. Finally, we discuss the outlook for antiangiogenic agents in NSCLC, emphasising the need for clinically validated prognostic and predictive biomarkers to identify patients most likely to respond to therapy.

  17. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics

    Science.gov (United States)

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro

    2014-06-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further

  18. Ornithine decarboxylase as a therapeutic target for endometrial cancer.

    Directory of Open Access Journals (Sweden)

    Hong Im Kim

    Full Text Available Ornithine Decarboxylase (ODC a key enzyme in polyamine biosynthesis is often overexpressed in cancers and contributes to polyamine-induced cell proliferation. We noted ubiquitous expression of ODC1 in our published endometrial cancer gene array data and confirmed this in the cancer genome atlas (TCGA with highest expression in non-endometrioid, high grade, and copy number high cancers, which have the worst clinical outcomes. ODC1 expression was associated with worse overall survival and increased recurrence in three endometrial cancer gene expression datasets. Importantly, we confirmed these findings using quantitative real-time polymerase chain reaction (qRT-PCR in a validation cohort of 60 endometrial cancers and found that endometrial cancers with elevated ODC1 had significantly shorter recurrence-free intervals (KM log-rank p = 0.0312, Wald test p = 5.59e-05. Difluoromethylornithine (DFMO a specific inhibitor of ODC significantly reduced cell proliferation, cell viability, and colony formation in cell line models derived from undifferentiated, endometrioid, serous, carcinosarcoma (mixed mesodermal tumor; MMT and clear cell endometrial cancers. DFMO also significantly reduced human endometrial cancer ACI-98 tumor burden in mice compared to controls (p = 0.0023. ODC-regulated polyamines (putrescine [Put] and/or spermidine [Spd] known activators of cell proliferation were strongly decreased in response to DFMO, in both tumor tissue ([Put] (p = 0.0006, [Spd] (p<0.0001 and blood plasma ([Put] (p<0.0001, [Spd] (p = 0.0049 of treated mice. Our study indicates that some endometrial cancers appear particularly sensitive to DFMO and that the polyamine pathway in endometrial cancers in general and specifically those most likely to suffer adverse clinical outcomes could be targeted for effective treatment, chemoprevention or chemoprevention of recurrence.

  19. Activating mutations in ALK provide a therapeutic target in neuroblastoma.

    Science.gov (United States)

    George, Rani E; Sanda, Takaomi; Hanna, Megan; Fröhling, Stefan; Luther, William; Zhang, Jianming; Ahn, Yebin; Zhou, Wenjun; London, Wendy B; McGrady, Patrick; Xue, Liquan; Zozulya, Sergey; Gregor, Vlad E; Webb, Thomas R; Gray, Nathanael S; Gilliland, D Gary; Diller, Lisa; Greulich, Heidi; Morris, Stephan W; Meyerson, Matthew; Look, A Thomas

    2008-10-16

    Neuroblastoma, an embryonal tumour of the peripheral sympathetic nervous system, accounts for approximately 15% of all deaths due to childhood cancer. High-risk neuroblastomas are rapidly progressive; even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal. Here we report the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas. Five non-synonymous sequence variations were identified in the kinase domain of ALK, of which three were somatic and two were germ line. The most frequent mutation, F1174L, was also identified in three different neuroblastoma cell lines. ALK complementary DNAs encoding the F1174L and R1275Q variants, but not the wild-type ALK cDNA, transformed interleukin-3-dependent murine haematopoietic Ba/F3 cells to cytokine-independent growth. Ba/F3 cells expressing these mutations were sensitive to the small-molecule inhibitor of ALK, TAE684 (ref. 4). Furthermore, two human neuroblastoma cell lines harbouring the F1174L mutation were also sensitive to the inhibitor. Cytotoxicity was associated with increased amounts of apoptosis as measured by TdT-mediated dUTP nick end labelling (TUNEL). Short hairpin RNA (shRNA)-mediated knockdown of ALK expression in neuroblastoma cell lines with the F1174L mutation also resulted in apoptosis and impaired cell proliferation. Thus, activating alleles of the ALK receptor tyrosine kinase are present in primary neuroblastoma tumours and in established neuroblastoma cell lines, and confer sensitivity to ALK inhibition with small molecules, providing a molecular rationale for targeted therapy of this disease.

  20. Application of Long Noncoding RNAs in Osteosarcoma: Biomarkers and Therapeutic Targets

    OpenAIRE

    Zhihong Li; Pengcheng Dou; Tang Liu; Shasha He

    2017-01-01

    Osteosarcoma is the most common primary bone malignancy in children and adolescents. Although improvements in therapeutic strategies were achieved, the outcome remains poor for most patients with metastatic or recurrent osteosarcoma. Therefore, it is imperative to identify novel and effective prognostic biomarker and therapeutic targets for the disease. Long noncoding RNAs (lncRNAs) are a novel class of RNA molecules defined as transcripts >200 nucleotides that lack protein coding potent...

  1. Improving oncology outcomes through targeted therapeutics will require electronic delivery systems.

    Science.gov (United States)

    van Rooij, Tibor; Marsh, Sharon

    2011-05-01

    Typically, chemotherapy selection takes into account patient demographic data, including disease symptoms, family history, environmental factors and concurrent medications. Although validated and approved genomics tests are available for targeted therapeutics, a major challenge facing healthcare is the ability to process the genomic data in the patient's context and to return clinically interpretable dosing guidance to the physician in a realistic time frame. Delivery of these targeted therapeutics, made possible by clinical decision support systems connected to an electronic health record may help drive both the acceptance and adaptation of an electronic health record system, as well as provide personalized information at point-of-care, as part of the routine workflow. The realization of targeted therapeutics will depend on the concerted efforts of stakeholder groups as they address political, ethical, socioeconomical and technical challenges to achieve personalized medicine adoption through real-world implementation.

  2. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015

    Directory of Open Access Journals (Sweden)

    Marc Le Borgne

    2015-12-01

    Full Text Available The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report.

  3. Macromolecules in Flatland

    Science.gov (United States)

    Prasad, Ashok

    This thesis is on statistical mechanics of semiflexible polymers, and diffusion and fluid mechanics in lipid membranes. In chapter two the worm-like chain model of DNA under an applied force in two dimensions is solved analytically in terms of an expansion in Mathieu functions. An analytical expression for the force-extension relation for long polymers is computed in terms of Mathieu characteristic functions. The nematic order parameter and average extension of the polymer stretched by a strong nematic field are also derived. In chapter three the force-extension relations for short semiflexible polymers or long polymers under large forces are calculated analytically using the generating functional formalism of field theory. It is shown that boundary conditions like axis-clamping affect the force extension curves. This formalism is also applied to a charged polymer under the influence of an electric field, and analytical formulae for the force-extension relation are obtained. In chapter four the results of an experiment on the collapse of actin molecule into racquet-like structures due to the depletion interaction are reported, and the strength of the attractive interaction between actin filaments is measured. In chapter five a theoretical model of polymer diffusion in supported membranes is constructed. The velocity fields of inclusions in lipid membranes are analyzed and it is found that inclusions create domains of entrained lipids of a characteristic size. The diffusion constant of a self-avoiding polymer in the membrane is calculated and it is shown that by altering the hydrodynamic length scale which sets the size of the entrained domains, the diffusive properties of the polymer changes in character from uncorrelated Rouse-like behavior to a solid disk-like behavior. The implications for the diffusion of macromolecules in plasma membranes are discussed. In chapter six the drift of a moving object in a lipid membrane is studied. The drift is a measure of the

  4. XIAP as a Molecular Target for Therapeutic Intervention in Prostate Cancer

    Science.gov (United States)

    2007-10-01

    the even- tual development of Alzheimer’s disease (Bush et al., 2003) and transmissible spongiform encephalopathies , respectively (Millhauser, 2004...comprised of two research aims to validate and examine the therapeutic potential of targeting XIAP for the treatment of prostate cancer. In the...were published.. SPECIFIC AIM 2. To validate XIAP as a novel target for the treatment of prostate cancer, using established transgenic and

  5. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches.

    Science.gov (United States)

    Schomberg, Dominic; Miranpuri, Gurwattan; Duellman, Tyler; Crowell, Andrew; Vemuganti, Raghu; Resnick, Daniel

    2015-06-01

    Neuropathic pain, especially that resulting from spinal cord injury, is a tremendous clinical challenge. A myriad of biological changes have been implicated in producing these pain states including cellular interactions, extracellular proteins, ion channel expression, and epigenetic influences. Physiological consequences of these changes are varied and include functional deficits and pain responses. Developing therapies that effectively address the cause of these symptoms require a deeper knowledge of alterations in the molecular pathways. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are two promising therapeutic targets. Matrix metalloproteinases interact with and influence many of the studied pain pathways. Gene expression of ion channels and inflammatory mediators clearly contributes to neuropathic pain. Localized and time dependent targeting of these proteins could alleviate and even prevent neuropathic pain from developing. Current therapeutic options for neuropathic pain are limited primarily to analgesics targeting the opioid pathway. Therapies directed at molecular targets are highly desirable and in early stages of development. These include transplantation of exogenously engineered cell populations and targeted gene manipulation. This review describes specific molecular targets amenable to therapeutic intervention using currently available delivery systems.

  6. Molecular Targets in Alzheimer’s Disease: From Pathogenesis to Therapeutics

    Directory of Open Access Journals (Sweden)

    Xuan Cheng

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD.

  7. Preclinical characterisation of the GM-CSF receptor as a therapeutic target in rheumatoid arthritis

    NARCIS (Netherlands)

    Greven, D. E. A.; Cohen, E. S.; Gerlag, D. M.; Campbell, J.; Woods, J.; Davis, N.; van Nieuwenhuijze, A.; Lewis, A.; Heasmen, S.; McCourt, M.; Corkill, D.; Dodd, A.; Elvin, J.; Statache, G.; Wicks, I. P.; Anderson, I. K.; Nash, A.; Sleeman, M. A.; Tak, P. P.

    2015-01-01

    Previous work has suggested that the granulocyte macrophage colony stimulating factor (GM-CSF)-GM-CSF receptor α axis (GM-CSFRα) may provide a new therapeutic target for the treatment of rheumatoid arthritis (RA). Therefore, we investigated the cellular expression of GM-CSFRα in RA synovial tissue

  8. Integrative omics analysis of rheumatoid arthritis identifies non-obvious therapeutic targets.

    Directory of Open Access Journals (Sweden)

    John W Whitaker

    Full Text Available Identifying novel therapeutic targets for the treatment of disease is challenging. To this end, we developed a genome-wide approach of candidate gene prioritization. We independently collocated sets of genes that were implicated in rheumatoid arthritis (RA pathogenicity through three genome-wide assays: (i genome-wide association studies (GWAS, (ii differentially expression in RA fibroblast-like synoviocytes (FLS, and (iii differentially methylation in RA FLS. Integrated analysis of these complementary data sets identified a significant enrichment of multi-evidence genes (MEGs within pathways relating to RA pathogenicity. One MEG is Engulfment and Cell Motility Protein-1 (ELMO1, a gene not previously considered as a therapeutic target in RA FLS. We demonstrated in RA FLS that ELMO1 is: (i expressed, (ii promotes cell migration and invasion, and (iii regulates Rac1 activity. Thus, we created links between ELMO1 and RA pathogenicity, which in turn validates ELMO1 as a potential RA therapeutic target. This study illustrated the power of MEG-based approaches for therapeutic target identification.

  9. Evaluation of MiR-181a as a potential therapeutic target in ...

    African Journals Online (AJOL)

    Abstract. Purpose: To investigate microRNA-181 (miR-181) as a potential therapeutic target in osteoarthritis. (OA). Methods: MiR-181 ... in the treatment of OA. Keywords: MicroRNA, Osteoarthritis, Apoptosis, B-cell lymphoma 2, Transfection, Chondrocytes .... 500 ng total RNA using a specific stem-loop primer. Following this ...

  10. Evaluation of MiR-181a as a potential therapeutic target in ...

    African Journals Online (AJOL)

    Purpose: To investigate microRNA-181 (miR-181) as a potential therapeutic target in osteoarthritis (OA). Methods: MiR-181 expression was evaluated in articular cartilage samples obtained from OA patients undergoing knee arthroplasty and non-OA (control) patients undergoing other orthopedic procedures. Following the ...

  11. Identifying new therapeutic targets via modulation of protein corona formation by engineered nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rochelle R Arvizo

    Full Text Available We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify protein composition to provide insight into disease development.Using a family of structurally homologous nanoparticles we have investigated the changes in the protein corona around surface-functionalized gold nanoparticles (AuNPs from normal and malignant ovarian cell lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF that is found exclusively on positively charged AuNPs ((+AuNPs after incubation with the lysates. We confirmed expression of HDGF in various ovarian cancer cells and validated binding selectivity to (+AuNPs by Western blot analysis. Silencing of HDGF by siRNA resulted s inhibition in proliferation of ovarian cancer cells.We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to discover novel therapeutic targets in cancer.

  12. Identifying New Therapeutic Targets via Modulation of Protein Corona Formation by Engineered Nanoparticles

    Science.gov (United States)

    Arvizo, Rochelle R.; Giri, Karuna; Moyano, Daniel; Miranda, Oscar R.; Madden, Benjamin; McCormick, Daniel J.; Bhattacharya, Resham; Rotello, Vincent M.; Kocher, Jean-Pierre; Mukherjee, Priyabrata

    2012-01-01

    Background We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify protein composition to provide insight into disease development. Methods/Principal Findings Using a family of structurally homologous nanoparticles we have investigated the changes in the protein corona around surface-functionalized gold nanoparticles (AuNPs) from normal and malignant ovarian cell lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF) that is found exclusively on positively charged AuNPs (+AuNPs) after incubation with the lysates. We confirmed expression of HDGF in various ovarian cancer cells and validated binding selectivity to +AuNPs by Western blot analysis. Silencing of HDGF by siRNA resulted s inhibition in proliferation of ovarian cancer cells. Conclusion We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to discover novel therapeutic targets in cancer. PMID:22442705

  13. Breaking the LSD1/KDM1A Addiction: Therapeutic Targeting of the Epigenetic Modifier in AML

    OpenAIRE

    Lokken, Alyson A.; Zeleznik-Le, Nancy J.

    2012-01-01

    KDM1A/LSD1, a histone H3K4/K9 demethylase and epigenetic regulator with roles in both gene activation and repression, has increased expression in multiple cancer types. Harris et al., in this issue of Cancer Cell, and Schenk et al. show that KDM1A may be a viable therapeutic target in treating AML.

  14. Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts.

    Science.gov (United States)

    Disney, Matthew D

    2013-12-01

    RNA is an important yet vastly underexploited target for small molecule chemical probes or lead therapeutics. Small molecules have been used successfully to modulate the function of the bacterial ribosome, viral RNAs and riboswitches. These RNAs are either highly expressed or can be targeted using substrate mimicry, a mainstay in the design of enzyme inhibitors. However, most cellular RNAs are neither highly expressed nor have a lead small molecule inhibitor, a significant challenge for drug discovery efforts. Herein, I describe the design of small molecules targeting expanded repeating transcripts that cause myotonic muscular dystrophy (DM). These test cases illustrate the challenges of designing small molecules that target RNA and the advantages of targeting repeating transcripts. Lastly, I discuss how small molecules might be more advantageous than oligonucleotides for targeting RNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Phytochemical-mediated Protein Expression Profiling and the Potential Applications in Therapeutic Drug Target Identifications.

    Science.gov (United States)

    Wong, Fai-Chu; Tan, Siok-Thing; Chai, Tsun-Thai

    2016-07-29

    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents.

  16. In vitro study of deep capture of paramagnetic particle for targeting therapeutics

    Science.gov (United States)

    Pei, Ning; Huang, Zheyong; Ma, Wenli; Ge, Junbo; Zheng, Wenling

    2009-09-01

    Magnetic targeting, a promising therapeutic strategy for localizing systemically delivered drug to target tissue, is limited by magnetic attenuation. To satisfy the need of deep magnetic targeting, a special apparatus in which the magnetic flux density can be focused at a distance from the pole was designed. To test the aggregation property of this apparatus, we observed the accumulation of 500-nm paramagnetic particles as flowing through a tube served as a model of blood vessels. The relationship of the accumulation of the paramagnetic particles, the magnetic flux density, the magnetic field gradient and the fluid velocity was studied by theoretical considerations.

  17. Tumor microenvironment: driving forces and potential therapeutic targets for breast cancer metastasis.

    Science.gov (United States)

    Xie, Hong-Yan; Shao, Zhi-Min; Li, Da-Qiang

    2017-03-29

    Distant metastasis to specific target organs is responsible for over 90% of breast cancer-related deaths, but the underlying molecular mechanism is unclear. Mounting evidence suggests that the interplay between breast cancer cells and the target organ microenvironment is the key determinant of organ-specific metastasis of this lethal disease. Here, we highlight new findings and concepts concerning the emerging role of the tumor microenvironment in breast cancer metastasis; we also discuss potential therapeutic intervention strategies aimed at targeting components of the tumor microenvironment.

  18. Chk1 as a new therapeutic target in triple-negative breast cancer.

    Science.gov (United States)

    Albiges, Laurence; Goubar, Aïcha; Scott, Véronique; Vicier, Cécile; Lefèbvre, Céline; Alsafadi, Samar; Commo, Frédéric; Saghatchian, Mahasti; Lazar, Vladimir; Dessen, Philippe; Delaloge, Suzette; André, Fabrice; Quidville, Virginie

    2014-06-01

    Bioinformatics analyses of pathways and genes differentially expressed between malignant and benign lesions could allow discovering new therapeutic targets. Here, we identified Checkpoint kinase 1 (Chk1) as a potent therapeutic target in triple-negative breast cancer (TNBC). Differential gene expression between TNBC, other malignant and benign lesions was performed on two breast cancer datasets. Chk1 was targeted using RNA interference or chemical inhibitor in several TNBC cell lines. DNA repair pathway was identified as one mostly deregulated pathway in TNBC as compared to benign lesions. Chk1 was identified as candidate target among the 35 genes included in this pathway. Gene expression analysis revealed that Chk1 gene was significantly overexpressed in TNBC as compared to non-TNBC and benign lesions. Depletion of Chk1 protein expression induced a marked reduction of cell viability and led to mitotic catastrophe in TNBC cells. Chemical Chk1 inhibitor decreased survival in TNBC cells, and transcriptome analyze revealed a modulation of gene expression profile in response to Chk1 treatment. These findings suggest that Chk1 may represent a therapeutic target in TNBC, and provide a rationale to evaluate Chk1 inhibitors in breast cancer patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Genome-wide Analysis of for the Identification of Putative Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Md. Masud Parvege

    2014-01-01

    Full Text Available Ever increasing propensity of antibiotic resistance among pathogenic bacteria raises the demand for the development of novel therapeutic agents to control this grave problem. Advances in the field of bioinformatics, genomics, and proteomics have greatly facilitated the discovery of alternative drugs by swift identification of new drug targets. In the present study, we employed comparative genomics and metabolic pathway analysis with an aim of identifying therapeutic targets in Mycoplasma hominis. Our study has revealed 40 annotated metabolic pathways, including five unique pathways of M. hominis. Our study also identified 179 essential proteins, including 59 proteins having no similarity with human proteins. Further filtering by molecular weight, subcellular localization, functional analysis, and protein network interaction, we identified 57 putative candidates for which new drugs can be developed. Druggability analysis for each of the identified targets has prioritized 16 proteins as suitable for potential drug development.

  20. RGS17: an emerging therapeutic target for lung and prostate cancers.

    Science.gov (United States)

    Bodle, Christopher R; Mackie, Duncan I; Roman, David L

    2013-06-01

    Ligands for G-protein-coupled receptors (GPCRs) represent approximately 50% of currently marketed drugs. RGS proteins modulate heterotrimeric G proteins and, thus, GPCR signaling, by accelerating the intrinsic GTPase activity of the Gα subunit. Given the prevalence of GPCR targeted therapeutics and the role RGS proteins play in G protein signaling, some RGS proteins are emerging as targets in their own right. One such RGS protein is RGS17. Increased RGS17 expression in some prostate and lung cancers has been demonstrated to support cancer progression, while reduced expression of RGS17 can lead to development of chemotherapeutic resistance in ovarian cancer. High-throughput screening is a powerful tool for lead compound identification, and utilization of high-throughput technologies has led to the discovery of several RGS inhibitors, thus far. As screening technologies advance, the identification of novel lead compounds the subsequent development of targeted therapeutics appears promising.

  1. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    Science.gov (United States)

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  2. Complement therapeutics in inflammatory diseases: promising drug candidates for C3-targeted intervention.

    Science.gov (United States)

    Mastellos, D C; Ricklin, D; Hajishengallis, E; Hajishengallis, G; Lambris, J D

    2016-02-01

    There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Annexin A9 (ANXA9) biomarker and therapeutic target in epithelial cancer

    Science.gov (United States)

    Hu, Zhi [El Cerrito, CA; Kuo, Wen-Lin [San Ramon, CA; Neve, Richard M [San Mateo, CA; Gray, Joe W [San Francisco, CA

    2012-06-12

    Amplification of the ANXA9 gene in human chromosomal region 1q21 in epithelial cancers indicates a likelihood of both in vivo drug resistance and metastasis, and serves as a biomarker indicating these aspects of the disease. ANXA9 can also serve as a therapeutic target. Interfering RNAs (iRNAs) (such as siRNA and miRNA) and shRNA adapted to inhibit ANXA9 expression, when formulated in a therapeutic composition, and delivered to cells of the tumor, function to treat the epithelial cancer.

  4. Targeting the Glutamatergic System to Develop Novel, Improved Therapeutics for Mood Disorders

    Science.gov (United States)

    Sanacora, Gerard; Zarate, Carlos A.; Krystal, John; Manji, Husseini K.

    2009-01-01

    PREFACE Mood disorders are common, chronic, recurrent mental illnesses that affect the lives of millions of individuals worldwide. To date, the monoaminergic systems (serotonergic, noradrenergic and dopaminergic) in the brain have received the greatest attention in neurobiological studies of mood disorders, and most therapeutics target these systems. However, there is growing evidence that the glutamatergic system is central to the neurobiology and treatment of these disorders. Here, we review data supporting the involvement of the glutamatergic system in mood disorder pathophysiology as well as the efficacy of glutamatergic agents in mood disorders. We also discuss exciting new prospects for the development of improved therapeutics for these devastating disorders. PMID:18425072

  5. Advances in the proteomic discovery of novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Guo S

    2013-10-01

    Full Text Available Shanchun Guo,1 Jin Zou,2 Guangdi Wang3 1Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 2Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA; 3Research Centers in Minority Institutions Cancer Research Program, Xavier University of Louisiana, New Orleans, LA, USA Abstract: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. Keywords: proteomics, cancer, therapeutic target, signaling network, tumorigenesis

  6. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease.

    Science.gov (United States)

    Mitroulis, Ioannis; Alexaki, Vasileia I; Kourtzelis, Ioannis; Ziogas, Athanassios; Hajishengallis, George; Chavakis, Triantafyllos

    2015-03-01

    Infection or sterile inflammation triggers site-specific attraction of leukocytes. Leukocyte recruitment is a process comprising several steps orchestrated by adhesion molecules, chemokines, cytokines and endogenous regulatory molecules. Distinct adhesive interactions between endothelial cells and leukocytes and signaling mechanisms contribute to the temporal and spatial fine-tuning of the leukocyte adhesion cascade. Central players in the leukocyte adhesion cascade include the leukocyte adhesion receptors of the β2-integrin family, such as the αLβ2 and αMβ2 integrins, or of the β1-integrin family, such as the α4β1-integrin. Given the central involvement of leukocyte recruitment in different inflammatory and autoimmune diseases, the leukocyte adhesion cascade in general, and leukocyte integrins in particular, represent key therapeutic targets. In this context, the present review focuses on the role of leukocyte integrins in the leukocyte adhesion cascade. Experimental evidence that has implicated leukocyte integrins as targets in animal models of inflammatory disorders, such as experimental autoimmune encephalomyelitis, psoriasis, inflammatory bone loss and inflammatory bowel disease as well as preclinical and clinical therapeutic applications of antibodies that target leukocyte integrins in various inflammatory disorders are presented. Finally, we review recent findings on endogenous inhibitors that modify leukocyte integrin function, which could emerge as promising therapeutic targets. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Identification of the YES1 Kinase as a Therapeutic Target in Basal-Like Breast Cancers.

    Science.gov (United States)

    Bilal, Erhan; Alexe, Gabriela; Yao, Ming; Cong, Lei; Kulkarni, Atul; Ginjala, Vasudeva; Toppmeyer, Deborah; Ganesan, Shridar; Bhanot, Gyan

    2010-10-01

    Normal cellular behavior can be described as a complex, regulated network of interaction between genes and proteins. Targeted cancer therapies aim to neutralize specific proteins that are necessary for the cancer cell to remain viable in vivo. Ideally, the proteins targeted should be such that their downregulation has a major impact on the survival/fitness of the tumor cells and, at the same time, has a smaller effect on normal cells. It is difficult to use standard analysis methods on gene or protein expression levels to identify these targets because the level thresholds for tumorigenic behavior are different for different genes/proteins. We have developed a novel methodology to identify therapeutic targets by using a new paradigm called "gene centrality." The main idea is that, in addition to being overexpressed, good therapeutic targets should have a high degree of connectivity in the tumor network because one expects that suppression of its expression would affect many other genes. We propose a mathematical quantity called "centrality," which measures the degree of connectivity of genes in a network in which each edge is weighted by the expression level of the target gene. Using our method, we found that several SRC proto-oncogenes LYN, YES1, HCK, FYN, and LCK have high centrality in identifiable subsets of basal-like and HER2+ breast cancers. To experimentally validate the clinical value of this finding, we evaluated the effect of YES1 knockdown in basal-like breast cancer cell lines that overexpress this gene. We found that YES1 downregulation has a significant effect on the survival of these cell lines. Our results identify YES1 as a target for therapeutics in a subset of basal-like breast cancers.

  8. Aurora kinases as druggable targets in pediatric leukemia: heterogeneity in target modulation activities and cytotoxicity by diverse novel therapeutic agents.

    Directory of Open Access Journals (Sweden)

    Aarthi Jayanthan

    Full Text Available Leukemia is the most common pediatric malignancy, constituting more than 30% of all childhood cancers. Although cure rates have improved greatly, approximately one in five children relapse and poor survival rates post relapse remain a challenge. Given this, more effective and innovative therapeutic strategies are needed in order to improve prognosis. Aurora kinases, a family of serine/threonine kinases essential for the regulation of several mitotic processes, have been identified as potential targets for cancer therapeutics. Elevated expression of Aurora kinases has been demonstrated in several malignancies and is associated with aberrant mitotic activity, aneuploidy and alterations in chromosomal structure and genome instability. Based on this rationale, a number of small molecule inhibitors have been formulated and advanced to human studies in the recent past. A comparative analysis of these agents in cytotoxicity and target modulation analyses against a panel of leukemia cells provides novel insights into the unique mechanisms and codependent activity pathways involved in targeting Aurora kinases, constituting a distinctive preclinical experimental framework to identify appropriate agents and combinations in future clinical studies.

  9. Gene Therapy for Advanced Melanoma: Selective Targeting and Therapeutic Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Joana R. Viola

    2013-01-01

    Full Text Available Despite recent advances, the treatment of malignant melanoma still results in the relapse of the disease, and second line treatment mostly fails due to the occurrence of resistance. A wide range of mutations are known to prevent effective treatment with chemotherapeutic drugs. Hence, approaches with biopharmaceuticals including proteins, like antibodies or cytokines, are applied. As an alternative, regimens with therapeutically active nucleic acids offer the possibility for highly selective cancer treatment whilst avoiding unwanted and toxic side effects. This paper gives a brief introduction into the mechanism of this devastating disease, discusses the shortcoming of current therapy approaches, and pinpoints anchor points which could be harnessed for therapeutic intervention with nucleic acids. We bring the delivery of nucleic acid nanopharmaceutics into perspective as a novel antimelanoma therapeutic approach and discuss the possibilities for melanoma specific targeting. The latest reports on preclinical and already clinical application of nucleic acids in melanoma are discussed.

  10. Plasmalemmal Vesicle Associated Protein (PLVAP) as a therapeutic target for treatment of hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Yun-Hsin; Cheng, Tsung-Yen; Chen, Ta-Yuan; Chang, Kai-Ming; Chuang, Vincent P; Kao, Kuo-Jang

    2014-11-06

    Hepatocellular carcinoma (HCC) is a malignancy with poor survival outcome. New treatment options for the disease are needed. In this study, we identified and evaluated tumor vascular PLVAP as a therapeutic target for treatment of HCC. Genes showing extreme differential expression between paired human HCC and adjacent non-tumorous liver tissue were investigated. PLVAP was identified as one of such genes with potential to serve as a therapeutic target for treatment of HCC. A recombinant monoclonal anti-PLVAP Fab fragment co-expressing extracellular domain of human tissue factor (TF) was developed. The potential therapeutic effect and toxicity to treat HCC were studied using a Hep3B HCC xenograft model in SCID mice. PLVAP was identified as a gene specifically expressed in vascular endothelial cells of HCC but not in non-tumorous liver tissues. This finding was confirmed by RT-PCR analysis of micro-dissected cells and immunohistochemical staining of tissue sections. Infusion of recombinant monoclonal anti-PLVAP Fab-TF into the main tumor feeding artery induced tumor vascular thrombosis and extensive tumor necrosis at doses between 2.5 μg and 12 μg. Tumor growth was suppressed for 40 days after a single treatment. Systemic administration did not induce tumor necrosis. Little systemic toxicity was noted for this therapeutic agent. The results of this study suggest that anti-PLVAP Fab-TF may be used to treat HCC cases for which transcatheter arterial chemoembolization (TACE) is currently used and potentially avoid the drawback of high viscosity of chemoembolic emulsion for TACE to improve therapeutic outcome. Anti-PLVAP Fab-TF may become a viable therapeutic agent in patients with advanced disease and compromised liver function.

  11. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    Science.gov (United States)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  12. Impact of Shed/Soluble targets on the PK/PD of approved therapeutic monoclonal antibodies.

    Science.gov (United States)

    Samineni, Divya; Girish, Sandhya; Li, Chunze

    2016-12-01

    Suboptimal treatment for monoclonal antibodies (mAbs) directed against endogenous circulating soluble targets and the shed extracellular domains (ECD) of the membrane-bound targets is an important clinical concern due to the potential impact of mAbs on the in vivo efficacy and safety. Consequently, there are considerable challenges in the determination of an optimal dose and/or dosing regimen. Areas covered: This review outlines the impact of shed antigen targets from membrane-bound proteins and soluble targets on the PK and/or PD of therapeutic mAbs that have been approved in the last decade. We discuss various bioanalytical techniques that have facilitated the interpretation of the PK/PD properties of therapeutic mAbs and also considered the factors that may impact such measurements. Quantitative approaches include target-mediated PK models and bi- or tri-molecular interaction PK/PD models that describe the relationships between the antibody PK and the ensuing effects on PD biomarkers, to facilitate the mAb PK/PD characterization. Expert commentary: The proper interpretation of PK/PD relationships through the integrated PK/PD modeling and bioanalytical strategy facilitates a mechanistic understanding of the disease processes and dosing regimen optimization, thereby offering insights into developing effective therapeutic regimens. This review provides an overview of the impact of soluble targets or shed ECD on mAb PK/PD properties. We provide examples of quantitative approaches that facilitate the characterization of mAb PK/PD characteristics and their corresponding bioanalytical strategies.

  13. Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells.

    Directory of Open Access Journals (Sweden)

    Bishoy eFaltas

    2012-07-01

    Full Text Available The last decade has witnessed an evolution of our understanding of the biology of the metastatic cascade. Recent insights into the metastatic process show that it is complex, dynamic and multi-directional. This process starts at a very early stage in the natural history of solid tumor growth leading to early development of metastases that grow in parallel with the primary tumor. The role of stem cells in perpetuating cancer metastases is increasingly becoming more evident. At the same time, there is a growing recognition of the crucial role circulating tumor cells (CTCs play in the development of metastases. These insights have laid the biological foundations for therapeutic targeting of CTCs, a promising area of research that aims to reduce cancer morbidity and mortality by preventing the development of metastases at a very early stage. The hematogenous transport phase of the metastatic cascade provides critical access to CTCs for therapeutic targeting aiming to interrupt the metastatic process. Recent advances in the fields of nanotechnology and micro-fluidics have led to the development of several devices for in-vivo targeting of CTC during transit in the circulation. Selectin-coated tubes that target cell adhesion molecules, immuno-magnetic separators and in-vivo photoacoustic flow cytometers are currently being developed for this purpose. On the pharmacological front, several pharmacological and immunological agents targeting cancer stem cells are currently being developed. Such agents may ultimately prove to be effective against circulating tumor stem cells (CTSCs. Although still in its infancy, therapeutic targeting of CTCs and CTSCs offers an unprecedented opportunity to prevent the development of metastasis and potentially alter the natural history of cancer. By rendering cancer a local disease, these approaches could lead to major reductions in metastasis-related morbidity and mortality.

  14. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma.

    Science.gov (United States)

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Takagi, Satoshi

    2016-05-03

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA.

  15. Adipokines: Potential Therapeutic Targets for Vascular Dysfunction in Type II Diabetes Mellitus and Obesity

    Directory of Open Access Journals (Sweden)

    Mostafa Wanees Ahmed El husseny

    2017-01-01

    Full Text Available Adipokines are bioactive molecules that regulate several physiological functions such as energy balance, insulin sensitization, appetite regulation, inflammatory response, and vascular homeostasis. They include proinflammatory cytokines such as adipocyte fatty acid binding protein (A-FABP and anti-inflammatory cytokines such as adiponectin, as well as vasodilator and vasoconstrictor molecules. In obesity and type II diabetes mellitus (DM, insulin resistance causes impairment of the endocrine function of the perivascular adipose tissue, an imbalance in the secretion of vasoconstrictor and vasodilator molecules, and an increased production of reactive oxygen species. Recent studies have shown that targeting plasma levels of adipokines or the expression of their receptors can increase insulin sensitivity, improve vascular function, and reduce the risk of cardiovascular morbidity and mortality. Several reviews have discussed the potential of adipokines as therapeutic targets for type II DM and obesity; however, this review is the first to focus on their therapeutic potential for vascular dysfunction in type II DM and obesity.

  16. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening

    Science.gov (United States)

    Machutta, Carl A.; Kollmann, Christopher S.; Lind, Kenneth E.; Bai, Xiaopeng; Chan, Pan F.; Huang, Jianzhong; Ballell, Lluis; Belyanskaya, Svetlana; Besra, Gurdyal S.; Barros-Aguirre, David; Bates, Robert H.; Centrella, Paolo A.; Chang, Sandy S.; Chai, Jing; Choudhry, Anthony E.; Coffin, Aaron; Davie, Christopher P.; Deng, Hongfeng; Deng, Jianghe; Ding, Yun; Dodson, Jason W.; Fosbenner, David T.; Gao, Enoch N.; Graham, Taylor L.; Graybill, Todd L.; Ingraham, Karen; Johnson, Walter P.; King, Bryan W.; Kwiatkowski, Christopher R.; Lelièvre, Joël; Li, Yue; Liu, Xiaorong; Lu, Quinn; Lehr, Ruth; Mendoza-Losana, Alfonso; Martin, John; McCloskey, Lynn; McCormick, Patti; O'Keefe, Heather P.; O'Keeffe, Thomas; Pao, Christina; Phelps, Christopher B.; Qi, Hongwei; Rafferty, Keith; Scavello, Genaro S.; Steiginga, Matt S.; Sundersingh, Flora S.; Sweitzer, Sharon M.; Szewczuk, Lawrence M.; Taylor, Amy; Toh, May Fern; Wang, Juan; Wang, Minghui; Wilkins, Devan J.; Xia, Bing; Yao, Gang; Zhang, Jean; Zhou, Jingye; Donahue, Christine P.; Messer, Jeffrey A.; Holmes, David; Arico-Muendel, Christopher C.; Pope, Andrew J.; Gross, Jeffrey W.; Evindar, Ghotas

    2017-07-01

    The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.

  17. Dana-Farber Cancer Institute: Identification of Therapeutic Targets Across Cancer Types | Office of Cancer Genomics

    Science.gov (United States)

    The Dana Farber Cancer Institute CTD2 Center focuses on the use of high-throughput genetic and bioinformatic approaches to identify and credential oncogenes and co-dependencies in cancers. This Center aims to provide the cancer research community with information that will facilitate the prioritization of targets based on both genomic and functional evidence, inform the most appropriate genetic context for downstream mechanistic and validation studies, and enable the translation of this information into therapeutics and diagnostics.

  18. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer

    OpenAIRE

    Dhar, Swati; Kumar, Avinash; Zhang, Liangfen; Rimando, Agnes M.; Lage, Janice M.; Lewin, Jack R.; Atfi, Azeddine; Zhang, Xu; Levenson, Anait S.

    2016-01-01

    Overexpression of the epigenetic modifier metastasis-associated protein 1 (MTA1) is associated with aggressive human prostate cancer. The purpose of this study was to determine MTA1- targeted chemopreventive and therapeutic efficacy of pterostilbene, a natural potent analog of resveratrol, in pre-clinical models of prostate cancer. Here, we show that high levels of MTA1 expression in Pten-loss prostate cooperate with key oncogenes, including c-Myc and Akt among others, to promote prostate can...

  19. The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders.

    Science.gov (United States)

    Ganz, Tomas; Nemeth, Elizabeta

    2011-01-01

    The review summarizes the current understanding of the role of hepcidin and ferroportin in normal iron homeostasis and its disorders. The various approaches to therapeutic targeting of hepcidin and ferroportin in iron-overload disorders (mainly hereditary hemochromatosis and β-thalassemia) and iron-restrictive anemias (anemias associated with infections, inflammatory disorders, and certain malignancies, anemia of chronic kidney diseases, and iron-refractory iron-deficiency anemia) are also discussed.

  20. The Use of Therapeutic Peptides to Target and to Kill Cancer Cells

    OpenAIRE

    Boohaker, R J; Lee, M. W.; Vishnubhotla, P.; Perez, J M; Khaled, A.R.

    2012-01-01

    Peptide therapeutics is a promising field for emerging anti-cancer agents. Benefits include the ease and rapid synthesis of peptides and capacity for modifications. An existing and vast knowledge base of protein structure and function can be exploited for novel peptide design. Current research focuses on developing peptides that can (1) serve as tumor targeting moieties and (2) permeabilize membranes with cytotoxic consequences. A survey of recent findings reveals significant trends. Amphiphi...

  1. Ghrelin is a prognostic marker and a potential therapeutic target in breast cancer

    OpenAIRE

    Gr?nberg, Malin; Ahlin, Cecilia; Naeser, Ylva; Janson, Eva Tiensuu; Holmberg, Lars; Fj?llskog, Marie-Louise

    2017-01-01

    Ghrelin and obestatin are gastrointestinal peptides, encoded by the same preproghrelin gene. Both are expressed in breast cancer tissue and ghrelin has been implicated in breast cancer tumorigenesis. Despite recent advances in breast cancer management the need for new prognostic markers and potential therapeutic targets in breast cancer remains high. We studied the prognostic impact of ghrelin and obestatin in women with node negative breast cancer. Within a cohort of women with breast cancer...

  2. TNK2 Tyrosine Kinase as a Novel Therapeutic Target in Triple Negative Breast Cancer

    Science.gov (United States)

    2016-10-01

    Saraswati Sukumar3, Nupam P. Mahajan6,7, Akhilesh Pandey1,2,3,4 1Department of Biological Chemistry , Johns Hopkins University School of Medicine ...levels and activation correlate with clinical and pathological features of TNBC? Aim 2: What is the value of TNK2 as a therapeutic target in vitro and in... clinical trial for women with TNK2 positive TNBCs and to eventually reduce the mortality rate of at least a subset of TNBC patients. KEYWRODS: TNK2

  3. A Novel Association and Therapeutic Targeting of Neuropilin-1 and MUC1 in Pancreatic Cancer

    Science.gov (United States)

    2015-12-01

    1 AWARD NUMBER: W81XWH-12-1-0220 TITLE: A Novel Association and Therapeutic Targeting of Neuropilin-1 and MUC1 in Pancreatic Cancer PRINCIPAL...Neuropilin-1 and MUC1 in Pancreatic Cancer 5b. GRANT NUMBER CA110832 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Ru Zhou...15. SUBJECT TERMS Neuropilin-1, MUC1, VEGF, Angiogenesis, Pancreatic Cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER

  4. Breaking the LSD1/KDM1A addiction: therapeutic targeting of the epigenetic modifier in AML.

    Science.gov (United States)

    Lokken, Alyson A; Zeleznik-Le, Nancy J

    2012-04-17

    KDM1A/LSD1, a histone H3K4/K9 demethylase and epigenetic regulator with roles in both gene activation and repression, has increased expression in multiple cancer types. Harris et al., in this issue of Cancer Cell, and Schenk et al. show that KDM1A may be a viable therapeutic target in treating AML. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Novel Therapeutic Targets to Treat Social Behavior Deficits in Autism and Related Disorders

    Science.gov (United States)

    2016-06-01

    such as schizophrenia or depression wherein impaired social behavior is prominent. Among inbred mouse strains, it appears as though there are...disorders: a systematic review. Keio J. Med. 57, 15e36. Alabdali, A., Al-Ayadhi, L., El-Ansary, A., 2014. Association of social and cognitive impairment and...Award Number: W81XWH-12-1-0506 TITLE: Novel Therapeutic Targets To Treat Social Behavior Deficits in Autism and Related Disorders PRINCIPAL

  6. Developing Novel Therapeutics Targeting Undifferentiated and Castration-Resistant Prostate Cancer Stem Cells

    Science.gov (United States)

    2016-10-01

    main objective of this DOD-supported project is to identify and develop novel therapeutics to target the undifferentiated ( PSA -/lo), castration...resistant PCSCs. We proposed to achieve this objective with two Specific Aims: 1) To perform phage display library (PDL) screening in PSA -/lo PCa cells to...Tang, the PI of this grant, together with most lab members, moved from the M.D Anderson Cancer Center (MDACC) to Roswell Park Cancer Institute (RPCI

  7. Mitochondrial Oxidative Damage in Aging and Alzheimer's Disease: Implications for Mitochondrially Targeted Antioxidant Therapeutics

    OpenAIRE

    P. Hemachandra Reddy

    2006-01-01

    The overall aim of this article is to review current therapeutic strategies for treating AD, with a focus on mitochondrially targeted antioxidant treatments. Recent advances in molecular, cellular, and animal model studies of AD have revealed that amyloid precursor protein derivatives, including amyloid beta (Aβ) monomers and oligomers, are likely key factors in tau hyperphosphorylation, mitochondrial oxidative damage, inflammatory changes, and synaptic failure in the brain ...

  8. Sodium potassium adenosine triphosphatase (Na/K-ATPase) as a therapeutic target for uremic cardiomyopathy.

    Science.gov (United States)

    Wang, Xiaoliang; Liu, Jiang; Drummond, Christopher A; Shapiro, Joseph I

    2017-05-01

    Clinically, patients with significant reductions in renal function present with cardiovascular dysfunction typically termed, uremic cardiomyopathy. It is a progressive series of cardiac pathophysiological changes, including left ventricular diastolic dysfunction and hypertrophy (LVH) which sometimes progress to left ventricular dilation (LVD) and systolic dysfunction in the setting of chronic kidney disease (CKD). Uremic cardiomyopathy is almost ubiquitous in patients afflicted with end stage renal disease (ESRD). Areas covered: This article reviews recent epidemiology, pathophysiology of uremic cardiomyopathy and provide a board overview of Na/K-ATPase research with detailed discussion on the mechanisms of Na/K-ATPase/Src/ROS amplification loop. We also present clinical and preclinical evidences as well as molecular mechanism of this amplification loop in the development of uremic cardiomyopathy. A potential therapeutic peptide that targets on this loop is discussed. Expert opinion: Current clinical treatment for uremic cardiomyopathy remains disappointing. Targeting the ROS amplification loop mediated by the Na/K-ATPase signaling function may provide a novel therapeutic target for uremic cardiomyopathy and related diseases. Additional studies of Na/K-ATPase and other strategies that regulate this loop will lead to new therapeutics.

  9. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    Science.gov (United States)

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics.

    Science.gov (United States)

    Knezevic, Nebojsa Nick; Yekkirala, Ajay; Yaksh, Tony L

    2017-11-01

    Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.

  11. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications.

    Science.gov (United States)

    Zielonka, Jacek; Joseph, Joy; Sikora, Adam; Hardy, Micael; Ouari, Olivier; Vasquez-Vivar, Jeannette; Cheng, Gang; Lopez, Marcos; Kalyanaraman, Balaraman

    2017-08-09

    Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.

  12. Fatty acid synthase (FASN) as a therapeutic target in breast cancer.

    Science.gov (United States)

    Menendez, Javier A; Lupu, Ruth

    2017-11-01

    Ten years ago, we put forward the metabolo-oncogenic nature of fatty acid synthase (FASN) in breast cancer. Since the conception of this hypothesis, which provided a model to explain how FASN is intertwined with various signaling networks to cell-autonomously regulate breast cancer initiation and progression, FASN has received considerable attention as a therapeutic target. However, despite the ever-growing evidence demonstrating the involvement of FASN as part of the cancer-associated metabolic reprogramming, translation of the basic science-discovery aspects of FASN blockade to the clinical arena remains a challenge. Areas covered: Ten years later, we herein review the preclinical lessons learned from the pharmaceutical liabilities of the first generation of FASN inhibitors. We provide an updated view of the current development and clinical testing of next generation FASN-targeted drugs. We also discuss new clinico-molecular approaches that should help us to convert roadblocks into roadways that will propel forward our therapeutic understanding of FASN. Expert opinion: With the recent demonstration of target engagement and early signs of clinical activity with the first orally available, selective, potent and reversible FASN inhibitor, we can expect Big pharma to revitalize their interest in lipogenic enzymes as well-credentialed targets for oncology drug development in breast cancer.

  13. Sestrin2 as a Novel Biomarker and Therapeutic Target for Various Diseases

    Directory of Open Access Journals (Sweden)

    Mazhar Pasha

    2017-01-01

    Full Text Available Sestrin2 (SESN2, a highly conserved stress-inducible metabolic protein, is known to repress reactive oxygen species (ROS and provide cytoprotection against various noxious stimuli including genotoxic and oxidative stress, endoplasmic reticulum (ER stress, and hypoxia. Studies demonstrate that the upregulation of Sestrin2 under conditions of oxidative stress augments autophagy-directed degradation of Kelch-like ECH-associated protein 1 (Keap1, which targets and breaks down nuclear erythroid-related factor 2 (Nrf2, a key regulator of various antioxidant genes. Moreover, ER stress and hypoxia are shown to induce Sestrins, which ultimately reduce cellular ROS levels. Sestrin2 also plays a pivotal role in metabolic regulation through activation of the key energy sensor AMP-dependent protein kinase (AMPK and inhibition of mammalian target of rapamycin complex 1 (mTORC1. Other downstream effects of Sestrins include autophagy activation, antiapoptotic effects in normal cells, and proapoptotic effects in cancer cells. As perturbations in the aforementioned pathways are well documented in multiple diseases, Sestrin2 might serve as a potential therapeutic target for various diseases. Thus, the aim of this review is to discuss the upstream regulators and the downstream effectors of Sestrins and to highlight the significance of Sestrin2 as a biomarker and a therapeutic target in diseases such as metabolic disorders, cardiovascular and neurodegenerative diseases, and cancer.

  14. The Kinase Mirk/dyrk1B: A Possible Therapeutic Target in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Eileen [Upstate Medical University, State University of New York, Syracuse, New York, NY 13210 (United States)

    2010-07-14

    Pancreatic ductal adenocarcinomas are strongly resistant to chemotherapeutic drugs and radiation, underscoring the need for new therapeutic targets, particularly ones which target the numerous out of cycle cancer cells. Analysis of resected tumors for nuclear Ki67 antigen has shown that about 70% of pancreatic cancer cells are out of cycle, some post-mitotic. Other out of cycle cells are in a quiescent, reversible G0 state, resistant to drugs which target dividing cells, with some able to repopulate a tumor. The serine/threonine kinase Mirk/dyrk1B is a downstream effector of oncogenic K-ras, the most common mutation in this cancer. Mirk expression is elevated in quiescent pancreatic cancer cells and mediates their prolonged survival through increasing expression of a cohort of antioxidant genes. Mirk is expressed in about 90% of pancreatic cancers and is amplified in a subset. Mirk appears not to be an essential gene for normal cells from embryonic knockout studies in mice and RNA interference studies on cultured cells, but is upregulated in pancreatic tumor cells. These unusual characteristics suggest that Mirk may be a selective target for therapeutic intervention.

  15. Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen

    Science.gov (United States)

    Oliver, David; Ji, Hao; Liu, Piaomu; Gasparian, Alexander; Gardiner, Ellen; Lee, Samuel; Zenteno, Adrian; Perinskaya, Lillian O.; Chen, Mengqian; Buckhaults, Phillip; Broude, Eugenia; Wyatt, Michael D.; Valafar, Homayoun; Peña, Edsel; Shtutman, Michael

    2017-01-01

    Targeted cancer therapeutics aim to exploit tumor-specific, genetic vulnerabilities specifically affecting neoplastic cells without similarly affecting normal cells. Here we performed sequencing-based screening of an shRNA library on a panel of cancer cells of different origins as well as normal cells. The shRNA library was designed to target a subset of genes previously identified using a whole genome screening approach. This focused shRNA library was infected into cells followed by analysis of enrichment and depletion of the shRNAs over the course of cell proliferation. We developed a bootstrap likelihood ratio test for the interpretation of the effects of multiple shRNAs over multiple cell line passages. Our analysis identified 44 genes whose depletion preferentially inhibited the growth of cancer cells. Among these genes ribosomal protein RPL35A, putative RNA helicase DDX24, and coatomer complex I (COPI) subunit ARCN1 most significantly inhibited growth of multiple cancer cell lines without affecting normal cell growth and survival. Further investigation revealed that the growth inhibition caused by DDX24 depletion is independent of p53 status underlining its value as a drug target. Overall, our study establishes a new approach for the analysis of proliferation-based shRNA selection strategies and identifies new targets for the development of cancer therapeutics. PMID:28223711

  16. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer.

    Science.gov (United States)

    Qu, Q; Zeng, F; Liu, X; Wang, Q J; Deng, F

    2016-05-19

    Tumor cells exhibit unique metabolic adaptations that are increasingly viewed as potential targets for novel and specific cancer therapies. Among these targets, the carnitine palmitoyltransferase system is responsible for delivering the long-chain fatty acid (FA) from cytoplasm into mitochondria for oxidation, where carnitine palmitoyltransferase I (CPTI) catalyzes the rate-limiting step of fatty acid oxidation (FAO). With increasing understanding of the crucial role had by fatty acid oxidation in cancer, CPTI has received renewed attention as a pivotal mediator in cancer metabolic mechanism. CPTI activates FAO and fuels cancer growth via ATP and NADPH production, constituting an essential part of cancer metabolism adaptation. Moreover, CPTI also functionally intertwines with other key pathways and factors to regulate gene expression and apoptosis of cancer cell. Here, we summarize recent findings and update the current understanding of FAO and CPTI in cancer and provide theoretical basis for this enzyme as an emerging potential molecular target in cancer therapeutic intervention.

  17. Recent Advances in Targetable Therapeutics in Metastatic Non-Squamous NSCLC

    Directory of Open Access Journals (Sweden)

    Pranshu eBansal

    2016-05-01

    Full Text Available Lung adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC. With the discovery of epidermal growth factor receptor (EGFR mutations, anaplastic lymphoma kinase (ALK rearrangements and effective targeted therapies, therapeutic options are expanding for patients with lung adenocarcinoma. Here, we review novel therapies in non-squamous NSCLC, which are directed against oncogenic targets, including EGFR, ALK, ROS1, BRAF, MET, human epidermal growth factor receptor 2 (HER2, vascular endothelial growth factor receptor 2 (VEGFR2, RET and NTRK. With the rapidly evolving molecular testing and development of new targeted agents, our ability to further personalize therapy in non-squamous NSCLC is rapidly expanding.

  18. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Thaiz F. Borin

    2017-12-01

    Full Text Available Metastatic breast cancer (BC (also referred to as stage IV spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4 family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE, an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis.

  19. Application of Long Noncoding RNAs in Osteosarcoma: Biomarkers and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Zhihong Li

    2017-07-01

    Full Text Available Osteosarcoma is the most common primary bone malignancy in children and adolescents. Although improvements in therapeutic strategies were achieved, the outcome remains poor for most patients with metastatic or recurrent osteosarcoma. Therefore, it is imperative to identify novel and effective prognostic biomarker and therapeutic targets for the disease. Long noncoding RNAs (lncRNAs are a novel class of RNA molecules defined as transcripts >200 nucleotides that lack protein coding potential. Many lncRNAs are deregulated in cancer and are important regulators for malignancies. Nine lncRNAs (91H, BCAR4, FGFR3-AS1, HIF2PUT, HOTTIP, HULC, MALAT-1, TUG1, UCA1 are upregulated and considered oncogenic for osteosarcoma. Loc285194 and MEG3 are two lncRNAs downregulated and as tumor suppressor for the disease. Moreover, the expressions of LINC00161 and ODRUL are associated with chemo-resistance of osteosarcoma. The mechanisms for these lncRNAs in regulating development of osteosarcoma are diverse, e.g. ceRNA, Wnt/β-catenin pathway, etc. The lncRNAs identified may serve as potential biomarkers or therapeutic targets for osteosarcoma.

  20. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Konstantinos Tzelepis

    2016-10-01

    Full Text Available Acute myeloid leukemia (AML is an aggressive cancer with a poor prognosis, for which mainstream treatments have not changed for decades. To identify additional therapeutic targets in AML, we optimize a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR screening platform and use it to identify genetic vulnerabilities in AML cells. We identify 492 AML-specific cell-essential genes, including several established therapeutic targets such as DOT1L, BCL2, and MEN1, and many other genes including clinically actionable candidates. We validate selected genes using genetic and pharmacological inhibition, and chose KAT2A as a candidate for downstream study. KAT2A inhibition demonstrated anti-AML activity by inducing myeloid differentiation and apoptosis, and suppressed the growth of primary human AMLs of diverse genotypes while sparing normal hemopoietic stem-progenitor cells. Our results propose that KAT2A inhibition should be investigated as a therapeutic strategy in AML and provide a large number of genetic vulnerabilities of this leukemia that can be pursued in downstream studies.

  1. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-09-01

    Full Text Available The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams, and studied their presence and absence within the different lineages (births and deaths among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes.

  2. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential.

    Science.gov (United States)

    Wang, Qi; Rosa, Bruce A; Jasmer, Douglas P; Mitreva, Makedonka

    2015-09-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes.

  3. Amyloid β-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets.

    Science.gov (United States)

    Han, Sun-Ho; Park, Jong-Chan; Mook-Jung, Inhee

    2016-02-01

    Alzheimer's disease (AD) is one of the most devastating neurodegenerative diseases in modern society because of insurmountable difficulties in early diagnosis and lack of therapeutic treatments. AD pathogenesis is tightly linked to the abnormal accumulation and aggregation of amyloid β (Aβ), seemingly the main causative factor of AD; however, intensive research on Aβ has not yet explained the complexity of AD pathogenesis. Consequently, the role of other supportive partners of Aβ have been elucidated and evaluated in the etiology of AD, and their potential molecular mechanisms have emerged as possible therapeutic targets. In this review, we compile information regarding Aβ-interacting partners in normal conditions and AD pathology, and analyze their etiological roles in diverse areas. Furthermore, we integrate this information into suggestions for probable clinical applications for AD diagnosis and therapeutics. We include Aβ-interacting partners localized to the cell surface and intracellular and extracellular compartments of different cell types ranging from the central nervous system to peripheral regions. Additionally, we expand the range of Aβ-interacting partners by including not only proteins, but also inorganic substances like metals, expecting that one of these partners may yield a critical breakthrough in the field of AD diagnostics and therapeutic drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. TARGETgene: a tool for identification of potential therapeutic targets in cancer.

    Directory of Open Access Journals (Sweden)

    Chia-Chin Wu

    Full Text Available The vast array of in silico resources and data of high throughput profiling currently available in life sciences research offer the possibility of aiding cancer gene and drug discovery process. Here we propose to take advantage of these resources to develop a tool, TARGETgene, for efficiently identifying mutation drivers, possible therapeutic targets, and drug candidates in cancer. The simple graphical user interface enables rapid, intuitive mapping and analysis at the systems level. Users can find, select, and explore identified target genes and compounds of interest (e.g., novel cancer genes and their enriched biological processes, and validate predictions using user-defined benchmark genes (e.g., target genes detected in RNAi screens and curated cancer genes via TARGETgene. The high-level capabilities of TARGETgene are also demonstrated through two applications in this paper. The predictions in these two applications were then satisfactorily validated by several ways, including known cancer genes, results of RNAi screens, gene function annotations, and target genes of drugs that have been used or in clinical trial in cancer treatments. TARGETgene is freely available from the Biomedical Simulations Resource web site (http://bmsr.usc.edu/Software/TARGET/TARGET.html.

  5. Radiation-enhanced therapeutic targeting of galectin-1 enriched malignant stroma in triple negative breast cancer.

    Science.gov (United States)

    Upreti, Meenakshi; Jyoti, Amar; Johnson, Sara E; Swindell, Elden P; Napier, Dana; Sethi, Pallavi; Chan, Ryan; Feddock, Jonathan M; Weiss, Heidi L; O'Halloran, Thomas V; Evers, B Mark

    2016-07-05

    Currently there are no FDA approved targeted therapies for Triple Negative Breast Cancer (TNBC). Ongoing clinical trials for TNBC have focused primarily on targeting the epithelial cancer cells. However, targeted delivery of cytotoxic payloads to the non-transformed tumor associated-endothelium can prove to be an alternate approach that is currently unexplored. The present study is supported by recent findings on elevated expression of stromal galectin-1 in clinical samples of TNBC and our ongoing findings on stromal targeting of radiation induced galectin-1 by the anginex-conjugated arsenic-cisplatin loaded liposomes using a novel murine tumor model. We demonstrate inhibition of tumor growth and metastasis in response to the multimodal nanotherapeutic strategy using a TNBC model with orthotopic tumors originating from 3D tumor tissue analogs (TTA) comprised of tumor cells, endothelial cells and fibroblasts. The 'rigorous' combined treatment regimen of radiation and targeted liposomes is also shown to be well tolerated. More importantly, the results presented provide a means to exploit clinically relevant radiation dose for concurrent receptor mediated enhanced delivery of chemotherapy while limiting overall toxicity. The proposed study is significant as it falls in line with developing combinatorial therapeutic approaches for stroma-directed tumor targeting using tumor models that have an appropriate representation of the TNBC microenvironment.

  6. CB2 and GPR55 receptors as therapeutic targets for systemic immune dysregulation

    Directory of Open Access Journals (Sweden)

    Juan Zhou

    2016-08-01

    Full Text Available The endocannabinoid system (ECS is involved in many physiological processes and has been suggested to play critical roles in the immune response and the central nervous system (CNS. Therefore, ECS modulation has potential therapeutic effects on immune dysfunctional disorders, such as sepsis and CNS injury-induced immunodeficiency syndrome (CIDS. In sepsis, excessive release of pro- and anti-inflammatory mediators results in multi-organ dysfunction/failure and death. In CIDS, an acute CNS injury dysregulates a normally well-balanced interplay between the CNS and immune system, leading to increased patients’ susceptibility to infections. In this review, we will discuss potential therapeutic modulation of the immune response in sepsis and CNS injury by manipulation of the ECS representing a novel target for immunotherapy.

  7. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza

    2015-03-01

    Full Text Available Of the various derivatives of caffeic acid, caffeic acid phenethyl ester (CAPE is a hydrophobic, bioactive polyphenolic ester obtained from propolis extract. The objective in writing this review article was to summarize all published studies on therapeutics of CAPE in inflammation and cancer to extract direction for future research. The possible molecular targets for the action of CAPE, include various transcription factors such as nuclear factor-κB, tissue necrosis factor-α, interleukin-6, cyclooxygenase-2, Nrf2, inducible nitric oxide synthase, nuclear factor of activated T cells, hypoxia-inducible factor-1α, and signal transducers and activators of transcription. Based on the valuable data on its therapeutics in inflammation and cancer, clinical studies of CAPE should also be conducted to explore its toxicities, if any.

  8. Nitric oxide signaling in human ovarian cancer: A potential therapeutic target.

    Science.gov (United States)

    El-Sehemy, Ahmed; Postovit, Lynne-Marie; Fu, YangXin

    2016-04-01

    Ovarian cancer is the leading cause of death due to gynecologic malignancies worldwide. Current therapy regimens are ineffective to treat advanced ovarian cancers, presenting a need to develop novel therapeutic strategies. Nitric oxide (NO) is a multifunctional gaseous molecule that is generated by cancer, stromal and endothelial cells and plays a multifaceted role in cancer biology through multiple mechanisms. Accumulating evidence suggests that NO signaling is involved in multiple aspects of ovarian cancer, including growth, apoptosis, cancer-stromal cell interaction, angiogenesis and response to chemotherapy. This review will discuss the experimental and clinical evidence of the involvement of NO signaling in ovarian cancer and the therapeutic potential of targeting NO signaling in ovarian cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets.

    Science.gov (United States)

    Sharma, Dilip; Bhattacharya, Pallab; Kalia, Kiran; Tiwari, Vinod

    2017-06-01

    Diabetic nephropathy is one of the most prevalent microvascular complication in patients suffering from diabetes and is reported to be the major cause of renal failure when compared to any other kidney disease. Currently, available therapies provide only symptomatic relief and unable to treat the underlying pathophysiology of diabetic nephropathy. This review will explore new insights into the established therapeutic paradigms targeting oxidative stress, inflammation and endoplasmic reticulum stress with the focus on recent clinical developments. Apart from this, the involvement of novel cellular and molecular mechanisms including the role of endothelin-receptor antagonists, Wnt signaling pathway, epigenetics and micro RNA is also discussed so that key molecular switches involved in the pathogenesis of diabetic nephropathy can be identified. Elucidating new molecular pathways will help in the development of novel therapeutics for the prevention and treatment of diabetic nephropathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. SIRT2 as a therapeutic target for age-related disorders

    Directory of Open Access Journals (Sweden)

    RIta eMachado de Oliveira

    2012-05-01

    Full Text Available Sirtuin proteins are conserved regulators of aging that have recently emerged as important modifiers of several diseases which commonly occur later in life, such as cancer, diabetes, cardiovascular and neurodegenerative diseases. In mammals, there are seven sirtuins (SIRT1-7, which display diversity in subcellular localization and function. SIRT1 has received much of attention due to its possible impact on longevity, while important biological and therapeutic roles of other sirtuins have been underestimated and just recently recognized. Here we focus on SIRT2, a member of the sirtuin family, and discuss its role in cellular and tissue-specific functions. This review summarizes the main scientific advances on SIRT2 protein biology and explores its potential as a therapeutic target for treatment of age-related disorders.

  11. ABCA1 as a New Therapeutic Target for Treating Cardiovascular Disease.

    Science.gov (United States)

    Oram, John F.

    2002-01-01

    Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in western societies. Although cholesterol is a major cardiovascular disease risk factor, therapeutic interventions to lower plasma cholesterol levels have had limited success in reducing coronary events, underscoring the need for other treatment strategies. A promising therapeutic target is an ATP binding cassette transporter called ABCA1, a cell membrane protein that is the gatekeeper for secretion of excess cholesterol from macrophages into the high-density lipoprotein (HDL) metabolic pathway. Mutations in ABCA1 cause Tangier disease, a severe HDL-deficiency syndrome characterized by accumulation of cholesterol in tissue macrophages and prevalent atherosclerosis. Thus, ABCA1-activating drugs have the potential to mobilize cholesterol from macrophages of atherosclerotic lesions, making them powerful agents for preventing and reversing cardiovascular disease. (c) 2002 Prous Science. All rights reserved.

  12. Network science for the identification of novel therapeutic targets in epilepsy [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rod C. Scott

    2016-05-01

    Full Text Available The quality of life of children with epilepsy is a function of seizures and associated cognitive and behavioral comorbidities. Current treatments are not successful at stopping seizures in approximately 30% of patients despite the introduction of multiple new antiepileptic drugs over the last decade. In addition, modification of seizures has only a modest impact on the comorbidities. Therefore, novel approaches to identify therapeutic targets that improve seizures and comorbidities are urgently required. The potential of network science as applied to genetic, local neural network, and global brain data is reviewed. Several examples of possible new therapeutic approaches defined using novel network tools are highlighted. Further study to translate the findings into clinical practice is now required.

  13. Targetable subsets of non-Hodgkin lymphoma in Malawi define therapeutic opportunities.

    Science.gov (United States)

    Morgan, Elizabeth A; Sweeney, M Patrick; Tomoka, Tamiwe; Kopp, Nadja; Gusenleitner, Daniel; Redd, Robert A; Carey, Christopher D; Masamba, Leo; Kamiza, Steve; Pinkus, Geraldine S; Neuberg, Donna S; Rodig, Scott J; Milner, Danny A; Weinstock, David M

    2016-11-29

    Diagnostics and supportive care for patients with non-Hodgkin lymphoma (NHL) in lower- and middle-income countries (LMICs) are lacking. We hypothesized that high-throughput transcription-based diagnostics could classify NHL specimens from Malawi amenable to targeted therapeutics. We established tissue microarrays and classified 328 cases diagnosed by hematoxylin and eosin as NHL at University of Malawi College of Medicine using immunohistochemistry (IHC) for conventional markers and therapeutic targets. A subset was analyzed using NanoString-based expression profiling with parsimonious transcriptional classifiers. Overall, 72% of lymphomas were high-grade B-cell tumors, subsets of which were enriched for expression of MYC, BCL2, and/or PD-L1. A 21-gene transcriptional classifier, previously validated in Western cohorts, divided 96% of diffuse large B-cell lymphomas (DLBCLs) with 100% of B-cell lymphomas, unclassifiable, into 1 cluster and 88% of Burkitt lymphomas into a separate cluster. Cell-of-origin categorization of 36 DLBCLs by NanoString lymphoma subtyping test (LST) revealed 69% concordance with IHC. All discordant cases were classified as germinal center B cell-like (GCB) by LST but non-GCB by IHC. In summary, utilization of advanced diagnostics facilitates objective assessment and segregation of biologically defined subsets of NHL from an LMIC without expert review, thereby establishing a basis for the implementation of effective and less toxic targeted agents.

  14. Targeted therapies in hematological malignancies using therapeutic monoclonal antibodies against Eph family receptors.

    Science.gov (United States)

    Charmsaz, Sara; Scott, Andrew M; Boyd, Andrew W

    2017-10-01

    The use of monoclonal antibodies (mAbs) and molecules derived from them has achieved considerable attention and success in recent years, establishing this mode of therapy as an important therapeutic strategy in many cancers, in particular hematological tumors. mAbs recognize cell surface antigens expressed on target cells and mediate their function through various mechanisms such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, or immune system modulation. The efficacy of mAb therapy can be improved when they are conjugated to a highly potent payloads, including cytotoxic drugs and radiolabeled isotopes. The Eph family of proteins has received considerable attention in recent years as therapeutic targets for treatment of both solid and hematological cancers. High expression of Eph receptors on cancer cells compared with low expression levels in normal adult tissues makes them an attractive candidate for cancer immunotherapy. In this review, we detail the modes of action of antibody-based therapies with a focus on the Eph family of proteins as potential targets for therapy in hematological malignancies. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  15. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Science.gov (United States)

    Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.

    2017-01-01

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698

  16. Targeting Glutamatergic Signaling for the Development of Novel Therapeutics for Mood Disorders

    Science.gov (United States)

    Machado-Vieira, R.; Salvadore, G.; Ibrahim, L.; DiazGranados, N.; Zarate, C.A.

    2009-01-01

    There have been no recent advances in drug development for mood disorders in terms of identifying drug targets that are mechanistically distinct from existing ones. As a result, existing antidepressants are based on decades-old notions of which targets are relevant to the mechanisms of antidepressant action. Low rates of remission, a delay of onset of therapeutic effects, continual residual depressive symptoms, relapses, and poor quality of life are unfortunately common in patients with mood disorders. Offering alternative options is requisite in order to reduce the individual and societal burden of these diseases. The glutamatergic system is a promising area of research in mood disorders, and likely to offer new possibilities in therapeutics. There is increasing evidence that mood disorders are associated with impairments in neuroplasticity and cellular resilience, and alterations of the glutamatergic system are known to play a major role in cellular plasticity and resilience. Existing antidepressants and mood stabilizers have prominent effects on the glutamate system, and modulating glutamatergic ionotropic or metabotropic receptors results in antidepressant-like properties in animal models. Several glutamatergic modulators targeting various glutamate components are currently being studied in the treatment of mood disorders, including release inhibitors of glutamate, N-methyl-D-aspartate (NMDA) antagonists, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) throughput enhancers, and glutamate transporter enhancers. This paper reviews the currently available knowledge regarding the role of the glutamatergic system in the etiopathogenesis of mood disorders and putative glutamate modulators. PMID:19442176

  17. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Directory of Open Access Journals (Sweden)

    Umberto Tosi

    2017-02-01

    Full Text Available Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.

  18. Upregulation of MARCKS in kidney cancer and its potential as a therapeutic target.

    Science.gov (United States)

    Chen, C-H; Fong, L W R; Yu, E; Wu, R; Trott, J F; Weiss, R H

    2017-06-22

    Targeted therapeutics, such as those abrogating hypoxia inducible factor (HIF)/vascular endothelial growth factor signaling, are initially effective against kidney cancer (or renal cell carcinoma, RCC); however, drug resistance frequently occurs via subsequent activation of alternative pathways. Through genome-scale integrated analysis of the HIF-α network, we identified the major protein kinase C substrate MARCKS (myristoylated alanine-rich C kinase substrate) as a potential target molecule for kidney cancer. In a screen of nephrectomy samples from 56 patients with RCC, we found that MARCKS expression and its phosphorylation are increased and positively correlate with tumor grade. Genetic and pharmacologic suppression of MARCKS in high-grade RCC cell lines in vitro led to a decrease in cell proliferation and migration. We further demonstrated that higher MARCKS expression promotes growth and angiogenesis in vivo in an RCC xenograft tumor. MARCKS acted upstream of the AKT/mTOR pathway, activating HIF-target genes, notably vascular endothelial growth factor-A. Following knockdown of MARCKS in RCC cells, the IC50 of the multikinase inhibitor regorafenib was reduced. Surprisingly, attenuation of MARCKS using the MPS (MARCKS phosphorylation site domain) peptide synergistically interacted with regorafenib treatment and decreased survival of kidney cancer cells through inactivation of AKT and mTOR. Our data suggest a major contribution of MARCKS to kidney cancer growth and provide an alternative therapeutic strategy of improving the efficacy of multikinase inhibitors.

  19. Fetal Alcohol Spectrum Disorder (FASD Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    James A. Marrs

    2013-06-01

    Full Text Available Fetal alcohol spectrum disorder (FASD, caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  20. Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy

    Science.gov (United States)

    Spinazzola, Janelle M.; Kunkel, Louis M.

    2016-01-01

    Introduction Since the identification of the dystrophin gene in 1986, a cure for Duchenne muscular dystrophy (DMD) has yet to be discovered. Presently, there are a number of genetic-based therapies in development aimed at restoration and/or repair of the primary defect. However, growing understanding of the pathophysiological consequences of dystrophin absence has revealed several promising downstream targets for the development of therapeutics. Areas covered In this review, we discuss various strategies for DMD therapy targeting downstream consequences of dystrophin absence including loss of muscle mass, inflammation, fibrosis, calcium overload, oxidative stress, and ischemia. The rationale of each approach and the efficacy of drugs in preclinical and clinical studies are discussed. Expert opinion For the last 30 years, effective DMD drug therapy has been limited to corticosteroids, which are associated with a number of negative side effects. Our knowledge of the consequences of dystrophin absence that contribute to DMD pathology has revealed several potential therapeutic targets. Some of these approaches may have potential to improve or slow disease progression independently or in combination with genetic-based approaches. The applicability of these pharmacological therapies to DMD patients irrespective of their genetic mutation, as well as the potential benefits even for advanced stage patients warrants their continued investigation. PMID:28670506

  1. Role of EZH2 in epithelial ovarian cancer: from biological insights to therapeutic target

    Directory of Open Access Journals (Sweden)

    Hua eLi

    2013-03-01

    Full Text Available EZH2 is the catalytic subunit of polycomb repressive complex 2 (PRC2, which generates a methylation epigenetic mark at lysine-27 residue of histone H3 (H3K27me3 to silence gene expression. EZH2 target genes are involved in a variety of biological processes such as stem cell pluripotency, cell proliferation and oncogenic transformation. EZH2 is often overexpressed in epithelial ovarian cancer cells and in ovarian cancer-associated stromal endothelial cells. Notably, EZH2 promotes cell proliferation, inhibits apoptosis and enhances angiogenesis in epithelial ovarian cancers. In contrast to genetic alterations, which are typically non-reversible, epigenetic alterations are reversible. Thus, inhibiting EZH2/PRC2 activity represents an attractive strategy for developing ovarian cancer therapeutics by targeting both ovarian cancer cells and ovarian tumor microenvironment. Here we discuss the progress recently obtained in understanding how EZH2/PRC2 promotes malignant phenotypes of epithelial ovarian cancer. In addition, we focus on strategies for targeting EZH2/PRC2 to develop novel epithelial ovarian cancer epigenetic therapeutics.

  2. ErbB polymorphisms: Insights and implications for response to targeted cancer therapeutics

    Directory of Open Access Journals (Sweden)

    Moulay A Alaoui-Jamali

    2015-02-01

    Full Text Available Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs, polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3 and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary and to acquired (secondary resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.

  3. Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery.

    Science.gov (United States)

    Iqbal, Hafiz M N; Rodriguez, Angel M V; Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep

    2017-01-01

    In the recent past, a wider spectrum of nanotechnologybased drugs or drug-loaded devices and systems has been engineered and investigated with high interests. The key objective is to help for an enhanced/better quality of patient life in a secure way by avoiding/limiting drug abuse, or severe adverse effects of some in practice traditional therapies. Various methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, nanoparticles-based therapeutic agents are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable therapeutic drug delivery system (DDS) for multipurpose applications is essential and a core demand to tackle many human health related diseases. In this context, nanotechnology-based several advanced DDS have been engineered with novel characteristics for biomedical, pharmaceutical and cosmeceutical applications that include but not limited to the enhanced/improved bioactivity, bioavailability, drug efficacy, targeted delivery, and therapeutically safer with an extra advantage of overcoming demerits of traditional drug formulations/designs. This review work is focused on recent trends/advances in nanotechnology-based drugs and formulations designed for targeted therapeutic delivery. Moreover, information is also reviewed and given from recent patents and summarized or illustrated diagrammatically to depict a better understanding. Recent patents covering various nanotechnology-based approaches for several applications have also been reviewed. The drug-loaded nanoparticles are among versatile candidates with multifunctional characteristics for potential applications in biomedical, and tissue engineering sector. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Target-oriented mechanisms of novel herbal therapeutics in the chemotherapy of gastrointestinal cancer and inflammation.

    Science.gov (United States)

    Ko, Joshua K; Auyeung, Kathy K

    2013-01-01

    A prominent group of effective cancer chemopreventive drugs has been derived from natural products having low toxicity while possessing apparent benefit in the disease process. It is plausible that there are multiple target molecules critical to cancer cell survival. Herbal terpenoids have demonstrated excellent target-specific anti-neoplastic functions by suppression of cell proliferation and induction of apoptosis. Transcriptional molecules in the NF-κB, MEK/ERK and PI3K/Akt/mTOR pathways are important molecular targets of chemotherapy that play distinctive roles in modulating the apoptosis cascades. It is recently suggested that NSAID-activated gene (NAG-1), a novel proapoptotic protein, is the upstream anti-carcinogenic target of NSAIDs, PPAR ligands and herbal chemotherapeutic agents that triggers some of the events mentioned above. Besides, angiogenesis, oxidative stress as well as inflammation are important factors that contribute to the development and metastasis of cancer, which could be actively modulated by novel agents of plant origin. The aim of the present review is to discuss and summarize the contemporary use of herbal therapeutics and phytochemicals in the treatment of human cancers, in particular that of the colon. The major events and signaling pathways in the carcinogenesis process being potentially modulated by natural products and novel herbal compounds will be evaluated, with emphasis on some terpenoids. Advances in eliciting the precise cellular and molecular mechanisms during the anti-tumorigenic process of novel herbal therapeutics will be of imperative clinical significance to increase the efficacy and reduce prominent adverse drug effects in cancer patients through target-specific therapy.

  5. p62 as a therapeutic target for inhibition of autophagy in prostate cancer.

    Science.gov (United States)

    Wang, Lei; Kim, Donghern; Wise, James T F; Shi, Xianglin; Zhang, Zhuo; DiPaola, Robert S

    2018-01-25

    To test the hypothesis that p62 is an optimal target for autophagy inhibition and Verteporfin, a clinically available drug approved by FDA to treat macular degeneration that inhibits autophagy by targeting p62 protein, can be developed clinically to improve therapy for advanced prostate cancer. Forced expression of p62 in PC-3 cells and normal prostate epithelial cells, RWPE-1 and PZ-HPV7, were carried out by transfection of these cells with pcDNA3.1/p62 or p62 shRNA plasmid. Autophagosomes and autophagic flux were measured by transfection of tandem fluorescence protein mCherry-GFP-LC3 construct. Apoptosis was measured by Annexin V/PI staining. Tumorigenesis was measured by a xenograft tumor growth model. Verteporfin inhibited cell growth and colony formation in PC-3 cells. Verteporfin generated crosslinked p62 oligomers, resulting in inhibition of autophagy and constitutive activation of Nrf2 as well as its target genes, Bcl-2 and TNF-α. In normal prostate epithelial cells, forced expression of p62 caused constitutive Nrf2 activation, development of apoptosis resistance, and Verteporfin treatment exhibited inhibitory effects. Verteporfin treatment also inhibited starvation-induced autophagic flux of these cells. Verteporfin inhibited tumorigenesis of both normal prostate epithelial cells with p62 expression and prostate cancer cells and decreased p62, constitutive Nrf2, and Bcl-xL in xenograft tumor tissues, indicating that p62 can be developed as a drug target against prostate cancer. p62 has a high potential to be developed as a therapeutic target. Verteporfin represents a prototypical agent with therapeutic potential against prostate cancer through inhibition of autophagy by a novel mechanism of p62 inhibition. © 2018 Wiley Periodicals, Inc.

  6. Getting miRNA Therapeutics into the Target Cells for Neurodegenerative Diseases: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Ming Ming Wen

    2016-11-01

    Full Text Available Abstract:MiRNAs play important roles in modulating gene expression in varying cellular processes and disease pathogenesis, including neurodegenerative diseases. Several miRNAs are expressed in the brain and control brain development and identified as important biomarkers in the pathogenesis of motor- and neuro-cognitive diseases such as Alzheimer, Huntington's and Parkinson's diseases and amyotrophic lateral sclerosis. These remarkable miRNAs could be used as diagnostic markers and therapeutic targeting potential for many stressful and untreatable progressive neurodegenerative diseases. To modulate these miRNA activities, there are currently two strategies involved; first one is to therapeutically restore the suppressed miRNA level by miRNA mimics (agonist, and the other one is to inhibit miRNA function by using antimiR (antagonist to repress overactive miRNA function. However, RNAi-based therapeutics often faces in vivo instability because naked nucleic acids are subject to enzyme degradation before reaching the target sites. Therefore, an effective, safe and stable bio-responsive delivery system is necessary to protect the nucleic acids from serum degradation and assist their entrance to the cells. Since neuronal cells are non-regenerating, to design engineered miRNAs to be delivered to the CNS for long term gene expression and knockdown is representing an enormous challenge for scientists. This article provides an insight summary on some of the innovative strategies employed to deliver miRNA into target cells. These viral and non-viral carrier systems hold promise in RNA therapy delivery for neurodegenerative diseases.

  7. Molecular and clinical rationale for therapeutic targeting of interleukin-5 and its receptor.

    Science.gov (United States)

    Molfino, N A; Gossage, D; Kolbeck, R; Parker, J M; Geba, G P

    2012-05-01

    Interleukin-5 is a Th2 homodimeric cytokine involved in the differentiation, maturation, migration, development, survival, trafficking and effector function of blood and local tissue eosinophils, in addition to basophils and mast cells. The IL-5 receptor (IL-5R) consists of an IL-5-specific α subunit that interacts in conformationally dynamic ways with the receptor's βc subunit, an aggregate of domains it shares with binding sites of IL-3 and granulocyte-macrophage colony-stimulating factor. IL-5 and IL-5R drive allergic and inflammatory immune responses characterizing numerous diseases, such as asthma, atopic dermatitis, chronic obstructive pulmonary disease, eosinophilic gastrointestinal diseases, hyper-eosinophilic syndrome, Churg-Strauss syndrome and eosinophilic nasal polyposis. Although corticosteroid therapy is the primary treatment for these diseases, a substantial number of patients exhibit incomplete responses and suffer side-effects. Two monoclonal antibodies have been designed to neutralize IL-5 (mepolizumab and reslizumab). Both antibodies have demonstrated the ability to reduce blood and tissue eosinophil counts. One additional monoclonal antibody, benralizumab (MEDI-563), has been developed to target IL-5R and attenuate eosinophilia through antibody-dependent cellular cytotoxicity. All three monoclonal antibodies are being clinically evaluated. Antisense oligonucleotide technology targeting the common βc IL-5R subunit is also being used therapeutically to inhibit IL-5-mediated effects (TPI ASM8). Small interfering RNA technology has also been used therapeutically to inhibit the expression of IL-5 in animal models. This review summarizes the structural interactions between IL-5 and IL-5R and the functional consequences of such interactions, and describes the pre-clinical and clinical evidence supporting IL-5R as a therapeutic target. © 2011 MedImmune, LLC.

  8. Critical analysis of the potential for therapeutic targeting of mammalian target of rapamycin (mTOR in gastric cancer

    Directory of Open Access Journals (Sweden)

    Inokuchi M

    2014-04-01

    Full Text Available Mikito Inokuchi,1 Keiji Kato,1 Kazuyuki Kojima,2 Kenichi Sugihara1 1Department of Surgical Oncology, 2Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, Tokyo, Japan Abstract: Multidisciplinary treatment including chemotherapy has become the global standard of care for patients with metastatic gastric cancer (mGC; nonetheless, survival remains poor. Although many molecular-targeted therapies have been developed for various cancers, only anti-HER2 treatment has produced promising results in patients with mGC. Mammalian target of rapamycin (mTOR plays a key role in cell proliferation, antiapoptosis, and metastasis in signaling pathways from the tyrosine kinase receptor, and its activation has been demonstrated in gastric cancer (GC cells. This review discusses the clinical relevance of mTOR in GC and examines its potential as a therapeutic target in patients with mGC. Preclinical studies in animal models suggest that suppression of the mTOR pathway inhibits the proliferation of GC cells and delays tumor progression. The mTOR inhibitor everolimus has been evaluated as second- or third-line treatment in clinical trials. Adverse events were well tolerated although the effectiveness of everolimus alone was limited. Everolimus is now being evaluated in combination with chemotherapy in Phase III clinical studies in this subgroup of patients. Two Phase III studies include exploratory biomarker research designed to evaluate the predictive value of the expression or mutation of molecules related to the Akt/mTOR signaling pathway. These biomarker studies may lead to the realization of targeted therapy for selected patients with mGC in the future. Keywords: gastric cancer, mTOR, everolimus

  9. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  10. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics

    Directory of Open Access Journals (Sweden)

    Chungen Pan

    2010-02-01

    Full Text Available Human immunodeficiency virus (HIV-1 infection is initiated by the binding of gp120 envelope glyco-protein to its cell receptor (CD4 and a coreceptor (CXCR4 or CCR5, followed by a series of conformational changes in the gp41 transmembrane subunit. These changes include insertion of fusion peptide into the target cell membrane and association of C-heptad repeat (CHR peptide with the N-heptad repeat (NHR trimer, a pre-hairpin fusion intermediate. A stable six-helix bundle core is then formed, bringing the viral envelope and target cell membrane into close proximity for fusion. Peptides derived from the CHR region, such as T20 and C34, inhibit HIV-1 fusion by interacting with the gp41 fusion intermediate. A number of anti-HIV-1 peptides and small molecule compounds targeting the gp41 NHR-trimer have been identified. By combining HIV fusion/entry inhibitors targeting different sites in the gp41 fusion intermediate, a potent synergistic effect takes place, resulting in a potential new therapeutic strategy for the HIV infection/AIDS. Here, we present an overview of the current development of anti-HIV drugs, particularly those targeting the gp41 fusion intermediate.

  11. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    Science.gov (United States)

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  12. ACAT1/SOAT1 as a therapeutic target for Alzheimer's disease

    Science.gov (United States)

    Shibuya, Yohei; Chang, Catherine CY; Chang, Ta-Yuan

    2015-01-01

    Alzheimer's disease (AD) is the most common cause of dementia with no cure at present. Cholesterol metabolism is closely associated with AD at several stages. ACAT1 converts free cholesterol to cholesteryl esters, and plays important roles in cellular cholesterol homeostasis. Recent studies show that in a mouse model, blocking ACAT1 provides multiple beneficial effects on AD. Here we review the current evidence that implicates ACAT1 as a therapeutic target for AD. We also discuss the potential usage of various ACAT inhibitors currently available to treat AD. PMID:26669800

  13. Sleep-disordered breathing and arterial blood flow steal represent linked therapeutic targets in cerebral ischaemia.

    Science.gov (United States)

    Barlinn, Kristian; Alexandrov, Andrei V

    2011-02-01

    The pathogenic link between sleep-disordered breathing and early neurological deterioration in acute ischaemic stroke patients is now a subject of clinical investigations. Vasomotor reactivity and intracranial blood flow steal in response to changing vasodilatory stimuli like carbon dioxide play a pivotal role in clinical deterioration with reversed Robin Hood syndrome. A mechanical ventilatory correction in selected acute stroke patients might have a beneficial effect on sleep-disordered breathing and brain perfusion. This is a novel therapeutic target and the missing link in the pathogenesis of early neurological deterioration and stroke recurrence. © 2011 The Authors. International Journal of Stroke © 2011 World Stroke Organization.

  14. Eicosanoids and Respiratory Viral Infection: Coordinators of Inflammation and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Mary K. McCarthy

    2012-01-01

    Full Text Available Viruses are frequent causes of respiratory infection, and viral respiratory infections are significant causes of hospitalization, morbidity, and sometimes mortality in a variety of patient populations. Lung inflammation induced by infection with common respiratory pathogens such as influenza and respiratory syncytial virus is accompanied by increased lung production of prostaglandins and leukotrienes, lipid mediators with a wide range of effects on host immune function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene production often results in a dampened inflammatory response to acute infection with a respiratory virus. These mediators may, therefore, serve as appealing therapeutic targets for disease caused by respiratory viral infection.

  15. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target

    Science.gov (United States)

    Hou, Yaya; Huang, Zaiju; Wang, Zehua

    2017-01-01

    Epigenetic modifications in cancer stem cells largely result in phenotypic and functional heterogeneity in many solid tumors. Increasing evidence indicates that enhancer of zeste homolog 2 (EZH2), the catalytic subunit of Polycomb repressor complex 2, is highly expressed in cancer stem cells of numerous malignant tumors and has a critical function in cancer stem cell expansion and maintenance. Here, we review up-to-date information regarding EZH2 expression patterns, functions, and molecular mechanisms in cancer stem cells in various malignant tumors and discuss the therapeutic potential of targeting EZH2 in tumors. PMID:28415635

  16. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target.

    Science.gov (United States)

    Wen, Yiping; Cai, Jing; Hou, Yaya; Huang, Zaiju; Wang, Zehua

    2017-06-06

    Epigenetic modifications in cancer stem cells largely result in phenotypic and functional heterogeneity in many solid tumors. Increasing evidence indicates that enhancer of zeste homolog 2 (EZH2), the catalytic subunit of Polycomb repressor complex 2, is highly expressed in cancer stem cells of numerous malignant tumors and has a critical function in cancer stem cell expansion and maintenance. Here, we review up-to-date information regarding EZH2 expression patterns, functions, and molecular mechanisms in cancer stem cells in various malignant tumors and discuss the therapeutic potential of targeting EZH2 in tumors.

  17. The in-flow capture of superparamagnetic nanoparticles for targeting therapeutics.

    Science.gov (United States)

    Darton, Nicholas J; Hallmark, Bart; Han, Xuan; Palit, Sarah; Slater, Nigel K H; Mackley, Malcolm R

    2008-03-01

    Superparamagnetic nanoparticles have been synthesized that could potentially be used to magnetically target therapeutics within the body. The magnetic targeting and successful in-flow capture of 330-nm and 580-nm agglomerates of these magnetite nanoparticles was performed using a 0.5-T magnet. Optical observation of magnetic nanoparticle capture in microcapillary flow provides a useful preliminary way of establishing conditions for the magnetic capture of nanoparticles with direct relevance to blood vessels for magnetically directed therapy. A stable nanoparticle layer of 580-nm agglomerates could be formed at mean capillary flow velocities of up to 2.5 cm s(-1) and for the 330-nm agglomerates at velocities up to 4.4 cm s(-1). These data show that smaller nanoparticle agglomerates form a layer that is impervious to erosion by fluid shear. Capillary blocking by nanoparticles, analogous to an embolism, was not detected in these experiments.

  18. Current diagnostics and treatment of fibrosarcoma –perspectives for future therapeutic targets and strategies

    Science.gov (United States)

    Augsburger, Daniela; Nelson, Peter J.; Kalinski, Thomas; Udelnow, Andrej; Knösel, Thomas; Hofstetter, Monika; Qin, Ji Wei; Wang, Yan; Gupta, Arvid Sen; Bonifatius, Susanne; Li, Minglun; Bruns, Christiane J.; Zhao, Yue

    2017-01-01

    Adult-type fibrosarcoma is a rare and highly aggressive subtype of soft tissue sarcomas. Due to the existence of other spindle-cell shaped sarcomas, its diagnosis is always one of exclusion. The likelihood of misdiagnoses between similar tumour entities is high, and often leads to inappropriate tumour treatment. We summarize here the main features of fibrosarcoma. When fibrosarcoma is appropriately diagnosed, the patient`s overall prognosis is generally quite poor. Fibrosarcoma is characterized by its low sensitivity towards radio- and chemotherapy as well as by its high rate of tumour recurrences. Thus it is important to identify new methods to improve treatment of this tumour entity. We discuss some promising new directions in fibrosarcoma research, specifically focusing on more effective targeting of the tumour microenvironment. Communication between tumour cells and their surrounding stromal tissue play a crucial role in cancer progression, invasion, metastasis and chemosensitivity. The therapeutic potential of targeting the tumour microenvironment is addressed. PMID:29262667

  19. Sclerostin, an emerging therapeutic target for treating osteoporosis and osteoporotic fracture: A general review

    Directory of Open Access Journals (Sweden)

    Pui Kit Suen

    2016-01-01

    Full Text Available Osteoporosis and its associated fracture risk has become one of the major health burdens in our aging population. Currently, bisphosphonate, one of the most popular antiresorptive drugs, is used widely to treat osteoporosis but so far still no consensus has been reached for its application in treatment of osteoporotic fractures. However, in old patients, boosting new bone formation and its remodelling is essential for bone healing in age-related osteoporosis and osteoporotic fractures. Sclerostin, an inhibitor of the Wnt/β-catenin signalling pathway that regulates bone growth, has become an attractive therapeutic target for treating osteoporosis. In this review, we summarize the recent findings of sclerostin and its potential as an effective drug target for treating both osteoporosis and osteoporotic fractures.

  20. Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma.

    Science.gov (United States)

    Oh, C K; Geba, G P; Molfino, N

    2010-03-01

    Asthma is a complex, persistent, inflammatory disease characterised by airway hyperresponsiveness in association with airway inflammation. Studies suggest that regular use of high-dose inhaled corticosteroids and long-acting bronchodilators or omalizumab (a humanised monoclonal antibody that binds to immunoglobulin E and is often used as next-step therapy) may not be sufficient to provide asthma control in all patients, highlighting an important unmet need. Interleukin-4, interleukin-13, and the signal transducer and activator of transcription factor-6 are key components in the development of airway inflammation, mucus production, and airway hyperresponsiveness in asthma. Biological compounds targeting these molecules may provide a new therapeutic modality for patients with uncontrolled severe asthma. The purpose of this review is to summarise current studies of compounds targeting the interleukin-4/interleukin-13 pathway and to provide a rationale for the development of such compounds for this use.

  1. Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma

    Directory of Open Access Journals (Sweden)

    C. K. Oh

    2010-03-01

    Full Text Available Asthma is a complex, persistent, inflammatory disease characterised by airway hyperresponsiveness in association with airway inflammation. Studies suggest that regular use of high-dose inhaled corticosteroids and long-acting bronchodilators or omalizumab (a humanised monoclonal antibody that binds to immunoglobulin E and is often used as next-step therapy may not be sufficient to provide asthma control in all patients, highlighting an important unmet need. Interleukin-4, interleukin-13, and the signal transducer and activator of transcription factor-6 are key components in the development of airway inflammation, mucus production, and airway hyperresponsiveness in asthma. Biological compounds targeting these molecules may provide a new therapeutic modality for patients with uncontrolled severe asthma. The purpose of this review is to summarise current studies of compounds targeting the interleukin-4/interleukin-13 pathway and to provide a rationale for the development of such compounds for this use.

  2. The endocannabinoid system as a potential therapeutic target for pain modulation.

    Science.gov (United States)

    Ulugöl, Ahmet

    2014-06-01

    Although cannabis has been used for pain management for millennia, very few approved cannabinoids are indicated for the treatment of pain and other medical symptoms. Cannabinoid therapy re-gained attention only after the discovery of endocannabinoids and fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), the enzymes playing a role in endocannabinoid metabolism. Nowadays, research has focused on the inhibition of these degradative enzymes and the elevation of endocannabinoid tonus locally; special emphasis is given on multi-target analgesia compounds, where one of the targets is the endocannabinoid degrading enzyme. In this review, I provide an overview of the current understanding about the processes accounting for the biosynthesis, transport and metabolism of endocannabinoids, and pharmacological approaches and potential therapeutic applications in this area, regarding the use of drugs elevating endocannabinoid levels in pain conditions.

  3. Understanding the Progression of Bone Metastases to Identify Novel Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Annie Schmid-Alliana

    2018-01-01

    Full Text Available Bone is one of the most preferential target site for cancer metastases, particularly for prostate, breast, kidney, lung and thyroid primary tumours. Indeed, numerous chemical signals and growth factors produced by the bone microenvironment constitute factors promoting cancer cell invasion and aggression. After reviewing the different theories proposed to provide mechanism for metastatic progression, we report on the gene expression profile of bone-seeking cancer cells. We also discuss the cross-talk between the bone microenvironment and invading cells, which impacts on the tumour actions on surrounding bone tissue. Lastly, we detail therapies for bone metastases. Due to poor prognosis for patients, the strategies mainly aim at reducing the impact of skeletal-related events on patients’ quality of life. However, recent advances have led to a better understanding of molecular mechanisms underlying bone metastases progression, and therefore of novel therapeutic targets.

  4. Identifying therapeutic targets in gastric cancer: the current status and future direction

    Science.gov (United States)

    Yu, Beiqin; Xie, Jingwu

    2016-01-01

    Gastric cancer is the third leading cause of cancer-related death worldwide. Our basic understanding of gastric cancer biology falls behind that of many other cancer types. Current standard treatment options for gastric cancer have not changed for the last 20 years. Thus, there is an urgent need to establish novel strategies to treat this deadly cancer. Successful clinical trials with Gleevec in CML and gastrointestinal stromal tumors have set up an example for targeted therapy of cancer. In this review, we will summarize major progress in classification, therapeutic options of gastric cancer. We will also discuss molecular mechanisms for drug resistance in gastric cancer. In addition, we will attempt to propose potential future directions in gastric cancer biology and drug targets. PMID:26373844

  5. The N-myc Oncogene: Maximizing its Targets, Regulation, and Therapeutic Potential.

    Science.gov (United States)

    Beltran, Himisha

    2014-06-01

    N-myc (MYCN), a member of the Myc family of basic-helix-loop-helix-zipper (bHLHZ) transcription factors, is a central regulator of many vital cellular processes. As such, N-myc is well recognized for its classic oncogenic activity and association with human neuroblastoma. Amplification and overexpression of N-myc has been described in other tumor types, particularly those of neural origin and neuroendocrine tumors. This review outlines N-myc's contribution to normal development and oncogenic progression. In addition, it highlights relevant transcriptional targets and mechanisms of regulation. Finally, the clinical implications of N-Myc as a biomarker and potential as a target using novel therapeutic approaches are discussed. ©2014 American Association for Cancer Research.

  6. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders

    Directory of Open Access Journals (Sweden)

    A. Janus

    2016-01-01

    Full Text Available Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.

  7. BRCA1 as a Therapeutic Target in Sporadic Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Katherine V. Clark-Knowles

    2010-01-01

    Full Text Available In sporadic epithelial ovarian cancer (EOC, the inactivation of BRCA1 through various mechanisms is a relatively common event. BRCA1 protein dysfunction results in the breakdown of various critical pathways in the cell, notably, the DNA damage response and repair pathway. Tumors from patients with BRCA1 germline mutations have an increased sensitivity to DNA damaging chemotherapeutic agents, such as cisplatin, due to defective DNA repair. Thus, inhibiting BRCA1 in sporadic EOC using novel targeted therapies is an attractive strategy for the treatment of advanced or recurrent EOC. Several classes of small molecule inhibitors that affect BRCA1 have now been tested in preclinical and clinical studies suggesting that this is a rational therapeutic approach. The aim of this paper is to provide an understanding of how BRCA1 has evolved into a promising target for the treatment of sporadic disease and to outline the main potential small molecule inhibitors of BRCA1 in EOC.

  8. Doxorubicin-loaded micelle targeting MUC1: a potential therapeutics for triple negative breast cancer treatment.

    Science.gov (United States)

    Khondee, Supang; Chittasupho, Chuda; Tima, Singkome; Anuchapreeda, Songyot

    2017-07-12

    Triple negative breast cancer (TNBC) is an aggressive disease associated with poor prognosis and lack of validated targeted therapy. Thus chemotherapy is a main adjuvant treatment for TNBC patients, but it associates with severe toxicities. For a better treatment outcome, we developed an alternative therapeutic, doxorubicin (DOX)-loaded micelles targeting human mucin1 protein (MUC1) that is less toxic, more effective and targeted to TNBC. From many candidate peptides, QNDRHPR-GGGSK (QND) and HSQLPQV-GGGSK (HSQ), were identified computationally, synthesized and purified using solid phase peptide synthesis and semi-preparative HPLC. The peptides showed significant high binding to MUC1 expressing cells using a fluorescent microscope. The peptides were then conjugated on pegylated octadecyl lithocholate copolymer. DOX-encapsulated micelles were formed through self-assembly. MUC1-targeted micelles were characterized using dynamic light scattering (DLS) and Transmission Electron Microscopy (TEM). Drug entrapment efficiency was examined using a microplate reader. Cytotoxicity and binding and uptake were also investigated. Two types of DOX-loaded micelles with different targeting peptides, QND or HSQ, were developed. DOX-loaded micelles were spherical in shape with average particle size around 300-320 nm. Drug entrapment efficiency of untargeted and targeted DOX micelles was about 71-93%. Targeted QND-DOX and HSQ-DOX micelles exhibited significantly higher cytotoxicity compared to free DOX and untargeted DOX micelles on BT549-Luc cells. In addition, significantly greater binding and uptake were observed for QND-DOX and HSQ-DOX micelles on BT549-Luc and T47D cells. Taken together, these results suggested that QND-DOX and HSQ-DOX micelles have a potential application in the treatment of TNBC-expressing MUC1. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae.

    Directory of Open Access Journals (Sweden)

    Syed Babar Jamal

    Full Text Available Corynebacterium diphtheriae (Cd is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983 were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives. The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms.

  10. Molecular Markers and Targeted Therapeutics in Metastatic Tumors of the Spine: Changing the Treatment Paradigms.

    Science.gov (United States)

    Goodwin, C Rory; Abu-Bonsrah, Nancy; Rhines, Laurence D; Verlaan, Jorrit-Jan; Bilsky, Mark H; Laufer, Ilya; Boriani, Stefano; Sciubba, Daniel M; Bettegowda, Chetan

    2016-10-15

    A review of the literature. The aim of this study was to discuss the evolution of molecular signatures and the history and development of targeted therapeutics in metastatic tumor types affecting the spinal column. Molecular characterization of metastatic spine tumors is expected to usher in a revolution in diagnostic and treatment paradigms. Molecular characterization will provide critical information that can be used for initial diagnosis, prognosticating the ideal treatment strategy, assessment of treatment efficacy, surveillance and monitoring recurrence, and predicting complications, clinical outcome, and overall survival in patients diagnosed with metastatic cancers to the spinal column. A review of the literature was performed focusing on illustrative examples of the role that molecular-based therapeutics have played in clinical outcomes for patients diagnosed with metastatic tumor types affecting the spinal column. The impact of molecular therapeutics including receptor tyrosine kinases and immune checkpoint inhibitors and the ability of molecular signatures to provide prognostic information are discussed in metastatic breast cancer, lung cancer, prostate cancer, melanoma, and renal cell cancer affecting the spinal column. For the providers who will ultimately counsel patients diagnosed with metastases to the spinal column, molecular advancements will radically alter the management/surgical paradigms utilized. Ultimately, the translation of these molecular advancements into routine clinical care will greatly improve the quality and quantity of life for patients diagnosed with spinal malignancies and provide better overall outcomes and counseling for treating physicians. N/A.

  11. Therapeutic targeting of CCR1 attenuates established chronic fungal asthma in mice.

    Science.gov (United States)

    Carpenter, Kristin J; Ewing, Jillian L; Schuh, Jane M; Ness, Traci L; Kunkel, Steven L; Aparici, Monica; Miralpeix, Montserrat; Hogaboam, Cory M

    2005-08-01

    CC chemokine receptor 1 (CCR1) represents a promising target in chronic airway inflammation and remodeling due to fungus-associated allergic asthma. The present study addressed the therapeutic effect of a nonpeptide CCR1 antagonist, BX-471, in a model of chronic fungal asthma induced by Aspergillus fumigatus conidia. BX-471 treatment of isolated macrophages inhibited CCL22 and TNF-alpha and promoted IL-10 release. BX-471 also increased toll like receptor-9 (TLR9) and decreased TLR2 and TLR6 expression in these cells. When administered daily by intraperitoneal injection, from days 15 to 30 after the initiation of chronic fungal asthma, BX-471 (3, 10, or 30 mg kg(-1)) dose-dependently reduced airway inflammation, hyper-responsiveness, and remodeling at day 30 after conidia challenge. The maximal therapeutic effect was observed at the 10 mg kg(-1) dose. In summary, the therapeutic administration of BX-471 significantly attenuated experimental fungal asthma via its effects on both innate and adaptive immune processes.

  12. Metabolomics and proteomics annotate therapeutic properties of geniposide: targeting and regulating multiple perturbed pathways.

    Directory of Open Access Journals (Sweden)

    Xijun Wang

    Full Text Available Geniposide is an important constituent of Gardenia jasminoides Ellis, a famous Chinese medicinal plant, and has displayed bright prospects in prevention and therapy of hepatic injury (HI. Unfortunately, the working mechanisms of this compound are difficult to determine and thus remain unknown. To determine the mechanisms that underlie this compound, we conducted a systematic analysis of the therapeutic effects of geniposide using biochemistry, metabolomics and proteomics. Geniposide significantly intensified the therapeutic efficacy as indicated by our modern biochemical analysis. Metabolomics results indicate 9 ions in the positive mode as differentiating metabolites which were associated with perturbations in primary bile acid biosynthesis, butanoate metabolism, citrate cycle (TCA cycle, alanine, aspartate and glutamate metabolism. Of note, geniposide has potential pharmacological effect through regulating multiple perturbed pathways to normal state. In an attempt to address the benefits of geniposide based on the proteomics approaches, the protein-interacting networks were constructed to aid identifying the drug targets of geniposide. Six identified differential proteins appear to be involved in antioxidation and signal transduction, energy production, immunity, metabolism, chaperoning. These proteins were closely related in the protein-protein interaction network and the modulation of multiple vital physiological pathways. These data will help to understand the molecular therapeutic mechanisms of geniposide on hepatic damage rats. We also conclude that metabolomics and proteomics are powerful and versatile tools for both biomarker discovery and exploring the complex relationships between biological pathways and drug response, highlighting insights into drug discovery.

  13. Fatty acid amide hydrolase: a potential target for next generation therapeutics.

    Science.gov (United States)

    Maccarrone, Mauro

    2006-01-01

    Endocannabinoids are amides, esters and ethers of long chain polyunsaturated fatty acids, which act as new lipid mediators. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of Delta(9)-tetrahydrocannabinol, the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA at its receptors is limited by cellular uptake through a specific membrane transporter, followed by intracellular degradation by a fatty acid amide hydrolase (FAAH). Growing evidence demonstrates that FAAH is the critical regulator of the endogenous levels of AEA, suggesting that it may serve as an attractive therapeutic target for the treatment of human disorders. In particular, FAAH inhibitors may be next generation therapeutic drugs of potential value for the treatment of pathologies in the central nervous system and in the periphery. Here, the potential applications of these inhibitors for human disease will be reviewed, with an emphasis on the properties of hydro(pero)xy-anandamides. In fact, these oxygenated derivatives of AEA are the most powerful inhibitors of FAAH of natural origin as yet discovered. In addition, new insights into the promoter region of FAAH gene will be presented, and the therapeutic potential of mimetics of transcription factors of this gene in the management of human infertility will be discussed.

  14. MicroRNA in pancreatic adenocarcinoma: predictive/prognostic biomarkers or therapeutic targets?

    Science.gov (United States)

    Brunetti, Oronzo; Russo, Antonio; Scarpa, Aldo; Santini, Daniele; Reni, Michele; Bittoni, Alessandro; Azzariti, Amalia; Aprile, Giuseppe; Delcuratolo, Sabina; Signorile, Michele; Gnoni, Antonio; Palermo, Loredana; Lorusso, Vito; Cascinu, Stefano; Silvestris, Nicola

    2015-09-15

    Pancreatic ductal adenocarcinoma (PDAC) is a tumor with a poor prognosis, short overall survival and few chemotherapeutic choices. MicroRNAs (miRNAs) are non-coding, single-stranded RNAs of around 22 nucleotides involved in the pathogenic mechanisms of carcinogenesis and metastasis. They have been studied in many tumors in order to identify potential diagnostic, prognostic or therapeutic targets. In the current literature, many studies have analyzed the role of miRNAs in PDAC. In fact, the absence of appropriate biomarkers, the difficultly of early detection of this tumor, and the lack of effective chemotherapy in patients with unresectable disease have focused attention on miRNAs as new, interesting advance in this malignancy. In this review we analyzed the role of miRNAs in PDAC in order to understand the mechanisms of action and the difference between the onco-miRNA and the tumor suppressor miRNA. We also reviewed all the data related to the use of these molecules as predictive as well as prognostic biomarkers in the course of the disease. Finally, the possible therapeutic use of miRNAs or anti-miRNAs in PDAC is also discussed. In conclusion, although there is still no clinical application for these molecules in PDAC, it is our opinion that the preclinical evidence of the role of specific miRNAs in carcinogenesis, the possibility of using miRNAs as diagnostic or prognostic biomarkers, and their potential therapeutic role, warrant future studies in PDAC.

  15. Composition useful for transportation of therapeutically active substance to targeted cell and use of the composition in ..

    NARCIS (Netherlands)

    Bischoff, Rainer; Kolbe, Hanno; Schughart, Klaus; Transgene, S.A.

    1999-01-01

    PROBLEM TO BE SOLVED: To obtain the subject composition used for transferring a therapeutically active substance into mammalian cells, and useful for preparing a vector intended to transfer a polynucleotide into targeted cells, by including..

  16. The radiation chemistry of macromolecules

    CERN Document Server

    1973-01-01

    The Radiation Chemistry of Macromolecules, Volume II is a collection of papers that discusses radiation chemistry of specific systems. Part 1 deals with radiation chemistry of substituted vinyl polymers, particularly polypropylene (PP) as its structure is intermediate between polyethylene and polyisobutylene. This part also discusses polypropylene oxide (PPOx) for it can be prepared in the atactic, isotactic, and optically active forms. One paper focuses on the fundamental chemical processes and the changes in physical properties that give rise to many different applications of polystyrene. An

  17. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer

    Science.gov (United States)

    Zhang, Liangfen; Rimando, Agnes M.; Lage, Janice M.; Lewin, Jack R.; Atfi, Azeddine; Zhang, Xu; Levenson, Anait S.

    2016-01-01

    Overexpression of the epigenetic modifier metastasis-associated protein 1 (MTA1) is associated with aggressive human prostate cancer. The purpose of this study was to determine MTA1- targeted chemopreventive and therapeutic efficacy of pterostilbene, a natural potent analog of resveratrol, in pre-clinical models of prostate cancer. Here, we show that high levels of MTA1 expression in Pten-loss prostate cooperate with key oncogenes, including c-Myc and Akt among others, to promote prostate cancer progression. Loss-of-function studies using human prostate cancer cells indicated direct involvement of MTA1 in inducing inflammation and epithelial-to-mesenchymal transition. Importantly, pharmacological inhibition of MTA1 by pterostilbene resulted in decreased proliferation and angiogenesis and increased apoptosis. This restrained prostatic intraepithelial neoplasia (PIN) formation in prostate-specific Pten heterozygous mice and reduced tumor development and progression in prostate-specific Pten-null mice. Our findings highlight MTA1 as a key upstream regulator of prostate tumorigenesis and cancer progression. More significantly, it offers pre-clinical proof for pterostilbene as a promising lead natural agent for MTA1-targeted chemopreventive and therapeutic strategy to curb prostate cancer. PMID:26943043

  18. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders.

    Science.gov (United States)

    Eira, Jessica; Silva, Catarina Santos; Sousa, Mónica Mendes; Liz, Márcia Almeida

    2016-06-01

    Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. LINGO-1 and AMIGO3, potential therapeutic targets for neurological and dysmyelinating disorders?

    Directory of Open Access Journals (Sweden)

    Simon Foale

    2017-01-01

    Full Text Available Leucine rich repeat proteins have gained considerable interest as therapeutic targets due to their expression and biological activity within the central nervous system. LINGO-1 has received particular attention since it inhibits axonal regeneration after spinal cord injury in a RhoA dependent manner while inhibiting leucine rich repeat and immunoglobulin-like domain-containing protein 1 (LINGO-1 disinhibits neuron outgrowth. Furthermore, LINGO-1 suppresses oligodendrocyte precursor cell maturation and myelin production. Inhibiting the action of LINGO-1 encourages remyelination both in vitro and in vivo. Accordingly, LINGO-1 antagonists show promise as therapies for demyelinating diseases. An analogous protein to LINGO-1, amphoterin-induced gene and open reading frame-3 (AMIGO3, exerts the same inhibitory effect on the axonal outgrowth of central nervous system neurons, as well as interacting with the same receptors as LINGO-1. However, AMIGO3 is upregulated more rapidly after spinal cord injury than LINGO-1. We speculate that AMIGO3 has a similar inhibitory effect on oligodendrocyte precursor cell maturation and myelin production as with axogenesis. Therefore, inhibiting AMIGO3 will likely encourage central nervous system axonal regeneration as well as the production of myelin from local oligodendrocyte precursor cell, thus providing a promising therapeutic target and an area for future investigation.

  20. Targeting Nicotinamide Phosphoribosyltransferase as a Potential Therapeutic Strategy to Restore Adult Neurogenesis.

    Science.gov (United States)

    Wang, Shu-Na; Xu, Tian-Ying; Li, Wen-Lin; Miao, Chao-Yu

    2016-06-01

    Adult neurogenesis is the process of generating new neurons throughout life in the olfactory bulb and hippocampus of most mammalian species, which is closely related to aging and disease. Nicotinamide phosphoribosyltransferase (NAMPT), also an adipokine known as visfatin, is the rate-limiting enzyme for mammalian nicotinamide adenine dinucleotide (NAD) salvage synthesis by generating nicotinamide mononucleotide (NMN) from nicotinamide. Recent findings from our laboratory and other laboratories have provided much evidence that NAMPT might serve as a therapeutic target to restore adult neurogenesis. NAMPT-mediated NAD biosynthesis in neural stem/progenitor cells is important for their proliferation, self-renewal, and formation of oligodendrocytes in vivo and in vitro. Therapeutic interventions by the administration of NMN, NAD, or recombinant NAMPT are effective for restoring adult neurogenesis in several neurological diseases. We summarize adult neurogenesis in aging, ischemic stroke, traumatic brain injury, and neurodegenerative disease and review the advances of targeting NAMPT in restoring neurogenesis. Specifically, we provide emphasis on the P7C3 family, a class of proneurogenic compounds that are potential NAMPT activators, which might shed light on future drug development in neurogenesis restoration. © 2016 John Wiley & Sons Ltd.

  1. The Paramyxovirus Polymerase Complex as a Target for Next-Generation Anti-Paramyxovirus Therapeutics

    Directory of Open Access Journals (Sweden)

    Richard K Plemper

    2015-05-01

    Full Text Available The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV, as well as the emerging zoonotic Hendra and Nipah viruses. In the United States, RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path towards the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.

  2. The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders.

    Science.gov (United States)

    Passani, Maria Beatrice; Lin, Jian-Sheng; Hancock, Arthur; Crochet, Sylvain; Blandina, Patrizio

    2004-12-01

    Histamine H3 receptor pharmacology, functions and biochemistry are far from being fully understood; however, progress is being made. Activation of this Gi/GO-protein-coupled receptor affects cognition, the sleep-wake cycle, obesity and epilepsy, which are physiological and pathological conditions that are the main focus of research into the therapeutic potential of selective H3 receptor ligands. This heterogeneity of targets can be reconciled partially by the fact that the histamine system constitutes one of the most important brain-activating systems and that H3 receptors regulate the activity of histamine and other neurotransmitter systems. Furthermore, the H3 receptor shows functional constitutive activity, polymorphisms in humans and rodents with a differential distribution of splice variants in the CNS, and potential coupling to different intracellular signal transduction mechanisms. In light of the genetic, pharmacological and functional complexity of the H3 receptor, the importance of the histamine system as a therapeutic target to control the sleep-wake cycle and cognitive disorders will be discussed.

  3. Immune system of the inner ear as a novel therapeutic target for sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Takayuki eOkano

    2014-09-01

    Full Text Available Sensorineural hearing loss (SNHL is a common clinical condition resulting from dysfunction in one or more parts in the auditory pathway between the inner ear and auditory cortex. Despite the prevalence of SNHL, little is known about its etiopathology, although several mechanisms have been postulated including ischemia, viral infection or reactivation, and microtrauma. Immune-mediated inner ear disease has been introduced and accepted as one SNHL pathophysiology; it responds to immunosuppressive therapy and is one of the few reversible forms of bilateral SNHL. The concept of immune-mediated inner ear disease is straightforward and comprehensible, but criteria for clinical diagnosis and the precise mechanism of hearing loss have not been determined. Moreover, the therapeutic mechanisms of corticosteroids are unclear, leading to several misconceptions by both clinicians and investigators concerning corticosteroid therapy. This review addresses our current understanding of the immune system in the inner ear and its involvement in the pathophysiology in SNHL. Treatment of SNHL, including immune-mediated inner ear disorder, will be discussed with a focus on the immune mechanism and immunocompetent cells as therapeutic targets. Finally, possible interventions modulating the immune system in the inner ear to repair the tissue organization and improve hearing in patients with SNHL will be discussed. Tissue macrophages in the inner ear appear to be a potential target for modulating the immune response in the inner ear in the pathophysiology of SNHL.

  4. Th17 Cells as Potential Probiotic Therapeutic Targets in Inflammatory Bowel Diseases.

    Science.gov (United States)

    Owaga, Eddy; Hsieh, Rong-Hong; Mugendi, Beatrice; Masuku, Sakhile; Shih, Chun-Kuang; Chang, Jung-Su

    2015-09-01

    Inflammatory bowel diseases (IBD) are characterized by wasting and chronic intestinal inflammation triggered by various cytokine-mediated pathways. In recent years, it was shown that T helper 17 (Th17) cells are involved in the pathogenesis of IBD, which makes them an attractive therapeutic target. Th17 cells preferentially produce interleukin (IL)-17A-F as signature cytokines. The role of the interplay between host genetics and intestinal microbiota in the pathogenesis of IBD was demonstrated. Probiotics are live microorganisms that when orally ingested in adequate amounts, confer a health benefit to the host by modulating the enteric flora or by stimulating the local immune system. Several studies indicated the effectiveness of probiotics in preventing and treating IBD (ulcerative colitis, and Crohn's disease). Furthermore, there is mounting evidence of probiotics selectively targeting the Th17 lineage in the prevention and management of inflammatory and autoimmune diseases such as IBD. This review highlights critical roles of Th17 cells in the pathogenesis of IBD and the rationale for using probiotics as a novel therapeutic approach for IBD through manipulation of Th17 cells. The potential molecular mechanisms by which probiotics modulate Th17 cells differentiation and production are also discussed.

  5. Ghrelin is a prognostic marker and a potential therapeutic target in breast cancer.

    Science.gov (United States)

    Grönberg, Malin; Ahlin, Cecilia; Naeser, Ylva; Janson, Eva Tiensuu; Holmberg, Lars; Fjällskog, Marie-Louise

    2017-01-01

    Ghrelin and obestatin are gastrointestinal peptides, encoded by the same preproghrelin gene. Both are expressed in breast cancer tissue and ghrelin has been implicated in breast cancer tumorigenesis. Despite recent advances in breast cancer management the need for new prognostic markers and potential therapeutic targets in breast cancer remains high. We studied the prognostic impact of ghrelin and obestatin in women with node negative breast cancer. Within a cohort of women with breast cancer with tumor size ≤ 50 mm, no lymph node metastases and no initiation of adjuvant chemotherapy, 190 women were identified who died from breast cancer and randomly selected 190 women alive at the corresponding time as controls. Tumor tissues were immunostained with antibodies versus the peptides. Ghrelin expression was associated with better breast cancer specific survival in univariate analyses (OR 0.55, 95% CI 0.36-0.84) and in multivariate models, adjusted for endocrine treatment and age (OR 0.57, 95% CI 0.36-0.89). Obestatin expression was non-informative (OR 1.2, 95% CI 0.60-2.46). Ghrelin expression is independent prognostic factor for breast cancer death in node negative patients-halving the risk for dying of breast cancer. Our data implies that ghrelin could be a potential therapeutic target in breast cancer treatment.

  6. Ghrelin is a prognostic marker and a potential therapeutic target in breast cancer.

    Directory of Open Access Journals (Sweden)

    Malin Grönberg

    Full Text Available Ghrelin and obestatin are gastrointestinal peptides, encoded by the same preproghrelin gene. Both are expressed in breast cancer tissue and ghrelin has been implicated in breast cancer tumorigenesis. Despite recent advances in breast cancer management the need for new prognostic markers and potential therapeutic targets in breast cancer remains high. We studied the prognostic impact of ghrelin and obestatin in women with node negative breast cancer. Within a cohort of women with breast cancer with tumor size ≤ 50 mm, no lymph node metastases and no initiation of adjuvant chemotherapy, 190 women were identified who died from breast cancer and randomly selected 190 women alive at the corresponding time as controls. Tumor tissues were immunostained with antibodies versus the peptides. Ghrelin expression was associated with better breast cancer specific survival in univariate analyses (OR 0.55, 95% CI 0.36-0.84 and in multivariate models, adjusted for endocrine treatment and age (OR 0.57, 95% CI 0.36-0.89. Obestatin expression was non-informative (OR 1.2, 95% CI 0.60-2.46. Ghrelin expression is independent prognostic factor for breast cancer death in node negative patients-halving the risk for dying of breast cancer. Our data implies that ghrelin could be a potential therapeutic target in breast cancer treatment.

  7. A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression

    Science.gov (United States)

    Giotopoulos, George; van der Weyden, Louise; Osaki, Hikari; Rust, Alistair G.; Gallipoli, Paolo; Meduri, Eshwar; Horton, Sarah J.; Chan, Wai-In; Foster, Donna; Prinjha, Rab K.; Pimanda, John E.; Tenen, Daniel G.; Vassiliou, George S.; Koschmieder, Steffen; Adams, David J.

    2015-01-01

    The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC. However, the identity of these mutations and the pathways they affect are poorly understood, hampering our ability to identify therapeutic targets and improve outcomes. Here, we describe a novel mouse model that allows identification of mechanisms of BC progression in an unbiased and tractable manner, using transposon-based insertional mutagenesis on the background of chronic phase CML. Our BC model is the first to faithfully recapitulate the phenotype, cellular and molecular biology of human CML progression. We report a heterogeneous and unique pattern of insertions identifying known and novel candidate genes and demonstrate that these pathways drive disease progression and provide potential targets for novel therapeutic strategies. Our model greatly informs the biology of CML progression and provides a potent resource for the development of candidate therapies to improve the dismal outcomes in this highly aggressive disease. PMID:26304963

  8. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain

    Directory of Open Access Journals (Sweden)

    Smith TP

    2014-08-01

    Full Text Available Terika P Smith,1 Tami Haymond,1 Sherika N Smith,1 Sarah M Sweitzer1,2 1Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA; 2Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA Abstract: Many people worldwide suffer from pain and a portion of these sufferers are diagnosed with a chronic pain condition. The management of chronic pain continues to be a challenge, and despite taking prescribed medication for pain, patients continue to have pain of moderate severity. Current pain therapies are often inadequate, with side effects that limit medication adherence. There is a need to identify novel therapeutic targets for the management of chronic pain. One potential candidate for the treatment of chronic pain is therapies aimed at modulating the vasoactive peptide endothelin-1. In addition to vasoactive properties, endothelin-1 has been implicated in pain transmission in both humans and animal models of nociception. Endothelin-1 directly activates nociceptors and potentiates the effect of other algogens, including capsaicin, formalin, and arachidonic acid. In addition, endothelin-1 has been shown to be involved in inflammatory pain, cancer pain, neuropathic pain, diabetic neuropathy, and pain associated with sickle cell disease. Therefore, endothelin-1 may prove a novel therapeutic target for the relief of many types of chronic pain. Keywords: endothelin-1, acute pain, chronic pain, endothelin receptor antagonists

  9. Translating Discovery in Zebrafish Pancreatic Development to Human Pancreatic Cancer: Biomarkers, Targets, Pathogenesis, and Therapeutics

    Science.gov (United States)

    Kazi, Abid A.; Yee, Rosemary K.

    2013-01-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer. PMID:23682805

  10. LINGO-1 and AMIGO3, potential therapeutic targets for neurological and dysmyelinating disorders?

    Science.gov (United States)

    Foale, Simon; Berry, Martin; Logan, Ann; Fulton, Daniel; Ahmed, Zubair

    2017-08-01

    Leucine rich repeat proteins have gained considerable interest as therapeutic targets due to their expression and biological activity within the central nervous system. LINGO-1 has received particular attention since it inhibits axonal regeneration after spinal cord injury in a RhoA dependent manner while inhibiting leucine rich repeat and immunoglobulin-like domain-containing protein 1 (LINGO-1) disinhibits neuron outgrowth. Furthermore, LINGO-1 suppresses oligodendrocyte precursor cell maturation and myelin production. Inhibiting the action of LINGO-1 encourages remyelination both in vitro and in vivo. Accordingly, LINGO-1 antagonists show promise as therapies for demyelinating diseases. An analogous protein to LINGO-1, amphoterin-induced gene and open reading frame-3 (AMIGO3), exerts the same inhibitory effect on the axonal outgrowth of central nervous system neurons, as well as interacting with the same receptors as LINGO-1. However, AMIGO3 is upregulated more rapidly after spinal cord injury than LINGO-1. We speculate that AMIGO3 has a similar inhibitory effect on oligodendrocyte precursor cell maturation and myelin production as with axogenesis. Therefore, inhibiting AMIGO3 will likely encourage central nervous system axonal regeneration as well as the production of myelin from local oligodendrocyte precursor cell, thus providing a promising therapeutic target and an area for future investigation.

  11. Retracted: Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566.

    Science.gov (United States)

    Deacon, R M J; Hurley, M J; Rebolledo, C M; Snape, M; Altimiras, F J; Farías, L; Pino, M; Biekofsky, R; Glass, L; Cogram, P

    2017-09-01

    Retraction: "Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566" by R. M. J. Deacon, M. J. Hurley, C. M. Rebolledo, M. Snape, F. J. Altimiras, L. Farías, M. Pino, R. Biekofsky, L. Glass and P. Cogram. The above article, from Genes, Brain and Behavior, published online on 12th May 2017 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Andrew Holmes and John Wiley & Sons Ltd. The retraction has been agreed as all authors cannot agree on a revised author order, and at least one author continues to dispute the original order. In this case, the original article is being retracted on the grounds that the journal does not have permission to publish. Reference: Deacon, R. M. J., Hurley, M. J., Rebolledo, C. M., Snape, M., Altimiras, F. J., Farías, L., Pino, M., Biekofsky, R., Glass, L. and Cogram, P. (2017), Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566. Genes, Brain and Behavior. doi:10.1111/gbb.12373. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  12. HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention

    Science.gov (United States)

    Irving, Stephen L.; Brown, David G.; Anderson, Marie; Bazin, Richard; Cao, Joan; Ciaramella, Giuseppe; Isaacson, Jason; Jackson, Lynn; Hunt, Rachael; Kjerrstrom, Anne; Nieman, James A.; Patick, Amy K.; Perros, Manos; Scott, Andrew D.; Whitby, Kevin; Wu, Hua; Butler, Scott L.

    2010-01-01

    Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy. PMID:21170360

  13. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    Science.gov (United States)

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  14. Novel anti-HIV therapeutics targeting chemokine receptors and actin regulatory pathways.

    Science.gov (United States)

    Spear, Mark; Guo, Jia; Wu, Yuntao

    2013-11-01

    The human immunodeficiency virus-1 (HIV-1) infects helper CD4(+) T cells, and causes CD4(+) T-cell depletion and immunodeficiency. In the past 30 years, significant progress has been made in antiretroviral therapy, and the disease has become manageable. Nevertheless, an effective vaccine is still nowhere in sight, and a cure or a functional cure awaits discovery. Among possible curative therapies, traditional antiretroviral therapy, mostly targeting viral proteins, has been proven ineffective. It is possible that targeting HIV-dependent host cofactors may offer alternatives, both for preventing HIV transmission and for forestalling disease progression. Recently, the actin cytoskeleton and its regulators in blood CD4(+) T cells have emerged as major host cofactors that could be targeted. The novel concept that the cortical actin is a barrier to viral entry and early post-entry migration has led to the nascent model of virus-host interaction at the cortical actin layer. Deciphering the cellular regulatory pathways has manifested exciting prospects for future therapeutics. In this review, we describe the study of HIV interactions with actin cytoskeleton. We also examine potential pharmacological targets that emerge from this interaction. In addition, we briefly discuss several actin pathway-based anti-HIV drugs that are currently in development or testing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics.

    Science.gov (United States)

    Chen, Bing-Jia; Wu, Yan-Ling; Tanaka, Yoshimasa; Zhang, Wen

    2014-01-01

    The nuclear transcription factor c-Myc is a member of the Myc gene family with multiple functions and located on band q24.1 of chromosome 8. The c-Myc gene is activated by chromosomal translocation, rearrangement, and amplification. Its encoded protein transduces intracellular signals to the nucleus, resulting in the regulation of cell proliferation, differentiation, and apoptosis, and has the ability to transform cells and bind chromosomal DNA. c-Myc also plays a critical role in malignant transformation. The abnormal over-expression of c-Myc is frequently observed in some tumors, including carcinomas of the breast, colon, and cervix, as well as small-cell lung cancer, osteosarcomas, glioblastomas, and myeloid leukemias, therefore making it a possible target for anticancer therapy. In this minireview, we summarize unique characteristics of c-Myc and therapeutic strategies against cancer using small molecules targeting the oncogene, and discuss the prospects in the development of agents targeting c-Myc, in particular G-quadruplexes formed in c-Myc promoter and c-Myc/Max dimerization. Such information will be of importance for the research and development of c-Myc-targeted drugs.

  16. Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Bryan Leaw

    2017-07-01

    Full Text Available Injury to the fragile immature brain is implicated in the manifestation of long-term neurological disorders, including childhood disability such as cerebral palsy, learning disability and behavioral disorders. Advancements in perinatal practice and improved care mean the majority of infants suffering from perinatal brain injury will survive, with many subtle clinical symptoms going undiagnosed until later in life. Hypoxic-ischemia is the dominant cause of perinatal brain injury, and constitutes a significant socioeconomic burden to both developed and developing countries. Therapeutic hypothermia is the sole validated clinical intervention to perinatal asphyxia; however it is not always neuroprotective and its utility is limited to developed countries. There is an urgent need to better understand the molecular pathways underlying hypoxic-ischemic injury to identify new therapeutic targets in such a small but critical therapeutic window. Mitochondria are highly implicated following ischemic injury due to their roles as the powerhouse and main energy generators of the cell, as well as cell death processes. While the link between impaired mitochondrial bioenergetics and secondary energy failure following loss of high-energy phosphates is well established after hypoxia-ischemia (HI, there is emerging evidence that the roles of mitochondria in disease extend far beyond this. Indeed, mitochondrial turnover, including processes such as mitochondrial biogenesis, fusion, fission and mitophagy, affect recovery of neurons after injury and mitochondria are involved in the regulation of the innate immune response to inflammation. This review article will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after hypoxic-ischemic injury, as a means of identifying new avenues for clinical intervention.

  17. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Ming-Ming Tsai

    2016-06-01

    Full Text Available Human gastric cancer (GC is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.

  18. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yan Wusheng

    2012-01-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC, the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB, normal differentiated squamous epithelium (ND, and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and

  19. PD-1 and PD-L1 as emerging therapeutic targets in gastric cancer: current evidence

    Directory of Open Access Journals (Sweden)

    Tran PN

    2017-05-01

    Full Text Available Phu N Tran,1* Sarmen Sarkissian,1* Joseph Chao,2 Samuel J Klempner3,4 1Division of Hematology-Oncology, University of California Irvine, Orange, 2Department of Medical Oncology and Developmental Therapeutics, City of Hope, Duarte, 3Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 4The Angeles Clinic and Research Institute, Los Angeles, CA, USA *These authors contributed equally to this work Abstract: Gastric adenocarcinoma is a leading cause of global cancer-related morbidity and mortality, and new therapeutic approaches are needed. Despite the improved outcomes with monoclonal antibodies targeting human epidermal growth factor receptor 2 and vascular endothelial growth factor receptor 2, durable responses are uncommon. Targeting immune checkpoints including PD-1, PD-L1 and CTLA-4 have led to improved survival across several tumor types, frequently characterized by prolonged benefit in responding patients. Tumoral and lymphocyte-derived immunohistochemical staining for PD-1, PD-L1, and tumor mutational burden have shown potential as predictive response biomarkers in several tumor types. Optimal incorporation of immune-mediated therapies into gastric cancer (GC is an area of intense ongoing investigation and benefit has been demonstrated in smaller studies of advanced patients. Important questions of biomarker selection, roles for molecular characterization, optimal combinatorial approaches, and therapeutic sequencing remain. In this study, current data are reviewed for immune checkpoint inhibitors in GC, and putative biomarkers, ongoing trials, and future considerations are discussed. Keywords: immunotherapy, stomach cancer, checkpoint inhibitor, nivolumab, pembrolizumab, tumor mutational burden

  20. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    Science.gov (United States)

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American

  1. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury.

    Science.gov (United States)

    Martinez, Bridget; Peplow, Philip V

    2017-11-01

    Traumatic brain injury (TBI) is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499) and cerebro-spinal fluid (CSF) (miR-328, -362-3p, -451, -486a) as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b). MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21) have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly).

  2. Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets.

    Science.gov (United States)

    Fernando, Deepani D; Marr, Edward J; Zakrzewski, Martha; Reynolds, Simone L; Burgess, Stewart T G; Fischer, Katja

    2017-06-10

    Scabies is one of the most common and widespread parasitic skin infections globally, affecting a large range of mammals including humans, yet the molecular biology of Sarcoptes scabiei is astonishingly understudied. Research has been hampered primarily due to the difficulty of sampling or culturing these obligatory parasitic mites. A further and major impediment to identify and functionally analyse potential therapeutic targets from the recently emerging molecular databases is the lack of appropriate molecular tools. We performed standard BLAST based searches of the existing S. scabiei genome databases using sequences of genes described to be involved in RNA interference in Drosophila and the mite model organism Tetranychus urticae. Experimenting with the S. scabiei mu-class glutathione S-transferase (SsGST-mu1) as a candidate gene we explored the feasibility of gene knockdown in S. scabiei by double-stranded RNA-interference (dsRNAi). We provide here an analysis of the existing S. scabiei draft genomes, confirming the presence of a double stranded RNA (dsRNA) - mediated silencing machinery. We report for the first time experimental gene silencing by RNA interference (RNAi) in S. scabiei. Non-invasive immersion of S. scabiei in dsRNA encoding an S. scabiei glutathione S-transferase mu-class 1 enzyme (SsGST-mu1) resulted in a 35% reduction in the transcription of the target gene compared to controls. A series of experiments identified the optimal conditions allowing systemic experimental RNAi without detrimental side effects on mite viability. This technique can now be used to address the key questions on the fundamental aspects of mite biology and pathogenesis, and to assess the potential therapeutic benefits of silencing S. scabiei target genes.

  3. Secreted Frizzled-related protein 2 as a target in antifibrotic therapeutic intervention

    Science.gov (United States)

    Mastri, Michalis; Shah, Zaeem; Hsieh, Karin; Wang, Xiaowen; Wooldridge, Bailey; Martin, Sean; Suzuki, Gen

    2013-01-01

    Progressive fibrosis is a pathological hallmark of many chronic diseases responsible for organ failure. Although there is currently no therapy on the market that specifically targets fibrosis, the dynamic fibrogenic process is known to be regulated by multiple soluble mediators that may be therapeutically intervened. The failing hamster heart exhibits marked fibrosis and increased expression of secreted Frizzled-related protein 2 (sFRP2) amenable to reversal by mesenchymal stem cell (MSC) therapy. Given the previous demonstration that sFRP2-null mice subjected to myocardial infarction exhibited reduced fibrosis and improved function, we tested whether antibody-based sFRP2 blockade might counteract the fibrogenic pathway and repair cardiac injury. Cardiomyopathic hamsters were injected intraperitoneally twice a week each with 20 μg of sFRP2 antibody. Echocardiography, histology, and biochemical analyses were performed after 1 mo. sFRP2 antibody increased left ventricular ejection fraction from 40 ± 1.2 to 49 ± 6.5%, whereas saline and IgG control exhibited a further decline to 37 ± 0.9 and 31 ± 3.2%, respectively. Functional improvement is associated with a ∼50% reduction in myocardial fibrosis, ∼65% decrease in apoptosis, and ∼75% increase in wall thickness. Consistent with attenuated fibrosis, both MSC therapy and sFRP2 antibody administration significantly increased the activity of myocardial matrix metalloproteinase-2. Gene expression analysis of the hamster heart and cultured fibroblasts identified Axin2 as a downstream target, the expression of which was activated by sFRP2 but inhibited by therapeutic intervention. sFRP2 blockade also increased myocardial levels of VEGF and hepatocyte growth factor (HGF) along with increased angiogenesis. These findings highlight the pathogenic effect of dysregulated sFRP2, which may be specifically targeted for antifibrotic therapy. PMID:24336656

  4. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bridget Martinez

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499 and cerebro-spinal fluid (CSF (miR-328, -362-3p, -451, -486a as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b. MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21 have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly.

  5. Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Tong Aiping

    2010-04-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. There is an urgent need to develop novel biomarkers for early diagnosis, as well as to identify new drug targets for therapeutic interventions. Patients and methods 54 paired HCC samples and 21 normal liver tissues were obtained from West China Hospital of Sichuan University. Informed consent was obtained from all the patients or their relatives prior to analysis, and the project was approved by the Institutional Ethics Committee of Sichuan University. Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC-based proteomics was employed to profile the differentially expressed proteins between a HepG2 human hepatoma cell line and an immortal hepatic cell line L02. Validation of PGAM1 expression was performed by semi-quantitative RT-PCR, immunoblot and immunohistochemistry using clinical samples. shRNA expressing plasmids specifically targeting PGAM1 were designed and constructed by GenePharma Corporation (Shanghai, China, and were utilized to silence expression of PGAM1 in vitro and in vivo. Cell proliferation was measured by a combination of colony formation assay and Ki67 staining. Apoptosis was examined by flow cytometry and TUNEL assay. Results A total of 63 dysregulated proteins were identified, including 51 up-regulated proteins, and 12 down-regulated proteins (over 2-fold, p p in vitro and in vivo. Conclusion Our studies suggested that PGAM1 plays an important role in hepatocarcinogenesis, and should be a potential diagnostic biomarker, as well as an attractive therapeutic target for hepatocellular carcinoma.

  6. Targeting Histone Deacetylases in Malignant Melanoma: A Future Therapeutic Agent or Just Great Expectations?

    Science.gov (United States)

    Garmpis, Nikolaos; Damaskos, Christos; Garmpi, Anna; Dimitroulis, Dimitrios; Spartalis, Eleftherios; Margonis, Georgios-Antonios; Schizas, Dimitrios; Deskou, Irini; Doula, Chrysoula; Magkouti, Eleni; Andreatos, Nikolaos; Antoniou, Efstathios A; Nonni, Afroditi; Kontzoglou, Konstantinos; Mantas, Dimitrios

    2017-10-01

    Malignant melanoma is the most aggressive type of skin cancer, with increasing frequency and mortality. Melanoma is characterized by rapid proliferation and metastases. Malignant transformation of normal melanocytes is associated with imbalance between oncogenes' action and tumor suppressor genes. Mutations or inactivation of these genes plays an important role in the pathogenesis of malignant melanoma. Many target-specific agents improved progression-free survival but unfortunately metastatic melanoma remains incurable, so new therapeutic strategies are needed. The balance of histones' acetylation affects cell cycle progression, differentiation and apoptosis. Histone deacetylases (HDAC) are associated with different types of cancer. Histone deacetylase inhibitors (HDACI) are enzymes that inhibit the action of HDAC, resulting in block of tumor cell proliferation. A small number of these enzymes has been studied regarding their anticancer effects in melanoma. The purpose of this article was to review the therapeutic effect of HDACI against malignant melanoma, enlightening the molecular mechanisms of their action. The MEDLINE database was used. The keywords/ phrases were; HDACI, melanoma, targeted therapies for melanoma. Our final conclusions were based on studies that didn't refer solely to melanoma due to their wider experimental data. Thirty-two articles were selected from the total number of the search's results. Only English articles published until March 2017 were used. Molecules, such as valproid acid (VPA), LBH589, LAQ824 (dacinostat), vorinostat, tubacin, sirtinol and tx-527, suberoyl bis-hydroxamic acid (SBHA), depsipeptide and Trichostatin A (TSA) have shown promising antineoplastic effects against melanoma. HDACI represent a promising agent for targeted therapy. More trials are required. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. The sigma-2 receptor as a therapeutic target for drug delivery in triple negative breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Makvandi, Mehran; Tilahun, Estifanos D.; Lieberman, Brian P.; Anderson, Redmond-Craig; Zeng, Chenbo; Xu, Kuiying; Hou, Catherine; McDonald, Elizabeth S.; Pryma, Daniel A.; Mach, Robert H., E-mail: rmach@mail.med.upenn.edu

    2015-11-27

    Background: Triple-negative breast cancer (TNBC) is associated with high relapse rates and increased mortality when compared with other breast cancer subtypes. In contrast to receptor positive breast cancers, there are no approved targeted therapies for TNBC. Identifying biomarkers for TNBC is of high importance for the advancement of patient care. The sigma-2 receptor has been shown to be overexpressed in triple negative breast cancer in vivo and has been characterized as a marker of proliferation. The aim of the present study was to define the sigma-2 receptor as a target for therapeutic drug delivery and biomarker in TNBC. Methods: Three TNBC cell lines were evaluated: MDA-MB-231, HCC1937 and HCC1806. Sigma-2 compounds were tested for pharmacological properties specific to the sigma-2 receptor through competitive inhibition assays. Sigma-2 receptor expression was measured through radioligand receptor saturation studies. Drug sensitivity for taxol was compared to a sigma-2 targeting compound conjugated to a cytotoxic payload, SW IV-134. Cell viability was assessed after treatments for 2 or 48 h. Sigma-2 blockade was assessed to define sigma-2 mediated cytotoxicity of SW IV-134. Caspase 3/7 activation induced by SW IV-134 was measured at corresponding treatment time points. Results: SW IV-134 was the most potent compound tested in two of the three cell lines and was similarly effective in all three. MDA-MB-231 displayed a statistically significant higher sigma-2 receptor expression and also was the most sensitive cell line evaluated to SW IV-134. Conclusion: Targeting the sigma-2 receptor with a cytotoxic payload was effective in all the three cell lines evaluated and provides the proof of concept for future development of a therapeutic platform for the treatment of TNBC. - Highlights: • TNBC cells are sensitive to sigma-2 receptor targeted drug conjugate SW IV-134. • MDA-MB-231 displayed the highest amount of sigma-2 receptors and corresponded well with

  8. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation.

    Science.gov (United States)

    Sharma, Rishi; Kim, Soo-Young; Sharma, Anjali; Zhang, Zhi; Kambhampati, Siva Pramodh; Kannan, Sujatha; Kannan, Rangaramanujam M

    2017-11-15

    Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal

  9. Molecular pathogenesis and targeted therapeutics in Ewing sarcoma/primitive neuroectodermal tumours

    Directory of Open Access Journals (Sweden)

    Kelleher Fergal C

    2012-02-01

    Full Text Available Abstract Background Ewing sarcoma/PNET is managed with treatment paradigms involving combinations of chemotherapy, surgery, and sometimes radiation. Although the 5-year survival rate of non-metastatic disease approaches 70%, those cases that are metastatic and those that recur have 5-year survival rates of less than 20%. Molecularly targeted treatments offer the potential to further improve treatment outcomes. Methods A PUBMED search was performed from 1997 to 2011. Published literature that included the topic of the Ewing sarcoma/PNET was also referenced. Results Insulin-like growth factor-1 receptor (IGF-1R antagonists have demonstrated modest single agent efficacy in phase I/II clinical trials in Ewing sarcoma/PNET, but have a strong preclinical rationale. Based on in vitro and animal data, treatment using antisense RNA and cDNA oligonucleotides directed at silencing the EWS-FLI chimera that occurs in most Ewing sarcoma/PNET may have potential therapeutic importance. However drug delivery and degradation problems may limit this therapeutic approach. Protein-protein interactions can be targeted by inhibition of RNA helicase A, which binds to EWS/FLI as part of the transcriptional complex. Tumour necrosis factor related apoptosis inducing ligand induction using interferon has been used in preclinical models. Interferons may be incorporated into future chemotherapeutic treatment paradigms. Histone deacetylase inhibitors can restore TGF-β receptor II allowing TFF-β signalling, which appears to inhibit growth of Ewing sarcoma/PNET cell lines in vitro. Immunotherapy using allogeneic natural killer cells has activity in Ewing sarcoma/PNET cell lines and xenograft models. Finally, cyclin dependent kinase inhibitors such as flavopiridol may be clinically efficacious in relapsed Ewing sarcoma/PNET. Conclusion Preclinical evidence exists that targeted therapeutics may be efficacious in the ESFT. IGF-1R antagonists have demonstrated efficacy in phase I

  10. Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics.

    Science.gov (United States)

    Candolfi, Marianela; Xiong, Weidong; Yagiz, Kader; Liu, Chunyan; Muhammad, A K M G; Puntel, Mariana; Foulad, David; Zadmehr, Ali; Ahlzadeh, Gabrielle E; Kroeger, Kurt M; Tesarfreund, Matthew; Lee, Sharon; Debinski, Waldemar; Sareen, Dhruv; Svendsen, Clive N; Rodriguez, Ron; Lowenstein, Pedro R; Castro, Maria G

    2010-11-16

    Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM.

  11. Novel Therapeutic Targets and Drug Candidates for Modifying Disease Progression in Adrenoleukodystrophy.

    Science.gov (United States)

    Pujol, Aurora

    2016-01-01

    X-linked adrenoleukodystrophy (X-ALD) is the most frequent inherited monogenic demyelinating disease. It is often lethal and currently lacks a satisfactory therapy. The disease is caused by loss of function of the ABCD1 gene, a peroxisomal ATP-binding cassette transporter, resulting in the accumulation of very-long-chain fatty acids (VLCFA) in organs and plasma. Recent findings on pathomechanisms of the peroxisomal neurometabolic disease X-ALD have provided important clues on therapeutic targets. Here we describe the impact of chronic redox imbalance caused by the excess VLCFA on mitochondrial biogenesis and respiration, and explore the consequences on the protein quality control systems essential for cell survival, such as the proteasome and autophagic flux. Defective proteostasis, together with mitochondrial malfunction, is a hallmark of the most prevalent neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, and of the aging process. Thus, we discuss molecular targets and emerging treatment options that may be common to both multifactorial neurodegenerative disorders and X-ALD. New-generation antioxidants, some of them mitochondrial targeted, mitochondrial biogenesis boosters such as pioglitazone and resveratrol, and the mTOR inhibitor temsirolimus hold promise as disease-modifying therapies. © 2016 S. Karger AG, Basel.

  12. CD44: a validated target for improved delivery of cancer therapeutics.

    Science.gov (United States)

    Ghosh, Sukhen C; Neslihan Alpay, Sultan; Klostergaard, Jim

    2012-07-01

    Advances in cancer therapeutics, namely more effective and less toxic treatments, will occur with targeting strategies that enhance the tumor biodistribution and thwart normal tissue exposure of the drug. This review focuses on cancer drug targeting approaches that exploit the expression of the cell-surface proteoglycan family, CD44, on the tumor cell surface followed by some form of ligand binding and induced CD44 internalization and intracellular drug release: in effect using this as a 'Trojan Horse' to more selectively access tumor cells. This review defines the origins of evidence for a linkage between CD44 expression and malignancy, and invokes contemporary views of the importance of putative CD44(+) cancer stem cells in disease resistance. Although the primary emphasis is on the most advanced and developed paths, those that have either made it to the clinic or are well-poised to get there, a wide scope of additional approaches at various preclinical stages is also briefly reviewed. The future should see development of drug targeting approaches that exploit CD44 expression on CSCs/TICs, including applications to cytotoxic agents currently in the clinic.

  13. Targeting head and neck tumoral stem cells: From biological aspects to therapeutic perspectives.

    Science.gov (United States)

    Méry, Benoîte; Guy, Jean-Baptiste; Espenel, Sophie; Wozny, Anne-Sophie; Simonet, Stéphanie; Vallard, Alexis; Alphonse, Gersende; Ardail, Dominique; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2016-01-26

    Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer in the world. Effective therapeutic modalities such as surgery, radiation, chemotherapy and combinations of each are used in the management of the disease. In most cases, treatment fails to obtain total cancer cure. In recent years, it appears that one of the key determinants of treatment failure may be the presence of cancer stem cells (CSCs) that escape currently available therapies. CSCs form a small portion of the total tumor burden but may play a disproportionately important role in determining outcomes. CSCs have stem features such as self-renewal, high migration capacity, drug resistance, high proliferation abilities. A large body of evidence points to the fact that CSCs are particularly resistant to radiotherapy and chemotherapy. In HNSCC, CSCs have been increasingly shown to have an integral role in tumor initiation, disease progression, metastasis and treatment resistance. In the light of such observations, the present review summarizes biological characteristics of CSCs in HNSCC, outlines targeted strategies for the successful eradication of CSCs in HNSCC including targeting the self-renewal controlling pathways, blocking epithelial mesenchymal transition, niche targeting, immunotherapy approaches and highlights the need to better understand CSCs biology for new treatments modalities.

  14. Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway

    Science.gov (United States)

    Oon, Shereen; Wilson, Nicholas J; Wicks, Ian

    2016-01-01

    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by impaired immune tolerance, resulting in the generation of pathogenic autoantibodies and immune complexes. Although autoreactive B lymphocytes have been the first targets for biologic therapies in SLE, the importance of the innate immune system, and in particular, pathways involved in interferon (IFN) signaling, has emerged. There are now data supporting a central role for a plasmacytoid dendritic cell-derived type I IFN pathway in SLE, with a number of biologic therapeutics and small-molecule inhibitors undergoing clinical trials. Monoclonal antibodies targeting IFN-α have completed phase II clinical trials, and an antibody against the type I IFN receptor is entering a phase III trial. However, other IFNs, such as IFN gamma, and the more recently discovered type III IFNs, are also emerging as targets in SLE; and blockade of upstream components of the IFN signaling pathway may enable inhibition of more than one IFN subtype. In this review, we discuss the current understanding of IFNs in SLE, focusing on emerging therapies. PMID:27350879

  15. Comparison of therapeutic lipid target achievements among high-risk patients in Oman.

    Science.gov (United States)

    Al-Waili, Khalid; Al-Zakwani, Ibrahim; Al-Dughaishi, Tamima; Baneerje, Yajnavalka; Al-Sabti, Hilal; Al-Hashmi, Khamis; Farhan, Hatem; Habsi, Khadija Al; Al-Hinai, Ali T; Al-Rasadi, Khalid

    2014-05-01

    We compared therapeutic lipid target achievements among patients with diabetes or coronary heart disease (CHD) in Oman. A retrospective chart review of 94 patients was conducted at an outpatient clinic in Sultan Qaboos University Hospital, Muscat, Oman. The variables included low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and apolipoprotein B (apo B). The overall mean age of the cohort was 59 ± 12 years, 54% were male, 66% were diabetic, 48% hypertensive, 45% had CHD, 94% were on simvastatin, 4% were on fenofibrate, and 2% were on both simvastatin and fenofibrate. Lipid goal attainments of calculated LDL-C (<2.6 mmol/L), apo B (<0.9 g/L), and non-HDL-C (<3.36 mmol/L) were reached in 52%, 39%, and 53% of the patients, respectively. A significant proportion of high-risk patients treated with lipid-lowering agents reach LDL-C but not the apo B treatment targets, suggesting that the use of apo B target values should also be considered.

  16. The In-flow Capture of Superparamagnetic Nanoparticles for Targeting of Gene Therapeutics

    Science.gov (United States)

    Darton, N. J.; Hallmark, B.; Han, X.; Palit, S.; Mackley, M. R.; Darling, D.; Farzaneh, F.; Slater, N. K. H.

    2008-06-01

    Superparamagnetic magnetite nanoparticles have been synthesised and used for in-flow capture experiments in vitro to provide a better understanding of the physical principles that underlie magnetic directed therapy. Experimental observations and modeling work have enabled initial refinement of magnetic targeting strategies and superparamagnetic nanoparticle properties for different therapeutic targeting requirements. It has been discovered that 330 nm and 580 nm agglomerates of 10 nm magnetite cores can be captured with a 0.5 T magnet in flows of up to 0.35 ml•min-1 in 410 μm diameter microcapillaries. These flows are typical of blood flow rates found in venules and arterioles in the human cardiovascular system. Further analysis of the data obtained from in-flow capture of superparamagnetic nanoparticles has enabled an initial model to be created, which can be used to estimate the steady state layer thickness of captured superparamagnetic nanoparticles and therefore capillary occlusion at the target site. This work provides the basis for future optimisation of a completely in vitro system for testing magnetic directed therapy, enabling data to be provided for preclinical trials.

  17. TRP channels as targets for therapeutic intervention in obesity: focus on TRPV1 and TRPM5.

    Science.gov (United States)

    Palmer, R Kyle; Lunn, Charles A

    2013-01-01

    The disease of obesity is one of the greatest healthcare challenges of our time. The increasing urgency for effective treatment is driving an intensive search for new targets for anti-obesity drug discovery. The TRP channel super family represents a class of proteins now recognized to serve many functions in physiology related to maintenance of health and the development of diseases. A few of these might offer new potential for therapeutic intervention in obesity. Among the TRP channels, TRPV1 appears most closely associated with body weight homeostasis through its influence on energy expenditure. TRPM5 has been thoroughly characterized as a critical component of taste signaling and recently has been implicated in insulin release. Because of its role in taste signaling, we argue that drugs designed to modulate TRPM5 could be useful in controlling energy consumption by impacting taste sensory signals. As drug targets for obesity, both TRPV1 and TRPM5 offer the advantage of operating in compartments that could limit drug distribution to the site of action. The potential for other TRP channels as anti-obesity drug targets also is discussed.

  18. Next-Gen Sequencing Exposes Frequent MED12 Mutations and Actionable Therapeutic Targets in Phyllodes Tumors.

    Science.gov (United States)

    Cani, Andi K; Hovelson, Daniel H; McDaniel, Andrew S; Sadis, Seth; Haller, Michaela J; Yadati, Venkata; Amin, Anmol M; Bratley, Jarred; Bandla, Santhoshi; Williams, Paul D; Rhodes, Kate; Liu, Chia-Jen; Quist, Michael J; Rhodes, Daniel R; Grasso, Catherine S; Kleer, Celina G; Tomlins, Scott A

    2015-04-01

    Phyllodes tumors are rare fibroepithelial tumors with variable clinical behavior accounting for a small subset of all breast neoplasms, yet little is known about the genetic alterations that drive tumor initiation and/or progression. Here, targeted next-generation sequencing (NGS) was used to identify somatic alterations in formalin-fixed paraffin-embedded (FFPE) patient specimens from malignant, borderline, and benign cases. NGS revealed mutations in mediator complex subunit 12 (MED12) affecting the G44 hotspot residue in the majority (67%) of cases spanning all three histologic grades. In addition, loss-of-function mutations in p53 (TP53) as well as deleterious mutations in the tumor suppressors retinoblastoma (RB1) and neurofibromin 1 (NF1) were identified exclusively in malignant tumors. High-level copy-number alterations (CNA) were nearly exclusively confined to malignant tumors, including potentially clinically actionable gene amplifications in IGF1R and EGFR. Taken together, this study defines the genomic landscape underlying phyllodes tumor development, suggests potential molecular correlates to histologic grade, expands the spectrum of human tumors with frequent recurrent MED12 mutations, and identifies IGF1R and EGFR as potential therapeutic targets in malignant cases. Integrated genomic sequencing and mutational profiling provides insight into the molecular origin of phyllodes tumors and indicates potential druggable targets in malignant disease. Visual Overview: http://mcr.aacrjournals.org/content/early/2015/04/02/1541-7786.MCR-14-0578/F1.large.jpg. ©2015 American Association for Cancer Research.

  19. Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Fiona Kerr

    2017-03-01

    Full Text Available Nrf2, a transcriptional activator of cell protection genes, is an attractive therapeutic target for the prevention of neurodegenerative diseases, including Alzheimer's disease (AD. Current Nrf2 activators, however, may exert toxicity and pathway over-activation can induce detrimental effects. An understanding of the mechanisms mediating Nrf2 inhibition in neurodegenerative conditions may therefore direct the design of drugs targeted for the prevention of these diseases with minimal side-effects. Our study provides the first in vivo evidence that specific inhibition of Keap1, a negative regulator of Nrf2, can prevent neuronal toxicity in response to the AD-initiating Aβ42 peptide, in correlation with Nrf2 activation. Comparatively, lithium, an inhibitor of the Nrf2 suppressor GSK-3, prevented Aβ42 toxicity by mechanisms independent of Nrf2. A new direct inhibitor of the Keap1-Nrf2 binding domain also prevented synaptotoxicity mediated by naturally-derived Aβ oligomers in mouse cortical neurons. Overall, our findings highlight Keap1 specifically as an efficient target for the re-activation of Nrf2 in AD, and support the further investigation of direct Keap1 inhibitors for the prevention of neurodegeneration in vivo.

  20. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells.

    Science.gov (United States)

    Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi; Shah, Khalid

    2015-06-01

    Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications. © The Author (2015). Published by Oxford University Press on

  1. Cortico-Striatal-Thalamic Loop Circuits of the Orbitofrontal Cortex: Promising Therapeutic Targets in Psychiatric Illness

    Science.gov (United States)

    Fettes, Peter; Schulze, Laura; Downar, Jonathan

    2017-01-01

    Corticostriatal circuits through the orbitofrontal cortex (OFC) play key roles in complex human behaviors such as evaluation, affect regulation and reward-based decision-making. Importantly, the medial and lateral OFC (mOFC and lOFC) circuits have functionally and anatomically distinct connectivity profiles which differentially contribute to the various aspects of goal-directed behavior. OFC corticostriatal circuits have been consistently implicated across a wide range of psychiatric disorders, including major depressive disorder (MDD), obsessive compulsive disorder (OCD), and substance use disorders (SUDs). Furthermore, psychiatric disorders related to OFC corticostriatal dysfunction can be addressed via conventional and novel neurostimulatory techniques, including deep brain stimulation (DBS), electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS). Such techniques elicit changes in OFC corticostriatal activity, resulting in changes in clinical symptomatology. Here we review the available literature regarding how disturbances in mOFC and lOFC corticostriatal functioning may lead to psychiatric symptomatology in the aforementioned disorders, and how psychiatric treatments may exert their therapeutic effect by rectifying abnormal OFC corticostriatal activity. First, we review the role of OFC corticostriatal circuits in reward-guided learning, decision-making, affect regulation and reappraisal. Second, we discuss the role of OFC corticostriatal circuit dysfunction across a wide range of psychiatric disorders. Third, we review available evidence that the therapeutic mechanisms of various neuromodulation techniques may directly involve rectifying abnormal activity in mOFC and lOFC corticostriatal circuits. Finally, we examine the potential of future applications of therapeutic brain stimulation targeted at OFC circuitry; specifically, the role of OFC brain stimulation in the growing field

  2. Cortico-Striatal-Thalamic Loop Circuits of the Orbitofrontal Cortex: Promising Therapeutic Targets in Psychiatric Illness

    Directory of Open Access Journals (Sweden)

    Jonathan Downar

    2017-04-01

    Full Text Available Corticostriatal circuits through the orbitofrontal cortex (OFC play key roles in complex human behaviors such as evaluation, affect regulation and reward-based decision-making. Importantly, the medial and lateral OFC (mOFC and lOFC circuits have functionally and anatomically distinct connectivity profiles which differentially contribute to the various aspects of goal-directed behavior. OFC corticostriatal circuits have been consistently implicated across a wide range of psychiatric disorders, including major depressive disorder (MDD, obsessive compulsive disorder (OCD, and substance use disorders (SUDs. Furthermore, psychiatric disorders related to OFC corticostriatal dysfunction can be addressed via conventional and novel neurostimulatory techniques, including deep brain stimulation (DBS, electroconvulsive therapy (ECT, repetitive transcranial magnetic stimulation (rTMS, and transcranial direct current stimulation (tDCS. Such techniques elicit changes in OFC corticostriatal activity, resulting in changes in clinical symptomatology. Here we review the available literature regarding how disturbances in mOFC and lOFC corticostriatal functioning may lead to psychiatric symptomatology in the aforementioned disorders, and how psychiatric treatments may exert their therapeutic effect by rectifying abnormal OFC corticostriatal activity. First, we review the role of OFC corticostriatal circuits in reward-guided learning, decision-making, affect regulation and reappraisal. Second, we discuss the role of OFC corticostriatal circuit dysfunction across a wide range of psychiatric disorders. Third, we review available evidence that the therapeutic mechanisms of various neuromodulation techniques may directly involve rectifying abnormal activity in mOFC and lOFC corticostriatal circuits. Finally, we examine the potential of future applications of therapeutic brain stimulation targeted at OFC circuitry; specifically, the role of OFC brain stimulation in the

  3. Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease

    Science.gov (United States)

    de la Monte, Suzanne M

    2012-01-01

    Alzheimer's disease [AD] is the most common cause of dementia in North America. Despite 30+ years of intense investigation, the field lacks consensus regarding the etiology and pathogenesis of sporadic AD, and therefore we still do not know the best strategies for treating and preventing this debilitating and costly disease. However, growing evidence supports the concept that AD is fundamentally a metabolic disease with substantial and progressive derangements in brain glucose utilization and responsiveness to insulin and insulin-like growth factor [IGF] stimulation. Moreover, AD is now recognized to be heterogeneous in nature, and not solely the end-product of aberrantly processed, misfolded, and aggregated oligomeric amyloid-beta peptides and hyperphosphorylated tau. Other factors, including impairments in energy metabolism, increased oxidative stress, inflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into all equations used to develop diagnostic and therapeutic approaches to AD. Herein, the contributions of impaired insulin and IGF signaling to AD-associated neuronal loss, synaptic disconnection, tau hyperphosphorylation, amyloid-beta accumulation, and impaired energy metabolism are reviewed. In addition, we discuss current therapeutic strategies and suggest additional approaches based on the hypothesis that AD is principally a metabolic disease similar to diabetes mellitus. Ultimately, our ability to effectively detect, monitor, treat, and prevent AD will require more efficient, accurate and integrative diagnostic tools that utilize clinical, neuroimaging, biochemical, and molecular biomarker data. Finally, it is imperative that future therapeutic strategies for AD abandon the concept of uni-modal therapy in favor of multi-modal treatments that target distinct impairments at different levels within the brain insulin/IGF signaling cascades. PMID:22329651

  4. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    Sheila K. Pirooznia

    2013-03-01

    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and

  5. On the value of therapeutic interventions targeting the complement system in acute myocardial infarction.

    Science.gov (United States)

    Emmens, Reindert W; Wouters, Diana; Zeerleder, Sacha; van Ham, S Marieke; Niessen, Hans W M; Krijnen, Paul A J

    2017-04-01

    The complement system plays an important role in the inflammatory response subsequent to acute myocardial infarction (AMI). The aim of this study is to create a systematic overview of studies that have investigated therapeutic administration of complement inhibitors in both AMI animal models and human clinical trials. To enable extrapolation of observations from included animal studies toward post-AMI clinical trials, ex vivo studies on isolated hearts and proof-of-principle studies on inhibitor administration before experimental AMI induction were excluded. Positive therapeutic effects in AMI animal models have been described for cobra venom factor, soluble complement receptor 1, C1-esterase inhibitor (C1-inh), FUT-175, C1s-inhibitor, anti-C5, ADC-1004, clusterin, and glycosaminoglycans. Two types of complement inhibitors have been tested in clinical trials, being C1-inh and anti-C5. Pexelizumab (anti-C5) did not result in reproducible beneficial effects for AMI patients. Beneficial effects were reported in AMI patients for C1-inhibitor, albeit in small patient groups. In general, despite the absence of consistent positive effects in clinical trials thus far, the complement system remains a potentially interesting target for therapy in AMI patients. Based on the study designs of previous animal studies and clinical trials, we discuss several issues which require attention in the design of future studies: adjustment of clinical trial design to precise mechanism of action of administered inhibitor, optimizing the duration of therapy, and optimization of time point(s) on which therapeutic effects will be evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Mevalonate Cascade and Neurodevelopmental and Neurodegenerative Diseases: Future Targets for Therapeutic Application.

    Science.gov (United States)

    Jiao, Xiaodan; Ashtari, Niloufar; Rahimi-Balaei, Maryam; Chen, Qi Min; Badbezanchi, Ilnaz; Shojaei, Shahla; Marzban, Adel; Mirzaei, Nima; Chung, Seunghyuk; Guan, Teng; Li, Jiasi; Vriend, Jerry; Mehr, Shahram Ejtemaei; Kong, Jiming; Marzban, Hassan

    2017-01-01

    The mevalonate cascade is a key metabolic pathway that regulates a variety of cellular functions and is thereby implicated in the pathophysiology of most brain diseases, including neurodevelopmental and neurodegenerative disorders. Emerging lines of evidence suggest that statins and Rho GTPase inhibitors are efficacious and have advantageous properties in treatment of different pathologic conditions that are relevant to the central nervous system. Beyond the original role of statins in lowering cholesterol synthesis, they have anti-inflammatory, antioxidant and modulatory effects on signaling pathways. Additionally, Rho GTPase inhibitors and statins share the mevalonate pathway as a common target of their therapeutic actions. In this review, we discuss potential mechanisms through which these drugs, via their role in the mevalonate pathway, exert their neuroprotective effects in neurodegenerative and neurodevelopmental disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Pathophysiology of cardiorenal syndrome in patients with heart failure: potential therapeutic targets.

    Science.gov (United States)

    Takahama, Hiroyuki; Kitakaze, Masafumi

    2017-10-01

    Despite the development of pharmacological inventions and new nonpharmacological techniques to prevent and treat heart failure (HF), the mortality rate in patients with symptomatic HF remains high. To conquer these difficulties, the pathophysiology of HF should be considered within a wide range of views. Given the diverse mechanisms of HF pathophysiology, renal and cardiac functions have close and complementary interconnections. Recent studies have suggested that communication between the kidney and heart through bidirectional pathways causes significant pathological changes. This review summarizes the pathophysiology of cardiorenal syndrome (CRS) from three different viewpoints, namely, underlying chronic kidney disease, worsening renal function during hospitalization due to HF, and resistance to diuretics. We also summarize the presently available data on the pathophysiology of CRS, identify the challenges associated with some clinical approaches, and explore the potential therapeutic target for CRS. Copyright © 2017 the American Physiological Society.

  8. RORα, a Potential Tumor Suppressor and Therapeutic Target of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jun Du

    2012-11-01

    Full Text Available The function of the nuclear receptor (NR in breast cancer progression has been investigated for decades. The majority of the nuclear receptors have well characterized natural ligands, but a few of them are orphan receptors for which no ligand has been identified. RORα, one member of the retinoid orphan nuclear receptor (ROR subfamily of orphan receptors, regulates various cellular and pathological activities. RORα is commonly down-regulated and/or hypoactivated in breast cancer compared to normal mammary tissue. Expression of RORα suppresses malignant phenotypes in breast cancer cells, in vitro and in vivo. Activity of RORα can be categorized into the canonical and non-canonical nuclear receptor pathways, which in turn regulate various breast cancer cellular function, including cell proliferation, apoptosis and invasion. This information suggests that RORα is a potent tumor suppressor and a potential therapeutic target for breast cancer.

  9. Acid-Sensing Ion Channels as Potential Therapeutic Targets in Neurodegeneration and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Audrey Ortega-Ramírez

    2017-01-01

    Full Text Available Acid-sensing ion channels (ASICs are a family of proton-sensing channels that are voltage insensitive, cation selective (mostly permeable to Na+, and nonspecifically blocked by amiloride. Derived from 5 genes (ACCN1–5, 7 subunits have been identified, 1a, 1b, 2a, 2b, 3, 4, and 5, that are widely expressed in the peripheral and central nervous system as well as other tissues. Over the years, different studies have shown that activation of these channels is linked to various physiological and pathological processes, such as memory, learning, fear, anxiety, ischemia, and multiple sclerosis to name a few, so their potential as therapeutic targets is increasing. This review focuses on recent advances that have helped us to better understand the role played by ASICs in different pathologies related to neurodegenerative diseases, inflammatory processes, and pain.

  10. NEUROMUSCULAR JUNCTIONS AS KEY CONTRIBUTORS AND THERAPEUTIC TARGETS IN SPINAL MUSCULAR ATROPHY

    Directory of Open Access Journals (Sweden)

    Marina eBoido

    2016-02-01

    Full Text Available Spinal muscular atrophy (SMA is a recessive autosomal neuromuscular disease, representing the most common fatal paediatric pathology. Even though, classically and in a simplistic way, it is categorized as a motor neuron (MN disease, there is an increasing general consensus that its pathogenesis is more complex than expected. In particular, neuromuscular junctions (NMJs are affected by dramatic alterations, including immaturity, denervation and neurofilament accumulation, associated to impaired synaptic functions: these abnormalities may in turn have a detrimental effect on MN survival.Here we provide a description of NMJ development/maintenance/maturation in physiological and pathological (SMA conditions, focusing on pivotal molecules and on the time-course of pathological events. Moreover, since NMJs could represent an important target to be exploited for counteracting the pathology progression, we also describe several therapeutic strategies that, directly or indirectly, aim at NMJs.

  11. The management of loneliness in aged care residents: an important therapeutic target for gerontological nursing.

    Science.gov (United States)

    Brownie, Sonya; Horstmanshof, Louise

    2011-01-01

    Social engagement and meaningful relationships are critical determinants of the quality of life of older people. Human beings have an intrinsic need for social connections and an engagement with the social environment. Deficits in the quality of these social relationships lead to feelings of isolation and loneliness in older people. Loneliness can have serious physiological and health implications. It is well established that loneliness is a risk factor for poor physical and mental health, comparable in size to obesity, a sedentary lifestyle and possibly even smoking. The aim of this article is to present an argument for the management of loneliness in aged care residents as an important therapeutic target in gerontological nursing. To date little is known about the effectiveness of intervention strategies designed to alleviate loneliness in aged care residents. Nurses can address this deficit in our understanding by evaluating the impact of loneliness intervention strategies. Copyright © 2011 Mosby, Inc. All rights reserved.

  12. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel

    DEFF Research Database (Denmark)

    Wee, Zhen Ning; Yatim, Siti Maryam J M; Kohlbauer, Vera K

    2015-01-01

    it acts to drive aggressive growth, metastasis and acquired resistance to paclitaxel treatment. We show that IRAK1 overexpression confers TNBC growth advantage through NF-κB-related cytokine secretion and metastatic TNBC cells exhibit gain of IRAK1 dependency, resulting in high susceptibility to genetic...... and pharmacologic inhibition of IRAK1. Importantly, paclitaxel treatment induces strong IRAK1 phosphorylation, an increase in inflammatory cytokine expression, enrichment of cancer stem cells and acquired resistance to paclitaxel treatment. Pharmacologic inhibition of IRAK1 is able to reverse paclitaxel resistance...... by triggering massive apoptosis at least in part through inhibiting p38-MCL1 pro-survival pathway. Our study thus demonstrates IRAK1 as a promising therapeutic target for TNBC metastasis and paclitaxel resistance....

  13. Hypoxia-inducible factor-1α: a promising therapeutic target for autoimmune diseases.

    Science.gov (United States)

    Guan, Shi-Yang; Leng, Rui-Xue; Tao, Jin-Hui; Li, Xiang-Pei; Ye, Dong-Qing; Olsen, Nancy; Zheng, Song Guo; Pan, Hai-Feng

    2017-07-01

    Hypoxia-inducible factor-1α (HIF-1α) plays a crucial role in both innate and adaptive immunity. Emerging evidence indicates that HIF-1α is associated with the inflammation and pathologic activities of autoimmune diseases. Areas covered: Considering that the types of autoimmune diseases are complicated and various, this review aims to cover the typical kinds of autoimmune diseases, discuss the molecular mechanisms, biological functions and expression of HIF-1α in these diseases, and further explore its therapeutic potential. Expert opinion: Inflammation and hypoxia are interdependent. HIF-1α as a key regulator of hypoxia, exerts a crucial role in the balance between Th17 and Treg, and involves in the inflammation and pathologic activities of autoimmune diseases. Although there are many challenges remaining to be overcome, targeting HIF-1α could be a promising strategy for autoimmune diseases therapies.

  14. Potentials of Long Noncoding RNAs (LncRNAs in Sarcoma: From Biomarkers to Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Li Min

    2017-03-01

    Full Text Available Sarcoma includes some of the most heterogeneous tumors, which make the diagnosis, prognosis and treatment of these rare yet diverse neoplasms especially challenging. Long noncoding RNAs (lncRNAs are important regulators of cancer initiation and progression, which implies their potential as neoteric prognostic and diagnostic markers in cancer, including sarcoma. A relationship between lncRNAs and sarcoma pathogenesis and progression is emerging. Recent studies demonstrate that lncRNAs influence sarcoma cell proliferation, metastasis, and drug resistance. Additionally, lncRNA expression profiles are predictive of sarcoma prognosis. In this review, we summarize contemporary advances in the research of lncRNA biogenesis and functions in sarcoma. We also highlight the potential for lncRNAs to become innovative diagnostic and prognostic biomarkers as well as therapeutic targets in sarcoma.

  15. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target.

    Science.gov (United States)

    Barclay, A Neil; Van den Berg, Timo K

    2014-01-01

    CD47 is a broadly expressed membrane protein that interacts with the myeloid inhibitory immunoreceptor SIRPα (also termed CD172a or SHPS-1). SIRPα is the prototypic member of the SIRP paired receptor family of closely related SIRP proteins. Engagement of SIRPα by CD47 provides a downregulatory signal that inhibits host cell phagocytosis, and CD47 therefore functions as a "don't-eat-me" signal. Here, we discuss recent structural analysis of CD47-SIRPα interactions and implications of this for the function and evolution of SIRPα and paired receptors in general. Furthermore, we review the proposed roles of CD47-SIRPα interactions in phagocytosis, (auto)immunity, and host defense, as well as its potential significance as a therapeutic target in cancer and inflammation and for improving graft survival in xenotransplantation.

  16. Role of the EZH2 histone methyltransferase as a therapeutic target in cancer.

    Science.gov (United States)

    Italiano, Antoine

    2016-09-01

    Besides being a genetic disease, cancer is also an epigenetic disease. The histone methyltransferase EZH2 is the catalytic subunit of PRC2, a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3. Given its role in tumorigenesis and its prognostic value in several tumor types, this protein appears a relevant therapeutic target. This review focuses on the preclinical and preliminary clinical results of studies investigating EZH2 inhibitors in human malignancies. These emerging data suggest that EZH2 inhibitors represent a very promising class of drugs, which will probably have a major impact on improving outcome and reducing toxicity for patients with indolent and aggressive B-cell lymphomas and other specific solid tumors. Copyright © 2016. Published by Elsevier Inc.

  17. Therapeutic potential of mGluR5 targeting in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Anil eKumar

    2015-06-01

    Full Text Available Decades of research dedicated towards Alzheimer's disease (AD has culminated in much of the current understanding of the neurodegeneration associated with disease. However, delineating the pathophysiology and finding a possible cure for the disease is still wanting. This is in part due to the lack of knowledge pertaining to the connecting link between neurodegenerative and neuroinflammatory pathways. Consequently, the inefficacy and ill-effects of the drugs currently available for AD encourage the need for alternative and safe therapeutic intervention. In this review we highlight the potential of mGluR5, a metabotropic glutamatergic receptor, in understanding the mechanism underlying the neuronal death and neuroinflammation in AD. We also discuss the role of mGlu5 receptor in mediating the neuron-glia interaction in the disease. Finally, we discuss the potential of mGluR5 as target for treating AD.

  18. G protein-coupled receptors as new therapeutic targets for type 2 diabetes.

    Science.gov (United States)

    Reimann, Frank; Gribble, Fiona M

    2016-02-01

    G protein-coupled receptors (GPCRs) in the gut-brain-pancreatic axis are key players in the postprandial control of metabolism and food intake. A number of intestinally located receptors have been implicated in the chemo-detection of ingested nutrients, and in the pancreatic islets and nervous system GPCRs play essential roles in the detection of many hormones and neurotransmitters. Because of the diversity, cell-specific expression and 'druggability' of the GPCR superfamily, these receptors are popular targets for therapeutic development. This review will outline current and potential future approaches to develop GPCR agonists for the treatment of type 2 diabetes. This review summarises a presentation given at the 'Novel approaches to treating type 2 diabetes' symposium at the 2015 annual meeting of the EASD. It is accompanied by a commentary by the Session Chair, Michael Nauck (DOI: 10.1007/s00125-015-3823-1 ).

  19. The Emerging Role of HMGB1 in Neuropathic Pain: A Potential Therapeutic Target for Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Wenbin Wan

    2016-01-01

    Full Text Available Neuropathic pain (NPP is intolerable, persistent, and specific type of long-term pain. It is considered to be a direct consequence of pathological changes affecting the somatosensory system and can be debilitating for affected patients. Despite recent progress and growing interest in understanding the pathogenesis of the disease, NPP still presents a major diagnostic and therapeutic challenge. High mobility group box 1 (HMGB1 mediates inflammatory and immune reactions in nervous system and emerging evidence reveals that HMGB1 plays an essential role in neuroinflammation through receptors such as Toll-like receptors (TLR, receptor for advanced glycation end products (RAGE, C-X-X motif chemokines receptor 4 (CXCR4, and N-methyl-D-aspartate (NMDA receptor. In this review, we present evidence from studies that address the role of HMGB1 in NPP. First, we review studies aimed at determining the role of HMGB1 in NPP and discuss the possible mechanisms underlying HMGB1-mediated NPP progression where receptors for HMGB1 are involved. Then we review studies that address HMGB1 as a potential therapeutic target for NPP.

  20. The current role and therapeutic targets of vitamin D in gastrointestinal inflammation and cancer.

    Science.gov (United States)

    Cai, Gan Hui; Li, Ming Xing; Lu, Lan; Yi Chan, Ruby Lok; Wang, Jian Hao; Cho, Chi Hin

    2015-01-01

    Vitamin D, beyond its classical roles in the regulation of calcium and phosphorus homeostasis and bone metabolism, has been implicated in multiple pathological processes, including progression from inflammation to cancer development and also involvement in autoimmune diseases as well as cardiovascular disorders. In this review, we shall discuss the different roles of vitamin D and its therapeutic targets in different gastrointestinal diseases, focusing on colorectal cancer (CRC) and inflammatory bowel disease (IBD). To this end, vitamin D deficiency has been identified as a risk factor of CRC. On the other hand the active metabolite of vitamin D, 1, 25- dihydroxyvitamin D3 (1, 25(OH)2D3) has multiple anti-cancerous benefits including inhibition of proliferation, induction of apoptosis, promotion of differentiation and suppression of angiogenesis in tumors. In IBD, vitamin D is involved in the pathogenic process through the normalization of immune responses in the colon. With these experimental findings, well-designed and large-scale clinical trials are warranted to further define the therapeutic action of vitamin D in the prevention and/or treatment of IBD and further on CRC in humans.

  1. Adaptive Cellular Stress Pathways as Therapeutic Targets of Dietary Phytochemicals: Focus on the Nervous System

    Science.gov (United States)

    Jo, Dong-Gyu; Park, Daeui; Chung, Hae Young

    2014-01-01

    During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied. PMID:24958636

  2. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis.

    Science.gov (United States)

    Napier, Ruth J; Rafi, Wasiulla; Cheruvu, Mani; Powell, Kimberly R; Zaunbrecher, M Analise; Bornmann, William; Salgame, Padmini; Shinnick, Thomas M; Kalman, Daniel

    2011-11-17

    The lengthy course of treatment with currently used antimycobacterial drugs and the resulting emergence of drug-resistant strains have intensified the need for alternative therapies against Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. We show that Mtb and Mycobacterium marinum use ABL and related tyrosine kinases for entry and intracellular survival in macrophages. In mice, the ABL family tyrosine kinase inhibitor, imatinib (Gleevec), when administered prophylactically or therapeutically, reduced both the number of granulomatous lesions and bacterial load in infected organs and was also effective against a rifampicin-resistant strain. Further, when coadministered with current first-line drugs, rifampicin or rifabutin, imatinib acted synergistically. These data implicate host tyrosine kinases in entry and intracellular survival of mycobacteria and suggest that imatinib may have therapeutic efficacy against Mtb. Because imatinib targets host, it is less likely to engender resistance compared to conventional antibiotics and may decrease the development of resistance against coadministered drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Elevated immune-inflammatory signaling in mood disorders: a new therapeutic target?

    Science.gov (United States)

    McNamara, Robert K; Lotrich, Francis E

    2012-09-01

    Converging translational evidence has implicated elevated immune-inflammatory signaling activity in the pathoetiology of mood disorders, including major depressive disorder and bipolar disorder. This is supported in part by cross-sectional evidence for increased levels of proinflammatory eicosanoids, cytokines and acute-phase proteins during mood episodes, and prospective longitudinal evidence for the emergence of mood symptoms in response to chronic immune-inflammatory activation. In addition, mood-stabilizer and atypical antipsychotic medications downregulate initial components of the immune-inflammatory signaling pathway, and adjunctive treatment with anti-inflammatory agents augment the therapeutic efficacy of antidepressant, mood stabilizer and atypical antipsychotic medications. Potential pathogenic mechanisms linked with elevated immune-inflammatory signaling include perturbations in central serotonin neurotransmission and progressive white matter pathology. Both heritable genetic factors and environmental factors including dietary fatty-acid composition may act in concert to sustain elevated immune-inflammatory signaling. Collectively, these data suggest that elevated immune-inflammatory signaling is a mechanism that is relevant to the pathoetiology of mood disorders, and may therefore represent a new therapeutic target for the development of more effective treatments.

  4. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach.

    Science.gov (United States)

    Wu, Dan-Dan; Song, Juan; Bartel, Sabine; Krauss-Etschmann, Susanne; Rots, Marianne G; Hylkema, Machteld N

    2017-08-19

    Chronic obstructive pulmonary disease (COPD) is an age and smoking related progressive, pulmonary disorder presenting with poorly reversible airflow limitation as a result of chronic bronchitis and emphysema. The prevalence, disease burden for the individual, and mortality of COPD continues to increase, whereas no effective treatment strategies are available. For many years now, a combination of bronchodilators and anti-inflammatory corticosteroids has been most widely used for therapeutic management of patients with persistent COPD. However, this approach has had disappointing results as a large number of COPD patients are corticosteroid resistant. In patients with COPD, there is emerging evidence showing aberrant expression of epigenetic marks such as DNA methylation, histone modifications and microRNAs in blood, sputum and lung tissue. Therefore, novel therapeutic approaches may exist using epigenetic therapy. This review aims to describe and summarize current knowledge of aberrant expression of epigenetic marks in COPD. In addition, tools available for restoration of epigenetic marks are described, as well as delivery mechanisms of epigenetic editors to cells. Targeting epigenetic marks might be a very promising tool for treatment and lung regeneration in COPD in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke

    Science.gov (United States)

    Chen, Yajing; Shen, Fanxia; Liu, Jianrong; Yang, Guo-Yuan

    2017-01-01

    Stroke is the second leading cause of mortality and morbidity worldwide. Early intervention is of great importance in reducing disease burden. Since the conventional risk factors cannot fully account for the pathogenesis of stroke, it is extremely important to detect useful biomarkers of the vascular disorder for appropriate intervention. Arterial stiffness, a newly recognised reliable feature of arterial structure and function, is demonstrated to be associated with stroke onset and serve as an independent predictor of stroke incidence and poststroke functional outcomes. In this review article, different measurements of arterial stiffness, especially pressure wave velocity, were discussed. We explained the association between arterial stiffness and stroke occurrence by discussing the secondary haemodynamic changes. We reviewed clinical data that support the prediction role of arterial stiffness on stroke. Despite the lack of long-term randomised double-blind controlled therapeutic trials, it is high potential to reduce stroke prevalence through a significant reduction of arterial stiffness (which is called de-stiffening therapy). Pharmacological interventions or lifestyle modification that can influence blood pressure, arterial function or structure in either the short or long term are promising de-stiffening therapies. Here, we summarised different de-stiffening strategies including antihypertension drugs, antihyperlipidaemic agents, chemicals that target arterial remodelling and exercise training. Large and well-designed clinical trials on de-stiffening strategy are needed to testify the prevention effect for stroke. Novel techniques such as modern microscopic imaging and reliable animal models would facilitate the mechanistic analyses in pathophysiology, pharmacology and therapeutics. PMID:28959494

  6. Superoxide dismutase - a target for gene therapeutic approach to reduce oxidative stress in erectile dysfunction.

    Science.gov (United States)

    Deng, W; Bivalacqua, T J; Champion, H C; Hellstrom, W J; Murthy, Subramanyam N; Kadowitz, Philip J

    2010-01-01

    Erectile dysfunction (ED) is defined as the inability to attain and/or maintain penile erection sufficient for satisfactory sexual performance. Oxidative stress has been demonstrated to be involved in the pathophysiology of age- or diabetes-related ED. Superoxide dismutase (SOD), an antioxidant enzyme catalyzing the conversion of superoxide anion (O(2) (-)) to hydrogen peroxide (H(2)O(2)) and molecular oxygen (O(2)), is a promising therapeutic target for ED. In vivo gene therapy and adult stem cell-based ex vivo gene therapy are two attractive current gene therapies for the treatment of ED. In this chapter we describe the use of two potent gene transfer techniques to deliver the therapeutic gene extracellular superoxide dismutase (ecSOD) into the penis of aged or diabetic rats for therapy of ED: adenoviral-mediated intracavernosal ecSOD gene transfer for gene therapy of ED and ecSOD gene-modified marrow stromal cells, also known as mesenchymal stem cells, based stem cell and gene therapy.

  7. Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47

    Science.gov (United States)

    Soto-Pantoja, David R.; Stein, Erica V.; Rogers, Natasha M.; Sharifi-Sanjani, Maryam; Isenberg, Jeffrey S.; Roberts, David D.

    2013-01-01

    Introduction CD47 is a ubiquitously expressed cell surface receptor that serves as a counter-receptor for SIRPα in recognition of self by the innate immune system. Independently, CD47 also functions as an important signaling receptor for regulating cell responses to stress. Areas covered We review the expression, molecular interactions, and pathophysiological functions of CD47 in the cardiovascular and immune systems. CD47 was first identified as a potential tumor marker, and we examine recent evidence that its dysregulation contributes to cancer progression and evasion of anti-tumor immunity. We further discuss therapeutic strategies for enhancing or inhibiting CD47 signaling and applications of such agents in preclinical models of ischemia and ischemia/reperfusion injuries, organ transplantation, pulmonary hypertension, radioprotection, and cancer. Expert opinion Ongoing studies are revealing a central role of CD47 for conveying signals from the extracellular microenvironment that limit cell and tissue survival upon exposure to various types of stress. Based on this key function, therapeutics targeting CD47 or its ligands thrombospondin-1 and SIRPα could have broad applications spanning reconstructive surgery, engineering of tissues and biocompatible surfaces, vascular diseases, diabetes, organ transplantation, radiation injuries, inflammatory diseases, and cancer. PMID:23101472

  8. ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer

    Directory of Open Access Journals (Sweden)

    Pan Jian

    2011-12-01

    Full Text Available Abstract Background Treatment failure for breast cancer is frequently due to lymph node metastasis and invasion to neighboring organs. The aim of the present study was to investigate invasion- and metastasis-related genes in breast cancer cells in vitro and in vivo. Identification of new targets will facilitate the developmental pace of new techniques in screening and early diagnosis. Improved abilities to predict progression and metastasis, therapeutic response and toxicity will help to increase survival of breast cancer patients. Methods Differential protein expression in two breast cancer cell lines, one with high and the other with low metastatic potential, was analyzed using two-dimensional liquid phase chromatographic fractionation (Proteome Lab PF 2D system followed by matrix-assisted laser desorption/time-of-flight mass spectrometry (MALDI-TOF/MS. Results Up regulation of α-subunit of ATP synthase was identified in high metastatic cells compared with low metastatic cells. Immunohistochemical analysis of 168 human breast cancer specimens on tissue microarrays revealed a high frequency of ATP synthase α-subunit expression in breast cancer (94.6% compared to normal (21.2% and atypical hyperplasia (23% breast tissues. Levels of ATP synthase expression levels strongly correlated with large tumor size, poor tumor differentiation and advanced tumor stages (P Conclusions Over-expression of ATP synthase α-subunit may be involved in the progression and metastasis of breast cancer, perhaps representing a potential biomarker for diagnosis, prognosis and a therapeutic target for breast cancer. This finding of this study will help us to better understand the molecular mechanism of tumor metastasis and to improve the screening, diagnosis, as well as prognosis and/or prediction of responses to therapy for breast cancer.

  9. Novel therapeutic clues in thyroid carcinomas: The role of targeting cancer stem cells.

    Science.gov (United States)

    Antonelli, Alessandro; La Motta, Concettina

    2017-11-01

    Thyroid carcinomas (TCs), the most common endocrine tumors, represent the eighth most common cancer diagnosed worldwide in both women and men. To treat these malignancies, several drugs are now available and a number of novel ones have been enrolling in clinical trials, addressing both oncogenic pathways in cancer cells and angiogenic pathways in tumor endothelial cells. However, their use is not devoid of serious toxicities and their efficacy is limited, being dependent on carcinoma typology and the occurrence of acquired resistance. Accordingly, it is time to recast therapeutic strategies against these types of tumors to get to newer and fully effective drugs. In this perspective, latest findings demonstrate that cancer stem cells (CSCs) represent a challenging target to strike. They possess core traits of self-renewal and differentiation, being resistant to the effects of chemotherapy and radiation and playing a key role in mediating metastasis. Therefore, basic molecular elements sustaining both development of thyroid cancer stem cells and their residence in the stemness condition represent a set of innovative and still unexplored targets to address. In this review, a thorough literature survey has been accomplished, to take stock of mechanisms governing thyroid carcinomas and to point out both their currently available treatments and the novel forthcoming ones. Pubmed, Scifinder and ClinicalTrials.gov were exploited as research applications and registry database, respectively. Original articles, reviews, and editorials published within the last ten years, as well as open clinical investigations in the field, were analyzed to suggest new exciting therapeutic opportunities for people affected by TCs. © 2017 Wiley Periodicals, Inc.

  10. Proteoglycans as Target for an Innovative Therapeutic Approach in Chondrosarcoma: Preclinical Proof of Concept.

    Science.gov (United States)

    Peyrode, Caroline; Weber, Valérie; Voissière, Aurélien; Maisonial-Besset, Aurélie; Vidal, Aurélien; Auzeloux, Philippe; Gaumet, Vincent; Borel, Michèle; Dauplat, Marie-Mélanie; Quintana, Mercedes; Degoul, Françoise; Rédini, Françoise; Chezal, Jean-Michel; Miot-Noirault, Elisabeth

    2016-11-01

    To date, surgery remains the only option for the treatment of chondrosarcoma, which is radio- and chemoresistant due in part to its large extracellular matrix (ECM) and poor vascularity. In case of unresectable locally advanced or metastatic diseases with a poor prognosis, improving the management of chondrosarcoma still remains a challenge. Our team developed an attractive approach of improvement of the therapeutic index of chemotherapy by targeting proteoglycan (PG)-rich tissues using a quaternary ammonium (QA) function conjugated to melphalan (Mel). First of all, we demonstrated the crucial role of the QA carrier for binding to aggrecan by surface plasmon resonance. In the orthotopic model of Swarm rat chondrosarcoma, an in vivo biodistribution study of Mel and its QA derivative (Mel-QA), radiolabeled with tritium, showed rapid radioactivity accumulation in healthy cartilaginous tissues and tumor after [3H]-Mel-QA injection. The higher T/M ratio of the QA derivative suggests some advantage of QA-active targeting of chondrosarcoma. The antitumoral effects were characterized by tumor volume assessment, in vivo 99mTc-NTP 15-5 scintigraphic imaging of PGs, 1H-HRMAS NMR spectroscopy, and histology. The conjugation of a QA function to Mel did not hamper its in vivo efficiency and strongly improved the tolerability of Mel leading to a significant decrease of side effects (hematologic analyses and body weight monitoring). Thus, QA conjugation leads to a significant improvement of the therapeutic index, which is essential in oncology and enable repeated cycles of chemotherapy in patients with chondrosarcoma. Mol Cancer Ther; 15(11); 2575-85. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Animal models and therapeutic molecular targets of cancer: utility and limitations

    Directory of Open Access Journals (Sweden)

    Cekanova M

    2014-10-01

    Full Text Available Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. Keywords: mouse cancer model, companion animal cancer model, dogs, cats, molecular targets

  12. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer.

    Science.gov (United States)

    Yoshida, Kazumichi; Tsujimoto, Hironori; Matsumura, Kouji; Kinoshita, Manabu; Takahata, Risa; Matsumoto, Yusuke; Hiraki, Shuichi; Ono, Satoshi; Seki, Shuhji; Yamamoto, Junji; Hase, Kazuo

    2015-09-01

    CD47 is an antiphagocytic molecule that acts via ligation to signal regulatory protein alpha on phagocytes; its enhanced expression and therapeutic targeting have recently been reported for several malignancies. However, CD47 expression in gastric cancer is not well documented. Immunohistochemical expression of CD47 in surgical specimens was investigated. Expression of CD47 and CD44, a known gastric cancer stem cell marker, were investigated in gastric cancer cell lines by flow cytometry. MKN45 and MKN74 gastric cancer cells were sorted by fluorescence-activated cell sorting according to CD44 and CD47 expression levels, and their in vitro proliferation, spheroid-forming capacity, and in vivo tumorigenicity were studied. In vitro phagocytosis of cancer cells by human macrophages in the presence of a CD47 blocking monoclonal antibody (B6H12) and the survival of immunodeficient mice intraperitoneally engrafted with MKN45 cells and B6H12 were compared to experiments using control antibodies. Immunohistochemistry of the clinical specimens indicated that CD47 was positive in 57 out of 115 cases, and its positivity was an independent adverse prognostic factor. Approximately 90% of the MKN45 and MKN74 cells expressed CD47 and CD44. CD47(hi) gastric cancer cells showed significantly higher proliferation and spheroid colony formation than CD47(lo) , and CD44(hi) CD47(hi) cells showed the highest proliferation in vitro and tumorigenicity in vivo. B6H12 significantly enhanced in vitro phagocytosis of cancer cells by human macrophages and prolonged the survival of intraperitoneal cancer dissemination in mice compared to control antibodies. In conclusion, CD47 is an adverse prognostic factor and promising therapeutic target in gastric cancer. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. Review of novel therapeutic targets for improving heart failure treatment based on experimental and clinical studies

    Directory of Open Access Journals (Sweden)

    Bonsu KO

    2016-06-01

    Full Text Available Kwadwo Osei Bonsu,1,2 Isaac Kofi Owusu,3 Kwame Ohene Buabeng,4 Daniel Diamond Reidpath,1 Amudha Kadirvelu1 1School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia; 2Accident and Emergency Directorate, Komfo Anokye Teaching Hospital, 3Department of Medicine, 4Department of Clinical and Social Pharmacy, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana Abstract: Heart failure (HF is a major public health priority due to its epidemiological transition and the world’s aging population. HF is typified by continuous loss of contractile function with reduced, normal, or preserved ejection fraction, elevated vascular resistance, fluid and autonomic imbalance, and ventricular dilatation. Despite considerable advances in the treatment of HF over the past few decades, mortality remains substantial. Pharmacological treatments including β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone antagonists have been proven to prolong the survival of patients with HF. However, there are still instances where patients remain symptomatic, despite optimal use of existing therapeutic agents. This understanding that patients with chronic HF progress into advanced stages despite receiving optimal treatment has increased the quest for alternatives, exploring the roles of additional pathways that contribute to the development and progression of HF. Several pharmacological targets associated with pathogenesis of HF have been identified and novel therapies have emerged. In this work, we review recent evidence from proposed mechanisms to the outcomes of experimental and clinical studies of the novel pharmacological agents that have emerged for the treatment of HF. Keywords: novel treatment, experimental and clinical studies, therapeutic targets, heart failure

  14. Therapeutic Antibodies: What Have We Learnt from Targeting CD20 and Where Are We Going?

    Directory of Open Access Journals (Sweden)

    Michael J. E. Marshall

    2017-10-01

    Full Text Available Therapeutic monoclonal antibodies (mAbs have become one of the fastest growing classes of drugs in recent years and are approved for the treatment of a wide range of indications, from cancer to autoimmune disease. Perhaps the best studied target is the pan B-cell marker CD20. Indeed, the first mAb to receive approval by the Food and Drug Administration for use in cancer treatment was the CD20-targeting mAb rituximab (Rituxan®. Since its approval for relapsed/refractory non-Hodgkin’s lymphoma in 1997, rituximab has been licensed for use in the treatment of numerous other B-cell malignancies, as well as autoimmune conditions, including rheumatoid arthritis. Despite having a significant impact on the treatment of these patients, the exact mechanisms of action of rituximab remain incompletely understood. Nevertheless, numerous second- and third-generation anti-CD20 mAbs have since been developed using various strategies to enhance specific effector functions thought to be key for efficacy. A plethora of knowledge has been gained during the development and testing of these mAbs, and this knowledge can now be applied to the design of novel mAbs directed to targets beyond CD20. As we enter the “post-rituximab” era, this review will focus on the lessons learned thus far through investigation of anti-CD20 mAb. Also discussed are current and future developments relating to enhanced effector function, such as the ability to form multimers on the target cell surface. These strategies have potential applications not only in oncology but also in the improved treatment of autoimmune disorders and infectious diseases. Finally, potential approaches to overcoming mechanisms of resistance to anti-CD20 therapy are discussed, chiefly involving the combination of anti-CD20 mAbs with various other agents to resensitize patients to treatment.

  15. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination.

    Science.gov (United States)

    Hussain, Rashad; Ghoumari, Abdel M; Bielecki, Bartosz; Steibel, Jérôme; Boehm, Nelly; Liere, Philippe; Macklin, Wendy B; Kumar, Narender; Habert, René; Mhaouty-Kodja, Sakina; Tronche, François; Sitruk-Ware, Regine; Schumacher, Michael; Ghandour, M Said

    2013-01-01

    Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic

  16. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment.

    Science.gov (United States)

    Yoshida, Go J

    2017-03-09

    attention because the safety profiles of these medicines are well known. Antimalarial agents such as artemisinin and disease-modifying antirheumatic drug (DMARD) are the typical examples of drug re-positioning which affect the autophagy regulation for the therapeutic use. This review article focuses on recent advances in some of the novel therapeutic strategies that target autophagy with a view to treating/preventing malignant neoplasms.

  17. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment

    Directory of Open Access Journals (Sweden)

    Go J. Yoshida

    2017-03-01

    strategy has attracted increasing attention because the safety profiles of these medicines are well known. Antimalarial agents such as artemisinin and disease-modifying antirheumatic drug (DMARD are the typical examples of drug re-positioning which affect the autophagy regulation for the therapeutic use. This review article focuses on recent advances in some of the novel therapeutic strategies that target autophagy with a view to treating/preventing malignant neoplasms.

  18. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells.

    Science.gov (United States)

    Vittorio, Orazio; Voliani, Valerio; Faraci, Paolo; Karmakar, Biswajit; Iemma, Francesca; Hampel, Silke; Kavallaris, Maria; Cirillo, Giuseppe

    2014-06-01

    Catechin-dextran conjugates have recently attracted a lot of attention due to their anticancer activity against a range of cancer cells. Magnetic nanoparticles have the ability to concentrate therapeutically important drugs due to their magnetic-spatial control and provide opportunities for targeted drug delivery. Enhancement of the anticancer efficiency of catechin-dextran conjugate by functionalisation with magnetic iron oxide nanoparticles. Modification of the coating shell of commercial magnetic nanoparticles (Endorem) composed of dextran with the catechin-dextran conjugate. Catechin-dextran conjugated with Endorem (Endo-Cat) increased the intracellular concentration of the drug and it induced apoptosis in 98% of pancreatic tumour cells placed under magnetic field. The conjugation of catechin-dextran with Endorem enhances the anticancer activity of this drug and provides a new strategy for targeted drug delivery on tumour cells driven by magnetic field. The ability to spatially control the delivery of the catechin-dextran by magnetic field makes it a promising agent for further application in cancer therapy.

  19. The Potential Role of Aerobic Exercise to Modulate Cardiotoxicity of Molecularly Targeted Cancer Therapeutics

    Science.gov (United States)

    Lakoski, Susan; Mackey, John R.; Douglas, Pamela S.; Haykowsky, Mark J.; Jones, Lee W.

    2013-01-01

    Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies. PMID:23335619

  20. Next-Gen Sequencing Exposes Frequent MED12 Mutations and Actionable Therapeutic Targets in Phyllodes Tumors

    Science.gov (United States)

    Cani, Andi K.; Hovelson, Daniel H.; McDaniel, Andrew S.; Sadis, Seth; Haller, Michaela J.; Yadati, Venkata; Amin, Anmol M.; Bratley, Jarred; Bandla, Santhoshi; Williams, Paul D.; Rhodes, Kate; Liu, Chia-Jen; Quist, Michael J.; Rhodes, Daniel R.; Grasso, Catherine S.; Kleer, Celina G.; Tomlins, Scott A.

    2016-01-01

    Phyllodes tumors are rare fibroepithelial tumors with variable clinical behavior accounting for a small subset of all breast neoplasms, yet little is known about the genetic alterations that drive tumor initiation and/or progression. Here targeted next generation sequencing (NGS) was used to identify somatic alterations in formalin fixed paraffin embedded (FFPE) patient specimens from malignant, borderline and benign cases. NGS revealed mutations in mediator complex subunit 12 (MED12) affecting the G44 hotspot residue in the majority (67%) of cases spanning all three histological grades. In addition, loss-of-function mutations in p53 (TP53) as well as deleterious mutations in the tumor suppressors retinoblastoma (RB1) and neurofibromin 1 (NF1) were identified exclusively in malignant tumors. High-level copy number alterations (CNAs) were nearly exclusively confined to malignant tumors, including potentially clinically actionable gene amplifications in IGF1R and EGFR. Taken together, this study defines the genomic landscape underlying phyllodes tumor development, suggests potential molecular correlates to histologic grade, expands the spectrum of human tumors with frequent recurrent MED12 mutations, and identifies IGF1R and EGFR as potential therapeutic targets in malignant cases. PMID:25593300

  1. Phospho-TCTP as a therapeutic target of Dihydroartemisinin for aggressive breast cancer cells.

    Science.gov (United States)

    Lucibello, Maria; Adanti, Sara; Antelmi, Ester; Dezi, Dario; Ciafrè, Stefania; Carcangiu, Maria Luisa; Zonfrillo, Manuela; Nicotera, Giuseppe; Sica, Lorenzo; De Braud, Filippo; Pierimarchi, Pasquale

    2015-03-10

    Upregulation of Translationally Controlled Tumor Protein (TCTP) is associated with poorly differentiated aggressive tumors, including breast cancer, but the underlying mechanism(s) are still debated. Here, we show that in breast cancer cell lines TCTP is primarily localized in the nucleus, mostly in the phosphorylated form.The effects of Dihydroartemisinin (DHA), an anti-malaria agent that binds TCTP, were tested on breast cancer cells. DHA decreases cell proliferation and induces apoptotic cell death by targeting the phosphorylated form of TCTP. Remarkably, DHA enhances the anti-tumor effects of Doxorubicin in triple negative breast cancer cells resulting in an increased level of apoptosis. DHA also synergizes with Trastuzumab, used to treat HER2/neu positive breast cancers, to induce apoptosis of tumor cells.Finally, we present new clinical data that nuclear phospho-TCTP overexpression in primary breast cancer tissue is associated with high histological grade, increase expression of Ki-67 and with ER-negative breast cancer subtypes. Notably, phospho-TCTP expression levels increase in trastuzumab-resistant breast tumors, suggesting a possible role of phospho-TCTP as a new prognostic marker.In conclusion, the anti-tumor effect of DHA in vitro with conventional chemotherapeutics suggests a novel therapeutic strategy and identifies phospho-TCTP as a new promising target for advanced breast cancer.

  2. Albuminuria Is an Appropriate Therapeutic Target in Patients with CKD: The Pro View.

    Science.gov (United States)

    Lambers Heerspink, Hiddo J; Gansevoort, Ron T

    2015-06-05

    The presence of elevated levels of albuminuria is associated with an increased risk of progressive renal function loss over time. This association is found in various pathophysiological conditions, including diabetic nephropathy, hypertensive nephropathy, and various primary renal diseases, but also, the general, otherwise healthy population. Emerging data report that elevated albuminuria causes tubulointerstitial damage through activation of proinflammatory mediators, which ultimately leads to a progressive decline in renal function. Nowadays, various drugs are available that decrease the rate of GFR loss in patients with kidney disease. Well known are renin-angiotensin-aldosterone system inhibitors, but there are also other drugs and interventions, like intensive glucose control, anti-inflammatory agents (pentoxifylline), or a low-protein diet. These interventions have an additional effect beyond their original target, namely lowering albuminuria. Analyses from clinical trials show that the reduction in albuminuria observed during the first months of treatment with these drugs correlates with the degree of long-term renal protection: the larger the initial reduction in albuminuria, the lower the risk of ESRD during treatment. In addition, in treated patients, residual albuminuria is again the strongest risk marker for renal disease progression. These observations combined provide a strong argument that albuminuria is an appropriate therapeutic target in patients with CKD. Copyright © 2015 by the American Society of Nephrology.

  3. New strategies to direct therapeutic targeting of PML to treat cancers

    Directory of Open Access Journals (Sweden)

    Kamil eWolyniec

    2013-05-01

    Full Text Available The tumor suppressor function of the promyelocytic leukemia (PML protein was first identified as a result of its dysregulation in acute promyelocytic leukemia (APL, however, its importance is now emerging far beyond hematological neoplasms, to an extensive range of malignancies, including solid tumours. In response to stress signals, PML coordinates the regulation of numerous proteins, which activate fundamental cellular processes that suppress tumorigenesis. Importantly, PML itself is the subject of specific post-translational modifications, including ubiquitination, phosphorylation, acetylation and SUMOylation, which in turn control PML activity and stability and ultimately dictate cellular fate. Improved understanding of the regulation of this key tumor suppressor is uncovering potential opportunities for therapeutic intervention. Targeting the key negative regulators of PML in cancer cells such as CK2, BMK1 and E6AP, with specific inhibitors that are becoming available, provides unique and exciting avenues for restoring tumor suppression through the induction of apoptosis and senescence. These approaches could be combined with DNA damaging drugs and cytokines that are known to activate PML. Depending on the cellular context, reactivation or enhancement of tumor suppressive PML functions, or targeted elimination of aberrantly functioning PML, may provide clinical benefit.

  4. EpCAM as a novel therapeutic target for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Vasanthakumar S

    2017-07-01

    Full Text Available Hepatocellular carcinoma (HCC is the sixth most common malignant tumor worldwide. Due to the heterogeneity nature, prognosis for patients with HCC remains unsatisfactory. The conventional treatments like chemotherapy and radiotherpay fails to cure the disease most of the time and this may be due to the presence of cancer stem cells (CSCs. Cancer stem cell is a small population of cancer tissues responsible for chemoresistant, radioresistant, and cancer relapse through various mechanism like ATP binding cassete (ABC effulus and ALDH inhibitor. Numores cancer stem cell markers are idendified for the liver cancer, such as Epithelial cell adhesion molecule (EpCAM, CD133, CD90, CD13. EpCAM is one of the first tumor-associated antigen and a marker for most epithelial cancers except renal cell carcinoma, urothelial carcinoma and squamous cell carcinoma. Also it is a marker for liver stem cells/progenitor cells. EpCAM plays a major role in cell-cell migration, cell proliferation, tumorogenisity, metastasis. Also, it acts as a potential target for EpCAM positive carcinomas like breast cancer, colon cancer and liver cancer. This entire review deals about how EpCAM can be used in the near future as a potential therapeutic target for HCC.

  5. The potential role of aerobic exercise to modulate cardiotoxicity of molecularly targeted cancer therapeutics.

    Science.gov (United States)

    Scott, Jessica M; Lakoski, Susan; Mackey, John R; Douglas, Pamela S; Haykowsky, Mark J; Jones, Lee W

    2013-01-01

    Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies.

  6. Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma.

    Science.gov (United States)

    Fulciniti, Mariateresa; Martinez-Lopez, Joaquin; Senapedis, William; Oliva, Stefania; Lakshmi Bandi, Rajya; Amodio, Nicola; Xu, Yan; Szalat, Raphael; Gulla, Annamaria; Samur, Mehmet K; Roccaro, Aldo; Linares, Maria; Cea, Michele; Baloglu, Erkan; Argueta, Christian; Landesman, Yosef; Shacham, Sharon; Liu, Siyuan; Schenone, Monica; Wu, Shiaw-Lin; Karger, Barry; Prabhala, Rao; Anderson, Kenneth C; Munshi, Nikhil C

    2017-04-20

    Dysregulated oncogenic serine/threonine kinases play a pathological role in diverse forms of malignancies, including multiple myeloma (MM), and thus represent potential therapeutic targets. Here, we evaluated the biological and functional role of p21-activated kinase 4 (PAK4) and its potential as a new target in MM for clinical applications. PAK4 promoted MM cell growth and survival via activation of MM survival signaling pathways, including the MEK-extracellular signal-regulated kinase pathway. Furthermore, treatment with orally bioavailable PAK4 allosteric modulator (KPT-9274) significantly impacted MM cell growth and survival in a large panel of MM cell lines and primary MM cells alone and in the presence of bone marrow microenvironment. Intriguingly, we have identified FGFR3 as a novel binding partner of PAK4 and observed significant activity of KPT-9274 against t(4;14)-positive MM cells. This set of data supports PAK4 as an oncogene in myeloma and provide the rationale for the clinical evaluation of PAK4 modulator in myeloma.

  7. Purinergic System Dysfunction in Mood Disorders: A Key Target for Developing Improved Therapeutics

    Science.gov (United States)

    Ortiz, Robin; Ulrich, Henning; Zarate, Carlos A; Machado-Vieira, Rodrigo

    2014-01-01

    Uric acid and purines (such as adenosine) regulate mood, sleep, activity, appetite, cognition, memory, convulsive threshold, social interaction, drive, and impulsivity. A link between purinergic dysfunction and mood disorders was first proposed a century ago. Interestingly, a recent nationwide population-based study showed elevated risk of gout in subjects with bipolar disorder (BD), and a recent meta-analysis and systematic review of placebo-controlled trials of adjuvant purinergic modulators confirmed their benefits in bipolar mania. Uric acid may modulate energy and activity levels, with higher levels associated with higher energy and BD spectrum. Several recent genetic studies suggest that the purinergic system particularly the modulation of P1 and P2 receptor subtypes—plays a role in mood disorders, lending credence to this model. Nucleotide concentrations can be measured using brain spectroscopy, and ligands for in vivo positron emission tomography (PET) imaging of adenosine (P1) receptors have been developed, thus allowing potential target engagement studies. This review discusses the key role of the purinergic system in the pathophysiology of mood disorders. Focusing on this promising therapeutic target may lead to the development of therapies with antidepressant, mood stabilization, and cognitive effects. PMID:25445063

  8. Hypoxia-Inducible Factor-1 as a Therapeutic Target in Endometrial Cancer Management

    Directory of Open Access Journals (Sweden)

    Laura M. S. Seeber

    2010-01-01

    Full Text Available In the Western world, endometrial cancer (EC is the most common malignant tumor of the female genital tract. Solid tumors like EC outgrow their vasculature resulting in hypoxia. Tumor hypoxia is important because it renders an aggressive phenotype and leads to radio- and chemo-therapy resistance. Hypoxia-inducible factor-1 (HIF-1 plays an essential role in the adaptive cellular response to hypoxia and is associated with poor clinical outcome in EC. Therefore, HIF-1 could be an attractive therapeutic target. Selective HIF-1 inhibitors have not been identified. A number of nonselective inhibitors which target signaling pathways upstream or downstream HIF-1 are known to decrease HIF-1 protein levels. In clinical trials for the treatment of advanced and/or recurrent EC are the topoisomerase I inhibitor Topotecan, mTOR-inhibitor Rapamycin, and angiogenesis inhibitor Bevacizumab. Preliminary data shows encouraging results for these agents. Further work is needed to identify selective HIF-1 inhibitors and to translate these into clinical trials.

  9. Emerging Lung Cancer Therapeutic Targets Based on the Pathogenesis of Bone Metastases

    Directory of Open Access Journals (Sweden)

    Moses O. Oyewumi

    2014-01-01

    Full Text Available Lung cancer is the second most common cancer and the leading cause of cancer related mortality in both men and women. Each year, more people die of lung cancer than of colon, breast, and prostate cancers combined. It is widely accepted that tumor metastasis is a formidable barrier to effective treatment of lung cancer. The bone is one of the frequent metastatic sites for lung cancer occurring in a large number of patients. Bone metastases can cause a wide range of symptoms that could impair quality of life of lung cancer patients and shorten their survival. We strongly believe that molecular targets (tumor-related and bone microenvironment based that have been implicated in lung cancer bone metastases hold great promise in lung cancer therapeutics. Thus, this paper discusses some of the emerging molecular targets that have provided insights into the cascade of metastases in lung cancer with the focus on bone invasion. It is anticipated that the information gathered might be useful in future efforts of optimizing lung cancer treatment strategies.

  10. Current understanding of BRAF alterations in diagnosis, prognosis and therapeutic targeting in paediatric low grade gliomas

    Directory of Open Access Journals (Sweden)

    Catherine Louise Penman

    2015-03-01

    Full Text Available The mitogen-activated protein kinase (MAPK pathway is known to play a key role in the initiation and maintenance of many tumours as well as normal development. This often occurs through mutation of the genes encoding RAS and RAF proteins which are involved in signal transduction in this pathway. BRAF is one of three RAF kinases which act as downstream effectors of growth factor signalling leading to cell cycle progression, proliferation and survival. Initially reported as a point mutation (V600E in the majority of metastatic melanomas, other alterations in the BRAF gene have now been reported in a variety of human cancers including papillary thyroid cancer, colon carcinomas, hairy cell leukaemia and more recently in gliomas. The identification of oncogenic mutations in the BRAF gene have led to a revolution in the treatment of metastatic melanoma using targeted molecular therapies that affect the MAPK pathway either directly through BRAF inhibition or downstream through inhibition of MEK. This review describes the molecular biology of BRAF in the context of paediatric low grade gliomas, the role of BRAF as a diagnostic marker, the prognostic implications of BRAF and evidence for therapeutic targeting of BRAF.

  11. NADPH Oxidase Enzymes in Skin Fibrosis: Molecular Targets and Therapeutic Agents

    Science.gov (United States)

    Lev-Tov, Hadar; Jagdeo, Jared

    2013-01-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft versus host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms that Nox enzymes influence specific skin fibrotic disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists. PMID:24155025

  12. The Nuclear Hormone Receptor PPARγ as a Therapeutic Target in Major Diseases

    Directory of Open Access Journals (Sweden)

    Martina Victoria Schmidt

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor γ (PPARγ belongs to the nuclear hormone receptor superfamily and regulates gene expression upon heterodimerization with the retinoid X receptor by ligating to peroxisome proliferator response elements (PPREs in the promoter region of target genes. Originally, PPARγ was identified as being essential for glucose metabolism. Thus, synthetic PPARγ agonists, the thiazolidinediones (TZDs, are used in type 2 diabetes therapy as insulin sensitizers. More recent evidence implied an important role for the nuclear hormone receptor PPARγ in controlling various diseases based on its anti-inflammatory, cell cycle arresting, and proapoptotic properties. In this regard, expression of PPARγ is not restricted to adipocytes, but is also found in immune cells, such as B and T lymphocytes, monocytes, macrophages, dendritic cells, and granulocytes. The expression of PPARγ in lymphoid organs and its modulation of macrophage inflammatory responses, lymphocyte proliferation, cytokine production, and apoptosis underscore its immune regulating functions. Moreover, PPARγ expression is found in tumor cells, where its activation facilitates antitumorigenic actions. This review provides an overview about the role of PPARγ as a possible therapeutic target approaching major, severe diseases, such as sepsis, cancer, and atherosclerosis.

  13. Albuminuria Is an Appropriate Therapeutic Target in Patients with CKD: The Pro View

    Science.gov (United States)

    Gansevoort, Ron T.

    2015-01-01

    The presence of elevated levels of albuminuria is associated with an increased risk of progressive renal function loss over time. This association is found in various pathophysiological conditions, including diabetic nephropathy, hypertensive nephropathy, and various primary renal diseases, but also, the general, otherwise healthy population. Emerging data report that elevated albuminuria causes tubulointerstitial damage through activation of proinflammatory mediators, which ultimately leads to a progressive decline in renal function. Nowadays, various drugs are available that decrease the rate of GFR loss in patients with kidney disease. Well known are renin-angiotensin-aldosterone system inhibitors, but there are also other drugs and interventions, like intensive glucose control, anti-inflammatory agents (pentoxifylline), or a low-protein diet. These interventions have an additional effect beyond their original target, namely lowering albuminuria. Analyses from clinical trials show that the reduction in albuminuria observed during the first months of treatment with these drugs correlates with the degree of long-term renal protection: the larger the initial reduction in albuminuria, the lower the risk of ESRD during treatment. In addition, in treated patients, residual albuminuria is again the strongest risk marker for renal disease progression. These observations combined provide a strong argument that albuminuria is an appropriate therapeutic target in patients with CKD. PMID:25887073

  14. NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy

    Science.gov (United States)

    Tsai, Yu-Ling; Hua, Kuo-Feng; Chen, Ann; Wei, Chyou-Wei; Chen, Wen-Shiang; Wu, Cheng-Yeu; Chu, Ching-Liang; Yu, Yung-Luen; Lo, Chia-Wen; Ka, Shuk-Man

    2017-01-01

    We have previously showed that IL-1β is involved in the pathogenesis of both spontaneously occurring and passively induced IgA nephropathy (IgAN) models. However, the exact causal-relationship between NLRP3 inflammasome and the pathogenesis of IgAN remains unknown. In the present study, we showed that [1] IgA immune complexes (ICs) activated NLRP3 inflammasome in macrophages involving disruption of mitochondrial integrity and induction of mitochondrial ROS, bone marrow-derived dendritic cells (BMDCs) and renal intrinsic cells; [2] knockout of NLRP3 inhibited IgA ICs-mediated activation of BMDCs and T cells; and [3] knockout of NLRP3 or a kidney-targeting delivery of shRNA of NLRP3 improved renal function and renal injury in a mouse IgAN model. These results strongly suggest that NLRP3 inflammasome serves as a key player in the pathogenesis of IgAN partly through activation of T cells and mitochondrial ROS production and that a local, kidney-targeting suppression of NLRP3 be a therapeutic strategy for IgAN. PMID:28117341

  15. The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer

    Directory of Open Access Journals (Sweden)

    Ranjeeta Thapa

    2016-01-01

    Full Text Available CD44 is a cell surface HA-binding glycoprotein that is overexpressed to some extent by almost all tumors of epithelial origin and plays an important role in tumor initiation and metastasis. CD44 is a compelling marker for cancer stem cells of many solid malignancies. In addition, interaction of HA and CD44 promotes EGFR-mediated pathways, consequently leading to tumor cell growth, tumor cell migration, and chemotherapy resistance in solid cancers. Accumulating evidence indicates that major HA-CD44 signaling pathways involve a specific variant of CD44 isoforms; however, the particular variant almost certainly depends on the type of tumor cell and the stage of the cancer progression. Research to date suggests use of monoclonal antibodies against different CD44 variant isoforms and targeted inhibition of HA/CD44-mediated signaling combined with conventional radio/chemotherapy may be the most favorable therapeutic strategy for future treatments of advanced stage malignancies. Thus, this paper briefly focuses on the association of the major CD44 variant isoforms in cancer progression, the role of HA-CD44 interaction in oncogenic pathways, and strategies to target CD44-overexpressed tumor cells.

  16. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer

    Science.gov (United States)

    Santhanam, Srikanth; Alvarado, David M.; Ciorba, Matthew A.

    2015-01-01

    Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer death in the United States. Cytotoxic therapies cause significant side effects for most patients and do not offer cure in many advanced cases of CRC. Immunotherapies are a promising new approach to harness the body’s own immune system and inflammatory response to attack and clear the cancer. Tryptophan metabolism along the kynurenine pathway is a particularly promising target for immunotherapy. Indoleamine 2,3 dioxygenase 1 (IDO1) is the most well studied of the enzymes that initiate this pathway and it is commonly overexpressed in CRC. Herein, we provide an in-depth review of how tryptophan metabolism and kynurenine pathway metabolites shape factors important to CRC pathogenesis including the host mucosal immune system, pivotal transcriptional pathways of neoplastic growth and luminal microbiota. This pathway’s role in other gastrointestinal malignancies such as gastric, pancreatic, esophageal and gastrointestinal stromal tumors (GIST) is also discussed. Finally, we highlight how currently available small molecule inhibitors and emerging methods for therapeutic targeting of IDO1 might be applied to colon, rectal and colitis associated cancer. PMID:26297050

  17. Myofibrillogenesis regulator 1 (MR-1): a potential therapeutic target for cancer and PNKD.

    Science.gov (United States)

    Wang, Junxia; Zhao, Wuli; Liu, Hong; He, Hongwei; Shao, Rongguang

    2017-11-15

    Human myofibrillogenesis regulator 1 (MR-1) is a functional gene also known as paroxysmal nonkinesigenic dyskinesia (PNKD). It is localised on human chromosome 2q35 and three different isomers, MR-1L, MR-1M and MR-1S, are formed by alternative splicing. MR-1S promotes cardiac hypertrophy and is closely related to cancer. MR-1S is overexpressed in haematologic and solid malignancies, such as hepatoma, breast cancer and chronic myelogenous leukaemia. MR-1S causes disordered cell differentiation, initiates malignant transformation and accelerates metastasis. MR-1S directly phosphorylates and activates the MEK-ERK-RSK pathway to accelerate cancer growth and facilitates metastasis by activating the MLC2-FAK-AKT pathway. Silencing MR-1 inhibits cancer cell proliferation and metastasis. MR-1S causes disordered cell differentiation, initiates malignant transformation and accelerates metastasis. MR-1 interacts with eukaryotic translation initiation factors and MRIP-1, which contains Ras GTPase, PH and zinc-containing ArfGap domains, as well as three ankyrin repeats. Mutations in the N-terminal region of MR-1L and MR-1S are the main causes of PNKD (a hereditary disease characterised by paroxysmal dystonic choreoathetosis) and targeting the mutated protein could provide symptomatic relief. These findings provide compelling evidence that MR-1 might be a diagnostic marker and therapeutic target for solid tumours, myelogenous leukaemia and PNKD.

  18. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets

    Science.gov (United States)

    Safi, Sher Zaman; Kumar, Selva; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  19. Malignant ascites in ovarian cancer and the role of targeted therapeutics.

    Science.gov (United States)

    Smolle, Elisabeth; Taucher, Valentin; Haybaeck, Johannes

    2014-04-01

    Ovarian cancer (OC) is the eighth most lethal gynecological malignancy and the main cause of gynecological cancer death in industrialized countries. Malignant ascites is often found in OC, with about 10% of patients suffering from recurrent OC. Tumor cells in OC-associated malignant ascites promote disease recurrence and patient mortality is mainly associated with widespread metastasis to serosal surfaces and accompanying peritoneal effusions. Targeted therapies have recently been developed as novel therapeutic options for malignant ascites. The tri-functional anti-epithelial cell adhesion molecule and anti-cluster of differentiation 3 monoclonal antibody catumaxumab has been assessed in the therapy of malignant ascites, and proven to significantly reduce the ascitic flow rate when applied into the peritoneal cavity. The anti-angiogenic targeted agent bevacizumab has also shown good effects in the symptomatic treatment of malignant ascites, significantly prolonging the time until the next paracentesis. Vascular endothelial growth factor (VEGF) Trap, or aflibercept, is a fusion protein that inhibits VEGF-receptor binding. Aflibercept has proven to be effective in reduction of ascites, diminishing clinical symptoms of ascites and prolonging the time to next paracentesis. All three agents we review in the present article are effective in symptomatic control of ascites, leading to a rapid reduction of effusion and prolonging the time interval between paracenteses. However, no improvement in overall survival was observed in any of the clinical trials reported. We, thus, conclude that further investigations on larger patient series are needed to clarify whether the reduction of ascites by these targeted agents leads to a prolongation in tumor-related survival or not.

  20. Inhibition of Wnt/β-catenin pathway by niclosamide: a therapeutic target for ovarian cancer.

    Science.gov (United States)

    Arend, Rebecca C; Londoño-Joshi, Angelina I; Samant, Rajeev S; Li, Yonghe; Conner, Michael; Hidalgo, Bertha; Alvarez, Ronald D; Landen, Charles N; Straughn, J Michael; Buchsbaum, Donald J

    2014-07-01

    Objective. The Wnt/β-catenin pathway is known to regulate cellular proliferation and plays a role in chemoresistance. Niclosamide, an FDA approved salicyclamide derivative used for the treatment of tapeworm infections, targets the Wnt/β-catenin pathway. Therefore, the objective of this study was to investigate niclosamide as a potential therapeutic agent for ovarian cancer. Methods. Tumor cells isolated from 34 patients' ascites with primary ovarian cancer were treated with niclosamide (0.1 to 5 μM) ± carboplatin (5 to 150 μM). Cell viability was assessed using the ATP-lite assay. LRP6, Axin 2, Cyclin D1, survivin and cytosolic free β-catenin levels were determined using Western blot analysis. Tumorspheres were treated, and Wnt transcriptional activity was measured by the TOPflash reporter assay. ALDH and CD133 were analyzed by Flow cytometry and IHC. ALDH1A1 and LRP6 were analyzed by IHC in solid tumor and in ascites before and after treatment with niclosamide. Results. Combination treatment produced increased cytotoxicity compared to single agent treatment in 32/34 patient samples. Western blot analysis showed a decrease in Wnt/β-catenin pathway proteins and the expression of target genes. A significant reduction of Wnt/β-catenin signaling was confirmed by TOPflash assay. There was increased staining of ALDH1A1 and LRP6 in ascites compared to solid tumor which decreased after treatment. Conclusion. This study demonstrates that niclosamide is a potent Wnt/β-catenin inhibitor. Targeting the Wnt/β-catenin pathway led to decreased cellular proliferation and increased cell death. These findings warrant further research of this drug and other niclosamide analogs as a treatment option for ovarian cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Therapeutically targeting astrocytes with stem and progenitor cell transplantation following traumatic spinal cord injury.

    Science.gov (United States)

    Falnikar, Aditi; Li, Ke; Lepore, Angelo C

    2015-09-04

    Replacement of lost and/or dysfunctional astrocytes via multipotent neural stem cell (NSC) and lineage-restricted neural progenitor cell (NPC) transplantation is a promising therapeutic approach for traumatic spinal cord injury (SCI). Cell transplantation in general offers the potential to replace central nervous system (CNS) cell types, achieve remyelination, deliver missing gene products, promote and guide axonal growth, modulate the host immune response, deliver neuroprotective factors, and provide a cellular substrate for bridging the lesion site, amongst other possible benefits. A host of cell types that differ in their developmental stage, CNS region and species of derivation, as well as in their phenotypic potential, have been tested in a variety of SCI animal models. Historically in the SCI field, most pre-clinical NSC and NPC transplantation studies have focused on neuronal and oligodendrocyte replacement. However, much less attention has been geared towards targeting astroglial dysfunction in the inured spinal cord, despite the integral roles played by astrocytes in both normal CNS function and in the diseased nervous system. Despite the relative lack of studies, cell transplantation-based targeting of astrocytes dates back to some of the earliest transplant studies in SCI animal models. In this review, we will describe the history of work involving cell transplantation for targeting astrocytes in models of SCI. We will also touch on the current state of affairs in the field, as well as on important future directions as we move forward in trying to develop this approach into a viable strategy for SCI patients. Practical issues such as timing of delivery, route of transplantation and immunesuppression needs are beyond the scope of this review. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.

    Science.gov (United States)

    Dey-Rao, Rama; Sinha, Animesh A

    2017-01-28

    Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. Unsupervised clustering methods of the VL-blood dataset demonstrate a "disease-state"-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as "hidden" (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional "hot spot" that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address

  3. Optimized nonclinical safety assessment strategies supporting clinical development of therapeutic monoclonal antibodies targeting inflammatory diseases.

    Science.gov (United States)

    Brennan, Frank R; Cauvin, Annick; Tibbitts, Jay; Wolfreys, Alison

    2014-05-01

    An increasing number of immunomodulatory monoclonal antibodies (mAbs) and IgG Fc fusion proteins are either approved or in early-to-late stage clinical trials for the treatment of chronic inflammatory conditions, autoimmune diseases and organ transplant rejection. The exquisite specificity of mAbs, in combination with their multi-functional properties, high potency, long half-life (permitting intermittent dosing and prolonged pharamcological effects), and general lack of off-target toxicity makes them ideal therapeutics. Dosing with mAbs for these severe and debilitating but often non life-threatening diseases is usually prolonged, for several months or years, and not only affects adults, including sensitive populations such as woman of child-bearing potential (WoCBP) and the elderly, but also children. Immunosuppression is usually a therapeutic goal of these mAbs and when administered to patients whose treatment program often involves other immunosuppressive therapies, there is an inherent risk for frank immunosuppression and reduced host defence which when prolonged increases the risk of infection and cancer. In addition when mAbs interact with the immune system they can induce other adverse immune-mediated drug reactions such as infusion reactions, cytokine release syndrome, anaphylaxis, immune-complex-mediated pathology and autoimmunity. An overview of the nonclinical safety assessment and risk mitigation strategies utilized to characterize these immunomodulatory mAbs and Fc fusion proteins to support first-in human (FIH) studies and futher clinical development in inflammatory disease indications is provided. Specific emphasis is placed on the design of studies to qualify animal species for toxicology studies, early studies to investigate safety and define PK/PD relationships, FIH-enabling and chronic toxicology studies, immunotoxicity, developmental, reproductive and juvenile toxicity studies and studies to determine the potential for immunosuppression and

  4. HDAC8, A Potential Therapeutic Target for the Treatment of Malignant Peripheral Nerve Sheath Tumors (MPNST.

    Directory of Open Access Journals (Sweden)

    Gonzalo Lopez

    Full Text Available HDAC isoform-specific inhibitors may improve the therapeutic window while limiting toxicities. Developing inhibitors against class I isoforms poses difficulties as they share high homology among their catalytic sites; however, HDAC8 is structurally unique compared to other class I isoforms. HDAC8 inhibitors are novel compounds and have affinity for class I HDAC isoforms demonstrating anti-cancer effects; little is known about their activity in malignant peripheral nerve sheath tumors (MPNST. Recently, we demonstrated anti-MPNST efficacy of HDAC8i in human and murine-derived MPNST pre-clinical models; we now seek to consider the potential therapeutic inhibition of HDAC8 in MPNST.Four Human MPNST cell lines, a murine-derived MPNST cell line, and two HDAC8 inhibitors (PCI-34051, PCI-48012; Pharmacyclics, Inc. Sunnyvale, CA were studied. Proliferation was determined using MTS and clonogenic assays. Effects on cell cycle were determined via PI FACS analysis; effects on apoptosis were determined using Annexin V-PI FACS analysis and cleaved caspase 3 expression. In vivo growth effects of HDAC8i were evaluated using MPNST xenograft models. 2D gel electrophoresis and mass spectrometry were used to identify potential HDAC8 deacetylation substrates.HDAC8i induced cell growth inhibition and marked S-phase cell cycle arrest in human and murine-derived MPNST cells. Relative to control, HDAC8i induced apoptosis in both human and murine-derived MPNST cells. HDAC8i exhibited significant effects on MPNST xenograft growth (p=0.001 and tumor weight (p=0.02. Four potential HDAC8 substrate targets were identified using a proteomic approach: PARK7, HMGB1, PGAM1, PRDX6.MPNST is an aggressive sarcoma that is notoriously therapy-resistant, hence the urgent need for improved anti-MPNST therapies. HDAC8 inhibition may be useful for MPNST by improving efficacy while limiting toxicities as compared to pan-HDACis.

  5. Mucosal permeability and immune activation as potential therapeutic targets of probiotics in irritable bowel syndrome.

    Science.gov (United States)

    Barbara, Giovanni; Zecchi, Lisa; Barbaro, Raffaella; Cremon, Cesare; Bellacosa, Lara; Marcellini, Marco; De Giorgio, Roberto; Corinaldesi, Roberto; Stanghellini, Vincenzo

    2012-10-01

    There is increasingly convincing evidence supporting the participation of the gut microenvironment in the pathophysiology of irritable bowel syndrome (IBS). Studies particularly suggest an interplay between luminal factors (eg, foods and bacteria residing in the intestine), the epithelial barrier, and the mucosal immune system. Decreased expression and structural rearrangement of tight junction proteins in the small bowel and colon leading to increased intestinal permeability have been observed, particularly in postinfectious IBS and in IBS with diarrhea. These abnormalities are thought to contribute to the outflow of antigens through the leaky epithelium, causing overstimulation of the mucosal immune system. Accordingly, subsets of patients with IBS show higher numbers and an increased activation of mucosal immunocytes, particularly mast cells. Immune factors, released by these cells, including proteases, histamine, and prostanoids, participate in the perpetuation of the permeability dysfunction and contribute to the activation of abnormal neural responses involved in abdominal pain perception and changes in bowel habits. All these mechanisms represent new targets for therapeutic approaches in IBS. Probiotics are an attractive therapeutic option in IBS given their recognized safety and by virtue of positive biological effects they can exert on the host. Of importance for the IBS pathophysiology is that preclinical studies have shown that selective probiotic strains exhibit potentially useful properties including anti-inflammatory effects, improvement of mucosal barrier homeostasis, beneficial effects on intestinal microbiota, and a reduction of visceral hypersensitivity. The effect of probiotics on IBS is positive in most randomized, controlled studies, although the gain over the placebo is small. Identifying tailored probiotic approaches for subgroups of IBS patients represents a challenge for the future.

  6. Lactoferrin nanoparticle mediated targeted delivery of 5-fluorouracil for enhanced therapeutic efficacy.

    Science.gov (United States)

    Kumari, Sonali; Kondapi, Anand K

    2017-02-01

    Malignant melanoma is an aggressive form of skin cancer with high mortality rates. Common treatments for malignant melanoma involve a combination of radiotherapy and chemotherapy with fluorouracil (5-FU). A major challenge with melanoma treatment is active resistance to chemotherapeutic drugs. Superior treatment outcome lies on balance involving optimum therapeutic doses and the side effects associated with dose escalation. The study aimed to efficiently entrap 5-FU in lactoferrin nanoparticles (LfNPs) in an attempt to enhance its therapeutic efficacy. 5-FU loaded lactoferrin nanoparticles (5-FU-LfNPs) were prepared by sol-oil method with a narrow size distribution of 150±20nm 5-FU-LfNPs exhibits high encapsulation efficiency (64±2.3%) and increased storage stability at 4°C. Competitive ligand binding and lysosomal colocalization studies suggested a receptor mediated uptake for LfNPs internalization in B16F10 cells. Moreover, 5-FU-LfNPs show a pH dependent drug release similar to endosomal pH (pH 5 and 6). In addition compared to free 5-FU, 5-FU- LfNPs showed a higher intracellular uptake, prolonged retention and improved cytotoxicity (2.7-fold) in melanoma cells (B16F10). To conclude, LfNPs represent a superior nano-carrier for the targeted delivery of 5-FU in melanoma cells intended for the efficient treatment of melanoma though detailed in vivo investigations are warranted. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Plasmacytoid Dendritic Cells in the Tumor Microenvironment: Immune Targets for Glioma Therapeutics

    Directory of Open Access Journals (Sweden)

    Marianela Candolfi

    2012-08-01

    Full Text Available Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM] models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α, their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM.

  8. Plasmacytoid dendritic cells in the tumor microenvironment: immune targets for glioma therapeutics.

    Science.gov (United States)

    Candolfi, Marianela; King, Gwendalyn D; Yagiz, Kader; Curtin, James F; Mineharu, Yohei; Muhammad, A K M Ghulam; Foulad, David; Kroeger, Kurt M; Barnett, Nick; Josien, Regis; Lowenstein, Pedro R; Castro, Maria G

    2012-08-01

    Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK) induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM]) models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs) into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α), their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs) into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM.

  9. Receptor-mediated endocytosis of macromolecules and strategy to enhance their transport in alveolar epithelial cells.

    Science.gov (United States)

    Takano, Mikihisa; Kawami, Masashi; Aoki, Ayako; Yumoto, Ryoko

    2015-05-01

    Pulmonary delivery is an attractive administration route for therapeutic proteins and peptides. In this context, endocytosis/transcytosis at the distal lung epithelial barrier is an important process in the pulmonary absorption of therapeutic macromolecules. The alveolar epithelium is comprised of type I and type II cells. Understanding the transport mechanisms in these cells is essential for the development of efficient pulmonary delivery systems of therapeutic macromolecules. Endocytic pathways for albumin and insulin in alveolar epithelial cells and possible receptors for the endocytosis are discussed. Strategies to enhance the endocytosis and pulmonary absorption of macromolecules are also discussed, by focusing on the effects of cationic poly(amino acid)s. Although the surface area occupied by type II cells in alveoli is much smaller than that covered by type I cells, type II cells may significantly contribute to the endocytosis/transcytosis of macromolecules such as albumin. Identification of the receptors involved in the cellular uptake of each macromolecule is prerequisite for the understanding and regulation of its transport into and across alveolar epithelial cells. Establishment of novel in-vitro culture cell models of type I and type II cells would be a great help for the future advance of this research field.

  10. New Strategies for the Next Generation of Matrix-Metalloproteinase Inhibitors: Selectively Targeting Membrane-Anchored MMPs with Therapeutic Antibodies

    Directory of Open Access Journals (Sweden)

    Laetitia Devy

    2011-01-01

    Full Text Available MMP intervention strategies have met with limited clinical success due to severe toxicities. In particular, treatment with broad-spectrum MMP-inhibitors (MMPIs caused musculoskeletal pain and inflammation. Selectivity may be essential for realizing the clinical potential of MMPIs. Here we review discoveries pinpointing membrane-bound MMPs as mediators of mechanisms underlying cancer and inflammation and as possible therapeutic targets for prevention/treatment of these diseases. We discuss strategies to target these therapeutic proteases using highly selective inhibitory agents (i.e., human blocking antibodies against individual membrane-bound MMPs.

  11. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery.

    Science.gov (United States)

    Davis, Thomas P; Sanchez-Covarubias, Lucy; Tome, Margaret E

    2014-01-01

    The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. © 2014 Elsevier Inc. All rights reserved.

  12. LFA-1/ICAM-1 Interaction as a Therapeutic Target in Dry Eye Disease.

    Science.gov (United States)

    Pflugfelder, Stephen C; Stern, Michael; Zhang, Steven; Shojaei, Amir

    Dry eye disease (DED) is a common ocular disorder associated with inflammation of the lacrimal gland and ocular surface. The interaction of the integrin lymphocyte function-associated antigen-1 (LFA-1) with its cognate ligand intercellular adhesion molecule-1 (ICAM-1) is known to have important roles in the interaction of a variety of cells involved in immune responses and inflammation, including those prominent in ocular surface inflammation. Lifitegrast, an LFA-1 antagonist that blocks binding of ICAM-1 to LFA-1, has recently been approved in the United States for the treatment of signs and symptoms of DED. In this review, we evaluate research findings to explore the potential role of LFA-1/ICAM-1 interaction in the pathophysiology of DED, and the evidence supporting LFA-1/ICAM-1 interaction as a rational therapeutic target in DED. The results of our review suggest that LFA-1/ICAM-1 interaction may play important roles in the cell-mediated immune response and inflammation associated with DED, including facilitating the homing of dendritic cells to the lymph nodes, interaction of dendritic cells with T cells and subsequent T cell activation/differentiation, migration of activated CD4 + T cells from the lymph nodes to the ocular surface, reactivation of T cells by resident antigen-presenting cells at the ocular surface, and recruitment and retention of LFA-1-expressing T cells in the conjunctival epithelium. Based on the available evidence, inhibition of LFA-1/ICAM-1 interaction represents a rational targeted approach in treating DED. Notably, inhibition of LFA-1/ICAM-1 binding with lifitegrast offers a novel approach to reducing ocular surface inflammation in this condition.

  13. Targeting estrogen receptor β as preventive therapeutic strategy for Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Pisano, Annalinda; Preziuso, Carmela; Iommarini, Luisa; Perli, Elena; Grazioli, Paola; Campese, Antonio F; Maresca, Alessandra; Montopoli, Monica; Masuelli, Laura; Sadun, Alfredo A; d'Amati, Giulia; Carelli, Valerio; Ghelli, Anna; Giordano, Carla

    2015-12-15

    Leber's hereditary optic neuropathy (LHON) is a maternally inherited blinding disease characterized by degeneration of retinal ganglion cells (RGCs) and consequent optic nerve atrophy. Peculiar features of LHON are incomplete penetrance and gender bias, with a marked male prevalence. Based on the different hormonal metabolism between genders, we proposed that estrogens play a protective role in females and showed that these hormones ameliorate mitochondrial dysfunction in LHON through the estrogen receptors (ERs). We also showed that ERβ localize to the mitochondria of RGCs. Thus, targeting ERβ may become a therapeutic strategy for LHON specifically aimed at avoiding or delaying the onset of disease in mutation carriers. Here, we tested the effects of ERβ targeting on LHON mitochondrial defective metabolism by treating LHON cybrid cells carrying the m.11778G>A mutation with a combination of natural estrogen-like compounds that bind ERβ with high selectivity. We demonstrated that these molecules improve cell viability by reducing apoptosis, inducing mitochondrial biogenesis and strongly reducing the levels of reactive oxygen species in LHON cells. These effects were abolished in cells with ERβ knockdown by silencing receptor expression or by using specific receptor antagonists. Our observations support the hypothesis that estrogen-like molecules may be useful in LHON prophylactic therapy. This is particularly important for lifelong disease prevention in unaffected LHON mutation carriers. Current strategies attempting to combat degeneration of RGCs during the acute phase of LHON have not been very effective. Implementing a different and preemptive approach with a low risk profile may be very helpful. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets.

    Science.gov (United States)

    Sun, Lue; Moritake, Takashi; Ito, Kazuya; Matsumoto, Yoshitaka; Yasui, Hironobu; Nakagawa, Hidehiko; Hirayama, Aki; Inanami, Osamu; Tsuboi, Koji

    2017-01-01

    Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sustaining their stem cell-like phenotype and radioresistance, remain unclear. We have established radioresistant medulloblastoma stem-like clones (rMSLCs) by irradiation of the human medulloblastoma cell line ONS-76. Here, we assessed reactive oxygen species (ROS) production, mitochondria function, oxygen consumption rate (OCR), energy state, and metabolites of glycolysis and tricarboxylic acid cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria mass, low endogenous ROS production, and existed in a low-energy state. Treatment with the metabolic modifier dichloroacetate (DCA) resulted in mitochondria dysfunction, glycolysis inhibition, elongated mitochondria morphology, and increased ROS production. DCA also increased radiosensitivity by suppression of the DNA repair capacity through nuclear oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP. Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133 positivity and sphere-forming ability) in rMSLCs. Together, our findings provide insights into the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be exploited for therapeutic benefit in medulloblastoma.

  15. Evaluation of protein kinase CK2 as a therapeutic target for squamous cell carcinoma of cats.

    Science.gov (United States)

    Cannon, Claire M; Trembley, Janeen H; Kren, Betsy T; Unger, Gretchen M; O'Sullivan, M Gerard; Cornax, Ingrid; Modiano, Jaime F; Ahmed, Khalil

    2017-08-01

    OBJECTIVE To investigate protein kinase CK2 (CK2) expression in squamous cell carcinoma (SCC) of cats and to examine effects of CK2 downregulation on in vitro apoptosis and viability in SCC. SAMPLE Biopsy specimens of oral mucosa and testis and blood samples from clinically normal cats, biopsy specimens of oral SCC from cats, and feline SCC (SCCF1) and mammary gland carcinoma (K12) cell lines. PROCEDURES Immunohistochemical labeling for CK2α was performed on biopsy specimens. Sequences of the CK2α subunit gene and CK2α' subunit gene in feline blood and feline cancer cell lines were determined by use of PCR and reverse-transcription PCR assays followed by direct Sanger sequencing. Specific small interfering RNAs (siRNAs) were developed for feline CK2α and CK2α'. The SCCF1 cells were treated with siRNA and assessed 72 hours later for CK2α and CK2α' expression and markers of apoptosis (via western blot analysis) and for viability (via 3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium assays). RESULTS CK2α was expressed in all feline oral mucosa samples and 7 of 8 oral SCC samples. Expression of CK2α and CK2α' was successfully downregulated in SCCF1 cells by use of siRNAs, which resulted in decreased viability and induction of apoptosis. CONCLUSIONS AND CLINICAL RELEVANCE In this study, CK2 appeared to be a promising therapeutic target for SCCs of cats. A possible treatment strategy for SCCs of cats would be RNA interference that targets CK2.

  16. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Tony eHuynh

    2012-12-01

    Full Text Available Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncoproteins and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

  17. Long Noncoding RNAs as New Architects in Cancer Epigenetics, Prognostic Biomarkers, and Potential Therapeutic Targets.

    Science.gov (United States)

    Meseure, Didier; Drak Alsibai, Kinan; Nicolas, Andre; Bieche, Ivan; Morillon, Antonin

    2015-01-01

    Recent advances in genome-wide analysis have revealed that 66% of the genome is actively transcribed into noncoding RNAs (ncRNAs) while less than 2% of the sequences encode proteins. Among ncRNAs, high-resolution microarray and massively parallel sequencing technologies have identified long ncRNAs (>200 nucleotides) that lack coding protein function. LncRNAs abundance, nuclear location, and diversity allow them to create in association with protein interactome, a complex regulatory network orchestrating cellular phenotypic plasticity via modulation of all levels of protein-coding gene expression. Whereas lncRNAs biological functions and mechanisms of action are still not fully understood, accumulating data suggest that lncRNAs deregulation is pivotal in cancer initiation and progression and metastatic spread through various mechanisms, including epigenetic effectors, alternative splicing, and microRNA-like molecules. Mounting data suggest that several lncRNAs expression profiles in malignant tumors are associated with prognosis and they can be detected in biological fluids. In this review, we will briefly discuss characteristics and functions of lncRNAs, their role in carcinogenesis, and their potential usefulness as diagnosis and prognosis biomarkers and novel therapeutic targets.

  18. Monoamine Oxidase Is Overactivated in Left and Right Ventricles from Ischemic Hearts: An Intriguing Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Maria Elena Manni

    2016-01-01

    Full Text Available Growing evidence indicates that reactive oxygen species (ROS may play a key role in human heart failure (HF. Monoamine oxidase (MAO is emerging as a major ROS source in several cardiomyopathies. However, little is known about MAO activity in human failing heart and its relationship with redox imbalance. Therefore, we measured MAO activity in the left (LV and in the right (RV ventricle of human nonfailing (NF and in end-stage ischemic (IHD and nonischemic failing hearts. We found that both MAO isoforms (MAO-A/B significantly increased in terms of activity and expression levels only in IHD ventricles. Catalase and aldehyde dehydrogenase-2 activities (ALDH-2, both implicated in MAO-catalyzed catecholamine catabolism, were significantly elevated in the failing LV, whereas, in the RV, statistical significance was observed only for ALDH-2. Oxidative stress markers levels were significantly increased only in the failing RV. Actin oxidation was significantly elevated in both failing ventricles and related to MAO-A activity and to functional parameters. These data suggest a close association between MAO-A-dependent ROS generation, actin oxidation, and ventricular dysfunction. This latter finding points to a possible pathogenic role of MAO-A in human myocardial failure supporting the idea that MAO-A could be a new therapeutic target in HF.

  19. SPARC inhibits breast cancer bone metastasis and may be a clinical therapeutic target.

    Science.gov (United States)

    Ma, Jingjing; Gao, Sheng; Xie, Xiju; Sun, Erhu; Zhang, Min; Zhou, Qian; Lu, Cheng

    2017-11-01

    Breast cancer is one of the most common types of cancer in females worldwide, and metastasis to bone is an important characteristic of malignancy. The present study aimed to investigate the molecular mechanism of breast cancer to bone metastasis of secreted protein acidic and rich in cysteine (SPARC). Immunohistochemistry was performed to examine the expression of SPARC in primary breast tumors and bone metastatic foci. Western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression level of SPARC in several types of breast cancer cell. A Transwell filter assay was used to assess the effect of SPARC on breast cancer cell invasion ability, and an osteoblast differentiation assay was employed to analyze the effect of SPARC on the differentiation ability of mesenchymal stem cells. Clinical data revealed that decreased stromal SPARC expression is associated with breast cancer to bone metastasis. Gain- and loss-of-function studies reveal that SPARC inhibits the migration and invasion of breast cancer cells, and suppresses osteoclast activation in the breast cancer microenvironment. SPARC serves an important role in breast cancer bone metastasis and may be a promising therapeutic target for the treatment of breast cancer bone metastasis.

  20. Serum 5-LOX: a progressive protein marker for breast cancer and new approach for therapeutic target.

    Science.gov (United States)

    Kumar, Rahul; Singh, Abhay Kumar; Kumar, Manoj; Shekhar, Shashank; Rai, Nitish; Kaur, Punit; Parshad, Rajinder; Dey, Sharmistha

    2016-09-01

    Lipoxygenase (LOX) pathway has emerged to have a role in carcinogenesis. There is an evidence that both 12-LOX and 5-LOX have procarcinogenic role. We have previously reported the elevated level of serum 12-LOX in breast cancer patients. This study evaluated the serum level of 5-LOX in breast cancer patients and its in vitro inhibition assessment with peptide inhibitor YWCS. The level of 5-LOX was determined by surface plasmon resonance (SPR). The peptide inhibitor of 5-LOX was designed by molecular modeling and kinetic assay was performed by spectrophotometry. The siRNA mediated 5-LOX gene silencing was performed to investigate the effect on proliferation of MDA-MB-231, breast cancer cell line. The serum 5-LOX level in breast cancer (5.69±1.97ng/µl) was almost 2-fold elevated compared to control (3.53±1.0ng/µl) (P breast cancer and a promising therapeutic target for the same. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. KIFC1 is a novel potential therapeutic target for breast cancer.

    Science.gov (United States)

    Li, Yonghe; Lu, Wenyan; Chen, Dongquan; Boohaker, Rebecca J; Zhai, Ling; Padmalayam, Indira; Wennerberg, Krister; Xu, Bo; Zhang, Wei

    2015-01-01

    Kinesin-like protein KIFC1, a normally nonessential kinesin motor, plays a critical role in centrosome clustering in cancer cells and is essential for the survival of cancer cells. Herein, we reported that KIFC1 expression is up-regulated in breast cancer, particularly in estrogen receptor negative, progesterone receptor negative and triple negative breast cancer, and is not associated with epidermal growth factor receptor 2 status. In addition, KIFC1 is highly expressed in all 8 tested human breast cancer cell lines, but is absent in normal human mammary epithelial cells and weakly expressed in 2 human lung fibroblast lines. Moreover, KIFC1 silencing significantly reduced breast cancer cell viability. Finally, we found that PJ34, a potent small molecule inhibitor of poly(ADP-ribose) polymerase, suppressed KIFC1 expression and induced multipolar spindle formation in breast cancer cells, and inhibited cell viability and colony formation within the same concentration range, suggesting that KIFC1 suppression by PJ34 contributes to its anti-breast cancer activity. Together, these results suggest that KIFC1 is a novel promising therapeutic target for breast cancer.

  2. New Therapeutic Targets in Idiopathic Pulmonary Fibrosis. Aiming to Rein in Runaway Wound-Healing Responses

    Science.gov (United States)

    Ahluwalia, Neil; Shea, Barry S.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease, with a median survival as short as 3 years from the time of diagnosis and no pharmacological therapies yet approved by the U.S. Food and Drug Administration. To address the great unmet need for effective IPF therapy, a number of new drugs have recently been, or are now being, evaluated in clinical trials. The rationales for most of these therapeutic candidates are based on the current paradigm of IPF pathogenesis, in which recurrent injury to the alveolar epithelium is believed to drive aberrant wound healing responses, resulting in fibrosis rather than repair. Here we discuss drugs in recently completed or currently ongoing phase II and III IPF clinical trials in the context of their putative mechanisms of action and the aberrant repair processes they are believed to target: innate immune activation and polarization, fibroblast accumulation and myofibroblast differentiation, or extracellular matrix deposition and stiffening. Placed in this context, the positive results of recently completed trials of pirfenidone and nintedanib, and results that will come from ongoing trials of other agents, should provide valuable insights into the still-enigmatic pathogenesis of this disease, in addition to providing benefits to patients with IPF. PMID:25090037

  3. Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap

    Directory of Open Access Journals (Sweden)

    Raphael F. P. Castellan

    2018-02-01

    Full Text Available While a regenerative response is limited in the mammalian adult heart, it has been recently shown that the neonatal mammalian heart possesses a marked but transient capacity for regeneration after cardiac injury, including myocardial infarction. These findings evidence that the mammalian heart still retains a regenerative capacity and highlights the concept that the expression of distinct molecular switches (that activate or inhibit cellular mechanisms regulating tissue development and regeneration vary during different stages of life, indicating that cardiac regeneration is an age-dependent process. Thus, understanding the mechanisms underpinning regeneration in the neonatal-infarcted heart is crucial to develop new treatments aimed at improving cardiovascular regeneration in the adult. The present review summarizes the current knowledge on the pathways and factors that are known to determine cardiac regeneration in the neonatal-infarcted heart. In particular, we will focus on the effects of microRNA manipulation in regulating cardiomyocyte proliferation and regeneration, as well as on the role of the Hippo signaling pathway and Meis1 in the regenerative response of the neonatal-infarcted heart. We will also briefly comment on the role of macrophages in scar formation of the adult-infarcted heart or their contribution for scar-free regeneration of the neonatal mouse heart after myocardial infarction. Although additional research is needed in order to identify other factors that regulate cardiovascular regeneration, these pathways represent potential therapeutic targets for rejuvenation of aging hearts and for improving regeneration of the adult-infarcted heart.

  4. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Paula I. Moreira

    2009-12-01

    Full Text Available Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ. Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed.

  5. Semaphorin 7A as a Potential Therapeutic Target for Multiple Sclerosis.

    Science.gov (United States)

    Gutiérrez-Franco, Ana; Eixarch, Herena; Costa, Carme; Gil, Vanessa; Castillo, Mireia; Calvo-Barreiro, Laura; Montalban, Xavier; Del Río, José A; Espejo, Carmen

    2017-08-01

    Semaphorin 7A (sema7A) is classified as an immune semaphorin with dual functions in the immune system and in the central nervous system (CNS). These molecules are of interest due to their potential role in multiple sclerosis (MS), which is a chronic demyelinating and neurodegenerative disease of autoimmune origin. In this study, we elucidated the role of sema7A in neuroinflammation using both in vitro and in vivo experimental models. In an in vitro model of neuroinflammation, using cerebellar organotypic slice cultures, we observed that challenge with lipopolysaccharide (LPS) endotoxin did not affect demyelination or cell death in sema7A-deficient cultures compared to wild-type cultures. Moreover, the in vivo outcome of experimental autoimmune encephalomyelitis (EAE) in sema7A-deficient mice was altered in an antigen- and adjuvant-dose-dependent manner, while no differences were observed in the wild-type counterparts. Altogether, these results indicate that sema7A is involved in peripheral immunity and CNS inflammation in MS pathogenesis. Indeed, these data suggest that sema7A might be a potential therapeutic target to treat MS and autoimmune conditions.

  6. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: a New Therapeutic Approach

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz

    2015-07-01

    Full Text Available Pancreatic cancer (PC is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1 receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase, the peptide substance P (SP—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert An antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis, and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC.

  7. Genetic markers as therapeutic target in rheumatoid arthritis: A game changer in clinical therapy?

    Science.gov (United States)

    Ali, A M Mohamed Thoufic; Vino, S

    2016-11-01

    Rheumatoid arthritis (RA) is a chronic, inflammatory, multi-systemic autoimmune disease unremitted by genetic and environmental factors. The factors are crucial but inadequate in the development of disease; however, these factors can be representative of potential therapeutic targets and response to clinical therapy. Insights into the contribution of genetic risk factors are currently in progress with studies querying the genetic variation, their role in gene expression of coding and non-coding genes and other mechanisms of disease. In this review, we describe the significance of genetic markers architecture of RA through genome-wide association studies and meta-analysis studies. Further, it also reveals the mechanism of disease pathogenesis investigated through the mutual findings of functional and genetic studies of individual RA-associated genes, which includes HLA-DRB1, HLA-DQB1, HLA-DPB1, PADI4, PTPN22, TRAF1-C5, STAT4 and C5orf30. However, the genetic background of RA remains to be clearly depicted. Prospective efforts of the post-genomic and functional genomic period can travel toward real possible assessment of the genetic effect on RA. The discovery of novel genes associated with the disease can be appropriate in identifying potential biomarkers, which could assist in early diagnosis and aggressive treatment.

  8. Cholesterol: The Good, the Bad, and the Ugly – Therapeutic Targets for the Treatment of Dyslipidemia

    Science.gov (United States)

    Elshourbagy, Nabil A.; Meyers, Harold V.; Abdel-Meguid, Sherin S.

    2014-01-01

    Maintaining cholesterol and triglyceride (TG) levels within healthy limits is critical for decreasing the risk of heart disease. Dyslipidemia refers to the abnormal levels of lipids in the blood, including low high-density lipoprotein cholesterol (HDL-C), also known as good cholesterol, high low-density lipoprotein cholesterol (LDL-C), also known as bad cholesterol, and/or high TG levels that contribute to the development and progression of atherosclerosis. In this article we reviewed some of the current therapeutic targets for the treatment of dyslipidemia, with a primary focus on endothelial lipase and lecithin cholesterol acyl transferase for raising HDL-C, and the proprotein convertase subtilisin-like kexin type 9 (PCSK9), microsomal triglyceride transfer protein, and the messenger RNA of apolipoprotein B for lowering LDL-C. In addition, we reviewed the role of apolipoprotein AI (apoAI) in raising HDL-C, where we discuss three apoAI-based drugs under development. These are its mutated dimer (apoAI-Milano), a complex with phospholipids, and a mimetic peptide. Atherosclerosis, mainly because of dyslipidemia, is a leading cause of cardiovascular disease. Regarding the title of this article, the ‘good’ refers to HDL-C, the ‘bad’ refers to LDL-C, and the ‘ugly’ refers to atherosclerosis. PMID:24334831

  9. The lymphotoxin β receptor is a potential therapeutic target in renal inflammation.

    Science.gov (United States)

    Seleznik, Gitta; Seeger, Harald; Bauer, Judith; Fu, Kai; Czerkowicz, Julie; Papandile, Adrian; Poreci, Uriana; Rabah, Dania; Ranger, Ann; Cohen, Clemens D; Lindenmeyer, Maja; Chen, Jin; Edenhofer, Ilka; Anders, Hans J; Lech, Maciej; Wüthrich, Rudolf P; Ruddle, Nancy H; Moeller, Marcus J; Kozakowski, Nicolas; Regele, Heinz; Browning, Jeffrey L; Heikenwalder, Mathias; Segerer, Stephan

    2016-01-01

    Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  10. The therapeutic potential of targeting the BRAF mutation in patients with colorectal cancer.

    Science.gov (United States)

    Bahrami, Afsane; Hesari, AmirReza; Khazaei, Majid; Hassanian, Seyed Mahdi; Ferns, Gordon A; Avan, Amir

    2018-03-01

    Colorectal cancer is among the most lethal malignancies globally. BRAF is a member of the RAS/RAF/MEK/ERK signaling pathway. Its constitutive activation can result in increased cellular growth, development, invasion, and resistance to therapy. A mutation of the BRAF gene is present in 5-10% of metastatic colorectal cancers. BRAF mutations have been found to predict a lack of benefit to anti-EGFR therapy in metastatic CRC. Furthermore, CRC containing the BRAF V600E mutation display an innate resistance to BRAF inhibitors. The mechanisms of cell resistance can be explained at least in part by ERK dependent and ERK in-dependent pathway. Clinical trials evaluating the combinations of BRAF, PI3K, EGFR, and/or MEK inhibitors have revealed promising activity in BRAF mutant containing CRCs. There may be some benefit from future studies that focus on improving the efficacy of combined therapy in CRC with respect to the sustained effects. The aim of current review is to give an overview about the current status and prospective regarding the therapeutic potential of targeting BRAF mutant colorectal cancer. © 2017 Wiley Periodicals, Inc.

  11. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Michal Mielcarek

    2013-11-01

    Full Text Available Histone deacetylase (HDAC 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD, a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics.

  12. Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Jaehee V. Shim

    2017-09-01

    Full Text Available Tyrosine kinase inhibitors (TKIs are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitation–contraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities that have been reported, discuss potential mechanisms underlying cardiotoxicity, and describe recent progress in achieving a more systematic understanding of cardiotoxicity via the use of mechanistic models. In particular, we argue that future advances are likely to be enabled by studies that combine large-scale experimental measurements with Quantitative Systems Pharmacology (QSP models describing biological mechanisms and dynamics. As such approaches have proven extremely valuable for understanding and predicting other drug toxicities, it is likely that QSP modeling can be successfully applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy for integrating genome-wide expression measurements with models, illustrate initial advances in applying this approach to cardiotoxicity, and describe challenges that must be overcome to truly develop a mechanistic and systematic understanding of cardiotoxicity caused by TKIs.

  13. Therapeutic Effect of Novel Single-Stranded RNAi Agent Targeting Periostin in Eyes with Retinal Neovascularization

    Directory of Open Access Journals (Sweden)

    Takahito Nakama

    2017-03-01

    Full Text Available Retinal neovascularization (NV due to retinal ischemia remains one of the principal causes of vision impairment in patients with ischemic retinal diseases. We recently reported that periostin (POSTN may play a role in the development of preretinal fibrovascular membranes, but its role in retinal NV has not been determined. The purpose of this study was to examine the expression of POSTN in the ischemic retinas of a mouse model of oxygen-induced retinal NV. We also studied the function of POSTN on retinal NV using Postn KO mice and human retinal endothelial cells (HRECs in culture. In addition, we used a novel RNAi agent, NK0144, which targets POSTN to determine its effect on the development of retinal NV. Our results showed that the expression of POSTN was increased in the vascular endothelial cells, pericytes, and M2 macrophages in ischemic retinas. POSTN promoted the ischemia-induced retinal NV by Akt phosphorylation through integrin αvβ3. NK0144 had a greater inhibitory effect than canonical double-stranded siRNA on preretinal pathological NV in vivo and in vitro. These findings suggest a causal relationship between POSTN and retinal NV, and indicate a potential therapeutic role of intravitreal injection of NK0144 for retinal neovascular diseases.

  14. Guanylyl cyclase C in colorectal cancer: susceptibility gene and potential therapeutic target.

    Science.gov (United States)

    Lin, Jieru E; Li, Peng; Pitari, Giovanni M; Schulz, Stephanie; Waldman, Scott A

    2009-05-01

    Colorectal cancer is one of the leading causes of tumor-related morbidity and mortality worldwide. While mechanisms underlying this disease have been elucidated over the past two decades, these molecular insights have failed to translate into efficacious therapy. The oncogenomic view of cancer suggests that terminal transformation reflects the sequential corruption of signal transduction circuits regulating key homeostatic mechanisms, whose multiplicity underlies the therapeutic resistance of most tumors to interventions targeting individual pathways. Conversely, the paucity of mechanistic insights into proximal pathophysiological processes that initiate and amplify oncogenic circuits preceding accumulation of mutations and transformation impedes development of effective prevention and therapy. In that context, guanylyl cyclase C (GCC), the intestinal receptor for the paracrine hormones guanylin and uroguanylin, whose early loss characterizes colorectal transformation, has emerged as a component of lineage-specific homeostatic programs organizing spatiotemporal patterning along the crypt-surface axis. Dysregulation of GCC signaling, reflecting hormone loss, promotes tumorigenesis through reprogramming of replicative and bioenergetic circuits and genomic instability. Compensatory upregulation of GCC in response to hormone loss provides a unique translational opportunity for prevention and treatment of colorectal tumors by hormone-replacement therapy.

  15. Proteomic identification of cyclophilin A as a potential biomarker and therapeutic target in oral submucous fibrosis

    Science.gov (United States)

    Xu, Hao; Gong, Wang; Deng, Jing; Sun, Chongkui; Gao, Yijun; Peng, Jieying; Wu, Yingfang; Li, Jiang; Fang, Changyun; Chen, Qianming

    2016-01-01

    Oral submucous fibrosis (OSF) is a pre-cancerous lesion, which is characterized by fibrosis of the oral submucosa. Despite large body of studies focusing on this disease, the molecular mechanisms underlying the progression of OSF remained unclear. In this study, 2-DE-based proteomic approaches were employed to identify the differently expressed proteins between OSF and normal tissues. In total, 88 proteins were identified with altered expression levels, including CypA. Upregulation of CypA was further validated through immunohistochemistry staining combined with Q-PCR and western blot by using clinical samples. Statistical analyses reveal that CypA expression level is correlated to the progression of OSF. Finally, functional study reveals a pro-proliferative property of CypA in fibroblast cells by using multiple in vitro models. The present data suggest that CypA might be a potential biomarker and therapeutic target for OSF, and will lead to a better understanding of OSF pathogenesis. PMID:27533088

  16. An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes

    Science.gov (United States)

    Medina, Julie; Joanou, Julie; Demolder, Amandine; Queruel, Nelly; Réant, Kevin; Normand, Matthieu; Seffals, Marine; Dimier, Julie; Germi, Raphaële; Piofczyk, Thomas; Portoukalian, Jacques; Touraine, Jean-Louis; Perron, Hervé

    2017-01-01

    Human endogenous retroviruses (HERVs), remnants of ancestral viral genomic insertions, are known to represent 8% of the human genome and are associated with several pathologies. In particular, the envelope protein of HERV-W family (HERV-W-Env) has been involved in multiple sclerosis pathogenesis. Investigations to detect HERV-W-Env in a few other autoimmune diseases were negative, except in type-1 diabetes (T1D). In patients suffering from T1D, HERV-W-Env protein was detected in 70% of sera, and its corresponding RNA was detected in 57% of peripheral blood mononuclear cells. While studies on human Langerhans islets evidenced the inhibition of insulin secretion by HERV-W-Env, this endogenous protein was found to be expressed by acinar cells in 75% of human T1D pancreata. An extensive immunohistological analysis further revealed a significant correlation between HERV-W-Env expression and macrophage infiltrates in the exocrine part of human pancreata. Such findings were corroborated by in vivo studies on transgenic mice expressing HERV-W-env gene, which displayed hyperglycemia and decreased levels of insulin, along with immune cell infiltrates in their pancreas. Altogether, these results strongly suggest an involvement of HERV-W-Env in T1D pathogenesis. They also provide potentially novel therapeutic perspectives, since unveiling a pathogenic target in T1D. PMID:28878130

  17. A Therapeutically Targetable Mechanism of BCR-ABL-Independent Imatinib Resistance in Chronic Myeloid Leukemia

    Science.gov (United States)

    Ma, Leyuan; Shan, Yi; Bai, Robert; Xue, Liting; Eide, Christopher A.; Ou, Jianhong; Zhu, Lihua J.; Hutchinson, Lloyd; Cerny, Jan; Khoury, Hanna Jean; Sheng, Zhi; Druker, Brian J.; Li, Shaoguang; Green, Michael R.

    2014-01-01

    Resistance to the BCR-ABL inhibitor imatinib mesylate (IM) poses a major problem for the treatment of chronic myeloid leukemia (CML). IM resistance often results from a secondary mutation in BCR-ABL that interferes with drug binding. However, in many instances there is no mutation in BCR-ABL, and the basis of such BCR-ABL-independent IM resistance remains to be elucidated. To gain insight into BCR-ABL-independent IM resistance mechanisms, we performed a large-scale RNA interference (RNAi) screen and identified IM-sensitizing genes (IMSGs) whose knockdown renders BCR-ABL+ cells IM-resistant. In these IMSG knockdown cells, RAF/MEK/ERK signaling is sustained after IM treatment due to upregulation of PRKCH, which encodes the protein kinase C (PKC) family member PKCη, an activator of CRAF. PRKCH is also upregulated in samples from CML patients with BCR-ABL-independent IM resistance. Combined treatment with IM and trametinib, an FDA-approved MEK inhibitor, synergistically kills BCR-ABL+ IMSG knockdown cells and prolongs survival in mouse models of BCR-ABL-independent IM-resistant CML. Finally, we showed that CML stem cells contain high levels of PRKCH and this contributes to their intrinsic IM resistance. Combined treatment with IM and trametinib synergistically kills CML stem cells with negligible effect on normal hematopoietic stem cells. Collectively, our results identify a therapeutically targetable mechanism of BCR-ABL-independent IM resistance in CML and CML stem cells. PMID:25186176

  18. Galectin-3 as a marker and potential therapeutic target in breast cancer.

    Science.gov (United States)

    Zhang, Hao; Luo, Minna; Liang, Xi; Wang, Dan; Gu, Xin; Duan, Chao; Gu, Huizi; Chen, Guanglei; Zhao, Xinhan; Zhao, Zuowei; Liu, Caigang

    2014-01-01

    Galectin-3 has a relatively high level of expression in triple-negative breast cancers and is a potential marker for this disease. However, the clinical and prognostic implications of galectin-3 expression in breast cancer remain unclear. We examined mastectomy specimens from 1086 breast cancer cases and matching, adjacent non-cancerous tissues using immunohistochemistry. Overall, triple-negative breast cancers expressed galectin-3 more strongly than did other breast cancers types (63.59% vs 21.36%, P = 0.001). Galectin-3 expression was not found to be an independent prognostic factor for breast cancer by Cox regression analysis, but was associated with chemotherapeutic resistance. Apoptosis was only weakly induced by arsenic trioxide (ATO) treatment in galectin-3-positive breast cancer cells (MDA-MB-231 and MCF-7), although ATO treatment up-regulated galectin-3 expression. Knockdown of galectin-3 in MDA-MB-231 cells sensitized them to killing by ATO. These findings support a possible role for galectin-3 as a marker for triple-negative breast cancer progression and as a therapeutic target in combination with ATO treatment, although the mechanisms that underlie this synergy require further investigation.

  19. Galectin-3 as a marker and potential therapeutic target in breast cancer.

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    Full Text Available Galectin-3 has a relatively high level of expression in triple-negative breast cancers and is a potential marker for this disease. However, the clinical and prognostic implications of galectin-3 expression in breast cancer remain unclear. We examined mastectomy specimens from 1086 breast cancer cases and matching, adjacent non-cancerous tissues using immunohistochemistry. Overall, triple-negative breast cancers expressed galectin-3 more strongly than did other breast cancers types (63.59% vs 21.36%, P = 0.001. Galectin-3 expression was not found to be an independent prognostic factor for breast cancer by Cox regression analysis, but was associated with chemotherapeutic resistance. Apoptosis was only weakly induced by arsenic trioxide (ATO treatment in galectin-3-positive breast cancer cells (MDA-MB-231 and MCF-7, although ATO treatment up-regulated galectin-3 expression. Knockdown of galectin-3 in MDA-MB-231 cells sensitized them to killing by ATO. These findings support a possible role for galectin-3 as a marker for triple-negative breast cancer progression and as a therapeutic target in combination with ATO treatment, although the mechanisms that underlie this synergy require further investigation.

  20. Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease

    Directory of Open Access Journals (Sweden)

    Natalie Sampson

    2014-01-01

    Full Text Available Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGFβ-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4-derived hydrogen peroxide (H2O2 supported by concomitant decreases in nitric oxide (NO signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H2O2 and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders.

  1. Acid-sensing ion channels (ASICs: therapeutic targets for neurological diseases and their regulation

    Directory of Open Access Journals (Sweden)

    Hae-Jin Kweon

    2013-06-01

    Full Text Available Extracellular acidification occurs not only in pathologicalconditions such as inflammation and brain ischemia, but alsoin normal physiological conditions such as synaptic transmission.Acid-sensing ion channels (ASICs can detect a broadrange of physiological pH changes during pathological andsynaptic cellular activities. ASICs are voltage-independent,proton-gated cation channels widely expressed throughout thecentral and peripheral nervous system. Activation of ASICs isinvolved in pain perception, synaptic plasticity, learning andmemory, fear, ischemic neuronal injury, seizure termination,neuronal degeneration, and mechanosensation. Therefore,ASICs emerge as potential therapeutic targets for manipulatingpain and neurological diseases. The activity of these channelscan be regulated by many factors such as lactate, Zn2+, andPhe-Met-Arg-Phe amide (FMRFamide-like neuropeptides byinteracting with the channel’s large extracellular loop. ASICsare also modulated by G protein-coupled receptors such asCB1 cannabinoid receptors and 5-HT2. This review focuses onthe physiological roles of ASICs and the molecularmechanisms by which these channels are regulated. [BMBReports 2013; 46(6: 295-304

  2. Targeting TRPV1 and TRPV2 for potential therapeutic interventions in cardiovascular disease.

    Science.gov (United States)

    Robbins, Nathan; Koch, Sheryl E; Rubinstein, Jack

    2013-06-01

    Cardiovascular disease is a leading cause of morbidity and mortality worldwide, encompassing a variety of cardiac and vascular conditions. Transient receptor potential vanilloid (TRPV) channels, specifically TRPV type 1 (TRPV1) and TRPV type 2 (TRPV2), are relatively recently described channels found throughout the body including within and around the cardiovascular system. They are activated by a variety of stimuli including high temperatures, stretch, and pharmacologic and endogenous ligands. The TRPV1 channel has been found to be an important player in the pathway of the detection of chest pain after myocardial injury. Activation of peripheral TRPV1 via painful stimuli or capsaicin has been shown to have cardioprotective effects, whereas genetic abrogation of TRPV1 results in increased myocardial damage after ischemia and reperfusion injury in comparison to wild-type mice. Furthermore, blood pressure changes have been noted upon TRPV1 stimulation. Similarly, the TRPV2 channel has also been associated with changes in blood pressure and cardiac function depending on how and where the channel is activated. Interestingly, overexpression of TRPV2 channels in the heart induces dystrophic cardiomyopathy; however, stimulation under physiologic conditions leads to improved cardiac function. Probenecid, a TRPV2 agonist, has been studied as a model therapy for its inotropic effects and potential use in the treatment of cardiomyopathy. In this review, we present an up to date account of the growing evidence that supports the study of TRPV1 and TRPV2 channels as targets for therapeutic agents of cardiovascular diseases. Published by Mosby, Inc.

  3. Clinical investigation of TROP-2 as an independent biomarker and potential therapeutic target in colon cancer.

    Science.gov (United States)

    Zhao, Peng; Yu, Hai-Zheng; Cai, Jian-Hui

    2015-09-01

    Colon cancer is associated with a severe demographic and economic burden worldwide. The pathogenesis of colon cancer is highly complex and involves sequential genetic and epigenetic mechanisms. Despite extensive investigation, the pathogenesis of colon cancer remains to be elucidated. As the third most common type of cancer worldwide, the treatment options for colon cancer are currently limited. Human trophoblast cell‑surface marker (TROP‑2), is a cell‑surface transmembrane glycoprotein overexpressed by several types of epithelial carcinoma. In addition, TROP‑2 has been demonstrated to be associated with tumorigenesis and invasiveness in solid types of tumor. The aim of the present study was to investigate the protein expression of TROP‑2 in colon cancer tissues, and further explore the association between the expression of TROP‑2 and clinicopathological features of patients with colon cancer. The expression and localization of the TROP‑2 protein was examined using western blot analysis and immunofluorescence staining. Finally, the expression of TROP‑2 expression was correlated to conventional clinicopathological features of colon cancer using a χ2 test. The results revealed that TROP‑2 protein was expressed at high levels in the colon cancer tissues, which was associated with the development and pathological process of colon cancer. Therefore, TROP‑2 may be used as a biomarker to determine the clinical prognosis, and as a potential therapeutic target in colon cancer.

  4. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    Science.gov (United States)

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  5. Experimental evidence of Migfilin as a new therapeutic target of hepatocellular carcinoma metastasis.

    Science.gov (United States)

    Gkretsi, Vasiliki; Bogdanos, Dimitrios P

    2015-06-10

    Migfilin is a novel cell-matrix adhesion protein known to interact with Vasodilator Stimulated Phosphoprotein (VASP) and be localized both at cell-matrix and cell-cell adhesions. To date there is nothing known about its role in hepatocellular carcinoma (HCC). As matrix is important in metastasis, we aimed to investigate the Migfilin׳s role in HCC metastasis using two human HCC cell lines that differ in their metastatic potential; non-invasive Alexander cells and the highly invasive HepG2 cells. We silenced Migfilin by siRNA and studied its effect on signaling and metastasis-related cellular properties. We show that Migfilin׳s expression is elevated in HepG2 cells and its silencing leads to upregulation of actin reorganization-related proteins, namely phosphor-VASP (Ser157 and Ser239), Fascin-1 and Rho-kinase-1, promoting actin polymerization and inhibiting cell invasion. Phosphor-Akt (Ser473) is decreased contributing to the upregulation of free and phosphor-β-catenin (Ser33/37Thr41) and inducing proliferation. Migfilin elimination upregulates Extracellular Signal-regulated kinase, which increases cell adhesion in HepG2 and reduces invasiveness. This is the first study to reveal that Migfilin inhibition can halt HCC metastasis in vitro, providing the molecular mechanism involved and presenting Migfilin as potential therapeutic target against HCC metastasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. NF-κB pathway activators as potential ageing biomarkers: targets for new therapeutic strategies.

    Science.gov (United States)

    Balistreri, Carmela R; Candore, Giuseppina; Accardi, Giulia; Colonna-Romano, Giuseppina; Lio, Domenico

    2013-06-20

    Chronic inflammation is a major biological mechanism underpinning biological ageing process and age-related diseases. Inflammation is also the key response of host defense against pathogens and tissue injury. Current opinion sustains that during evolution the host defense and ageing process have become linked together. Thus, the large array of defense factors and mechanisms linked to the NF-κB system seem to be involved in ageing process. This concept leads us in proposing inductors of NF-κB signaling pathway as potential ageing biomarkers. On the other hand, ageing biomarkers, represented by biological indicators and selected through apposite criteria, should help to characterize biological age and, since age is a major risk factor in many degenerative diseases, could be subsequently used to identify individuals at high risk of developing age-associated diseases or disabilities. In this report, some inflammatory biomarkers will be discussed for a better understanding of the concept of biological ageing, providing ideas on eventual working hypothesis about potential targets for the development of new therapeutic strategies and improving, as consequence, the quality of life of elderly population.

  7. Pharmacotherapy: concepts of pathogenesis and emerging treatments. Co-stimulation and T cells as therapeutic targets.

    Science.gov (United States)

    Gizinski, Alison M; Fox, David A; Sarkar, Sujata

    2010-08-01

    Full activation and differentiation of resting T cells into effector T cells requires at least two signals, the first through engagement of the T cell antigen receptor (TCR) by the antigen-major histocompatibility complex (MHC) on antigen-presenting cells (APCs), and the second by engagement of co-stimulatory molecules such as CD28, on T cells by ligands such as CD80/86 on APCs. Effector T cell differentiation is associated with proliferation, secretion of cytokines and expression of additional surface molecules. These inducible structures may have stimulatory (ICOS, OX40 and 4-1BB) or inhibitory (cytotoxic T-lymphocyte antigen (CTLA)-4) potential. To the extent that T cells have a role in particular immune-mediated diseases, interruption of T cell co-stimulation is a potentially worthwhile approach to the treatment of those conditions. This article summarises the experience in treating rheumatological disease by perturbation of T cell co-stimulation, and also describes structures that could be future targets for this type of therapeutic approach. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges

    Science.gov (United States)

    Saxena, Amit; Russo, Ilaria; Frangogiannis, Nikolaos G

    2015-01-01

    In the infarcted myocardium, necrotic cardiomyocytes release danger signals, activating an intense inflammatory response. Inflammatory pathways play a crucial role in regulation of a wide range of cellular processes involved in injury, repair and remodeling of the infarcted heart. Pro-inflammatory cytokines, such as tumor necrosis factor-a and interleukin (IL)-1, are markedly upregulated in the infarcted myocardium and promote adhesive interactions between endothelial cells and leukocytes, by stimulating chemokine and adhesion molecule expression. Distinct chemokine/chemokine receptor pairs are implicated in recruitment of various leukocyte subpopulations in the infarcted myocardium. Over the last 30 years, extensive experimental work has explored the role of inflammatory signals and the contributions of leukocyte subpopulations, in myocardial infarction. Robust evidence derived from experimental models of myocardial infarction has identified inflammatory targets that may attenuate cardiomyocyte injury, or protect from adverse remodeling. Unfortunately, attempts to translate the promising experimental findings to clinical therapy have failed. This review manuscript discusses the biology of the inflammatory response following myocardial infarction, attempts to identify the causes for the translational failures of the past, and proposes promising new therapeutic directions. Because of their potential involvement in injurious, reparative and regenerative responses, inflammatory cells may hold the key for design of new therapies in myocardial infarction. PMID:26241027

  9. Therapeutic monoclonal antibodies and the need for targeted pharmacovigilance in India.

    Science.gov (United States)

    Kalaivani, M; Singh, Abhishank; Kalaiselvan, V

    2015-01-01

    A growing number of innovative mAb therapeutics are on the global market, and biosimilar versions have now also been approved, including in India. Although efficacy and safety is demonstrated prior to approval, targeted pharmacovigilance is essential for the identification and assessment of risk for any mAb products. We analyzed the ADR data related to mAbs reported to the NCC-PvPI through the spontaneous reporting system Vigiflow during April 2011 to February 2014 to identify mAbs with the highest number of ADR including fatal/serious ADR. Only 0.72% reports were related to mAbs. Although 15 mAbs are approved in the country, only 6 mAbs were reported through Vigiflow. Rituximab was highly reported, and no fatal/serious ADR related to any mAbs were reported during the study period. Our study shows that PvPI is effective and robust system in the detection and assessment of risks associated with the use of mAbs.

  10. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es [Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla (Spain); Coveñas, Rafael [Laboratory of Neuroanatomy of the Peptidergic System (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37008 Salamanca (Spain)

    2015-07-06

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC.

  11. Type I interferon is a therapeutic target for virus-induced lethal vascular damage.

    Science.gov (United States)

    Baccala, Roberto; Welch, Megan J; Gonzalez-Quintial, Rosana; Walsh, Kevin B; Teijaro, John R; Nguyen, Anthony; Ng, Cherie T; Sullivan, Brian M; Zarpellon, Alessandro; Ruggeri, Zaverio M; de la Torre, Juan Carlos; Theofilopoulos, Argyrios N; Oldstone, Michael B A

    2014-06-17

    The outcome of a viral infection reflects the balance between virus virulence and host susceptibility. The clone 13 (Cl13) variant of lymphocytic choriomeningitis virus--a prototype of Old World arenaviruses closely related to Lassa fever virus--elicits in C57BL/6 and BALB/c mice abundant negative immunoregulatory molecules, associated with T-cell exhaustion, negligible T-cell-mediated injury, and high virus titers that persist. Conversely, here we report that in NZB mice, despite the efficient induction of immunoregulatory molecules and high viremia, Cl13 generated a robust cytotoxic T-cell response, resulting in thrombocytopenia, pulmonary endothelial cell loss, vascular leakage, and death within 6-8 d. These pathogenic events required type I IFN (IFN-I) signaling on nonhematopoietic cells and were completely abrogated by IFN-I receptor blockade. Thus, IFN-I may play a prominent role in hemorrhagic fevers and other acute virus infections associated with severe vascular pathology, and targeting IFN-I or downstream effector molecules may be an effective therapeutic approach.

  12. Galectin-3 as a Potential Therapeutic Target in Tumors Arising from Malignant Endothelia

    Directory of Open Access Journals (Sweden)

    Kim D. Johnson

    2007-08-01

    Full Text Available Angiosarcoma (ASA in humans, hemangiosarcoma (HSA in dogs are deadly neoplastic diseases characterized by an aggressive growth of malignant cells with endothelial phenotype, widespread metastasis, poor response to chemotherapy. Galectin-3 (Gal-3, a p-galactoside-binding lectin implicated in tumor progression, metastasis, endothelial cell biology, angiogenesis, regulation of apoptosis, neoplastic cell response to cytotoxic drugs, has not been studied before in tumors arising from malignant endothelia. Here, we tested the hypothesis that Gal-3 could be widely expressed in human ASA, canine HSA, could play an important role in malignant endothelial cell biology. Immunohistochemical analysis demonstrated that 100% of the human ASA (10 of 10, canine HSA (17 of 17 samples analyzed expressed Gal-3. Two carbohydrate-based Gal-3 inhibitors, modified citrus pectin (MCP, lactulosyl-l-leucine (LL, caused a dose-dependent reduction of SVR murine ASA cell clonogenic survival through the inhibition of Gal-3 antiapoptotic function. Furthermore, both MCP, LL sensitized SVR cells to the cytotoxic drug doxorubicin to a degree sufficient to reduce the in vitro IC50 of doxorubicin by 10.7-fold, 3.64old, respectively. These results highlight the important role of Gal-3 in the biology of ASA, identify Gal-3 as a potential therapeutic target in tumors arising from malignant endothelial cells.

  13. Cytosolic Phospholipase A2 Protein as a Novel Therapeutic Target for Spinal Cord Injury

    Science.gov (United States)

    Liu, Nai-Kui; Deng, Ling-Xiao; Zhang, Yi Ping; Lu, Qing-Bo; Wang, Xiao-Fei; Hu, Jian-Guo; Oakes, Eddie; Bonventre, Joseph V; Shields, Christopher B; Xu, Xiao-Ming

    2014-01-01

    Objective The objective of this study was to investigate whether cytosolic phospholipase A2 (cPLA2), an important isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of spinal cord injury (SCI). Methods A combination of molecular, histological, immunohistochemical, and behavioral assessments were used to test whether blocking cPLA2 activation pharmacologically or genetically reduced cell death, protected spinal cord tissue, and improved behavioral recovery after a contusive SCI performed at the 10th thoracic level in adult mice. Results SCI significantly increased cPLA2 expression and activation. Activated cPLA2 was localized mainly in neurons and oligodendrocytes. Notably, the SCI-induced cPLA2 activation was mediated by the extracellular signal-regulated kinase signaling pathway. In vitro, activation of cPLA2 by ceramide-1-phosphate or A23187 induced spinal neuronal death, which was substantially reversed by arachidonyl trifluoromethyl ketone, a cPLA2 inhibitor. Remarkably, blocking cPLA2 pharmacologically at 30 minutes postinjury or genetically deleting cPLA2 in mice ameliorated motor deficits, and reduced cell loss and tissue damage after SCI. Interpretation cPLA2 may play a key role in the pathogenesis of SCI, at least in the C57BL/6 mouse, and as such could be an attractive therapeutic target for ameliorating secondary tissue damage and promoting recovery of function after SCI. PMID:24623140

  14. Monocyte / macrophage inflammatory response pathways to combat Francisella infection: possible therapeutic targets?

    Directory of Open Access Journals (Sweden)

    Devyn D Gillette

    2014-02-01

    Full Text Available Francisella tularensis can bypass and suppress host immune responses, even to the point of manipulating immune cell phenotypes and intercellular inflammatory networks. Strengthening these responses such that immune cells more readily identify and destroy the bacteria is likely to become a viable (and perhaps necessary strategy for combating infections with Francisella, especially given the likelihood of antibiotic resistance in the foreseeable future. Monocytes and macrophages offer a niche wherein Francisella can invade and replicate, resulting in substantially higher bacterial load that can overcome the host. As such, understanding their responses to Francisella may uncover potential avenues of therapy that could promote a lowering of bacterial burden and clearance of infection. These response pathways include Toll-like Receptor 2 (TLR2, the caspase-1 inflammasome, Interferons, NADPH oxidase, Phosphatidylinositide 3-kinase (PI3K and the Ras pathway. In this review we summarize the literature pertaining to the roles of these pathways during Francisella infection, with an emphasis on monocyte / macrophage responses. The therapeutic targeting of one or more such pathways may ultimately become a valuable tool for the treatment of tularemia, and several possibilities are discussed.

  15. Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma.

    Directory of Open Access Journals (Sweden)

    Jessica M Stiles

    Full Text Available Therapeutic targeting of the beta-adrenergic receptors has recently shown remarkable efficacy in the treatment of benign vascular tumors such as infantile hemangiomas. As infantile hemangiomas are reported to express high levels of beta adrenergic receptors, we examined the expression of these receptors on more aggressive vascular tumors such as hemangioendotheliomas and angiosarcomas, revealing beta 1, 2, and 3 receptors were indeed present and therefore aggressive vascular tumors may similarly show increased susceptibility to the inhibitory effects of beta blockade. Using a panel of hemangioendothelioma and angiosarcoma cell lines, we demonstrate that beta adrenergic inhibition blocks cell proliferation and induces apoptosis in a dose dependent manner. Beta blockade is selective for vascular tumor cells over normal endothelial cells and synergistically effective when combined with standard chemotherapeutic or cytotoxic agents. We demonstrate that inhibition of beta adrenergic signaling induces large scale changes in the global gene expression patterns of vascular tumors, including alterations in the expression of established cell cycle and apoptotic regulators. Using in vivo tumor models we demonstrate that beta blockade shows remarkable efficacy as a single agent in reducing the growth of angiosarcoma tumors. In summary, these experiments demonstrate the selective cytotoxicity and tumor suppressive ability of beta adrenergic inhibition on malignant vascular tumors and have laid the groundwork for a promising treatment of angiosarcomas in humans.

  16. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics.

    Science.gov (United States)

    Bollig-Fischer, Aliccia; Michelhaugh, Sharon K; Wijesinghe, Priyanga; Dyson, Greg; Kruger, Adele; Palanisamy, Nallasivam; Choi, Lydia; Alosh, Baraa; Ali-Fehmi, Rouba; Mittal, Sandeep

    2015-06-10

    Breast cancer brain metastases remain a significant clinical problem. Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes. Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens. Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brain tumors, assayed by array comparative genomic hybridization (aCGH). Results were compared to a list of cancer genes verified by others to influence cancer. Cancer gene aberrations were identified in all specimens and pathway-level analysis was applied to aggregate data, which identified stem cell pluripotency pathway enrichment and highlighted recurring, significant amplification of SOX2, PIK3CA, NTRK1, GNAS, CTNNB1, and FGFR1. For a subset of the metastatic brain tumor samples (n = 4) we compared patient-matched primary breast cancer specimens. The results of our CGH analysis and validation by alternative methods indicate that oncogenic signals driving growth of metastatic tumors exist in the original cancer. This report contributes support for more rapid development of new treatments of metastatic brain tumors, the use of genomic-based diagnostic tools and repurposed drug treatments.

  17. Plant natural compounds: targeting pathways of autophagy as anti-cancer therapeutic agents.

    Science.gov (United States)

    Zhang, X; Chen, L-X; Ouyang, L; Cheng, Y; Liu, B

    2012-10-01

    Natural compounds derived from plant sources are well characterized as possessing a wide variety of remarkable anti-tumour properties, for example modulating programmed cell death, primarily referring to apoptosis, and autophagy. Distinct from apoptosis, autophagy (an evolutionarily conserved, multi-step lysosomal degradation process in which a cell destroys long-lived proteins and damaged organelles) may play crucial regulatory roles in many pathological processes, most notably in cancer. In this review, we focus on highlighting several representative plant natural compounds such as curcumin, resveratrol, paclitaxel, oridonin, quercetin and plant lectin - that may lead to cancer cell death - for regulation of some core autophagic pathways, involved in Ras-Raf signalling, Beclin-1 interactome, BCR-ABL, PI3KCI/Akt/mTOR, FOXO1 signalling and p53. Taken together, these findings would provide a new perspective for exploiting more plant natural compounds as potential novel anti-tumour drugs, by targeting the pathways of autophagy, for future cancer therapeutics. © 2012 Blackwell Publishing Ltd.

  18. Receptor tyrosine kinase (c-Kit inhibitors: a potential therapeutic target in cancer cells

    Directory of Open Access Journals (Sweden)

    Abbaspour Babaei M

    2016-08-01

    Full Text Available Maryam Abbaspour Babaei,1 Behnam Kamalidehghan,2,3 Mohammad Saleem,4–6 Hasniza Zaman Huri,1,7 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB, Shahrak-e Pajoohesh, 3Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 4Department of Urology, 5Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 6Section of Molecular Therapeutics & Cancer Health Disparity, The Hormel Institute, Austin, MN, USA; 7Clinical Investigation Centre, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia Abstract: c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c

  19. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    Directory of Open Access Journals (Sweden)

    Bee Thomas

    2009-10-01

    tested including NT2/D1, NT2/D1-R1, Tera-1 and 833K cells. Conclusion During induced differentiation of human EC cells, the Wnt signalling pathway is reprogrammed and canonical Wnt signalling induced. Specific species regulating non-canonical Wnt signalling conferred growth inhibition when targeted for repression in these EC cells. Notably, FZD7 repression significantly inhibited growth of human EC cells and is a promising therapeutic target for TGCTs.

  20. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics.

    Science.gov (United States)

    Islam, Md Soriful; Ciavattini, Andrea; Petraglia, Felice; Castellucci, Mario; Ciarmela, Pasquapina

    2018-01-01

    Uterine leiomyoma (also known as fibroid or myoma) is the most common benign tumor of the uterus found in women of reproductive age. It is not usually fatal but can produce serious clinical symptoms, including excessive uterine bleeding, pelvic pain or pressure, infertility and pregnancy complications. Due to lack of effective medical treatments surgery has been a definitive choice for the management of this tumor. Extracellular matrix (ECM) accumulation and remodeling are thought to be crucial for fibrotic diseases such as uterine leiomyoma. Indeed, ECM plays important role in forming the bulk structure of leiomyoma, and the ECM-rich rigid structure within these tumors is thought to be a cause of abnormal bleeding and pelvic pain. Therefore, a better understanding of ECM accumulation and remodeling is critical for developing new therapeutics for uterine leiomyoma. PubMed and Google Scholar were searched for all original and review articles/book chapters related to ECM and medical treatments of uterine leiomyoma published in English until May 2017. This review discusses the involvement of ECM in leiomyoma pathogenesis as well as current and future medical treatments that target ECM directly or indirectly. Uterine leiomyoma is characterized by elevated levels of collagens, fibronectin, laminins and proteoglycans. They can induce the mechanotransduction process, such as activation of the integrin-Rho/p38 MAPK/ERK pathway, resulting in cellular responses that are involved in pathogenesis and altered bidirectional signaling between leiomyoma cells and the ECM. ECM accumulation is affected by growth factors (TGF-β, activin-A and PDGF), cytokines (TNF-α), steroid hormones (estrogen and progesterone) and microRNAs (miR-29 family, miR-200c and miR-93/106b). Among these, TGF-βs (1 and 3) and activin-A have been suggested as key players in the accumulation of excessive ECM (fibrosis) in leiomyoma. The presence of elevated levels of ECM and myofibroblasts in leiomyoma

  1. Tuberculosis therapeutics: Engineering of nanomedicinal systems for local delivery of targeted drug cocktails

    Science.gov (United States)

    D'Addio, Suzanne M.

    In this thesis, a multifunctional nanocarrier drug delivery system was investigated and optimized to improve tuberculosis therapy by promoting the intracellular delivery of high payloads of antibiotics. To meet the needs of a patient population which continues to grow by close to 10 million people a year, innovative therapeutics must be formulated by robust and scalable processes. We use Flash NanoPrecipitation for the continuous precipitation of nanocarriers by block copolymer directed assembly, which enables the development of nanocarriers with tunable properties. Stable nanocarriers of Rifampicin and a hydrophobic Rifampicin prodrug have efficacy against tuberculosis in vitro that is equivalent to the soluble Rifampicin. To overcome poor in vivo efficacy of the recently discovered antitubercular drug SQ641, we co-encapsulate SQ641 and Cyclosporine A in a stable aqueous nanocarrier suspension, which enables drug administration and also enhances intracellular accumulation and antitubercular efficacy relative to SQ641 in solution. Since the mannose receptor is involved in the phagocytosis of tuberculosis bacilli, we modify the surface of nanocarriers with mannoside residues to target specific intracellular accumulation in macrophages. The surface density of mannoside terminated polyethylene glycol chains was controlled between 0 and 75% and in vitro cellular association reveals a 9% surface density is optimal for internalization mediated by the mannose receptor. We explore the preparation of large, porous aerosol carrier particles of with tunable deposition characteristics by spray freeze drying with ultrasonic atomization for direct dosing to the lungs. Nanocarriers are loaded at 3 - 50 wt% in mannitol particles with constant size, limited nanocarrier aggregation, and 63% dose delivered to the lungs, as determined by in vitro cascade impaction. There has been a lag in the development of new technologies to facilitate development and commercialization of

  2. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Anthony Sinadinos

    2015-10-01

    Full Text Available Duchenne muscular dystrophy (DMD is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density. Current interventions in DMD are palliative only as no treatment improves the long-term outcome. Therefore, approaches with a translational potential should be investigated, and key abnormalities downstream from the absence of the DMD product, dystrophin, appear to be strong therapeutic targets. We and others have demonstrated that DMD mutations alter ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible for the death of muscles in the mdx mouse model of DMD and human DMD lymphoblasts. Moreover, the ATP-P2RX7 axis, being a crucial activator of innate immune responses, can contribute to DMD pathology by stimulating chronic inflammation. We investigated whether ablation of P2RX7 attenuates the DMD model mouse phenotype to assess receptor suitability as a therapeutic target.Using a combination of molecular, histological, and biochemical methods and behavioral analyses in vivo we demonstrate, to our knowledge for the first time, that genetic ablation of P2RX7 in the DMD model mouse produces a widespread functional attenuation of both muscle and non-muscle symptoms. In dystrophic muscles at 4 wk there was an evident recovery in key functional and molecular parameters such as improved muscle structure (minimum Feret diameter, p < 0.001, increased muscle strength in vitro (p < 0.001 and in vivo (p = 0.012, and pro-fibrotic molecular signatures. Serum creatine kinase (CK levels were lower (p = 0.025, and reduced cognitive impairment (p = 0.006 and bone structure alterations (p < 0.001 were also apparent. Reduction of inflammation and fibrosis persisted at 20 mo in leg (p = 0

  3. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Directory of Open Access Journals (Sweden)

    Kalpna Gupta

    2013-02-01

    Full Text Available Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm3 grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve

  4. <