WorldWideScience

Sample records for therapeutic nuclear oncology

  1. Therapeutic applications of Rhenium-188 in nuclear medicine and oncology - Current status and expected future perspectives

    International Nuclear Information System (INIS)

    Knapp, F. F. Jr.

    2005-01-01

    Full text: The increasing use of unsealed radioactive targeting agents for cancer treatment requires the routine availability of cost-effective radioisotopes. Rhenium-188 (Re-188; half-life 16.9 hours) is a high-energy beta-emitter (E max 2.12 MeV), readily available no- max carrier-added from the alumina-based tungsten-188 (half-life 69 days)/rhenium-188 generator system. Rhenium-188 also emits a 155 keV (15%) gamma photon, permitting gamma camera imaging for biodistribution and dosimetry evaluation. The versatile chemistry of rhenium allows attachment to a wide variety of targeting molecules for Re-188 applications in nuclear oncology for both palliative metastatic treatment and targeted tumor therapy - radionuclide synovectomy, and coronary restenosis therapy. The long parent half-life and consistent performance provide an indefinite generator shelf-life of several months with high Re-188 elution yields (75-85 %) and consistently low W-188 parent breakthrough ( -6 ). Simple post-elution concentration methods have been developed which provide very high specific volume solution of Re-188 for radiolabeling (> 700 mCi/mL saline/1 Ci generator). Over 60 physician-sponsored clinical trials are currently in progress worldwide with applications in nuclear medicine, nuclear oncology and interventional cardiology. A variety of Re-188-labeled therapeutic radiopharmaceuticals and devices are being developed for clinical trials currently in progress for treatment of both benign and metastatic oncological disorders. Palliation of metastatic bone pain with Re-188-HEDP - prepared from a simple 'kit' - has been demonstrated as a cost-effective alternative to similar agents. Recent studies have in fact demonstrated the enhancement of progression-free interval and survival time by repeated Re-188-HEDP injections to patients with metastatic disease from prostate cancer. The use of the Re-188-labeled antiNCA95 (CD66) antibody in conjunction with external beam irradiation is an

  2. [Therapeutic Aggressiveness and Liquid Oncology].

    Science.gov (United States)

    Barón Duarte, F J; Rodríguez Calvo, M S; Amor Pan, J R

    2017-01-01

    Aggressiveness criteria proposed in the scientific literature a decade ago provide a quality judgment and are a reference in the care of patients with advanced cancer, but their use is not generalized in the evaluation of Oncology Services. In this paper we analyze the therapeutic aggressiveness, according to standard criteria, in 1.001 patients with advanced cancer who died in our Institution between 2010 and 2013. The results seem to show that aggressiveness at the end of life is present more frequently than experts recommend. About 25% of patients fulfill at least one criterion of aggressiveness. This result could be explained by a liquid Oncology which does not prioritize the patient as a moral subject in the clinical appointment. Medical care is oriented to necessities and must be articulated in a model focused on dignity and communication. Its implementation through Advanced Care Planning, consideration of patient's values and preferences, and Limitation of therapeutic effort are ways to reduce aggressiveness and improve clinical practice at the end of life. We need to encourage synergic and proactive attitudes, adding the best of cancer research with the best clinical care for the benefit of human being, moral subject and main goal of Medicine.

  3. Pediatric nuclear oncology

    International Nuclear Information System (INIS)

    Howman Giles, R.; Bernard, E.; Uren, R.

    1997-01-01

    Nuclear medicine plays an important and increasing role in the management of childhood malignancy. This is particularly true in the solid tumours of childhood. It is also helpful in the management of the complications of cancer treatment such as the infections which often accompany immune suppression in oncology patients. Scintigraphy is a complementary investigation to other radiological techniques and adds the functional dimension to anatomical investigations such as CT, MRI and ultrasound. In selected malignancies radionuclides are also used in treatment. This review discusses the technical considerations relating to children and the specific techniques relating to pediatric oncology. Specific tumours and the various applications of radionuclides are discussed in particular lymphoma, primary bone tumours, soft tissue sarcomas, neuroblastoma, Wilms' tumour, brain tumours and leukemia. Uncommon tumours are also discussed and how radionuclides are useful in the investigation of various complications which occur in oncology patients

  4. Oncology

    International Nuclear Information System (INIS)

    1998-01-01

    This paper collects some scientific research works on nuclear medicine developed in Ecuador. The main topics are: Brain metastases, computed tomography assessment; Therapeutic challenge in brain metastases, chemotherapy, surgery or radiotherapy; Neurocysticercosis and oncogenesis; Neurologic complications of radiation and chemotherapy; Cerebral perfusion gammagraphy in neurology and neurosurgery; Neuro- oncologic surgical patient anesthesic management; Pain management in neuro- oncology; Treatment of metastatic lesions of the spine, surgically decompression vs radiation therapy alone; Neuroimagining in spinal metastases

  5. Nuclear medicine in oncology

    International Nuclear Information System (INIS)

    Bishop, J.F.

    1999-01-01

    Cancer is increasingly prevalent in our society. There is a life-time risk that 1 in 3 Australian men and 1 in 4 Australian women will get cancer before the age of 75 years. Overall, 27% of the deaths in NSW are currently related to cancer. The common cancers for men are prostate, lung, melanoma, colon, rectum and bladder. For women the common cancers are breast, colon, melanoma, lung and unknown primary. However, overall lung cancer remains the major cause of cancer deaths (20%) followed by colorectal (13%), unknown site (8%), breast and prostate. Breast and lung cancer are the major causes of death in women. Recent information on 5 year survivals reveal good 5 year survival rates for breast (78.6%), prostate (72.4%) and melanoma (92%), while some tumours such as lung cancer (10.7%) have poor survival. Colon cancer has intermediate survival (57.1%). Projections for cancer incidence suggests rates of cancer will increase for colorectal cancer, melanoma, lung cancer in females but decrease for breast, lung in males and prostate cancer. Major strategic directions in cancer research are understanding carcinogenesis, identification of high risk groups, screening and early detection, chemo-prevention, new cancer therapies, combined modality therapy and quality of life issues. Nuclear medicine will play an important part in many of these areas

  6. Rhenium-188 - advantages and clinical potential for use of a readily available, cost effective therapeutic radioisotope for applications in nuclear medicine, oncology and interventional cardiology

    International Nuclear Information System (INIS)

    Knapp, F.F. jr.

    2002-01-01

    Full text: Carrier-free rhenium-188 (Re-188) is readily available from the alumina-based tungsten-188/rhenium-188 generator system and has many attractive properties for a wide variety of therapeutic applications. The 16.9 h half-life, emission of the 2.2 MeV beta particle and versatile chemistry make Re-188 an important candidate for applications where high radiation penetration is required. In addition, emission of a gamma photon (155 KeV, 15 %) permits evaluation of biodistribution, pharmacokinetics and dosimetry estimates. The long physical half-life of the tungsten-188 (W-188) parent (t 1/2 69 days) and consistent generator performance - with high Re-188 yields and low W-188 parent breakthrough - result in an indefinite shelf-life of several months, dependent on the levels of Re-188 required. Post generator elution in-growth of 62 % of Re-188 after 24 hours in combination with high elution yields (75-85 %) result in 50 % daily yields of the maximal Re-188 available. In addition to research being conducted for the development of a wide variety of new therapeutic radiopharmaceuticals and devices, Re-188 is also being evaluated in physician-sponsored clinical trials in over 15 countries, with applications in nuclear medicine, oncology and interventional cardiology. One major current clinical application involves post-angiographic treatment of arterial segments following PTCA using Re-188 perrhenate or MAG3 liquid-filled balloons as an effective and cost-effective approach for inhibition of the hyperplastic response to vessel damage, which delivers uniform dose to the vessel wall. Re-188-HEDP is being used for palliation of metastatic bone pain palliation. This agent is readily prepared from a simple 'kit' and provides pain palliation as effective as other commercially available agents. The use of the Re-188-labeled Anti-NCA-95 antibody (BW 50/183; CD66 a,b,c,e) in conjunction which external beam irradiation and chemotherapy is an effective method for

  7. Implementation of nanoparticles in therapeutic radiation oncology

    Science.gov (United States)

    Beeler, Erik; Gabani, Prashant; Singh, Om V.

    2017-05-01

    Development and progress of cancer is a very complex disease process to comprehend because of the multiple changes in cellular physiology, pathology, and pathophysiology resulting from the numerous genetic changes from which cancer originates. As a result, most common treatments are not directed at the molecular level but rather at the tissue level. While personalized care is becoming an increasingly aim, the most common cancer treatments are restricted to chemotherapy, radiation, and surgery, each of which has a high likelihood of resulting in rather severe adverse side effects. For example, currently used radiation therapy does not discriminate between normal and cancerous cells and greatly relies on the external targeting of the radiation beams to specific cells and organs. Because of this, there is an immediate need for the development of new and innovative technologies that help to differentiate tumor cells and micrometastases from normal cells and facilitate the complete destruction of those cells. Recent advancements in nanoscience and nanotechnology have paved a way for the development of nanoparticles (NPs) as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery, and improve the therapeutic index of radiation and tumor response to the treatment. The application of NPs in radiation therapy has aimed to improve outcomes in radiation therapy by increasing therapeutic effect in tumors and reducing toxicity on normal tissues. Because NPs possess unique properties, such as preferential accumulation in tumors and minimal uptake in normal tissues, it makes them ideal for the delivery of radiotherapy. This review provides an overview of the recent development of NPs for carrying and delivering therapeutic radioisotopes for systemic radiation treatment for a variety of cancers in radiation oncology.

  8. Fish Oncology: Diseases, Diagnostics, and Therapeutics.

    Science.gov (United States)

    Vergneau-Grosset, Claire; Nadeau, Marie-Eve; Groff, Joseph M

    2017-01-01

    The scientific literature contains a wealth of information concerning spontaneous fish neoplasms, although ornamental fish oncology is still in its infancy. The occurrence of fish neoplasms has often been associated with oncogenic viruses and environmental insults, making them useful markers for environmental contaminants. The use of fish, including zebrafish, as models of human carcinogenesis has been developed and knowledge gained from these models may also be applied to ornamental fish, although more studies are required. This review summarizes information available about fish oncology pertaining to veterinary clinicians. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dispositional Optimism and Therapeutic Expectations in Early Phase Oncology Trials

    Science.gov (United States)

    Jansen, Lynn A.; Mahadevan, Daruka; Appelbaum, Paul S.; Klein, William MP; Weinstein, Neil D.; Mori, Motomi; Daffé, Racky; Sulmasy, Daniel P.

    2016-01-01

    Purpose Prior research has identified unrealistic optimism as a bias that might impair informed consent among patient-subjects in early phase oncology trials. Optimism, however, is not a unitary construct – it can also be defined as a general disposition, or what is called dispositional optimism. We assessed whether dispositional optimism would be related to high expectations for personal therapeutic benefit reported by patient-subjects in these trials but not to the therapeutic misconception. We also assessed how dispositional optimism related to unrealistic optimism. Methods Patient-subjects completed questionnaires designed to measure expectations for therapeutic benefit, dispositional optimism, unrealistic optimism, and the therapeutic misconception. Results Dispositional optimism was significantly associated with higher expectations for personal therapeutic benefit (Spearman r=0.333, poptimism was weakly associated with unrealistic optimism (Spearman r=0.215, p=0.005). In multivariate analysis, both dispositional optimism (p=0.02) and unrealistic optimism (poptimism (p=.0001), but not dispositional optimism, was independently associated with the therapeutic misconception. Conclusion High expectations for therapeutic benefit among patient-subjects in early phase oncology trials should not be assumed to result from misunderstanding of specific information about the trials. Our data reveal that these expectations are associated with either a dispositionally positive outlook on life or biased expectations about specific aspects of trial participation. Not all manifestations of optimism are the same, and different types of optimism likely have different consequences for informed consent in early phase oncology research. PMID:26882017

  10. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  11. Therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Baum, Richard P.

    2014-01-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  12. Therapeutic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Richard P. (ed.) [ENETS Center of Excellence, Bad Berka (Germany). THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

    2014-07-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  13. Nuclear Medicine in Surgical Oncology

    International Nuclear Information System (INIS)

    Ndirangu, D.T.

    2009-01-01

    Defines nuclear medicine as a branch that utilizes nuclear technology for diagnosis and treatment of diseases.The principles of nuclear medicine are; it uses the principle that a certain radiopharmaceutical (tracer) will at a certain point in time have a preferential uptake by a particular body or tissue. it is imaged by use the use of detectors mounted in gamma cameras or PET (Position emission tomography) devices

  14. [Nuclear transfer and therapeutic cloning].

    Science.gov (United States)

    Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying

    2005-03-01

    Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.

  15. Nuclear oncology: From genotype to patient care

    International Nuclear Information System (INIS)

    1997-01-01

    Nuclear medicine is the medical specialty best suited to translate the exploding body of knowledge obtained from research in genetics and molecular biology into the care of patients. This fourth annual nuclear oncology conference will address how this can be done and how positron emission tomography (PET) and single photon emission tomography (SPECT) can be used in the care of patients with cancer or with increased genetic risk of developing cancer. The course will include illustrative patient studies showing how PET and SPECT can help in diagnosis, staging and treatment planning and monitoring of patients with cancer

  16. Nuclear medicine in gynecologic oncology: Recent practice

    International Nuclear Information System (INIS)

    Lamki, L.M.

    1987-01-01

    Nuclear medicine tests tell more about the physiological function of an organ that about its anatomy. This is in contrast to several other modalities in current use in the field of diagnostic imaging. Some of these newer modalities, such as computerized tomography (CT), offer a better resolution of the anatomy of the organ being examined. This has caused physicians to drift away from certain nuclear medicine tests, specifically those that focus primarily on the anatomy. When CT scanning is available, for instance, it is no longer advisable to perform a scintigraphic brain scan in search of metastasis;CT scanning is more accurate overall and more likely than a nuclear study to result in a specific diagnosis. In certain cases of diffuse cortical infections like herpes encephalitis, however, a scintiscan is still superior to a CT scan. Today's practice of nuclear medicine in gynecologic oncology may be divided into the three categories - (1) time-tested function-oriented scintiscans, (2) innovations of established nuclear tests, and (3) newer pathophysiological scintistudies. The author discusses here, briefly, each of these categories, giving three examples of each

  17. How will diagnostic and therapeutic oncology develop? Pt. 3

    International Nuclear Information System (INIS)

    Laubenbacher, C.; Tausig, A.

    1998-01-01

    Forward-looking aspects of nuclear medicine were presented during the third part of the session 'Oncology: Future trends in diagnosis and therapy'. Prof. Strauss illustrated the use of functional imaging modalities for therapy monitoring and concentrated on the rating of FDG-PET for melanoma and lymphoma. Prof. Molls, a radiation therapist, demonstrated the importance of nuclear medicine for radiation treatment planning. Additionally, he stressed on the potential of nuclear medicine for better characterization of tumor biology (e.g. non-invasive determination of intratumoral pO2). Prof. Wahl gave an update on radioimmunotherapy (RITh) of lymphomas. By using I-131-anti-CD 10-antibodies he was able to observe remissions in 27 out of 29 patients with B-cell lymphomas. In the last part of the session, Prof. Senekowitsch-Schmidtke summarized the potentials for optimization of RITh. Beside possible ways to increase the amount of radioactivity delivered to the tumor, she concentrated on parameters for the choice of the optimal radionuclide. (orig.) [de

  18. Nuclear oncology in a developing country: Namibia

    International Nuclear Information System (INIS)

    Wenzel, K.S. von; Rubow, S.M.; Ellmann, A.

    2004-01-01

    Full text: Namibia is a country with 1.8 million inhabitants of whom the majority have limited access to world-class medical facilities. On an average, 25% people in Namibia get cancer in their lifetime. Most cancers can be cured if detected early and treated more effectively when metastatic disease is localized or even excluded. Nuclear medicine techniques play an important role in the detection, staging and management of malignant disease. In Namibia, due to sun exposure, skin cancer (31%) tops the list of prevailing cancers. The next most common cancer is breast cancer (9%), followed by head and neck cancers (8%), prostate (7%), Kaposi sarcoma (7%) and cervical cancer (6%). AIDS is an ever growing problem in Namibia, and related cancers e.g. Kaposi sarcoma and lymphoma are on the rise. A Nuclear Medicine Department was established at Windhoek Central Hospital in 1982. A nuclear physician, two nuclear medicine radiographers and a nursing sister staff the department. Equipment includes a Siemens Orbiter and an Elscint Apex SPX Helix gamma camera. Radiopharmaceuticals are obtained from suppliers in South Africa. There is a good working relationship between the Nuclear Medicine department and the clinicians, including the oncologists and surgeons. Therefore oncology patients are regularly referred for Nuclear Medicine procedures. Approximately 50% of all studies performed in the department are referred from oncologists. Investigations performed for breast cancer patients include scintimammography, sentinel node mapping with gamma probe. Bone scans and liver scans are used for the detection of metastases in patients with breast carcinoma and other cancers. In thyroid cancer patients, whole body radioiodine scans are done post-thyroidectomy to confirm the presence of a thyroid remnant and to detect local or distant metastases. Thallium and Sestamibi scans are performed to localize metastatic disease in thyroid cancer patients with a rising thyroglobulin level but a

  19. Availability of oncological nuclear medicine in the regions of Slovakia

    International Nuclear Information System (INIS)

    Lepej, J.; Kaliska, L.

    2004-01-01

    Full text: Nuclear medicine (NM) imaging technology, alone and in combination with other imaging modalities, provides clinically significant and useful information in the staging and treatment of the oncological diseases. The main objective of our study was to find out and present the situation vis-a-vis nuclear medicine facilities in the Central European country that soon becomes the new member of EU. For the purposes statistical data of WHO, Slovak Republic (SR) and nuclear medicine department (NMD) were evaluated for the period 1995-2001. Comparison with Czech Republic (CR) was done because of almost similar occurrence of the malignant diseases in these two republics that were a one country till separation in 1993. First nuclear medicine department in Czechoslovakia was established about 55 years ago. Comparing to CR the expenditures on health care per capita in SR is only 67% of CR. The number of gamma cameras, physicians and number of investigations are far from good standard of CR. The number NM departments are significantly low and growth of only 29% compared to CR is alarming. The one main reason is inadequate financial support to the health care and high debts of hospitals running nuclear medicine facilities. Providing radiology departments with new CT and MRI scanners is another reason of less nuclear medicine facilities. During the last five years, though the number of gamma cameras increased by 10%, but the number of investigations did not rise accordingly. Because of bad management of health care services in Slovakia, the latest facilities availability is greatly delayed. However, the exception is the installation of a new PET scanner in 2001. Of late, sentinel lymph node detection was started only with the help of IAEA. Data shows that most of the nuclear medicine centers are around the state capital. It is imperative to have sufficient diagnostic and therapeutic facilities in each region so as to make these available to patients living away from the

  20. Recent advances in nuclear medicine in endocrine oncology.

    Science.gov (United States)

    Luster, Markus; Pfestroff, Andreas; Verburg, Frederik A

    2017-01-01

    The purpose is to review recent advances concerning the role of nuclear medicine in endocrine oncology. For I therapy of thyroid cancer a thyrotropin (TSH) more than 30 mU/l has for many years been deemed a condition sine qua non. However, new data show that patients with lower TSH levels at the time of ablation have the same rate of successful ablation as those with TSH more than 30 mU/l.I-124 combined integrated positron emission tomography and computed X-ray tomography was shown to be highly accurate in predicting findings on posttherapy radioiodine scanning and was shown to have a high prognostic power.In neuroendocrine tumors, long-term complication rates of peptide receptor radionuclide therapy were reported. Furthermore first preclinical and clinical results of peptide receptor radionuclide therapy with somatostatin receptor antagonists were published.In nuclear medicine, prostate-specific membrane antigen (PSMA)-targeted radionuclide imaging and therapy is of interest. PSMA was shown to also be expressed in neoplasms of the thyroid, the adrenal glands and neuroendocrine tumors. Further individualization of thyroid cancer patient care by means of I-124-positron emission tomography and computed X-ray tomography-based selection of the therapeutic strategy is possible. I therapy might not require as intensive TSH stimulation as thought previously. For endocrine-related malignancies PSMA targeting deserves further investigation.

  1. 7th annual congress of the Swiss Society of Nuclear Medicine (SGNM/SSMN). Main topic: imaging in oncology. Abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    Program chart and compiled abstracts of the 7th annual congress of the Swiss Society of Nuclear Medicine (SGNM/SSMN). Session headers are: imaging in oncology: PET-CT; oncology: therapy; imaging in oncology: treatment response; oncology: peptides; oncology: basic scinence; imaging in oncology: bone and soft tissue tumors; instrumentation; oncology: imaging. (uke)

  2. Phase 3 Oncology Clinical Trials in South Africa: Experimentation or Therapeutic Misconception?

    Science.gov (United States)

    Malan, Tina; Moodley, Keymanthri

    2016-02-01

    Although clinical research in oncology is vital to improve current understanding of cancer and to validate new treatment options, voluntary informed consent is a critical component. Oncology research participants are a particularly vulnerable population; hence, therapeutic misconception often leads to ethical and legal challenges. We conducted a qualitative study administering semi-structured questionnaires on 29 adult, Phase 3, oncology clinical trial participants at three different private oncology clinical trial sites in South Africa. A descriptive content analysis was performed to identify perceptions of these participants regarding Phase 3 clinical trials. We found that most participants provided consent to be included in the trial for self-benefit. More than half of the participants had a poor understanding of Phase 3 clinical trials, and almost half the participants believed the clinical trial did not pose any significant risk to them. The word "hope" was used frequently by participants, displaying clear optimism with regard to the clinical trial and its outcome. This indicated that therapeutic misconception does occur in the South African oncology research setting and has the potential to lead to underestimation of the risks of a Phase 3 clinical trial. Emphasizing the experimental nature of a clinical trial during the consent process is critical to address therapeutic misconception in oncology research. © The Author(s) 2016.

  3. Dispositional optimism and therapeutic expectations in early-phase oncology trials.

    Science.gov (United States)

    Jansen, Lynn A; Mahadevan, Daruka; Appelbaum, Paul S; Klein, William M P; Weinstein, Neil D; Mori, Motomi; Daffé, Racky; Sulmasy, Daniel P

    2016-04-15

    Prior research has identified unrealistic optimism as a bias that might impair informed consent among patient-subjects in early-phase oncology trials. However, optimism is not a unitary construct; it also can be defined as a general disposition, or what is called dispositional optimism. The authors assessed whether dispositional optimism would be related to high expectations for personal therapeutic benefit reported by patient-subjects in these trials but not to the therapeutic misconception. The authors also assessed how dispositional optimism related to unrealistic optimism. Patient-subjects completed questionnaires designed to measure expectations for therapeutic benefit, dispositional optimism, unrealistic optimism, and the therapeutic misconception. Dispositional optimism was found to be significantly associated with higher expectations for personal therapeutic benefit (Spearman rank correlation coefficient [r], 0.333; Poptimism was found to be weakly associated with unrealistic optimism (Spearman r, 0.215; P = .005). On multivariate analysis, both dispositional optimism (P = .02) and unrealistic optimism (Poptimism (P = .0001), but not dispositional optimism, was found to be independently associated with the therapeutic misconception. High expectations for therapeutic benefit among patient-subjects in early-phase oncology trials should not be assumed to result from misunderstanding of specific information regarding the trials. The data from the current study indicate that these expectations are associated with either a dispositionally positive outlook on life or biased expectations concerning specific aspects of trial participation. Not all manifestations of optimism are the same, and different types of optimism likely have different consequences for informed consent in early-phase oncology research. © 2016 American Cancer Society.

  4. Oncological nuclear medicine: from antibody to PET

    International Nuclear Information System (INIS)

    Tsuneo, Saga; Takako, Furukawa

    2006-01-01

    Department of Diagnostic Imaging has recently established in the Molecular Imaging Center of the National Institute of Radiological Sciences. The major aim of the department is to develop novel molecular imaging probes and to establish functional imaging methods of various cancers. The department consists of three sections; 1) biomolecule section (find out optimal biomolecule as the target of cancer imaging), 2) molecular diagnosis section (develop imaging method using specific molecular probe), and 3) clinical diagnosis section (applying molecular imaging modalities to cancer patients). In the present lecture, I would like to review my experiences in various aspects of cancer imaging using nuclear medicine procedures, which might be important in the research in the new department. The talk includes; 1) characteristics and limitations of cancer targeting with radiolabeled anti-cancer monoclonal antibodies and the attempts to overcome the limitations including pre-targeting strategy, 2 ) application of a newly synthesized polyamine (dendrimer) to the delivery and imaging of oligo-DNA and cancer treatment, 3) transfection of Na '/I - sym-porter gene to add iodide uptake mechanism to non-thyroid cancer cells for the wider application of radioiodine therapy, which is now also used as a promising reporter gene in gene therapy, and 4) basic and clinical study of PET metabolic imaging with fluorodeoxyglucose (FDG) and fluoro-thymidine (FLT) to evaluate the characteristics of various cancers. Although these modalities can not directly visualize molecular processes occurring in cancer cells, we can evaluate the imaging results with the insight of molecular biology, and the experiences of these modalities can be the bases for the future development of molecular imaging of malignant tumors. (author)

  5. Optimizing oncology therapeutics through quantitative translational and clinical pharmacology: challenges and opportunities.

    Science.gov (United States)

    Venkatakrishnan, K; Friberg, L E; Ouellet, D; Mettetal, J T; Stein, A; Trocóniz, I F; Bruno, R; Mehrotra, N; Gobburu, J; Mould, D R

    2015-01-01

    Despite advances in biomedical research that have deepened our understanding of cancer hallmarks, resulting in the discovery and development of targeted therapies, the success rates of oncology drug development remain low. Opportunities remain for objective dose selection informed by exposure-response understanding to optimize the benefit-risk balance of novel therapies for cancer patients. This review article discusses the principles and applications of modeling and simulation approaches across the lifecycle of development of oncology therapeutics. Illustrative examples are used to convey the value gained from integration of quantitative clinical pharmacology strategies from the preclinical-translational phase through confirmatory clinical evaluation of efficacy and safety. © 2014 American Society for Clinical Pharmacology and Therapeutics.

  6. American Society for Therapeutic Radiology and Oncology (ASTRO) Emerging Technology Committee report on electronic brachytherapy.

    Science.gov (United States)

    Park, Catherine C; Yom, Sue S; Podgorsak, Matthew B; Harris, Eleanor; Price, Robert A; Bevan, Alison; Pouliot, Jean; Konski, Andre A; Wallner, Paul E

    2010-03-15

    The development of novel technologies for the safe and effective delivery of radiation is critical to advancing the field of radiation oncology. The Emerging Technology Committee of the American Society for Therapeutic Radiology and Oncology appointed a Task Group within its Evaluation Subcommittee to evaluate new electronic brachytherapy methods that are being developed for, or are already in, clinical use. The Task Group evaluated two devices, the Axxent Electronic Brachytherapy System by Xoft, Inc. (Fremont, CA), and the Intrabeam Photon Radiosurgery Device by Carl Zeiss Surgical (Oberkochen, Germany). These devices are designed to deliver electronically generated radiation, and because of their relatively low energy output, they do not fall under existing regulatory scrutiny of radioactive sources that are used for conventional radioisotope brachytherapy. This report provides a descriptive overview of the technologies, current and future projected applications, comparison of competing technologies, potential impact, and potential safety issues. The full Emerging Technology Committee report is available on the American Society for Therapeutic Radiology and Oncology Web site. Copyright 2010. Published by Elsevier Inc.

  7. American Society for Therapeutic Radiology and Oncology (ASTRO) Emerging Technology Committee Report on Electronic Brachytherapy

    International Nuclear Information System (INIS)

    Park, Catherine C.; Yom, Sue S.; Podgorsak, Matthew B.; Harris, Eleanor; Price, Robert A.; Bevan, Alison; Pouliot, Jean; Konski, Andre A.; Wallner, Paul E.

    2010-01-01

    The development of novel technologies for the safe and effective delivery of radiation is critical to advancing the field of radiation oncology. The Emerging Technology Committee of the American Society for Therapeutic Radiology and Oncology appointed a Task Group within its Evaluation Subcommittee to evaluate new electronic brachytherapy methods that are being developed for, or are already in, clinical use. The Task Group evaluated two devices, the Axxent Electronic Brachytherapy System by Xoft, Inc. (Fremont, CA), and the Intrabeam Photon Radiosurgery Device by Carl Zeiss Surgical (Oberkochen, Germany). These devices are designed to deliver electronically generated radiation, and because of their relatively low energy output, they do not fall under existing regulatory scrutiny of radioactive sources that are used for conventional radioisotope brachytherapy. This report provides a descriptive overview of the technologies, current and future projected applications, comparison of competing technologies, potential impact, and potential safety issues. The full Emerging Technology Committee report is available on the American Society for Therapeutic Radiology and Oncology Web site.

  8. IMPACT web portal: oncology database integrating molecular profiles with actionable therapeutics.

    Science.gov (United States)

    Hintzsche, Jennifer D; Yoo, Minjae; Kim, Jihye; Amato, Carol M; Robinson, William A; Tan, Aik Choon

    2018-04-20

    With the advancement of next generation sequencing technology, researchers are now able to identify important variants and structural changes in DNA and RNA in cancer patient samples. With this information, we can now correlate specific variants and/or structural changes with actionable therapeutics known to inhibit these variants. We introduce the creation of the IMPACT Web Portal, a new online resource that connects molecular profiles of tumors to approved drugs, investigational therapeutics and pharmacogenetics associated drugs. IMPACT Web Portal contains a total of 776 drugs connected to 1326 target genes and 435 target variants, fusion, and copy number alterations. The online IMPACT Web Portal allows users to search for various genetic alterations and connects them to three levels of actionable therapeutics. The results are categorized into 3 levels: Level 1 contains approved drugs separated into two groups; Level 1A contains approved drugs with variant specific information while Level 1B contains approved drugs with gene level information. Level 2 contains drugs currently in oncology clinical trials. Level 3 provides pharmacogenetic associations between approved drugs and genes. IMPACT Web Portal allows for sequencing data to be linked to actionable therapeutics for translational and drug repurposing research. The IMPACT Web Portal online resource allows users to query genes and variants to approved and investigational drugs. We envision that this resource will be a valuable database for personalized medicine and drug repurposing. IMPACT Web Portal is freely available for non-commercial use at http://tanlab.ucdenver.edu/IMPACT .

  9. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    Science.gov (United States)

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  10. Minutes of the 45. meeting of the American society of therapeutic radiology and oncology (Astro)

    International Nuclear Information System (INIS)

    Racadot, S.; Mazeron, J.J.

    2003-01-01

    The forty fifth meeting of the American Society of Therapeutic Radiology and Oncology (ASTRO) held at the center of congress in Salt Lake city in october 2003. 542 scientific works have been presented, whom 221 orally. Escalation of radiation doses in prostate cancers have been studied. Fractionation and hormones therapy in prostate cancers are reported. The bladder cancers made the object of information, the bronchi cancer ( non at small cells and at small cells) have been analysed. Cancers of the ORL sphere, mammary gland and brain metastases were presented. The radiotherapy as a palliative treatment of bone metastases made the object of a report. The receptors of the epidermoid growth factor has been shown as an important factor to predict the tumor response to irradiation. (N.C.)

  11. Synopsis of History of American Society for Therapeutic Radiology and Oncology 1958-2008

    International Nuclear Information System (INIS)

    Montana, Gustavo S.

    2008-01-01

    Purpose: To provide a synopsis of the history of the association of radiation oncologists in the United States, currently known as the American Society for Therapeutic Radiology and Oncology (ASTRO), with the occasion of the 50th anniversary of the organization. Methods and Materials: The history of ASTRO, from its beginning as the American Club of Therapeutic Radiologists, is the subject of a book that is to be released with the occasion of the 50th Annual Meeting of the Society in 2008. This book was prepared by members of ASTRO's History Committee and History Working Subcommittee. The source material for the book was the archives of the Society and recorded interviews, conducted by members of the subcommittee, of members of the Society and of the past and present Society staff. The book was also based on previously published material. This article used the source material used for the Society anniversary book. Results: This synopsis of the history of the Society will provide a source of reference for anyone interested in the history of the Society from its foundation in 1958 to the present, 2008

  12. Therapeutic nuclear medicine (vectorized internal radiotherapy)

    International Nuclear Information System (INIS)

    Herain, C.; Machacek, C.; Menechal, P.; Aubert, B.; Celier, D.; Rehel, J.L.; Vidal, J.P.; Lahaye, T.; Gauron, C.; Barret, C.; Biau, A.; Donnarieix, D.; Gambini, D.; Gondran, C.; Pierrat, N.; Guerin, C.; Marande, J.L.; Mercier, J.; Paycha, F.

    2012-09-01

    After having evoked the authorization for possessing and using radionuclides which is required to perform therapeutic nuclear medicine, this document indicates the various personnel involved in this activity, the radionuclide implementation process, the different associated hazards and risks (for sealed and non-sealed sources), how risk is assessed and exposure levels are determined (elements of risk assessment, delimitation of controlled and surveyed areas, personnel classification, selection of dosimetric control type between external passive, operational or internal dosimetry). It proposes a detailed risk management strategy which comprises different components: risk reduction, technical measures regarding the installation, protection measures, information and training, prevention measures, treatment of incident and dysfunction. It describes the medical control to be performed or measures to be taken for the different type of personnel and for pregnant women, indicates the content and management of the medical file and how personnel follow-up must me performed, how anomalies and incidents must be handled. It comments how risk management is to be assessed, and briefly evokes other risks. An example of workstation study is given in appendix

  13. Therapeutic Potential, Challenges and Future Perspective of Cancer Stem Cells in Translational Oncology: A Critical Review.

    Science.gov (United States)

    Shukla, Gaurav; Khera, Harvinder Kour; Srivastava, Amit Kumar; Khare, Piush; Patidar, Rahul; Saxena, Rajiv

    2017-01-01

    Stem cell research is a rapidly developing field that offers effective treatment for a variety of malignant and non-malignant diseases. Stem cell is a regenerative medicine associated with the replacement, repair, and restoration of injured tissue. Stem cell research is a promising field having maximum therapeutic potential. Cancer stem cells (CSCs) are the cells within the tumor that posses capacity of selfrenewal and have a root cause for the failure of traditional therapies leading to re-occurrence of cancer. CSCs have been identified in blood, breast, brain, and colon cancer. Traditional therapies target only fast growing tumor mass, but not slow-dividing cancer stem cells. It has been shown that embryonic pathways such as Wnt, Hedgehog and Notch, control self-renewal capacity and involved in cancer stem cell maintenance. Targeting of these pathways may be effective in eradicating cancer stem cells and preventing chemotherapy and radiotherapy resistance. Targeting CSCs has become one of the most effective approaches to improve the cancer survival by eradicating the main root cause of cancer. The present review will address, in brief, the importance of cancer stem cells in targeting cancer as better and effective treatment along with a concluding outlook on the scope and challenges in the implication of cancer stem cells in translational oncology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Oncologic imaging

    International Nuclear Information System (INIS)

    Bragg, D.G.; Rubin, P.; Youker, J.E.

    1985-01-01

    This book presents papers on nuclear medicine. Topics considered include the classification of cancers, oncologic diagnosis, brain and spinal cord neoplasms, lymph node metastases, the larynx and hypopharynx, thyroid cancer, breast cancer, esophageal cancer, bladder cancer, tumors of the skeletal system, pediatric oncology, computed tomography and radiation therapy treatment planning, and the impact of future technology on oncologic diagnosis

  15. Radiolabelled multifunctional nanoparticles for targeted diagnostic and therapeutic applications in oncology

    International Nuclear Information System (INIS)

    Rangger, C.

    2013-01-01

    Nanoparticles, liposomes in particular, have gained great attention as easily engineerable nanoscale systems with distinct properties, offering an ideal platform for a variety of diagnostic and therapeutic applications. The aim of this PhD thesis was the design, synthesis as well as the in vitro and in vivo evaluation of several radiolabelled multifunctional liposomal nanoparticles for the targeted imaging of tumour cells and tumour-induced angiogenesis. Radiolabelling methods for different radionuclides were developed and the liposomes were functionalised with polyethylene glycol (PEG) to improve the pharmacokinetic profile. Targeting sequences such as the tripeptide Arg-Gly-Asp (RGD), the neuropeptide substance P (SP), the somatostatin analogue tyrosine-3-octreotide (TOC), and the vasoactive intestinal peptide (VIP) were tested for their applicability as tools for the targeted delivery of imaging agents. Finally, by the combination of two targeting sequences, namely RGD and SP, on one liposome multireceptor-targeting (hybrid-targeting) was investigated. These multifunctional vehicles were also functionalized with imaging labels for the detection and imaging of tumours by single photon emission computed tomography (SPECT), fluorescence microscopy as well as magnetic resonance (MR) imaging. The liposomes developed in this thesis showed multifunctional properties combining several imaging approaches with specific targeting for oncological applications. In vitro behaviour, e.g., receptor binding could be improved, resulting in optimised targeting shown both by the radiolabel and fluorescent label. However, the in vivo properties, especially the tumour targeting characteristics remained suboptimal, revealing the challenges of targeting approaches in nanoscience. Nonetheless, these results brought important insights for the development and optimisation of multifunctional nanocarriers. (author) [de

  16. The Dual Rounding Model: Forging Therapeutic Alliances 
in Oncology and Palliative Care.

    Science.gov (United States)

    Baxley, Carey E

    2016-04-01

    Inpatients with solid tumors at Duke University Hospital in Durham, NC, are cared for in a dynamic integrated care model that incorporates medical oncology and palliative care. This has profound implications for patients, their loved ones, medical and surgical staff, and oncology nurses. As a nurse with less than three years of experience, my participation in a setting that uses the Dual Rounding Model has accelerated my professional and personal development. During a typical shift, I am an oncology nurse, a palliative care nurse, and a hospice nurse.
.

  17. Cancer Stem Cell Hypothesis for Therapeutic Innovation in Clinical Oncology? Taking the Root Out, Not Chopping the Leaf.

    Science.gov (United States)

    Dzobo, Kevin; Senthebane, Dimakatso Alice; Rowe, Arielle; Thomford, Nicholas Ekow; Mwapagha, Lamech M; Al-Awwad, Nasir; Dandara, Collet; Parker, M Iqbal

    2016-12-01

    Clinical oncology is in need of therapeutic innovation. New hypotheses and concepts for translation of basic research to novel diagnostics and therapeutics are called for. In this context, the cancer stem cell (CSC) hypothesis rests on the premise that tumors comprise tumor cells and a subset of tumor-initiating cells, CSCs, in a quiescent state characterized by slow cell cycling and expression of specific stem cell surface markers with the capability to maintain a tumor in vivo. The CSCs have unlimited self-renewal abilities and propagate tumors through division into asymmetric daughter cells. This differentiation is induced by both genetic and environmental factors. Another characteristic of CSCs is their therapeutic resistance, which is due to their quiescent state and slow dividing. Notably, the CSC phenotype differs greatly between patients and different cancer types. The CSCs may differ genetically and phenotypically and may include primary CSCs and metastatic stem cells circulating within the blood system. Targeting CSCs will require the knowledge of distinct stem cells within the tumor. CSCs can differentiate into nontumorigenic cells and this has been touted as the source of heterogeneity observed in many solid tumors. The latter cannot be fully explained by epigenetic regulation or by the clonal evolution theory. This heterogeneity markedly influences how tumors respond to therapy and prognosis. The present expert review offers an analysis and synthesis of the latest research and concepts on CSCs, with a view to truly disruptive innovation for future diagnostics and therapeutics in clinical oncology.

  18. Nuclear data needed for applications in radiation oncology

    International Nuclear Information System (INIS)

    White, R.M.; Chadwick, M.B.; Siantar, C.L.H.; Chandler, W.P.

    1994-03-01

    Fast neutrons have been used to treat over 15,000 cancer patients in approximately twenty centers worldwide and proton therapy is emerging as a potential treatment of choice for tumors near critical anatomical structures. Neutron therapy requires reaction data to ∼70 MeV while proton therapy requires data to ∼250 MeV. The cross section databases require energy- and angle-dependent cross sections for secondary neutrons, charged-particles and recoil nuclei. We discuss expansion of our nuclear databases and development of a three-dimensional radiation transport package that uses CT images as the input mesh to an all-particle Monte Carlo code. Called PEREGRINE, this code calculates dose distributions in the human body and can be used as a tool to determine the dependence of dose on details of the evaluated nuclear data

  19. Role of nuclear techniques in oncological practice in Bangladesh

    International Nuclear Information System (INIS)

    Jehan, A.H.; Karim, M.A.; Begum, S.M.F.; Khan, H.U.

    2004-01-01

    Full text: Application of nuclear medicine techniques plays an integral part in the diagnosis, management and follow-up of cancer patients. Scintigraphic studies are able to detect primary and secondary malignant lesions in various organs e.g. bone, thyroid, breast, brain, lung, kidney, liver etc. Nuclear techniques are comparatively simple, non-invasive with minimum cost and radiation exposure. In recent years radio nuclide techniques are being widely accepted by the practicing oncologists especially for diagnosis, accurate assessment of the disease process and treatment planning. Bangladesh Atomic Energy Commission helped in establishing a Central Institute of Nuclear Medicine and Ultrasound and 14 smaller sub centers in the periphery, equipped with SPECT Gamma camera, Ultrasound, RIA, and DEXA facilities. A retrospective analysis of data of clinically diagnosed cancer patients referred to the sub center for diagnosis showed a total of 117 cases, 62 (72.54 %) female and 55 (64.35 %) male in the age group 40-70 years. The incidence of malignancy was calculated based on the age and gender. The highest incidence among the women was of cancer breast (67.74%) followed by liver (11.29%) and thyroid (11.29%). Among the male population, the highest incidence was of cancer prostate (29.09%) followed by liver (9.09%) and renal cell carcinoma (9.09%). As far as therapy is concerned, only cancer thyroid cases were assessed and considered for I-131 therapy with successful results. Of these patients treated with radioiodine, 9 were for primary disease while one patient had bony metastasis also. No death or complication has yet been reported. There is no controlled program for screening cancer patients in Bangladesh, but with assistance from the Nuclear Oncologists it was possible to obtain a raw data on the incidence of different cancers in Bangladesh. This in future may help in the management strategy of various malignancies. (author)

  20. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  1. Sodium iodide symporter: Its role in nuclear oncology

    International Nuclear Information System (INIS)

    Chung, June-Key

    2004-01-01

    advantages as an imaging reporter gene due to the wide availability of its substrate, radioiodine and free Tc-99m, and the well-understood metabolism and clearance of radioiodine in the body. We could monitor not only exogenous gene expression, but also endogenous gene expression such as p53 and, nuclear receptor activity such as retinoic acid receptor using cis-reporter imaging gene system. This reporter gene imaging can also be used for monitoring cancer cells, stem cells and immune cells. For example, the hNIS gene was transfected to hepatoma cells. The effect of anticancer regimen can be monitored easily by a gamma camera system using Tc-99m or radioiodines. In conclusion, the NIS has the potential to expand the molecular medicine in the future. (author)

  2. Recruiting Terminally Ill Patients into Non-Therapeutic Oncology Studies: views of Health Professionals

    Directory of Open Access Journals (Sweden)

    Kleiderman Erika

    2012-12-01

    Full Text Available Abstract Background Non-therapeutic trials in which terminally ill cancer patients are asked to undergo procedures such as biopsies or venipunctures for research purposes, have become increasingly important to learn more about how cancer cells work and to realize the full potential of clinical research. Considering that implementing non-therapeutic studies is not likely to result in direct benefits for the patient, some authors are concerned that involving patients in such research may be exploitive of vulnerable patients and should not occur at all, or should be greatly restricted, while some proponents doubt whether such restrictions are appropriate. Our objective was to explore clinician-researcher attitudes and concerns when recruiting patients who are in advanced stages of cancer into non-therapeutic research. Methods We conducted a qualitative exploratory study by carrying out open-ended interviews with health professionals, including physicians, research nurses, and study coordinators. Interviews were audio-recorded and transcribed. Analysis was carried out using grounded theory. Results The analysis of the interviews unveiled three prominent themes: 1 ethical considerations; 2 patient-centered issues; 3 health professional issues. Respondents identified ethical issues surrounding autonomy, respect for persons, beneficence, non-maleficence, discrimination, and confidentiality; bringing to light that patients contribute to science because of a sense of altruism and that they want reassurance before consenting. Several patient-centered and health professional issues are having an impact on the recruitment of patients for non-therapeutic research. Facilitators were most commonly associated with patient-centered issues enhancing communication, whereas barriers in non-therapeutic research were most often professionally based, including the doctor-patient relationship, time constraints, and a lack of education and training in research

  3. Radiation protection for innovative diagnostic and therapeutic approaches in nuclear medicine

    International Nuclear Information System (INIS)

    Aubert, B.; Chatal, J.F.

    2006-01-01

    A real technological revolution has deeply modified the field of application and perspectives of nuclear medicine, and nuclear oncology in particular, during the past 5 years. Diagnostic applications such as positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) have had a significant impact on the diagnostic strategy adopted by medical oncologists, with the addition of invaluable functional data to already available anatomical data provided by conventional imaging modalities. Numerous other 18 F-labeled tracers currently under clinical evaluation have been developed to study various tumor functions (tumor proliferation, hypoxia, hemo-therapy-induced apoptosis, etc.). These tracers may have a considerable impact on therapeutic strategies. Other positron-emitting radionuclides, such as copper-64, iodine-124, and yttrium-86 (whose respective half-lives are 12.7 hours, 4.2 days. and 14.7 hours) will soon be available for certain clinical indications, such as immuno-PET (with monoclonal antibodies or antibody fragments used as carriers) or pretreatment dosimetry, which cannot be performed with fluorine-18 due its short half-life. As far as therapeutic applications are concerned, the use of internal radiotherapy, which has been restricted to thyroid cancer for a long time, was recently extended to other cancers as new carriers, such as monoclonal antibodies (radioimmunotherapy) or peptides (radio-peptide therapy), new targeting methods (pre-targeting), and new radionuclides, especially alpha particle emitters (alpha therapy), became available. These technological advances require that specific radiation safety regulations be implemented to protect nuclear medicine personnel, patients' close relatives, and the environment. Most current regulations concern diagnostic applications with technetium-99m and therapeutic applications with iodine-131. Regulations pertaining to the clinical use of 18 F-FDG were recently enacted (2001). Regarding exposure nuclear

  4. [Therapeutic education in oncology: involving patient in the management of cancer].

    Science.gov (United States)

    Pérol, David; Toutenu, Pauline; Lefranc, Anne; Régnier, Véronique; Chvetzoff, Gisèle; Saltel, Pierre; Chauvin, Franck

    2007-03-01

    The notion of therapeutic education was only recently introduced in cancer. Although the term is commonly used, no standard definition exists for the concept and principles of therapeutic education and its efficacy remains to be assessed. Therapeutic education is complementary to the healthcare approach and aims to get the patients more involved in their disease and the treatment decision-making process. This discipline, placed at the interface of human and social sciences, was first developed for the management of chronic diseases (diabetes, asthma). It derives from the principle that involving patients in their own care and management can help them better adjust to life with a chronic disease. The lengthening survival time of cancer patients, which contributes to making cancer a chronic disease, as well as changes in the patient-caregiver relationship contribute to the development of therapeutic education in cancer. Pilot studies, conducted principally in the United States, evaluating the side effects of chemotherapy and the management of pain, have demonstrated that such educational programs could improve patient quality of life and decrease the side effects of treatments. The success of these programs depends on several parameters: taking into account patient's opinion in the elaboration and preparation of the programs; involving skilled multidisciplinary teams engaged in iterative educational actions; having recourse to methodological tools to evaluate the impact of implemented programs. Consistent with the World Health Organization guidelines, research should be conducted in France in order to elaborate and implement cancer-specific education programs and evaluate their potential benefit. Patient education programs on pain, fatigue, nutrition and treatment compliance are currently being developed at Saint-Etienne Regional Resource Centre for cancer information, prevention and education, within the framework of the Canceropole Lyon Auvergne Rhône-Alpes.

  5. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy.

    LENUS (Irish Health Repository)

    Wander, Seth A

    2011-04-01

    Mammalian target of rapamycin (mTOR) is a PI3K-related kinase that regulates cell growth, proliferation, and survival via mTOR complex 1 (mTORC1) and mTORC2. The mTOR pathway is often aberrantly activated in cancers. While hypoxia, nutrient deprivation, and DNA damage restrain mTORC1 activity, multiple genetic events constitutively activate mTOR in cancers. Here we provide a brief overview of the signaling pathways up- and downstream of mTORC1 and -2, and discuss the insights into therapeutic anticancer targets - both those that have been tried in the clinic with limited success and those currently under clinical development - that knowledge of these pathways gives us.

  6. Sexuality issues in gynaecological oncology patients: post treatment symptoms and therapeutic options.

    Science.gov (United States)

    Iavazzo, C; Johnson, K; Savage, H; Gallagher, S; Datta, M; Winter-Roach, B A

    2015-03-01

    According to recent studies up to 80% of patients would like to receive more information about how cancer treatments can affect their sexual functioning. Moreover, 75 % of them would not feel comfortable being the first to bring up the subject. Our Gynaecological Advice Clinic was established in 2006 at the Christie Hospital and offers support to cancer patients who face sexuality issues. A previous evaluation established that the service sees approximately, 200 patients per year. The aims of this study are to evaluate the service by collecting data relating to levels of attendance, type and amount of clinical activity and to explore further patients' experiences and management. This is a retrospective study which was carried out in 2012-2013. Different models are used to evaluate our patients including history taking integrated therapy model, consultations to understand the normal anatomy and physiology with the use of diagrams and photographs, psycho-education and the international classification "Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition" (DSMV). The treatment options advised include medications such as hormone replacement treatment, testosterone, antidepressant, local oestrogen, tibolone, aqueous cream, lubrication to introitus, diprobase, dermal cream and advice for massage to areas of discomfort. Moreover, the use of vaginal dilators, the role of pelvic floor exercises, vulval care and self examination are explained. The team works closely with the psycho-oncology department. The most frequently discussed topics that were covered during the consultation are analysed. 41 outpatient clinics were held between 2012 and 2013. 194 patients attended those clinics during the study period. Single and not group therapy was offered to all the participants. 216 patients were offered appointments while 194 patients actually attended (90%). Patients' age ranged from 24 to 91 years with a mean age of 59 years. 45% had endometrial and 32% cervical

  7. Nuclear transport in Entamoeba histolytica: knowledge gap and therapeutic potential.

    Science.gov (United States)

    Gwairgi, Marina A; Ghildyal, Reena

    2018-03-22

    Entamoeba histolytica is the protozoan parasite that causes human amoebiasis. It is one of the leading parasitic disease burdens in tropical regions and developing countries, with spread to developed countries through migrants from and travellers to endemic regions. Understanding E. histolytica's invasion mechanisms requires an understanding of how it interacts with external cell components and how it engulfs and kills cells (phagocytosis). Recent research suggests that optimal phagocytosis requires signalling events from the cell surface to the nucleus via the cytoplasm, and the induction of several factors that are transported to the plasma membrane. Current research in other protozoans suggests the presence of proteins with nuclear localization signals, nuclear export signals and Ran proteins; however, there is limited literature on their functionality and their functional similarity to higher eukaryotes. Based on learnings from the development of antivirals, nuclear transport elements in E. histolytica may present viable, specific, therapeutic targets. In this review, we aim to summarize our limited knowledge of the eukaryotic nuclear transport mechanisms that are conserved and may function in E. histolytica.

  8. Radiolabeled adenoviral sub-unit proteins for molecular imaging and therapeutic applications in oncology

    International Nuclear Information System (INIS)

    Srivastava, Suresh C.

    2005-01-01

    Full text: Our group has initiated investigations on the use of radiolabeled adenoviral (Ad) sub-unit proteins for delivering suitable radionuclides into tumor cells for molecular imaging as well as for combined gene/radionuclide therapy of cancer. A number of issues involved in developing combined gene/radionuclide delivery into tumors mediated by Ad vectors have been identified and are being addressed. Whereas current clinical trials of gene therapy using Ad vectors involve non-systemic delivery of therapeutic genes, the delivery of radionuclides preferably would involve systemic (i.v.) administration. The distribution and delivery of Ad sub-unit proteins following i.v. administration is not understood and must be studied and optimized. In addition, retention of the selective binding and internalization into tumor cells of the radiolabeled viral vectors remains an unmet challenge. We used the intact adenovirus (Ad, ∼80 nm diameter), native adenoviral fiber protein (AdFP, 180 kD trimer, purified from infected human cultured cells) and the adenoviral fiber 'knob' protein (recombinant AdFKP, 60 kD, synthesized in E. Coli), all of which interact with the in-vivo cellular receptor, coxsackie and adenovirus receptor (CAR) through the knob domain of the adenovirus fiber protein. Our initial studies were aimed at optimizing the labeling conditions using I-131 and In-111 to maintain CAR binding activity of the radiolabeled preparations. The CAR-binding was retained as determined using reaction with biotinylated CAR followed by chemiluminescence detection. The biodistribution results in mice and rats following i.v. administration (autoradiography, tissue counting) showed that all three vectors localized preferentially in CAR-expressing organs (liver, lung, heart, kidney), as expected. The CAR-binding of Ad-2 wild serotype was better (∼8 x stronger) than Ad-12, in particular following radiolabeling. Based on the above results, we further focused on the recombinant knob

  9. Imaging Opportunities in Radiation Oncology

    International Nuclear Information System (INIS)

    Balter, James M.; Haffty, Bruce G.; Dunnick, N. Reed; Siegel, Eliot L.

    2011-01-01

    Interdisciplinary efforts may significantly affect the way that clinical knowledge and scientific research related to imaging impact the field of Radiation Oncology. This report summarizes the findings of an intersociety workshop held in October 2008, with the express purpose of exploring 'Imaging Opportunities in Radiation Oncology.' Participants from the American Society for Radiation Oncology (ASTRO), National Institutes of Health (NIH), Radiological Society of North America (RSNA), American Association of physicists in Medicine (AAPM), American Board of Radiology (ABR), Radiation Therapy Oncology Group (RTOG), European Society for Therapeutic Radiology and Oncology (ESTRO), and Society of Nuclear Medicine (SNM) discussed areas of education, clinical practice, and research that bridge disciplines and potentially would lead to improved clinical practice. Findings from this workshop include recommendations for cross-training opportunities within the allowed structured of Radiology and Radiation Oncology residency programs, expanded representation of ASTRO in imaging related multidisciplinary groups (and reciprocal representation within ASTRO committees), increased attention to imaging validation and credentialing for clinical trials (e.g., through the American College of Radiology Imaging Network (ACRIN)), and building ties through collaborative research as well as smaller joint workshops and symposia.

  10. Diagnostic and therapeutic perspectives in nuclear medicine: radiolabelled biomolecules

    International Nuclear Information System (INIS)

    Ferro F, G.; Murphy, C.A. de; Pedraza L, M.; Melendez A, L.

    2003-01-01

    From their beginning, the radiopharmaceuticals chemistry has gone to the study of the molecular chemistry. The radiopharmaceuticals are only in their capacity to detect such specific biochemical places as the receivers and the enzymes. With the recent obtaining of the complete structural sequence of the genome, it doesn't fit doubt of the importance that they have acquired the molecular images for the study from the genetic information to the alterations phenotypic in the chemistry of the human body. So, the future of the diagnostic and therapeutic nuclear medicine, practically is based in the study of protein fragments, peptide structures and chains of DNA radiolabelled for the study of the metabolism In vivo. These investigations represent a substantial change in those paradigms of the pharmaceutical development, when using the own organic capacities as source of medications, instead of considering to the organism like a simple assay tube where molecules act, like they are most of the traditional medications. The investigation of new techniques to design complex stable of Tc-99m, Re-188, Lu-177, Y-90 and Dy-166/Ho-l66 with biomolecules that don't alter the specificity and in general the molecular properties of the same ones. it is a topic of world interest in the environment of the radiopharmaceutical chemistry. In this work some achievements and perspectives are presented on those main diagnostic and therapeutic radiopharmaceuticals of third generation. (Author)

  11. Breast cancer. Nuclear medicine in diagnosis and therapeutic options

    International Nuclear Information System (INIS)

    Bombardieri, E.; Bonadonna, G.; Gianni, L.

    2008-01-01

    Brings up-to-date nuclear medical knowledge in breast cancer. Includes vital information on advances in the field of diagnosis. Supplies data on the development of some new modalities. Offers a general overview of the available tools for breast cancer treatment. There can never be enough material in the public domain about cancers, and particularly breast cancer. This book adds much to the literature. It provides general information on breast cancer management and considers all new methods of diagnosis and therapy. It focuses on nuclear medicine modalities by comparing their results with other diagnostic and therapeutic approaches. The coverage provides readers with up-to-date knowledge on breast cancer as well as information on the advances in the field of diagnosis. It also details data on the development of some new modalities and provides a general overview of the available tools for breast cancer treatment. In sum, it is a hugely useful text that performs a dual function. Not only does it provide practitioners of all descriptions with a vital overview of the current state of play in breast cancer treatment, but it also lays out in a beautifully structured way the latest diagnostic methodologies. (orig.)

  12. Citation trend and suggestions for improvement of impact factor of Journal of Korean Therapeutic Radiology and Oncology

    International Nuclear Information System (INIS)

    Kim, Seong Hwan; Hwang, Seong Su; Ahn, Myeong Im; Jeong, So Na

    2006-01-01

    To analyze the recent citation trend and to find a way to improve impact factor (IF) of the Journal of Korean Therapeutic Radiology and Oncology (JKSTRO) by analysis of Korean Medical Citation index (KoMCI) citation data of JKSTRO and comparison with that of mean citation data of all journals enlisted on KoMCI (KoMCI journals) during 2000-2005. All citation data of entire journals enlisted on KoMCI and JKSTRO from 2000 to 2005 were obtained from KoMCI. The trend of total and annual number of published articles and reference citations, total citations and self-citations per paper, IF and impact factor excluding self-citations (ZIF) were described and compared on both KoMCI journals an JKSTRO. Annual number of published articles was decreased for 6 years on both KoMCI journals and JKSTRO (32% and 38% reduction rate). The number of Korean journal references per article is 1.6 papers of JKSTRO comparing to 2.0 papers on KoMCI journals. The percentage of Korean references/total references increased from 5.0% in 2000 to 7.7% in 2005 on JKSTRO and from 8.5% in 2000 to 10.1% on KoMCI journals. The number of total citations received/paper on JKSTRO (average 1.333) is smaller than that of KoMCI journals (average 1.694), there was an increased rate of 67% in 2005 comparing to 2000. The percentage of self-citations/total citations (average 72%) on JKSTRO is slightly higher than that of KoMCI journals (average 61%)/ IF of JKSTRO was gradually improved and 0.144, 0.125, 0.088, 0.107, 0.187 and 0.203 in 2000-2005 respectively. However, ZIF of JKSTRO is steadily decreased from 0.038 in 2000 to 0.013 in 2005 except 0.044 in 2004. IF of JKSTRO was slightly improved but had some innate problem of smaller number of citations received . To make JKSTRO as a highly cited journal, the awareness of academic status of JKSTRO and active participation of every member of JKSTRO including encouraging self-citations of papers published recent 2 years and submission of English written papers, and

  13. Special Radiation Protection Precautions in Therapeutic Nuclear Medicine

    Science.gov (United States)

    Stefanoyiannis, A. P.; Gerogiannis, J.

    2010-01-01

    Therapeutic Nuclear Medicine concerns the administration of appropriate amounts of radioactivity of certain isotopes, in order to achieve internal localized irradiation of neoplasmatic cells. Due to the increased level and the specific isotope characteristics of administered radioactivity, special Radiation Protection precautions must be taken. This study addresses such issues, based on national as well as international legislation and guidelines. Application of the principle of optimization is of outmost importance and is based on individual dose planning. The decision about the release of Nuclear Medicine patients after therapy is determined on an individual basis, taking into account patients' pattern of contact with other people, their age and that of persons in the home environment, in addition to other factors. Estimation of the absorbed dose given to the treated organ is based on uptake measurements and other biokinetic data, as well as on the mass of the treated tissue or organ. Concerning pregnant women, the rule of thumb is that they should not be treated, unless the radionuclide therapy is required to save their lives. In that case, the potential absorbed dose and risk to the foetus should be estimated and conveyed to the patient. After radionuclide therapy, a female should be advised to avoid pregnancy for the period of time depending on the specific radionuclide. This is to ensure that the dose to a conceptus/foetus would probably not exceed 1 mGy (the member of the public dose limit). The radiation risk for relatives and caregivers is small and unlikely to exceed the legal dose constraints during the period of the patient's treatment. Solid waste from the patient's stay in hospital is a different matter, and is normally incinerated or held for a period until radioactive decay brings the activity to an acceptable level.

  14. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    International Nuclear Information System (INIS)

    Coulot, J

    2003-01-01

    Monte Carlo techniques are involved in many applications in medical physics, and the field of nuclear medicine has seen a great development in the past ten years due to their wider use. Thus, it is of great interest to look at the state of the art in this domain, when improving computer performances allow one to obtain improved results in a dramatically reduced time. The goal of this book is to make, in 15 chapters, an exhaustive review of the use of Monte Carlo techniques in nuclear medicine, also giving key features which are not necessary directly related to the Monte Carlo method, but mandatory for its practical application. As the book deals with therapeutic' nuclear medicine, it focuses on internal dosimetry. After a general introduction on Monte Carlo techniques and their applications in nuclear medicine (dosimetry, imaging and radiation protection), the authors give an overview of internal dosimetry methods (formalism, mathematical phantoms, quantities of interest). Then, some of the more widely used Monte Carlo codes are described, as well as some treatment planning softwares. Some original techniques are also mentioned, such as dosimetry for boron neutron capture synovectomy. It is generally well written, clearly presented, and very well documented. Each chapter gives an overview of each subject, and it is up to the reader to investigate it further using the extensive bibliography provided. Each topic is discussed from a practical point of view, which is of great help for non-experienced readers. For instance, the chapter about mathematical aspects of Monte Carlo particle transport is very clear and helps one to apprehend the philosophy of the method, which is often a difficulty with a more theoretical approach. Each chapter is put in the general (clinical) context, and this allows the reader to keep in mind the intrinsic limitation of each technique involved in dosimetry (for instance activity quantitation). Nevertheless, there are some minor remarks to

  15. The role of skeletal scintigraphy in nuclear oncology at a medium-sized hospital in South Korea

    International Nuclear Information System (INIS)

    Choe, W.

    2004-01-01

    Full text: Skeletal scintigraphy (SS) has been a workhorse in nuclear medicine departments, whether the department is in a developed country or in a developing country. It also plays an essential role in nuclear oncology in staging or diagnosing cancers or monitoring management of cancer patients. With the availability of improved imaging modalities like positron emission tomography, the role of skeletal scintigraphy is changing accordingly. This study was performed to evaluate the role of SS in nuclear oncology at a medium-sized (900-bed) university hospital in South Korea, by reviewing hospital cases along with the statistics of recently published papers in the journal of Clinical Nuclear Medicine. The hospital does not have a PET. The study period was three years (from 2000 to 2002). The SS is requested from many specialties for various reasons. Only cancer-related cases were selected. Using PubMed database, relevant articles in the Clinical Nuclear Medicine were assessed. To retrieve the articles, the keywords 'skeletal scintigraphy' and 'bone scan' were combined by using Boolean operation. There were a total of 9707 SS out of 16429 nuclear medicine imaging cases at the hospital during the study period. The hospital had 49% of SS contributed to cancer patients, while 52% percent of the SS in the CNM dealt with cancers. During the same period, articles regarding PET were 273 of which 171 were cancer-related PET studies (62%, more often than SS). 59% of the total nuclear medicine studies performed at the hospital were SS, whereas only 9% of the total articles were SS and 5% dealt with cancer-related cases. The cases of SS and cancer-related SS at the hospital increased during the period, whereas the articles in the CNM decreased. Analytic statistics were not considered necessary. In conclusion, there is an increasing demand of SS in nuclear oncology at a medium-sized hospital with non-availability of PET and the proportions of SS and cancer-related SS to the

  16. Nanotechnology in Radiation Oncology

    Science.gov (United States)

    Wang, Andrew Z.; Tepper, Joel E.

    2014-01-01

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. PMID:25113769

  17. Metallic radionuclides: applications in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Weiner, R.E.; Thakur, M.L.

    1995-01-01

    Nuclear Medicine is a medical modality that utilizes radioactivity (radiopharmaceutical) to diagnose and treat disease. Radiopharmaceuticals contain a component which directs the radionuclide to the desire physiological target. For diagnostic applications, these nuclides must emit a γ ray that can penetrate the body and can be detected externally while for therapeutic purposes nuclides are preferred that emit β particles and deliver highly localized tissue damage. 67 Ga citrate is employed to detect chronic occult abscesses, Hodgkin's and non-Hodgkin's lymphomas, lung cancer, hepatoma and melanoma and localizes in these tissues utilizing iron-binding proteins. 201 Thallous chloride, a potassium analogue, used to diagnosis coronary artery disease, is incorporated in muscle tissue via the Na + -K + -ATPase. 111 In labeled autologous white blood cells, used for the diagnosis of acute infections and inflammations, takes advantage of the white cell's role in fighting infections. 111 In is incorporated in other radiopharmaceuticals e.g. polyclonal IgG, OncoScint CR/OV, OctreoScan and Myoscint by coupling diethylenetriaminepentaacetic acid, a chelate, covalently to these molecules. OncoScint CR/OV and Myoscint localize by antigen-antibody interactions while OctreoScan is taken up by malignant cells in a receptor based process. Polyclonal IgG may share some localization characteristics with 67 Ga. 89 Sr, a pure β emitter, is used for palliation of bone pain due to metastatic bone lesions. Bone salts [Ca(PO) 4 ] are increased in these lesions and this radionuclide is taken up similarly to Ca 2+ . 186 Re and 153 Sm bound to polydentate phosphonate chelates are used similarly and follow the phosphate pathway in lesion incorporation. (orig.)

  18. Metallic radionuclides: Applications in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Werner, R.E.; Thakur, M. L.

    1997-01-01

    Nuclear Medicine is a medical modality that utilizes radioactivity (radiopharmaceutical) to diagnose and treat disease. Radiopharmaceuticals contain a component which directs the radionuclide to the desire physiological target. For diagnostic applications, these nuclides must emit a gamma ray that can penetrate the body and can be detected externally while for therapeutic purposes nuclides are preferred that emit beta particles and deliver highly localized tissue damage. sup 6 sup 7 Ga citrate is employed to detect chronic occult abscesses, Hodgkin's and non-Hodgkin's lymphomas, lung cancer, hepatoma and melanoma and localizes in these tissues utilizing iron-binding proteins. sup 2 sup 0 sup 1 Thallous chloride, a potassium analogue, used to diagnosis coronary artery disease, is incorporated in muscle tissue via the Na sup + -K sup + -ATPase. sup 1 sup 1 sup 1 In labeled autologous white blood cells, used for the diagnosis of acute infections and inflammations, takes advantage of the white cell's role in fighting infections. sup 1 sup 1 sup 1 In is incorporated in other radiopharmaceuticals e.g. polyclonal IgG, OncoScint CR/OV, OctreoScan and Myoscint by coupling diethylenetriaminepentaacetic acid, a chelate, covalently to these molecules. OncoScint CR/OV and Myoscint localize by antigen-antibody interactions while OctreoScan is taken up by malignant cells in a receptor based process. Polyclonal IgG may share some localization characteristics with sup 6 sup 7 Ga. sup 8 sup 9 Sr, a pure beta emitter, is used for palliation of bone pain due to metastatic bone lesions. Bone salts [Ca(PO) sub 4] are increased in these lesions and this radionuclide is taken up similarly to Ca sup 2 sup +. sup 1 sup 8 sup 6 Re and sup 1 sup 5 sup 3 Sm bound to polydentate phosphonate chelates are used similarly and follow the phosphate pathway in lesion incorporation. (author)

  19. Psychotherapist countertransference in the nuclear age: Effects on therapeutic interventions

    International Nuclear Information System (INIS)

    Oderberg, N.A.

    1991-01-01

    Since the early 1980s, there has been considerable attention in the psychology literature to mental health problems related to living in a world threatened by nuclear destruction. Questionnaires were mailed to 630 psychotherapists from the Colorado Psychological Association, California Psychotherapists for Social Responsibility, California Psychologists for Social Responsibility, the US Army, and the APA Division of Military Psychology; 174 questionnaires were returned. It was hypothesized that liberalism, nuclear weapons opposition, nuclear concern, nuclear awareness, and anti-nuclear activism in psychotherapists would facilitate perception of, and openness to working with, a client's nuclear concerns and thus, would be positively correlated with intentions to discuss nuclear issues with clients in three different clinical vignettes. Results indicated that when controlling for subject group, psychotherapy orientation, age, sex, and income, all five independent variables were positively correlated with responses to all three clinical vignettes, with nuclear concern having the strongest unique effect in accounting for variance in responses to the vignettes

  20. Evolution of modern nuclear medicine tumor-imaging diagnostics in clinical oncology

    International Nuclear Information System (INIS)

    Piperkova, E.

    2000-01-01

    The evolution of current nuclear medicine diagnostic is closely related to the technical progress in imaging equipment development, and application of radiopharmaceuticals (Rphs) with a different tumor-uptake mechanism. It is the aim of the study to present groups of tumor-imaging Rphs differing by tumor uptake mechanisms, used in clinical oncology. The obtained results are described, and compared with the ones reported by other researchers. Sensitivity and specificity of Rphs for cardio-scintigraphy with 99m Tc - MIBI and 201 Tl are relatively high, amounting to 93.7% and 60% respectively, in the various tumors. These indicators depend on the stage, location, histopathology, level of malignancy and biological activity of the neoplasm. 99m Tc - MIBI scintigraphy is endowed with considerable diagnostic potential for assaying multiple drug resistance (MDR), and is also a good criterion for its elimination following anti-MDR therapy. The obtained results show that radioimmunoscintigraphy (RIS) using different radiolabeled monoclonal antibodies (MoAb) have high sensitivity and specificity respectively: 86% and 80% in ovarian carcinoma with B72.3 antiTAG; 68.6% and 92.5% in colorectal carcinoma with B73.2 antiTAG, antiCEA, antiCA 19-9; 92% and 83% in breast cancer with antiCEA, 86.8% and 67-69% in malignant melanoma with 225.28s. Receptor scintigraphy may reach up to 86% sensitivity and 100% specificity in tumors saturated with somatostatin receptors. Positron emission tomography (PET) with 18F-FDG enhances the metabolic activity of tumor cells, and attains tumor-detecting rate amounting to 97%. Tumor imaging evolution characterized by the introduction and practical implementation of different Rphs, visualizing the functional and biochemical activity of tumor cells in the primary neoplasm, sentinel lymph nodes and distant metastases. radiolabelling of a variety of new biochemical substances, including DNA and RNA, drugs and lysosomes contributes to a successful imaging

  1. To improve the quality of the statistical analysis of papers published in the Journal of the Korean Society for Therapeutic Radiology and Oncology

    International Nuclear Information System (INIS)

    Park, Hee Chul; Choi, Doo Ho; Ahn, Song Vogue

    2008-01-01

    To improve the quality of the statistical analysis of papers published in the Journal of the Korean Society for Therapeutic Radiology and Oncology (JKOSTRO) by evaluating commonly encountered errors. Materials and Methods: Papers published in the JKOSTRO from January 2006 to December 2007 were reviewed for methodological and statistical validity using a modified version of Ahn's checklist. A statistician reviewed individual papers and evaluated the list items in the checklist for each paper. To avoid the potential assessment error by the statistician who lacks expertise in the field of radiation oncology; the editorial board of the JKOSTRO reviewed each checklist for individual articles. A frequency analysis of the list items was performed using SAS (version 9.0, SAS Institute, NC, USA) software. Results: A total of 73 papers including 5 case reports and 68 original articles were reviewed. Inferential statistics was used in 46 papers. The most commonly adopted statistical methodology was a survival analysis (58.7%). Only 19% of papers were free of statistical errors. Errors of omission were encountered in 34 (50.0%) papers. Errors of commission were encountered in 35 (51.5%) papers. Twenty-one papers (30.9%) had both errors of omission and commission. Conclusion: A variety of statistical errors were encountered in papers published in the JKOSTRO. The current study suggests that a more thorough review of the statistical analysis is needed for manuscripts submitted in the JKOSTRO

  2. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide

    DEFF Research Database (Denmark)

    Korreman, Stine; Rasch, Coen; McNair, Helen

    2010-01-01

    The past decade has provided many technological advances in radiotherapy. The European Institute of Radiotherapy (EIR) was established by the European Society of Therapeutic Radiology and Oncology (ESTRO) to provide current consensus statement with evidence-based and pragmatic guidelines on topics...

  3. The state of the art in therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Allen, B.J.

    2001-01-01

    Radionuclide therapy can be curative or palliative in intent, and local or systemic in administration. Current therapy relies of beta emitting radioisotopes and selective carriers for the treatment of advanced tumours. The next generation of therapeutics may be alpha emitting radionuclides for subclinical, micrometastatic disease. Targeted Alpha therapy (TAT) offers the potential to inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The practicality and efficacy of TAT has been tested by in vitro and in vivo studies many cancers. The first phase 1 clinical trial of TAT for leukaemia with Bi-213 has concluded at the Memorial Sloan Kettering Cancer Center, a phase 1 and 2 trial of intra-lesional TAT is ongoing at Duke University with At-211 labeled Mab against cystic glioma, and a phase 1 and 2 clinical trial for intra-lesional TAT with Bi-213 of subcutaneous secondary melanoma is underway at St George Hospital

  4. Monte Carlo techniques in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Zaidi, H.

    2002-01-01

    Monte Carlo techniques have become one of the most popular tools in different areas of medical radiation physics following the development and subsequent implementation of powerful computing systems for clinical use. In particular, they have been extensively applied to simulate processes involving random behaviour and to quantify physical parameters that are difficult or even impossible to calculate analytically or to determine by experimental measurements. The use of the Monte Carlo method to simulate radiation transport turned out to be the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides. There is broad consensus in accepting that the earliest Monte Carlo calculations in medical radiation physics were made in the area of nuclear medicine, where the technique was used for dosimetry modelling and computations. Formalism and data based on Monte Carlo calculations, developed by the Medical Internal Radiation Dose (MIRD) committee of the Society of Nuclear Medicine, were published in a series of supplements to the Journal of Nuclear Medicine, the first one being released in 1968. Some of these pamphlets made extensive use of Monte Carlo calculations to derive specific absorbed fractions for electron and photon sources uniformly distributed in organs of mathematical phantoms. Interest in Monte Carlo-based dose calculations with β-emitters has been revived with the application of radiolabelled monoclonal antibodies to radioimmunotherapy. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the medical physics

  5. Diagnostic and therapeutic capabilities of modern nuclear medicine

    International Nuclear Information System (INIS)

    Lee Myung-Chul, M.D

    2007-01-01

    Full text: Nuclear medicine activity began to expand in the latter half of 1970 in worldwide. In 1980, many countries experienced a rapid increase in the number of medical facilities with nuclear medicine modalities. Nuclear imagining procedures serve as effective diagnostic tools due to their unique ability to provide information that is function-specific and to gather detailed information from radiological exams and other treatment methods. In-vivo studies using SPECT and PET modalities have shown a trend of significant increase throughout the past two decades. Looking at the nuclear neurologic application, there is a rapid increase in last decade. Brain perfusion SPECT and brain PET were making it the most commonly and the most widely performed nuclear neuroimaging study. Since 1990s, conventional nuclear cardiology studies (MUGA and single pass study) declined in number. But myocardial SPECT only increased dramatically using thallium and Tc-99m-MIBI. MIBG imaging plays a prominent role in diagnosing pheochromocytomas/paragangliomas (including nonfunctional paragangliomas) and neuroblastomas. It may be regarded as a first-choice imaging technique, as it presents a wide range of clinical advantages in both the diagnosis and follow-up of these tumors. Regarding to the radioisotope treatment, only radioiodine therapy was used more clinically. But recently, some new treatment is being tried, for example Ho-166 and rhenium-188. I-131 MIBG therapy is an effective treatment for several neural crest tumors, with can be delivered safely, even in children, provided that the bone marrow is free of tumor cells. I-131 MIBG therapy is probably the best palliative treatment for patients with advanced disease, as the invasiveness and toxicity of this therapy compare favorably with that of chemotherapy, immunotherapy and external beam radiotherapy. In general, PET has been primarily used to evaluate ischemic heart disease and to perform diagnostic imaging of malignant tumor

  6. Introduction [Nuclear data for the production of therapeutic radionuclides

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2011-01-01

    Radioactivity plays an important role in medical science in terms of beneficial applications in both diagnosis and therapy. The former entails the introduction of a short lived radionuclide attached to a suitable pharmaceutical into the patient, and measurement of the accumulation and movement of activity from outside. This process is called emission tomography and involves the measurement of either a single low energy γ ray (i.e. single photon computed emission tomography) or coincidences between the two 511 keV photons formed in the annihilation of a positron (i.e. positron emission tomography (PET)). The major governing principle in all diagnostic studies is that the radiation dose to the patient is as low as possible. Two modalities exist in the therapeutic use of radioactivity. The first and most commonly followed procedure involves the use of external beams of electrons, X rays and γ rays from radioactive sources (e.g. 60 Co), high energy γ rays from accelerators, and hadrons (e.g. neutrons, protons and heavy ions). The second modality involves the introduction of certain radionuclides to a given part of the body (e.g. joints, organ and tumour) either mechanically or via a biochemical pathway. Mechanical introduction is called brachytherapy, whereas the biochemical pathway is known as endoradiotherapy. External radiation therapy is outside the scope of the present studies. The concerted and collaborative efforts described here deal specifically with the production and use of radionuclides. An earlier coordinated research project (CRP) of the IAEA was devoted to diagnostic radionuclides. The present effort is related to therapeutic radionuclides.

  7. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    International Nuclear Information System (INIS)

    De Jesus, M.; Trujillo-Zamudio, F. E.

    2010-01-01

    A building project of Radiotherapy and Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  8. Summary report of the consultants' meeting on nuclear data for production of therapeutic radioisotopes

    International Nuclear Information System (INIS)

    Haight, R.C.; Paviotti-Corcuera, R.

    2002-04-01

    This report summarizes the presentations, recommendations and conclusions of the Consultants' Meeting on Nuclear Data for Production of Therapeutic Radioisotopes. The purpose of this meeting was to discuss scientific and technical matters related to the subject and to advise the IAEA Nuclear Data Section (NDS) on the need and possible formation of a Coordinated Research Programme (CRP). Accurate and complete knowledge of nuclear data are essential for the production of radionuclides for therapy to achieve the specific activity and purity required for efficient and safe clinical application. The Consultants recommended updating and completing the data for production of radionuclides that are recognized to be important in therapy. In addition, the consultants recommend investigating other radionuclides that have a potential interest and for which there exists a medical rationale for therapeutic use. To date no serious effort has been devoted to evaluation of nuclear data for the reactor and accelerator production of therapeutic radionuclides. The IAEA is in the unique and privileged position to address this important public health related problem. Therefore, the consultants highly recommend the formation of a CRP with the title: 'Nuclear Data for Production of Therapeutic Radionuclides.' (author)

  9. Nuclear medicine

    International Nuclear Information System (INIS)

    Sibille, L.; Nalda, E.; Collombier, L.; Kotzki, P.O.; Boudousq, V.

    2011-01-01

    Nuclear medicine is a medical specialty using the properties of radioactivity. Radioactive markers associated with vectors are used as a tracer or radiopharmaceutical for diagnostic purposes and/or therapy. Since its birth more than half a century ago, it has become essential in the care of many patients, particularly in oncology. After some definitions, this paper presents the main nuclear techniques - imaging for diagnostic, radiopharmaceuticals as therapeutic agents, intra-operative detection, technique of radioimmunoassay - and the future of this field. (authors)

  10. Prevalence of symptom control and palliative care abstracts presented at the Annual Meeting of the American Society for Therapeutic Radiology and Oncology

    International Nuclear Information System (INIS)

    Barnes, Elizabeth A.; Palmer, J. Lynn; Bruera, Eduardo

    2002-01-01

    Purpose: Forty percent of all patients referred for radiotherapy are treated with palliative intent. The American Society for Therapeutic Radiology and Oncology (ASTRO) has recently emphasized the importance of radiation oncologists being skilled in the field of symptom control and palliative care (SCPC). The purpose of this study was to determine the number of abstracts relating to SCPC presented at the annual ASTRO meetings. Methods and Materials: The number of SCPC abstracts presented at ASTRO meetings between 1993 and 2000 was counted. Abstracts were included if they described populations with advanced or metastatic cancer for whom the goal of treatment was symptom palliation. The treatment sites and symptoms palliated were recorded. Results: Of 3511 abstracts presented at ASTRO between 1993 and 2000, an average of 47 (1.3%, range 0.9-2.2%/y) were related to SCPC. The most common treatment sites were bone, brain, and lung. Pain, bleeding, and neurologic and pulmonary symptoms were the ones most commonly palliated. Thirty-two percent of the SCPC abstracts involved randomized controlled trials, 47% had palliation of symptoms as a secondary treatment outcome, and in 21%, the symptomatic treatment outcome was not specifically stated. Conclusion: SCPC research has been poorly represented at the annual ASTRO meetings. Education and research in this field needs to be actively encouraged, because SCPC is an important component of a radiation oncologist's role in comprehensive patient care

  11. Nuclear medicine in oncology 1: Lymphoma, and cancer of the lung ...

    African Journals Online (AJOL)

    Nuclear medicine provides an opportunity to image pathophysiology, while radiology mainly shows morphology. Over the last few decades hybrid imaging modalities have been developed in which nuclear medicine instrumentation has been combined with computed tomography (CT) and, more recently, with magnetic ...

  12. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors.

    Science.gov (United States)

    Andersen, Jannik N; Sathyanarayanan, Sriram; Di Bacco, Alessandra; Chi, An; Zhang, Theresa; Chen, Albert H; Dolinski, Brian; Kraus, Manfred; Roberts, Brian; Arthur, William; Klinghoffer, Rich A; Gargano, Diana; Li, Lixia; Feldman, Igor; Lynch, Bethany; Rush, John; Hendrickson, Ronald C; Blume-Jensen, Peter; Paweletz, Cloud P

    2010-08-04

    Although we have made great progress in understanding the complex genetic alterations that underlie human cancer, it has proven difficult to identify which molecularly targeted therapeutics will benefit which patients. Drug-specific modulation of oncogenic signaling pathways in specific patient subpopulations can predict responsiveness to targeted therapy. Here, we report a pathway-based phosphoprofiling approach to identify and quantify clinically relevant, drug-specific biomarkers for phosphatidylinositol 3-kinase (PI3K) pathway inhibitors that target AKT, phosphoinositide-dependent kinase 1 (PDK1), and PI3K-mammalian target of rapamycin (mTOR). We quantified 375 nonredundant PI3K pathway-relevant phosphopeptides, all containing AKT, PDK1, or mitogen-activated protein kinase substrate recognition motifs. Of these phosphopeptides, 71 were drug-regulated, 11 of them by all three inhibitors. Drug-modulated phosphoproteins were enriched for involvement in cytoskeletal reorganization (filamin, stathmin, dynamin, PAK4, and PTPN14), vesicle transport (LARP1, VPS13D, and SLC20A1), and protein translation (S6RP and PRAS40). We then generated phosphospecific antibodies against selected, drug-regulated phosphorylation sites that would be suitable as biomarker tools for PI3K pathway inhibitors. As proof of concept, we show clinical translation feasibility for an antibody against phospho-PRAS40(Thr246). Evaluation of binding of this antibody in human cancer cell lines, a PTEN (phosphatase and tensin homolog deleted from chromosome 10)-deficient mouse prostate tumor model, and triple-negative breast tumor tissues showed that phospho-PRAS40(Thr246) positively correlates with PI3K pathway activation and predicts AKT inhibitor sensitivity. In contrast to phosphorylation of AKT(Thr308), the phospho-PRAS40(Thr246) epitope is highly stable in tissue samples and thus is ideal for immunohistochemistry. In summary, our study illustrates a rational approach for discovery of drug

  13. Assessment of personal occupational radiation exposures received by nuclear medicine and oncology staff in Punjab (2003–2012)

    International Nuclear Information System (INIS)

    Zafar, T.; Masood, K.; Zafar, J.

    2015-01-01

    The impact of occupational radiation exposures on oncology staff working in the disciplines of Nuclear Medicine (NM), Radiotherapy (RT), and Diagnostic Radiology (DR) is of significance to ensure a health risk free environment. In this study, occupationally received radiation doses amongst Pakistani oncology staff in NM, RT and DR during the period (2003–2012) were assessed. The Film Badge Dosimetry (FBD) technique has been utilized to process over 81,000 films (13,237 workers) concerning the occupationally exposed workers data (2003–2012) at a national scale. The annual effective doses were found to range between 0.30–0.97 mSv for NM, 0.44–1.02 mSv for RT and 0.31–1.09 mSv for DR. The annual effective doses averaged over a period of 10 years were assessed to be 0.63, 0.70 and 0.68 mSv for NM, RT and DR respectively. The exposure data were categorized into three exposure levels (≤0.99, 1–4.99 and 5–9.99 mSv) to establish the staff distribution in these categories. It was found that 89.8–96 % in NM, 82–94.5 % in RT and 76–96.8 % staff workers in DR have received doses within the range from the Minimum Detectable Limit (MDL)- 0.99 mSv. The annual effective doses, in all categories, were measured to be less than the recommended annual limit of 20 mSv.

  14. Nuclear data for the production of therapeutic radionuclides. Summary report of first research coordination meeting

    International Nuclear Information System (INIS)

    Sublet, J.-Ch.; Paviotti-Corcuera, R.

    2003-06-01

    Presentations, discussions and conclusions from the First Co-ordination Meeting on Nuclear Data for the Production of Therapeutic Radionuclides are summarised in this report. The main purpose of the meeting was to discuss scientific and technical matters related to the subject and to co-ordinate related tasks. Programmes of work were agreed and assigned, and deadlines were set. Participants emphasized the importance of the completeness and accuracy of the resulting nuclear data for the production of these radionuclides to appropriate specific activities and purity along with the relevant decay data. The recommended data from this Coordinated Research Project should meet the requirements for the safe and efficacious application of therapeutic treatments in nuclear medicine. (author)

  15. The single photon diagnosis and the therapy applications in nuclear oncology: past, present and future

    International Nuclear Information System (INIS)

    Giammarile, F.

    2005-01-01

    The principal applications of the nuclear medicine concern the diagnosis. It can be added the information in the evaluation of the therapy response and in the evaluation of a future risk. The potential of development in nuclear medicine is in new radiopharmaceuticals, especially new pathophysiologic information can be gotten every time a new molecule is discovered and one of the principal aims of diagnostic imaging is the in vivo tissue characterization. (N.C.)

  16. Computed tomography (CT), nuclear medicine (NM), and ultrasound (US) in oncology patients

    International Nuclear Information System (INIS)

    McNeil, B.J.

    1982-01-01

    This review will summarize the effectiveness of computed tomography, ultrasound, and nuclear medicine imaging procedures in several different disease processes. The results indicate: (1) CT is clearly better than ultrasound for diseases of the adrenal gland and pancreas; (2) for patients with gynecologic malignancies, CT and ultrasound are approximately equivalent in their ability to define treatment options effectively; (3) in the liver, the differences among the three modalities are less marked and are disease specific. For example, for patients with colon cancer the increased effectiveness of CT relative to ultrasound or nuclear medicine is small. For patients with breast cancer, the difference is greater; (4) for patients suspected to have a focal source of sepsis, CT is slightly better than ultrasound or nuclear medicine. In these patients, however, when nuclear medicine images are obtained on a rectilinear scanner, the results are significantly worse compared to nuclear medicine images on a LFOV gamma camera or to ultrasound. As a result of the above studies and concommitant statistical analyses, several conclusions can be drawn about optimum experimental design and statistical approaches for comparing imaging modalities

  17. Innovations in radiation oncology

    International Nuclear Information System (INIS)

    Withers, H.R.

    1988-01-01

    The series 'Medical Radiology - Diagnostic Imaging and Radiation Oncology' is the successor to the well known 'Encyclopedia of Medical Radiology/Handbuch der medizinischen Radiologie'. 'Medical Radiology' brings the state of the art on special topics in a timely fashion. This volume 'Innovation in Radiation Oncology', edited by H.R. Withers and L.J. Peters, presents data on the development of new therapeutic strategies in different oncologic diseases. 57 authors wrote 32 chapters covering a braod range of topics. The contributors have written their chapters with the practicing radiation oncologist in mind. The first chapter sets the stage by reviewing the quality of radiation oncology as it is practiced in the majority of radiation oncology centers in the United States. The second chapter examines how we may better predict the possible causes of failure of conventional radiotherapy in order that the most appropriate of a variety of therapeutic options may eventually be offered to patients on an individual basis. The third chapter discussed how our therapeutic endeavors affect the quality of life, a problem created by our ability to be successful. Following these three introductory chapters there are 29 chapters by highly qualified specialists discussing the newest ideas in subjects of concern to the practicing radiation oncologist. With 111 figs

  18. Limitations of the American Society of Therapeutic Radiology and Oncology Consensus Panel Guidelines on the Use of Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Vicini, Frank; Arthur, Douglas; Wazer, David; Chen, Peter; Mitchell, Christina; Wallace, Michelle; Kestin, Larry; Ye, Hong

    2011-01-01

    Purpose: We applied the American Society of Therapeutic Radiology and Oncology (ASTRO) Consensus Panel (CP) guidelines for the use of accelerated partial breast irradiation (APBI) to patients treated with this technique to determine the ability of the guidelines to differentiate patients with significantly different clinical outcomes. Methods and Materials: A total of 199 patients treated with APBI and 199 with whole-breast irradiation (WBI) (matched for tumor size, nodal status, age, margins, receptor status, and tamoxifen use) were stratified into the three ASTRO CP levels of suitability ('suitable,' 'cautionary,' and 'unsuitable') to assess rates of ipsilateral breast tumor recurrence (IBTR), regional nodal failure, distant metastases, disease-free survival, cause-specific survival, and overall survival based on CP category. Median follow-up was 11.1 years. Results: Analysis of the APBI and WBI patient groups, either separately or together (n = 398), did not demonstrate statistically significant differences in 10-year actuarial rates of IBTR when stratified by the three ASTRO groups. Regional nodal failure and distant metastasis were generally progressively worse when comparing the suitable to cautionary to unsuitable CP groups. However, when analyzing multiple clinical, pathologic, or treatment-related variables, only patient age was associated with IBTR using WBI (p = 0.002). Conclusions: The ASTRO CP suitable group predicted for a low risk of IBTR; however, the cautionary and unsuitable groups had an equally low risk of IBTR, supporting the need for continued refinement of patient selection criteria as additional outcome data become available and for the continued accrual of patients to Phase III trials.

  19. Nuclear data for the production of therapeutic radionuclides. Summary report of third research coordination meeting

    International Nuclear Information System (INIS)

    Sublet, J.-Ch.; Capote Noy, R.

    2006-08-01

    A summary is given of the Third Research Coordination Meeting on Nuclear Data for the Production of Therapeutic Radionuclides. The new library of evaluated cross-section will cover reactor and accelerator production of therapeutic radionuclides to appropriate specific activities and purity, along with the relevant decay data. A few new reactions were added at this meeting. Technical discussions and the resulting work plan to conclude the data evaluation activities are summarized for every reaction path. Timescales and agreed actions to deliver the database and Technical Report are also given. (author)

  20. Reactor production and processing of radioisotopes for therapeutic applications in nuclear medicine

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Mirzadeh, S.; Beets, A.L.

    1995-01-01

    Nuclear reactors continue to play an important role in providing radioisotopes for nuclear medicine. Many reactor-produced radioisotopes are ''neutron rich'' and decay by beta-emission and are thus of interest for therapeutic applications. This talk discusses the production and processing of a variety of reactor-produced radioisotopes of current interest, including those produced by the single neutron capture process, double neutron capture and those available from beta-decay of reactorproduced radioisotopes. Generators prepared from reactorproduced radioisotopes are of particular interest since repeated elution inexpensively provides many patient doses. The development of the alumina-based W-188/Re-188 generator system is discussed in detail

  1. Nuclear data for production of therapeutic radionuclides. Summary report of second research coordination meeting

    International Nuclear Information System (INIS)

    Sublet, J.-Ch.; Capote Noy, R.

    2004-11-01

    A summary is given of the Second Research Coordination Meeting on Nuclear Data for Production of Therapeutic Radionuclides. The new library of evaluated cross section will cover the reactor and/or accelerator production of therapeutic radionuclides to appropriate specific activities and purity along with the relevant decay data. There are a significant number of radioisotopes in use or being proposed for therapeutic applications. As a consequence of the work undertaken during the course of this CRP, the resulting completeness and accuracy of the nuclear data for the production of these nuclides to appropriate specific activities and purity along with the re-definition of their decay data should be adequate for safe and efficient medical applications. The radioisotopes to be considered in the CRP were divided into two categories: Established Radioisotopes (therapeutic radioisotopes that have established clinical uses) and Emerging Radioisotopes (less-commonly used but potentially interesting radioisotopes for which medical applications have been demonstrated). Experimental data compilations and selection and preliminary evaluations for each of the reactions were extensively discussed during the meeting. The recommendations for both established and emerging radionuclides, and validation/testing of the cross section library are summarized. Technical discussions and the resulting work plan of the Coordinated Research Programme are summarized for every reaction path to be evaluated, along with actions and deadlines. Participants' contributions to the RCM are also attached. (author)

  2. A new calculation formula of the nuclear cross-section of therapeutic protons

    Directory of Open Access Journals (Sweden)

    Waldemar Ulmer

    2014-03-01

    Full Text Available Purpose: We have previously developed for nuclear cross-sections of therapeutic protons a calculation model, which is founded on the collective model as well as a quantum mechanical many particle problem to derive the S matrix and transition probabilities. In this communication, we show that the resonances can be derived by shifted Gaussian functions, whereas the unspecific nuclear interaction compounds can be represented by an error function, which also provides the asymptotic behavior. Method: The energy shifts can be interpreted in terms of necessary domains of energy to excite typical nuclear processes. Thus the necessary formulas referring to previous calculations of nuclear cross-sections will be represented. The mass number AN determines the strong interaction range, i.e. RStrong = 1.2·10-13·AN1/3cm. The threshold energy ETh of the energy barrier is determined by the condition Estrong = ECoulomb. Results and Conclusion: A linear combination of Gaussians, which contain additional energy shifts, and an error function incorporate a possible representation of Fermi-Dirac statistics, which is applied here to nuclear excitations and reaction with release of secondary particles. The new calculation formula provides a better understanding of different types of resonances occurring in nuclear interactions with protons. The present study is mainly a continuation of published papers.1-3--------------------------------Cite this article as: Ulmer W. A new calculation formula of the nuclear cross-section of therapeutic protons. Int J Cancer Ther Oncol 2014; 2(2:020211. DOI: 10.14319/ijcto.0202.11

  3. Poster - 03: How to manage a nuclear medicine PET-CT for radiation oncology patients

    Energy Technology Data Exchange (ETDEWEB)

    Hinse, Martin; Létourneau, Étienne; Duplan, Danny; Piché, Émilie; Rivière, Rose Nerla; Bouchard, Guillaume [Centre Intégré de Cancérologie de Laval (Canada)

    2016-08-15

    Purpose: Development of an adapted multidisciplinary procedure designed to optimize the clinical workflow between radiation therapy (RT) and nuclear medicine (NM) for a PET-CT located in the NM department. Methods : The radiation oncologist (RO) prescribes the PET-CT exam and the clinical RT therapist gives all the necessary information to the patient prior to the exam. The immobilization accessories are prepared in the RT department. The RT and NM therapists work together for radiotracer injection, patient positioning and scan acquisition. The nuclear medicine physician (NMP) will study the images, draw Biological Target Volumes (BTVs) and produce a full exam report. Results : All tasks related to a planning PET-CT are done within 48 hours from the request by the RO to the reception of the images with the NMP contours and report. Conclusions : By developing a complete procedure collectively between the RT and NM departments, the patient benefits of a quick access to a RT planning PET-CT exam including the active involvement of every medical practitioners in these fields.

  4. Molecular imaging in oncology

    International Nuclear Information System (INIS)

    Weber, W.A.

    2007-01-01

    Molecular imaging is generally defined as noninvasive and quantitative imaging of targeted macromolecules and biological processes in living organisms. A characteristic of molecular imaging is the ability to perform repeated studies and assess changes in biological processes over time. Thus molecular imaging lends itself well for monitoring the effectiveness of tumor therapy. In animal models a variety of techniques can be used for molecular imaging. These include optical imaging (bioluminescence and fluorescence imaging), magnetic resonance imaging (MRI) and nuclear medicine techniques. In the clinical setting, however, nuclear medicine techniques predominate, because so far only radioactive tracers provide the necessary sensitivity to study expression and function of macromolecules non-invasively in patients. Nuclear medicine techniques allows to study a variety of biological processes in patients. These include the expression of various receptors (estrogen, androgen, somatostatin receptors and integrins). In addition, tracers are available to study tumor cell proliferation and hypoxia. The by far most commonly used molecular imaging technique in oncology is, however, positron emission tomography (PET) with the glucose analog [ 18 F]fluorodeoxyglucose (FDG-PET). FDG-PET permits non-invasive quantitative assessment of the accelerated exogenous glucose use of malignant tumors. Numerous studies have now shown that reduction of tumor FDG-uptake during therapy allows early prediction of tumor response and patient survival. Clinical studies are currently underway to determine whether FDG-PET can be used to individualize tumor therapy by signaling early in the course of therapy the need for therapeutic adjustments in patients with likely non-responding tumors. (orig.)

  5. Pharmacy Instruction in Medical Oncology: Results of a National Survey.

    Science.gov (United States)

    Cersosimo, Robert J.

    1989-01-01

    A survey concerning oncology instruction in pharmacy schools found it taught primarily as part of a course in medicinal chemistry/pharmacology or therapeutics. Twenty-one schools offer an oncology course, with others planning them. Oncology clerkships are currently available in 42 schools. Increased emphasis on oncology instruction is encouraged.…

  6. The iodide sym-porter (NIS): new perspectives in nuclear oncology

    International Nuclear Information System (INIS)

    Pourcher, Th.; Lindenthal, S.; Basquin, C.; Ferhat, O.; Marsault, R.; Carrier, P.; Koulibaly, M.; Bussiere, F.; Darcourt, J.

    2005-01-01

    The sodium iodide sym-porter (NIS) is the plasma membrane protein that mediates uptake of iodide in the thyroid and other organs such as the stomach and the salivary gland. The cloning of its cDNA allows the targeting of NIS expression into any cell using gene therapy. This enables iodide uptake and thus NIS can be used as reporter imaging for live animals. More intriguingly, this new technique has potential using radio-iodide therapy to selectively destroy tumour cells. These two approaches employ common techniques in nuclear medicine. Many experiments on cultured cells and on animals have been carried out; they established clearly the advantages of this genetically targeted radiotherapy. Recent studies employing this therapy on multiple myeloma cell lines implanted in mice or on hepato-carcinoma-bearing rats, resulted in important tumour remission. However, additional studies on NIS regulation and the use of alternative radioisotopes transported by NIS are required to further develop this promising approach. (author)

  7. Training in Techniques and Translation: Novel Nuclear Medicine Imaging Agents for Oncology and Neurology

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhude [Washington Univ., St. Louis, MO (United States)

    2012-08-01

    The goal of this grant was to provide critical interdisciplinary research training for the next generation of radiochemists and nuclear medicine physicians through a collaboration between basic science and clinical faculty who are actively involved in the development, application, and translation of radiopharmaceuticals. Following the four year funding support period, the 10 postdocs, graduate students, as well as clinical physicians who received training have become faculty members, or senior radiochemists at different academic institutes or industry. With respect to scientific accomplishments, 26 peer-reviewed articles have been published to date as well as numerous poster and oral presentations. The goals of all four scientific projects were completed and several promising radiotracers identified for transfer into clinical investigation for human use. Some preliminary data generated from this training grant led several successful NIH grant proposals for the principal investigators.

  8. Systematic in-vitro evaluation of the NCI/NIH Developmental Therapeutics Program Approved Oncology Drug Set for the identification of a candidate drug repertoire for MLL-rearranged leukemia

    Directory of Open Access Journals (Sweden)

    Hoeksema KA

    2011-09-01

    Full Text Available Kimberley A Hoeksema1, Aarthi Jayanthan1, Todd Cooper2, Lia Gore3, Tanya Trippett4, Jessica Boklan6, Robert J Arceci5, Aru Narendran11Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, AB, Canada; 2Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA; 3Center for Cancer and Blood Disorders, Children's Hospital, University of Colorado Denver, Aurora, CO, USA; 4Memorial Sloan-Kettering Cancer Center, New York, NY, USA; 5Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; 6Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USAAbstract: Despite significant progress made in the overall cure rate, the prognosis for relapsed and refractory malignancies in children remains extremely poor. Hence, there is an urgent need for studies that enable the timely selection of appropriate agents for Phase I clinical studies. The Pediatric Oncology Experimental Therapeutics Investigators' Consortium (POETIC is systematically evaluating libraries of known and novel compounds for activity against subsets of high-risk pediatric malignancies with defined molecular aberrations for future clinical development. In this report, we describe the in-vitro activity of a diverse panel of approved oncology drugs against MLL-rearranged pediatric leukemia cell lines. Agents in the Approved Oncology Drug Set II (National Cancer Institute/National Institutes of Health Developmental Therapeutics Program were evaluated by in-vitro cytotoxicity assays in pediatric acute lymphoblastic leukemia and acute myeloid leukemia cell lines with MLL gene rearrangements. Validation studies were carried out with patient leukemia cells in culture. Comparative analysis for toxicity against nonmalignant cells was evaluated in normal bone marrow stromal cells and normal human lymphocytes. Results from this study show that 42 of the 89 agents tested have

  9. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths … worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious

  10. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  11. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO)

    International Nuclear Information System (INIS)

    2009-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  12. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  13. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (Spanish Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  14. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  15. The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for brain metastases

    International Nuclear Information System (INIS)

    Mehta, Minesh P.; Tsao, May N.; Whelan, Timothy J.; Morris, David E.; Hayman, James A.; Flickinger, John C.; Mills, Michael; Rogers, C. Leland; Souhami, Luis

    2005-01-01

    Purpose: To systematically review the evidence for the use of stereotactic radiosurgery in adult patients with brain metastases. Methods: Key clinical questions to be addressed in this evidence-based review were identified. Outcomes considered were overall survival, quality of life or symptom control, brain tumor control or response and toxicity. MEDLINE (1990-2004 June Week 2), CANCERLIT (1990-2003), CINAHL (1990-2004 June Week 2), EMBASE (1990-2004 Week 25), and the Cochrane library (2004 issue 2) databases were searched using OVID. In addition, the Physician Data Query clinical trials database, the proceedings of the American Society of Clinical Oncology (ASCO) (1997-2004), ASTRO (1997-2004), and the European Society of Therapeutic Radiology and Oncology (ESTRO) (1997-2003) were searched. Data from the literature search were reviewed and tabulated. This process included an assessment of the level of evidence. Results: For patients with newly diagnosed brain metastases, managed with whole-brain radiotherapy alone vs. whole-brain radiotherapy and radiosurgery boost, there were three randomized controlled trials, zero prospective studies, and seven retrospective series (which satisfied inclusion criteria). For patients with up to three (<4 cm) newly diagnosed brain metastases (and in one study up to four brain metastases), radiosurgery boost with whole-brain radiotherapy significantly improves local brain control rates as compared with whole-brain radiotherapy alone (Level I-III evidence). In one large randomized trial, survival benefit with whole-brain radiotherapy was observed in patients with single brain metastasis. In this trial, an overall increased ability to taper down on steroid dose and an improvement in Karnofsky performance status was seen in patients who were treated with radiosurgery boost as compared with patients treated with whole-brain radiotherapy alone. However, Level I evidence regarding overall quality of life outcomes using a validated

  16. Radiation Dosimetry considerations in the safe administration of therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Turner, J.H.

    1995-01-01

    A set of eight questions was put to advanced nuclear medicine physicians-in-training participating in a continuing assessment exercise in practical therapeutic nuclear oncology. Using the particular example of 131 I-MIBG treatment of neuroblastoma in children, the questions were directed to the rationale of therapy and the contribution of other forms of treatment to toxic effects. The best answer to the questions are reproduced together with an introduction by the examiner, Dr. H. Turner. tabs

  17. Diagnostic and therapeutic perspectives in nuclear medicine: radiolabelled biomolecules; Perspectivas diagnosticas y terapeuticas en medicina nuclear: biomoleculas radiomarcadas

    Energy Technology Data Exchange (ETDEWEB)

    Ferro F, G. [Gerencia de Aplicaciones Nucleares en la Salud. ININ, 11801 Mexico D.F. (Mexico); Murphy, C.A. de; Pedraza L, M. [Departamento de Medicina Nuclear. Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico D.F. (Mexico); Melendez A, L. [Facultad de Medicina, UAEM, 50000 Toluca, Estado de Mexico (Mexico)

    2003-07-01

    From their beginning, the radiopharmaceuticals chemistry has gone to the study of the molecular chemistry. The radiopharmaceuticals are only in their capacity to detect such specific biochemical places as the receivers and the enzymes. With the recent obtaining of the complete structural sequence of the genome, it doesn't fit doubt of the importance that they have acquired the molecular images for the study from the genetic information to the alterations phenotypic in the chemistry of the human body. So, the future of the diagnostic and therapeutic nuclear medicine, practically is based in the study of protein fragments, peptide structures and chains of DNA radiolabelled for the study of the metabolism In vivo. These investigations represent a substantial change in those paradigms of the pharmaceutical development, when using the own organic capacities as source of medications, instead of considering to the organism like a simple assay tube where molecules act, like they are most of the traditional medications. The investigation of new techniques to design complex stable of Tc-99m, Re-188, Lu-177, Y-90 and Dy-166/Ho-l66 with biomolecules that don't alter the specificity and in general the molecular properties of the same ones. it is a topic of world interest in the environment of the radiopharmaceutical chemistry. In this work some achievements and perspectives are presented on those main diagnostic and therapeutic radiopharmaceuticals of third generation. (Author)

  18. Diagnostic and therapeutic perspectives in nuclear medicine: radiolabelled biomolecules; Perspectivas diagnosticas y terapeuticas en medicina nuclear: biomoleculas radiomarcadas

    Energy Technology Data Exchange (ETDEWEB)

    Ferro F, G [Gerencia de Aplicaciones Nucleares en la Salud. ININ, 11801 Mexico D.F. (Mexico); Murphy, C.A. de; Pedraza L, M [Departamento de Medicina Nuclear. Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico D.F. (Mexico); Melendez A, L [Facultad de Medicina, UAEM, 50000 Toluca, Estado de Mexico (Mexico)

    2003-07-01

    From their beginning, the radiopharmaceuticals chemistry has gone to the study of the molecular chemistry. The radiopharmaceuticals are only in their capacity to detect such specific biochemical places as the receivers and the enzymes. With the recent obtaining of the complete structural sequence of the genome, it doesn't fit doubt of the importance that they have acquired the molecular images for the study from the genetic information to the alterations phenotypic in the chemistry of the human body. So, the future of the diagnostic and therapeutic nuclear medicine, practically is based in the study of protein fragments, peptide structures and chains of DNA radiolabelled for the study of the metabolism In vivo. These investigations represent a substantial change in those paradigms of the pharmaceutical development, when using the own organic capacities as source of medications, instead of considering to the organism like a simple assay tube where molecules act, like they are most of the traditional medications. The investigation of new techniques to design complex stable of Tc-99m, Re-188, Lu-177, Y-90 and Dy-166/Ho-l66 with biomolecules that don't alter the specificity and in general the molecular properties of the same ones. it is a topic of world interest in the environment of the radiopharmaceutical chemistry. In this work some achievements and perspectives are presented on those main diagnostic and therapeutic radiopharmaceuticals of third generation. (Author)

  19. Virtual reality as information for patients and their families in a therapeutic procedure in Nuclear Medicine

    International Nuclear Information System (INIS)

    Mendonça, S.F.; Nascimento, A.C.H.; Mol, A.C.A.; Marins, E.R.; Suíta, J.C.

    2017-01-01

    This work consists of the research and unification of the guidelines transmitted to the patients and their relatives in the radioiodine therapy procedures. The goal is to provide greater understanding of the use of nuclear radiation and better understanding of treatment, to help patients better adapt to therapy, to demystify misconceptions about radiation use, and to improve care for their protection and for people close to them. Based on written and verbal information, collected in the scientific literature and in loco, accompanying the routine of the therapeutic rooms of Nuclear Medicine Services (NMS) in Rio de Janeiro, the set of actions that define scenarios experienced by radioiodine therapy patients and their helpers is being generated. Based on this information, a virtual environment is being developed in the Virtual Reality Laboratory of the Institute of Nuclear Engineering (IEN/CNEN-RJ), Brazil, a virtual environment that will allow the visualization of the procedures and instructions passed to the patients by the NMS teams. With this virtual environment, the patient will be able to immersive visualize and experience the different phases of the treatment increasing the chances of efficiency of their participation in the process. (author)

  20. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    International Nuclear Information System (INIS)

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-01-01

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs

  1. The nuclear receptor PPARγ as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Nektaria Nicolakakis

    2010-05-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are ligand-activated nuclear transcription factors that regulate peripheral lipid and glucose metabolism. Three subtypes make up the PPAR family (α, γ, β/δ, and synthetic ligands for PPARα (fibrates and PPARγ (Thiazolidinediones, TZDs are currently prescribed for the respective management of dyslipidemia and type 2 diabetes. In contrast to the well characterized action of PPARs in the periphery, little was known about the presence or function of these receptors in the brain and cerebral vasculature, until fairly recently. Indeed, research in the last decade has uncovered these receptors in most brain cell types, and has shown that their activation, particularly that of PPARγ, is implicated in normal brain and cerebrovascular physiology, and confers protection under pathological conditions. Notably, accumulating evidence has highlighted the therapeutic potential of PPARγ ligands in the treatment of brain disorders such as Alzheimer’s disease (AD, leading to the testing of the TZDs pioglitazone and rosiglitazone in AD clinical trials. This review will focus on the benefits of PPARγ agonists for vascular, neuronal and glial networks, and assess the value of these compounds as future AD therapeutics in light of evidence from transgenic mouse models and recent clinical trials.

  2. Topics in clinical oncology. 15

    International Nuclear Information System (INIS)

    Cepcek, P.

    1987-12-01

    The monograph comprising primarily papers on topical subjects of oncology and cancer research, contains also a selection of papers presented at the 2. Congress of the Czechoslovak Society of Nuclear Medicine and Radiation Hygiene. Seven papers were selected on behalf of their subject related to clinical oncology. All of them were iputted in INIS; five of them deal with the scintiscanning of the skeleton of cancer patients, one with radioimmunodetection of tumors, and one with radionuclide lymphography. (A.K.)

  3. Nanomedicine in veterinary oncology.

    Science.gov (United States)

    Lin, Tzu-Yin; Rodriguez, Carlos O; Li, Yuanpei

    2015-08-01

    Nanomedicine is an interdisciplinary field that combines medicine, engineering, chemistry, biology and material sciences to improve disease management and can be especially valuable in oncology. Nanoparticle-based agents that possess functions such as tumor targeting, imaging and therapy are currently under intensive investigation. This review introduces the basic concept of nanomedicine and the classification of nanoparticles. Because of their favorable pharmacokinetics, tumor targeting properties, and resulting superior efficacy and toxicity profiles, nanoparticle-based agents can overcome several limitations associated with conventional diagnostic and therapeutic protocols in veterinary oncology. The two most important tumor targeting mechanisms (passive and active tumor targeting) and their dominating factors (i.e. shape, charge, size and nanoparticle surface display) are discussed. The review summarizes published clinical and preclinical studies that utilize different nanoformulations in veterinary oncology, as well as the application of nanoparticles for cancer diagnosis and imaging. The toxicology of various nanoformulations is also considered. Given the benefits of nanoformulations demonstrated in human medicine, nanoformulated drugs are likely to gain more traction in veterinary oncology. Published by Elsevier Ltd.

  4. Prophylactic and therapeutic management of oral complications related to chemotherapy and radiotherapy: role of dental oncology in cancer patient supportive therapy

    International Nuclear Information System (INIS)

    Buffarah, Henry Bittar

    2008-01-01

    Cancer patients under treatment of head and neck tumors as well as those under chemotherapy for hematologic cancers, such as lymphoma and leukemia, and those about to receive bone marrow grafts, do require preventive oral and dental care (prior to cancer treatment), as well as oral care during and after oncological treatment. Furthermore, chemo and radiotherapy-related adverse effects are also common in patients with other types of cancer, with an estimated frequency of 10 per cent in adjuvant chemotherapy (QT), 40 per cent in primary QT, 80 per cent in bone marrow transplantation, in which myeloablative regimens are introduced, and 100 per cent in head and neck radiotherapy, in which the targeted fields are those of the oral cavity. The dentist, specialized in dental oncology, works within the multidisciplinary team at the great centers of cancer treatment, contributing to improve the quality of life of these patients. The present review of literature and of the Guidelines for Management of Oral Complications of Chemotherapy and Head and Neck Radiation (US National Cancer Institute) aims to inform the clinical oncologist, the radio therapist, and other professionals about the resources available in Oral Supportive Therapy in both the prevention and managements of such complications. (author)

  5. Immunoscintigraphy in gynecological oncology

    International Nuclear Information System (INIS)

    Pateisky, N.

    1987-01-01

    Immunologic and radionuclide methods are used increasingly in diagnostics and therapy. This applies especially to problems of malignant diseases. Tumor localization diagnosis has gained much from immunoscintigraphy, a non-invasive method combining immunologic and nuclear medicine techniques. Activated monoclonal antibodies against tumorous antigens make it possible to show malignant tumors scintigraphically. An introduction is given to the technique as well as first results of applying immunoscintigraphy to gynecological oncology. (author)

  6. Single track coincidence measurements of fluorescent and plastic nuclear track detectors in therapeutic carbon beams

    International Nuclear Information System (INIS)

    Osinga, J-M; Jäkel, O; Ambrožová, I; Brabcová, K Pachnerová; Davídková, M; Akselrod, M S; Greilich, S

    2014-01-01

    In this paper we present a method for single track coincidence measurements using two different track detector materials. We employed plastic and fluorescent nuclear track detectors (PNTDs and FNTDs) in the entrance channel of a monoenergetic carbon ion beam covering the therapeutic energy range from 80 to 425 MeV/u. About 99% of all primary particle tracks detected by both detectors were successfully matched, while 1% of the particles were only detected by the FNTDs because of their superior spatial resolution. We conclude that both PNTDs and FNTDs are suitable for clinical carbon beam dosimetry with a detection efficiency of at least 98.82% and 99.83% respectively, if irradiations are performed with low fluence in the entrance channel of the ion beam. The investigated method can be adapted to other nuclear track detectors and offers the possibility to characterize new track detector materials against well-known detectors. Further, by combining two detectors with a restricted working range in the presented way a hybrid-detector system can be created with an extended and optimized working range

  7. Radiation oncology physics: A handbook for teachers and students

    International Nuclear Information System (INIS)

    Podgorsak, E.B.

    2005-07-01

    Radiotherapy, also referred to as radiation therapy, radiation oncology or therapeutic radiology, is one of the three principal modalities used in the treatment of malignant disease (cancer), the other two being surgery and chemotherapy. In contrast to other medical specialties that rely mainly on the clinical knowledge and experience of medical specialists, radiotherapy, with its use of ionizing radiation in the treatment of cancer, relies heavily on modern technology and the collaborative efforts of several professionals whose coordinated team approach greatly influences the outcome of the treatment. The radiotherapy team consists of radiation oncologists, medical physicists, dosimetrists and radiation therapy technologists: all professionals characterized by widely differing educational backgrounds and one common link - the need to understand the basic elements of radiation physics, and the interaction of ionizing radiation with human tissue in particular. This specialized area of physics is referred to as radiation oncology physics, and proficiency in this branch of physics is an absolute necessity for anyone who aspires to achieve excellence in any of the four professions constituting the radiotherapy team. Current advances in radiation oncology are driven mainly by technological development of equipment for radiotherapy procedures and imaging; however, as in the past, these advances rely heavily on the underlying physics. This book is dedicated to students and teachers involved in programmes that train professionals for work in radiation oncology. It provides a compilation of facts on the physics as applied to radiation oncology and as such will be useful to graduate students and residents in medical physics programmes, to residents in radiation oncology, and to students in dosimetry and radiotherapy technology programmes. The level of understanding of the material covered will, of course, be different for the various student groups; however, the basic

  8. Oncology PET imaging

    International Nuclear Information System (INIS)

    Inubushi, Masayuki

    2014-01-01

    At the beginning of this article, likening medical images to 'Where is Waldo?' I indicate the concept of diagnostic process of PET/CT imaging, so that medical physics specialists could understand the role of each imaging modality and infer our distress for image diagnosis. Then, I state the present situation of PET imaging and the basics (e.g. health insurance coverage, clinical significance, principle, protocol, and pitfall) of oncology FDG-PET imaging which accounts for more than 99% of all clinical PET examinations in Japan. Finally, I would like to give a wishful prospect of oncology PET that will expand to be more cancer-specific in order to assess therapeutic effects of emerging molecular targeted drugs targeting the 'hallmarks of cancer'. (author)

  9. Radiation oncology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Radiation Oncology Division has had as its main objectives both to operate an academic training program and to carry out research on radiation therapy of cancer. Since fiscal year 1975, following a directive from ERDA, increased effort has been given to research. The research activities have been complemented by the training program, which has been oriented toward producing radiation oncologists, giving physicians short-term experience in radiation oncology, and teaching medical students about clinical cancer and its radiation therapy. The purpose of the research effort is to improve present modalities of radiation therapy of cancer. As in previous years, the Division has operated as the Radiation Oncology Program of the Department of Radiological Sciences of the University of Puerto Rico School of Medicine. It has provided radiation oncology support to patients at the University Hospital and to academic programs of the University of Puerto Rico Medical Sciences Campus. The patients, in turn, have provided the clinical basis for the educational and research projects of the Division. Funding has been primarily from PRNC (approx. 40%) and from National Cancer Institute grants channeled through the School of Medicine (approx. 60%). Special inter-institutional relationships with the San Juan Veterans Administration Hospital and the Metropolitan Hospital in San Juan have permitted inclusion of patients from these institutions in the Division's research projects. Medical physics and radiotherapy consultations have been provided to the Radiotherapy Department of the VA Hospital

  10. Recent Trends in PET Image Interpretations Using Volumetric and Texture-based Quantification Methods in Nuclear Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Muhammad Kashif; Kim, Sung Eun; So, Hyeongryul; Kim, Hyung Jun; Cheon, Gi Jeong; Lee, Eun Seong; Kang, Keon Wook; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-03-15

    Image quantification studies in positron emission tomography/computed tomography (PET/CT) are of immense importance in the diagnosis and follow-up of variety of cancers. In this review we have described the current image quantification methodologies employed in {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) PET in major oncological conditions with particular emphasis on tumor heterogeneity studies. We have described various quantitative parameters being used in PET image analysis. The main contemporary methodology is to measure tumor metabolic activity; however, analysis of other image-related parameters is also increasing. Primarily, we have identified the existing role of tumor heterogeneity studies in major cancers using {sup 18}F-FDG PET. We have also described some newer radiopharmaceuticals other than {sup 18}F-FDG being studied/used in the management of these cancers. Tumor heterogeneity studies are being performed in almost all major oncological conditions using {sup 18}F-FDG PET. The role of these studies is very promising in the management of these conditions.

  11. Example of dealing with the accident during therapeutical application of Co-60 at one institute of oncology and radiology in Serbia

    International Nuclear Information System (INIS)

    Ilic, Z.; Perisic, J.; Vukcevic, M.; Joksic, G.; Spasojevic-Tisma, V.; Cuknic, O.; Milanovic, S.; Djuric, J.; Konstantinovic, J.; Ilic, Z.)

    2007-01-01

    This article describes an example of dealing with the accident during therapeutical application of Co-60 to a gynaecological patient. The accident happened when the sonde with Ca-60 drop out from the original postament, and was held by nurse and with bare hands storaged into his own special container [sr

  12. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide.

    Science.gov (United States)

    Korreman, Stine; Rasch, Coen; McNair, Helen; Verellen, Dirk; Oelfke, Uwe; Maingon, Philippe; Mijnheer, Ben; Khoo, Vincent

    2010-02-01

    The past decade has provided many technological advances in radiotherapy. The European Institute of Radiotherapy (EIR) was established by the European Society of Therapeutic Radiology and Oncology (ESTRO) to provide current consensus statement with evidence-based and pragmatic guidelines on topics of practical relevance for radiation oncology. This report focuses primarily on 3D CT-based in-room image guidance (3DCT-IGRT) systems. It will provide an overview and current standing of 3DCT-IGRT systems addressing the rationale, objectives, principles, applications, and process pathways, both clinical and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources needed for implementation. Two different but typical clinical cases (tonsillar and prostate cancer) using 3DCT-IGRT are illustrated with workflow processes via feedback questionnaires from several large clinical centres currently utilizing these systems. The feedback from these clinical centres demonstrates a wide variability based on local practices. This report whilst comprehensive is not exhaustive as this area of development remains a very active field for research and development. However, it should serve as a practical guide and framework for all professional groups within the field, focussed on clinicians, physicists and radiation therapy technologists interested in IGRT. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Novel diagnostic and therapeutic radionuclides for the development of innovative radiopharmaceuticals

    CERN Multimedia

    We propose the exploration of novel radionuclides with diagnostic or therapeutic properties from ISOLDE. Access to such unique isotopes will enable the fundamental research in radiopharmaceutical science towards superior treatment, e.g. in nuclear oncology. The systematic investigation of the biological response to the different characteristics of the decay radiation will be performed for a better understanding of therapeutic effects. The development of alternative diagnostic tools will be applied for the management and optimization of radionuclide therapy.

  14. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    Science.gov (United States)

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  15. Characterization of the behavior of three definitions of prostate-specific antigen-based biochemical failure in relation to detection and follow-up biases: comparison with the American Society for Therapeutic Radiology and Oncology consensus definition.

    Science.gov (United States)

    Williams, Scott G

    2006-03-01

    To examine the impact of detection biases on three prostate cancer biochemical failure (bF) definitions in comparison with the existing American Society for Therapeutic Radiology and Oncology Consensus Definition (ACD). Three alternative bF definitions were tested against the ACD: three rises in prostate-specific antigen (PSA) level without backdating, nadir plus 2 ng/mL, and a threshold PSA level of >3 ng/mL, according to data from 1050 men. The mean time between PSA tests (MTBT), regularity of collection, and calendar year of analysis were examined in each bF definition. The MTBT produced a statistically significant difference in the derived hazard ratio for identification of bF in all definitions. The influence of test regularity was statistically significant beyond the median level of regularity in all definitions. The year of analysis impacted greatly on the ACD, whereas the three alternative definitions exhibited minor follow-up duration variations by comparison. The alternative definitions had reliable follow-up when the crude median time to censoring was at least 1.6 times greater than that of failure. Detection biases will always be a significant issue in defining bF. A number of alternative failure definitions have more predictable interactions with these biases than the existing ACD.

  16. Characterization of the behavior of three definitions of prostate-specific antigen-based biochemical failure in relation to detection and follow-up biases: Comparison with the American Society for Therapeutic Radiology and Oncology consensus definition

    International Nuclear Information System (INIS)

    Williams, Scott G.

    2006-01-01

    Purpose: To examine the impact of detection biases on three prostate cancer biochemical failure (bF) definitions in comparison with the existing American Society for Therapeutic Radiology and Oncology Consensus Definition (ACD). Methods and Materials: Three alternative bF definitions were tested against the ACD: three rises in prostate-specific antigen (PSA) level without backdating, nadir plus 2 ng/mL, and a threshold PSA level of >3 ng/mL, according to data from 1050 men. The mean time between PSA tests (MTBT), regularity of collection, and calendar year of analysis were examined in each bF definition. Results: The MTBT produced a statistically significant difference in the derived hazard ratio for identification of bF in all definitions. The influence of test regularity was statistically significant beyond the median level of regularity in all definitions. The year of analysis impacted greatly on the ACD, whereas the three alternative definitions exhibited minor follow-up duration variations by comparison. The alternative definitions had reliable follow-up when the crude median time to censoring was at least 1.6 times greater than that of failure. Conclusions: Detection biases will always be a significant issue in defining bF. A number of alternative failure definitions have more predictable interactions with these biases than the existing ACD

  17. Activities of radiopharmaceuticals administered for diagnostic and therapeutic procedures in nuclear medicine in Argentina: results of a national survey

    International Nuclear Information System (INIS)

    Bomben, Ana M.; Chiliutti, Claudia A.

    2004-01-01

    Nuclear medicine in Argentine is carried out at 292 centres, distributed all over the country, mainly concentrated in the capital cities of the provinces. With the purpose of knowing the activity levels of radiopharmaceuticals that were administered to patients for diagnostic and therapeutic procedures in nuclear medicine, a national survey was conducted, during 2001 and 2002. This survey was answered voluntarily by 107 centres. Sixty-four percent of the participants centres are equipped with SPECT system while the other centres have a gamma camera or scintiscanner. There were 37 nuclear medicine procedures, chosen among those most frequently performed, were included in the survey. In those diagnostic procedures were included tests for: bone, brain, thyroid, kidney, liver, lung and cardiovascular system; and also activities administered for some therapeutic procedures. The nuclear medicine physicians reported the different radiopharmaceutical activities administered to typical adult patients. In this paper are presented the average radiopharmaceutical activity administered for each of the diagnostic and therapeutic procedures included in the survey and the range and distribution of values. In order to place these data in a frame of reference, these average values were compared to the guidance levels for diagnostic procedures in nuclear medicine mentioned at the Safety Series no. 115. From this comparison it was noticed that the activities administered in the 40% of the diagnostic procedures included in the survey were between ±30% of the reference values. For those nuclear medicine procedures that could not be compared with the above mentioned guidance levels, the comparison was made with values published by UNSCEAR or standards recommended by international bodies. As a result of this study, it is important to point out the need to continue the gathering of data in a wider scale survey to increase the knowledge about national trends. It is also essential to widely

  18. Molecular methods in nuclear medicine therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2001-01-01

    Nuclear medicine has traditionally contributed to molecular oncology by allowing noninvasive monitoring of tumor metabolism, growth and genetic changes, thereby providing a basis for appropriate biology-based treatment planning. However, NM techniques are now being applied as an active therapeutic tool in novel molecular approaches for cancer treatment. Such areas include research on cancer therapy with radiolabeled ligands or oligonucleotides, and utilization of synergism between NM radiotherapy and gene transfer techniques. Here we will focus on novel aspects of nuclear medicine therapy

  19. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  20. Oncology in Cambodia.

    Science.gov (United States)

    Eav, S; Schraub, S; Dufour, P; Taisant, D; Ra, C; Bunda, P

    2012-01-01

    Cambodia, a country of 14 million inhabitants, was devastated during the Khmer Rouge period and thereafter. The resources of treatment are rare: only one radiotherapy department, renovated in 2003, with an old cobalt machine; few surgeons trained to operate on cancer patients; no hematology; no facilities to use intensive chemotherapy; no nuclear medicine department and no palliative care unit. Cervical cancer incidence is one of the highest in the world, while in men liver cancer ranks first (20% of all male cancers). Cancers are seen at stage 3 or 4 for 70% of patients. There is no prevention program - only a vaccination program against hepatitis B for newborns - and no screening program for cervical cancer or breast cancer. In 2010, oncology, recognized as a full specialty, was created to train the future oncologists on site at the University of Phnom Penh. A new National Cancer Center will be built in 2013 with modern facilities for radiotherapy, medical oncology, hematology and nuclear medicine. Cooperation with foreign countries, especially France, and international organizations has been established and is ongoing. Progress is occurring slowly due to the shortage of money for Cambodian institutions and the lay public. Copyright © 2012 S. Karger AG, Basel.

  1. Reactor-produced therapeutic radioisotopes

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    2002-01-01

    The significant worldwide increase in therapeutic radioisotope applications in nuclear medicine, oncology and interventional cardiology requires the dependable production of sufficient levels of radioisotopes for these applications (Reba, 2000; J. Nucl. Med., 1998; Nuclear News, 1999; Adelstein and Manning, 1994). The issues associated with both accelerator- and reactor-production of therapeutic radioisotopes is important. Clinical applications of therapeutic radioisotopes include the use of both sealed sources and unsealed radiopharmaceutical sources. Targeted radiopharmaceutical agents include those for cancer therapy and palliation of bone pain from metastatic disease, ablation of bone marrow prior to stem cell transplantation, treatment modalities for mono and oligo- and polyarthritis, for cancer therapy (including brachytherapy) and for the inhibition of the hyperplastic response following coronary angioplasty and other interventional procedures (For example, see Volkert and Hoffman, 1999). Sealed sources involve the use of radiolabeled devices for cancer therapy (brachytherapy) and also for the inhibition of the hyperplasia which is often encountered after angioplasty, especially with the exponential increase in the use of coronary stents and stents for the peripheral vasculature and other anatomical applications. Since neutron-rich radioisotopes often decay by beta decay or decay to beta-emitting daughter radioisotopes which serve as the basis for radionuclide generator systems, reactors are expected to play an increasingly important role for the production of a large variety of therapeutic radioisotopes required for these and other developing therapeutic applications. Because of the importance of the availability of reactor-produced radioisotopes for these applications, an understanding of the contribution of neutron spectra for radioisotope production and determination of those cross sections which have not yet been established is important. This

  2. Evaluation The Result Of Treating 1200 Patients Brain Tumor And Some Intracranial Diseases By Rotating GAMMA Knife (RGK) At The Nuclear Medicine And Oncology Center, Bach Mai Hospital

    International Nuclear Information System (INIS)

    Mai Trong Khoa; Nguyen Quang Hung; Tran Dinh Ha

    2011-01-01

    The paper is evaluating results of treating brain tumor and some intracranial diseases by rotating gamma knife (RGK) at The Nuclear Medicine and Oncology Center, Bach Mai Hospital, from July 2007 to August 2010, for 1200 patients treated with RGK. In 1200 patients - average age: 42.6 years old, Male/Female ratio:1/1.08 - pituitary tumors accounted for 19.8%, meningioma 18.3%, arteriovenous malformations (AVM) (16.7%), acoustic neuroma (8.7%), brain metastases (7.5%), craniopharyngeal tumor (5.0%), pineal tumor (3.5%), cavernoma (6%), astrocytoma (5.2%), meduloblastoma (2.9%), ependymoma (2.6%), others (3.8%). Average target volume: minimum 0.6cm 3 , maximum 27.6cm 3 , median 6.2 ± 4.6 cm 3 . Average radiosurgery dose changed depend on nature of the tumor: pituitary tumor (12.4 Gy), meningioma (18.8 Gy), AVM (18 Gy), acoustic neuroma (14.6 Gy), brain metastases (18.2 Gy), craniopharyngeal tumor (12.8 Gy), pineal tumor (16.3 Gy), cavernoma (17.5 Gy), astrocytoma (14.6 Gy), medulloblastoma (16.1 Gy), ependymoma (16.3 Gy), others (15 Gy). Conclusions: Almost case have improved clinical symptoms significantly: 80.2% after 1 month (complete response 20.2%), 100% at 36th month (complete response: 94%). Size of the tumor were reduced remarkably. Treatment were safe, no death or severe complications were observed within and after radiosurgery. (author)

  3. PET / MRI vs. PET / CT. Indications Oncology

    International Nuclear Information System (INIS)

    Oliva González, Juan P.

    2016-01-01

    Hybrid techniques in Nuclear Medicine is currently a field in full development for diagnosis and treatment of various medical conditions. With the recent advent of PET / MRI much it speculated about whether or not it is superior to PET / CT especially in oncology. The Conference seeks to clarify this situation by dealing issues such as: State of the art technology PET / MRI; Indications Oncology; Some clinical cases. It concludes by explaining the oncological indications of both the real and current situation of the PET / MRI. (author)

  4. Application of new nuclear track microporous membrane in transdermal therapeutic system (TTS)

    International Nuclear Information System (INIS)

    Risheng Wu; Jian Zhou; Wei Ke

    1993-01-01

    Newly-developed Nuclear Track Microporous Membrane, which is formed by alpha particle irradiation with greatly reduced cost, is first used as the drug release rate controlling membrane for TTS patch. It shows good zero order release kinetics and its released quantity of drugs can be regulated conveniently by changing its porosity instead of changing the area of other control membrane used abroad. Its high benefit-cost ratio and improved TTS performances manifest the superiority and great potential of the newly developed Nuclear Track Microporous membrane. (Author)

  5. Rabbit Oncology : Diseases, Diagnostics, and Therapeutics

    NARCIS (Netherlands)

    van Zeeland, Yvonne

    Neoplasia has long been reported as a rare finding in rabbits, but over the past decades the number of reports on neoplastic disease in rabbits has risen considerably. Similar to other animals, neoplastic changes may occur in any organ system, but the rate in which the organ systems are affected

  6. Neuro-Oncology Branch

    Science.gov (United States)

    ... BTTC are experts in their respective fields. Neuro-Oncology Clinical Fellowship This is a joint program with ... can increase survival rates. Learn more... The Neuro-Oncology Branch welcomes Dr. Mark Gilbert as new Branch ...

  7. The context of oncology nursing practice: an integrative review.

    Science.gov (United States)

    Bakker, Debra; Strickland, Judith; Macdonald, Catherine; Butler, Lorna; Fitch, Margaret; Olson, Karin; Cummings, Greta

    2013-01-01

    In oncology, where the number of patients is increasing, there is a need to sustain a quality oncology nursing workforce. Knowledge of the context of oncology nursing can provide information about how to create practice environments that will attract and retain specialized oncology nurses. The aims of this review were to determine the extent and quality of the literature about the context of oncology nursing, explicate how "context" has been described as the environment where oncology nursing takes place, and delineate forces that shape the oncology practice environment. The integrative review involved identifying the problem, conducting a structured literature search, appraising the quality of data, extracting and analyzing data, and synthesizing and presenting the findings. Themes identified from 29 articles reflected the surroundings or background (structural environment, world of cancer care), and the conditions and circumstances (organizational climate, nature of oncology nurses' work, and interactions and relationships) of oncology nursing practice settings. The context of oncology nursing was similar yet different from other nursing contexts. The uniqueness was attributed to the dynamic and complex world of cancer control and the personal growth that is gained from the intense therapeutic relationships established with cancer patients and their families. The context of healthcare practice has been linked with patient, professional, or system outcomes. To achieve quality cancer care, decision makers need to understand the contextual features and forces that can be modified to improve the oncology work environment for nurses, other providers, and patients.

  8. Urological oncology. 2. ed.

    International Nuclear Information System (INIS)

    Ammon, J.; Karstens, J.H.; Rathert, P.

    1981-01-01

    The cooperation between urologists and radiologists has brought about new ideas for the therapy of malignant tumours of the urogenital tract. This and the development of new techniques of diagnosis and therapy has brought about a need for revision of present diagnostic and therapeutical conceptions. With the introduction of the TNM classification system for nearly all tumours of the urogenital system, it has become obligatory to have a list of indications for the various techniques to determine the T-, N-, or M-nature of a tumour. Except for tumours of the female genitals, also diagnosis and therapy are based on the new classification system. The use of computerized tomography will have to be re-evaluated. To say the least, it is a decisive aid in physical and technical irradiation planning. The fundamentals of systematic diagnosis and therapy are listed in a table. Cytostatic treatment and combined radio-/chemotherapy must be considered. Side-effects of radiotherapy and their treatment are of practical importance. Post-therapeutical treatment receives special attention. The documented cooperation between radiophysics, radiobiology, radiology, and urology has yielded new knowledge in the sense of a comprehensive conception of urological oncology. (orig./MG) [de

  9. Not only PET for oncological disorders

    International Nuclear Information System (INIS)

    Soroa, V.E.; victoriasoroa@fibertel. com.ar; Velasques Espeche, M. del H.; Garcia, Luis M.

    2004-01-01

    Full text: Our data with oncological patients evaluated through planar and single photon emission tomography (SPECT) gamma cameras over a period of more than 20 years, confirms the value of this technique, although PET is superior in sensitivity. The greater availability of radiotracers labeled with In-111 and Tc-99m has helped in identifying malignant tissue more accurately. In Latin America availability of PET is restricted to one or two Nuclear Medicine Departments in few countries of the Region. Our aim was to reaffirm the value of planar and SPECT imaging in early diagnosis, in the oncological follow-up and determining response to treatment. Bone scan, a well established imaging modality for search of metastatic pathologies (breast, prostate, lung and kidney) forms more than 56% of the studies requested monthly in our Nuclear Medicine Departments. When solitary peripheral lesions are detected in ribs and long bones the orthopedic surgeon sometimes requires external skin marking for biopsy procedure (1-2%). Twenty-six percent of consultations are thyroid cancer, where different therapeutic doses of I-131 are administered. Gallium-67 scanning constitutes 8-10% of our workload. About 10 mCi (370 MBq) of radioactivity is administered, mainly for stratification and monitoring response of Hodgkin's Lymphoma and Non-Hodgkin's Lymphoma. Sentinel node detection (5-6% of patients) with different colloid preparations and hand-held probes is used in breast, melanoma, neck and head cancers. In our center we have achieved an accuracy rate of 92-94% in detecting Sentinel Lymph Nodes after three years of practice. The demand for scintimammography (in dense breasts and breast implants) for palpable masses, through planar scans is increasing. In-111 labeled somatostatin an analogue imaging for detection of neuro-endocrine tumors was seldom requested in our country because of their high cost, until the labeling methods were developed locally and transferred to private commercial

  10. Nicotinic Acid-Mediated Activation of Both Membrane and Nuclear Receptors towards Therapeutic Glucocorticoid Mimetics for Treating Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    W. Todd Penberthy

    2009-01-01

    Full Text Available Acute attacks of multiple sclerosis (MS are most commonly treated with glucocorticoids, which can provide life-saving albeit only temporary symptomatic relief. The mechanism of action (MOA is now known to involve induction of indoleamine 2,3-dioxygenase (IDO and interleukin-10 (IL-10, where IL-10 requires subsequent heme oxygenase-1 (HMOX-1 induction. Ectopic expression studies reveal that even small changes in expression of IDO, HMOX-1, or mitochondrial superoxide dismutase (SOD2 can prevent demyelination in experimental autoimmune encephalomyelitis (EAE animal models of MS. An alternative to glucocorticoids is needed for a long-term treatment of MS. A distinctly short list of endogenous activators of both membrane G-protein-coupled receptors and nuclear peroxisome proliferating antigen receptors (PPARs demonstrably ameliorate EAE pathogenesis by MOAs resembling that of glucocorticoids. These dual activators and potential MS therapeutics include endocannabinoids and the prostaglandin 15-deoxy-Δ12,14-PGJ2. Nicotinamide profoundly ameliorates and prevents autoimmune-mediated demyelination in EAE via maintaining levels of nicotinamide adenine dinucleotide (NAD, without activating PPAR nor any G-protein-coupled receptor. By comparison, nicotinic acid provides even greater levels of NAD than nicotinamide in many tissues, while additionally activating the PPAR-dependent pathway already shown to provide relief in animal models of MS after activation of GPR109a/HM74a. Thus nicotinic acid is uniquely suited for providing therapeutic relief in MS. However nicotinic acid is unexamined in MS research. Nicotinic acid penetrates the blood brain barrier, cures pellagric dementia, has been used for over 50 years clinically without toxicity, and raises HDL concentrations to a greater degree than any pharmaceutical, thus providing unparalleled benefits against lipodystrophy. Summary analysis reveals that the expected therapeutic benefits of high-dose nicotinic

  11. Assessment of higher order structure comparability in therapeutic proteins using nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Amezcua, Carlos A; Szabo, Christina M

    2013-06-01

    In this work, we applied nuclear magnetic resonance (NMR) spectroscopy to rapidly assess higher order structure (HOS) comparability in protein samples. Using a variation of the NMR fingerprinting approach described by Panjwani et al. [2010. J Pharm Sci 99(8):3334-3342], three nonglycosylated proteins spanning a molecular weight range of 6.5-67 kDa were analyzed. A simple statistical method termed easy comparability of HOS by NMR (ECHOS-NMR) was developed. In this method, HOS similarity between two samples is measured via the correlation coefficient derived from linear regression analysis of binned NMR spectra. Applications of this method include HOS comparability assessment during new product development, manufacturing process changes, supplier changes, next-generation products, and the development of biosimilars to name just a few. We foresee ECHOS-NMR becoming a routine technique applied to comparability exercises used to complement data from other analytical techniques. Copyright © 2013 Wiley Periodicals, Inc.

  12. Introduction to veterinary clinical oncology

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Veterinary clinical oncology involves a multidisciplinary approach to the recognition and management of spontaneously occurring neoplasms of domestic animals. This requires some knowledge of the causes, incidence, and natural course of malignant disease as it occurs in domestic species. The purpose of this course is to acquaint you with the more common neoplastic problems you will encounter in practice, so that you can offer your clients an informed opinion regarding prognosis and possible therapeutic modalities. A major thrust will be directed toward discussing and encouraging treatment/management of malignant disease. Multimodality therapy will be stressed. 10 refs., 3 tabs.

  13. New trends and possibilities in nuclear medicine

    International Nuclear Information System (INIS)

    Schmidt, H.A.E.; Csernay, L.

    1988-01-01

    The abstracts of this book mainly deal with the results of scientific work in diagnostic nuclear medicine, radiobiology, dosimetry, medical physics, radiopharmacology and biochemistry. Clinical and experimental data are presented within the fields of endocrinology, cardiology, pulmonology, gastroenterology, neurology, nephrology, osteology, hematology and oncology (- even including diagnostic and therapeutic aspects of labelled monoclonal antibodies). Basic information about instrumentation (PET, SPECT, NMR), artificial intelligence and qualitiy control is given. Separate abstracts are prepared for 189 papers. (TRV) With 363 figs., 143 tabs

  14. Chemical disease-free survival in localized carcinoma of prostate treated with external beam irradiation: comparison of American Society of Therapeutic Radiology and Oncology Consensus or 1 ng/mL as endpoint

    International Nuclear Information System (INIS)

    Perez, Carlos A.; Michalski, Jeff M.; Lockett, Mary Ann

    2001-01-01

    Purpose: To compare postirradiation biochemical disease-free survival using the American Society of Therapeutic Radiology and Oncology (ASTRO) Consensus or elevation of postirradiation prostate-specific antigen (PSA) level beyond 1 ng/mL as an endpoint and correlate chemical failure with subsequent appearance of clinically detected local recurrence or distant metastasis. Methods and Materials: Records of 466 patients with histologically confirmed adenocarcinoma of the prostate treated with irradiation alone between January 1987 and December 1995 were analyzed; 339 patients were treated with bilateral 120 deg. arc rotation and, starting in 1992, 117 with three-dimensional conformal irradiation. Doses were 68-77 Gy in 1.8 to 2 Gy daily fractions. Minimum follow-up is 4 years (mean, 5.5 years; maximum, 9.6 years). A chemical failure was recorded using the ASTRO Consensus or when postirradiation PSA level exceeded 1 ng/mL at any time. Clinical failures were determined by rectal examination, radiographic studies, and, when clinically indicated, biopsy. Results: Six-year chemical disease-free survival rates using the ASTRO Consensus according to pretreatment PSA level for T1 tumors were: ≤4 ng/mL, 100%; 4.1-20 ng/mL, 80%; and >20 ng/mL, 50%. For T2 tumors the rates were: ≤4 ng/mL, 91%; 4.1-10 ng/mL, 81%; 10.1-20 ng/mL, 55%; 20.1-40 ng/mL, 63%; and >40 ng/mL, 46%. When postirradiation PSA levels higher than 1 ng/mL were used, the corresponding 6-year chemical disease-free survival rates for T1 tumors were 92% for pretreatment PSA levels of ≤4 ng/mL, 58-60% for levels of 4.1-20 ng/mL, and 30% for levels >20 ng/mL. For T2 tumors, the 6-year chemical disease-free survival rates were 78% in patients with pretreatment PSA levels of 4-10 ng/mL, 45% for 10.1-40 ng/mL, and 25% for >40 ng/mL. Of 167 patients with T1 tumors, 30 (18%) developed a chemical failure, 97% within 5 years from completion of radiation therapy; no patient has developed a local recurrence or distant

  15. Oncology of Reptiles: Diseases, Diagnosis, and Treatment.

    Science.gov (United States)

    Christman, Jane; Devau, Michael; Wilson-Robles, Heather; Hoppes, Sharman; Rech, Raquel; Russell, Karen E; Heatley, J Jill

    2017-01-01

    Based on necropsy review, neoplasia in reptiles has a comparable frequency to that of mammals and birds. Reptile neoplasia is now more frequently diagnosed in clinical practice based on increased use of advanced diagnostic techniques and improvements in reptilian husbandry allowing greater longevity of these species. This article reviews the current literature on neoplasia in reptiles, and focuses on advanced diagnostics and therapeutic options for reptilian patientssuffering neoplastic disease. Although most applied clinical reptile oncology is translated from dog and cat oncology, considerations specific to reptilian patients commonly encountered in clinical practice (turtles, tortoises, snakes, and lizards) are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Guidelines on oncologic imaging

    International Nuclear Information System (INIS)

    1989-01-01

    The present issue of European Journal of Radiology is devoted to guidelines on oncologic imaging. 9 experts on imaging in suspected or evident oncologic disease have compiled a broad survey on strategies as well as techniques on oncologic imaging. The group gives advice for detecting tumours at specific tumour sites and use modern literature to emphasize their recommendations. All recommendations are short, comprehensive and authoritative. (orig./MG)

  17. Career opportunities in oncology.

    Science.gov (United States)

    Farrow, L

    Oncology nursing offers nurses a wide range of opportunities. Nurses need a wide range of skills in order to care for patients who may have acute oncological illnesses or require palliative care. The nature of the nurse/patient relationship can be intense. Nurses generally find this enhances job satisfaction. The pressures exerted on nurses working in oncology can be immense. Oncology nursing is rewarding but very demanding and therefore the nurse has to be resourceful. Early career planning is advisable to take advantage of the opportunities that are currently available.

  18. Acute oncological emergencies.

    LENUS (Irish Health Repository)

    Gabriel, J

    2012-01-01

    The number of people receiving systemic anti-cancer treatment and presenting at emergency departments with treatment-related problems is rising. Nurses will be the first point of contact for most patients and need to be able to recognise oncological emergencies to initiate urgent assessment of patients and referral to the acute oncology team so that the most appropriate care can be delivered promptly. This article discusses the role of acute oncology services, and provides an overview of the most common acute oncological emergencies.

  19. Precision medicine in oncology: New practice models and roles for oncology pharmacists.

    Science.gov (United States)

    Walko, Christine; Kiel, Patrick J; Kolesar, Jill

    2016-12-01

    Three different precision medicine practice models developed by oncology pharmacists are described, including strategies for implementation and recommendations for educating the next generation of oncology pharmacy practitioners. Oncology is unique in that somatic mutations can both drive the development of a tumor and serve as a therapeutic target for treating the cancer. Precision medicine practice models are a forum through which interprofessional teams, including pharmacists, discuss tumor somatic mutations to guide patient-specific treatment. The University of Wisconsin, Indiana University, and Moffit Cancer Center have implemented precision medicine practice models developed and led by oncology pharmacists. Different practice models, including a clinic, a clinical consultation service, and a molecular tumor board (MTB), were adopted to enhance integration into health systems and payment structures. Although the practice models vary, commonalities of three models include leadership by the clinical pharmacist, specific therapeutic recommendations, procurement of medications for off-label use, and a research component. These three practice models function as interprofessional training sites for pharmacy and medical students and residents, providing an important training resource at these institutions. Key implementation strategies include interprofessional involvement, institutional support, integration into clinical workflow, and selection of model by payer mix. MTBs are a pathway for clinical implementation of genomic medicine in oncology and are an emerging practice model for oncology pharmacists. Because pharmacists must be prepared to participate fully in contemporary practice, oncology pharmacy residents must be trained in genomic oncology, schools of pharmacy should expand precision medicine and genomics education, and opportunities for continuing education in precision medicine should be made available to practicing pharmacists. Copyright © 2016 by the

  20. Basic radiation oncology

    International Nuclear Information System (INIS)

    Beyzadeoglu, M. M.; Ebruli, C.

    2008-01-01

    Basic Radiation Oncology is an all-in-one book. It is an up-to-date bedside oriented book integrating the radiation physics, radiobiology and clinical radiation oncology. It includes the essentials of all aspects of radiation oncology with more than 300 practical illustrations, black and white and color figures. The layout and presentation is very practical and enriched with many pearl boxes. Key studies particularly randomized ones are also included at the end of each clinical chapter. Basic knowledge of all high-tech radiation teletherapy units such as tomotherapy, cyberknife, and proton therapy are also given. The first 2 sections review concepts that are crucial in radiation physics and radiobiology. The remaining 11 chapters describe treatment regimens for main cancer sites and tumor types. Basic Radiation Oncology will greatly help meeting the needs for a practical and bedside oriented oncology book for residents, fellows, and clinicians of Radiation, Medical and Surgical Oncology as well as medical students, physicians and medical physicists interested in Clinical Oncology. English Edition of the book Temel Radyasyon Onkolojisi is being published by Springer Heidelberg this year with updated 2009 AJCC Staging as Basic Radiation Oncology

  1. Cancer Patients and Oncology Nursing: Perspectives of Oncology ...

    African Journals Online (AJOL)

    Background and Aim: Burnout and exhaustion is a frequent problem in oncology nursing. The aim of this study is to evaluate the aspects of oncology nurses about their profession in order to enhance the standards of oncology nursing. Materials and Methods: This survey was conducted with 70 oncology nurses working at ...

  2. Oncology Advanced Practitioners Bring Advanced Community Oncology Care.

    Science.gov (United States)

    Vogel, Wendy H

    2016-01-01

    Oncology care is becoming increasingly complex. The interprofessional team concept of care is necessary to meet projected oncology professional shortages, as well as to provide superior oncology care. The oncology advanced practitioner (AP) is a licensed health care professional who has completed advanced training in nursing or pharmacy or has completed training as a physician assistant. Oncology APs increase practice productivity and efficiency. Proven to be cost effective, APs may perform varied roles in an oncology practice. Integrating an AP into an oncology practice requires forethought given to the type of collaborative model desired, role expectations, scheduling, training, and mentoring.

  3. Cellular and molecular mechanisms of chronic rhinosinusitis and potential therapeutic strategies: review on cytokines, nuclear factor kappa B and transforming growth factor beta.

    Science.gov (United States)

    Phan, N T; Cabot, P J; Wallwork, B D; Cervin, A U; Panizza, B J

    2015-07-01

    Chronic rhinosinusitis is characterised by persistent inflammation of the sinonasal mucosa. Multiple pathophysiological mechanisms are likely to exist. Previous research has focused predominantly on T-helper type cytokines to highlight the inflammatory mechanisms. However, proteins such as nuclear factor kappa B and transforming growth factor beta are increasingly recognised to have important roles in sinonasal inflammation and tissue remodelling. This review article explores the roles of T-helper type cytokines, nuclear factor kappa B and transforming growth factor beta in the pathophysiological mechanisms of chronic rhinosinusitis. An understanding of these mechanisms will allow for better identification and classification of chronic rhinosinusitis endotypes, and, ultimately, improved therapeutic strategies.

  4. Rhabdomyosarcoma: The Experience of the Pediatric Unit of Kasr El-Aini Center of Radiation Oncology and Nuclear Medicine (NEMROCK) (from January 1992 to January 2001)

    International Nuclear Information System (INIS)

    Abdel Aal, H.H.; Habib, E.E.; Mishrif, M.M.

    2006-01-01

    Our present study is a retrospective analysis of the treatment results of new rhabdomyosarcoma pediatric patients who had attended the pediatric unit clinic of Kasr El-Aini Center of Radiation Oncology and Nuclear Medicine (NEMROCK) from January 1992 to January 200 I). Patients and Methods: Fifty-five new cases of pediatric rhabdomyosarcoma attended the pediatric unit outpatient clinic of (NEMROCK) from the period of January 1992 until January 200 I. Patients were divided into 4 stages and classified into low-risk patients and high-risk patients according to the extent of resection. Stage I, II orbital and stage I para-testicular embryonal rhabdomyosarcomas received 32 weeks of vincristine and actinomycin-D (vincristine 1.5 mg/m 2 weekly, actinomycin-D 0.015 mg/ Kg/day day 1 to day 5). Other pathologies, sites and stages received 52 weeks of chemotherapy. Chemotherapy regimens included VAC (vincristine 1.5 mg/m 2 weekly, actinomycin-D 0.015 mg/Kg/day day 1 to day 5 and endoxan 2.2 gm/m 2 LV with mesna every 21 days), VAl (vincristine, actinomycin-D and ifosfamide 1.8 gm/m2 l.V day 1 to day 5 with mesna) or VIE (vincristine, ifosfamide and vepesid 100 mg/m 2 1. V day 1 to day 5) [11,12]. Stages I and II received conventional fractionation radiotherapy 4140 c Gy on week 13, stages Ill and IV received conventional fractionation radiation therapy 5040 c Gy also, on week 13. The radiation volume included the tumor bed with a 2 cm safety margin at least. Relapsing cases received palliative radiation therapy and chemotherapy (cisplatinum LV 100 mg/m 2 divided over 2 days and vepesid 100 mg/m2 l.V day 1 to day 3 to be recycled every 21 days). Patients were followed-up for 5 years, with a median follow-up of 36 months. Overall survival, disease free survival, treatment response, and complications of treatment were assessed and statistically analyzed. Results: Fifty-five new cases of pediatric rhabdomy-osarcoma attended the pediatric unit outpatient clinic of (NEMROCK) and

  5. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    OpenAIRE

    Sanal, Madhusudana Girija

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence e...

  6. Psychosocial Issues in Pediatric Oncology

    Science.gov (United States)

    Marcus, Joel

    2012-01-01

    Psychosocial oncology, a relatively new discipline, is a multidisciplinary application of the behavioral and social sciences, and pediatric psychosocial oncology is an emerging subspecialty within the domain of psychosocial oncology. This review presents a brief overview of some of the major clinical issues surrounding pediatric psychosocial oncology. PMID:23049457

  7. Metabolic complications in oncology

    International Nuclear Information System (INIS)

    Sycova-Mila, Z.

    2012-01-01

    Currently, a lot of space and time is devoted to the therapy of oncologic diseases itself. To reach the good therapy results, complex care of the oncologic patient is needed. Management of complications linked with the disease itself and management of complications emerged after administration of chemotherapy, radiotherapy or targeted therapy, plays a significant role. In addition to infectious, hematological, neurological, cardiac or other complications, metabolic complications are relatively extensive and serious. One of the most frequent metabolic complications in oncology is tumor lysis syndrome, hyperuricemia, hypercalcaemia and syndrome of inappropriate secretion of antidiuretic hormone. (author)

  8. IAEA Syllabus for the Education and Training of Radiation Oncologists. Endorsed by the American Society for Radiation Oncology (ASTRO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) (Spanish Edition); Programa de estudios y capacitacion del OIEA para la formacion de radiooncologos. Aprobado por la Sociedad Americana de Radioterapia y Oncologia (ASTRO) y la Sociedad Europea de Radioterapia y Oncologia (ESTRO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-15

    Cancer is one of the leading causes of death globally and cancer incidence is predicted to increase, especially in developing countries. Almost 13% of all deaths worldwide are caused by cancer. In 2005, there were more than 7.6 million cancer deaths worldwide and 10 million newly diagnosed cases of cancer. Today there are more new cancer cases every year in lowmiddle income (LMI) countries than in industrialized countries, and cancer rates are projected to increase significantly in developing countries. By 2020, two-thirds of the projected 10 million annual cancer deaths will be in developing countries. Radiotherapy plays a fundamental role in the continuum of cancer care. However, this technology is not comprehensively provided and in some countries not provided at all. According to the IAEA's Directory of Radiotherapy Centers (DIRAC), as of January 2004 there were about 2000 radiotherapy centres in the developing world with fewer than 2500 teletherapy machines dedicated to cancer therapy. The deficit is not just one of machines - each radiotherapy facility needs trained staff (radiation oncologists, medical physicists, technologists, radiation oncology nurses and maintenance engineers) as well as appropriate arrangements for radiation protection, safety, security and a continuing and ongoing effort to ensure the quality of the radiotherapy process. Strengthening the capability of ministries of health and other health sector institutions for assessing options, formulating policies, and setting priorities is also crucial. The International Atomic Energy Agency (IAEA) has been assisting its Member States in the establishment, operation and upgrading of radiation oncology facilities for many years. Human resource development, which includes training of radiation oncologists, medical physicists, radiation therapy technologists and radiation oncology nurses, is an integral part of the assistance as shortage of such trained professionals would be a serious obstacle to

  9. Metals as radio-enhancers in oncology: The industry perspective

    Energy Technology Data Exchange (ETDEWEB)

    Pottier, Agnés, E-mail: agnes.pottier@nanobiotix.com; Borghi, Elsa; Levy, Laurent

    2015-12-18

    Radio-enhancers, metal-based nanosized agents, could play a key role in oncology. They may unlock the potential of radiotherapy by enhancing the radiation dose deposit within tumors when the ionizing radiation source is ‘on’, while exhibiting chemically inert behavior in cellular and subcellular systems when the radiation beam is ‘off’. Important decision points support the development of these new type of therapeutic agents originated from nanotechnology. Here, we discuss from an industry perspective, the interest of developing radio-enhancer agents to improve tumor control, the relevance of nanotechnology to achieve adequate therapeutic attributes, and present some considerations for their development in oncology. - Highlights: • Oncology is a field of high unmet medical need. • Despites of its widespread usage, radiation therapy presents a narrow therapeutic window. • High density material at the nanoscale may enhance radiation dose deposit from cancer cells. • Metal-based nanosized radio-enhancers could unlock the potential of radiotherapy.

  10. Preclinical models in radiation oncology

    Directory of Open Access Journals (Sweden)

    Kahn Jenna

    2012-12-01

    Full Text Available Abstract As the incidence of cancer continues to rise, the use of radiotherapy has emerged as a leading treatment modality. Preclinical models in radiation oncology are essential tools for cancer research and therapeutics. Various model systems have been used to test radiation therapy, including in vitro cell culture assays as well as in vivo ectopic and orthotopic xenograft models. This review aims to describe such models, their advantages and disadvantages, particularly as they have been employed in the discovery of molecular targets for tumor radiosensitization. Ultimately, any model system must be judged by its utility in developing more effective cancer therapies, which is in turn dependent on its ability to simulate the biology of tumors as they exist in situ. Although every model has its limitations, each has played a significant role in preclinical testing. Continued advances in preclinical models will allow for the identification and application of targets for radiation in the clinic.

  11. 76 FR 61713 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-05

    ...] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee. General... adult oncology indication, or in late stage development in pediatric patients with cancer. The...

  12. PET/CT applications in oncology

    International Nuclear Information System (INIS)

    Oliva González, Juan Perfecto; Martínez Ramírez, Aldo; Baum, Richard Paul

    2017-01-01

    PET means Positron Emission Tomography, it is a nuclear medicine technique in which radiopharmaceuticals labeled with positron emitters are used to obtain biochemical-metabolic images of the human body. The use of PET / CT contributes to obtain multimodal images that combine anatomical and metabolic information, allowing a more reliable diagnosis of a tumor or local or distant metastases in an organ or tissue. Other multimodal devices combine metabolic imaging with nuclear magnetic resonance. PET/CT is mainly used in Oncology (85-90%), Neurology, Cardiology, Inflammation and Infection although it is currently also used in different medical and surgical pathologies. The present work is aimed at showing what PET/CT is and how useful it is in Oncology. (author)

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  14. Nuclear medicine and oncology. Hopes and challenging issues of drugs development: the usefulness of positron emission tomography (PET). An application to targeted therapy

    International Nuclear Information System (INIS)

    Courbon, F.; Delord, J.P.

    2005-01-01

    Thanks to breakthroughs in drug design, new kinds of treatment in oncology have been developed. These new molecules target usually a precise molecular pathway proved to be involved in the development of a malignant disease. This led to the concept of targeted therapy. Therefore, the accurate selection of patients who may experience a clinical benefit of such treatments, and the way to assess the response are still challenging issues. Molecular imaging with radiolabeled compounds seemed to be a very promising tool, as for example PET with F-18 Fluorodeoxyglucose (FDG) which allows to assess and to predict the response to a tyrosine kinase inhibitors more efficiently than conventional imaging tools. FDG is only a surrogate marker of cell proliferation. New F18 radiolabeled molecules provide more specific information about tumor biology, such as receptor expression, DNA and protein synthesis, rate of hypoxia.... The common tools (clinical and radiological assessment) are no longer sufficient to predict the clinical efficacy of these new drugs. Molecular imaging should be added in the design of clinical trials in order to detect earlier pharmaco-dynamic effects, to select responding patients and to provide proofs of efficacy of these non-cytotoxic compounds. Molecular imaging databases have to be created and cross-matched to tumor sample collections, providing consequently new 'dynamic' pathological resources. This requires that all these new F18 radiolabeled molecules have to be readily available and easy to be implemented in clinical trials. (author)

  15. Inhibition of the Nuclear Export Receptor XPO1 as a Therapeutic Target for Platinum-Resistant Ovarian Cancer

    DEFF Research Database (Denmark)

    Chen, Ying; Camacho, Sandra Catalina; Silvers, Thomas R

    2017-01-01

    Purpose: The high fatality-to-case ratio of ovarian cancer is directly related to platinum resistance. Exportin-1 (XPO1) is a nuclear exporter that mediates nuclear export of multiple tumor suppressors. We investigated possible clinicopathologic correlations of XPO1 expression levels and evaluate...

  16. [Quality assurance in head and neck medical oncology].

    Science.gov (United States)

    Digue, Laurence; Pedeboscq, Stéphane

    2014-05-01

    In medical oncology, how can we be sure that the right drug is being administered to the right patient at the right time? The implementation of quality assurance criteria is important in medical oncology, in order to ensure that the patient receives the best treatment safely. There is very little literature about quality assurance in medical oncology, as opposed to radiotherapy or cancer surgery. Quality assurance must cover the entire patient care process, from the diagnosis, to the therapeutic decision and drug distribution, including its selection, its preparation and its delivery to the patient (administration and dosage), and finally the potential side effects and their management. The dose-intensity respect is crucial, and its reduction can negatively affect overall survival rates, as shown in breast and testis cancers for example. In head and neck medical oncology, it is essential to respect the few well-standardized recommendations and the dose-intensity, in a population with numerous comorbidities. We will first review quality assurance criteria for the general medical oncology organization and then focus on head and neck medical oncology. We will then describe administration specificities of head and neck treatments (chemoradiation, radiation plus cetuximab, postoperative chemoradiation, induction and palliative chemotherapy) as well as their follow-up. Lastly, we will offer some recommendations to improve quality assurance in head and neck medical oncology.

  17. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Awad A. [Sylvester Comprehensive Cancer Center University of Miami Health System, Miami, Florida (United States); Hwang, Wei-Ting [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Holliday, Emma B. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chapman, Christina H.; Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Thomas, Charles R. [Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon (United States); Deville, Curtiland, E-mail: cdeville@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States)

    2017-05-01

    Purpose: Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Methods and Materials: Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Results: Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Conclusion: Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves.

  18. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology

    International Nuclear Information System (INIS)

    Ahmed, Awad A.; Hwang, Wei-Ting; Holliday, Emma B.; Chapman, Christina H.; Jagsi, Reshma; Thomas, Charles R.; Deville, Curtiland

    2017-01-01

    Purpose: Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Methods and Materials: Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Results: Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Conclusion: Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves.

  19. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology.

    Science.gov (United States)

    Ahmed, Awad A; Hwang, Wei-Ting; Holliday, Emma B; Chapman, Christina H; Jagsi, Reshma; Thomas, Charles R; Deville, Curtiland

    2017-05-01

    Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Future directions in radiation oncology

    International Nuclear Information System (INIS)

    Peters, L.

    1996-01-01

    Full text: Cancer treatment has evolved progressively over the years as a joint result of improvements in technology and better understanding of the biological responses of neoplastic and normal cells to cytotoxic agents. Although major therapeutic 'breakthroughs' are unlikely absent the discovery of exploitable fundamental differences between cancer cells and their normal homologs, further incremental improvements in cancer treatment results can confidently be expected as we apply existing knowledge better and take advantage of new research insights. Areas in which I can foresee significant improvements (in approximate chronological order) are as follows: better physical radiation dose distributions; more effective radiation and chemoradiation protocols based on radiobiological principles; more rational use of radiation adjuvants based on biologic criteria; use of novel targets and vectors for systemic radionuclide therapy; use of genetic markers of radiosensitivity to determine radiation dose tolerances; and use of radiation as a modulator of therapeutic gene expression. Radiation research has contributed greatly to the efficacy of radiation oncology as it is now practised but has even greater potential for the future

  1. Oncological mamoplasty in the Cancerology National Institute

    International Nuclear Information System (INIS)

    Caicedo, Jose; Nino, Alvaro

    1999-01-01

    The conservative surgery is analyzed in the breast cancer. As premise, it settles down that in the quadrantectomy, the breast should always be left aesthetic. The oncological mamoplasty is then a technique that should be considered and for it should always be left it margin oncology in the borders of the tumors, the surgeon should have experience and it is important to have a good pursuit. The surgery is bilateral and it doesn't leave scars in the superior quadrants. In this revision 53 patients were analyzed, keeping in mind that there are few reports on this technique or to proceed therapeutic in the literature. The procedures were carried out in their majority in patient pre menopauses and they were made inclusive in advanced states. Radiotherapy and chemotherapy were used in the treatment

  2. Quality Assessment in Oncology

    International Nuclear Information System (INIS)

    Albert, Jeffrey M.; Das, Prajnan

    2012-01-01

    The movement to improve healthcare quality has led to a need for carefully designed quality indicators that accurately reflect the quality of care. Many different measures have been proposed and continue to be developed by governmental agencies and accrediting bodies. However, given the inherent differences in the delivery of care among medical specialties, the same indicators will not be valid across all of them. Specifically, oncology is a field in which it can be difficult to develop quality indicators, because the effectiveness of an oncologic intervention is often not immediately apparent, and the multidisciplinary nature of the field necessarily involves many different specialties. Existing and emerging comparative effectiveness data are helping to guide evidence-based practice, and the increasing availability of these data provides the opportunity to identify key structure and process measures that predict for quality outcomes. The increasing emphasis on quality and efficiency will continue to compel the medical profession to identify appropriate quality measures to facilitate quality improvement efforts and to guide accreditation, credentialing, and reimbursement. Given the wide-reaching implications of quality metrics, it is essential that they be developed and implemented with scientific rigor. The aims of the present report were to review the current state of quality assessment in oncology, identify existing indicators with the best evidence to support their implementation, and propose a framework for identifying and refining measures most indicative of true quality in oncologic care.

  3. Quality Assessment in Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Jeffrey M. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Das, Prajnan, E-mail: prajdas@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-01

    The movement to improve healthcare quality has led to a need for carefully designed quality indicators that accurately reflect the quality of care. Many different measures have been proposed and continue to be developed by governmental agencies and accrediting bodies. However, given the inherent differences in the delivery of care among medical specialties, the same indicators will not be valid across all of them. Specifically, oncology is a field in which it can be difficult to develop quality indicators, because the effectiveness of an oncologic intervention is often not immediately apparent, and the multidisciplinary nature of the field necessarily involves many different specialties. Existing and emerging comparative effectiveness data are helping to guide evidence-based practice, and the increasing availability of these data provides the opportunity to identify key structure and process measures that predict for quality outcomes. The increasing emphasis on quality and efficiency will continue to compel the medical profession to identify appropriate quality measures to facilitate quality improvement efforts and to guide accreditation, credentialing, and reimbursement. Given the wide-reaching implications of quality metrics, it is essential that they be developed and implemented with scientific rigor. The aims of the present report were to review the current state of quality assessment in oncology, identify existing indicators with the best evidence to support their implementation, and propose a framework for identifying and refining measures most indicative of true quality in oncologic care.

  4. Treatment response in oncology

    International Nuclear Information System (INIS)

    Pandit-Taskar, Neeta; Batraki, Maria; Divgi, Chaitanya

    2004-01-01

    Full text: Currently, the evaluation of response to therapy in Oncology consists of determination of changes in size of lesions measurable by structural imaging, notably computerized tomography. These criteria, formalized using RECIST (Response Evaluation Criteria in Solid Tumors), are the current standard for evaluation (http://www3.cancer. gov/dip/RECIST.htm). An increasing body of evidence suggests that functional changes in tumors precede structural changes, and that methodologies that measure such changes may be able to evaluate the potential of therapy, allowing for better and earlier selection of these potentially cytotoxic therapies. Nuclear Medicine imaging is distinguished by its ability to determine functional characteristics. These include: 1. Receptor status - for example, the presence of sodium iodide symporters detected by radioiodine or pertechnetate imaging, the presence of somatostatin or norepinephrine receptors by pentetreotide or metaiodobenzylguanidine (mIBG) imaging respectively. Such imaging can help guide appropriate therapies with iodine-131, somatostatin analogues (radiolabeled or otherwise) or iodine-131 labeled mIBG. 2. Metabolic status - for example, glycolytic status (with fluorine-18 labeled fluorodeoxyglucose); amino acid metabolism (e.g. using carbon-11 labeled methionine), or tumor proliferation (using radiolabeled thymidine or deoxyuridine). These methods have advantages over structural imaging because in the vast majority of tumors, changes in the functional or molecular status of tumors are seen earlier than are structural changes. 3. Overall cellular status - these imaging agents are still in their early development but hold great promise for the determination of cellular viability. Annexin imaging is the archetype of such imaging modalities that predict the overall fate of the cell, in this instance its entry into the apoptotic pathway. This review will highlight the uses of functional imaging using radiotracers in all three

  5. Molecular imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Schober, Otmar; Riemann, Burkhard (eds.) [Universitaetsklinikum Muenster (Germany). Klinik fuer Nuklearmedizin

    2013-02-01

    Considers in detail all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. Examines technological issues and probe design. Discusses preclinical studies in detail, with particular attention to multimodality imaging. Presents current clinical use of PET/CT, SPECT/CT, and optical imagingWritten by acknowledged experts. The impact of molecular imaging on diagnostics, therapy, and follow-up in oncology is increasing significantly. The process of molecular imaging includes key biotarget identification, design of specific molecular imaging probes, and their preclinical evaluation, e.g., in vivo using small animal studies. A multitude of such innovative molecular imaging probes have already entered clinical diagnostics in oncology. There is no doubt that in future the emphasis will be on multimodality imaging in which morphological, functional, and molecular imaging techniques are combined in a single clinical investigation that will optimize diagnostic processes. This handbook addresses all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. The first section is devoted to technology and probe design, and examines a variety of PET and SPECT tracers as well as multimodality probes. Preclinical studies are then discussed in detail, with particular attention to multimodality imaging. In the third section, diverse clinical applications are presented, and the book closes by looking at future challenges. This handbook will be of value to all who are interested in the revolution in diagnostic oncology that is being brought about by molecular imaging.

  6. Molecular imaging in oncology

    International Nuclear Information System (INIS)

    Schober, Otmar; Riemann, Burkhard

    2013-01-01

    Considers in detail all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. Examines technological issues and probe design. Discusses preclinical studies in detail, with particular attention to multimodality imaging. Presents current clinical use of PET/CT, SPECT/CT, and optical imagingWritten by acknowledged experts. The impact of molecular imaging on diagnostics, therapy, and follow-up in oncology is increasing significantly. The process of molecular imaging includes key biotarget identification, design of specific molecular imaging probes, and their preclinical evaluation, e.g., in vivo using small animal studies. A multitude of such innovative molecular imaging probes have already entered clinical diagnostics in oncology. There is no doubt that in future the emphasis will be on multimodality imaging in which morphological, functional, and molecular imaging techniques are combined in a single clinical investigation that will optimize diagnostic processes. This handbook addresses all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. The first section is devoted to technology and probe design, and examines a variety of PET and SPECT tracers as well as multimodality probes. Preclinical studies are then discussed in detail, with particular attention to multimodality imaging. In the third section, diverse clinical applications are presented, and the book closes by looking at future challenges. This handbook will be of value to all who are interested in the revolution in diagnostic oncology that is being brought about by molecular imaging.

  7. Radiation oncology in the era of precision medicine

    DEFF Research Database (Denmark)

    Baumann, Michael; Krause, Mechthild; Overgaard, Jens

    2016-01-01

    with preservation of health-related quality of life can be achieved in many patients. Two major strategies, acting synergistically, will enable further widening of the therapeutic window of radiation oncology in the era of precision medicine: technology-driven improvement of treatment conformity, including advanced...

  8. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer.

    Science.gov (United States)

    Sanal, Madhusudana Girija

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient's somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT) combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system) this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is the question of

  9. Production and study of therapeutic proton beams from modernized phasotron at the Laboratory of Nuclear Problems JINR

    International Nuclear Information System (INIS)

    Abazov, V.M.; Gustov, S.A.; Zorin, V.P.; Kutuzov, S.A.; Mirokhin, I.V.; Mitsyn, G.V.; Molokanov, A.G.; Savchenko, O.V.; Filimonov, A.V.

    1986-01-01

    The first results on shaping and transport of therapeutic proton beams of the JINR phasotron are presented. To provide the flat-topped depth-dose distributions with steep back slope, the method of shaping the beam with a necessary energy spectrum from a non-monoenergetic beam is used. Extension of the flat-top of the depth-dose distribution is 4.7 g/cm 2 for the 200 MeV beam energy

  10. Concurrent nuclear ERG and MYC protein overexpression defines a subset of locally advanced prostate cancer: Potential opportunities for synergistic targeted therapeutics.

    Science.gov (United States)

    Udager, Aaron M; DeMarzo, Angelo M; Shi, Yang; Hicks, Jessica L; Cao, Xuhong; Siddiqui, Javed; Jiang, Hui; Chinnaiyan, Arul M; Mehra, Rohit

    2016-06-01

    Recurrent ERG gene fusions, the most common genetic alterations in prostate cancer, drive overexpression of the nuclear transcription factor ERG, and are early clonal events in prostate cancer progression. The nuclear transcription factor MYC is also frequently overexpressed in prostate cancer and may play a role in tumor initiation and/or progression. The relationship between nuclear ERG and MYC protein overexpression in prostate cancer, as well as the clinicopathologic characteristics and prognosis of ERG-positive/MYC high tumors, is not well understood. Immunohistochemistry (IHC) for ERG and MYC was performed on formalin-fixed, paraffin-embedded tissue from prostate cancer tissue microarrays (TMAs), and nuclear staining was scored semi-quantitatively (IHC product score range = 0-300). Correlation between nuclear ERG and MYC protein expression and association with clinicopathologic parameters and biochemical recurrence after radical prostatectomy was assessed. 29.1% of all tumor nodules showed concurrent nuclear ERG and MYC protein overexpression (i.e., ERG-positive/MYC high), including 35.0% of secondary nodules. Overall, there was weak positive correlation between ERG and MYC expression across all tumor nodules (rpb  = 0.149, P = 0.045), although this correlation was strongest in secondary nodules (rpb  = 0.520, P = 0.019). In radical prostatectomy specimens, ERG-positive/MYC high tumors were positively associated with the presence of extraprostatic extension (EPE), relative to all other ERG/MYC expression subgroups, however, there was no significant association between concurrent nuclear ERG and MYC protein overexpression and time to biochemical recurrence. Concurrent nuclear ERG and MYC protein overexpression is common in prostate cancer and defines a subset of locally advanced tumors. Recent data indicates that BET bromodomain proteins regulate ERG gene fusion and MYC gene expression in prostate cancer, suggesting possible synergistic

  11. 'Mind the gap' between the development of therapeutic innovations and the clinical practice in oncology: A proposal of the European Organisation for Research and Treatment of Cancer (EORTC) to optimise cancer clinical research.

    Science.gov (United States)

    Kempf, Emmanuelle; Bogaerts, Jan; Lacombe, Denis; Liu, Lifang

    2017-11-01

    In Europe, most of the cancer clinical research dedicated to therapeutic innovations aims primarily at regulatory approval. Once an anticancer drug enters the common market, each member state determines its real-world use based on its own criteria: pricing, reimbursement and clinical indications. Such an innovation-centred clinical research landscape might neglect patient-relevant issues in real-world setting, such as comparative effectiveness of distinct treatment options or long-term safety monitoring. The European Organisation for Research and Treatment of Cancer (EORTC) advocates reforming the current 'innovation-centred' system to a truly 'patient-centred' paradigm with systematically coordinated applied clinical research in conjunction with drug development, featuring the following strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Clinical trials in nuclear medicine: Present and future

    International Nuclear Information System (INIS)

    Chaumet-Riffaud, P.; Cachin, F.; Couturier, O.; Desruet, M.D.; Kraeber-Bodere, F.; Talbot, J.N.; Vuillez, J.P.

    2009-01-01

    The particular status of radiopharmaceuticals, together with the positioning of nuclear medicine in multidisciplinary approach of oncology, lead to real difficulties for conception, validation and granting of clinical trials which are necessary for demonstrating clinical interest of new compounds, for diagnosis as well as for therapeutic use. This article is a presentation of some recent clinical trials conducted in nuclear medicine in France, showing its dynamism but also pointing out some encountered difficulties. These experiences could lead to reflexion in order to improve the clinical research performances, taking into account a scientific and regulatory context more and more constraining. (authors)

  13. Psychosocial Impact of Personalized Therapies in Oncology.

    Science.gov (United States)

    Schilling, Georgia; Schulz-Kindermann, Frank

    2018-01-01

    Personalized medicine is a keyword in modern oncology summarizing biomarker-driven targeted therapies. Those novel agents enhance our therapeutic portfolio and offer new options for our patients. But the term is often misleading and implicates a tailored therapy to the individual person, but it rather means a treatment stratified on genetic characteristics of the tumor. Molecular therapies raise expectations of curability or long-term treatments making former life-threatening diseases to more chronic ones but this is true only for some patients. So we have to carefully communicate with our patients about the options and limitations of those modern therapies not to trigger disappointments.

  14. [Genetic therapy in oncology: ethical aspects].

    Science.gov (United States)

    Bucci, L M; Fazio, V M

    2001-01-01

    The more advanced oncologic therapies are directing toward new frontiers, on account of the remarkable undesirable effects of chemio- and radio-therapies. This new therapeutic experiences are of type biological (vaccines), or genic (substitution again genes with shutters meaning-tumoral). This therapies involve, to be effected, some ethical shrewdnesses: choice of the patient, the engineering modality of the genes, the transfer of the genes in cells of the exclusively somatic line, the elimination of the pathogenic risk of the vector virus, the obligatory use of sterile rooms, the attention to the administration of the drug, a legal issue of the judgment of notoriety.

  15. Oncology drug discovery: planning a turnaround.

    Science.gov (United States)

    Toniatti, Carlo; Jones, Philip; Graham, Hilary; Pagliara, Bruno; Draetta, Giulio

    2014-04-01

    We have made remarkable progress in our understanding of the pathophysiology of cancer. This improved understanding has resulted in increasingly effective targeted therapies that are better tolerated than conventional cytotoxic agents and even curative in some patients. Unfortunately, the success rate of drug approval has been limited, and therapeutic improvements have been marginal, with too few exceptions. In this article, we review the current approach to oncology drug discovery and development, identify areas in need of improvement, and propose strategies to improve patient outcomes. We also suggest future directions that may improve the quality of preclinical and early clinical drug evaluation, which could lead to higher approval rates of anticancer drugs.

  16. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology

    DEFF Research Database (Denmark)

    Stauss, J.; Franzius, C.; Pfluger, T.

    2008-01-01

    tomography ((18)F-FDG PET) in paediatric oncology. The Oncology Committee of the European Association of Nuclear Medicine (EANM) has published excellent procedure guidelines on tumour imaging with (18)F-FDG PET (Bombardieri et al., Eur J Nucl Med Mol Imaging 30:BP115-24, 2003). These guidelines, published...

  17. Pet in Clinical oncology

    International Nuclear Information System (INIS)

    Hunsche, A.; Grossman, G.; Santana, M.; Santana, C.; Halkar, R.; Garcia, E.

    2003-01-01

    The utility of the PET (positron emission tomography in clinical oncology has been recognized for more than two decades, locating it as a sensible technique for the diagnosis and the prognosis stratification of the oncology patients. The sensitivity and specificity of the PET in comparation to other image studies have demonstrated to be greater. For some years, there was a restriction of PET because of the high cost of the equipment and the cyclotrons. Nevertheless, the relation of cost/benefits is considered as a priority as this technique offers important clinical information. In this article the results observed when using it in diverse types of cancer, as well as the effectiveness shown in the pre-operating evaluation, the evaluation of residual disease, diagnosis of recurrences, pursuit and prognosis stratification of the patients with cancer. (The author)

  18. Quality in radiation oncology

    International Nuclear Information System (INIS)

    Pawlicki, Todd; Mundt, Arno J.

    2007-01-01

    A modern approach to quality was developed in the United States at Bell Telephone Laboratories during the first part of the 20th century. Over the years, those quality techniques have been adopted and extended by almost every industry. Medicine in general and radiation oncology in particular have been slow to adopt modern quality techniques. This work contains a brief description of the history of research on quality that led to the development of organization-wide quality programs such as Six Sigma. The aim is to discuss the current approach to quality in radiation oncology as well as where quality should be in the future. A strategy is suggested with the goal to provide a threshold improvement in quality over the next 10 years

  19. Pediatric oncologic endosurgery.

    Science.gov (United States)

    Boo, Yoon Jung; Goedecke, Jan; Muensterer, Oliver J

    2017-08-01

    Despite increasing popularity of minimal-invasive techniques in the pediatric population, their use in diagnosis and management of pediatric malignancy is still debated. Moreover, there is limited evidence to clarify this controversy due to low incidence of each individual type of pediatric tumor, huge diversity of the disease entity, heterogeneity of surgical technique, and lack of well-designed studies on pediatric oncologic minimal-invasive surgery. However, a rapid development of medical instruments and technologies accelerated the current trend toward less invasive surgery, including oncologic endosurgery. The aim of this article is to review current literatures about the application of the minimal-invasive approach for pediatric tumors and to give an overview of the current status, indications, individual techniques, and future perspectives.

  20. Pediatric oncology in Slovenia.

    Science.gov (United States)

    Jereb, B; Anzic, J

    1996-01-01

    Slovenia, a new country and formerly a part of Yugoslavia, has had its Childrens Hospital in Ljubljana since 1865. This became a part of the University Hospital in 1945, and in the early 1960s the Department of Pediatric Hematology-Oncology was established. The Oncological Institute of Slovenia was established in 1938 and has developed into a modern facility for comprehensive cancer care, research, and teaching. In close cooperation, established in the 1960s, a team from these two institutions takes care of the approximately 60 children per year who develop cancer in Slovenia. Consisting of pediatricians, radiation oncologists, pathologists, cytologists, surgeons, and other ad hoc specialists, the team meets at least twice weekly to plan treatment, follow the patients, discuss the results, and teach. All patients are subject to regular follow-up indefinitely. A separate team has been formed to study the late effects of cancer treatment on survivors, who by now are mostly adults.

  1. Neurologic complications in oncology

    Directory of Open Access Journals (Sweden)

    Andrea Pace

    2010-06-01

    Full Text Available Neurologic side effects related to cancer therapy are a common problem in oncology practice. These complications can negatively affect the management of the patient, because they can inhibit treatment and diminish quality of life. Therefore specific skills are required to recognise symptoms and clinical manifestations. This review focuses on the most common neurologic complications to improve physician’s familiarity in determining the aetiology of these symptoms.

  2. Integrative oncology: an overview.

    Science.gov (United States)

    Deng, Gary; Cassileth, Barrie

    2014-01-01

    Integrative oncology, the diagnosis-specific field of integrative medicine, addresses symptom control with nonpharmacologic therapies. Known commonly as "complementary therapies" these are evidence-based adjuncts to mainstream care that effectively control physical and emotional symptoms, enhance physical and emotional strength, and provide patients with skills enabling them to help themselves throughout and following mainstream cancer treatment. Integrative or complementary therapies are rational and noninvasive. They have been subjected to study to determine their value, to document the problems they ameliorate, and to define the circumstances under which such therapies are beneficial. Conversely, "alternative" therapies typically are promoted literally as such; as actual antitumor treatments. They lack biologic plausibility and scientific evidence of safety and efficacy. Many are outright fraudulent. Conflating these two very different categories by use of the convenient acronym "CAM," for "complementary and alternative therapies," confuses the issue and does a substantial disservice to patients and medical professionals. Complementary and integrative modalities have demonstrated safety value and benefits. If the same were true for "alternatives," they would not be "alternatives." Rather, they would become part of mainstream cancer care. This manuscript explores the medical and sociocultural context of interest in integrative oncology as well as in "alternative" therapies, reviews commonly-asked patient questions, summarizes research results in both categories, and offers recommendations to help guide patients and family members through what is often a difficult maze. Combining complementary therapies with mainstream oncology care to address patients' physical, psychologic and spiritual needs constitutes the practice of integrative oncology. By recommending nonpharmacologic modalities that reduce symptom burden and improve quality of life, physicians also enable

  3. Oncological image analysis.

    Science.gov (United States)

    Brady, Sir Michael; Highnam, Ralph; Irving, Benjamin; Schnabel, Julia A

    2016-10-01

    Cancer is one of the world's major healthcare challenges and, as such, an important application of medical image analysis. After a brief introduction to cancer, we summarise some of the major developments in oncological image analysis over the past 20 years, but concentrating those in the authors' laboratories, and then outline opportunities and challenges for the next decade. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Encyclopedia of radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Luther W. [Drexel Univ. College of Medicine, Philadelphia, PA (United States); Yaeger, Theodore E. (eds.) [Wake Forest Univ. School of Medicine, Winston-Salem, NC (United States). Dept. of Radiation Oncology

    2013-02-01

    The simple A to Z format provides easy access to relevant information in the field of radiation oncology. Extensive cross references between keywords and related articles enable efficient searches in a user-friendly manner. Fully searchable and hyperlinked electronic online edition. The aim of this comprehensive encyclopedia is to provide detailed information on radiation oncology. The wide range of entries are written by leading experts. They will provide basic and clinical scientists in academia, practice and industry with valuable information about the field of radiation oncology. Those in related fields, students, teachers, and interested laypeople will also benefit from the important and relevant information on the most recent developments. Please note that this publication is available as print only or online only or print + online set. Save 75% of the online list price when purchasing the bundle. For more information on the online version please type the publication title into the search box above, then click on the eReference version in the results list.

  5. Diagnostic imaging in oncology: New challenges and changing strategies

    International Nuclear Information System (INIS)

    Castellino, Ronald A.; Schwartz, Lawrence H.

    1997-01-01

    Diagnostic radiology and nuclear medicine studies, both imaging and therapeutic, play important roles in screening, staging, monitoring of treatment, and in long term surveillance of oncologic patients. Frequently, information from these studies, as well as from ancillary data (such as the clinical examination and laboratory studies) overlap, and it is sometimes unclear which tests and examinations to perform. Current changes in the delivery and funding of health care are prompting all specialties to evaluate their patterns of care. Some of the important questions to be addressed in medical imaging include: Which studies are pertinent at initial staging, e.g., those that impact patient management, serve as important baselines for comparison with subsequent studies, etc? How sensitive and specific are these studies, e.g., when can they obviate the need for more invasive confirmatory exams? What are the critical questions in monitoring response to therapy, e.g., the significance of the 'post treatment residual mass' and ways to elucidate its etiology? Which tests should be performed in surveillance for disease relapse, and how frequently should they be done? Purpose/Objective: To develop a set of guidelines for developing rational approaches for utilizing diagnostic imaging studies

  6. Diagnostic imaging in oncology: New challenges and changing strategies

    International Nuclear Information System (INIS)

    Castellino, Ronald; Schwartz, Lawrence H.

    1996-01-01

    Purpose/Objective: To develop a set of guidelines for developing rational approaches for utilizing diagnostic imaging studies. Diagnostic radiology and nuclear medicine studies, both imaging and therapeutic, play important roles in screening, staging, monitoring of treatment, and in long term surveillance of oncologic patients. Frequently, information from these studies, as well as from ancillary data (such as the clinical examination and laboratory studies) overlap, and it is sometimes unclear which tests and examinations to perform. Current changes in the delivery and funding of health care are prompting all specialties to evaluate their patterns of care. Some of the important questions to be addressed in medical imaging include: Which studies are pertinent at initial staging, e.g., those that impact patient management, serve as important baselines for comparison with subsequent studies, etc? How sensitive and specific are these studies, e.g., when can they obviate the need for more invasive confirmatory exams? What are the critical questions in monitoring response to therapy, e.g., the significance of the 'post treatment residual mass' and ways to elucidate its etiology? Which tests should be performed in surveillance for disease relapse, and how frequently should they be done?

  7. Quality Indicators in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Jeffrey M. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Das, Prajnan, E-mail: prajdas@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-03-15

    Oncologic specialty societies and multidisciplinary collaborative groups have dedicated considerable effort to developing evidence-based quality indicators (QIs) to facilitate quality improvement, accreditation, benchmarking, reimbursement, maintenance of certification, and regulatory reporting. In particular, the field of radiation oncology has a long history of organized quality assessment efforts and continues to work toward developing consensus quality standards in the face of continually evolving technologies and standards of care. This report provides a comprehensive review of the current state of quality assessment in radiation oncology. Specifically, this report highlights implications of the healthcare quality movement for radiation oncology and reviews existing efforts to define and measure quality in the field, with focus on dimensions of quality specific to radiation oncology within the “big picture” of oncologic quality assessment efforts.

  8. Quality Indicators in Radiation Oncology

    International Nuclear Information System (INIS)

    Albert, Jeffrey M.; Das, Prajnan

    2013-01-01

    Oncologic specialty societies and multidisciplinary collaborative groups have dedicated considerable effort to developing evidence-based quality indicators (QIs) to facilitate quality improvement, accreditation, benchmarking, reimbursement, maintenance of certification, and regulatory reporting. In particular, the field of radiation oncology has a long history of organized quality assessment efforts and continues to work toward developing consensus quality standards in the face of continually evolving technologies and standards of care. This report provides a comprehensive review of the current state of quality assessment in radiation oncology. Specifically, this report highlights implications of the healthcare quality movement for radiation oncology and reviews existing efforts to define and measure quality in the field, with focus on dimensions of quality specific to radiation oncology within the “big picture” of oncologic quality assessment efforts

  9. Calculation and Evaluation of Fission Yields and Capture Cross Sections Leading to the Production of Therapeutic Radionuclide by Means of Nuclear Reactors

    International Nuclear Information System (INIS)

    Sublet, J.C.

    2009-01-01

    Much progress has been made in nuclear medicine that involves the use of radionuclides for both diagnosis and therapy. Because of this qualitative and quantitative growth, the adoption of a set of established radionuclides for various applications, the methods of nuclide production need to be addressed and consideration given to other, emerging radionuclides that are judged to be developing in importance. The methods involved are characterized by the transmutation of isotopes by neutron-induced reactions and decays. Therefore, newly evaluated cross sections, fission yields and decay characteristics of relevance to the reactor production of those therapeutic radionuclides have been reviewed. Considerations of the decay schemes of all the nuclides involved are also included. (author)

  10. Rhenium radioisotopes for therapeutic radiopharmaceutical development

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Pinkert, J.; Kropp, J.; Lin, W.Y.; Wang, S.Y.

    2001-01-01

    Rhenium-186 and rhenium-188 represent two important radioisotopes which are of interest for a variety of therapeutic applications in oncology, nuclear medicine and interventional cardiology. Rhenium-186 is directly produced in a nuclear reactor and the 90 hour half-life allows distribution to distant sites. The relatively low specific activity of rhenium-186 produced in most reactors, however, permits use of phosphonates, but limits use for labelled peptides and antibodies. Rhenium-188 has a much shorter 16.9 hour half-life which makes distribution from direct reactor production difficult. However, rhenium-188 can be obtained carrier-free from a tungsten-188/rhenium-188 generator, which has a long useful shelf-life of several months which is cost-effective, especially for developing regions. In this paper we discuss the issues associated with the production of rhenium-186- and rhenium-188 and the development and use of various radiopharmaceuticals and devices labelled with these radioisotopes for bone pain palliation, endoradiotherapy of tumours by selective catheterization and tumour therapy using radiolabelled peptides and antibodies, radionuclide synovectomy and the new field of vascular radiation therapy. (author)

  11. 78 FR 25304 - Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), Including On...

    Science.gov (United States)

    2013-04-30

    ..., USA, Inc., Oncology Care Systems (Radiation Oncology), Including On-Site Leased Workers From Source... Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology), including on- site leased... of February 2013, Siemens Medical Solutions, USA, Inc., Oncology Care Systems (Radiation Oncology...

  12. The oncologic and the geriatric patient

    International Nuclear Information System (INIS)

    Philotheou, Geraldine M

    2002-01-01

    The oncologic and the geriatric patient have special needs in the nuclear medicine department. The nuclear medicine technologists must be knowledgeable and compassionate when dealing with these patients. The diagnosis of cancer will have a sociological and psychological impact on the patient, to which the technologist must relate in an empathetic way. Furthermore, the technologist should take cognisance of the patient's physical condition and be able to modify the examination accordingly. Dealing with the geriatric patient should be correctly placed on the continuum between a gerontological and geriatric approach taking into consideration normal changes due to aging. The patient experience when undergoing the high technology nuclear medicine diagnostic procedure is unique and all effort must be made to ensure the success of the examination and the satisfaction of the patient (Au)

  13. Innovative radiopharmaceuticals in oncology and neurology

    CERN Document Server

    Barbet, Jacques; Chérel, Michel; Guilloteau, Denis

    2017-01-01

    The aim of this Research Topic was to assemble a series of articles describing basic, preclinical and clinical research studies on radiopharmaceuticals and nuclear medicine. The articles were written by attendees of the third Nuclear Technologies for Health Symposium (NTHS, 10th-11th March 2015, Nantes, Frances) under the auspices of the IRON LabEx (Innovative Radiopharmaceuticals for Oncology and Neurology Laboratory of Excellence). This French network, gathering approximately 160 scientists from 12 academic research teams (Funded by “investissements d’Avenir”), fosters transdisciplinary projects between teams with expertise in chemistry, radiochemistry, radiopharmacy, formulation, biology, nuclear medicine and medical physics. The 12 articles within this resulting eBook present a series of comprehensive reviews and original research papers on multimodality imaging and targeted radionuclide therapy; illustrating the different facets of studies currently conducted in these domains.

  14. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    Directory of Open Access Journals (Sweden)

    Madhusudana Girija Sanal

    2014-09-01

    Full Text Available Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC, we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient’s somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is

  15. Lymphoscintigraphy in oncology: a rediscovered challenge

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Olmos, R.A.; Hoefnagel, C.A. [Netherlands Cancer Inst., Amsterdam (Netherlands). Dept. of Nuclear Medicine; Nieweg, O.E.; Jansen, L.; Rutgers, E.J.T.; Kroon, B.B.R. [Netherlands Cancer Inst., Amsterdam (Netherlands). Dept. of Surgery; Borger, J. [Netherlands Cancer Inst., Amsterdam (Netherlands). Dept. of Radiotherapy; Horenblas, S. [Netherlands Cancer Inst., Amsterdam (Netherlands). Dept. of Urology

    1999-04-01

    The validation of the sentinel node concept in oncology has led to the rediscovery of lymphoscintigraphy. By combining preoperative lymphatic mapping with intraoperative probe detection this nuclear medicine procedure is being increasingly used to identify and detect the sentinel node in melanoma, breast cancer, and in other malignancies such as penile cancer and vulvar cancer. In the past lymphoscintigraphy has been widely applied for various indications in oncology, and in the case of the internal mammary lymph-node chain its current use in breast cancer remains essential to adjust irradiation treatment to the individual findings of each patient. In another diagnostic area, lymphoscintigraphy is also useful to document altered drainage patterns after surgery and/or radiotherapy; its use in breast cancer patients with upper limb oedema after axillary lymph-node dissection or in melanoma patients with lower-extremity oedema after groin dissection can provide information for physiotherapy or reconstructive surgery. Finally, the renewed interest in lymphoscintigraphy in oncology has led not only to the rediscovery of findings from old literature reports, but also to a discussion about methodological aspects such as tracer characteristics, image acquisition or administration routes, as well as to discussion on the study of migration patterns of radiolabelled colloid particles in the context of cancer dissemination. All this makes the need for standardized guidelines for lymphoscintigraphy mandatory. (orig.) With 10 figs., 1 tab., 56 refs.

  16. The Radiation Therapy Oncology in the context of oncological practice

    International Nuclear Information System (INIS)

    Kasdorf, P.

    2010-01-01

    This work is about the radiation therapy oncology in the context of oncological practice. The radiotherapy is a speciality within medicine that involves the generation, application and dissemination of knowledge about the biology, causes, prevention and treatment of the cancer and other pathologies by ionising radiation

  17. Medicinal cannabis in oncology.

    Science.gov (United States)

    Engels, Frederike K; de Jong, Floris A; Mathijssen, Ron H J; Erkens, Joëlle A; Herings, Ron M; Verweij, Jaap

    2007-12-01

    In The Netherlands, since September 2003, a legal medicinal cannabis product, constituting the whole range of cannabinoids, is available for clinical research, drug development strategies, and on prescription for patients. To date, this policy, initiated by the Dutch Government, has not yet led to the desired outcome; the amount of initiated clinical research is less than expected and only a minority of patients resorts to the legal product. This review aims to discuss the background for the introduction of legal medicinal cannabis in The Netherlands, the past years of Dutch clinical experience in oncology practice, possible reasons underlying the current outcome, and future perspectives.

  18. Radiation oncology in Canada.

    Science.gov (United States)

    Giuliani, Meredith; Gospodarowicz, Mary

    2018-01-01

    In this article we provide an overview of the Canadian healthcare system and the cancer care system in Canada as it pertains to the governance, funding and delivery of radiotherapy programmes. We also review the training and practice for radiation oncologists, medical physicists and radiation therapists in Canada. We describe the clinical practice of radiation medicine from patients' referral, assessment, case conferences and the radiotherapy process. Finally, we provide an overview of the practice culture for Radiation Oncology in Canada. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Frontiers of biostatistical methods and applications in clinical oncology

    CERN Document Server

    Crowley, John

    2017-01-01

    This book presents the state of the art of biostatistical methods and their applications in clinical oncology. Many methodologies established today in biostatistics have been brought about through its applications to the design and analysis of oncology clinical studies. This field of oncology, now in the midst of evolution owing to rapid advances in biotechnologies and cancer genomics, is becoming one of the most promising disease fields in the shift toward personalized medicine. Modern developments of diagnosis and therapeutics of cancer have also been continuously fueled by recent progress in establishing the infrastructure for conducting more complex, large-scale clinical trials and observational studies. The field of cancer clinical studies therefore will continue to provide many new statistical challenges that warrant further progress in the methodology and practice of biostatistics. This book provides a systematic coverage of various stages of cancer clinical studies. Topics from modern cancer clinical ...

  20. Virtual reality as information for patients and their families in a therapeutic procedure in Nuclear Medicine; Realidade virtual como meio de informação para pacientes e seus familiares em procedimento terapêutico na Medicina Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, S.F.; Nascimento, A.C.H.; Mol, A.C.A.; Marins, E.R.; Suíta, J.C. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This work consists of the research and unification of the guidelines transmitted to the patients and their relatives in the radioiodine therapy procedures. The goal is to provide greater understanding of the use of nuclear radiation and better understanding of treatment, to help patients better adapt to therapy, to demystify misconceptions about radiation use, and to improve care for their protection and for people close to them. Based on written and verbal information, collected in the scientific literature and in loco, accompanying the routine of the therapeutic rooms of Nuclear Medicine Services (NMS) in Rio de Janeiro, the set of actions that define scenarios experienced by radioiodine therapy patients and their helpers is being generated. Based on this information, a virtual environment is being developed in the Virtual Reality Laboratory of the Institute of Nuclear Engineering (IEN/CNEN-RJ), Brazil, a virtual environment that will allow the visualization of the procedures and instructions passed to the patients by the NMS teams. With this virtual environment, the patient will be able to immersive visualize and experience the different phases of the treatment increasing the chances of efficiency of their participation in the process. (author)

  1. Preparation Of Phosphorus-32 (P-32) From Irradiated Target P2O5 For Therapeutic Purposes In Nuclear Medicine

    International Nuclear Information System (INIS)

    Nguyen Dang Khoa; Chu Van Khoa; Duong Van Dong

    2011-01-01

    Phosphorus-32 is produced using the nuclear reaction 31 P (n,γ) 32 P by irradiation of the phosphorus peroxide (P 2O 5) target. Phosphoric acid is prepared by the dissolution of irradiated target in 40 ml of boiling chloric acid 0.1 N. When the dissolution of phosphor peroxide is completed, the beaker is allowed to cool. 8 ml of 30% H 2 O 2 is added and refluxed for 3 h. Finally, the solution is filtered through a sintered glass filter, porosity G3 and passed into a column of cationic exchanger (Dowex-50 W-X4 preconditioned in hydrogen form) to remove metallic impurities. The effluent is collected as the stock solution. Radiochemical purity is determined by paper chromatography (radiochemical purity control) in the solvent system: Whatman No. 1 paper and the mixture of isopropyl alcohol : water : 50% trichloracetic acid : 25% NH 4 OH (75:15:10:0.3 v/v.) as a mobile phase, developing time ranged from 12 to 17 h. Radiochemical purity of phosphoric acid (H 3 32 PO 4 ) solution prepared by our method is obtained more than 99%. (author)

  2. Radiation exposure to staff involved in diagnostic and therapeutic nuclear medicine procedures in some hospitals in Sudan

    International Nuclear Information System (INIS)

    Salih, Lamia Hamza Bashir

    2015-05-01

    Study was performed to evaluate radiation dose to staff involved in nuclear medicine procedures in some hospitals in Sudan. 15 radiation workers were studied in three hospitals. Radiation dose was measured using personal dose equivalent Hp (10), using calibrated electronic personal dosimeters (EPDs) worn on the chest and read at the end of the day. Staff doses were monitored in each hospital for a period of four weeks, The measured monthly Hp(10) values to staff ranged between 82.96-83.94μSv (to nurses), 38.81-53.97 μSv (to pharmacists), 16.87-70.21μSv (to technologists), 40.22-76.56μSv (to medical physicists). These mean monthly radiation doses were projected to the annual radiation doses received by the staff. The mean monthly radiation doses were projected to the annual radiation doses were found to be between ranges (185.57-923.34μSv/y). Results found showed that there was no dose that exceeded the limits of annual dose recommended for workers by International Commission on Radiology Protection (ICRP) (20 mSv/year). This study is expected to increase the awareness of staff about the radiation hazards and protection.(Author)

  3. Radiation oncology systems integration

    International Nuclear Information System (INIS)

    Ragan, D.P.

    1991-01-01

    ROLE7 is intended as a complementary addition to the HL7 Standard and not as an alternative standard. Attempt should be made to mould data elements which are specific to radiation therapy with existing HL7 elements. This can be accomplished by introducing additional values to some element's table-of-options. Those elements which might be specific to radiation therapy could from new segments to be added to the Ancillary Data Reporting set. In order to accomplish ROLE7, consensus groups need be formed to identify the various functions related to radiation oncology that might motivate information exchange. For each of these functions, the specific data elements and their format must be identified. HL7 is organized with a number of applications which communicate asynchronously. Implementation of ROLE7 would allow uniform access to information across vendors and functions. It would provide improved flexibility in system selection. It would allow a more flexible and affordable upgrade path as systems in radiation oncology improve. (author). 5 refs

  4. Molecular radio-oncology

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Krause, Mechthild; Cordes, Nils (eds.) [Technische Univ. Dresden (Germany). Faculty of Medicine and University Hospital

    2016-07-01

    This book concisely reviews our current understanding of hypoxia, molecular targeting, DNA repair, cancer stem cells, and tumor pathophysiology, while also discussing novel strategies for putting these findings into practice in daily clinical routine. Radiotherapy is an important part of modern multimodal cancer treatment, and the past several years have witnessed not only substantial improvements in radiation techniques and the use of new beam qualities, but also major strides in our understanding of molecular tumor biology and tumor radiation response. Against this backdrop, the book highlights recent efforts to identify reasonable and clinically applicable biomarkers using broad-spectrum tissue microarrays and high-throughput systems biology approaches like genomics and epigenomics. In particular, it describes in detail how such molecular information is now being exploited for diagnostic imaging and imaging throughout treatment using the example of positron emission tomography. By discussing all these issues in the context of modern radiation oncology, the book provides a broad, up-to-date overview of the molecular aspects of radiation oncology that will hopefully foster its further optimization.

  5. Molecular radio-oncology

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild; Cordes, Nils

    2016-01-01

    This book concisely reviews our current understanding of hypoxia, molecular targeting, DNA repair, cancer stem cells, and tumor pathophysiology, while also discussing novel strategies for putting these findings into practice in daily clinical routine. Radiotherapy is an important part of modern multimodal cancer treatment, and the past several years have witnessed not only substantial improvements in radiation techniques and the use of new beam qualities, but also major strides in our understanding of molecular tumor biology and tumor radiation response. Against this backdrop, the book highlights recent efforts to identify reasonable and clinically applicable biomarkers using broad-spectrum tissue microarrays and high-throughput systems biology approaches like genomics and epigenomics. In particular, it describes in detail how such molecular information is now being exploited for diagnostic imaging and imaging throughout treatment using the example of positron emission tomography. By discussing all these issues in the context of modern radiation oncology, the book provides a broad, up-to-date overview of the molecular aspects of radiation oncology that will hopefully foster its further optimization.

  6. Biosimilars: Considerations for Oncology Nurses
.

    Science.gov (United States)

    Vizgirda, Vida; Jacobs, Ira

    2017-04-01

    Biosimilars are developed to be highly similar to and treat the same conditions as licensed biologics. As they are approved and their use becomes more widespread, oncology nurses should be aware of their development and unique considerations. This article reviews properties of biosimilars; their regulation and approval process; the ways in which their quality, safety, and efficacy are evaluated; their postmarketing safety monitoring; and their significance to oncology nurses and oncology nursing.
. A search of PubMed and regulatory agency websites was conducted for references related to the development and use of biosimilars in oncology. 
. Because biologics are large, structurally complex molecules, biosimilars cannot be considered generic equivalents to licensed biologic products. Consequently, regulatory approval for biosimilars is different from approval for small-molecule generics. Oncology nurses are in a unique position to educate themselves, other clinicians, and patients and their families about biosimilars to ensure accurate understanding, as well as optimal and safe use, of biosimilars.

  7. A Survey of Medical Oncology Training in Australian Medical Schools: Pilot Study

    Science.gov (United States)

    George, Mathew; Prawira, Amy

    2017-01-01

    Background Oncology is a rapidly evolving field with continuous advancements in the diagnosis and treatment of cancer. Therefore, it is important that medical students are provided with the knowledge and experience required to care for oncology patients and enable them to diagnose and manage toxicities of novel therapeutic agents. Objective This study was performed to understand the medical students’ perspective of the oncology education provided in universities across Australia and identify areas of education that could potentially be modified or improved to ultimately attract more students to a career in oncology. Methods This pilot cross-sectional study consisted of an 18-question survey that was submitted online to medical students in their final year and interns rotating to the Tamworth Hospital. Results The survey was completed by 94 fifth-year medical students and interns. Oncology was taught both theoretically and clinically for 68% (63/93) of participants, and 48% (44/92) had an exclusive oncology rotation. Both theoretical and clinical oncology assessments were conducted for only 21% (19/92) of participants. Overall, 42% (38/91) of participants were satisfied with their oncology education, and 78% (40/51) were dissatisfied with the number of oncology teaching hours. The importance of a career in oncology was rated as low by 46% (41/90) of participants. Conclusions This pilot study indicates that there are potential areas to improve oncology teaching in Australian universities. The majority of surveyed students were dissatisfied with the number of teaching hours they receive in oncology. More global assessment of students and/or interns from other Australian institutes may yield further useful information. PMID:29233799

  8. Therapeutic cloning in the mouse

    Science.gov (United States)

    Mombaerts, Peter

    2003-01-01

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice. PMID:12949262

  9. Mathematical oncology 2013

    CERN Document Server

    Gandolfi, Alberto

    2014-01-01

    With chapters on free boundaries, constitutive equations, stochastic dynamics, nonlinear diffusion–consumption, structured populations, and applications of optimal control theory, this volume presents the most significant recent results in the field of mathematical oncology. It highlights the work of world-class research teams, and explores how different researchers approach the same problem in various ways. Tumors are complex entities that present numerous challenges to the mathematical modeler. First and foremost, they grow. Thus their spatial mean field description involves a free boundary problem. Second, their interiors should be modeled as nontrivial porous media using constitutive equations. Third, at the end of anti-cancer therapy, a small number of malignant cells remain, making the post-treatment dynamics inherently stochastic. Fourth, the growth parameters of macroscopic tumors are non-constant, as are the parameters of anti-tumor therapies. Changes in these parameters may induce phenomena that a...

  10. Pediatric oncologic emergencies

    International Nuclear Information System (INIS)

    Zietz, Hallie A.

    1997-01-01

    Oncologic emergencies arise in three ways: disease or therapy induced cytopenias; a space occupying lesion causing pressure on or obstruction of surrounding tissues; or leukemia or tumors creating life-threatening metabolic or hormonal problems. Knowledge of presenting signs and symptoms of these emergencies are essential in pediatric oncologic nursing. Neutropenia opens the door for all manner of infections, but the most life threatening is septicemia progressing to shock. A variety of organisms can cause septic shock in the neutropenic patient, but episodes are most often due to gram-negative organisms and the endotoxins they release. Shock, while still compensated, may present with a elevated or subnormal temperature, flushed, warm, dry skin, widening pulse pressure, tachycardia, tachypnoea and irritability, but without medical intervention will progress to hypo tension, cool, clammy extremities, decreased urinary out- put, and eventually to bradycardia and cardiogenic shock. Another emergency in the cytopenia category is bleeding as a result of thrombocytopenia. Of greatest concern is intracranial hemorrhage that may occur at platelet counts of less than 5,000/mm3. Space-occupying lesions of the chest may produce superior vena cava syndrome (SVGS), pleural and pericardial effusions, and cardiac tamponade. SVGS is most often caused by non-Hodgkin's lymphoma (NHL) and presents as cough, hoarseness, dyspnea, orthopnea and chest pain. Signs include swelling, plethora, cyanosis, edema of conjunctiva and wheezing. Pleural and pericardial effusions present with respiratory or cardiac distress as does cardiac tamponade. Abdominal emergencies arise because of inflammation, mechanical obstruction, hemorrhage (often from steroid induced ulcers), and perforation. Pain is the most common presenting symptom, although vital sign alterations, fever, blood in vomitus or stool, abdominal distension and cessation of flatus are also important components of the acute abdomen

  11. Nuclear oncology with monoclonal antibodies and peptides

    International Nuclear Information System (INIS)

    Hosono, Makoto

    1998-01-01

    Imaging and therapy using radiolabeled monoclonal antibodies have proved useful in many clinical studies. However, immunogenicity of mouse antibodies to human and insufficient tumor-to-normal tissue ratios remained to be solved. Chimerization and humanization by genetic engineering, and multistep targeting techniques have enabled lower immunogenicity and higher tumor-to-normal tissue contrast. Peptides like somatostatin-analogs have been reportedly useful in imaging tumors, which are either somatostatin receptor positive or negative. Elevated normal tissue accumulation of radiolabeled peptides is a drawback in aiming internal radiation therapy. (author). 51 refs

  12. Tracers of cancer cells in nuclear oncology

    International Nuclear Information System (INIS)

    Tamgac, F.; Baillet, G.; Moretti, J.L.; Safi, N.; Weinmann, P.; Beco, V. de

    1997-01-01

    Evaluating the extent of disease is important in planning cancer treatment. Different types of tracers are used in vivo to diagnose tumors and these tracers can give supplementary information on the differentiation degree of tumors and response to therapy. (authors)

  13. Global curriculum in surgical oncology.

    Science.gov (United States)

    Are, C; Berman, R S; Wyld, L; Cummings, C; Lecoq, C; Audisio, R A

    2016-06-01

    The significant global variations in surgical oncology training paradigms can have a detrimental effect on tackling the rising global cancer burden. While some variations in training are essential to account for the differences in types of cancer and biology, the fundamental principles of providing care to a cancer patient remain the same. The development of a global curriculum in surgical oncology with incorporated essential standards could be very useful in building an adequately trained surgical oncology workforce, which in turn could help in tackling the rising global cancer burden. The leaders of the Society of Surgical Oncology and European Society of Surgical Oncology convened a global curriculum committee to develop a global curriculum in surgical oncology. A global curriculum in surgical oncology was developed to incorporate the required domains considered to be essential in training a surgical oncologist. The curriculum was constructed in a modular fashion to permit flexibility to suit the needs of the different regions of the world. Similarly, recognizing the various sociocultural, financial and cultural influences across the world, the proposed curriculum is aspirational and not mandatory in intent. A global curriculum was developed which may be considered as a foundational scaffolding for training surgical oncologists worldwide. It is envisioned that this initial global curriculum will provide a flexible and modular scaffolding that can be tailored by individual countries or regions to train surgical oncologists in a way that is appropriate for practice in their local environment. Copyright © 2016 Society of Surgical Oncology, European Society of Surgical Oncology. Published by Elsevier Ltd.. All rights reserved.

  14. Future Research in Psycho-Oncology.

    Science.gov (United States)

    Goerling, Ute; Mehnert, Anja

    2018-01-01

    Since the mid-1970s psycho-oncology and psycho-oncological research have been systematically developed in many industrialized countries and have produced nationally and internationally accepted guidelines. In this article developments and challenges are presented and discussed. From the perspective of various oncological treatment options, different needs for further psycho-oncological research are considered.

  15. Global Health in Radiation Oncology

    DEFF Research Database (Denmark)

    Rodin, Danielle; Yap, Mei Ling; Grover, Surbhi

    2017-01-01

    programs. However, formalized training and career promotion tracks in global health within radiation oncology have been slow to emerge, thereby limiting the sustained involvement of students and faculty, and restricting opportunities for leadership in this space. We examine here potential structures...... and benefits of formalized global health training in radiation oncology. We explore how defining specific competencies in this area can help trainees and practitioners integrate their activities in global health within their existing roles as clinicians, educators, or scientists. This would also help create...... and funding models might be used to further develop and expand radiation oncology services globally....

  16. 75 FR 66773 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-29

    ...] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee. General... or, are in late stage development for an adult oncology indication. The subcommittee will consider...

  17. 77 FR 57095 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-09-17

    ...] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee. General... that are in development for an adult oncology indication. The subcommittee will consider and discuss...

  18. 78 FR 63222 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-23

    ...] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... the public. Name of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory... measures in the pediatric development plans of oncology products. The half-day session will provide an...

  19. 78 FR 63224 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-23

    ...] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee. General... oncology indications. The subcommittee will consider and discuss issues relating to the development of each...

  20. Lifetime attributable risk as an alternative to effective dose to describe the risk of cancer for patients in diagnostic and therapeutic nuclear medicine

    Science.gov (United States)

    Andersson, Martin; Eckerman, Keith; Mattsson, Sören

    2017-12-01

    The aim of this study is to implement lifetime attributable risk (LAR) predictions of cancer for patients of various age and gender, undergoing diagnostic investigations or treatments in nuclear medicine and to compare the outcome with a population risk estimate using effective dose and the International Commission on Radiological Protection risk coefficients. The radiation induced risk of cancer occurrence (incidence) or death from four nuclear medicine procedures are estimated for both male and female between 0 and 120 years. Estimations of cancer risk are performed using recommended administered activities for two diagnostic (18F-FDG and 99mTc-phosphonate complex) and two therapeutic (131I-iodide and 223Ra-dichloride) radiopharmaceuticals to illustrate the use of cancer risk estimations in nuclear medicine. For 18F-FDG, the cancer incidence for a male of 5, 25, 50 and 75 years at exposure is 0.0021, 0.0010, 0.0008 and 0.0003, respectively. For 99mTc phosphonates complex the corresponding values are 0.000 59, 0.000 34, 0.000 27 and 0.000 13, respectively. For an 131I-iodide treatment with 3.7 GBq and 1% uptake 24 h after administration, the cancer incidence for a male of 25, 50 and 75 years at exposure is 0.041, 0.029 and 0.012, respectively. For 223Ra-dichloride with an administration of 21.9 MBq the cancer incidence for a male of 25, 50 and 75 years is 0.31, 0.21 and 0.09, respectively. The LAR estimations are more suitable in health care situations involving individual patients or specific groups of patients than the health detriment based on effective dose, which represents a population average. The detriment consideration in effective dose adjusts the cancer incidence for suffering of non-lethal cancers while LAR predicts morbidity (incidence) or mortality (cancer). The advantages of these LARs are that they are gender and age specific, allowing risk estimations for specific patients or subgroups thus better representing individuals in health care

  1. The electromagnetic spectrum: current and future applications in oncology.

    Science.gov (United States)

    Allison, Ron R

    2013-05-01

    The electromagnetic spectrum is composed of waves of various energies that interact with matter. When focused upon and directed at tumors, these energy sources can be employed as a means of lesion ablation. While the use of x-rays is widely known in this regard, a growing body of evidence shows that other members of this family can also achieve oncologic success. This article will review therapeutic application of the electromagnetic spectrum in current interventions and potential future applications.

  2. How will diagnostic and therapeutic oncology develop? Pt. 1

    International Nuclear Information System (INIS)

    Senekowitsch-Schmidtke, R.

    1998-01-01

    New developments in the field of tumor biology and gene therapy reveal that by somatic gene transfer every tumor cell can be transferred into a high immonogenic cell. The gene transfer leads to an activation of accessory signals in lymphocytes which can destroy the tumor cell. After transfection of tumor cells with 'suicide genes' untoxic virostatics can be phosphorylated by the viral thymidine kinase. Incorporation of the phosphorylated substance into DNA inhibits further cell replication. The transfection efficiency can be visualized by the retention of the F-18 labeled virostatics in the tumor tissue. For characterization of tumor cells a large number of tracers have been developed including radiolobeled aminoacids, nucleotides and target specific modified antibodies and peptides. Modern concepts of chemotherapy are changing from cytostatic therapy to pathogeneses-oriented strategies with regard to molecular and functional characteristics of the malignant cells. Such kind of therapies can interact with specific receptors and inhibit the signal transduction in tumor cells. (orig.) [de

  3. Priority therapeutic methods in hepatology, gastroenterology and urologic oncology

    International Nuclear Information System (INIS)

    Granov, A.M.

    1988-01-01

    The author briefly describes endovascular surgical methods; some of them were developed and used in clinical practice for the treatment of portal hypertension, liver cirrhosis and tumors, renal and bladder cancer. Besides, priority methods of endoscopic surgery employed in the treatment of peptic ulcer, are described

  4. Análise dosimétrica de acompanhantes de pacientes de medicina nuclear internados em quarto terapêutico Dosimetric analysis of persons accompanying nuclear medicine patients in the therapeutic room

    Directory of Open Access Journals (Sweden)

    Jetro Pereira de Oliveira

    2008-02-01

    Full Text Available OBJETIVO: Este trabalho avaliou doses recebidas por acompanhantes que compartilharam o mesmo quarto terapêutico com pacientes tratados com câncer de tireóide ingerindo iodo-131 (131I e comparou os resultados obtidos aos limites determinados pelas normas brasileiras de radioproteção. MATERIAIS E MÉTODOS: Avaliaram-se seis grupos de pessoas. Cada grupo foi formado por um acompanhante e um paciente, que compartilharam o mesmo quarto terapêutico. Realizaram-se, também, 23 outros experimentos, sendo que nestes um simulador foi usado em substituição à segunda pessoa no quarto terapêutico. As atividades de 131I administradas aos pacientes foram de 3.700 MBq ou 5.550 MBq. Dosímetros termoluminescentes na forma de pó, fluoreto de lítio dopado com magnésio, titânio e sódio foram usados para a avaliação das doses. RESULTADOS: Os resultados mostraram que uma pessoa que compartilha o mesmo quarto terapêutico, durante dois dias, com um paciente tratado com 3.700 MBq ou 5.550 MBq de 131I, seguindo as orientações de radioproteção fornecidas pela equipe médica, é exposta a uma dose média de (0,51 ± 0,02 mSv, para um nível de confiança de 99%. CONCLUSÃO: De acordo com as normas brasileiras, do ponto de vista da radioproteção, não há impedimento acompanhar um paciente de medicina nuclear durante esse tratamento.OBJECTIVE: The present study evaluated the doses received by companions who had shared therapeutic rooms with patients undergoing treatment with 131-iodine (131I. The results were compared with the limits established by the Brazilian radiation protection regulatory standard. MATERIALS AND METHODS: Six pairs of persons (a patient and a companion sharing a same therapeutic room were evaluated. Still, other 23 experiments were accomplished with a phantom replacing the companion. The therapeutic 131I activities given to the patients corresponded to 3700 MBq or 5550 MBq. Powdered lithium fluoride thermoluminescent dosimeters

  5. Abstracts of the 1st croatian international congress of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Main scientific topics of the Congress were: diagnostic and therapeutical procedures in nuclear medicine, thyroid gland - diagnosis and therapy, instrumentation and imaging in nuclear medicine, radiopharmaceuticals, and radiation protection and radiobiology. The papers (52 oral presentations, 25 posters, 13 invited lectures, 22 technologist papers) were presented and discussed through ten sessions: (1) cardiology, (2) Tumour receptors, (3) Thyroid I, (4) Thyroid II, (5) Nephrology and bone (6) Radiation protection (7) Oncology and brain, (8) Posters I, (9) Physics and chemistry, and (10) Posters II. The authors of the papers were mainly from Croatia, but also from Slovenia, Austria, Germany, UK, France, USA, Bulgaria and some other countries.

  6. Abstracts of the 1st croatian international congress of nuclear medicine

    International Nuclear Information System (INIS)

    1994-10-01

    Main scientific topics of the Congress were: diagnostic and therapeutical procedures in nuclear medicine, thyroid gland - diagnosis and therapy, instrumentation and imaging in nuclear medicine, radiopharmaceuticals, and radiation protection and radiobiology. The papers (52 oral presentations, 25 posters, 13 invited lectures, 22 technologist papers) were presented and discussed through ten sessions: 1) cardiology, 2) Tumour receptors, 3) Thyroid I, 4) Thyroid II, 5) Nephrology and bone 6) Radiation protection 7) Oncology and brain, 8) Posters I, 9) Physics and chemistry, and 10) Posters II. The authors of the papers were mainly from Croatia, but also from Slovenia, Austria, Germany, UK, France, USA, Bulgaria and some other countries

  7. Nuclear medicine 2009. Abstracts; NuklearMedizin 2009. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The journal contains the abstracts of 188 lectures and the abstracts of 103 poster contributions concerning the following topics: systemic therapy; oncology: PET/therapy; physics: device technology; oncology: PET/new pharmaceuticals; neurology: receptors; motion correction methods; oncology: PET/FDG; cardiology; malign thyroid tumors; neuroendocrine tumors; radiochemistry {sup 1}8F, oncology: pre-clinic PET; neurology-oncology-activation; physics: quantification; various topics; radiochemistry: radioactive metals; benign thyroid tumors; therapeutical studies; neurology: neurodegeneration; oncology: SPECT/planar scintigraphy; local therapy; inflammation; dosimetry - radiation protection; radiochemistry: halogens.

  8. Exercise Promotion in Geriatric Oncology.

    Science.gov (United States)

    Burhenn, Peggy S; Bryant, Ashley Leak; Mustian, Karen M

    2016-09-01

    Evidence of the benefits of exercise for people with cancer from diagnosis through survivorship is growing. However, most cancers occur in older adults and little exercise advice is available for making specific recommendations for older adults with cancer. Individualized exercise prescriptions are safe, feasible, and beneficial for the geriatric oncology population. Oncology providers must be equipped to discuss the short- and long-term benefits of exercise and assist older patients in obtaining appropriate exercise prescriptions. This review provides detailed information about professionals and their roles as it relates to functional assessment, intervention, and evaluation of the geriatric oncology population. This review addresses the importance of functional status assessment and appropriate referrals to other oncology professionals.

  9. Oncologic imaging of the genitourinary tract

    International Nuclear Information System (INIS)

    McClennan, B.L.

    1987-01-01

    Malignant neoplasms of the genitourinary (GU) tract account for a significant number of cancer-related deaths in man. For example, prostate cancer is the third leading cause of cancer-related death in adult males. Early diagnosis and treatment can have a profound effect on patient prognosis and survival. This paper examines the large body of information related to primary tumors of the kidney, bladder, and prostate, and their pattern of spread. Tumor oncology is discussed and related to the utility of available techniques, such as CT, MR imaging, and US. Imaging strategies are discussed that stress consideration of therapeutic efficacy and patient outcome. Current tumor staging and classification is presented and the various imaging strategies keyed to detection, definition, and treatment options for GU tract tumors. The strengths and limitations of modern imaging techniques are reviewed. An optimal approach to effective workup is developed with regard to availability, evolving technology, and cost efficacy. The controversies and conflicts in imaging and treatment options are explored while constructing a step-by-step approach that is both flexible and pragmatic for the clinician and radiologist faced daily with oncologic management choices

  10. The formation of human resources in the area of imaging diagnosed and therapeutic of the Universidad de Costa Rica and its contribution to the services of radiology, radiotherapy and nuclear medicine: period 1969 - 2007

    International Nuclear Information System (INIS)

    Mendez Avila, Maria Catalina

    2009-01-01

    The formation of human resources in the area of imaging diagnosed and therapeutic at the Universidad de Costa Rica, was carried out during the last 38 years and has been necessary to realize an assessment of that trajectory and value the impact it has had, the race today, in radiodiagnostic services, radiotherapy and nuclear medicine. The present work was carried out in order of providing to the Escuela de Tecnologias en Salud, the Universidad de Costa Rica, radiology services, radiotherapy, nuclear medicine and all those involved and interested in the area, a documented and rigorous analysis regarding the trajectory and characterization of the different stages of historical development of human resources training in imaging diagnosed and therapeutic. Also, suffered changes in the curriculum are considered in accordance with historical events and service needs. The analysis of each curriculum was performed and used for training of technicians and graduates in nuclear medicine and ionizing radiation, as well as the curriculum for the training of bachelors and degrees in imaging diagnosed and therapeutics, as part of the curriculum evolution in the formation of human resources. The strengths, deficiencies and challenge in each curriculum were presented, determining in this way how the changes made to the curriculum meet the needs and demands of radiology services, nuclear medicine and radiotherapy. (author) [es

  11. Principles of molecular oncology

    National Research Council Canada - National Science Library

    Bronchud, Miguel H

    2008-01-01

    ...-threatening diseases. Many new molecularly targeted diagnostics and therapeutics described in this text, developed based on the rapid growth in our understanding of the molecular basis of cancer, already substantially improve survival of patients with previously lethal malignancies, and also improve quality of life because of fewer toxicities. Clearly re...

  12. Principles of molecular oncology

    National Research Council Canada - National Science Library

    Bronchud, Miguel H; Thomas, E. Donnall; Weatherall, D. J; Crowther, D. G

    2004-01-01

    ...-threatening diseases. Many new molecularly targeted diagnostics and therapeutics described in this text, developed based on the rapid growth in our understanding of the molecular basis of cancer, already substantially improve survival of patients with previously lethal malignancies, and also improve quality of life because of fewer toxicities. Clearly re...

  13. Developing a national radiation oncology registry: From acorns to oaks.

    Science.gov (United States)

    Palta, Jatinder R; Efstathiou, Jason A; Bekelman, Justin E; Mutic, Sasa; Bogardus, Carl R; McNutt, Todd R; Gabriel, Peter E; Lawton, Colleen A; Zietman, Anthony L; Rose, Christopher M

    2012-01-01

    The National Radiation Oncology Registry (NROR) is a collaborative initiative of the Radiation Oncology Institute and the American Society of Radiation Oncology, with input and guidance from other major stakeholders in oncology. The overarching mission of the NROR is to improve the care of cancer patients by capturing reliable information on treatment delivery and health outcomes. The NROR will collect patient-specific radiotherapy data electronically to allow for rapid comparison of the many competing treatment modalities and account for effectiveness, outcome, utilization, quality, safety, and cost. It will provide benchmark data and quality improvement tools for individual practitioners. The NROR steering committee has determined that prostate cancer provides an appropriate model to test the concept and the data capturing software in a limited number of sites. The NROR pilot project will begin with this disease-gathering treatment and outcomes data from a limited number of treatment sites across the range of practice; once feasibility is proven, it will scale up to more sites and diseases. When the NROR is fully implemented, all radiotherapy facilities, along with their radiation oncologists, will be solicited to participate in it. With the broader participation of the radiation oncology community, NROR has the potential to serve as a resource for determining national patterns of care, gaps in treatment quality, comparative effectiveness, and hypothesis generation to identify new linkages between therapeutic processes and outcomes. The NROR will benefit radiation oncologists and other care providers, payors, vendors, policy-makers, and, most importantly, cancer patients by capturing reliable information on population-based radiation treatment delivery. Copyright © 2012 (c) 2010 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved. Published by Elsevier Inc. All rights reserved.

  14. [Strategies for improving care of oncologic patients: SHARE Project results].

    Science.gov (United States)

    Reñones Crego, María de la Concepción; Fernández Pérez, Dolores; Vena Fernández, Carmen; Zamudio Sánchez, Antonio

    2016-01-01

    Cancer treatment is a major burden for the patient and its family that requires an individualized management by healthcare professionals. Nurses are in charge of coordinating care and are the closest healthcare professionals to patient and family; however, in Spain, there are not standard protocols yet for the management of oncology patients. The Spanish Oncology Nursing Society developed between 2012 and 2014 the SHARE project, with the aim of establishing strategies to improve quality of life and nursing care in oncology patients. It was developed in 3 phases. First, a literature search and review was performed to identify nursing strategies, interventions and tools to improve cancer patients' care. At the second stage, these interventions were agreed within a group of oncology nursing experts; and at the third phase, a different group of experts in oncology care categorized the interventions to identify the ones with highest priority and most feasible to be implemented. As a result, 3 strategic actions were identified to improve nursing care during cancer treatment: To provide a named nurse to carry out the follow up process by attending to the clinic or telephonic consultation, develop therapeutic education with adapted protocols for each tumor type and treatment and ensure specific training for nurses on the management of the cancer patients. Strategic actions proposed in this paper aim to improve cancer patients' healthcare and quality of life through the development of advanced nursing roles based on a higher level of autonomy, situating nurses as care coordinators to assure an holistic care in oncology patients. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  15. Community oncology in an era of payment reform.

    Science.gov (United States)

    Cox, John V; Ward, Jeffery C; Hornberger, John C; Temel, Jennifer S; McAneny, Barbara L

    2014-01-01

    Patients and payers (government and private) are frustrated with the fee-for-service system (FFS) of payment for outpatient health services. FFS rewards volume and highly valued services, including expensive diagnostics and therapeutics, over lesser valued cognitive services. Proposed payment schemes would incent collaboration and coordination of care among providers and reward quality. In oncology, new payment schemes must address the high costs of all services, particularly drugs, while preserving the robust distribution of sites of service available to patients in the United States. Information technology and personalized cancer care are changing the practice of oncology. Twenty-first century oncology will require increasing cognitive work and shared decision making, both of which are not well regarded in the FFS model. A high proportion of health care dollars are consumed in the final months of life. Effective delivery of palliative and end-of-life care must be addressed by practice and by new models of payment. Value-based reimbursement schemes will require oncology practices to change how they are structured. Lessons drawn from the principles of primary care's Patient Centered Medical Home (PCMH) will help oncology practice to prepare for new schemes. PCMH principles place a premium on proactively addressing toxicities of therapies, coordinating care with other providers, and engaging patients in shared decision making, supporting the ideal of value defined in the triple aim-to measurably improve patient experience and quality of care at less cost. Payment reform will be disruptive to all. Oncology must be engaged in policy discussions and guide rational shifts in priorities defined by new payment models.

  16. Impact of future technology on oncologic diagnosis: oncologic imaging and diagnosis

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1983-01-01

    Over the past few years, the discipline of medical imaging has entered an evolutionary period that reflects primarily the introduction of computers and digital technology into the imaging process. Clinical applications of this evolution realized to date (e.g., transmission computed tomography, ultrasound and quantitative nuclear medicine) are only indicative of future developments that promise to increase the contributions of medical imaging in a very substantial manner. This increase in the area of oncologic diagnosis is one of the more exciting possibilities existing in medicine today

  17. Efficacy of therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Hoefnagel, C.A.

    1998-01-01

    The following topics are discussed: (i) 131 I therapy of thyrotoxicosis; (ii) 131 I therapy of differentiated thyroid carcinoma; (iii) 32 P therapy of myeloproliferative disease; (iv) 131 MIBG therapy of neural crest tumors; (v) radiolabelled peptides in neuroendocrine tumors; (vi) radioimmunotherapy; (vii) palliative bone therapy of painful skeletal metastases; (viii) radiosynoviorthesis; (ix) alternative approaches; (x) side effects and long-term effects

  18. First Author Research Productivity of United States Radiation Oncology Residents: 2002-2007

    International Nuclear Information System (INIS)

    Morgan, Peter B.; Sopka, Dennis M.; Kathpal, Madeera; Haynes, Jeffrey C.; Lally, Brian E.; Li, Linna

    2009-01-01

    Purpose: Participation in investigative research is a required element of radiation oncology residency in the United States. Our purpose was to quantify the first author research productivity of recent U.S. radiation oncology residents during their residency training. Methods and Materials: We performed a computer-based search of PubMed and a manual review of the proceedings of the annual meetings of the American Society for Therapeutic Radiology and Oncology to identify all publications and presented abstracts with a radiation oncology resident as the first author between 2002 and 2007. Results: Of 1,098 residents trained at 81 programs, 50% published ≥1 article (range, 0-9), and 53% presented ≥1 abstract (range, 0-3) at an American Society for Therapeutic Radiology and Oncology annual meeting. The national average was 1.01 articles published and 1.09 abstracts presented per resident during 4 years of training. Of 678 articles published, 82% represented original research and 18% were review articles. Residents contributed 15% of all abstracts at American Society for Therapeutic Radiology and Oncology annual meetings, and the resident contribution to orally presented abstracts increased from 12% to 21% during the study period. Individuals training at programs with >6 residents produced roughly twice as many articles and abstracts. Holman Research Pathway residents produced double the national average of articles and abstracts. Conclusion: Although variability exists among individuals and among training programs, U.S. radiation oncology residents routinely participate in investigative research suitable for publication or presentation at a scientific meeting. These data provide national research benchmarks that can assist current and future radiation oncology residents and training programs in their self-assessment and research planning.

  19. Monoclonal antibodies in oncology

    International Nuclear Information System (INIS)

    Chan, S.Y.T.; Sikora, K.

    1986-01-01

    Monoclonal antibodies (MCAs) can be used to differentiate between normal and neoplastic cells and thus exploited for diagnostic and, ultimately, therapeutic gain. The evidence for the existence of human tumour antigens is reviewed. Several areas of diagnosis are already benefiting from the application of the monoclonal technology. Immunohistology can help the pathologist with difficult diagnostic problems. New classifications of lymphoma and leukaemia can be based on specific surface molecules. Similarly, the detection of shed tumour antigens is already established as part of the routine assessment of many patients with common solid tumours. Isotopically labeled monoclonal antibodies have been used to localise primary and metastatic tumours. The use of antibodies in this way is not only a promising diagnostic tool but also the first step in studying the possibility of arming antibodies to provide therapeutic agents. Such trials are currently in progress. (Auth.)

  20. Integrated biophotonics in endoscopic oncology

    Science.gov (United States)

    Muguruma, Naoki; DaCosta, Ralph S.; Wilson, Brian C.; Marcon, Norman E.

    2009-02-01

    Gastrointestinal endoscopy has made great progress during last decade. Diagnostic accuracy can be enhanced by better training, improved dye-contrast techniques method, and the development of new image processing technologies. However, diagnosis using conventional endoscopy with white-light optical imaging is essentially limited by being based on morphological changes and/or visual attribution: hue, saturation and intensity, interpretation of which depends on the endoscopist's eye and brain. In microlesions in the gastrointestinal tract, we still rely ultimately on the histopathological diagnosis from biopsy specimens. Autofluorescence imaging system has been applied for lesions which have been difficult to morphologically recognize or are indistinct with conventional endoscope, and this approach has potential application for the diagnosis of dysplastic lesions and early cancers in the gastrointestinal tract, supplementing the information from white light endoscopy. This system has an advantage that it needs no administration of a photosensitive agent, making it suitable as a screening method for the early detection of neoplastic tissues. Narrow band imaging (NBI) is a novel endoscopic technique which can distinguish neoplastic and non-neoplastic lesions without chromoendoscopy. Magnifying endoscopy in combination with NBI has an obvious advantage, namely analysis of the epithelial pit pattern and the vascular network. This new technique allows a detailed visualization in early neoplastic lesions of esophagus, stomach and colon. However, problems remain; how to combine these technologies in an optimum diagnostic strategy, how to apply them into the algorithm for therapeutic decision-making, and how to standardize several classifications surrounding them. 'Molecular imaging' is a concept representing the most novel imaging methods in medicine, although the definition of the word is still controversial. In the field of gastrointestinal endoscopy, the future of

  1. Improving oncology nurses' communication skills for difficult conversations.

    Science.gov (United States)

    Baer, Linda; Weinstein, Elizabeth

    2013-06-01

    When oncology nurses have strong communication skills, they play a pivotal role in influencing patient satisfaction, adherence to plans of care, and overall clinical outcomes. However, research studies indicate that nurses tend to keep communication with patients and families at a superficial, nontherapeutic level. Processes for teaching goals-of-care communication skills and for implementing skills into clinical practice are not clearly defined. Nurses at a large comprehensive cancer center recognized the need for help with this skill set and sought out communication experts to assist in providing the needed education. An educational project was developed to improve therapeutic communication skills in oncology nurses during goals-of-care discussions and giving bad news. The program was tailored to nurses and social workers providing care to patients in a busy, urban, academic, outpatient oncology setting. Program topics included exploring the patient's world, eliciting hopes and concerns, and dealing with conflict about goals. Sharing and discussing specific difficult questions and scenarios were encouraged throughout the program. The program was well attended and well received by oncology nurses and social workers. Participants expressed interest in the continuation of communication programs to further enhance skills.

  2. Nuclear

    International Nuclear Information System (INIS)

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  3. Geriatric Oncology Program Development and Gero-Oncology Nursing.

    Science.gov (United States)

    Lynch, Mary Pat; DeDonato, Dana Marcone; Kutney-Lee, Ann

    2016-02-01

    To provide a critical analysis of current approaches to the care of older adults with cancer, outline priority areas for geriatric oncology program development, and recommend strategies for improvement. Published articles and reports between 1999 and 2015. Providing an interdisciplinary model that incorporates a holistic geriatric assessment will ensure the delivery of patient-centered care that is responsive to the comprehensive needs of older patients. Nursing administrators and leaders have both an opportunity and responsibility to shape the future of geriatric oncology. Preparations include workforce development and the creation of programs that are designed to meet the complex needs of this population. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The Future of Gero-Oncology Nursing.

    Science.gov (United States)

    Kagan, Sarah H

    2016-02-01

    To project the future of gero-oncology nursing as a distinct specialty, framed between analysis of current challenges and explication of prospective solutions. Peer-reviewed literature, policy directives, web-based resources, and author expertise. Oncology nursing faces several challenges in meeting the needs of older people living with cancer. Realigning cancer nursing education, practice, and research to match demographic and epidemiological realities mandates redesign. Viewing geriatric oncology as an optional sub-specialty limits oncology nursing, where older people represent the majority of oncology patients and cancer survivors. The future of gero-oncology nursing lies in transforming oncology nursing itself. Specific goals to achieve transformation of oncology nursing into gero-oncology nursing include assuring integrated foundational aging and cancer content across entry-level nursing curricula; assuring a gero-competent oncology nursing workforce with integrated continuing education; developing gero-oncology nurse specialists in advanced practice roles; and cultivating nurse leadership in geriatric oncology program development and administration along with expanding the scope and sophistication of gero-oncology nursing science. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The use of biosimilar medicines in oncology - position statement of the Brazilian Society of Clinical Oncology (SBOC).

    Science.gov (United States)

    Fernandes, G S; Sternberg, C; Lopes, G; Chammas, R; Gifoni, M A C; Gil, R A; Araujo, D V

    2018-01-11

    A biosimilar is a biologic product that is similar to a reference biopharmaceutical product, the manufacturing process of which hinders the ability to identically replicate the structure of the original product, and therefore, it cannot be described as an absolute equivalent of the original medication. The currently available technology does not allow for an accurate copy of complex molecules, but it does allow the replication of similar molecules with the same activity. As biosimilars are about to be introduced in oncology practice, these must be evaluated through evidence-based medicine. This manuscript is a position paper, where the Brazilian Society of Clinical Oncology (SBOC) aims to describe pertinent issues regarding the approval and use of biosimilars in oncology. As a working group on behalf of SBOC, we discuss aspects related to definition, labeling/nomenclature, extrapolation, interchangeability, switching, automatic substitution, clinical standards on safety and efficacy, and the potential impact on financial burden in healthcare. We take a stand in favor of the introduction of biosimilars, as they offer a viable, safe, and cost-effective alternative to the biopharmaceutical products currently used in cancer. We hope this document can provide valuable information to support therapeutic decisions that maximize the clinical benefit for the thousands of cancer patients in Brazil and can contribute to expedite the introduction of this new drug class in clinical practice. We expect the conveyed information to serve as a basis for further discussion in Latin America, this being the first position paper issued by a Latin American Oncology Society.

  6. Information technologies for radiation oncology

    International Nuclear Information System (INIS)

    Chen, George T.Y.

    1996-01-01

    Electronic exchange of information is profoundly altering the ways in which we share clinical information on patients, our research mission, and the ways we teach. The three panelists each describe their experiences in information exchange. Dr. Michael Vannier is Professor of Radiology at the Mallinkrodt Institute of Radiology, and directs the image processing laboratory. He will provide insights into how radiologists have used the Internet in their specialty. Dr. Joel Goldwein, Associate Professor in the Department of Radiation Oncology at the University of Pennsylvania, will describe his experiences in using the World Wide Web in the practice of academic radiation oncology and the award winning Oncolink Web Site. Dr. Timothy Fox Assistant, Professor of Radiation Oncology at Emory University will discuss wide area networking of multi-site departments, to coordinate center wide clinical, research and teaching activities

  7. Therapeutic cloning: The ethical limits

    International Nuclear Information System (INIS)

    Whittaker, Peter A.

    2005-01-01

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated

  8. Comprehensive Oncologic Emergencies Research Network (CONCERN)

    Science.gov (United States)

    The Comprehensive Oncologic Emergencies Research Network (CONCERN) was established in March 2015 with the goal to accelerate knowledge generation, synthesis and translation of oncologic emergency medicine research through multi-center collaborations.

  9. American Society of Pediatric Hematology/Oncology

    Science.gov (United States)

    ... Learn More Explore career opportunities in pediatric hematology/oncology Visit the ASPHO Career Center. Learn More Join ... Privacy Policy » © The American Society of Pediatric Hematology/Oncology

  10. The history and evolution of radiotherapy and radiation oncology in Austria

    International Nuclear Information System (INIS)

    Kogelnik, H. Dieter

    1996-01-01

    Austria has a longstanding and eventful history in the field of radiotherapy and radiation oncology. The founder of radiotherapy, Leopold Freund, began his well-documented first therapeutic irradiation on November 24, 1896, in Vienna. He also wrote the first textbook of radiotherapy in 1903. Further outstanding Viennese pioneers in the fields of radiotherapy, radiobiology, radiation physics, and diagnostic radiology include Gottwald Schwarz, Robert Kienboeck, and Guido Holzknecht. Because many of the leading Austrian radiologists had to emigrate in 1938, irreparable damage occurred at that time for the medical speciality of radiology. After World War II, the recovery in the field of radiotherapy and radiation oncology started in Austria in the early sixties. Eleven radiotherapy centers have been established since that time, and an independent society for radio-oncology, radiobiology, and medical radiophysics was founded in 1984. Finally, in March 1994, radiotherapy-radio-oncology became a separate clinical speciality

  11. A Personal Reflection on the History of Radiation Oncology at Memorial Sloan-Kettering Cancer Center

    International Nuclear Information System (INIS)

    Chu, Florence C.H.

    2011-01-01

    Purpose: To provide a historical and personal narrative of the development of radiation oncology at Memorial Sloan-Kettering Cancer Center (MSKCC), from its founding more than 100 years ago to the present day. Methods and Materials: Historical sources include the Archives of MSKCC, publications by members of MSKCC, the author's personal records and recollections, and her communications with former colleagues, particularly Dr. Basil Hilaris, Dr. Zvi Fuks, and Dr. Beryl McCormick. Conclusions: The author, who spent 38 years at MSKCC, presents the challenges and triumphs of MSKCC's Radiation Oncology Department and details MSKCC's breakthroughs in radiation oncology. She also describes MSKCC's involvement in the founding of the American Society for Therapeutic Radiology and Oncology.

  12. Factors associated with prescribing restriction on oncology formulary drugs in Malaysia.

    Science.gov (United States)

    Fatokun, Omotayo; Olawepo, Michael N

    2016-10-01

    Background Drugs listed on formularies are often subjected to a variety of utilization restriction measures. However, the degree of restriction is influenced by multiple factors, including the characteristics and attributes of the listed drugs. Objective To identify the factors that are associated with the levels of prescribing restriction on oncology formulary drugs in Malaysia. Setting Oncology formulary in Malaysia. Method The Malaysia Drug Code assigned to each of the drug products on the Malaysia Ministry of Health (MOH) drug formulary was used to identify oncology drugs belonging to WHO ATC class L (antineoplastic and immunomodulating agents). Main outcome measures Categories of prescribing restrictions, therapeutic class, drug type, administration mode, number of sources and the post-approval use period. Results Oncology drugs having a shorter post-approval use period (p Malaysia MOH drug formulary.

  13. 76 FR 58520 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-09-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee. General...

  14. [Vitamins and Minerals in Oncology].

    Science.gov (United States)

    Holch, Julian Walter; Michl, Marlies; Heinemann, Volker; Erickson, Nicole

    2017-06-01

    The use of vitamins and minerals to prevent cancer as well as their supportive use in oncological patients is widespread and often occurs without the knowledge of the treating physician. Beyond general recommendations with regard to a balanced and healthy diet, no evidence exists supporting the use of vitamins and minerals in the prevention of cancer. Furthermore, the diet of oncological patients should contain vitamins and minerals of the same quantity as for healthy individuals. In particular, there is currently no rationale for a high-dosage administration of antioxidants. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Positron emission tomography in oncology

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report describes the current and potential uses of positron emission tomography in clinical medicine and research related to oncology. Assessment will be possible of metabolism and physiology of tumors and their effects on adjacent tissues. Specific probes are likely to be developed for target sites on tumors, including monoclonal antibodies and specific growth factors that recognize tumors. To date, most oncological applications of positron emission tomography tracers have been qualitative; in the future, quantitative metabolic measurements should aid in the evaluation of tumor biology and response to treatment

  16. PET/MR in oncology

    DEFF Research Database (Denmark)

    Balyasnikova, Svetlana; Löfgren, Johan; de Nijs, Robin

    2012-01-01

    of the challenges inherent in this new technology, but focus on potential applications for simultaneous PET/MR in the field of oncology. Methods and tracers for use with the PET technology will be familiar to most readers of this journal; thus this paper aims to provide a short and basic introduction to a number...... be applied together with PET increasing the amount of information about the tissues of interest. The potential clinical benefit of applying PET/MR in staging, radiotherapy planning and treatment evaluation in oncology, as well as the research perspectives for the use of PET/MR in the development of new...

  17. Cancer Patients and Oncology Nursing: Perspectives of Oncology ...

    African Journals Online (AJOL)

    2017-10-26

    Oct 26, 2017 ... findings of this study, nurses declared that working with cancer patients increase burnout, they are ..... of working in oncology to entire work life was 75.8% for nurses in the study .... This professional balance is important for ...

  18. Therapeutic applications of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Baker, W.J.; Datz, F.L.; Beightol, R.W.

    1987-01-01

    Whether a radiopharmaceutical has diagnostic or therapeutic application depends on both the isotope and pharmaceutical used. For diagnostic applications, the isotope should undergo only γ-decay, since usually only γ-radiation is detected by nuclear medicine cameras. The half-life should be just long enough to allow the procedure to be performed. In contrast, the isotope needed for therapeutic purposes should have particulate radiation, such as a β-particle (electron), since these are locally absorbed an increase the local radiation dose. γ-Radiation, which penetrates the tissues, produces less radiation dose than do Β-particles. Several references dealing with radioactive decay, particulate interactions, and diagnostic and therapeutic applications of radiopharmaceuticals are available. Radiopharmaceuticals can legally be used only by physicians who are qualified by specific training in the safe handling of radionuclides. The experience and training of these physicians must be approved by the Nuclear Regulatory Commission or Agreement State Agency authorized to license the use of radiopharmaceuticals. A list of all byproduct material and procedures is available in the Code of Federal Regulations. Of the many radiopharmaceuticals available for diagnostic and therapeutic use, only those commonly used are discussed in this chapter

  19. Nuclear Regulatory Commission issuances

    International Nuclear Information System (INIS)

    1996-03-01

    This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company's petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director's decision pertaining to the Yankee Nuclear Power Station

  20. Cardiotoxicity of oncological treatment

    International Nuclear Information System (INIS)

    Mlot, B.; Rzepecki, P.

    2010-01-01

    , also increase the risk of cardiotoxicity. These medicaments also cause hypetension, acute coronary syndromes and thromboembolic events. Monoclonal antibodies are also toxic for the heart. Anti-HER2 therapy blocks the receptor which normally protects the heart from impairing factors (such as ischaemia, toxins and adrenergic stimulation). Cardiological disturbances are one of the late complications of radiotherapy of the area of the chest and usually appear after more than 10 years calculating from the end of treatment. It is an essential problem especially in patients with breast cancer or with Hodgkin's lymphoma due to the long-term survivals in these groups. The related abnormalities were located mostly in the pericardium and coronary vessels, but may also involve the myocardium, the conducting system or valves of the heart. In chemotherapy departments, the oncologist has become responsible for the cardiotoxicity risk stratification in patients undergoing/planned for anti-cancer therapy and for the early recognition of cardiac complications. Monitoring of the left ventricular function is now an essential part of oncological procedures using cardiotoxic drugs. ACE inhibitors, ATI receptor blockers, beta-blockers, diuretics and digoxin are drugs of choice in heart failure therapy. The awareness of clinicians regarding the potential adverse effects on cardiac performance by several classes of drugs, particularly in patients with preexisting ventricular dysfunction, may contribute to timely diagnosis and prevention of drug-induced heart failure. (authors)

  1. Macromolecular therapeutics.

    Science.gov (United States)

    Yang, Jiyuan; Kopeček, Jindřich

    2014-09-28

    This review covers water-soluble polymer-drug conjugates and macromolecules that possess biological activity without attached low molecular weight drugs. The main design principles of traditional and backbone degradable polymer-drug conjugates as well as the development of a new paradigm in nanomedicines - (low molecular weight) drug-free macromolecular therapeutics are discussed. To address the biological features of cancer, macromolecular therapeutics directed to stem/progenitor cells and the tumor microenvironment are deliberated. Finally, the future perspectives of the field are briefly debated. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Oncological emergencies for the internist

    Directory of Open Access Journals (Sweden)

    Umesh Das

    2015-01-01

    Full Text Available An oncologic emergency is defined as any acute, potentially life-threatening event, either directly or indirectly related to a patient′s cancer (ca or its treatment. It requires rapid intervention to avoid death or severe permanent damage. Most oncologic emergencies can be classified as metabolic, hematologic, structural, or side effects from chemotherapy agents. Tumor lysis syndrome is a metabolic emergency that presents as severe electrolyte abnormalities. The condition is treated with aggressive hydration, allopurinol or urate oxidase to lower uric acid levels. Hypercalcemia of malignancy is treated with aggressive rehydration, furosemide, and intravenous (IV bisphosphonates. Syndrome of inappropriate antidiuretic hormone should be suspected if a patient with ca presents with normovolemic hyponatremia. This metabolic condition usually is treated with fluid restriction and furosemide. Febrile neutropenia is a hematologic emergency that usually requires inpatient therapy with broad-spectrum antibiotics, although outpatient therapy may be appropriate for low-risk patients. Hyperviscosity syndrome usually is associated with Waldenstrφm′s macroglobulinemia, which is treated with plasmapheresis and chemotherapy. Structural oncologic emergencies are caused by direct compression of surrounding structures or by metastatic disease. Superior vena cava syndrome is the most common structural oncological emergency. Treatment options include chemotherapy, radiation, and IV stenting. Epidural spinal cord compression can be treated with dexamethasone, radiation, or surgery. Malignant pericardial effusion, which often is undiagnosed in ca patients, can be treated with pericardiocentesis or a pericardial window procedure.

  3. Therapeutic Nanodevices

    Science.gov (United States)

    Lee, Stephen; Ruegsegger, Mark; Barnes, Philip; Smith, Bryan; Ferrari, Mauro

    Therapeutic nanotechnology offers minimally invasive therapies with high densities of function concentrated in small volumes, features that may reduce patient morbidity and mortality. Unlike other areas of nanotechnology, novel physical properties associated with nanoscale dimensionality are not the raison d'être of therapeutic nanotechnology, whereas the aggregation of multiple biochemical (or comparably precise) functions into controlled nanoarchitectures is. Multifunctionality is a hallmark of emerging nanotherapeutic devices, and multifunctionality can allow nanotherapeutic devices to perform multistep work processes, with each functional component contributing to one or more nanodevice subroutine such that, in aggregate, subroutines sum to a cogent work process. Cannonical nanotherapeutic subroutines include tethering (targeting) to sites of disease, dispensing measured doses of drug (or bioactive compound), detection of residual disease after therapy and communication with an external clinician/operator. Emerging nanotherapeutics thus blur the boundaries between medical devices and traditional pharmaceuticals. Assembly of therapeutic nanodevices generally exploits either (bio)material self-assembly properties or chemoselective bioconjugation techniques, or both. Given the complexity, composition, and the necessity for their tight chemical and structural definition inherent in the nature of nanotherapeutics, their cost of goods (COGs) might exceed that of (already expensive) biologics. Early therapeutic nanodevices will likely be applied to disease states which exhibit significant unmet patient need (cancer and cardiovascular disease), while application to other disease states well-served by conventional therapy may await perfection of nanotherapeutic design and assembly protocols.

  4. FDG PET/CT in clinical oncology. Case based approach with teaching points

    Energy Technology Data Exchange (ETDEWEB)

    Mihailovic, Jasna [Novi Sad Univ. (Serbia). Dept. of Nuclear Medicine; Goldsmith, Stanley J. [Weill Cornell Medical College, New York, NY (United States). Div. of Nuclear Medicine and Molecular Imging; Killeen, Ronan P. [St. Vincents Univ. Hospital, Dublin (Ireland)

    2012-07-01

    Organized according to the role of FDG PET/CT in the evaluation and management of oncology patients. 100 informative cases reflecting the issues that clinicians address in their daily practice. Ideal for all newcomers to the field, whether medical students, radiology, nuclear medicine, or oncology fellows, or practicing physicians. FDG PET/CT has rapidly emerged as an invaluable combined imaging modality that can identify tumors on the basis of not only anatomical alterations but also metabolic activity, thus allowing the detection of lesions that would otherwise be too small to distinguish. This book, comprising a collection of images from oncology cases, is organized according to the role of FDG PET/CT in the evaluation and management of oncology patients, and only secondarily by organ or tumor entity. In this way, it reflects the issues that clinicians actually address in their daily practice, namely: identification of an unknown or unsuspected primary; determination of the extent of disease; evaluation of response to therapy; and surveillance after response, i.e., detection of recurrent disease. In total, 100 cases involving different primary tumors are presented to illustrate findings in these different circumstances. FDG PET/CT in Clinical Oncology will be of great value to all newcomers to this field, whether medical students, radiology, nuclear medicine, or oncology fellows, or practicing physicians.

  5. Primary carcinoma of fallopian tubes in the material of the Institute of Oncology in Gliwice

    Energy Technology Data Exchange (ETDEWEB)

    Franek, K; Zielonka, I; Kwasniewska-Rokicinska, C [Instytut Onkologii, Gliwice (Poland)

    1976-01-01

    The survival of 17 patients treated with postoperative radiotherapy at the Institute of Oncology in Gliwice for primary fallopian tube carcinoma is analysed. The causes of therapeutic failures and short survival (within 2 years) were - too far advanced disease at the time of main treatment which was due to diagnostic difficulties and too late reference of patients for surgery.

  6. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  7. Radiation oncology in Australia: a historical and evolutionary perspective

    International Nuclear Information System (INIS)

    Sandeman, T.F.

    1996-01-01

    This presentation tracks the development of the therapeutic application of radiation in Australia. Within six months of Roentgen's discovery, the Crooke's x-ray tube and later a radium plaque was used in Australia for treatment, in particular by the dermatologists. By 1920s radiology was an established specialty. A series of conferences was held between 1930 and 1940 to discuss the provision of cancer treatment, the integration of research and particularly, the establishment of central registry. The author also paid tribute to a a series of scientific personalities for their contribution to the Australian radiation oncology. 22 refs., ills

  8. Application of computer assisted tomography in gynaecological oncology

    International Nuclear Information System (INIS)

    Pickel, H.; Schreithofer, H.; Sager, W.D.; Graz Univ.

    1980-01-01

    The non invasive radiologic technique of computed tomography has been employed since 1978 at the University Women's Clinic and Radiologic Clinic, Graz. One hundred and fourty six examinations of the pelvis, abdomen and chest were performed on 63 oncologic patients. The method was employed for the preoperative detection and measurement of the size of benign and malignant neoplasms; in tumour staging and assessment of therapeutic response. The results suggest that CT might be the best method for the assessment of response to cytotoxic therapy of ovarian cancer. (orig.) [de

  9. Does Cancer Literature Reflect Multidisciplinary Practice? A Systematic Review of Oncology Studies in the Medical Literature Over a 20-Year Period.

    Science.gov (United States)

    Holliday, Emma B; Ahmed, Awad A; Yoo, Stella K; Jagsi, Reshma; Hoffman, Karen E

    2015-07-15

    Quality cancer care is best delivered through a multidisciplinary approach requiring awareness of current evidence for all oncologic specialties. The highest impact journals often disseminate such information, so the distribution and characteristics of oncology studies by primary intervention (local therapies, systemic therapies, and targeted agents) were evaluated in 10 high-impact journals over a 20-year period. Articles published in 1994, 2004, and 2014 in New England Journal of Medicine, Lancet, Journal of the American Medical Association, Lancet Oncology, Journal of Clinical Oncology, Annals of Oncology, Radiotherapy and Oncology, International Journal of Radiation Oncology, Biology, Physics, Annals of Surgical Oncology, and European Journal of Surgical Oncology were identified. Included studies were prospectively conducted and evaluated a therapeutic intervention. A total of 960 studies were included: 240 (25%) investigated local therapies, 551 (57.4%) investigated systemic therapies, and 169 (17.6%) investigated targeted therapies. More local therapy trials (n=185 [77.1%]) evaluated definitive, primary treatment than systemic (n=178 [32.3%]) or targeted therapy trials (n=38 [22.5%]; Pliterature. Further research and attention are necessary to guide efforts promoting appropriate representation of all oncology studies in high-impact, broad-readership journals. Copyright © 2015. Published by Elsevier Inc.

  10. Biophysical models in radiation oncology

    International Nuclear Information System (INIS)

    Cohen, L.

    1984-01-01

    The paper examines and describes dose-time relationships in clinical radiation oncology. Realistic models and parameters for specific tissues, organs, and tumor types are discussed in order to solve difficult problems which arise in radiation oncology. The computer programs presented were written to: derive parameters from experimental and clinical data; plot normal- and tumor-cell survival curves; generate iso-effect tables of tumor-curative doses; identify alternative, equally effective procedures for fraction numbers and treatment times; determine whether a proposed course of treatment is safe and adequate, and what adjustments are needed should results suggest that the procedure is unsafe or inadequate; combine the physical isodose distribution with computed cellular surviving fractions for the tumor and all normal tissues traversed by the beam, estimating the risks of recurrence or complications at various points in the irradiated volume, and adjusting the treatment plan and fractionation scheme to minimize these risks

  11. PET/TAC in Oncology

    International Nuclear Information System (INIS)

    Jimenez V, A.M.

    2007-01-01

    From this presentation of PET-TAC in oncology the following advantages on the conventional PET are obtained: 1. More short study and stadium in one session. 2. It adds the information of both techniques. 3. Better localization of leisure: affected organ, stadium change (neck, mediastinum, abdomen). 4. Reduction of false positive (muscle, brown fat, atelectasis, pneumonias, intestine, urinary vials, etc.). 5. Reduction of negative false. 6. Reduction of not conclusive. 7. More understandable for other specialists. 8. Biopsies guide. 9. Planning radiotherapy

  12. Molecularly targeted therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Saw, M.M.

    2007-01-01

    Full text: It is generally agreed that current focus of nuclear medicine development should be on molecular imaging and therapy. Though, the widespread use of the terminology 'molecular imaging' is quite recent, nuclear medicine has used molecular imaging techniques for more than 20 years ago. A variety of radiopharmaceuticals have been introduced for the internal therapy of malignant and inflammatory lesions in nuclear medicine. In the field of bio/medical imaging, nuclear medicine is one of the disciplines which has the privilege of organized and well developed chemistry/ pharmacy section; radio-chemistry/radiopharmacy. Fundamental principles have been developed more than 40 years ago and advanced research is going well into postgenomic era. The genomic revolution and dramatically increased insight in the molecular mechanisms underlying pathology have led to paradigm shift in drug development. Likewise does in the nuclear medicine. Here, the author will present current clinical and pre-clinical therapeutic radiopharmaceuticals based on molecular targets such as membrane-bound receptors, enzymes, nucleic acids, sodium iodide symporter, etc, in correlation with fundamentals of radiopharmacy. (author)

  13. Patient satisfaction in radiation oncology

    International Nuclear Information System (INIS)

    Zissiadis, Y.; Provis, A.; Dhaliwal, S.S.

    2003-01-01

    In this current economic climate where the costs of providing a good medical service are escalating, patients are demanding a higher level of service from the Radiation Oncology providers. This coupled with the rising level of patients' expectations make it absolutely paramount for Radiation Oncology providers to offer the best possible service to their patients. In order to do this, it is essential to assess the present level of patient satisfaction prior to deciding which aspects of the current service need to be changed. In this pilot study, we assess the level of patient satisfaction with aspects of the radiotherapy service and the level of patient anxiety both prior to and following radiotherapy at the Perth Radiation Oncology Centre. A questionnaire was created using a combination of the Information Satisfaction Questionnaire-1 (ISQ-1), the Very Short Questionnaire 9 (VSQ 9) and the State Trait Anxiety Index (STAI). One hundred new patients were studied, all of whom were to have radiotherapy with curative intent. The results of this study are reviewed in this presentation

  14. Nuclear medicine in South Africa : current status

    International Nuclear Information System (INIS)

    Vangu, M.D.T.H.W.

    2004-01-01

    Full text: Nuclear medicine in South Africa has been a full specialty on its own since 1987. It is practiced in almost all teaching hospitals and within the private sector in larger cities. Most of the routine radiopharmaceuticals are domestically manufactured and the main isotope can be obtained from locally produced technetium generators. All the radionuclide imaging devices used in the country are imported. The main vendors are GE, Siemens and Phillips. The majority of radionuclide imaging comprises work from nuclear cardiology and nuclear oncology. Almost all the routine clinical nuclear medicine procedures are performed and some in vitro work is also done, however. Principal therapeutic agents used in the country include radioactive iodine, radioactive iodine MIBG and yttrium. The country still lacks experience in receptors imaging and radioimmunology work and no PET scanner has been purchased yet. The academic institutions are active with participation in national and international congresses and also with publications. Although much remains to be done, the future of nuclear medicine in South Africa does not appear gloomy. (author)

  15. Nuclear

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The first text deals with a new circular concerning the collect of the medicine radioactive wastes, containing radium. This campaign wants to incite people to let go their radioactive wastes (needles, tubes) in order to suppress any danger. The second text presents a decree of the 31 december 1999, relative to the limitations of noise and external risks resulting from the nuclear facilities exploitation: noise, atmospheric pollution, water pollution, wastes management and fire prevention. (A.L.B.)

  16. Nuclear imaging in pediatrics

    International Nuclear Information System (INIS)

    Siddiqui, A.R.

    1985-01-01

    The author's intent is to familiarize practicing radiologists with the technical aspects and interpretation of nuclear medicine procedures in children and to illustrate the indications for nuclear medicine procedures in pediatric problems. Pediatric doses, dosimetry, sedation, and injection techniques, organ systems, oncology and infection, testicular scanning and nuclear crystography, pediatric endocrine and skeletal systems, ventilation and perfusion imaging of both congenital and acquired pediatric disorders, cardiovascular problems, gastrointestinal, hepatobiliary, reticuloendothelial studies, and central nervous system are all topics which are included and discussed

  17. Clinical and Radiation Oncology. Vol. 1

    International Nuclear Information System (INIS)

    Jurga, L.; Adam, Z.; Autrata, R.

    2010-01-01

    The work is two-volume set and has 1,658 pages. It is divided into 5 sections: I. Principles Clinical and radiation oncology. II. Hematological Malignant tumors. III. Solid tumors. IV. Treatment options metastatic Disease. V. Clinical practice in oncology. First volume contains following sections a chapters: Section I: Principles of clinical and radiation oncology, it contains following chapters: (1) The history of clinical/experimental and radiation oncology in the Czech Republic; (2) The history of clinical/experimental and radiation oncology in the Slovak Republic - development and development of oncology in Slovakia; (3) Clinical and radiation oncology as part of evidence-based medicine; (4) Molecular biology; (5) Tumor Disease; (6) Epidemiology and prevention of malignant tumors; (7) Diagnosis, staging, stratification and monitoring of patients in oncology; (8) Imaging methods in oncology; (9) Principles of surgical treatment of cancer diseases; (10) Symptomatology and signaling of malignant tumors - systemic, paraneoplastic and paraendocrine manifestations of tumor diseases; (11) Principles of radiation oncology; (12 Modeling radiobiological effects of radiotherapy; (13) Principles of anticancer chemotherapy; (14) Hormonal manipulation in the treatment of tumors; (15) Principles of biological and targeted treatment of solid tumors; (16) Method of multimodal therapy of malignant tumors; (17) Evaluation of treatment response, performance evaluation criteria (RECIST); (18) Adverse effects of cancer chemotherapy and the principles of their prevention and treatment; (19) Biological principles of hematopoietic stem cell transplantation; (20) Design, analysis and ethical aspects of clinical studies in oncology; (21) Fundamentals of biostatistics for oncologists; (22) Information infrastructure for clinical and radiological oncology based on evidence; (23) Pharmacoeconomic aspects in oncology; (24) Respecting patient preferences when deciding on the strategy and

  18. AMCP Partnership Forum: Driving Value and Outcomes in Oncology.

    Science.gov (United States)

    2017-05-01

    Innovation in cancer treatment has provided a wealth of recently available therapeutic agents and a healthy drug pipeline that promises to change the way we approach this disease and the lives of those affected in the years to come. However, the majority of these new agents, many of which are targeted to specific genomic features of various tumors, may challenge the health care system's ability to afford cancer care. This innovation drives the need to focus on the value of the treatments provided to patients with cancer and on methods to optimize the efficiency of the dollars we spend, in addition to the clinical value itself. The Academy of Managed Care Pharmacy (AMCP) convened a Partnership Forum to address how to improve value and outcomes in cancer care. In this multistakeholder forum, several areas were addressed: current methods for assessing the value of oncology products, the need for balancing population management with precision medicine, and the outlook for value-based contracting for oncology medications in managed care settings. Participants recommended ways in which stakeholders can work toward solutions in these areas. The forum brought together stakeholders from health plans, integrated delivery systems, pharmacy benefit managers, clinical practice, biopharmaceutical industry, and laboratory companies. Also participating were representatives from trade and professional associations. During this 1.5-day forum, participants identified current challenges, readiness, and ways to address value and improve outcomes in cancer therapy. Some of the challenges identified include choosing a viable (and practical) outcome target for value-based contracting in oncology, the development and use of value frameworks and clinical pathways, managing cancer diagnostics, utilization of alternative payment systems, moving from a large evidence base to a small clinical trial base in considering targeted treatments, and lack of best practices in value-based payment

  19. Palliative Care: Delivering Comprehensive Oncology Nursing Care.

    Science.gov (United States)

    Dahlin, Constance

    2015-11-01

    To describe palliative care as part of comprehensive oncology nursing care. A review of the palliative care, oncology, and nursing literature over the past 10 years. Palliative care is mandated as part of comprehensive cancer care. A cancer diagnosis often results in distress in the physical, psychosocial, spiritual, and emotional domains of care. Oncology nurses are essential in providing palliative care from diagnosis to death to patients with cancer. They address the myriad aspects of cancer. With palliative care skills and knowledge, oncology nurses can provide quality cancer care. There are many opportunities in which oncology nurses can promote palliative care. Oncology nurses must obtain knowledge and skills in primary palliative care to provide comprehensive cancer care. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. E-learning programs in oncology

    DEFF Research Database (Denmark)

    Degerfält, Jan; Sjöstedt, Staffan; Fransson, Per

    2017-01-01

    BACKGROUND: E-learning is an established concept in oncological education and training. However, there seems to be a scarcity of long-term assessments of E-learning programs in oncology vis-á-vis their structural management and didactic value. This study presents descriptive, nationwide data from...... 2005 to 2014. E-learning oncology programs in chemotherapy, general oncology, pain management, palliative care, psycho-social-oncology, and radiotherapy, were reviewed from our databases. Questionnaires of self-perceived didactic value of the programs were examined 2008-2014. RESULTS: The total number.......6% (MDs: 64.9%; RNs: 66.8%; SHCAs: 77.7%) and as good by 30.6% (MDs: 34.5%; RNs: 32.4%; SHCAs: 21.5%) of the responders. CONCLUSIONS: This descriptive study, performed in a lengthy timeframe, presents high-volume data from multi-professional, oncological E-learning programs. While the E-learning paradigm...

  1. Continuing medical education in radiation oncology

    International Nuclear Information System (INIS)

    Chauvet, B.; Barillot, I.; Denis, F.; Cailleux, P.E.; Ardiet, J.M.; Mornex, F.

    2012-01-01

    In France, continuing medical education (CME) and professional practice evaluation (PPE) became mandatory by law in July 2009 for all health professionals. Recently published decrees led to the creation of national specialty councils to implement this organizational device. For radiation oncology, this council includes the French Society for Radiation Oncology (SFRO), the National Radiation Oncology Syndicate (SNRO) and the Association for Continuing Medical Education in Radiation Oncology (AFCOR). The Radiation Oncology National Council will propose a set of programs including CME and PPE, professional thesaurus, labels for CME actions consistent with national requirements, and will organize expertise for public instances. AFCOR remains the primary for CME, but each practitioner can freely choose an organisation for CME, provided that it is certified by the independent scientific commission. The National Order for physicians is the control authority. Radiation oncology has already a strong tradition of independent CME that will continue through this major reform. (authors)

  2. Photosensitizers and radiosensitizers in dermatology and oncology

    International Nuclear Information System (INIS)

    Bruckner, V.

    1979-01-01

    Two therapeutic modalities are currently of great interest, namely photo- and radiosensitization. Whereas photosensitizers only function in combination with ultraviolet (UV) light, radiosensitizers act only in combination with ionizing radiation. Because of the small UV penetration, up to a maximum of 0,5 mm, photosensitization can take place only at the surface of the body, i.e. the skin. Photosensitizers are applied in dermatology in order to optimize and improve the UV therapy of certain diseases (mainly psoriasis, mycosis fungoides and vitiligo). Radiosensitizers lead to an increase in sensitivity of the hypoxic and therefore radioresistant parts of tumours against X- and gamma-radiation. With sufficient concentration within the tumour, they can act where the radiation can reach, even in the deeper parts of the body. They represent a modern and useful aid to radiation oncology. Because of neurotoxic effects, however, their practical use is limited. A short review of the history, mechanisms of action, application and side-effects of these photo- and radiosensitizers is presented

  3. Photosensitizers and radiosensitizers in dermatology and oncology

    Energy Technology Data Exchange (ETDEWEB)

    Bruckner, V [Stellenbosch University, Parowvallei (South Africa). Departments of Medical Physics and Radiology

    1979-09-22

    Two therapeutic modalities are currently of great interest, namely photo- and radiosensitization. Whereas photosensitizers only function in combination with ultraviolet (UV) light, radiosensitizers act only in combination with ionizing radiation. Because of the small UV penetration, up to a maximum of 0,5 mm, photosensitization can take place only at the surface of the body, i.e. the skin. Photosensitizers are applied in dermatology in order to optimize and improve the UV therapy of certain diseases (mainly psoriasis, mycosis fungoides and vitiligo). Radiosensitizers lead to an increase in sensitivity of the hypoxic and therefore radioresistant parts of tumours against X- and gamma-radiation. With sufficient concentration within the tumour, they can act where the radiation can reach, even in the deeper parts of the body. They represent a modern and useful aid to radiation oncology. Because of neurotoxic effects, however, their practical use is limited. A short review of the history, mechanisms of action, application and side-effects of these photo- and radiosensitizers is presented.

  4. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    Crum, Lawrence A

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  5. Oncology patient-reported claims: maximising the chance for success.

    Science.gov (United States)

    Kitchen, H; Rofail, D; Caron, M; Emery, M-P

    2011-01-01

    To review Patient Reported Outcome (PRO) labelling claims achieved in oncology in Europe and in the United States and consider the benefits, and challenges faced. PROLabels database was searched to identify oncology products with PRO labelling approved in Europe since 1995 or in the United States since 1998. The US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) websites and guidance documents were reviewed. PUBMED was searched for articles on PRO claims in oncology. Among all oncology products approved, 22 were identified with PRO claims; 10 in the United States, 7 in Europe, and 5 in both. The language used in the labelling was limited to benefit (e.g. "…resulted in symptom benefits by significantly prolonging time to deterioration in cough, dyspnoea, and pain, versus placebo") and equivalence (e.g. "no statistical differences were observed between treatment groups for global QoL"). Seven products used a validated HRQoL tool; two used symptom tools; two used both; seven used single-item symptom measures (one was unknown). The following emerged as likely reasons for success: ensuring systematic PRO data collection; clear rationale for pre-specified endpoints; adequately powered trials to detect differences and clinically significant changes; adjusting for multiplicity; developing an a priori statistical analysis plan including primary and subgroup analyses, dealing with missing data, pooling multiple-site data; establishing clinical versus statistical significance; interpreting failure to detect change. End-stage patient drop-out rates and cessation of trials due to exceptional therapeutic benefit pose significant challenges to demonstrating treatment PRO improvement. PRO labelling claims demonstrate treatment impact and the trade-off between efficacy and side effects ultimately facilitating product differentiation. Reliable and valid instruments specific to the desired language, claim, and target population are required. Practical

  6. Development of an Integrated Subspecialist Multidisciplinary Neuro-oncology Service

    Science.gov (United States)

    Price, Stephen J; Guilfoyle, Mathew; J Jefferies, Sarah; Harris, Fiona; Oberg, Ingela; G Burnet, Neil; Santarius, Thomas; Watts, Colin

    2013-01-01

    Traditionally, the poor outcome for patients with malignant brain tumours led to therapeutic nihilism. In turn, this resulted in lack of interest in neurosurgical oncology subspecialisation, and less than ideal patient pathways. One problem of concern was the low rate of tumour resection. Between 1997 and 2006, 685 treated glioblastomas were identified. In the first four years only 40% of patients underwent tumour resection, rising to 55% in the last four years. Before revision of the pathway, the median length of hospital stay was 8 days, and 35% of patients received the results of their histology outside of a clinic setting. A pathway of care was established, in which all patients were discussed pre-operatively in an MDT meeting and then directed into a new surgical neuro-oncology clinic providing first point of contact. This limited the number of surgeons operating on adult glioma patients and aided recruitment into research studies. Now, three consultant neurosurgeons run this service, easily fulfilling IOG requirement to spend >50% of programmed activities in neuro-oncology. Nursing support has been critical to provide an integrated service. This model has allowed increased recruitment to clinical trials. The introduction of this service led to an increase in patients discussed pre-operatively in an MDT (66% rising to 87%; P=0.027), an increase in the rate of surgical resection (from 40% to 80%) and more patients being admitted electively (from 25% to 80%; P<0.001). There was a reduction in the median length of stay (8 days reduced to 4.5 days; P<0.001). For the cohort of GBM patients that went on to have chemoradiotherapy we improved median survival to 18 months, with 35% of patients alive at two years, comparable to international outcomes. Implementing a specialist neurosurgical oncology service begins with understanding the patient care pathway. Our patients have benefitted from the culture of subspecialisation and the excellent inter-disciplinary working

  7. Report of China's innovation increase and research growth in radiation oncology.

    Science.gov (United States)

    Zhu, Hongcheng; Yang, Xi; Qin, Qin; Bian, Kangqi; Zhang, Chi; Liu, Jia; Cheng, Hongyan; Sun, Xinchen

    2014-06-01

    To investigate the research status of radiation oncology in China through survey of literature in international radiation oncology journals and retrospectively compare the outputs of radiation oncology articles of the three major regions of China-Mainland (ML), Taiwan (TW) and Hong Kong (HK). Radiation oncology journals were selected from "oncology" and "radiology, nuclear & medical image" category from Science Citation Index Expand (SCIE). Articles from the ML, TW and HK were retrieved from MEDLINE. The number of total articles, clinical trials, case reports, impact factors (IF), institutions and articles published in each journals were conducted for quantity and quality comparisons. A total 818 articles from 13 radiation oncology journals were searched, of which 427 are from ML, 259 from TW, and 132 from HK. Ninety-seven clinical trials and 5 case reports are reported in China. Accumulated IF of articles from ML (1,417.11) was much higher than that of TW (1,003.093) and HK (544.711), while the average IF of articles from ML is the lowest. The total number of articles from China especially ML increased significantly in the last decade. The number of articles published from the ML has exceeded those from TW and HK. However, the quality of articles from TW and HK is better than that from ML.

  8. Recommendations on the use of {sup 18}F-FDG PET/CT in oncology: consensus between the Brazilian Society of Cancerology and the Brazilian Society of Biology, Nuclear Medicine and Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soares Junior, Jose, E-mail: sbbmn@sbbmn.org.b [Sociedade Brasileira de Biologia, Medicina Nuclear e Imagem Molecular (SBBMN), Sao Paulo, SP (Brazil); Fonseca, Roberto Porto [Sociedade Brasileira de Cancerologia, Salvador, BA (Brazil); Cerci, Juliano Julio [Quanta Diagnostico Nuclear, Curitiba, PR (Brazil); Buchpiguel, Carlos Alberto [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Cunha, Marcelo Livorsi da [Hospital Albert Einstein, Sao Paulo, SP (Brazil). Dept. de Radiologia. Servico de Medicina Nuclear e PET/CT; Mamed, Marcelo [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil); Almeida, Sergio Altino de [Clinica Felippe Mattoso, Rio de Janeiro, RJ (Brazil)

    2010-07-15

    The authors present a list of recommendations on the utilization of {sup 18}F-FDG PET/CT in oncology for the diagnosis, staging and detection of cancer, as well as in the follow-up of the disease progression and possible recurrence. The recommendations were based on the analysis of controlled studies and a systematic review of the literature including both retrospective and prospective studies regarding the clinical usefulness and the impact of {sup 18}F-FDG PET/CT on the management of cancer patients. {sup 18}F-FDG PET/CT should be utilized as a supplement to other conventional imaging methods such as computed tomography and magnetic resonance imaging. Positive results suggesting changes in the clinical management should be confirmed by histopathological studies. {sup 18}F-FDG PET should be utilized in the diagnosis and appropriate clinical management of cancer involving the respiratory system, head and neck, digestive system, breast, genital organs, thyroid, central nervous system, besides melanomas, lymphomas and occult primary tumors (author)

  9. Potential non-oncological applications of histone deacetylase inhibitors.

    Science.gov (United States)

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  10. Past, Present, and Future of Molecular and Cellular Oncology

    International Nuclear Information System (INIS)

    Galluzzi, Lorenzo; Vitale, Ilio; Kroemer, Guido

    2011-01-01

    In the last 20 years, the field of cellular and molecular oncology has been born and has moved its first steps, with an increasingly rapid pace. Hundreds of oncogenic and oncosuppressive signaling cascades have been characterized, facilitating the development of an ever more refined and variegated arsenal of diagnostic and therapeutic weapons. Furthermore, several cancer-specific features and processes have been identified that constitute promising therapeutic targets. For instance, it has been demonstrated that microRNAs can play a critical role in oncogenesis and tumor suppression. Moreover, it turned out that tumor cells frequently exhibit an extensive metabolic rewiring, can behave in a stem cell-like fashion (and hence sustain tumor growth), often constitutively activate stress response pathways that allow them to survive, can react to therapy by engaging in non-apoptotic cell death programs, and sometimes die while eliciting a tumor-specific immune response. In this Perspective article, we discuss the main issues generated by these discoveries that will be in the limelight of molecular and cellular oncology research for the next, hopefully few years.

  11. Past, present and future of molecular and cellular oncology

    Directory of Open Access Journals (Sweden)

    Lorenzo eGalluzzi

    2011-03-01

    Full Text Available In the last twenty years, the field of cellular and molecular oncology has been born and has moved its first steps, with an increasingly rapid pace. Hundreds of oncogenic and oncosuppressive signaling cascades have been characterized, facilitating the development of an ever more refined and variegated arsenal of diagnostic and therapeutic weapons. Furthermore, several cancer-specific features and processes have been identified that constitute promising therapeutic targets. For instance, it has been demonstrated that microRNAs can play a critical role in oncogenesis and tumor suppression. Moreover, it turned out that tumor cells frequently exhibit an extensive metabolic rewiring, can behave in a stem cell-like fashion (and hence sustain tumor growth, often constitutively activate stress response pathways that allow them to survive, can react to therapy by engaging in non-apoptotic cell death programs, and sometimes die while eliciting a tumor-specific immune response. In this Perspective article, we discuss the main issues generated by these discoveries that will be in the limelight of molecular and cellular oncology research for the next, hopefully few years.

  12. Hyperthermia and hyperglycemia in oncology

    International Nuclear Information System (INIS)

    Zhavrid, Eh.A.; Osinskij, S.P.; Fradkin, S.Z.

    1987-01-01

    Consideration is being given to publication data and results of author's investigations into the effect of hyperthermia and hyperglycemia on physico-chemical characteristics and growth of various experimental tumors. Factors, modifying thermosensitivity, mechanisms of hyperthermia effect, various aspects of thermochimio- and thermoradiotherapy have been analyzed. Effect of artificial hyperglycemia on metabolism and kinetics of tumor and some normal cells is considered in detail. Many data, testifying to sufficient growth of efficiency of oncologic patient treatment under conditions of multimodality therapy including hyperthermia and hyperglycemia are presented

  13. Implementing Genome-Driven Oncology

    Science.gov (United States)

    Hyman, David M.; Taylor, Barry S.; Baselga, José

    2017-01-01

    Early successes in identifying and targeting individual oncogenic drivers, together with the increasing feasibility of sequencing tumor genomes, have brought forth the promise of genome-driven oncology care. As we expand the breadth and depth of genomic analyses, the biological and clinical complexity of its implementation will be unparalleled. Challenges include target credentialing and validation, implementing drug combinations, clinical trial designs, targeting tumor heterogeneity, and deploying technologies beyond DNA sequencing, among others. We review how contemporary approaches are tackling these challenges and will ultimately serve as an engine for biological discovery and increase our insight into cancer and its treatment. PMID:28187282

  14. Quality Assurance Issues for Therapeutic Application of Radioactive Microspheres

    International Nuclear Information System (INIS)

    Dezarn, William A.

    2008-01-01

    The use of radioactive microspheres for the treatment of hepatic cancer is a procedure that raises unique quality assurance (QA) concerns. The greatest of these concerns is the coordination of the responsibilities among the medical team members from interventional radiology, radiation oncology, nuclear medicine, and medical physics. A single QA practice and procedure guidance document does not currently exist that addresses the range of issues of concern for radioactive microspheres. A small sampling of QA issues of concern include imaging QA, procedure-specific imaging protocols, detector calibration, activity measurement, radiation safety, patient dose calculations, and patient-specific QA. Some of the items listed have historically been the responsibility of a single team member, and other items have been concerns for all. A procedural overview of the therapeutic application of radioactive microspheres is presented to illustrate the broad, team-based QA approach necessary to safely and effectively deliver this type of treatment. From this overview, the reader will be able to customize the local QA protocol to meet the local division of responsibilities

  15. Art Therapy with an Oncology Care Team

    Science.gov (United States)

    Nainis, Nancy A.

    2005-01-01

    Oncology nurses are particularly vulnerable to "burnout" syndrome due to the intensity of their work and the ongoing losses they experience while providing oncology care to their patients. High levels of stress in the workplace left untended lead to high job turnover, poor productivity, and diminished quality of care for patients.…

  16. Nursing 436A: Pediatric Oncology for Nurses.

    Science.gov (United States)

    Jackman, Cynthia L.

    A description is provided of "Pediatric Oncology for Nurses," the first in a series of three courses offered to fourth-year nursing students in pediatric oncology. The first section provides a course overview, discusses time assignments, and describes the target student population. Next, a glossary of terms, and lists of course goals, long-range…

  17. Big data in oncologic imaging.

    Science.gov (United States)

    Regge, Daniele; Mazzetti, Simone; Giannini, Valentina; Bracco, Christian; Stasi, Michele

    2017-06-01

    Cancer is a complex disease and unfortunately understanding how the components of the cancer system work does not help understand the behavior of the system as a whole. In the words of the Greek philosopher Aristotle "the whole is greater than the sum of parts." To date, thanks to improved information technology infrastructures, it is possible to store data from each single cancer patient, including clinical data, medical images, laboratory tests, and pathological and genomic information. Indeed, medical archive storage constitutes approximately one-third of total global storage demand and a large part of the data are in the form of medical images. The opportunity is now to draw insight on the whole to the benefit of each individual patient. In the oncologic patient, big data analysis is at the beginning but several useful applications can be envisaged including development of imaging biomarkers to predict disease outcome, assessing the risk of X-ray dose exposure or of renal damage following the administration of contrast agents, and tracking and optimizing patient workflow. The aim of this review is to present current evidence of how big data derived from medical images may impact on the diagnostic pathway of the oncologic patient.

  18. ONCOLOGY

    African Journals Online (AJOL)

    cancer is characterized by a later stage of presentation.6 ... may be done as a result of the patient's age or family history on presentation to a ... This may frequently be the first time that the patient has a clinical breast ... and the diagnosis and treatment of their DCIS. ... conservation therapy (either ROLL or WLE), 10 required.

  19. Surgical Oncology Nursing: Looking Back, Looking Forward.

    Science.gov (United States)

    Crane, Patrick C; Selanders, Louise

    2017-02-01

    To provide a historical perspective in the development of oncology nursing and surgical oncology as critical components of today's health care system. Review of the literature and Web sites of key organizations. The evolution of surgical oncology nursing has traversed a historical journey from that of a niche subspecialty of nursing that had very little scientific underpinning, to a highly sophisticated discipline within a very short time. Nursing continues to contribute its expertise to the encyclopedic knowledge base of surgical oncology and cancer care, which have helped improve the lives of countless patients and families who have had to face the difficulties of this diagnosis. An understanding of the historical context for which a nursing specialty such as surgical oncology nursing evolves is critical to gaining an appreciation for the contributions of nursing. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Japanese structure survey of radiation oncology in 2007 with special reference to designated cancer care hospitals

    International Nuclear Information System (INIS)

    Numasaki, Hodaka; Shibuya, Hitoshi; Nishio, Masamichi

    2011-01-01

    Background and Purpose: The structure of radiation oncology in designated cancer care hospitals in Japan was investigated in terms of equipment, personnel, patient load, and geographic distribution. The effect of changes in the health care policy in Japan on radiotherapy structure was also examined. Material and Methods: The Japanese Society of Therapeutic Radiology and Oncology surveyed the national structure of radiation oncology in 2007. The structures of 349 designated cancer care hospitals and 372 other radiotherapy facilities were compared. Results: Respective findings for equipment and personnel at designated cancer care hospitals and other facilities included the following: linear accelerators/facility: 1.3 and 1.0; annual patients/linear accelerator: 296.5 and 175.0; and annual patient load/full-time equivalent radiation oncologist was 237.0 and 273.3, respectively. Geographically, the number of designated cancer care hospitals was associated with population size. Conclusion: The structure of radiation oncology in Japan in terms of equipment, especially for designated cancer care hospitals, was as mature as that in European countries and the United States, even though the medical costs in relation to GDP in Japan are lower. There is still a shortage of manpower. The survey data proved to be important to fully understand the radiation oncology medical care system in Japan. (orig.)

  1. Therapeutic cloning in individual parkinsonian mice

    Science.gov (United States)

    Tabar, Viviane; Tomishima, Mark; Panagiotakos, Georgia; Wakayama, Sayaka; Menon, Jayanthi; Chan, Bill; Mizutani, Eiji; Al-Shamy, George; Ohta, Hiroshi; Wakayama, Teruhiko; Studer, Lorenz

    2009-01-01

    Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. ‘Therapeutic cloning’ is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response. PMID:18376409

  2. Estimating the effectiveness of human-cell irradiation by protons of a therapeutic beam of the joint institute for nuclear research phasotron using cytogenetic methods

    Science.gov (United States)

    Zaytseva, E. M.; Govorun, R. D.; Mitsin, G. V.; Molokanov, A. G.

    2011-11-01

    The effectiveness of the impact of therapeutic proton beams in human cells with respect to the criterion of formation of chromosome aberrations in human-blood lymphocytes is estimated. The physical characteristics of radiation (proton LET at the input of the object and in the region of the modified Bragg peak) and the role of the biological factor (the differences in the radiosensitivity of nondividing cells corresponding to the irradiation of normal tissues along the proton-beam path and tumor tissues) are taken into account. The relative biological effectiveness of protons is ˜1 at the beam input of the object and ˜1.2 in the Bragg peak region. Taking into account the higher radiosensitivity of dividing cells in the G 2 phase of the cell cycle, the irradiation effectiveness increases to ˜1.4.

  3. Clinical Pathways and the Patient Perspective in the Pursuit of Value-Based Oncology Care.

    Science.gov (United States)

    Ersek, Jennifer L; Nadler, Eric; Freeman-Daily, Janet; Mazharuddin, Samir; Kim, Edward S

    2017-01-01

    The art of practicing oncology has evolved substantially in the past 5 years. As more and more diagnostic tests, biomarker-directed therapies, and immunotherapies make their way to the oncology marketplace, oncologists will find it increasingly difficult to keep up with the many therapeutic options. Additionally, the cost of cancer care seems to be increasing. Clinical pathways are a systematic way to organize and display detailed, evidence-based treatment options and assist the practitioner with best practice. When selecting which treatment regimens to include on a clinical pathway, considerations must include the efficacy and safety, as well as costs, of the therapy. Pathway treatment regimens must be continually assessed and modified to ensure that the most up-to-date, high-quality options are incorporated. Value-based models, such as the ASCO Value Framework, can assist providers in presenting economic evaluations of clinical pathway treatment options to patients, thus allowing the patient to decide the overall value of each treatment regimen. Although oncologists and pathway developers can decide which treatment regimens to include on a clinical pathway based on the efficacy of the treatment, assessment of the value of that treatment regimen ultimately lies with the patient. Patient definitions of value will be an important component to enhancing current value-based oncology care models and incorporating new, high-quality, value-based therapeutics into oncology clinical pathways.

  4. Tumor markers in clinical oncology

    International Nuclear Information System (INIS)

    Novakovic, S.

    2004-01-01

    The subtle differences between normal and tumor cells are exploited in the detection and treatment of cancer. These differences are designated as tumor markers and can be either qualitative or quantitative in their nature. That means that both the structures that are produced by tumor cells as well as the structures that are produced in excessive amounts by host tissues under the influence of tumor cells can function as tumor markers. Speaking in general, the tumor markers are the specific molecules appearing in the blood or tissues and the occurrence of which is associated with cancer. According to their application, tumor markers can be roughly divided as markers in clinical oncology and markers in pathology. In this review, only tumor markers in clinical oncology are going to be discussed. Current tumor markers in clinical oncology include (i) oncofetal antigens, (ii) placental proteins, (iii) hormones, (iv) enzymes, (v) tumor-associated antigens, (vi) special serum proteins, (vii) catecholamine metabolites, and (viii) miscellaneous markers. As to the literature, an ideal tumor marker should fulfil certain criteria - when using it as a test for detection of cancer disease: (1) positive results should occur in the early stages of the disease, (2) positive results should occur only in the patients with a specific type of malignancy, (3) positive results should occur in all patients with the same malignancy, (4) the measured values should correlate with the stage of the disease, (5) the measured values should correlate to the response to treatment, (6) the marker should be easy to measure. Most tumor markers available today meet several, but not all criteria. As a consequence of that, some criteria were chosen for the validation and proper selection of the most appropriate marker in a particular malignancy, and these are: (1) markers' sensitivity, (2) specificity, and (3) predictive values. Sensitivity expresses the mean probability of determining an elevated tumor

  5. Supportive care in radiation oncology

    International Nuclear Information System (INIS)

    Rotman, M.; John, M.

    1987-01-01

    The radiation therapist, concerned with the disease process and all the technical intricacies of treatment, has usually not been involved in managing the supportive aspects of caring for the patient. Yet, of the team of medical specialists and allied health personnel required in oncology, the radiation therapist is the one most responsible for overseeing the total care of the cancer patient. At times this might include emotional support, prevention and correction of tissue dysfunction, augmentation of nutrition, metabolic and electrolyte regulation, rehabilitation, and vocational support. This chapter is a brief overview of a considerable volume of literature that has occupied the interest of a rather small group of physicians, nutritionists, and psychologists. The discussion highlights the special management problems of the normal-tissue effects of radiation, the related nutritional aspects of cancer care, and certain emotional and pathologic considerations

  6. Communication competencies of oncology nurses in Malaysia.

    Science.gov (United States)

    Maskor, Nor Aida; Krauss, Steven Eric; Muhamad, Mazanah; Nik Mahmood, Nik Hasnaa

    2013-01-01

    This paper reports on part of a large study to identify competencies of oncology nurses in Malaysia. It focuses on oncology nurses' communications-related competency. As an important cancer care team member, oncology nurses need to communicate effectively with cancer patients. Literature shows that poor communication can make patients feel anxious, uncertain and generally not satisfied with their nurses' care. This paper deliberates on the importance of effective communication by oncology nurses in the context of a public hospital. Four focus group discussions were used in this study with 17 oncology/cancer care nurses from Malaysian public hospitals. The main inclusion criterion was that the nurses had to have undergone a post-basic course in oncology, or have work experience as a cancer care nurse. The findings indicated that nurses do communicate with their patients, patients' families and doctors to provide information about the disease, cancer treatment, disease recurrence and side effects. Nurses should have good communication skills in order to build relationships as well as to provide quality services to their patients. The paper concludes by recommending how oncology nursing competencies can be improved.

  7. Applying Precision Medicine and Immunotherapy Advances from Oncology to Host-Directed Therapies for Infectious Diseases.

    Science.gov (United States)

    Mahon, Robert N; Hafner, Richard

    2017-01-01

    To meet the challenges of increasing antimicrobial resistance, the infectious disease community needs innovative therapeutics. Precision medicine and immunotherapies are transforming cancer therapeutics by targeting the regulatory signaling pathways that are involved not only in malignancies but also in the metabolic and immunologic function of the tumor microenvironment. Infectious diseases target many of the same regulatory pathways as they modulate host metabolic functions for their own nutritional requirements and to impede host immunity. These similarities and the advances made in precision medicine and immuno-oncology that are relevant for the current development of host-directed therapies (HDTs) to treat infectious diseases are discussed. To harness this potential, improvements in drug screening methods and development of assays that utilize the research tools including high throughput multiplexes already developed by oncology are essential. A multidisciplinary approach that brings together immunologists, infectious disease specialists, and oncologists will be necessary to fully develop the potential of HDTs.

  8. Home care and short-run nursing homes: organizational aspects of their integration with oncological organizations.

    Science.gov (United States)

    Zavaroni, C

    2001-09-01

    Social-health care to oncological elderly patients implies interconnection among oncological hospital and sub-district services and acknowledgement of a sole access channel. The project requires the formation of an inter-administrative coordination group and of functional transmural units with evaluational and operative roles. Various care levels (protected hospital admission and discharge, continuity visits, evaluational-therapeutic integration during treatment, palliative cures) implicate specific criterion of eligibility and actions to rationalize organization, coordination and distribution of interventions. Efficiency and effectiveness depend on integration with the services that supply material and with the diagnostic and ambulatory ones. The mid-term prospectives of the integration regard computerization of diagnostic, therapeutic, care and rehabilitation courses of patients (Regional Computerized Register of Disability) and formation of polyfunctional centres that concern home, residential and hospital intervention. Powerful technological instruments and the new organizational forms now available should encourage the formation of a morally upright society.

  9. Artificial Intelligence in Medicine and Radiation Oncology.

    Science.gov (United States)

    Weidlich, Vincent; Weidlich, Georg A

    2018-04-13

    Artifical Intelligence (AI) was reviewed with a focus on its potential applicability to radiation oncology. The improvement of process efficiencies and the prevention of errors were found to be the most significant contributions of AI to radiation oncology. It was found that the prevention of errors is most effective when data transfer processes were automated and operational decisions were based on logical or learned evaluations by the system. It was concluded that AI could greatly improve the efficiency and accuracy of radiation oncology operations.

  10. Natural background radiation and oncologic disease incidence

    International Nuclear Information System (INIS)

    Burenin, P.I.

    1982-01-01

    Cause and effect relationships between oncologic disease incidence in human population and environmental factors are examined using investigation materials of Soviet and foreign authors. The data concerning US white population are adduced. The role and contribution of natural background radiation oncologic disease prevalence have been determined with the help of system information analysis. The probable damage of oncologic disease is shown to decrease as the background radiation level diminishes. The linear nature of dose-response relationspip has been established. The necessity to include the life history of the studied population along with environmental factors in epidemiological study under conditions of multiplicity of cancerogenesis causes is emphasized

  11. Robot-assisted surgery in gynecological oncology

    DEFF Research Database (Denmark)

    Kristensen, Steffen E; Mosgaard, Berit J; Rosendahl, Mikkel

    2017-01-01

    INTRODUCTION: Robot-assisted surgery has become more widespread in gynecological oncology. The purpose of this systematic review is to present current knowledge on robot-assisted surgery, and to clarify and discuss controversies that have arisen alongside the development and deployment. MATERIAL...... was performed by screening of titles and abstracts, and by full text scrutiny. From 2001 to 2016, a total of 76 references were included. RESULTS: Robot-assisted surgery in gynecological oncology has increased, and current knowledge supports that the oncological safety is similar, compared with previous...

  12. The Danish Neuro-Oncology Registry

    DEFF Research Database (Denmark)

    Hansen, Steinbjørn

    2016-01-01

    AIM OF DATABASE: The Danish Neuro-Oncology Registry (DNOR) was established by the Danish Neuro-Oncology Group as a national clinical database. It was established for the purpose of supporting research and development in adult patients with primary brain tumors in Denmark. STUDY POPULATION: DNOR has...... advantage of reporting indicators is the related multidisciplinary discussions giving a better understanding of what actually is going on, thereby facilitating the work on adjusting the national guidelines in the Danish Neuro-Oncology Group. CONCLUSION: The establishment of DNOR has optimized the quality...

  13. Diffusion MRI: A New Strategy for Assessment of Cancer Therapeutic Efficacy

    OpenAIRE

    Thomas L. Chenevert; Charles R. Meyer; Bradford A. Moffat; Alnawaz Rehemtulla; Suresh K. Mukherji; Stephen S. Gebarski; Douglas J. Quint; Patricia L. Robertson; Theodore S. Lawrence; Larry Junck; Jeremy M. G. Taylor; Timothy D. Johnson; Qian Dong; Karin M. Muraszko; James A. Brunberg

    2002-01-01

    The use of anatomical imaging in clinical oncology practice traditionally relies on comparison of patient scans acquired before and following completion of therapeutic intervention. Therapeutic success is typically determined from inspection of gross anatomical images to assess changes in tumor size. Imaging could provide significant additional insight into therapeutic impact if a specific parameter or combination of parameters could be identified which reflect tissue changes at the cellular ...

  14. Clinical and Radiation Oncology. Vol. 2

    International Nuclear Information System (INIS)

    Jurga, L.; Adam, Z.; Autrata, R.

    2010-01-01

    The work is two-volume set and has 1,658 pages. It is divided into 5 sections: I. Principles Clinical and radiation oncology. II. Hematological Malignant tumors. III. Solid tumors. IV. Treatment options metastatic Disease. V. Clinical practice in oncology. Second volume contains following sections a chapters: Section III: Solid nodes, it contains following chapters: (38) Central nervous system tumors; (39) Tumors of the eye, orbits and adnexas; (40) Head and neck carcinomas; (41) Lung carcinomas and pleural mesothelioma; (42) Mediastinal tumors; (43) Tumors of the esophagus; (44) Gastric carcinomas; (45) Carcinoma of the colon, rectum and anus; (46) Small intestinal cancer; (47) Liver and biliary tract carcinomas; (48) Tumors of the pancreas; (49) Tumors of the kidney and upper urinary tract; (50) Bladder tumors of the bladder, urinary tract and penis; (51) Prostate Carcinoma; (52) Testicular tumors; (53) Malignant neoplasm of the cervix, vulva and vagina; (54) Endometrial carcinoma; (55) Malignant ovarian tumors; (56) Gestational trophoblastic disease; (57) Breast carcinoma - based on a evidence-based approach; (58) Thyroid and parathyroid carcinomas; (59) Dental tumors of endocrine glands; (60) Tumors of the locomotory system; (61) Malignant melanoma; (62) Carcinomas of the skin and skin adnexa; (63) Malignant tumors in immunosuppressed patients; (64) Tumors of unknown primary localization; (65) Children's oncology; (66) Geriatric Oncology; (67) Principles of long-term survival of patients with medically and socially significant types of malignant tumors after treatment. Section IV: Options of metastic disease disease, it contains following chapters: (68) Metastases to the central nervous system; (69) Metastases in the lungs; (70) Metastases in the liver; (71) Metastases into the skeleton. Section V: Clinical practice in oncology, it contains following chapters: (72) Acute conditions in oncology; (73) Prevention and management of radiation and chemical toxicity

  15. Experimental study and nuclear model calculations on the $^{192}Os (p, n)^{192}$Ir reaction Comparison of reactor and cyclotron production of the therapeutic radionuclide $^{192}$Ir

    CERN Document Server

    Hilgers, K; Sudar, S; 10.1016/j.apradiso.2004.12.010

    2005-01-01

    In a search for an alternative route of production of the important therapeutic radionuclide /sup 192/Ir (T/sub 1/2/=78.83 d), the excitation function of the reaction /sup 192/Os(p, n)/sup 192/Ir was investigated from its threshold up to 20MeV. Thin samples of enriched /sup 192/Os were obtained by electrodeposition on Ni, and the conventional stacked-foil technique was used for cross section measurements. The experimental data were compared with the results of theoretical calculations using the codes EMPIRE-II and ALICE-IPPE. Good agreement was found with EMPIRE-II, but slightly less with the ALICE-IPPE calculations. The theoretical thick target yield of /sup 192/Ir over the energy range E/sub p/=16 to 8MeV amounts to only 0.16MBq/ mu A.h. A comparison of the reactor and cyclotron production methods is given. In terms of yield and radionuclidic purity of /sup 192/Ir the reactor method appears to be superior; the only advantage of the cyclotron method could be the higher specific activity of the product.

  16. ASTRO's core physics curriculum for radiation oncology residents

    International Nuclear Information System (INIS)

    Klein, Eric E.; Balter, James M.; Chaney, Edward L.; Gerbi, Bruce J.; Hughes, Lesley

    2004-01-01

    In 2002, the Radiation Physics Committee of the American Society of Therapeutic Radiology and Oncology (ASTRO) appointed an Ad-hoc Committee on Physics Teaching to Medical Residents. The main initiative of the committee was to develop a core curriculum for physics education. Prior publications that have analyzed physics teaching have pointed to wide discrepancies among teaching programs. The committee was composed of physicists or physicians from various residency program based institutions. Simultaneously, members had associations with the American Association of Physicists in Medicine (AAPM), ASTRO, Association of Residents in Radiation Oncology (ARRO), American Board of Radiology (ABR), and the American College of Radiology (ACR). The latter two organizations' representatives were on the physics examination committees, as one of the main agendas was to provide a feedback loop between the examining organizations and ASTRO. The document resulted in a recommended 54-h course. Some of the subjects were based on American College of Graduate Medical Education (ACGME) requirements (particles, hyperthermia), whereas the majority of the subjects along with the appropriated hours per subject were devised and agreed upon by the committee. For each subject there are learning objectives and for each hour there is a detailed outline of material to be covered. Some of the required subjects/h are being taught in most institutions (i.e., Radiation Measurement and Calibration for 4 h), whereas some may be new subjects (4 h of Imaging for Radiation Oncology). The curriculum was completed and approved by the ASTRO Board in late 2003 and is slated for dissemination to the community in 2004. It is our hope that teaching physicists will adopt the recommended curriculum for their classes, and simultaneously that the ABR for its written physics examination and the ACR for its training examination will use the recommended curriculum as the basis for subject matter and depth of

  17. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials.

    Science.gov (United States)

    Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O'Neal, Michael

    2015-01-01

    In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes.

  18. Therapeutic radionuclides: Making the right choice

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1996-01-01

    Recently, there has been a resurgence of interest in nuclear medicine therapeutic procedures. Using unsealed sources for therapy is not a new concept; it has been around since the beginnings of nuclear medicine. Treatment of thyroid disorders with radioiodine is a classic example. The availability of radionuclides with suitable therapeutic properties for specific applications, as well as methods for their selective targeting to diseased tissue have, however, remained the main obstacles for therapy to assume a more widespread role in nuclear medicine. Nonetheless, a number of new techniques that have recently emerged, (e.g., tumor therapy with radiolabeled monoclonal antibodies, treatment of metastatic bone pain, etc.) appear to have provided a substantial impetus to research on production of new therapeutic radionuclides. Although there are a number of new therapeutic approaches requiring specific radionuclides, only selected broad areas will be used as examples in this article

  19. Oncology healthcare professionals' perspectives on the psychosocial support needs of cancer patients during oncology treatment.

    Science.gov (United States)

    Aldaz, Bruno E; Treharne, Gareth J; Knight, Robert G; Conner, Tamlin S; Perez, David

    2017-09-01

    This study explored oncology healthcare professionals' perspectives on the psychosocial support needs of diverse cancer patients during oncology treatment. Six themes were identified using thematic analysis. Healthcare professionals highlighted the importance of their sensitivity, respect and emotional tact during appointments in order to effectively identify and meet the needs of oncology patients. Participants also emphasised the importance of building rapport that recognises patients as people. Patients' acceptance of treatment-related distress and uncertainty was described as required for uptake of available psychosocial supportive services. We offer some practical implications that may help improve cancer patients' experiences during oncology treatment.

  20. Program for Critical Technologies in Breast Oncology

    National Research Council Canada - National Science Library

    Costa, Jose

    1997-01-01

    In Year 3 of The Program for Critical Technologies in Breast Oncology (PCTBO), we have expanded services that were initiated in July 1994 to establish a core technical and tissue procurement resource that: (1...

  1. The Evolution of Gero-Oncology Nursing.

    Science.gov (United States)

    Bond, Stewart M; Bryant, Ashley Leak; Puts, Martine

    2016-02-01

    This article summarizes the evolution of gero-oncology nursing and highlights key educational initiatives, clinical practice issues, and research areas to enhance care of older adults with cancer. Peer-reviewed literature, position statements, clinical practice guidelines, Web-based materials, and professional organizations' resources. Globally, the older adult cancer population is rapidly growing. The care of older adults with cancer requires an understanding of their diverse needs and the intersection of cancer and aging. Despite efforts to enhance competence in gero-oncology and to develop a body of evidence, nurses and health care systems remain under-prepared to provide high-quality care for older adults with cancer. Nurses must take a leadership role in integrating gerontological principles into oncology settings. Working closely with interdisciplinary team members, nurses should utilize available resources and continue to build evidence through gero-oncology nursing research. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Radiation oncology: a primer for medical students.

    Science.gov (United States)

    Berman, Abigail T; Plastaras, John P; Vapiwala, Neha

    2013-09-01

    Radiation oncology requires a complex understanding of cancer biology, radiation physics, and clinical care. This paper equips the medical student to understand the fundamentals of radiation oncology, first with an introduction to cancer treatment and the use of radiation therapy. Considerations during radiation oncology consultations are discussed extensively with an emphasis on how to formulate an assessment and plan including which treatment modality to use. The treatment planning aspects of radiation oncology are then discussed with a brief introduction to how radiation works, followed by a detailed explanation of the nuances of simulation, including different imaging modalities, immobilization, and accounting for motion. The medical student is then instructed on how to participate in contouring, plan generation and evaluation, and the delivery of radiation on the machine. Lastly, potential adverse effects of radiation are discussed with a particular focus on the on-treatment patient.

  3. Collaborative Genomics Study Advances Precision Oncology

    Science.gov (United States)

    A collaborative study conducted by two Office of Cancer Genomics (OCG) initiatives highlights the importance of integrating structural and functional genomics programs to improve cancer therapies, and more specifically, contribute to precision oncology treatments for children.

  4. Towards enhanced PET quantification in clinical oncology

    DEFF Research Database (Denmark)

    Zaidi, Habib; Karakatsanis, Nicolas

    2018-01-01

    is still a matter of debate. Quantitative PET has advanced elegantly during the last two decades and is now reaching the maturity required for clinical exploitation, particularly in oncology where it has the capability to open many avenues for clinical diagnosis, assessment of response to treatment...... and therapy planning. Therefore, the preservation and further enhancement of the quantitative features of PET imaging is crucial to ensure that the full clinical value of PET imaging modality is utilized in clinical oncology. Recent advancements in PET technology and methodology have paved the way for faster...... PET acquisitions of enhanced sensitivity to support the clinical translation of highly quantitative 4D parametric imaging methods in clinical oncology. In this report, we provide an overview of recent advances and future trends in quantitative PET imaging in the context of clinical oncology. The pros...

  5. DIGITAL ONCOLOGY PATIENT RECORD - HETEROGENEOUS FILE BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Nikolay Sapundzhiev

    2010-12-01

    Full Text Available Introduction: Oncology patients need extensive follow-up and meticulous documentation. The aim of this study was to introduce a simple, platform independent file based system for documentation of diagnostic and therapeutic procedures in oncology patients and test its function.Material and methods: A file-name based system of the type M1M2M3.F2 was introduced, where M1 is a unique identifier for the patient, M2 is the date of the clinical intervention/event, M3 is an identifier for the author of the medical record and F2 is the specific software generated file-name extension.Results: This system is in use at 5 institutions, where a total of 11 persons on 14 different workstations inputted 16591 entries (files for 2370. The merge process was tested on 2 operating systems - when copied together all files sort up as expected by patient, and for each patient in a chronological order, providing a digital cumulative patient record, which contains heterogeneous file formats.Conclusion: The file based approach for storing heterogeneous digital patient related information is an reliable system, which can handle open-source, proprietary, general and custom file formats and seems to be easily scalable. Further development of software for automatic checks of the integrity and searching and indexing of the files is expected to produce a more user-friendly environment

  6. Physiologic and psychobehavioral research in oncology.

    Science.gov (United States)

    Redd, W H; Silberfarb, P M; Andersen, B L; Andrykowski, M A; Bovbjerg, D H; Burish, T G; Carpenter, P J; Cleeland, C; Dolgin, M; Levy, S M

    1991-02-01

    A major thrust in research in psychosocial oncology is the study of the interaction of psychologic and physiologic variables. This discussion reviews the current status and future directions of such research. Areas addressed include pain, nausea and vomiting with chemotherapy, sexuality, effects of cancer on psychologic and neuropsychologic function, impact of psychologic factors on cancer and its treatment, and psychoneuroimmunology. In addition, specific recommendations for strategies to facilitate research in these areas of psychosocial oncology are proposed.

  7. A Comprehensive Definition for Integrative Oncology.

    Science.gov (United States)

    Witt, Claudia M; Balneaves, Lynda G; Cardoso, Maria J; Cohen, Lorenzo; Greenlee, Heather; Johnstone, Peter; Kücük, Ömer; Mailman, Josh; Mao, Jun J

    2017-11-01

    Integrative oncology, which is generally understood to refer to the use of a combination of complementary medicine therapies in conjunction with conventional cancer treatments, has been defined in different ways, but there is no widely accepted definition. We sought to develop and establish a consensus for a comprehensive definition of the field of integrative oncology. We used a mixed-methods approach that included a literature analysis and a consensus procedure, including an interdisciplinary expert panel and surveys, to develop a comprehensive and acceptable definition for the term "integrative oncology." The themes identified in the literature and from the expert discussion were condensed into a two-sentence definition. Survey respondents had very positive views on the draft definition, and their comments helped to shape the final version. The final definition for integrative oncology is: "Integrative oncology is a patient-centered, evidence-informed field of cancer care that utilizes mind and body practices, natural products, and/or lifestyle modifications from different traditions alongside conventional cancer treatments. Integrative oncology aims to optimize health, quality of life, and clinical outcomes across the cancer care continuum and to empower people to prevent cancer and become active participants before,during, and beyond cancer treatment." This short and comprehensive definition for the term integrative oncology will facilitate a better understanding and communication of this emerging field. This definition will also drive focused and cohesive effort to advance the field of integrative oncology. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Experimental measurements and nuclear model calculations on the excitation functions of $^{nat}Ce(^{3}He, xn)$ and $^{141}$therapeutic radionuclide $^{140}$Nd

    CERN Document Server

    Hilgers, K; Coenen, H H; Qaim, S M

    2005-01-01

    For production of the therapy related Auger electron emitting neutron deficient nuclide /sup 140/Nd (T/sub fraction 1/2/=3.37d) two routes were investigated: the nuclear reaction range from 15 to 36 MeV and the reaction /sup 141/Pr(p,2n)/sup 140isotopes, namely /sup 139/Nd and /sup 141/Nd, as well as to cerium(IV)-oxide and praseodymium (III)-oxide were obtained by sedimentation and the conventional stacked-foil technique was used for cross section measurements. All the experimental data obtained in this work were compared with the results of theoretical calculations using the exciton model code ALICE-IPPE as well as with literature experimental data, if available. In general, good agreement between experimental and theoretical results was found. The theoretical thick target yields of all the product nuclides were calculated from the measured excitation functions. The theoretical thick target yield of amounts to 12 MBq/mu Acenterdoth and over the energy range E/sub p/=30rightward arrow15 Me V to 210 MBq/mu; A...

  9. Current management of surgical oncologic emergencies.

    Science.gov (United States)

    Bosscher, Marianne R F; van Leeuwen, Barbara L; Hoekstra, Harald J

    2015-01-01

    For some oncologic emergencies, surgical interventions are necessary for dissolution or temporary relieve. In the absence of guidelines, the most optimal method for decision making would be in a multidisciplinary cancer conference (MCC). In an acute setting, the opportunity for multidisciplinary discussion is often not available. In this study, the management and short term outcome of patients after surgical oncologic emergency consultation was analyzed. A prospective registration and follow up of adult patients with surgical oncologic emergencies between 01-11-2013 and 30-04-2014. The follow up period was 30 days. In total, 207 patients with surgical oncologic emergencies were included. Postoperative wound infections, malignant obstruction, and clinical deterioration due to progressive disease were the most frequent conditions for surgical oncologic emergency consultation. During the follow up period, 40% of patients underwent surgery. The median number of involved medical specialties was two. Only 30% of all patients were discussed in a MCC within 30 days after emergency consultation, and only 41% of the patients who underwent surgery were discussed in a MCC. For 79% of these patients, the surgical procedure was performed before the MCC. Mortality within 30 days was 13%. In most cases, surgery occurred without discussing the patient in a MCC, regardless of the fact that multiple medical specialties were involved in the treatment process. There is a need for prognostic aids and acute oncology pathways with structural multidisciplinary management. These will provide in faster institution of the most appropriate personalized cancer care, and prevent unnecessary investigations or invasive therapy.

  10. Clinical nuclear medicine applications in Turkey and specific renal studies

    International Nuclear Information System (INIS)

    Erbas, B.

    2004-01-01

    Full text: Nuclear cardiology, nuclear oncology, pediatric nuclear medicine and nuclear endocrinology are the main application areas of clinical nuclear medicine in Turkey. Not only imaging studies, but also therapeutic application of radiopharmaceuticals is also performed at many institutes, such as hyperthyroidism treatment with radioiodine, thyroid cancer ablation and metastases treatment with radioiodine, radio synovectomy, metastatic pain therapy, and recently radioimmunotherapy of lymphomas. Almost all radionuclides and radiopharmaceuticals are obtained commercially from European countries, except 18-FDG which is obtained from two cyclotrons in Turkey. More than 30.000 renal procedures are performed at the University hospitals in a year. Pediatric age groups is approximately % 55 of patients. 99mTc-DTPA (%44), 99mTc-DMSA (%37), 99mTc-MAG3 (%17) and 99mTc-EC (%2) are the most commonly used radiopharmaceuticals for renal imaging. More than 6.000 vials of several pharmaceuticals are used for renal cortical scintigraphy (%35), dynamic renal imaging (%34), renal scintigraphy with diuretic (%27) and captopril scintigraphy (%4). Most common indication for renal cortical scintigraphy is detection of cortical scarring (%53). In addition, using single plasma sample method or gamma-camera method renal clearance measurements with 99mTc-MAG3 99mTc-DTPA have been used at some institutions

  11. Clinical nuclear medicine applications in Turkey and specific renal studies

    International Nuclear Information System (INIS)

    Erbas, B.

    2004-01-01

    Nuclear cardiology, nuclear oncology, pediatric nuclear medicine and nuclear endocrinology are the main application areas of clinical nuclear medicine in Turkey. Not only imaging studies, but also therapeutic application of radiopharmaceuticals is also performed at many institutes, such as hyperthyroidism treatment with radioiodine, thyroid cancer ablation and metastases treatment with radioiodine, radio synovectomy, metastatic pain therapy, and recently radioimmunotherapy of lymphomas. Almost all radionuclides and radiopharmaceuticals are obtained commercially from European countries, except 18-FDG which is obtained from two cyclotrons in Turkey. More than 30.000 renal procedures are performed at the University hospitals in a year. Pediatric age groups is approximately % 55 of patients. 99m Tc-DTPA (%44), 99m Tc-DMSA (%37), 99m Tc-MAG3 (%17) and 99m Tc-EC (%2) are the most commonly used radiopharmaceuticals for renal imaging. More than 6.000 vials of several pharmaceuticals are used for renal cortical scintigraphy (%35), dynamic renal imaging (%34), renal scintigraphy with diuretic (%27) and captopril scintigraphy (%4). Most common indication for renal cortical scintigraphy is detection of cortical scarring (%53). In addition, using single plasma sample method or gamma-camera method renal clearance measurements with 99m Tc-MAG3 99m Tc-DTPA have been used at some institutions. (author)

  12. Therapeutic effect of 15-deoxyspergualin on acute graft rejection detected by 31P nuclear magnetic resonance spectrography, and its effect on rat heart transplantation

    International Nuclear Information System (INIS)

    Suzuki, S.; Kanashiro, M.; Watanabe, H.; Amemiya, H.

    1988-01-01

    We investigated the effect of 15-deoxyspergualin (DSG) on graft rejection, starting administration at the onset of rejection and on the induction of immunologic unresponsiveness. Hearts from WKAH rats were transplanted into the neck of ACI rats. The energy metabolism of the grafted hearts was followed by 31 P nuclear magnetic resonance spectroscopy. The day that energy metabolism started to fall was defined as the onset of rejection, and intraperitoneal administration of DSG was initiated at 5 mg/kg/day for 15 days from this day. The grafted heart arrested in 2 of 10 rats 9 and 11 days after transplantation, respectively, but the remaining 8 recovered from rejection and 5 of them showed evidence of immunologic unresponsiveness. Of 10 rats treated with DSG from the day of transplantation, only 1 rat showed evidence of unresponsiveness. The initiation of DSG treatment from the onset of rejection resulted in a higher percentage of induction of unresponsiveness. Therefore, DSG was considered to specifically inhibit lymphocyte clone expansion at the onset of rejection. Spleen cells obtained from recipients 7-10 days after the end of DSG treatment were administered to syngeneic ACI rats grafted with WKAH hearts. Graft survival was significantly prolonged, but long-term unresponsiveness could not be transferred. However, immunologic unresponsiveness could be adoptively transferred in 3 of 5 rats receiving spleen cells from syngeneic rats that had recovered from rejection after DSG treatment and had acquired long-term unresponsiveness. These results suggest that suppressor cells are resistant to DSG and are spared and participate in the maintenance of immunologic unresponsiveness

  13. TU-G-201-00: Imaging Equipment Specification and Selection in Radiation Oncology Departments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, and potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI

  14. Stress and burnout in oncology.

    Science.gov (United States)

    Kash, K M; Holland, J C; Breitbart, W; Berenson, S; Dougherty, J; Ouellette-Kobasa, S; Lesko, L

    2000-11-01

    This article identifies the professional stressors experienced by nurses, house staff, and medical oncologists and examines the effect of stress and personality attributes on burnout scores. A survey was conducted of 261 house staff, nurses, and medical oncologists in a cancer research hospital, and oncologists in outside clinical practices. It measured burnout, psychological distress, and physical symptoms. Each participant completed a questionnaire that quantified life stressors, personality attributes, burnout, psychological distress, physical symptoms, coping strategies, and social support. The results showed that house staff experienced the greatest burnout. They also reported greater emotional exhaustion, a feeling of emotional distance from patients, and a poorer sense of personal accomplishment. Negative work events contributed significantly to level of burnout; however, having a "hardy" personality helped to alleviate burnout. Nurses reported more physical symptoms than house staff and oncologists. However, they were less emotionally distant from patients. Women reported a lower sense of accomplishment and greater distress. The four most frequent methods of relaxing were talking to friends, using humor, drinking coffee or eating, and watching television. One unexpected finding was that the greater the perception of oneself as religious, the lower the level of burnout. Thus, while the rewards of working in oncology are usually sufficient to keep nurses and doctors in the field, they also experience burnout symptoms that vary by gender and personal attributes. House staff are most stressed and report the greatest and most severe symptoms of stress. Interventions are needed that address the specific problems of each group.

  15. Oncologic imaging: kidney and ureter

    International Nuclear Information System (INIS)

    McClennan, B.L.; Balfe, D.M.

    1983-01-01

    Malignant cancers of the kidney and ureter account for only 2 to 3% of all neoplasms in man. However, early diagnosis and treatment can have a profound effect on patient prognosis and survival. This article seeks to amalgamate a large body of information related to the pathology of primary renal tumors and metastatic disease with current imaging strategies to assist the clinician and enhance his understanding of the wide variety of modern imaging techniques available. Current tumor staging classifications are presented and the various imaging strategies are keyed to detection, definition and treatment options for tumors of the renal parenchyma and ureter. The strengths and limitations of all available imaging modalities are reviewed. An optimal approach to the imaging workup is developed with regard to availability, evolving technology and most importantly, cost efficacy. The controversies and conflicts in imaging and treatment options are explored while constructing a step by step approach that will be both flexible and utilitarian for the clinician faced with daily oncologic management choices

  16. Positron emission tomography in oncology

    International Nuclear Information System (INIS)

    Lecomte, R.; Bentourkia, M.; Benard, F.

    2002-01-01

    Positron Emission Tomography is a sophisticated molecular imaging technique, using a special scanner, that displays the functional status of tissues in the body at the cellular level (their metabolism). It is a diagnostic scan that provides the physician with information not available with traditional anatomic studies such as CT or MRI. PET can detect changes in cell function (disease) long before they are evident as physical (anatomic) changes seen on CT or MRI. In this way PET can add important information about many diseases allowing the physician to make a diagnosis often much earlier than with anatomic imaging techniques such as CT or MRI alone. In addition, in cases where an abnormality is noted on CT or MRI, PET can help differentiate benign changes from changes due to disease. PET scanning also typically images the entire body, unlike CT/MRI which is usually broken up into specific limited body section scans. All cells use glucose as an energy source but cancer cells use much more since they are growing much faster and out of control. This is the basis of imaging with F-18 FDG glucose, the radiotracer agent use in a PET oncology study. The abnormal, accelerated glucose used by cancer cells is detected by the PET scanner that processes the emissions from the F-18 FDG glucose by abnormally high levels of metabolism (tumor)

  17. Oncology information on the Internet.

    Science.gov (United States)

    Goto, Yasushi; Nagase, Takahide

    2012-05-01

    Owing to new developments in Internet technologies, the amount of available oncology information is growing. Both patients and caregivers are increasingly using the Internet to obtain medical information. However, while it is easy to provide information, ensuring its quality is always a concern. Thus, many instruments for evaluating the quality of health information have been created, each with its own advantages and disadvantages. The increasing importance of online search engines such as Google warrants the examination of the correlation between their rankings and medical quality. The Internet also mediates the exchange of information from one individual to another. Mailing lists of advocate groups and social networking sites help spread information to patients and caregivers. While text messages are still the main medium of communication, audio and video messages are also increasing rapidly, accelerating the communication on the Internet. Future health information developments on the Internet include merging patients' personal information on the Internet with their traditional health records and facilitating the interaction among patients, caregivers and health-care providers. Through these developments, the Internet is expected to strengthen the mutually beneficial relationships among all stakeholders in the field of medicine.

  18. Interventional radiology in pediatric oncology

    International Nuclear Information System (INIS)

    Hoffer, Fredric A.

    2005-01-01

    There are many radiological interventions necessary for pediatric oncology patients, some of which may be covered in other articles in this publication. I will discuss a number of interventions including percutaneous biopsy for solid tumor and hematological malignancy diagnosis or recurrence, for the diagnosis of graft versus host disease after stem cell or bone marrow transplantation, and for the diagnosis of complications of immunosuppression such as invasive pulmonary aspergillosis. In the past, tumor localization techniques have been necessary to biopsy or resect small lesions. However improved guidance techniques have allowed for more precise biopsy and the use of thermal ablation instead of excision for local tumor control. A percutaneously placed radio frequency, microwave, laser or cryogen probe can ablate the primary and metastatic tumors of the liver, lung, bone, kidney and other structures in children. This is an alternative treatment for the local control of tumors that may not be amenable to surgery, chemotherapy or radiotherapy. I will also describe how chemoembolization can be used to treat primary or metastatic tumors of the liver that have failed other therapies. This treatment delivers chemotherapy in the hepatic artery infused with emboli to increase the dwell time and concentration of the agents

  19. Technology evaluation: SAGE, Genzyme molecular oncology.

    Science.gov (United States)

    Bartlett, J

    2001-02-01

    Genzyme Molecular Oncology (GMO) is using its SAGE (Serial Analysis of Gene Expression) combinatorial chemistry technology to screen compound libraries. SAGE is a high-throughput, high-efficiency method to simultaneously detect and measure the expression levels of genes expressed in a cell at a given time, including rare genes. SAGE can be used in a wide variety of applications to identify disease-related genes, to analyze the effect of drugs on tissues and to provide insights into disease pathways. It works by isolating short fragments of genetic information from the expressed genes that are present in the cell being studied. These short sequences, called SAGE tags, are linked together for efficient sequencing. The sequence data are then analyzed to identify each gene expressed in the cell and the levels at which each gene is expressed. This information forms a library that can be used to analyze the differences in gene expression between cells [293437]. By December 1999, GMO had identified a set of 40 genes from 3.5 million transcripts that were expressed at elevated levels in all cancer tissue but not seen in normal tissue. The company hope these may provide diagnostic markers or therapeutic targets. The studies also provided data furthering the understanding of the way cells use their genome [349968]. GMO has signed a collaborative agreement with the National Cancer Institute (NCI) to search for new drug candidates in the field of cancer chemotherapy. The collaboration combines GMO's SAGE technology with the NCI's extensive array of 60 cell-based cancer screens. Under the agreement, the NCI will evaluate Genzyme's library consisting of one million compounds against selected cancer screens to identify compounds with anticancer properties [255082]. Xenometrix granted a license agreement for gene expression profiling to GMO in February 1999, giving company access to claims covered in issued US and European patents. The license is non-exclusive and covers the

  20. The effectiveness of drama therapy on preparation for diagnostic and therapeutic procedures in children suffering from cancer

    Directory of Open Access Journals (Sweden)

    Ľubica Ilievová

    2015-10-01

    Full Text Available Introduction: The integral part of the treatment of pediatric oncological patients is a range of diagnostic and therapeutic procedures. These procedures are often associated with the fear and anxiety of the suffering child. We investigated whether a psychological preparation through drama therapy and the therapeutic puppet may reduce the anxiety related to diagnostic and therapeutic procedures in the preschool or early school children suffering from cancer.Methods: Twenty consecutive pediatric patients of preschool and early school age, with the diagnosis of lymphoblastic leukemia, were included in the study. The patients were alternatingly assigned to experimental or control group, and subjected or not subjected to drama therapy, respectively. We measured the changes in heart rate, blood pressure and respiratory rate as indicators of anxiety and fear, before and after the diagnostic or therapeutic procedures.Results: Heart rate, blood pressure, and respiratory rate in pediatric oncological patients before and after the diagnostic or therapeutic procedure were significantly lower in the experimental group of patients.Conclusion: Our results show that psychological preparation using drama therapy and therapeutic puppet reduced the fear and anxiety related to diagnostic or therapeutic procedures in pediatric oncological patients.Key words: drama therapy; therapeutic puppet; children; oncology; psychology 

  1. Nuclear medicine

    International Nuclear Information System (INIS)

    Kand, Purushottam

    2012-01-01

    Nuclear medicine is a specialized area of radiology that uses very small amounts of radioactive materials to examine organ function and structure. Nuclear medicine is older than CT, ultrasound and MRI. It was first used in patients over 60-70 years ago. Today it is an established medical specialty and offers procedures that are essential in many medical specialities like nephrology, pediatrics, cardiology, psychiatry, endocrinology and oncology. Nuclear medicine refers to medicine (a pharmaceutical) that is attached to a small quantity of radioactive material (a radioisotope). This combination is called a radiopharmaceutical. There are many radiopharmaceuticals like DTPA, DMSA, HIDA, MIBI and MDP available to study different parts of the body like kidneys, heart and bones etc. Nuclear medicine uses radiation coming from inside a patient's body where as conventional radiology exposes patients to radiation from outside the body. Thus nuclear imaging study is a physiological imaging, whereas diagnostic radiology is anatomical imaging. It combines many different disciplines like chemistry, physics mathematics, computer technology, and medicine. It helps in diagnosis and to treat abnormalities very early in the progression of a disease. The information provides a quick and accurate diagnosis of wide range of conditions and diseases in a person of any age. These tests are painless and most scans expose patients to only minimal and safe amounts of radiation. The amount of radiation received from a nuclear medicine procedure is comparable to, or often many times less than, that of a diagnostic X-ray. Nuclear medicine provides an effective means of examining whether some tissues/organs are functioning properly. Therapy using nuclear medicine in an effective, safe and relatively inexpensive way of controlling and in some cases eliminating, conditions such as overactive thyroid, thyroid cancer and arthritis. Nuclear medicine imaging is unique because it provides doctors with

  2. Nuclear medicine

    International Nuclear Information System (INIS)

    Casier, Ph.; Lepage, B.

    1998-01-01

    Except for dedicated devices for mobile nuclear cardiology for instance, the market is set on variable angulation dual heads cameras. These cameras are suited for all general applications and their cost effectiveness is optimized. Now, all major companies have such a camera in their of products. But, the big question in nuclear medicine is about the future of coincidence imaging for the monitoring of treatments in oncology. Many companies are focused on WIP assessments to find out the right crustal thickness to perform both high energy FDG procedures and low energy Tc procedures, with the same SPECT camera. The classic thickness is 3/8''. Assessments are made with 1/2'', 5/8'' or 3/4'' crystals. If FDG procedures proved to be of great interest in oncology, it may lead to the design of a dedicated SPECT camera with a 1'' crustal. Due to the short half of FDG, it may be the dawning of slip ring technology. (e.g. Varicam from Elscint). The three small heads camera market seems to be depressed. Will the new three large heads camera unveiled by Picker, reverse that trend? The last important topic in nuclear medicine is the emergence of new flat digital detectors to get rid of the old bulky ones. Digirad is the first company to manufacture a commercial product based on that technology. Bichron, Siemens and General Electric are working on that development, too. But that technology is very expensive and the market for digital detection in nuclear medicine is not as large as the market in digital detection in radiology. (author)

  3. Research of possible connection of oncological sickness rate with environment pollution by physical and chemical carcinogens on the population both West-Kazakhstan area and Kokshetau oblast

    International Nuclear Information System (INIS)

    Karimov, M.A.; Doskeeva, R.A.; Bityukov, A.I.; Bajmukhamedova, M.Kh.

    2003-01-01

    It was researched a number of the oncological diseases cases (lung and hemic-blastosis) of population within 10 years (1984-1993) for revealing a possible correlation of sickness rate on oncological diseases with oncological inauspicious part of West Kazakhstan region (Atyrau, Oral, Kyzylorda) and Kokshetau. The first three regions have oil-mining and oil refining industries and nuclear tests experience. In Kokshetau gold-mining industry takes place. We can connect to some degree a number of cases of lung cancer and hemic-blastosis with effect of ionizing radiation. It is possibly influence of oil products and gas condensate on malignancy. (author)

  4. Current Molecular Imaging Positron Emitting Radiotracers in Oncology

    International Nuclear Information System (INIS)

    Zhu, Aizhi; Shim, Hyunsuk

    2011-01-01

    Molecular imaging is one of the fastest growing areas of medical imaging. Positron emission tomography has been widely used in the clinical management of patients with cancer. Nuclear imaging provides biological information at the cellular, subcellular, and molecular level in living subjects with noninvasive procedures. In particular, PET imaging takes advantage of traditional diagnostic imaging techniques and introduces positron emitting probes to determine the expression of indicative molecular targets at different stages of cancer. 18F fluorodeoxyglucose ( 18F FDG), the only FDA approved oncological PET tracer, has been widely utilized in cancer diagnosis, staging, restaging, and even monitoring response to therapy; however, 18F FDG is not a tumor specific PET tracer. Over the last decade, many promising tumor specific PET tracer. Over the last decade, many promising tumor specific PET tracers have been developed and evaluated in preclinical and clinical studies. This review provides an overview of the current non 18F FDG PET tracers in oncology that have been developed based on tumor characteristics such as increased metabolism, hyperproliferation, angiogenesis, hypoxia, apoptosis, and tumor specific antigens and surface receptors

  5. Cancer patients and oncology nursing: Perspectives of oncology nurses in Turkey.

    Science.gov (United States)

    Kamisli, S; Yuce, D; Karakilic, B; Kilickap, S; Hayran, M

    2017-09-01

    Burnout and exhaustion is a frequent problem in oncology nursing. The aim of this study is to evaluate the aspects of oncology nurses about their profession in order to enhance the standards of oncology nursing. This survey was conducted with 70 oncology nurses working at Hacettepe University Oncology Hospital. Data were collected between January-April 2012. Each participant provided a study form comprising questions about sociodemographic information; about difficulties, positive aspects and required skills for oncology nursing; and questions evaluating level of participation and clinical perception of oncology nursing. Mean age of nurses was 29.9 ± 5.7 years. More than half of the participants were married (51.4%) and 30% had at least one child. Percent of nurses working in oncology for their entire work life was 75.8%. Most frequently expressed difficulties were exhaustion (58.6%), coping with the psychological problems of the patients (25.7%), and frequent deaths (24.3%); positive aspects were satisfaction (37.1%), changing the perceptions about life (30%), and empathy (14.3%); and required skills were patience (60%), empathy (57.1%), and experience (50%). For difficulties of oncology nursing, 28.3% of difficulties could be attributed to job-related factors, 30.3% to patient-related factors, and 77% of difficulties to individual factors. The independent predictors of participation level of the nurses were self-thoughts of skills and positive aspects of oncology nursing. According to the findings of this study, nurses declared that working with cancer patients increase burnout, they are insufficient in managing work stress and giving psychological care to patients, but their job satisfaction, clinical skills and awareness regarding priorities of life has increased.

  6. Nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    In 1998, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) performed 38 inspections, 25 of them were performed in co-operation with IAEA inspectors. There is no fresh nuclear fuel at Bohunice A-1 NPP at present. Fresh fuel of Bohunice V-1 and V-2 NPPs is inspected in the fresh fuel storage.There are 327 fresh fuel assemblies in Mochovce NPP fresh fuel storage. In addition to that, are also 71 small users of nuclear materials in Slovakia. In most cases they use: covers made of depleted uranium for non-destructive works, detection of level in production plants, covers for therapeutical sources at medical facilities. In. 1995, NRA SR issued 4 new licences for nuclear material withdrawal. In the next part manipulation with nuclear materials, spent fuel stores and illegal trafficking in nuclear materials are reported

  7. Radiolabelled peptides and nanoparticles for specific molecular targeting in oncology

    International Nuclear Information System (INIS)

    Helbok, A.

    2011-01-01

    The aim of this thesis is the development of radiolabelled peptides and nanoparticles (NP) for specific molecular targeting in oncology. Three different types of NP were investigated in this study: lipid - based NP (liposomes and micelles), human serum albumin - based NP (albumin NP) and protamine - oligonucleotide - based NP (proticles). In a first step, radiolabelling protocols were set up for the different NP - formulations. The variety of radioisotopes used, covers the whole spectrum of applications in nuclear medicine: SPECT (111In, 99mTc), (2) PET (68Ga) and therapeutic applications (177Lu, 90Y) opening a manifold administration potential for these NP aiming towards multiple targeting and hybrid imaging strategies (combined SPECT / PET and MRI). Radiolabelling quality was analyzed by instant thin layer chromatography (ITLC). High radiochemical yields (RCY >90 %) and high specific activity (SA) were achieved. NP - formulations were derivatized with the chelating agent Diethylenetriaminepentaacetic acid (DTPA) allowing complexation of trivalent radiometals, and potentially nonradioactive metals, such as Gd3+, for MRI imaging leading to the development of multifunctionalized NP for a unified labelling approach. Furthermore, NP were derivatized with the pharmacokinetic modifier polyethylene glycol (PEG) to maintain NP with long circulating ability. Stability assessments included incubation in different media (serum, 4 mM DTPA - solution and PBS pH 7.4, at 37 o C for a period of 24 h). For the in vivo biodistribution of the NP, static and / or dynamic SPECT / PET imaging studies were performed at different time points with Lewis rats and correlated to results from quantification of tissue - uptake. Results indicate differences in stability and general pharmacokinetic behaviour depended on the NP - formulation. However, a positive influence expressed in a prolonged retention time in circulation was investigated for all different NP - formulations due to PEG

  8. Pharmacovigilance in oncology: pattern of spontaneous notifications, incidence of adverse drug reactions and under-reporting

    Directory of Open Access Journals (Sweden)

    Marília Berlofa Visacri

    2014-04-01

    Full Text Available The high toxicity and narrow therapeutic window of antineoplastic agents makes pharmacovigilance studies essential in oncology. The objectives of the current study were to analyze the pattern of spontaneous notifications of adverse drug reactions (ADRs in oncology patients and to analyze the incidence of ADRs reported by outpatients on antineoplastic treatment in a tertiary care teaching hospital. To compose the pattern of ADR, the notification forms of reactions in oncology patients in 2010 were reviewed, and the reactions were classified based on the drug involved, mechanism, causality, and severity. To evaluate the incidence of reactions, a questionnaire at the time of chemotherapy was included, and the severity was classified based on the Common Terminology Criteria. The profiles of the 10 responses reported to the Pharmacovigilance Sector were type B, severe, possible, and they were primarily related to platinum compounds and taxanes. When the incidence of reactions was analyzed, it was observed that nausea, alopecia, fatigue, diarrhea, and taste disturbance were the most frequently reported reactions by oncology patients, and the grade 3 and 4 reactions were not reported. Based on this analysis, it is proposed that health professionals should be trained regarding notifications and clinical pharmacists should increasingly be brought on board to reduce under-reporting of ADRs.

  9. Precision oncology: origins, optimism, and potential.

    Science.gov (United States)

    Prasad, Vinay; Fojo, Tito; Brada, Michael

    2016-02-01

    Imatinib, the first and arguably the best targeted therapy, became the springboard for developing drugs aimed at molecular targets deemed crucial to tumours. As this development unfolded, a revolution in the speed and cost of genetic sequencing occurred. The result--an armamentarium of drugs and an array of molecular targets--set the stage for precision oncology, a hypothesis that cancer treatment could be markedly improved if therapies were guided by a tumour's genomic alterations. Drawing lessons from the biological basis of cancer and recent empirical investigations, we take a more measured view of precision oncology's promise. Ultimately, the promise is not our concern, but the threshold at which we declare success. We review reports of precision oncology alongside those of precision diagnostics and novel radiotherapy approaches. Although confirmatory evidence is scarce, these interventions have been widely endorsed. We conclude that the current path will probably not be successful or, at a minimum, will have to undergo substantive adjustments before it can be successful. For the sake of patients with cancer, we hope one form of precision oncology will deliver on its promise. However, until confirmatory studies are completed, precision oncology remains unproven, and as such, a hypothesis in need of rigorous testing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 2003 survey of Canadian radiation oncology residents

    International Nuclear Information System (INIS)

    Yee, Don; Fairchild, Alysa; Keyes, Mira; Butler, Jim; Dundas, George

    2005-01-01

    Purpose: Radiation oncology's popularity as a career in Canada has surged in the past 5 years. Consequently, resident numbers in Canadian radiation oncology residencies are at all-time highs. This study aimed to survey Canadian radiation oncology residents about their opinions of their specialty and training experiences. Methods and Materials: Residents of Canadian radiation oncology residencies that enroll trainees through the Canadian Resident Matching Service were identified from a national database. Residents were mailed an anonymous survey. Results: Eight of 101 (7.9%) potential respondents were foreign funded. Fifty-two of 101 (51.5%) residents responded. A strong record of graduating its residents was the most important factor residents considered when choosing programs. Satisfaction with their program was expressed by 92.3% of respondents, and 94.3% expressed satisfaction with their specialty. Respondents planning to practice in Canada totaled 80.8%, and 76.9% plan to have academic careers. Respondents identified job availability and receiving adequate teaching from preceptors during residency as their most important concerns. Conclusions: Though most respondents are satisfied with their programs and specialty, job availability and adequate teaching are concerns. In the future, limited time and resources and the continued popularity of radiation oncology as a career will magnify the challenge of training competent radiation oncologists in Canada

  11. 2016 Updated American Society of Clinical Oncology/Oncology Nursing Society Chemotherapy Administration Safety Standards, Including Standards for Pediatric Oncology.

    Science.gov (United States)

    Neuss, Michael N; Gilmore, Terry R; Belderson, Kristin M; Billett, Amy L; Conti-Kalchik, Tara; Harvey, Brittany E; Hendricks, Carolyn; LeFebvre, Kristine B; Mangu, Pamela B; McNiff, Kristen; Olsen, MiKaela; Schulmeister, Lisa; Von Gehr, Ann; Polovich, Martha

    2016-12-01

    Purpose To update the ASCO/Oncology Nursing Society (ONS) Chemotherapy Administration Safety Standards and to highlight standards for pediatric oncology. Methods The ASCO/ONS Chemotherapy Administration Safety Standards were first published in 2009 and updated in 2011 to include inpatient settings. A subsequent 2013 revision expanded the standards to include the safe administration and management of oral chemotherapy. A joint ASCO/ONS workshop with stakeholder participation, including that of the Association of Pediatric Hematology Oncology Nurses and American Society of Pediatric Hematology/Oncology, was held on May 12, 2015, to review the 2013 standards. An extensive literature search was subsequently conducted, and public comments on the revised draft standards were solicited. Results The updated 2016 standards presented here include clarification and expansion of existing standards to include pediatric oncology and to introduce new standards: most notably, two-person verification of chemotherapy preparation processes, administration of vinca alkaloids via minibags in facilities in which intrathecal medications are administered, and labeling of medications dispensed from the health care setting to be taken by the patient at home. The standards were reordered and renumbered to align with the sequential processes of chemotherapy prescription, preparation, and administration. Several standards were separated into their respective components for clarity and to facilitate measurement of adherence to a standard. Conclusion As oncology practice has changed, so have chemotherapy administration safety standards. Advances in technology, cancer treatment, and education and training have prompted the need for periodic review and revision of the standards. Additional information is available at http://www.asco.org/chemo-standards .

  12. Dose equivalent distribution during occupational exposure in oncology

    International Nuclear Information System (INIS)

    Marco H, J.

    1996-01-01

    In this work are presented the results of the radiological surveillance of occupationally exposed workers at the National Institute of Oncology and Radiology during 26 years. The incidence of the equivalent dose in the personal working with radiant sources and radioactive substances in areas of x rays diagnostic, teletherapy, brachytherapy, nuclear medicine and biomedical research was showed. The employed dosimetric system makes use of ORWO RD3/RD4 monitoring film with copper and lead filters inside a plastic cassette manufactured in Cuba. The experimental method is supported by the optical densitometric analysis of films together with a set of standard film calibrated in standard X and gamma photon beams by means of a secondary standard dosimeter, type NPL. Statistics show that except those workings with radium-226, manual brachytherapy or Mo-99/Tc-99 generator elution, the equivalent dose distribution in our workers has been kept in regions well down the annual permissible limit. (authors). 6 refs., 3 tabs

  13. [Psycho-oncology : the psyche and cancer].

    Science.gov (United States)

    Heussner, P; Hiddemann, W

    2012-11-01

    The relationships between the psyche and cancer are manifold. Psycho-oncology focuses on the psychological adjustment to life-threatening illnesses. Crises are not unusual in health care, but the perception of cancer is totally different because the diagnosis of cancer often results in an irrational shock reaction in all parties involved. A diagnosis of cancer is much more negatively perceived than any other incurable disease, such as cardiopathy or neuropathy with a comparable or worse prognosis. During the shock of having received a diagnosis of cancer, there is no awareness that cancer can be cured. Improvement of quality of life, identification of psychological distress and prevention of mental disorders are the main tasks of psycho-oncology. Psycho-oncological services are not longer regarded a luxury, but are recognized by health care politicians as being important. However, the financing of services remains unclear.

  14. The Evolution of Gero-Oncology Nursing

    Science.gov (United States)

    Bond, Stewart M.; Bryant, Ashley Leak; Puts, Martine

    2016-01-01

    Objectives This article summarizes the evolution of gero-oncology nursing and highlights key educational initiatives, clinical practice issues, and research areas to enhance care of older adults with cancer. Data Sources Peer-reviewed literature, position statements, clinical practice guidelines, web-based materials, and professional organizations’ resources. Conclusion Globally, the older adult cancer population is rapidly growing. The care of older adults with cancer requires an understanding of their diverse needs and the intersection of cancer and aging. Despite efforts to enhance competence in gerooncology and to develop a body of evidence, nurses and healthcare systems remain under-prepared to provide high quality care for older adults with cancer. Implications for Nursing Practice Nurses need to take a leadership role in integrating gerontological principles into oncology settings. Working closely with interdisciplinary team members, nurses should utilize available resources and continue to build evidence through gero-oncology nursing research. PMID:26830263

  15. Review of optical coherence tomography in oncology

    Science.gov (United States)

    Wang, Jianfeng; Xu, Yang; Boppart, Stephen A.

    2017-12-01

    The application of optical coherence tomography (OCT) in the field of oncology has been prospering over the past decade. OCT imaging has been used to image a broad spectrum of malignancies, including those arising in the breast, brain, bladder, the gastrointestinal, respiratory, and reproductive tracts, the skin, and oral cavity, among others. OCT imaging has initially been applied for guiding biopsies, for intraoperatively evaluating tumor margins and lymph nodes, and for the early detection of small lesions that would often not be visible on gross examination, tasks that align well with the clinical emphasis on early detection and intervention. Recently, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This paper reviews the evolution of OCT technologies for the clinical application of OCT in surgical and noninvasive interventional oncology procedures and concludes with a discussion of the future directions for OCT technologies, with particular emphasis on their applications in oncology.

  16. Use of imaging techniques in radiation oncology

    International Nuclear Information System (INIS)

    Borras, C.; Rudder, D.; Jimenez, P.

    2002-01-01

    Imaging techniques are used in radiation oncology for: disease diagnosis, tumor localization and staging, treatment simulation, treatment planning, clinical dosimetry displays, treatment verification and patient follow up. In industrialized countries, up to the 1970's, conventional radiology was used for diagnosis, simulation and planning. Gamma cameras helped tumor staging by detecting metastases. In the 1970's, simulators were developed for exclusive use in radiation oncology departments. Clinical dosimetry displays consisted mainly in axial dose distributions. Treatment verification was done placing films in the radiation beam with the patient under treatment. In the 1980's, 2-D imaging was replaced by 3-D displays with the incorporation of computerized tomography (CT) scanners, and in the 1990's of magnetic resonance imagers (MRI). Ultrasound units, briefly used in the 1960's for treatment planning purposes, were found again useful, mainly for brachytherapy dosimetry. Digital portal imagers allowed accurate treatment field verification. Treatment planning systems incorporated the capability of 'inverse planning', i.e. once the desired dose distribution is decided, the field size, gantry, collimator and couch angles, etc, can be automatically selected. At the end of the millennium, image fusion permitted excellent anatomical display of tumors and adjacent sensitive structures. The 2000's are seeing a change from anatomical to functional imaging with the advent of MRI units capable of spectroscopy at 3 Tesla and positron emission tomography (PET) units. In 2001 combined CT/PET units appeared in RT departments. In 2002, fusion of CT, MRI and PET images became available. Molecular imaging is being developed. The situation in developing countries is quite different. To start with, cancer incidence is different in developing and in industrialized countries. In addition, the health services pattern is different: Cancer treatment is mostly done in public institutions

  17. PET imaging in pediatric oncology

    International Nuclear Information System (INIS)

    Shulkin, B.L.

    2004-01-01

    High-quality PET imaging of pediatric patients is challenging and requires attention to issues commonly encountered in the practice of pediatric nuclear medicine, but uncommon to the imaging of adult patients. These include intravenous access, fasting, sedation, consent, and clearance of activity from the urinary tract. This paper discusses some technical differences involved in pediatric PET to enhance the quality of scans and assure the safety and comfort of pediatric patients. (orig.)

  18. Gender Opportunities in Psychosocial Oncology.

    Science.gov (United States)

    Loscalzo, Matthew; Clark, Karen

    2018-01-01

    So much has happened since the original publication of this chapter. In some ways, the progress made in appreciating the full spectrum of sexual and gender expression has been uneven and in some nations, there has been serious regression and resulting repression. But overall, especially in the industrialized countries, there is much greater awareness of sex and gender and its importance in health and well being. In this updated chapter, we put sex and gender into a historical context that is relevant to psycho-oncology and that openly accepts that society overall, is highly conflicted when it comes to how women and men get the best out of each other, never mind how to best integrate lesbian, gay, bisexual, and transgender (LGBT) communities. With the advent of more tailored treatments and strategic medicine, sex becomes much more important as a variable and this has led to greater scientific requirements to create protocols that integrate sex into all aspects of health from prevention, diagnosis, treatment, survivorship, and death. But we still have a very far way to go. There is a serious dearth of data on sex and gender in science overall and in cancer medicine specifically. Avoidance of discussions of sex and gender in medicine reflects the larger lingering societal discomfort with any discussion that links potential sex and gender differences with superiority. The data shows that there is more intrasexual than intersexual variation in men and women. When speaking about sex and gender the literature reflects that, on average, there are many differences, and although they are small, that when taken together, the impact may be quite robust. Sex and gender differences are relevant to how individuals, couples, and families experience and cope with serious illness; however these important and obvious variables are seldom taken into account when counseling seriously ill patients and their families. Cancer is a complex disease that brings into sharp relief the

  19. Board-Certified Oncology Pharmacists: Their Potential Contribution to Reducing a Shortfall in Oncology Patient Visits.

    Science.gov (United States)

    Ignoffo, Robert; Knapp, Katherine; Barnett, Mitchell; Barbour, Sally Yowell; D'Amato, Steve; Iacovelli, Lew; Knudsen, Jasen; Koontz, Susannah E; Mancini, Robert; McBride, Ali; McCauley, Dayna; Medina, Patrick; O'Bryant, Cindy L; Scarpace, Sarah; Stricker, Steve; Trovato, James A

    2016-04-01

    With an aging US population, the number of patients who need cancer treatment will increase significantly by 2020. On the basis of a predicted shortage of oncology physicians, nonphysician health care practitioners will need to fill the shortfall in oncology patient visits, and nurse practitioners and physician assistants have already been identified for this purpose. This study proposes that appropriately trained oncology pharmacists can also contribute. The purpose of this study is to estimate the supply of Board of Pharmacy Specialties-certified oncology pharmacists (BCOPs) and their potential contribution to the care of patients with cancer through 2020. Data regarding accredited oncology pharmacy residencies, new BCOPs, and total BCOPs were used to estimate oncology residencies, new BCOPs, and total BCOPs through 2020. A Delphi panel process was used to estimate patient visits, identify patient care services that BCOPs could provide, and study limitations. By 2020, there will be an estimated 3,639 BCOPs, and approximately 62% of BCOPs will have completed accredited oncology pharmacy residencies. Delphi panelists came to consensus (at least 80% agreement) on eight patient care services that BCOPs could provide. Although the estimates given by our model indicate that BCOPs could provide 5 to 7 million 30-minute patient visits annually, sensitivity analysis, based on factors that could reduce potential visit availability resulted in 2.5 to 3.5 million visits by 2020 with the addition of BCOPs to the health care team. BCOPs can contribute to a projected shortfall in needed patient visits for cancer treatment. BCOPs, along with nurse practitioners and physician assistants could substantially reduce, but likely not eliminate, the shortfall of providers needed for oncology patient visits. Copyright © 2016 by American Society of Clinical Oncology.

  20. Contemporary Trends in Radiation Oncology Resident Research

    International Nuclear Information System (INIS)

    Verma, Vivek; Burt, Lindsay; Gimotty, Phyllis A.; Ojerholm, Eric

    2016-01-01

    Purpose: To test the hypothesis that recent resident research productivity might be different than a decade ago, and to provide contemporary information about resident scholarly activity. Methods and Materials: We compiled a list of radiation oncology residents from the 2 most recent graduating classes (June 2014 and 2015) using the Association of Residents in Radiation Oncology annual directories. We queried the PubMed database for each resident's first-authored publications from postgraduate years (PGY) 2 through 5, plus a 3-month period after residency completion. We abstracted corresponding historical data for 2002 to 2007 from the benchmark publication by Morgan and colleagues (Int J Radiat Oncol Biol Phys 2009;74:1567-1572). We tested the null hypothesis that these 2 samples had the same distribution for number of publications using the Wilcoxon rank-sum test. We explored the association of demographic factors and publication number using multivariable zero-inflated Poisson regression. Results: There were 334 residents publishing 659 eligible first-author publications during residency (range 0-17; interquartile range 0-3; mean 2.0; median 1). The contemporary and historical distributions were significantly different (P<.001); contemporary publication rates were higher. Publications accrued late in residency (27% in PGY-4, 59% in PGY-5), and most were original research (75%). In the historical cohort, half of all articles were published in 3 journals; in contrast, the top half of contemporary publications were spread over 10 journals—most commonly International Journal of Radiation Oncology • Biology • Physics (17%), Practical Radiation Oncology (7%), and Radiation Oncology (4%). Male gender, non-PhD status, and larger residency size were associated with higher number of publications in the multivariable analysis. Conclusion: We observed an increase in first-author publications during training compared with historical data from the mid-2000s. These

  1. Contemporary Trends in Radiation Oncology Resident Research

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek [Department of Radiation Oncology, University of Nebraska, Omaha, Nebraska (United States); Burt, Lindsay [Department of Radiation Oncology, University of Utah, Salt Lake City, Utah (United States); Gimotty, Phyllis A. [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Ojerholm, Eric, E-mail: eric.ojerholm@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2016-11-15

    Purpose: To test the hypothesis that recent resident research productivity might be different than a decade ago, and to provide contemporary information about resident scholarly activity. Methods and Materials: We compiled a list of radiation oncology residents from the 2 most recent graduating classes (June 2014 and 2015) using the Association of Residents in Radiation Oncology annual directories. We queried the PubMed database for each resident's first-authored publications from postgraduate years (PGY) 2 through 5, plus a 3-month period after residency completion. We abstracted corresponding historical data for 2002 to 2007 from the benchmark publication by Morgan and colleagues (Int J Radiat Oncol Biol Phys 2009;74:1567-1572). We tested the null hypothesis that these 2 samples had the same distribution for number of publications using the Wilcoxon rank-sum test. We explored the association of demographic factors and publication number using multivariable zero-inflated Poisson regression. Results: There were 334 residents publishing 659 eligible first-author publications during residency (range 0-17; interquartile range 0-3; mean 2.0; median 1). The contemporary and historical distributions were significantly different (P<.001); contemporary publication rates were higher. Publications accrued late in residency (27% in PGY-4, 59% in PGY-5), and most were original research (75%). In the historical cohort, half of all articles were published in 3 journals; in contrast, the top half of contemporary publications were spread over 10 journals—most commonly International Journal of Radiation Oncology • Biology • Physics (17%), Practical Radiation Oncology (7%), and Radiation Oncology (4%). Male gender, non-PhD status, and larger residency size were associated with higher number of publications in the multivariable analysis. Conclusion: We observed an increase in first-author publications during training compared with historical data from the mid-2000s. These

  2. Current management of surgical oncologic emergencies.

    Directory of Open Access Journals (Sweden)

    Marianne R F Bosscher

    Full Text Available For some oncologic emergencies, surgical interventions are necessary for dissolution or temporary relieve. In the absence of guidelines, the most optimal method for decision making would be in a multidisciplinary cancer conference (MCC. In an acute setting, the opportunity for multidisciplinary discussion is often not available. In this study, the management and short term outcome of patients after surgical oncologic emergency consultation was analyzed.A prospective registration and follow up of adult patients with surgical oncologic emergencies between 01-11-2013 and 30-04-2014. The follow up period was 30 days.In total, 207 patients with surgical oncologic emergencies were included. Postoperative wound infections, malignant obstruction, and clinical deterioration due to progressive disease were the most frequent conditions for surgical oncologic emergency consultation. During the follow up period, 40% of patients underwent surgery. The median number of involved medical specialties was two. Only 30% of all patients were discussed in a MCC within 30 days after emergency consultation, and only 41% of the patients who underwent surgery were discussed in a MCC. For 79% of these patients, the surgical procedure was performed before the MCC. Mortality within 30 days was 13%.In most cases, surgery occurred without discussing the patient in a MCC, regardless of the fact that multiple medical specialties were involved in the treatment process. There is a need for prognostic aids and acute oncology pathways with structural multidisciplinary management. These will provide in faster institution of the most appropriate personalized cancer care, and prevent unnecessary investigations or invasive therapy.

  3. Nuclear EGFR as a molecular target in cancer

    International Nuclear Information System (INIS)

    Brand, Toni M.; Iida, Mari; Luthar, Neha; Starr, Megan M.; Huppert, Evan J.; Wheeler, Deric L.

    2013-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most targeted receptors in the field of oncology. While anti-EGFR inhibitors have demonstrated clinical success in specific cancers, most patients demonstrate either intrinsic or acquired resistance within one year of treatment. Many mechanisms of resistance to EGFR inhibitors have been identified, one of these being attributed to alternatively localized EGFR from the cell membrane into the cell’s nucleus. Inside the nucleus, EGFR functions as a co-transcription factor for several genes involved in cell proliferation and angiogenesis, and as a tyrosine kinase to activate and stabilize proliferating cell nuclear antigen and DNA dependent protein kinase. Nuclear localized EGFR is highly associated with disease progression, worse overall survival in numerous cancers, and enhanced resistance to radiation, chemotherapy, and the anti-EGFR therapies gefitinib and cetuximab. In this review the current knowledge of how nuclear EGFR enhances resistance to cancer therapeutics is discussed, in addition to highlighting ways to target nuclear EGFR as an anti-cancer strategy in the future

  4. Neuro-oncology of CNS tumors

    International Nuclear Information System (INIS)

    Tonn, J.C.

    2006-01-01

    Diagnosis and treatment modalities for neuro-oncologic diseases have made considerable advances in recent years. There is hardly a segment of the field of solid tumours that is experiencing such dynamic development with regard to basic scientific findings and clinical results. In the present book the world's leading experts have compiled the current practice-relevant knowledge of neuro-oncologic diseases. The book's clear structure and the uniform presentation of all chapters make this volume a valuable reference, especially for practice-oriented activities, allowing swift access to information about current treatment standards. Hence it will be of great value to both clinicians and researchers. (orig.)

  5. Integrative oncology in Indian subcontinent: an overview.

    Science.gov (United States)

    Ramamoorthy, Ananthalakshmi; Janardhanan, Sunitha; Jeevakarunyam, Sathiyajeeva; Jeddy, Nadheem; Eagappan, Senthil

    2015-03-01

    Integrative oncology is a combination of one where complementary and alternative medicine (CAM) with conventional cancer treatment modalities is used to manage symptoms, control side-effects and improve the state of mental wellbeing. The ancient Indian medicinal approach in cancer treatment and management has a wide array of herbs and practices. There is an increasing demand for traditional and natural medicine by the cancer patients. The conventional oncologic surgeons and physicians should be aware of the role of cCAM that are available in Indian subcontinent and provide a treatment that focuses on the physical and mental state of wellness in combating cancer.

  6. Pharmacogenetics in the oncological clinical practice

    International Nuclear Information System (INIS)

    Gruber, S.

    2004-01-01

    The genetic control of drug metabolism allows new insights into the bioavailability, toxicity, and efficacy of chemotherapy. In addition, molecular expression profiles of tumors offers the potential for targeted therapy to be directed more specifically to the biologic behavior of the cancer. Together these strategies are likely to change the practice of clinical oncology. However, appropriate clinical trials will be required to demonstrate the utility of these approaches before they are broadly implemented the biologic behavior of the cancer. Together these strategies are likely to change the practice of clinical oncology. However, appropriate clinical trials will be required to demonstrate the utility of these approaches before they are broadly implemented

  7. The Danish Neuro-Oncology Registry

    DEFF Research Database (Denmark)

    Hansen, Steinbjørn; Nielsen, Jan; Laursen, René J

    2016-01-01

    BACKGROUND: The Danish Neuro-Oncology Registry (DNOR) is a nationwide clinical cancer database that has prospectively registered data on patients with gliomas since January 2009. The purpose of this study was to describe the establishment of the DNOR and further to evaluate the database completen......BACKGROUND: The Danish Neuro-Oncology Registry (DNOR) is a nationwide clinical cancer database that has prospectively registered data on patients with gliomas since January 2009. The purpose of this study was to describe the establishment of the DNOR and further to evaluate the database...

  8. Oncology nursing in Cuba: report of the delegation.

    Science.gov (United States)

    Sheldon, Lisa Kennedy; Leonard, Kathleen; Gross, Anne; Hartnett, Erin; Poage, Ellen; Squires, Jennifer; Ullemeyer, Vicki; Schueller, Mary; Stary, Susan; Miller, Mary Alice

    2012-08-01

    In December 2011, the first delegation of oncology nurses from the United States visited Havana, Cuba. The delegation included oncology nurses, educators, and leaders from across America and provided opportunities to learn about the healthcare system, cancer, and oncology nursing in Cuba. Delegation members attended lectures, toured facilities, and enjoyed Cuban culture. This exchange highlighted the similarities in cancer care and oncology nursing between countries and opened doors for future collaborations.

  9. Drug-diagnostics co-development in oncology

    Directory of Open Access Journals (Sweden)

    Richard eSimon

    2013-12-01

    Full Text Available Developments in genomics are providing a biological basis for the heterogeneity of clinical course and response to treatment that have long been apparent to clinicians The ability to molecularly characterize of human diseases presents new opportunities to develop more effective treatments and new challenges for the design and analysis of clinical trials.In oncology, treatment of broad populations with regimens that benefit a minority of patients is less economically sustainable with expensive molecularly targeted therapeutics. The established molecular heterogeneity of human diseases requires the development of new paradigms for the design and analysis of randomized clinical trials as a reliable basis for predictive medicine. We review prospective designs for the development of new therapeutics and predictive biomarkers to inform their use. We cover designs for a wide range of settings. At one extreme is the development of a new drug with a single candidate biomarker and strong biological evidence that marker negative patients are unlikely to benefit from the new drug. At the other extreme are phase III clinical trials involving both genome-wide discovery of a predictive classifier and internal validation of that classifier. We have outlined a prediction based approach to the analysis of randomized clinical trials that both preserves the type I error and provides a reliable internally validated basis for predicting which patients are most likely or unlikely to benefit from a new regimen.

  10. Children's Oncology Group's 2013 blueprint for research: acute myeloid leukemia.

    Science.gov (United States)

    Gamis, Alan S; Alonzo, Todd A; Perentesis, John P; Meshinchi, Soheil

    2013-06-01

    For the 365 children diagnosed with acute myeloid leukemia in the US annually, 5-year survival for patients on COG trials with low, intermediate, and high risk disease is 83%, 62%, and 23%, respectively. Recent advances include improved therapeutic stratification, improved survival with dose intensification, and further elucidation of the heterogeneity specific to childhood AML. These discoveries now guide current strategy incorporating targeted agents to pathways specific to childhood AML as well as evaluating methods to increase the sensitivity of the leukemic stem cell, first in Phase II feasibility trials followed by Phase III efficacy trials of the most promising agents. Acute myeloid leukemia in children, though with similar subgroups to adults, remains uniquely different based upon quite different prevalence of subtypes as well as overall response to therapy. The Children's Oncology Group's research agenda builds upon earlier efforts to better elucidate the leukemogenic steps distinct to childhood AML in order to more scientifically develop and test novel therapeutic approaches to the treatment and ultimate cure for children with this disorder. Pediatr Blood Cancer 2013; 60: 964-971. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  11. The experiential world of the Oncology nurse

    Directory of Open Access Journals (Sweden)

    Dalena van Rooyen

    2008-11-01

    Full Text Available In her experiential world, the oncology nurse experiences unique, challenging and rewarding relationships in a multidimensional, dynamic way. The aim of this study was to describe, from her viewpoint and perspective, how she experiences and reacts to this world. Through this study the researcher wants the oncology nurse’s voice to be heard, the richness of her story acknowledged and the derived data to be applied to the benefit of the field of oncology. In-depth, unstructured phenomenological interviews provided the saturated data from which the uniqueness of the world of the oncology nurse unfolded as the uniqueness of the oncology patients and their world emerged clearly. Findings show that the oncology nurse, attending to the cancer patients and their family, experiences many different relationships. The uniqueness of the oncology nurse-patient relationship is described as unlike any other nurse-patient relationship. The challenging interpersonal relationships with management and other members of the multiprofessional team, as experienced from the perspective of the oncology nurse, are also highlighted. Furthermore, a unifying intrapersonal relationship with the self was identified. This enables the oncology nurse to be both on the giving and receiving end of the intensely emotional environment she works in, explaining, at least partly, the high job satisfaction that permeated the interviews in this study. Recommendations for nursing practice, education and research were formulated. Opsomming In haar leefwêreld ondervind onkologieverpleegkundige unieke, uitdagende en belonende verhoudinge op ‘n multidimensionele en dinamiese wyse. Die doel van hierdie studie was om ‘n beskrywing van die onkologieverpleegkundige se ervarings van en reaksie op haar leefwêreld vanuit haar oogpunt en perspektief. Deur middel van hierdie studie wil die navorser die stem van die onkologieverpleegkundige gehoor laat word, die rykdom van haar verhaal erken en

  12. Audits of oncology units – an effective and pragmatic approach ...

    African Journals Online (AJOL)

    Background. Audits of oncology units are part of all quality-assurance programmes. However, they do not always come across as pragmatic and helpful to staff. Objective. To report on the results of an online survey on the usefulness and impact of an audit process for oncology units. Methods. Staff in oncology units who ...

  13. Current status of SCI and SCIE publications in the field of radiation oncology in Korea

    International Nuclear Information System (INIS)

    Kang, Jin Oh

    2007-01-01

    To investigate current status of SCI (Science Citation Index) and SCI Expanded publication of Korean radiation oncologists. Published SCI and SCIE articles the conditions of first author's address as 'Korea' and 'Radiation Oncology' or 'Therapeutic Radiology' were searched from Pubmed database. From 1990 to 2006, 146 SCI articles and 32 SCIE articles were published. Most frequently published journal was international Journal of Radiation Oncology Biology Physics, where 56 articles were found. Articles with 30 or more citations were only five and 10 or more citations were 26. Yonsei University, which had 57 published articles, was the top among 19 affiliations which had one or more SCI and SCIE articles. Authors with five or more articles were 9 and Seong J. of Yonsei University was the top with 19 articles. The investigations showed disappointing results. The members of Korean Society of Radiation Oncologists must consider a strategy to increase SCI and SCIE publications

  14. Ethical considerations of neuro-oncology trial design in the era of precision medicine.

    Science.gov (United States)

    Gupta, Saksham; Smith, Timothy R; Broekman, Marike L

    2017-08-01

    The field of oncology is currently undergoing a paradigm shift. Advances in the understanding of tumor biology and in tumor sequencing technology have contributed to the shift towards precision medicine, the therapeutic framework of targeting the individual oncogenic changes each tumor harbors. The success of precision medicine therapies, such as targeted kinase inhibitors and immunotherapies, in other cancers have motivated studies in brain cancers. The high specificity and cost of these therapies also encourage a shift in clinical trial design away from randomized control trials towards smaller, more exclusive early phase clinical trials. While these new trials advance the clinical application of increasingly precise and individualized therapies, their design brings ethical challenges . We review the pertinent ethical considerations for clinical trials of precision medicine in neuro-oncology and discuss methods to protect patients in this new era of trial design.

  15. Energy Therapies in Advanced Practice Oncology: An Evidence-Informed Practice Approach

    Science.gov (United States)

    Potter, Pamela J.

    2013-01-01

    Advanced practitioners in oncology want patients to receive state-of-the-art care and support for their healing process. Evidence-informed practice (EIP), an approach to evaluating evidence for clinical practice, considers the varieties of evidence in the context of patient preference and condition as well as practitioner knowledge and experience. This article offers an EIP approach to energy therapies, namely, Therapeutic Touch (TT), Healing Touch (HT), and Reiki, as supportive interventions in cancer care; a description of the author’s professional experience with TT, HT, and Reiki in practice and research; an overview of the three energy healing modalities; a review of nine clinical studies related to oncology; and recommendations for EIP. These studies demonstrate a response to previous research design critiques. Findings indicate a positive benefit for oncology patients in the realms of pain, quality of life, fatigue, health function, and mood. Directionality of healing in immune response and cell line studies affirms the usual explanation that these therapies bring harmony and balance to the system in the direction of health. Foremost, the research literature demonstrates the safety of these therapies. In order to consider the varieties of evidence for TT, HT, and Reiki, EIP requires a qualitative examination of patient experiences with these modalities, exploration of where these modalities have been integrated into cancer care and how the practice works in the oncology setting, and discovery of the impact of implementation on provider practice and self-care. Next steps toward EIP require fleshing out the experience of these modalities by patients and health-care providers in the oncology care setting. PMID:25031994

  16. Nanocarriers for nuclear imaging and radiotherapy of cancer.

    Science.gov (United States)

    Mitra, Amitava; Nan, Anjan; Line, Bruce R; Ghandehari, Hamidreza

    2006-01-01

    Several nanoscale carriers (nanoparticles, liposomes, water-soluble polymers, micelles and dendrimers) have been developed for targeted delivery of cancer diagnostic and therapeutic agents. These carriers can selectively target cancer sites and carry large payloads, thereby improving cancer detection and therapy effectiveness. Further, the combination of newer nuclear imaging techniques providing high sensitivity and spatial resolution such as dual modality imaging with positron emission tomography/computed tomography (PET/CT) and use of nanoscale devices to carry diagnostic and therapeutic radionuclides with high target specificity can enable more accurate detection, staging and therapy planning of cancer. The successful clinical applications of radiolabeled monoclonal antibodies for cancer detection and therapy bode well for the future of nanoscale carrier systems in clinical oncology. Several radiolabeled multifunctional nanocarriers have been effective in detecting and treating cancer in animal models. Nonetheless, further preclinical, clinical and long-term toxicity studies will be required to translate this technology to the care of patients with cancer. The objective of this review is to present a brief but comprehensive overview of the various nuclear imaging techniques and the use of nanocarriers to deliver radionuclides for the diagnosis and therapy of cancer.

  17. A new ambulatory classification and funding model for radiation oncology: non-admitted patients in Victorian hospitals.

    Science.gov (United States)

    Antioch, K M; Walsh, M K; Anderson, D; Wilson, R; Chambers, C; Willmer, P

    1998-01-01

    The Victorian Department of Human Services has developed a classification and funding model for non-admitted radiation oncology patients. Agencies were previously funded on an historical cost input basis. For 1996-97, payments were made according to the new Non-admitted Radiation Oncology Classification System and include four key components. Fixed grants are based on Weighted Radiation Therapy Services targets for megavoltage courses, planning procedures (dosimetry and simulation) and consultations. The additional throughput pool covers additional Weighted Radiation Therapy Services once targets are reached, with access conditional on the utilisation of a minimum number of megavoltage fields by each hospital. Block grants cover specialised treatments, such as brachytherapy, allied health payments and other support services. Compensation grants were available to bring payments up to the level of the previous year. There is potential to provide incentives to promote best practice in Australia through linking appropriate practice to funding models. Key Australian and international developments should be monitored, including economic evaluation studies, classification and funding models, and the deliberations of the American College of Radiology, the American Society for Therapeutic Radiology and Oncology, the Trans-Tasman Radiation Oncology Group and the Council of Oncology Societies of Australia. National impact on clinical practice guidelines in Australia can be achieved through the Quality of Care and Health Outcomes Committee of the National Health and Medical Research Council.

  18. Re-Engineering a Small Oncology Practice for Quality Using the ASCO Quality Oncology Practice Initiative

    OpenAIRE

    Hendricks, Carolyn B.

    2013-01-01

    The field of quality improvement is expanding rapidly, and small oncology practices need to adapt and rise to future challenges. Additional quality measures from ASCO and other organizations will likely focus on palliative care, the Top Five, and electronic measures.

  19. Multicentre assessment and monitored use of [18F]FDG-PET in oncology: the Spanish experience

    International Nuclear Information System (INIS)

    Rodriguez-Garrido, Manuel; Asensio-del-Barrio, Cristina

    2008-01-01

    The aim of this study was to evaluate the diagnostic effectiveness of [ 18 F]FDG-PET in oncological diseases and to assess its clinical utility and impact (on the clinical and therapeutic management of these patients). This health technology assessment was performed in Spain, using the monitored use (MU) procedure. A multicentre and prospective follow-up study was performed in a non-consecutive sample of oncological patients who were examined with PET and other conventional diagnostic tests. A protocol for this MU method (PET-MU protocol) was developed, including the three forms used to collect all the information. Enrolment of new patients began in June 2002 and continued until August 2004. A descriptive analysis and an evaluation of the diagnostic effectiveness of FDG-PET were performed. The study population comprised 2,824 oncological patients (the third form relating to follow-up was completed for only 967 of these patients) from 100 Spanish hospitals and 16 PET centres. Seventy-nine percent of cases met the clinical requirements of the PET-MU protocol. Global diagnostic parameters of PET performance and their 95% CI values were as follows: sensitivity 86% (82-89%), specificity 83% (79-86%), positive and negative predictive values 87% (83-90%) and 82% (77-85%) respectively, diagnostic accuracy 84% (82-87%) and diagnostic odds ratio 28.75 (19.75-41.84). PET detected unsuspected new lesions in 39% of patients and avoided other unnecessary diagnostic techniques and treatments in 69% of cases. In 88% of cases, PET was considered useful by the physicians who asked for the PET tests (it was deemed decisive in 30% and very useful in almost 37%). This PET-MU study has confirmed the high diagnostic effectiveness of FDG-PET for oncological indications and demonstrates that it has a great influence on the clinical and therapeutic management of patients. (orig.)

  20. ESMO / ASCO Recommendations for a Global Curriculum in Medical Oncology Edition 2016

    Science.gov (United States)

    Dittrich, Christian; Kosty, Michael; Jezdic, Svetlana; Pyle, Doug; Berardi, Rossana; Bergh, Jonas; El-Saghir, Nagi; Lotz, Jean-Pierre; Österlund, Pia; Pavlidis, Nicholas; Purkalne, Gunta; Awada, Ahmad; Banerjee, Susana; Bhatia, Smita; Bogaerts, Jan; Buckner, Jan; Cardoso, Fatima; Casali, Paolo; Chu, Edward; Close, Julia Lee; Coiffier, Bertrand; Connolly, Roisin; Coupland, Sarah; De Petris, Luigi; De Santis, Maria; de Vries, Elisabeth G E; Dizon, Don S; Duff, Jennifer; Duska, Linda R; Eniu, Alexandru; Ernstoff, Marc; Felip, Enriqueta; Fey, Martin F; Gilbert, Jill; Girard, Nicolas; Glaudemans, Andor W J M; Gopalan, Priya K; Grothey, Axel; Hahn, Stephen M; Hanna, Diana; Herold, Christian; Herrstedt, Jørn; Homicsko, Krisztian; Jones, Dennie V; Jost, Lorenz; Keilholz, Ulrich; Khan, Saad; Kiss, Alexander; Köhne, Claus-Henning; Kunstfeld, Rainer; Lenz, Heinz-Josef; Lichtman, Stuart; Licitra, Lisa; Lion, Thomas; Litière, Saskia; Liu, Lifang; Loehrer, Patrick J; Markham, Merry Jennifer; Markman, Ben; Mayerhoefer, Marius; Meran, Johannes G; Michielin, Olivier; Moser, Elizabeth Charlotte; Mountzios, Giannis; Moynihan, Timothy; Nielsen, Torsten; Ohe, Yuichiro; Öberg, Kjell; Palumbo, Antonio; Peccatori, Fedro Alessandro; Pfeilstöcker, Michael; Raut, Chandrajit; Remick, Scot C; Robson, Mark; Rutkowski, Piotr; Salgado, Roberto; Schapira, Lidia; Schernhammer, Eva; Schlumberger, Martin; Schmoll, Hans-Joachim; Schnipper, Lowell; Sessa, Cristiana; Shapiro, Charles L; Steele, Julie; Sternberg, Cora N; Stiefel, Friedrich; Strasser, Florian; Stupp, Roger; Sullivan, Richard; Tabernero, Josep; Travado, Luzia; Verheij, Marcel; Voest, Emile; Vokes, Everett; Von Roenn, Jamie; Weber, Jeffrey S; Wildiers, Hans; Yarden, Yosef

    2016-01-01

    The European Society for Medical Oncology (ESMO) and the American Society of Clinical Oncology (ASCO) are publishing a new edition of the ESMO/ASCO Global Curriculum (GC) thanks to contribution of 64 ESMO-appointed and 32 ASCO-appointed authors. First published in 2004 and updated in 2010, the GC edition 2016 answers to the need for updated recommendations for the training of physicians in medical oncology by defining the standard to be fulfilled to qualify as medical oncologists. At times of internationalisation of healthcare and increased mobility of patients and physicians, the GC aims to provide state-of-the-art cancer care to all patients wherever they live. Recent progress in the field of cancer research has indeed resulted in diagnostic and therapeutic innovations such as targeted therapies as a standard therapeutic approach or personalised cancer medicine apart from the revival of immunotherapy, requiring specialised training for medical oncology trainees. Thus, several new chapters on technical contents such as molecular pathology, translational research or molecular imaging and on conceptual attitudes towards human principles like genetic counselling or survivorship have been integrated in the GC. The GC edition 2016 consists of 12 sections with 17 subsections, 44 chapters and 35 subchapters, respectively. Besides renewal in its contents, the GC underwent a principal formal change taking into consideration modern didactic principles. It is presented in a template-based format that subcategorises the detailed outcome requirements into learning objectives, awareness, knowledge and skills. Consecutive steps will be those of harmonising and implementing teaching and assessment strategies. PMID:27843641

  1. ASTRO's 2007 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Klein, Eric E.; Gerbi, Bruce J.; Price, Robert A.; Balter, James M.; Paliwal, Bhudatt; Hughes, Lesley; Huang, Eugene

    2007-01-01

    In 2004, American Society for Therapeutic Radiology and Oncology (ASTRO) published a curriculum for physics education. The document described a 54-hour course. In 2006, the committee reconvened to update the curriculum. The committee is composed of physicists and physicians from various residency program teaching institutions. Simultaneously, members have associations with American Association of Physicists in Medicine, ASTRO, Association of Residents in Radiation Oncology, American Board of Radiology, and American College of Radiology. Representatives from the latter two organizations are key to provide feedback between the examining organizations and ASTRO. Subjects are based on Accreditation Council for Graduate Medical Education requirements (particles and hyperthermia), whereas the majority of subjects and appropriated hours/subject were developed by consensus. The new curriculum is 55 hours, containing new subjects, redistribution of subjects with updates, and reorganization of core topics. For each subject, learning objectives are provided, and for each lecture hour, a detailed outline of material to be covered is provided. Some changes include a decrease in basic radiologic physics, addition of informatics as a subject, increase in intensity-modulated radiotherapy, and migration of some brachytherapy hours to radiopharmaceuticals. The new curriculum was approved by the ASTRO board in late 2006. It is hoped that physicists will adopt the curriculum for structuring their didactic teaching program, and simultaneously, American Board of Radiology, for its written examination. American College of Radiology uses the ASTRO curriculum for their training examination topics. In addition to the curriculum, the committee added suggested references, a glossary, and a condensed version of lectures for a Postgraduate Year 2 resident physics orientation. To ensure continued commitment to a current and relevant curriculum, subject matter will be updated again in 2 years

  2. CHONDROSARCOMA OF BONE - ONCOLOGIC AND FUNCTIONAL RESULTS

    NARCIS (Netherlands)

    VANLOON, CJM; VETH, RPH; PRUSZCZYNSKI, M; WOBBES, T; LEMMENS, JAM; VANHORN, J

    1994-01-01

    A retrospective review of 27 patients (21 males and 6 females) with chondrosarcoma of bone was performed to evaluate the oncologic and functional results. The average age of the patients was 48 years (range: 17-76). The tumor sites were pelvis in 10 cases, distal femur in 2, proximal tibia in 3, rib

  3. Gamma camera based FDG PET in oncology

    International Nuclear Information System (INIS)

    Park, C. H.

    2002-01-01

    Positron Emission Tomography(PET) was introduced as a research tool in the 1970s and it took about 20 years before PET became an useful clinical imaging modality. In the USA, insurance coverage for PET procedures in the 1990s was the turning point, I believe, for this progress. Initially PET was used in neurology but recently more than 80% of PET procedures are in oncological applications. I firmly believe, in the 21st century, one can not manage cancer patients properly without PET and PET is very important medical imaging modality in basic and clinical sciences. PET is grouped into 2 categories; conventional (c) and gamma camera based ( CB ) PET. CB PET is more readily available utilizing dual-head gamma cameras and commercially available FDG to many medical centers at low cost to patients. In fact there are more CB PET in operation than cPET in the USA. CB PET is inferior to cPET in its performance but clinical studies in oncology is feasible without expensive infrastructures such as staffing, rooms and equipments. At Ajou university Hospital, CBPET was installed in late 1997 for the first time in Korea as well as in Asia and the system has been used successfully and effectively in oncological applications. Our was the fourth PET operation in Korea and I believe this may have been instrumental for other institutions got interested in clinical PET. The following is a brief description of our clinical experience of FDG CBPET in oncology

  4. Neuro-oncology Thallium 201 interest

    International Nuclear Information System (INIS)

    Guyot, M.; Latry, C.; Basse-Cathalinat, B.; Ducassou, D.; Guerin, J.; Maire, J.P.

    1994-01-01

    So and in spite of its histologic specificity absence, Tl 201 has an evident interest in neuro-oncology: for the low grade astrocytoma transformation diagnosis toward one higher grad; for the neoplasm residue and recidive diagnosis; and more generally as forecasted evolution element during the therapy. 2 figs., 4 tabs., 4 graphs

  5. Ethical problems experienced by oncology nurses.

    Science.gov (United States)

    da Luz, Kely Regina; Vargas, Mara Ambrosina de Oliveira; Schmidtt, Pablo Henrique; Barlem, Edison Luiz Devos; Tomaschewski-Barlem, Jamila Geri; da Rosa, Luciana Martins

    2015-01-01

    To know the ethical problems experienced by oncology nurses. Descriptive and exploratory study with a qualitative approach, performed in inpatient units and in chemotherapy out-patients units that provide assistance to oncological patients in two capitals in the South region of Brazil. Eighteen nurses participated in this study, selected by snowball sampling type. For data collection, semi-structured interviews were carried out, which were recorded and transcribed, and then analyzed by thematic analysis. Two categories were established: when informing or not becomes a dilemma - showing the main difficulties related to oncological treatment information regarding health staff, health system, and infrastructure; to invest or not - dilemmas related to finitude - showing situations of dilemmas related to pain and confrontation with finitude. For the effective confrontation of the ethical problems experienced by oncology nurses to occur, it is important to invest in the training of these professionals, preparing them in an ethical and human way to act as lawyers of the patient with cancer, in a context of dilemmas related mainly to the possibility of finitude.

  6. Current management of surgical oncologic emergencies

    NARCIS (Netherlands)

    Bosscher, Marianne R. F.; van Leeuwen, Barbara L.; Hoekstra, Harald J.

    2015-01-01

    OBJECTIVES: For some oncologic emergencies, surgical interventions are necessary for dissolution or temporary relieve. In the absence of guidelines, the most optimal method for decision making would be in a multidisciplinary cancer conference (MCC). In an acute setting, the opportunity for

  7. Tumor relapse present in oncologic nasal repair

    International Nuclear Information System (INIS)

    Galvez Chavez, Julio Cesar; Sanchez Wals, Lenia; Monzon Fernandez, Abel Nicolas; Morales Tirado, Roxana

    2009-01-01

    Tumor relapse is one of the more fearsome complications of the oncologic course and also to obscure the life prognosis, causing the loss of many reconstructions and of exhausting the repairing surgical possibilities. The aim of this study was to determine the relapse frequency, the repercussion on the repair and the subsequent medical course of patients operated on malign nasal tumors

  8. Use of alternative treatment in pediatric oncology

    NARCIS (Netherlands)

    Grootenhuis, M. A.; Last, B. F.; de Graaf-Nijkerk, J. H.; van der Wel, M.

    1998-01-01

    The use of alternative treatment along with conventional cancer therapy is very popular. However, little is known about the use of alternative treatment in pediatric oncology. A study to determine which medical and demographic characteristics distinguish users from nonusers was conducted in a

  9. Predictors of Patient Satisfaction in Pediatric Oncology.

    Science.gov (United States)

    Davis, Josh; Burrows, James F; Ben Khallouq, Bertha; Rosen, Paul

    To understand key drivers of patient satisfaction in pediatric hematology/oncology. The "top-box" scores of patient satisfaction surveys from 4 pediatric hematology/oncology practices were collected from 2012 to 2014 at an integrated Children's Health Network. One item, "Likelihood of recommending practice," was used as the surrogate for overall patient satisfaction, and all other items were correlated to this item. A total of 1244 satisfaction surveys were included in this analysis. The most important predictors of overall patient satisfaction were cheerfulness of practice ( r = .69), wait time ( r = .60), and staff working together ( r = .60). The lowest scoring items were getting clinic on phone, information about delays, and wait time at clinic. Families bringing their children for outpatient care in a hematology/oncology practice want to experience a cheerful and collaborative medical team. Wait time at clinic may be a key driver in the overall experience for families with children with cancer. Future work should be directed at using this evidence to drive patient experience improvement processes in pediatric hematology/oncology.

  10. Present status and possibilities of radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, E [Essen Univ. (Gesamthochschule) (Germany, F.R.). Strahlenklinik; Essen Univ. (Gesamthochschule) (Germany, F.R.). Poliklinik)

    1979-01-01

    A survey of the current methodical possibilities of radiation therapy within the limits of interdisciplinary oncology is given. Especially new forms of fractionation and current projects to augment the effect of radiation are discussed. The question of fast neutrons, electroaffine substances and local hyperthermia are dealt with.

  11. Clinical PET/MR Imaging in Oncology

    DEFF Research Database (Denmark)

    Kjær, Andreas; Torigian, Drew A.

    2016-01-01

    . The question, therefore, arises regarding what the future clinical applications of PET/MR imaging will be. In this article, the authors discuss ways in which PET/MR imaging may be used in future applications that justify the added cost, predominantly focusing on oncologic applications. The authors suggest...

  12. Comparative oncology: Integrating human and veterinary medicine ...

    African Journals Online (AJOL)

    Cancer constitutes the major health problem both in human and veterinary medicine. Comparative oncology as an integrative approach offers to learn more about naturally occurring cancers across different species. Canine models have many advantages as they experience spontaneous disease, have many genes similar ...

  13. The American Society for Radiation Oncology's 2015 Core Physics Curriculum for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Burmeister, Jay; Chen, Zhe; Chetty, Indrin J.; Dieterich, Sonja; Doemer, Anthony; Dominello, Michael M.; Howell, Rebecca M.; McDermott, Patrick; Nalichowski, Adrian; Prisciandaro, Joann; Ritter, Tim; Smith, Chadd; Schreiber, Eric; Shafman, Timothy; Sutlief, Steven; Xiao, Ying

    2016-01-01

    Purpose: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. Methods and Materials: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. Results: The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. Conclusions: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since

  14. Aspirin for Prophylaxis Against Venous Thromboembolism After Orthopaedic Oncologic Surgery.

    Science.gov (United States)

    Mendez, Gregory M; Patel, Yash M; Ricketti, Daniel A; Gaughan, John P; Lackman, Richard D; Kim, Tae Won B

    2017-12-06

    Patients who undergo orthopaedic oncologic surgical procedures are at increased risk of developing a venous thromboembolism (VTE). Guidelines from surgical societies are shifting to include aspirin as a postoperative VTE prophylactic agent. The purpose of this study was to review our experience using aspirin as postoperative VTE prophylaxis for orthopaedic oncologic surgical procedures. This study was a retrospective review of patients diagnosed with a primary malignant soft-tissue or bone tumor or metastatic carcinoma. Demographic information, histopathologic diagnosis, VTE history, surgical procedure, and VTE prophylaxis were analyzed. VTE rates in the overall and prophylactic-specific cohorts were recorded and compared. A total of 142 distinct surgical procedures in 130 patients were included. VTE prophylaxis with aspirin was used after 103 procedures, and non-aspirin prophylaxis was used after 39. In 33 cases, imaging was used to investigate for VTE because of clinical signs and symptoms. VTE developed after 7 (4.9%) of the 142 procedures. There were 6 deep venous thromboses (DVTs) and 1 pulmonary embolism, and 2 of the VTEs presented in patients with a VTE history. VTE developed in 2.9% (3) of the 103 aspirin cases and 10.3% (4) of the 39 non-aspirin cases. No patient in the aspirin group who had been diagnosed with metastatic carcinoma, malignant soft-tissue sarcoma, lymphoma, or multiple myeloma developed a VTE. Risk factors for VTE development included diabetes mellitus (odds ratio [OR] = 10.40, 95% confidence interval [CI] = 1.61 to 67.30), a history of VTE (OR = 7.26, 95% CI = 1.19 to 44.25), postoperative transfusion (OR = 34.50, 95% CI = 3.94 to 302.01), and estimated blood losses of 250 mL (OR = 1.50, 95% CI = 1.11 to 2.03), 500 mL (OR = 2.26, 95% CI = 1.23 to 4.13), and 1,000 mL (OR = 5.10, 95% CI = 1.52 to 17.04). Aspirin may be a suitable and effective option for VTE chemoprophylaxis in patients treated with orthopaedic oncologic surgery, especially

  15. Veterinary nuclear medicine

    International Nuclear Information System (INIS)

    Krzeminski, M.; Lass, P.; Teodorczyk, J.; Krajka, J.

    2004-01-01

    The veterinary use of radionuclide techniques dates back to the mid-sixties, but its more extensive use dates back to the past two decades. Veterinary nuclear medicine is focused mainly on four major issues: bone scintigraphy - with the majority of applications in horses, veterinary endocrinology - dealing mainly with the problems of hyperthyreosis in cats and hyperthyreosis in dogs, portosystemic shunts in small animals and veterinary oncology, however, most radionuclide techniques applied to humans can be applied to most animals. (author)

  16. Technology for Innovation in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Martel, Mary K., E-mail: mmartel@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jaffray, David A. [Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Hospital, Toronto, Ontario (Canada); Benedict, Stanley H. [Department of Radiation Oncology, University of California – Davis Cancer Center, Sacramento, California (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Deye, James [Radiation Research Programs, National Cancer Institute, Bethesda, Maryland (United States); Jeraj, Robert [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin (United States); Kavanagh, Brian [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Krishnan, Sunil [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, Nancy [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Low, Daniel A. [Department of Radiation Oncology, University of California – Los Angeles, Los Angeles, California (United States); Mankoff, David [Department of Radiology, University of Washington Medical School, Seattle, Washington (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States); Ollendorf, Daniel [Institute for Clinical and Economic Review, Boston, Massachusetts (United States); and others

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

  17. Technology for Innovation in Radiation Oncology.

    Science.gov (United States)

    Chetty, Indrin J; Martel, Mary K; Jaffray, David A; Benedict, Stanley H; Hahn, Stephen M; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A; Mankoff, David; Marks, Lawrence B; Ollendorf, Daniel; Paganetti, Harald; Ross, Brian; Siochi, Ramon Alfredo C; Timmerman, Robert D; Wong, John W

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Technology for Innovation in Radiation Oncology

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Martel, Mary K.; Jaffray, David A.; Benedict, Stanley H.; Hahn, Stephen M.; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A.; Mankoff, David; Marks, Lawrence B.; Ollendorf, Daniel

    2015-01-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

  19. Integration of oncology and palliative care: a systematic review.

    Science.gov (United States)

    Hui, David; Kim, Yu Jung; Park, Ji Chan; Zhang, Yi; Strasser, Florian; Cherny, Nathan; Kaasa, Stein; Davis, Mellar P; Bruera, Eduardo

    2015-01-01

    Both the American Society of Clinical Oncology and the European Society for Medical Oncology strongly endorse integrating oncology and palliative care (PC); however, a global consensus on what constitutes integration is currently lacking. To better understand what integration entails, we conducted a systematic review to identify articles addressing the clinical, educational, research, and administrative indicators of integration. We searched Ovid MEDLINE and Ovid EMBase between 1948 and 2013. Two researchers independently reviewed each citation for inclusion and extracted the indicators related to integration. The inter-rater agreement was high (κ = 0.96, p oncology journals (59%) and in or after 2010 (64%, p oncology and PC. ©AlphaMed Press.

  20. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  1. Cats, Cancer and Comparative Oncology

    Directory of Open Access Journals (Sweden)

    Claire M. Cannon

    2015-06-01

    Full Text Available Naturally occurring tumors in dogs are well-established models for several human cancers. Domestic cats share many of the benefits of dogs as a model (spontaneous cancers developing in an immunocompetent animal sharing the same environment as humans, shorter lifespan allowing more rapid trial completion and data collection, lack of standard of care for many cancers allowing evaluation of therapies in treatment-naïve populations, but have not been utilized to the same degree in the One Medicine approach to cancer. There are both challenges and opportunities in feline compared to canine models. This review will discuss three specific tumor types where cats may offer insights into human cancers. Feline oral squamous cell carcinoma is common, shares both clinical and molecular features with human head and neck cancer and is an attractive model for evaluating new therapies. Feline mammary tumors are usually malignant and aggressive, with the ‘triple-negative’ phenotype being more common than in humans, offering an enriched population in which to examine potential targets and treatments. Finally, although there is not an exact corollary in humans, feline injection site sarcoma may be a model for inflammation-driven tumorigenesis, offering opportunities for studying variations in individual susceptibility as well as preventative and therapeutic strategies.

  2. Standardizing Naming Conventions in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Santanam, Lakshmi [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Hurkmans, Coen [Department of Radiation Oncology, Catharina Hospital, Eindhoven (Netherlands); Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Vliet-Vroegindeweij, Corine van [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Brame, Scott; Straube, William [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Galvin, James [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Tripuraneni, Prabhakar [Department of Radiation Oncology, Scripps Clinic, LaJolla, CA (United States); Michalski, Jeff [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Bosch, Walter, E-mail: wbosch@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Advanced Technology Consortium, Image-guided Therapy QA Center, St. Louis, MO (United States)

    2012-07-15

    Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were

  3. Standardizing Naming Conventions in Radiation Oncology

    International Nuclear Information System (INIS)

    Santanam, Lakshmi; Hurkmans, Coen; Mutic, Sasa; Vliet-Vroegindeweij, Corine van; Brame, Scott; Straube, William; Galvin, James; Tripuraneni, Prabhakar; Michalski, Jeff; Bosch, Walter

    2012-01-01

    Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were

  4. Standardizing naming conventions in radiation oncology.

    Science.gov (United States)

    Santanam, Lakshmi; Hurkmans, Coen; Mutic, Sasa; van Vliet-Vroegindeweij, Corine; Brame, Scott; Straube, William; Galvin, James; Tripuraneni, Prabhakar; Michalski, Jeff; Bosch, Walter

    2012-07-15

    The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were satisfactorily identified using this

  5. Atlas of PET/MR imaging in oncology

    International Nuclear Information System (INIS)

    Ratib, Osman; Schwaiger, Markus; Beyer, Thomas

    2013-01-01

    Numerous illustrated clinical cases in different oncology domains. Includes digital interactive software matching the cases in the book. Interactive version based on the latest web standard, HTML5, ensuring the widest compatibility. Edited by three international opinion leaders/imaging experts in the field. This new project on PET/MR imaging in oncology includes digital interactive software matching the cases in the book. The interactive version of the atlas is based on the latest web standard, HTML5, ensuring compatibility with any computer operating system as well as a dedicated version for Apple iPad and iPhone. The book opens with an introduction to the principles of hybrid imaging that pays particular attention to PET/MR imaging and standard PET/MR acquisition protocols. A wide range of illustrated clinical case reports are then presented. Each case study includes a short clinical history, findings, and teaching points, followed by illustrations, legends, and comments. The multimedia version of the book includes dynamic movies that allow the reader to browse through series of rotating 3D images (MIP or volume rendered), display blending between PET and MR, and dynamic visualization of 3D image volumes. The movies can be played either continuously or sequentially for better exploration of sets of images. The editors of this state-of-the-art publication are key opinion leaders in the field of multimodality imaging. Professor Osman Ratib (Geneva) and Professor Markus Schwaiger (Munich) were the first in Europe to initiate the clinical adoption of PET/MR imaging. Professor Thomas Beyer (Zurich) is an internationally renowned pioneering physicist in the field of hybrid imaging. Individual clinical cases presented in this book are co-authored by leading international radiologists and nuclear physicians experts in the use of PET and MRI.

  6. Atlas of PET/MR imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Ratib, Osman [University Hospital of Geneva (Switzerland). Nuclear Medicine Division; Schwaiger, Markus [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik; Beyer, Thomas (eds.) [General Hospital Vienna (Austria). Center for Medical Physics and Biomedical Engineering

    2013-08-01

    Numerous illustrated clinical cases in different oncology domains. Includes digital interactive software matching the cases in the book. Interactive version based on the latest web standard, HTML5, ensuring the widest compatibility. Edited by three international opinion leaders/imaging experts in the field. This new project on PET/MR imaging in oncology includes digital interactive software matching the cases in the book. The interactive version of the atlas is based on the latest web standard, HTML5, ensuring compatibility with any computer operating system as well as a dedicated version for Apple iPad and iPhone. The book opens with an introduction to the principles of hybrid imaging that pays particular attention to PET/MR imaging and standard PET/MR acquisition protocols. A wide range of illustrated clinical case reports are then presented. Each case study includes a short clinical history, findings, and teaching points, followed by illustrations, legends, and comments. The multimedia version of the book includes dynamic movies that allow the reader to browse through series of rotating 3D images (MIP or volume rendered), display blending between PET and MR, and dynamic visualization of 3D image volumes. The movies can be played either continuously or sequentially for better exploration of sets of images. The editors of this state-of-the-art publication are key opinion leaders in the field of multimodality imaging. Professor Osman Ratib (Geneva) and Professor Markus Schwaiger (Munich) were the first in Europe to initiate the clinical adoption of PET/MR imaging. Professor Thomas Beyer (Zurich) is an internationally renowned pioneering physicist in the field of hybrid imaging. Individual clinical cases presented in this book are co-authored by leading international radiologists and nuclear physicians experts in the use of PET and MRI.

  7. Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report.

    Science.gov (United States)

    Rosenthal, Eben L; Warram, Jason M; de Boer, Esther; Basilion, James P; Biel, Merrill A; Bogyo, Matthew; Bouvet, Michael; Brigman, Brian E; Colson, Yolonda L; DeMeester, Steven R; Gurtner, Geoffrey C; Ishizawa, Takeaki; Jacobs, Paula M; Keereweer, Stijn; Liao, Joseph C; Nguyen, Quyen T; Olson, James M; Paulsen, Keith D; Rieves, Dwaine; Sumer, Baran D; Tweedle, Michael F; Vahrmeijer, Alexander L; Weichert, Jamey P; Wilson, Brian C; Zenn, Michael R; Zinn, Kurt R; van Dam, Gooitzen M

    2016-01-01

    Navigation with fluorescence guidance has emerged in the last decade as a promising strategy to improve the efficacy of oncologic surgery. To achieve routine clinical use, the onus is on the surgical community to objectively assess the value of this technique. This assessment may facilitate both Food and Drug Administration approval of new optical imaging agents and reimbursement for the imaging procedures. It is critical to characterize fluorescence-guided procedural benefits over existing practices and to elucidate both the costs and the safety risks. This report is the result of a meeting of the International Society of Image Guided Surgery (www.isigs.org) on February 6, 2015, in Miami, Florida, and reflects a consensus of the participants' opinions. Our objective was to critically evaluate the imaging platform technology and optical imaging agents and to make recommendations for successful clinical trial development of this highly promising approach in oncologic surgery. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Imaging and Modeling Laboratory in Neurobiology and Oncology - IMNC. Activity report 2008-2012

    International Nuclear Information System (INIS)

    Charon, Yves; Arlaud, Nathalie; Mastrippolito, Roland

    2014-09-01

    The Imaging and Modeling Laboratory in Neurobiology and Oncology (IMNC) is an interdisciplinary unit shared between the Paris-Sud and Paris-Diderot universities and the National Institute of Nuclear and particle physics (IN2P3). Created in January 2006, the laboratory activities are structured around three main topics: the clinical and pre-clinical multi-modal imaging (optical and isotopic), the modeling of tumoral processes, and radiotherapy. This report presents the activities of the laboratory during the years 2008-2012: 1 - Forewords; 2 - Highlights; 3 - Research teams: Small animal imaging; Metabolism, imaging and olfaction; Surgery imaging in oncology; Quantification in molecular imaging; Modeling of biological systems; 4 - Technical innovations: Instrumentation, Scientific calculation, Biology department, valorisation and open-source softwares; 5 - Publications; 6 - Scientific life, communication and teaching activities; 7 - Laboratory operation; 8 - Perspectives

  9. Proceedings of 2nd Korea-China Congress of Nuclear Medicine and the Korean Society Nuclear Medicine Spring Meeting 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This proceedings contains articles of 2nd Korea-China Congress of Nuclear Medicine and 2000 spring meeting of the Korean Society Nuclear Medicine. It was held on May 17-19, 2000 in Seoul, Korean. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, oncology, radiopharmacy and biology, nuclear cardiology, nuclear cardiology: physics and instrumentation and so on. (Yi, J. H.)

  10. The efficacy and usefulness of problem based learning in undergraduate medical school education of radiation oncology

    International Nuclear Information System (INIS)

    Uchino, Minako; Itazawa, Tomoko; Someya, Masanori; Nakamura, Satoaki

    2007-01-01

    The Japanese Association for Therapeutic Radiation Oncology (JASTRO) holds a seminar for medical students every summer, which has developed into a joint program with a session addressing radiation treatment planning. To clarify this topic for medical students, we have incorporated Problem Based Learning skills into the session. Not only has the students' comprehension improved but the instructors have also found this teaching experience valuable and productive in advancing their own clinical skills. Our experience suggests that the application of this Problem Based Learning session for radiation treatment planning in undergraduate medical school education has proven to be effective. (author)

  11. 21st Century Cardio-Oncology

    Directory of Open Access Journals (Sweden)

    Calvin Chen Sheng, MD

    2016-08-01

    Full Text Available Cardiotoxicity is a well-established complication of oncology therapies. Cardiomyopathy resulting from anthracyclines is a classic example. In the past decade, an explosion of novel cancer therapies, often targeted and more specific than conventional therapies, has revolutionized oncology therapy and dramatically changed cancer prognosis. However, some of these therapies have introduced an assortment of cardiovascular (CV complications. At times, these devastating outcomes have only become apparent after drug approval and have limited the use of potent therapies. There is a growing need for better testing platforms, both for CV toxicity screening and for elucidating mechanisms of cardiotoxicities of approved cancer therapies. This review discusses the utility of available nonclinical models (in vitro, in vivo, and in silico and highlights recent advancements in modalities like human stem cell-derived cardiomyocytes for developing more comprehensive cardiotoxicity testing and new means of cardioprotection with targeted anticancer therapies.

  12. Radiolabeled antibodies in cancer. Oncology Overview

    International Nuclear Information System (INIS)

    1984-11-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories through the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Radiolabeled antibodies--labeling and imaging techniques; Radiolabeled antibodies--carcinoembryonic antigen; Radiolabeled antibodies--alpha-fetoprotein; Radiolabeled antibodies--human chorionic gonadotropin; Radiolabeled antibodies--ferritin; Radiolabeled antibodies--imaging of colorectal tumors; Radiolabeled antibodies--imaging of malignant melanoma; Radiolabeled antibodies--imaging of urogenital tumors; Radiolabeled antibodies--imaging of thyroid tumors; Radiolabeled antibodies--other clinical studies; Radiolabeled antibodies--selected preclinical studies; Radiolabeled antibodies--reviews

  13. Radiation oncology a physicist's-eye view

    CERN Document Server

    Goitein, Michael

    2007-01-01

    Radiation Oncology: A Physicist's-Eye View was written for both physicists and medical oncologists with the aim of helping them approach the use of radiation in the treatment of cancer with understanding, confidence, and imagination. The book will let practitioners in one field understand the problems of, and find solutions for, practitioners in the other. It will help them to know "why" certain approaches are fruitful while, at the same time, encouraging them to ask the question "Why not?" in the face of assertions that some proposal of theirs is impractical, unreasonable, or impossible. Unlike a textbook, formal and complete developments of the topics are not among the goals. Instead, the reader will develop a foundation for understanding what the author has found to be matters of importance in radiation oncology during over thirty years of experience. Presentations cover, in largely non-technical language, the principal physical and biological aspects of radiation treatment and address practical clinical c...

  14. Improving patient safety in radiation oncology

    International Nuclear Information System (INIS)

    Hendee, William R.; Herman, Michael G.

    2011-01-01

    Beginning in the 1990s, and emphasized in 2000 with the release of an Institute of Medicine report, healthcare providers and institutions have dedicated time and resources to reducing errors that impact the safety and well-being of patients. But in January 2010 the first of a series of articles appeared in the New York Times that described errors in radiation oncology that grievously impacted patients. In response, the American Association of Physicists in Medicine and the American Society of Radiation Oncology sponsored a working meeting entitled ''Safety in Radiation Therapy: A Call to Action''. The meeting attracted 400 attendees, including medical physicists, radiation oncologists, medical dosimetrists, radiation therapists, hospital administrators, regulators, and representatives of equipment manufacturers. The meeting was cohosted by 14 organizations in the United States and Canada. The meeting yielded 20 recommendations that provide a pathway to reducing errors and improving patient safety in radiation therapy facilities everywhere.

  15. Psycho-Oncology: A Patient's View.

    Science.gov (United States)

    Garcia-Prieto, Patricia

    2018-01-01

    Culturally the most important, valued, and less stigmatized part of cancer care is the medical part: The surgeon cutting the tumors out and the oncologist leading the strategic decision-making of the medical treatments available. The least valued and stigmatized part of cancer remains the psychosocial care. This chapter describes-through the eyes of an academic, psychologist, stage IV melanoma patient, and patient advocate-how one patient navigated changing psycho-oncological needs from early stage-to-stage IV through a whole range of psychological interventions available. Her voice joins that of all cancer patients around the world whom are urgently calling for psycho-oncological care to be fully recognized as a central part of cancer treatment.

  16. MOSFET dosimetry on modern radiation oncology modalities

    International Nuclear Information System (INIS)

    Rosenfeld, A.B.

    2002-01-01

    The development of MOSFET dosimetry is presented with an emphasis on the development of a scanning MOSFET dosimetry system for modern radiation oncology modalities. Fundamental aspects of MOSFETs in relation to their use as dosemeters are briefly discussed. The performance of MOSFET dosemeters in conformal radiotherapy, hadron therapy, intensity-modulated radiotherapy and microbeam radiation therapy is compared with other dosimetric techniques. In particular the application of MOSFET dosemeters in the characterisation and quality assurance of the steep dose gradients associated with the penumbra of some modern radiation oncology modalities is investigated. A new in vivo, on-line, scanning MOSFET read out system is also presented. The system has the ability to read out multiple MOSFET dosemeters with excellent spatial resolution and temperature stability and minimal slow border trapping effects. (author)

  17. Value: A Framework for Radiation Oncology

    Science.gov (United States)

    Teckie, Sewit; McCloskey, Susan A.; Steinberg, Michael L.

    2014-01-01

    In the current health care system, high costs without proportional improvements in quality or outcome have prompted widespread calls for change in how we deliver and pay for care. Value-based health care delivery models have been proposed. Multiple impediments exist to achieving value, including misaligned patient and provider incentives, information asymmetries, convoluted and opaque cost structures, and cultural attitudes toward cancer treatment. Radiation oncology as a specialty has recently become a focus of the value discussion. Escalating costs secondary to rapidly evolving technologies, safety breaches, and variable, nonstandardized structures and processes of delivering care have garnered attention. In response, we present a framework for the value discussion in radiation oncology and identify approaches for attaining value, including economic and structural models, process improvements, outcome measurement, and cost assessment. PMID:25113759

  18. Medicinal herbs and phytochitodeztherapy in oncology.

    Science.gov (United States)

    Treskunov, Karp; Treskunova, Olga; Komarov, Boris; Goroshetchenko, Alex; Glebov, Vlad

    2003-01-01

    Application of clinical phytology in treatment of oncology diseases was limited by intensive development of chemical pharmaceuticals and surgery. The authors had set the task to develop the computer database for phytotherapy application. The database included full information on patient's clinical status (identified diseases, symptoms, syndromes) and applied phytotherapy treatment. Special attention was paid to the application of phyto preparations containing chitosan. The computer database contains information on 2335 patients. It supports reliable data on efficiency of phytotherapy in general and allows to evaluate the efficiency of some particular medicinal herbs and to develop efficient complex phyto preparations for treatment of specific diseases. The application of phytotherapy in treatment of oncology patients confirmed the positive effect on patient's quality of life. In conclusion it should be emphasized that the present situation of practical application of phytotherapy could be considered as unacceptable because of absence of necessary knowledge and practical experience in using phytotherapy in outpatient clinics, hospitals and medicinal centers.

  19. Psycho-oncology in Australia: a descriptive review.

    Science.gov (United States)

    Butow, P; Dhillon, H; Shaw, J; Price, M

    2017-01-01

    Australia has a thriving Psycho-Oncology research and clinical community. In this article, the Australian health system in which Psycho-Oncology is embedded is described. Clinical Psycho-Oncology services are outlined, in terms of their composition, processes and reach. The development of the internationally ground-breaking Australian Psychosocial guidelines for the care of adults with cancer is described. Two large Psycho-Oncology organisations which are strongly linked to mainstream Oncology organisations are discussed: the Australian Psycho-Oncology Society (OzPos, a primarily clinician-led and focused organisation) and the Psycho-Oncology Co-operative Research Group (PoCoG, a national cancer clinical trial group). OzPos is a special interest group within the Clinical Oncology Society of Australia, while PoCoG is one of 14 cancer clinical trial groups funded by the national government. It is these strong connections with major multidisciplinary cancer organisations, and a culture of collaboration and co-operation, that have made Psycho-Oncology grow and thrive in Australia. Examples of large collaborative programs of Psycho-Oncology research are provided, as well as the mechanisms used to achieve these outcomes.

  20. Teaching and assessing systems-based practice: a pilot course in health care policy, finance, and law for radiation oncology residents.

    Science.gov (United States)

    Mitchell, James D; Parhar, Preeti; Narayana, Ashwatha

    2010-09-01

    Under the Accreditation Council for Graduate Medical Education (ACGME) Outcome Project, residency programs are required to provide data on educational outcomes and evidence for how this information is used to improve resident education. To teach and assess systems-based practice through a course in health care policy, finance, and law for radiation oncology residents, and to determine its efficacy. We designed a pilot course in health care policy, finance, and law related to radiation oncology. Invited experts gave lectures on policy issues important to radiation oncology and half of the participants attended the American Society for Therapeutic Radiation and Oncology (ASTRO) Advocacy Day. Participants completed pre- and postcourse tests to assess their knowledge of health policy. Six radiation oncology residents participated, with 5 (84%) completing all components. For the 5 residents completing all assessments, the mean precourse score was 64% and the mean postcourse score was 84% (P  =  .05). Improvement was noted in all 3 sections of health policy, finance, and medical law. At the end of the course, 5 of 6 residents were motivated to learn about health policy, and 4 of 6 agreed it was important for physicians to be involved in policy matters. Teaching radiation oncology residents systems-based practice through a course on health policy, finance, and law is feasible and was well received. Such a course can help teaching programs comply with the ACGME Outcome Project and would also be applicable to trainees in other specialties.

  1. Do Women With Breast Cancer Who Choose Adjunctive Integrative Oncology Care Receive Different Standard Oncologic Treatment?

    Science.gov (United States)

    Standish, Leanna J; Dowd, Fred; Sweet, Erin; Dale, Linda; Andersen, M Robyn

    2018-04-01

    To determine if women with breast cancer who choose adjunctive naturopathic oncology (NO) specialty care receive different standard oncologic treatment when compared with breast cancer patients who receive only standard care. Women with breast cancer stages 0 to 4, aged 18+ who spoke English and sought care from outpatient naturopathic doctor clinics were enrolled in an observational study of clinical and quality of life outcomes. Women who sought NO care 2 or more times within the first 2 years postdiagnosis were identified as NO cases. A matched comparison group of breast cancer patients were identified using the Western Washington Cancer Surveillance System(CSS). A longitudinal cohort design. In addition to self-report data, the CSS provided data on demographics, stage at the time of diagnosis, and initial treatment. Oncology medical records were abstracted in order to provide additional information on standard oncologic treatment for all participants. Cohorts were well matched with regard to demographic, histologic, and prognostic indicators at the time of diagnosis. Approximately 70% of women in both cohorts received standard oncologic care that met the National Comprehensive Cancer Network guidelines. There were no statistically significant differences between the cohorts in treatment received. Fewer women in the NO cohort with estrogen receptor-positive breast cancer appear to have received antiestrogen therapy. Women in both cohorts appear to receive guideline-concordant care. However, women who receive adjunctive NO care may be less likely to receive antiestrogen therapy.

  2. Radiotherapy and immune reaction of oncologic patients

    International Nuclear Information System (INIS)

    Pankina, V.Kh.; Sarkisyan, Yu.KH.

    1978-01-01

    Represented is a review of data accumulated in literature (1970-1976) on oppression of protection of oncologic patients and more oppression of immune reactions during radiotherapy. Underlined is the significance of studying immune homeostasis in a clinic of radiotherapy to evaluate total resistance of patients before the beginning and in the process of treatment. The prognostic significance of immunodepressive disturbances in patients with malignant tumors is elucidated

  3. The Danish Neuro-Oncology Registry

    Directory of Open Access Journals (Sweden)

    Hansen S

    2016-10-01

    Full Text Available Steinbjørn Hansen Department of Oncology, Odense University Hospital and Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark Aim of database: The Danish Neuro-Oncology Registry (DNOR was established by the Danish Neuro-Oncology Group as a national clinical database. It was established for the purpose of supporting research and development in adult patients with primary brain tumors in Denmark. Study population: DNOR has registered clinical data on diagnostics and treatment of all adult patients diagnosed with glioma since January 1, 2009, which numbers approximately 400 patients each year. Main variables: The database contains information about symptoms, presurgical magnetic resonance imaging (MRI characteristics, performance status, surgical procedures, residual tumor on postsurgical MRI, postsurgical complications, diagnostic and histology codes, radiotherapy, and chemotherapy. Descriptive data: DNOR publishes annual reports on descriptive data. During the period of registration, postoperative MRI is performed in a higher proportion of the patients (Indicator II, and a higher proportion of patients have no residual tumor after surgical resection of the primary tumor (Indicator IV. Further data are available in the annual reports. The indicators reflect only minor elements of handling brain tumor patients. Another advantage of reporting indicators is the related multidisciplinary discussions giving a better understanding of what actually is going on, thereby facilitating the work on adjusting the national guidelines in the Danish Neuro-Oncology Group. Conclusion: The establishment of DNOR has optimized the quality in handling primary brain tumor patients in Denmark by reporting indicators and facilitating a better multidisciplinary collaboration at a national level. DNOR provides a valuable resource for research. Keywords: brain neoplasms, brain cancer, glioma, clinical quality indicators

  4. Importance of nutrition in pediatric oncology

    OpenAIRE

    P C Rogers

    2015-01-01

    A nutritional perspective within pediatric oncology is usually just related to the supportive care aspect during the management of the underlying malignancy. However, nutrition has a far more fundamental importance with respect to a growing, developing child who has cancer as well as viewing cancer from a nutritional cancer control perspective. Nutrition is relevant to all components of cancer control including prevention, epidemiology, biology, treatment, supportive care, rehabilitation, and...

  5. Program for Critical Technologies in Breast Oncology

    Science.gov (United States)

    1999-07-01

    the tissues, and in a ethical manner that respects the patients’ rights . The Program for Critical Technologies in Breast Oncology helps address all of...diagnosis, database 15. NUMBER OF PAGES 148 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS...closer to clinical utility. Page 17 References Adida C. Crotty PL. McGrath J. Berrebi D. Diebold J. Altieri DC. Developmentally regulated

  6. Dose-response relationship in clinical oncology

    International Nuclear Information System (INIS)

    Gehan, E.A.

    1984-01-01

    The relationship of dose (and dose rate) to response and toxicity in clinical oncology is reviewed. The concepts expressed by some authors in dose-response studies in animal and human systems are reviewed briefly. Dose rate and tactics of conducting clinical studies are reviewed for both radiotherapy and various types of chemotherapeutic treatment. Examples are given from clinical studies in Hodgkin's disease, acute leukemia, and breast cancer that may prove useful in planning future clinical studies

  7. View and review on viral oncology research

    Directory of Open Access Journals (Sweden)

    Parolin Cristina

    2010-05-01

    Full Text Available Abstract To date, almost one and a half million cases of cancer are diagnosed every year in the US and nearly 560,000 Americans are expected to die of cancer in the current year, more than 1,500 people a day (data from the American Cancer Society at http://www.cancer.org/. According to the World Health Organization (WHO, roughly 20% of all cancers worldwide results from chronic infections; in particular, up to 15% of human cancers is characterized by a viral aetiology with higher incidence in Developing Countries. The link between viruses and cancer was one of the pivotal discoveries in cancer research during the past Century. Indeed, the infectious nature of specific tumors has important implications in terms of their prevention, diagnosis, and therapy. In the 21st Century, the research on viral oncology field continues to be vigorous, with new significant and original studies on viral oncogenesis and translational research from basic virology to treatment of cancer. This review will cover different viral oncology aspects, starting from the history of viral oncology and moving to the peculiar features of oncogenic RNA and DNA viruses, with a special focus on human pathogens.

  8. [The role of emotional labour in oncology].

    Science.gov (United States)

    Szluha, Kornélia; Lazányi, Kornélia; Molnár, Péter

    2007-01-01

    Oncologists and related health care professionals (HCPs) do not only have to follow professional protocols in their everyday work, but also have to communicate proper attitudes towards patients suffering from malignant diseases. This task is often a heavier load than the implementation of professional activities themselves. The present article is based on a survey on HCP work motivation, employment parameters and correlations with emotional labour. Fifty oncology HCPs at Debrecen University Medical Health Sciences Centre volunteered to participate in this survey containing 20 simple-choice questions. More than 90 percent of HCPs make an effort to hide their emotional state, giving way to possible negative side effects. The survey showed significant differences between the level of emotional labour of those working in the field of oncology longer or shorter than ten years. Surface and deep emotional labour is more frequent among professionals already working in oncology for a longer period of time. This can serve us with explanation to the burn-out syndrome so frequent in this profession. To diminish the load of emotional labour, healthcare institutes have to aim at hiring employees that spontaneously fit the emotional and behavioural norms facing them, and do not need officially prescribed behavioural norms for everyday work. Their constant need for respect and appreciation of their values must be kept in mind, because the capability of genuine emotional labour diminishes parallel to the number of years spent in work.

  9. Workplace Bullying in Radiology and Radiation Oncology.

    Science.gov (United States)

    Parikh, Jay R; Harolds, Jay A; Bluth, Edward I

    2017-08-01

    Workplace bullying is common in health care and has recently been reported in both radiology and radiation oncology. The purpose of this article is to increase awareness of bullying and its potential consequences in radiology and radiation oncology. Bullying behavior may involve abuse, humiliation, intimidation, or insults; is usually repetitive; and causes distress in victims. Workplace bullying is more common in health care than in other industries. Surveys of radiation therapists in the United States, student radiographers in England, and physicians-in-training showed that substantial proportions of respondents had been subjected to workplace bullying. No studies were found that addressed workplace bullying specifically in diagnostic radiology or radiation oncology residents. Potential consequences of workplace bullying in health care include anxiety, depression, and health problems in victims; harm to patients as a result of victims' reduced ability to concentrate; and reduced morale and high turnover in the workplace. The Joint Commission has established leadership standards addressing inappropriate behavior, including bullying, in the workplace. The ACR Commission on Human Resources recommends that organizations take steps to prevent bullying. Those steps include education, including education to ensure that the line between the Socratic method and bullying is not crossed, and the establishment of policies to facilitate reporting of bullying and support victims of bullying. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Oncological organizations and institutions in Poland before the second World War.

    Science.gov (United States)

    Supady, Jerzy

    2008-01-01

    During the first four decades of the 20th century many oncological organizations and institutions were established in Poland. On 6 June, 1906 the Committee for Cancer Research and Control was founded. After the year 1918 when Poland regained its independence many more cancer control organizations came into being. The organizations created at that time were: the Polish Committee for Cancer Control (Warsaw 1921), the Cancer Control Society of Lódź (Lódź 1927), the Vilnius Committee for Cancer Control (Vilnius 1931), the Polish Cancer Control Institute Association in Lviv (Lviv 1929), the Polish Cancer Control Association (Warsaw 1938). These cancer control organizations undertook multiphase activities (prophylactic, educational, organizational, scientific and research) by creating outpatient and inpatient oncological care institutions, on which base numerous scientific and research papers were produced. The effect of that work was the creation of the Radium Treatment Institute in Lódź and the Research and Therapeutic Institute for Cancer Control in Vilnius, as well as founding oncological hospital wards and clinics. The most important achievement was building and opening the very modern Radium Institute in Warsaw. The initiator of the Institute, which in 1939 had 90 beds on its disposal, was Maria Skłodowska-Curie herself. Cancer control organizations members and activists conducted many propaganda actions on malignant diseases, shared they observations and research findings during meetings, conferences and assemblies in Poland and abroad.

  11. Radiation oncology - Linking technology and biology in the treatment of cancer

    International Nuclear Information System (INIS)

    Coleman, C. Norman

    2002-01-01

    Technical advances in radiation oncology including CT-simulation, 3D-conformal and intensity-modulated radiation therapy (IMRT) delivery techniques, and brachytherapy have allowed greater treatment precision and dose escalation. The ability to intensify treatment requires the identification of the critical targets within the treatment field, recognizing the unique biology of tumor, stroma and normal tissue. Precision is technology based while accuracy is biologically based. Therefore, the intensity of IMRT will undoubtedly mean an increase in both irradiation dose and the use of biological agents, the latter considered in the broadest sense. Radiation oncology has the potential and the opportunity to provide major contributions to the linkage between molecular and functional imaging, molecular profiling and novel therapeutics for the emerging molecular targets for cancer treatment. This process of 'credentialing' of molecular targets will require multi disciplinary imaging teams, clinicians and basic scientists. Future advances will depend on the appropriate integration of biology into the training of residents, continuing post graduate education, participation in innovative clinical research and commitment to the support of basic research as an essential component of the practice of radiation oncology

  12. Developments in urologic oncology 'OncoForum': The best of 2014.

    Science.gov (United States)

    Gómez-Veiga, F; Alcaraz-Asensio, A; Burgos-Revilla, J; Cózar-Olmo, J

    2015-06-01

    To review the latest evidence on the oncologic urology of prostate, renal and bladder tumors, analyzing their impact on daily clinical practice and the future medium to long-term regimens. We review the abstracts on prostate, renal and bladder cancer presented at the 2014 congresses (European Association of Urology, American Urological Association, American Society of Clinical Oncology and American Society for Radiation Oncology) that received the best evaluations by the OncoForum committee. The committee considered the following messages important: cytoreductive nephrectomy followed by treatment with a tyrosine-kinase inhibitor can significantly increase the overall survival of patients with metastatic renal cancer; for advanced bladder cancer, early adjuvant chemotherapy after cystectomy is preferable because it significantly increases progression-free survival; and several studies have shown that multiparametric magnetic resonance imaging and fusion imaging improve the diagnosis of prostate cancer and provide greater possibilities for placing patients in the appropriate risk group in order to offer them the best treatment possible. The results of the PREVAIL study have demonstrated the efficacy of enzalutamide on the overall survival of men with castration-resistant prostate cancer and metastases, with no prior chemotherapy. The study also demonstrated the drug's favorable safety profile. Progress is continuing in renal and bladder cancer, improving the approach and clinical results with current therapeutic options. There is constant progress in castration-resistant prostate cancer; in 2014, prechemotherapy treatments were consolidated. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Pharmacists’ Interventions in A Paediatric Haematology-Oncology Pharmacy: Do They Matter to Minimise Medication Misadventure?

    Directory of Open Access Journals (Sweden)

    Hesty U. Ramadaniati

    2016-03-01

    Full Text Available Paediatric patients with cancer are a high-risk patient population for medication misadventures. This study aimed to document and evaluate the role of pharmacists’ interventions during dispensing-related activities in minimising the occurrence of medication misadventure in haematology-oncology patients. The primary investigator observed and documented all clinical interventions during dispensing-related activities performed by clinical pharmacists in a haematology-oncology pharmacy during 33-day. A total of 359 interventions were performed for 1028 patients. The rates of intervention were 20.04 per 100 medication orders and 34.92 per 100 patients. Provision of drug information was the most common interventions constituting more than three quarters of all interventions. According to therapeutic groups, cytotoxic antineoplastics made up more than half of all interventions. Of all interventions, 22 involved recommendations leading to changes in patients’ treatment (active interventions, and all recommendations were accepted. The top three medication errors were due to inappropriate dosing, labelling error, and unfulfilled indication. Clinical pharmacists’ intervention during dispensing in a paediatric haematology-oncology pharmacy improved medication safety and patient care by minimising the incidence of medication misadventures.

  14. Nuclear therapy

    International Nuclear Information System (INIS)

    Roux, Henry

    1977-01-01

    Having first recalled the biological action of ionizing radiations, the main problems relating to the therapeutical use of radioelements were analyzed. Stressing the good results recorded with this method for the treatment of some diseases, the present limits were also defined, stating however that the progress made in biochemistry in the direction of metabolism, combined with the progress made in nuclear medicine, still allows some hope [fr

  15. Omics-based nanomedicine: the future of personalized oncology.

    Science.gov (United States)

    Rosenblum, Daniel; Peer, Dan

    2014-09-28

    The traditional "one treatment fits all" paradigm disregards the heterogeneity between cancer patients, and within a particular tumor, thus limit the success of common treatments. Moreover, current treatment lacks specificity and therefore most of the anticancer drugs induce severe adverse effects. Personalized medicine aims to individualize therapeutic interventions, based on the growing knowledge of the human multiple '-oms' (e.g. genome, epigenome, transcriptome, proteome and metabolome), which has led to the discovery of various biomarkers that can be used to detect early stage cancers and predict tumor progression, drug response, and clinical outcome. Nanomedicine, the application of nanotechnology to healthcare, holds great promise for revolutionizing disease management such as drug delivery, molecular imaging, reduced adverse effects and the ability to contain both therapeutic and diagnostic modalities simultaneously termed theranostics. Personalizednanomedicine has the power of combining nanomedicine with clinical and molecular biomarkers ("OMICS" data) achieving improve prognosis and disease management as well as individualized drug selection and dosage profiling to ensure maximal efficacy and safety. Tumor's heterogeneity sets a countless challenge for future personalized therapy in cancer, however the use of multi-parameter 'omic's data for specific molecular biomarkers recognition together with versatile drug delivery nanocarriers, which could target concomitantly and specifically tumor cells subpopulations, might heralds a brighter future for personalized cancer management. In this review, we present the current leading technologies available for personalized oncology. We discusses the immense potential of combining the best of these two worlds, nanomedicine and high throughput OMICS technologies to pave the way towards cancer personalized medicine. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Relevance of positron emission tomography (PET) in oncology

    International Nuclear Information System (INIS)

    Weber, W.A.; Avril, N.; Schwaiger, M.

    1999-01-01

    Background: The clinical use of positron emission tomography (PET) for detection and staging of malignant tumors is rapidly increasing. Furthermore, encouraging results for monitoring the effects of radio- and chemotherapy have been reported. Methods: This review describes the technical principles of PET and the biological characteristics of tracers used in oncological research and patient studies. The results of clinical studies published in peer reviewed journals during the last 5 years are summarized and clinical indications for PET scans in various tumor types are discussed. Results and Conclusions: Numerous studies have documented the high diagnostic accuracy of PET studies using the glucose analogue F-18-fluordeoxyglucose (FDG-PET) for detection and staging of malignant tumors. In this field, FDG-PET has been particularly successful in lung cancer, colorectal cancer, malignant lymphoma and melanoma. Furthermore, FDG-PET has often proven to be superior to morphological imaging techniques for differentation of tumor recurrence from scar tissue. Due to the high glucose utilization of normal gray matter radiolabeled amino-acids like C-11-methionine are superior to FDG for detection and delineation of brain tumors by PET. In the future, more specific markers of tumor cell proliferation and gene expression may allow the application of PET not only for dianostic imaging also but for non-invasive biological characterization of malignant tumors and early monitoring of therapeutic interventions. (orig.) [de

  17. Update in Systemic and Targeted Therapies in Gastrointestinal Oncology

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2018-03-01

    Full Text Available Progress has been made in the treatment of gastrointestinal cancers through advances in systemic therapies, surgical interventions, and radiation therapy. At the Multi-Disciplinary Patient Care in Gastrointestinal Oncology conference, the faculty members of the Penn State Health Milton S. Hershey Medical Center presented a variety of topics that focused on this sub-specialty. This conference paper highlights the new development in systemic treatment of various malignant diseases in the digestive system. Results of the recent clinical trials that investigated the clinical efficacy of pegylated hyaluronidase, napabucasin, and L-asparaginase in pancreatic carcinoma are presented. The use of peri-operative chemotherapy comprised of 5-fluorouracil or capecitabine, leucovorin, oxaliplatin, and docetaxel (FLOT, and immunotherapy including pembrolizumab, nivolumab, and ipilimumab in gastroesophageal carcinoma are discussed. Data from clinical trials that investigated the targeted therapeutics including nivolumab, ramucirumab, lenvatinib, and BLU-554 are reported. The role of adjuvant capecitabine in resected biliary tract carcinoma (BTC and nab-paclitaxel in combination with gemcitabine and cisplatin in advanced BTC are presented. In colorectal carcinoma, the efficacy of nivolumab, adjuvant FOLFOX or CAPOX, irinotecan/cetuximab/vemurafenib, and trifluridine/tipiracil/bevacizumab, is examined. In summary, some of the above systemic therapies have become or are expected to become new standard of care, while the others demonstrate the potential of becoming new treatment options.

  18. Molecular Targets for Radiation Oncology in Prostate Cancer

    International Nuclear Information System (INIS)

    Wang, Tao; Languino, Lucia R.; Lian, Jane; Stein, Gary; Blute, Michael; FitzGerald, Thomas J.

    2011-01-01

    Recent selected developments of the molecular science of prostate cancer (PrCa) biology and radiation oncology are reviewed. We present potential targets for molecular integration treatment strategies with radiation therapy (RT), and highlight potential strategies for molecular treatment in combination with RT for patient care. We provide a synopsis of the information to date regarding molecular biology of PrCa, and potential integrated research strategy for improved treatment of PrCa. Many patients with early-stage disease at presentation can be treated effectively with androgen ablation treatment, surgery, or RT. However, a significant portion of men are diagnosed with advanced stage/high-risk disease and these patients progress despite curative therapeutic intervention. Unfortunately, management options for these patients are limited and are not always successful including treatment for hormone refractory disease. In this review, we focus on molecules of extracellular matrix component, apoptosis, androgen receptor, RUNX, and DNA methylation. Expanding our knowledge of the molecular biology of PrCa will permit the development of novel treatment strategies integrated with RT to improve patient outcome

  19. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology.

    Science.gov (United States)

    Salazar, Brittany M; Balczewski, Emily A; Ung, Choong Yong; Zhu, Shizhen

    2016-12-27

    Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring "big data" applications in pediatric oncology. Computational strategies derived from big data science-network- and machine learning-based modeling and drug repositioning-hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which "big data" and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.

  20. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology

    Directory of Open Access Journals (Sweden)

    Brittany M. Salazar

    2016-12-01

    Full Text Available Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring “big data” applications in pediatric oncology. Computational strategies derived from big data science–network- and machine learning-based modeling and drug repositioning—hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which “big data” and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.

  1. Implanted Cardiac Defibrillator Care in Radiation Oncology Patient Population

    International Nuclear Information System (INIS)

    Gelblum, Daphna Y.; Amols, Howard

    2009-01-01

    Purpose: To review the experience of a large cancer center with radiotherapy (RT) patients bearing implantable cardiac defibrillators (ICDs) to propose some preliminary care guidelines as we learn more about the devices and their interaction with the therapeutic radiation environment. Methods and Materials: We collected data on patients with implanted ICDs treated with RT during a 2.5-year period at any of the five Memorial Sloan-Kettering clinical campuses. Information regarding the model, location, and dose detected from the device, as well as the treatment fields, fraction size, and treatment energy was collected. During this time, a new management policy for these patients had been implemented requiring treatment with low-energy beams (6 MV) and close surveillance of the patients in partnership with their electrophysiologist, as they received RT. Results: During the study period, 33 patients were treated with an ICD in place. One patient experienced a default of the device to its initial factory setting that was detected by the patient hearing an auditory signal from the device. This patient had initially been treated with a 15-MV beam. After this episode, his treatment was replanned to be completed with 6-MV photons, and he experienced no further events. Conclusion: Patients with ICDs and other implanted computer-controlled devices will be encountered more frequently in the RT department, and proper management is important. We present a policy for the safe treatment of these patients in the radiation oncology environment.

  2. Gene therapy imaging in patients for oncological applications

    International Nuclear Information System (INIS)

    Penuelas, Ivan; Haberkorn, Uwe; Yaghoubi, Shahriar; Gambhir, Sanjiv S.

    2005-01-01

    Thus far, traditional methods for evaluating gene transfer and expression have been shown to be of limited value in the clinical arena. Consequently there is a real need to develop new methods that could be repeatedly and safely performed in patients for such purposes. Molecular imaging techniques for gene expression monitoring have been developed and successfully used in animal models, but their sensitivity and reproducibility need to be tested and validated in human studies. In this review, we present the current status of gene therapy-based anticancer strategies and show how molecular imaging, and more specifically radionuclide-based approaches, can be used in gene therapy procedures for oncological applications in humans. The basis of gene expression imaging is described and specific uses of these non-invasive procedures for gene therapy monitoring illustrated. Molecular imaging of transgene expression in humans and evaluation of response to gene-based therapeutic procedures are considered. The advantages of molecular imaging for whole-body monitoring of transgene expression as a way to permit measurement of important parameters in both target and non-target organs are also analyzed. The relevance of this technology for evaluation of the necessary vector dose and how it can be used to improve vector design are also examined. Finally, the advantages of designing a gene therapy-based clinical trial with imaging fully integrated from the very beginning are discussed and future perspectives for the development of these applications outlined. (orig.)

  3. [Computational medical imaging (radiomics) and potential for immuno-oncology].

    Science.gov (United States)

    Sun, R; Limkin, E J; Dercle, L; Reuzé, S; Zacharaki, E I; Chargari, C; Schernberg, A; Dirand, A S; Alexis, A; Paragios, N; Deutsch, É; Ferté, C; Robert, C

    2017-10-01

    The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  4. Trial Watch: Adoptive cell transfer for oncological indications

    Science.gov (United States)

    Aranda, Fernando; Buqué, Aitziber; Bloy, Norma; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    One particular paradigm of anticancer immunotherapy relies on the administration of (potentially) tumor-reactive immune effector cells. Generally, these cells are obtained from autologous peripheral blood lymphocytes (PBLs) ex vivo (in the context of appropriate expansion, activation and targeting protocols), and re-infused into lymphodepleted patients along with immunostimulatory agents. In spite of the consistent progress achieved throughout the past two decades in this field, no adoptive cell transfer (ACT)-based immunotherapeutic regimen is currently approved by regulatory agencies for use in cancer patients. Nonetheless, the interest of oncologists in ACT-based immunotherapy continues to increase. Accumulating clinical evidence indicates indeed that specific paradigms of ACT, such as the infusion of chimeric antigen receptor (CAR)-expressing autologous T cells, are associated with elevated rates of durable responses in patients affected by various neoplasms. In line with this notion, clinical trials investigating the safety and therapeutic activity of ACT in cancer patients are being initiated at an ever increasing pace. Here, we review recent preclinical and clinical advances in the development of ACT-based immunotherapy for oncological indications. PMID:26451319

  5. Developments in the use of nanocapsules in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Yurgel, V.; Collares, T.; Seixas, F., E-mail: seixas.fk@gmail.com [Universidade Federal de Pelotas, RS (Brazil). Unidade de Biotecnologia. Centro de Desenvolvimento Tecnologico. Grupo de Pesquisa em Oncologia Celular e Molecular

    2013-06-15

    The application of nanotechnology to medicine can provide important benefits, especially in oncology, a fact that has resulted in the emergence of a new field called Nanooncology. Nanoparticles can be engineered to incorporate a wide variety of chemotherapeutic or diagnostic agents. A nanocapsule is a vesicular system that exhibits a typical core-shell structure in which active molecules are confined to a reservoir or within a cavity that is surrounded by a polymer membrane or coating. Delivery systems based on nanocapsules are usually transported to a targeted tumor site and then release their contents upon change in environmental conditions. An effective delivery of the therapeutic agent to the tumor site and to the infiltrating tumor cells is difficult to achieve in many cancer treatments. Therefore, new devices are being developed to facilitate intratumoral distribution, to protect the active agent from premature degradation and to allow its sustained and controlled release. This review focuses on recent studies on the use of nanocapsules for cancer therapy and diagnosis. (author)

  6. Developments in the use of nanocapsules in oncology

    Directory of Open Access Journals (Sweden)

    V. Yurgel

    Full Text Available The application of nanotechnology to medicine can provide important benefits, especially in oncology, a fact that has resulted in the emergence of a new field called Nanooncology. Nanoparticles can be engineered to incorporate a wide variety of chemotherapeutic or diagnostic agents. A nanocapsule is a vesicular system that exhibits a typical core-shell structure in which active molecules are confined to a reservoir or within a cavity that is surrounded by a polymer membrane or coating. Delivery systems based on nanocapsules are usually transported to a targeted tumor site and then release their contents upon change in environmental conditions. An effective delivery of the therapeutic agent to the tumor site and to the infiltrating tumor cells is difficult to achieve in many cancer treatments. Therefore, new devices are being developed to facilitate intratumoral distribution, to protect the active agent from premature degradation and to allow its sustained and controlled release. This review focuses on recent studies on the use of nanocapsules for cancer therapy and diagnosis.

  7. Developments in the use of nanocapsules in oncology

    Directory of Open Access Journals (Sweden)

    V. Yurgel

    2013-06-01

    Full Text Available The application of nanotechnology to medicine can provide important benefits, especially in oncology, a fact that has resulted in the emergence of a new field called Nanooncology. Nanoparticles can be engineered to incorporate a wide variety of chemotherapeutic or diagnostic agents. A nanocapsule is a vesicular system that exhibits a typical core-shell structure in which active molecules are confined to a reservoir or within a cavity that is surrounded by a polymer membrane or coating. Delivery systems based on nanocapsules are usually transported to a targeted tumor site and then release their contents upon change in environmental conditions. An effective delivery of the therapeutic agent to the tumor site and to the infiltrating tumor cells is difficult to achieve in many cancer treatments. Therefore, new devices are being developed to facilitate intratumoral distribution, to protect the active agent from premature degradation and to allow its sustained and controlled release. This review focuses on recent studies on the use of nanocapsules for cancer therapy and diagnosis.

  8. Quantitative imaging features: extension of the oncology medical image database

    Science.gov (United States)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  9. Tumor Slice Culture: A New Avatar in Personalized Oncology

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0149 TITLE: Tumor Slice Culture: A New Avatar in Personalized Oncology PRINCIPAL INVESTIGATOR: Raymond Yeung...CONTRACT NUMBER Tumor Slice Culture: A New Avatar in Personalized Oncology 5b. GRANT NUMBER W81XWH-16-1-0149 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...10 Annual Report 2017: Tumor Slice Culture: A new avatar for personalized oncology 1. INTRODUCTION: The goal of this research is to advance our

  10. Radiation Oncology in Undergraduate Medical Education: A Literature Review

    International Nuclear Information System (INIS)

    Dennis, Kristopher E.B.; Duncan, Graeme

    2010-01-01

    Purpose: To review the published literature pertaining to radiation oncology in undergraduate medical education. Methods and Materials: Ovid MEDLINE, Ovid MEDLINE Daily Update and EMBASE databases were searched for the 11-year period of January 1, 1998, through the last week of March 2009. A medical librarian used an extensive list of indexed subject headings and text words. Results: The search returned 640 article references, but only seven contained significant information pertaining to teaching radiation oncology to medical undergraduates. One article described a comprehensive oncology curriculum including recommended radiation oncology teaching objectives and sample student evaluations, two described integrating radiation oncology teaching into a radiology rotation, two described multidisciplinary anatomy-based courses intended to reinforce principles of tumor biology and radiotherapy planning, one described an exercise designed to test clinical reasoning skills within radiation oncology cases, and one described a Web-based curriculum involving oncologic physics. Conclusions: To the authors' knowledge, this is the first review of the literature pertaining to teaching radiation oncology to medical undergraduates, and it demonstrates the paucity of published work in this area of medical education. Teaching radiation oncology should begin early in the undergraduate process, should be mandatory for all students, and should impart knowledge relevant to future general practitioners rather than detailed information relevant only to oncologists. Educators should make use of available model curricula and should integrate radiation oncology teaching into existing curricula or construct stand-alone oncology rotations where the principles of radiation oncology can be conveyed. Assessments of student knowledge and curriculum effectiveness are critical.

  11. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    Science.gov (United States)

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011.

  12. Recent advances in nuclear medicine. Proceeding of the First World Congress of Nuclear Medicine, September 30--October 5, 1974, Tokyo, and Kyoto Japan

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    Papers were presented on the use of radioisotopes in the fields of gastroenterology, hematology, oncology, cardiology, pulmonary disease, vascular disease, neurology, endocrinology, and other aspects of nuclear medicine. Separate abstracts were prepared for 49 papers.

  13. A local-area-network based radiation oncology microcomputer system

    International Nuclear Information System (INIS)

    Chu, W.K.; Taylor, T.K.; Kumar, P.P.; Imray, T.J.

    1985-01-01

    The application of computerized technology in the medical specialty of radiation oncology has gained wide acceptance in the past decade. Recognizing that most radiation oncology department personnel are familiar with computer operations and terminology, it appears reasonable to attempt to expand the computer's applications to other departmental activities, such as scheduling, record keeping, billing, treatment regimen and status, etc. Instead of sharing the processing capability available on the existent treatment minicomputer, the radiation oncology computer system is based upon a microcomputer local area network (LAN). The system was conceptualized in 1984 and completed in March 1985. This article outlines the LAN-based radiation oncology computer system

  14. Neuro-oncology: a selected review of ASCO 2016 abstracts.

    Science.gov (United States)

    Chamberlain, Marc C

    2016-10-01

    ASCO 2016, 29 May-2 June 2016, Chicago, IL, USA The largest annual clinical oncology conference the American Society of Clinical Oncology is held in the USA and gives researchers and other key opinion leaders the opportunity to present new cancer clinical trials and research data. The CNS tumors section of the American Society of Clinical Oncology 2016 covered various aspects of neuro-oncology including metastatic CNS diseases and primary brain tumors, presented via posters, oral talks and over 100 abstracts. This brief review selectively highlights presentations from this meeting in an organizational manner that reflects clinically relevant aspects of a large and multifaceted meeting.

  15. Subspecialist training in surgical gynecological oncology in the nordic countries

    DEFF Research Database (Denmark)

    Antonsen, Sofie L; Avall-Lundqvist, Elisabeth; Salvesen, Helga B

    2011-01-01

    To survey the centers that can provide subspecialty surgical training and education in gynecological oncology in the Nordic countries we developed an online questionnaire in cooperation with the Nordic Society of Gynecological Oncology. The link to the survey was mailed to 22 Scandinavian...... (74%) centers were interested in being listed for exchange of fellows. Our data show a large Nordic potential and interest in improving the gynecologic oncology standards and can be used to enhance the awareness of gynecological oncology training in Scandinavia and to facilitate the exchange...

  16. Comprehensive molecular tumor profiling in radiation oncology: How it could be used for precision medicine.

    Science.gov (United States)

    Eke, Iris; Makinde, Adeola Y; Aryankalayil, Molykutty J; Ahmed, Mansoor M; Coleman, C Norman

    2016-11-01

    New technologies enabling the analysis of various molecules, including DNA, RNA, proteins and small metabolites, can aid in understanding the complex molecular processes in cancer cells. In particular, for the use of novel targeted therapeutics, elucidation of the mechanisms leading to cell death or survival is crucial to eliminate tumor resistance and optimize therapeutic efficacy. While some techniques, such as genomic analysis for identifying specific gene mutations or epigenetic testing of promoter methylation, are already in clinical use, other "omics-based" assays are still evolving. Here, we provide an overview of the current status of molecular profiling methods, including promising research strategies, as well as possible challenges, and their emerging role in radiation oncology. Published by Elsevier Ireland Ltd.

  17. Does Cancer Literature Reflect Multidisciplinary Practice? A Systematic Review of Oncology Studies in the Medical Literature Over a 20-Year Period

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Emma B. [Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ahmed, Awad A. [Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Yoo, Stella K. [Department of Radiation Oncology, University of Southern California, Los Angeles, California (United States); Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Hoffman, Karen E., E-mail: KHoffman1@mdanderson.org [Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-07-15

    Purpose: Quality cancer care is best delivered through a multidisciplinary approach requiring awareness of current evidence for all oncologic specialties. The highest impact journals often disseminate such information, so the distribution and characteristics of oncology studies by primary intervention (local therapies, systemic therapies, and targeted agents) were evaluated in 10 high-impact journals over a 20-year period. Methods and Materials: Articles published in 1994, 2004, and 2014 in New England Journal of Medicine, Lancet, Journal of the American Medical Association, Lancet Oncology, Journal of Clinical Oncology, Annals of Oncology, Radiotherapy and Oncology, International Journal of Radiation Oncology, Biology, Physics, Annals of Surgical Oncology, and European Journal of Surgical Oncology were identified. Included studies were prospectively conducted and evaluated a therapeutic intervention. Results: A total of 960 studies were included: 240 (25%) investigated local therapies, 551 (57.4%) investigated systemic therapies, and 169 (17.6%) investigated targeted therapies. More local therapy trials (n=185 [77.1%]) evaluated definitive, primary treatment than systemic (n=178 [32.3%]) or targeted therapy trials (n=38 [22.5%]; P<.001). Local therapy trials (n=16 [6.7%]) also had significantly lower rates of industry funding than systemic (n=207 [37.6%]) and targeted therapy trials (n=129 [76.3%]; P<.001). Targeted therapy trials represented 5 (2%), 38 (10.2%), and 126 (38%) of those published in 1994, 2004, and 2014, respectively (P<.001), and industry-funded 48 (18.9%), 122 (32.6%), and 182 (54.8%) trials, respectively (P<.001). Compared to publication of systemic therapy trial articles, articles investigating local therapy (odds ratio: 0.025 [95% confidence interval: 0.012-0.048]; P<.001) were less likely to be found in high-impact general medical journals. Conclusions: Fewer studies evaluating local therapies, such as surgery and radiation, are published in

  18. Does Cancer Literature Reflect Multidisciplinary Practice? A Systematic Review of Oncology Studies in the Medical Literature Over a 20-Year Period

    International Nuclear Information System (INIS)

    Holliday, Emma B.; Ahmed, Awad A.; Yoo, Stella K.; Jagsi, Reshma; Hoffman, Karen E.

    2015-01-01

    Purpose: Quality cancer care is best delivered through a multidisciplinary approach requiring awareness of current evidence for all oncologic specialties. The highest impact journals often disseminate such information, so the distribution and characteristics of oncology studies by primary intervention (local therapies, systemic therapies, and targeted agents) were evaluated in 10 high-impact journals over a 20-year period. Methods and Materials: Articles published in 1994, 2004, and 2014 in New England Journal of Medicine, Lancet, Journal of the American Medical Association, Lancet Oncology, Journal of Clinical Oncology, Annals of Oncology, Radiotherapy and Oncology, International Journal of Radiation Oncology, Biology, Physics, Annals of Surgical Oncology, and European Journal of Surgical Oncology were identified. Included studies were prospectively conducted and evaluated a therapeutic intervention. Results: A total of 960 studies were included: 240 (25%) investigated local therapies, 551 (57.4%) investigated systemic therapies, and 169 (17.6%) investigated targeted therapies. More local therapy trials (n=185 [77.1%]) evaluated definitive, primary treatment than systemic (n=178 [32.3%]) or targeted therapy trials (n=38 [22.5%]; P<.001). Local therapy trials (n=16 [6.7%]) also had significantly lower rates of industry funding than systemic (n=207 [37.6%]) and targeted therapy trials (n=129 [76.3%]; P<.001). Targeted therapy trials represented 5 (2%), 38 (10.2%), and 126 (38%) of those published in 1994, 2004, and 2014, respectively (P<.001), and industry-funded 48 (18.9%), 122 (32.6%), and 182 (54.8%) trials, respectively (P<.001). Compared to publication of systemic therapy trial articles, articles investigating local therapy (odds ratio: 0.025 [95% confidence interval: 0.012-0.048]; P<.001) were less likely to be found in high-impact general medical journals. Conclusions: Fewer studies evaluating local therapies, such as surgery and radiation, are published in

  19. Investment in radiotherapy infrastructure positively affected the economic status of an oncology hospital.

    Science.gov (United States)

    Smigielska, Mirella; Milecki, Piotr

    2012-01-01

    Radiotherapy is among the most efficient treatment methods of cancer. However, a radiotherapy base needs a substantial financial investment, especially before the beginning of its operation, and in some cases, in developing countries such a huge investment may cause some financial disturbances for a hospital concerned. To assess the influence of investments modernizing the radiotherapy base in the period between 2000 and 2007 on the financial condition of the oncology hospital in the region with population of about 3 million. Financial reports and medical statistics for the period between 2000 and 2007 from the studied oncology hospital and a recognized staffing model, as well as data on epidemiological situation of the region have been used to calculate the economic effects of financial investment in the radiotherapy base. The growth of RT therapeutic potential has been driven by two cost-effective investment programmes. The total amount invested in both programmes was PLN 127,191,000. The number of radiotherapy patients treated in the hospital increased from 2301 in 2000 to 4799 in 2007 with a the same number of five therapeutic machines, although all five of them were replaced over that period. Investments modernizing the radiotherapy base lead to a significant increase in depreciation and operating costs, which adversely affects financial results of the hospital. Long term trends showed that investments had positive influence on hospital performance shown both in increased income and larger number of patients treated.

  20. [Donatori di Musica: when oncology meets music].

    Science.gov (United States)

    Graiff, Claudio

    2014-10-01

    Donatori di Musica is a network of musicians - both physicians and volunteers - that was initially founded in 2009 with the aim to set up and coordinate classical music concerts in hospitals. This activity was initially started and led by the Oncology Departments at Carrara and Bolzano Hospitals, where high profile professional musicians make themselves available for concerts in support of Oncological in/out-patients of that specific Hospital. A live classical music performance is a deeply touching experience - particularly for those who live a critical condition like cancer. Main characteristics of Donatori di Musica concerts are: continuity (concerts are part of a regular and non-stopping music season); quality (concerts are held by well-established professional musicians); philanthropic attitude (musicians do not wear a suit and usually chat with patients; they also select an easy-to-listen program; a convivial event is usually organized after the performance with the aim of overcoming distinctions and barriers between physician and patient); no profit: musicians perform for free - travel expenses and/or overnight staying only can be claimed; concerts have free access for patients, their families and hospital staff.Patients and musicians therefore do get in close contact and music is able to merge each other experiences - with patients being treated by the beauty of music and musicians being treated theirselves by patients daily-life feedback. The Donatori di Musica experience is therefore able to help Medicine to retrieve its very first significance - the medical act regain that human and cultural dimension that seems to be abandoned in the last decades in favour of a mere technicism. This is the spirit and the deep significance of Donatori di Musica - «[…] the hope that Music can become a key support to medical treatments in every Oncology department» (by Gian Andrea Lodovici).

  1. [Oncological emergencies in the emergency department].

    Science.gov (United States)

    Cimpoeşu, Diana; Dumea, Mihaela; Durchi, Simona; Apostoae, F; Olaru, G; Ciolan, Mioara; Popa, O; Corlade-Andrei, Mihaela

    2011-01-01

    to assess the profile and the characteristic of oncological patients, establishing management in patients with neoplasia presented in the emergency department (ED), the analysis of short-term movements in patients with neoplasia whilst in the ED. we performed a retrospective study on nonrandomized consecutive cases. The lot analysis included 1315 oncological patients admitted in the Emergency Department of the Clinical Emergency Hospital "St. Spiridon" Iaşi, in the period June 1st, 2009 - May 31st, 2010. 23.12% of the patients had high suspicion of neoplasia at the first visit to the ED. 67.07% of patients were in metastatic stage disease located as follows: liver metastasis 37.59%, lung metastasis 18.36%, lymph node metastasis 13, 29%. After processing the data there were found statistically significant correlations between the age of patients and the documented/suspected diagnosis of neoplasia (p = 0.01) in the sense that a neoplasia diagnosis in emergency was more frequent in people of young age. It should be mentioned that other studies rarely mention first diagnosis of neoplasia in emergency department with presence of complications. 1315 oncological patients presented in ED, almost a quarter of which presented high suspicion of neoplasia (still without histopathological confirmation) when in ED (23.12%). Most of them were aged male patients (over 65 years old), with tumors of the digestive system. A significant proportion (almost 60%) of these patients ended up in emergency due to complications and the therapy intended life support and pain management. Some of these patients were directed to further exploring and emergency outpatient therapy while 75% of patients were hospitalized after stabilization. Although we expected that the frequency of complications to be higher in patients previously diagnosed with cancer, data analysis showed no statistically significant differences (p = NS) between the rate of complications in patients previously diagnosed with

  2. Establishment of Database System for Radiation Oncology

    International Nuclear Information System (INIS)

    Kim, Dae Sup; Lee, Chang Ju; Yoo, Soon Mi; Kim, Jong Min; Lee, Woo Seok; Kang, Tae Young; Back, Geum Mun; Hong, Dong Ki; Kwon, Kyung Tae

    2008-01-01

    To enlarge the efficiency of operation and establish a constituency for development of new radiotherapy treatment through database which is established by arranging and indexing radiotherapy related affairs in well organized manner to have easy access by the user. In this study, Access program provided by Microsoft (MS Office Access) was used to operate the data base. The data of radiation oncology was distinguished by a business logs and maintenance expenditure in addition to stock management of accessories with respect to affairs and machinery management. Data for education and research was distinguished by education material for department duties, user manual and related thesis depending upon its property. Registration of data was designed to have input form according to its subject and the information of data was designed to be inspected by making a report. Number of machine failure in addition to its respective repairing hours from machine maintenance expenditure in a period of January 2008 to April 2009 was analyzed with the result of initial system usage and one year after the usage. Radiation oncology database system was accomplished by distinguishing work related and research related criteria. The data are arranged and collected according to its subjects and classes, and can be accessed by searching the required data through referring the descriptions from each criteria. 32.3% of total average time was reduced on analyzing repairing hours by acquiring number of machine failure in addition to its type in a period of January 2008 to April 2009 through machine maintenance expenditure. On distinguishing and indexing present and past data upon its subjective criteria through the database system for radiation oncology, the use of information can be easily accessed to enlarge the efficiency of operation, and in further, can be a constituency for improvement of work process by acquiring various information required for new radiotherapy treatment in real time.

  3. Advanced Nuclear Applications in Medicinr at Chiang Mai University

    International Nuclear Information System (INIS)

    Vilasdechanon, Nonglak

    2015-01-01

    The atomic energy applications in Faculty of Medicine, Chiang Mai University (CMU) are mainly performed by department of Radiology that is divided into three dicisions: 1) Diagnostic Radiology Division for the applications of X-rays, ultrasound, and magnetic resonance, 2) Therapeutic Radiology and Oncology Division for cancer treatments by photon accelrator and external radionuclides therapy or brachytherapy, 3) Nuclear Meddicine Division for clinical dignosis by using radionuclide scintigraphy, targeted molecular imaging and internal radionuclide therapy. In the last decade, many advanced medical images for clinical diagnosis included of digital & computed radiology (DR & CR), digital subtraction angiography (DSA) and images (DSI), computed tomography (CT) with dual X-rays energies, manetic resonance imaging (MRI), and hybrid images of SPECT/CT were established in Radiology Department and PET/CT Cyclitron Center Chiang Mai University (PCCMU), respectively. For cancer treatments, the frontier technologies in radiation oncligy therapy such as tomotherapy, IMRT, 3D conformal radiation treatment, stereotactic radiationtherapy (SRT), stereotactic radiation surgery (SRS), and radiation biology laboratory were implemented in the department as well. As far as fast development of nuclear technology in medicine, future implementation of advanced nuclear applications in medicine strongly need an intergrated knoowledge from many specialties e.g. computer softeare in image reconstruction, accuracy and and precision technology, production of specific radiotracers for molecular imaging and therapy, techniques in radionuclide productions, innovation of new wquipment or materials for radiationprotection and safety, etc. However the most important factors of nuclear applications in medicine are the vision, mission and the value statements of the organization on the high cost in radiology investment and human resources development. We have to emphasize that people who are involved

  4. Department of Nuclear Equipment 'High Technology Center - HITEC' - Overview

    International Nuclear Information System (INIS)

    Kopec, J.

    2009-01-01

    Full text: The main activities of the Department for Nuclear Equipment High Technology Centre in 2008 were focused on the development of specialized systems using linear accelerators for medical applications, realized within the frame of the Innovative Economy Operational Program: · Calculations, simulations and design of accelerator structures and beam shaping devices · Design of a model of carrying structures · Building stands for carrying out critical component examinations and tests A new evolutionary algorithm has been implemented in a three-dimensional treatment planning system for intensity modulated radiotherapy (IMRT) planning optimization. A design for a multi leaf collimator, second model, was worked out. The Department received an Award for the Polkam TBI therapeutic table in the first edition of the '' Teraz-Polska '' national contest for the best Polish innovative product. Equipment manufactured by the High Technology Centre and especially for total body irradiation techniques was presented for the first time during the Biennial Meeting of the European Society for Therapeutic Radiology and Oncology in Goeteborg, Sweden. The second edition of the School of Medical Accelerator Physics organized in October 2008 was well received by medical physicists and physicians. (author)

  5. Clinical oncology based upon radiation biology

    International Nuclear Information System (INIS)

    Hirata, Hideki

    2016-01-01

    This paper discussed the biological effects of radiation as physical energy, especially those of X-ray as electromagnetic radiation, by associating the position of clinical oncology with classical radiation cell biology as well as recent molecular biology. First, it described the physical and biological effects of radiation, cell death due to radiation and recovery, radiation effects at tissue level, and location information and dosage information in the radiotherapy of cancer. It also described the territories unresolved through radiation biology, such as low-dose high-sensitivity, bystander effects, etc. (A.O.)

  6. What do we measure in oncology PET?

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Kyoung June; Kim, Seong Jang [Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-09-15

    Positron emission tomography (PET) has come to the practice of oncology. It is known that {sup 18}F-fluorodeoxyglucose (FDG) PET is more sensitive for the assessment of treatment response than conventional imaging. In addition, PET has an advantage in the use of quantitative analysis of the study. Nowadays, various PET parameters are adopted in clinical settings. In addition, a wide range of factors has been known to be associated with FDG uptake. Therefore, there has been a need for standardization and harmonization of protocols and PET parameters. We will introduce PET parameters and discuss major issues in this review.

  7. Internet utilization by radiation oncology patients

    International Nuclear Information System (INIS)

    Metz, J.M.; Devine, P.; DeNittis, A.; Stambaugh, M.; Jones, H.; Goldwein, J.; Whittington, R.

    2001-01-01

    Purpose: Studies describing the use of the Internet by radiation oncology patients are lacking. This multi-institutional study of cancer patients presenting to academic (AC), community (CO) and veterans (VA) radiation oncology centers was designed to analyze the use of the Internet, predictive factors for utilization, and barriers to access to the Internet. Materials and Methods: A questionnaire evaluating the use of the Internet was administered to 921 consecutive patients presenting to radiation oncology departments at AC, CO and VA Medical Centers. The study included 436 AC patients (47%), 284 CO patients (31%), and 201 VA patients (22%). A computer was available at home to 427 patients (46%) and 337 patients (37%) had Email access. The mean age of the patient population was 64 years (range=14-93). Males represented 70% of the patient population. The most common diagnoses included prostate cancer (33%), breast cancer (13%), and lung cancer (11%). Results: Overall, 265/921 patients (29%) were using the Internet to find cancer related information. The Internet was used by 42% of AC patients, 25% of CO patients and only 5% of VA patients (p<.0001). A computer was available at home in 62% AC vs. 45% CO vs. 12% VA patients (p<.0001). Patients < 60 years were much more likely to use the Internet than older patients (p<.0001). Most of the Internet users considered the information either very reliable (22%) or somewhat reliable (70%). Most patients were looking for information regarding treatment of their cancer (90%), management of side effects of treatment (74%), alternative/complementary treatments (65%) and clinical trials (51%). Unconventional medical therapies were purchased over the Internet by 12% of computer users. Products or services for the treatment or management of cancer were purchased online by 12% of Internet users. Conclusion: A significant number of cancer patients seen in radiation oncology departments at academic and community medical centers

  8. Oncology of the ferret (Mustela putorius furo)

    International Nuclear Information System (INIS)

    Bunel Le Coz, Bertrand Jacques Thierry

    2006-01-01

    Ferret oncology is in full evolution. Many types of tumors are mentioned. They affect all the systems of the organism: the endocrine, hemo-lymphatic, integument, digestive, reproductive, musculoskeletal, cardiovascular, nervous, urinary or respiratory systems. Insulinoma, adrenocortical tumors and lymphoma are the three mostly seen tumors. Complementary examination have been developed too. CBC, biochemistry, radiography and ultrasonography can now be completed by cytology, immunohistochemistry, endoscopies, scan, I.R.M. or scintigraphy. Treatments such as surgery, chemotherapy or radiotherapy can be associated. They allow recovery or, if not a palliative solution. (author) [fr

  9. Medical legal aspects of radiation oncology

    International Nuclear Information System (INIS)

    Wall, Terry J.

    1996-01-01

    The theoretical basis of, and practical experience in, legal liability in the clinical practice of radiation oncology is reviewed, with a view to developing suggestions to help practitioners limit their exposure to liability. New information regarding the number, size, and legal theories of litigation against radiation oncologists is presented. The most common legal bases of liability are then explored in greater detail, including 'malpractice', and informed consent, with suggestions of improving the specialty's record of documenting informed consent. Collateral consequences of suffering a malpractice claim (i.e., the National Practitioner Data Bank) will also be briefly discussed

  10. Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology.

    Science.gov (United States)

    Bibault, Jean-Emmanuel; Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita

    2018-01-01

    Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our "record-and-verify" system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique-Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017).

  11. Effectiveness of a psycho-oncology training program for oncology nurses: a randomized controlled trial.

    Science.gov (United States)

    Kubota, Yosuke; Okuyama, Toru; Uchida, Megumi; Umezawa, Shino; Nakaguchi, Tomohiro; Sugano, Koji; Ito, Yoshinori; Katsuki, Fujika; Nakano, Yumi; Nishiyama, Takeshi; Katayama, Yoshiko; Akechi, Tatsuo

    2016-06-01

    Oncology nurses are expected to play an important role in psychosocial care for cancer patients. The aim of this study was to examine whether a novel training program aimed at enhancing oncology nurses' ability to assess and manage common psychological problems in cancer patients would improve participants' self-reported confidence, knowledge, and attitudes regarding care of patients with common psychological problems (trial register: UMIN000008559). Oncology nurses were assigned randomly to either the intervention group (N = 50) or the waiting list control group (N = 46). The intervention group received a 16-h program, the content of which focused on four psychological issues: normal reactions, clinically significant distress, suicidal thoughts, and delirium. Each session included a role-play exercise, group work, and didactic lecture regarding assessment and management of each problem. Primary outcomes were changes in self-reported confidence, knowledge, and attitudes toward the common psychological problems between pre-intervention and 3 months post-intervention. Secondary outcomes were job-related stress and burnout. Intervention acceptability to participants was also assessed. In the intervention group, confidence and knowledge but not attitudes were significantly improved relative to the control group. No significant intervention effects were found for job- related stress and burnout. A high percentage (98%) of participants considered the program useful in clinical practice. This psycho-oncology training program improved oncology nurses' confidence and knowledge regarding care for patients with psychological problems. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Small molecule inhibitors of histone deacetylases and acetyltransferases as potential therapeutics in oncology

    NARCIS (Netherlands)

    van den Bosch, Thea; Leus, Niek; Timmerman, Tirza; Dekker, Frank J

    2016-01-01

    Uncontrolled cell proliferation and resistance to apoptosis in cancer are, among others, regulated by post-translational modifications of histone proteins. The most investigated type of histone modification is lysine acetylation. Histone acetyltransferases (HATs), acetylate histone lysine residues,

  13. ONCOLOGICAL PATIENTS AND THE NURSING FIELD: RATION BETWEEN THE ORAL MUCOSITIS GRADE AND THE IMPLEMENTED THERAPEUTIC

    Directory of Open Access Journals (Sweden)

    Sarah Nilkece Araújo

    2013-07-01

    Full Text Available Objetivo: Caracterizar a mucosite oral em pacientes em tratamento oncológico. Métodos: Estudo exploratório descritivo com abordagem quantitativa com 50 pacientes em um Hospital Filantrópico em Teresina-PI, de agosto a outubro de 2010. Resultados: Os achados apontaram a prevalência de mucosite oral no gênero masculino e nas faixas etárias inferiores a 17 e superiores a 60 anos. Os diagnósticos oncológicos mais freqüentes foram as leucemias e os cânceres das vias aerodigestivas superiores, cujos tratamentos se concentravam na quimiorradiação, determinando predominantemente graus 1 e 2 de mucosite oral. Os quimioterápicos mais associados à afecção foram a cisplatina, a citarabina, o metotrexate, sulfato de vincristina, etoposídeo e cloridrato de doxorrubicina. Conclusão: Conclui-se que há necessidade da inserção da enfermagem no fomento às ações preventivas e de controle da mucosite oral para manutenção do bem estar, otimização da resposta terapêutica e melhoria da qualidade de vida do paciente oncológico. DESCRITORES: Mucosite oral, Oncologia, Enfermagem.

  14. PALLIATIVE CARE: AN ALTERNATIVE TO ONCOLOGIC USERS OUT OF THERAPEUTICAL POSSIBILITIES

    Directory of Open Access Journals (Sweden)

    Francisca Patrícia B. Carvalho

    2012-09-01

    Full Text Available Objetivo: O presente estudo objetivou analisar a assistência da equipe de enfermagem aos usuários oncológicos fora de possibilidades terapêuticas (FPT do Home Care da Liga Mossoroense de Estudos e Combate ao Câncer. Métodos: Estudo descritivo de abordagem qualitativa. Foram utilizadas observações não participantes seguindo um roteiro pré-estabelecido e a utilização de roteiros de entrevistas semi-estruturadas. A amostra foi composta de cinco enfermeiros. Os dados foram analisados a partir da categorização de Minayo. Resultados: Percebe-se que existem alguns fatores dificultantes para a operacionalização efetiva da filosofia dos cuidados paliativos no Home Care, pois embora trabalhem num serviço que se deve orientar pelos princípios e filosofia deste cuidado, ainda encontramos concepções voltadas para um cuidado em busca da cura. Conclusão: Contudo, a localidade analisada oferece possibilidades que precisam ser vislumbradas na perspectiva de colocar em prática a filosofia dos cuidados paliativo.

  15. Minutes of the 48. meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO)

    International Nuclear Information System (INIS)

    Simon, J.M.; Mazeron, J.J.

    2007-01-01

    Four parts are treated in this article: Cancers of the O.R.L. sphere, prostate cancers, breast cancer and anal channel. About the O.R.L. sphere cancers, Comparison between several works are made: american and European tests that conclude to the superiority of a chemotherapy using cisplatin on a classical radiotherapy after excision of epidermoid carcinomas of the O.R.L. sphere. Two other tests, one from Hong Kong and the other one from Singapore, are related; The first test studied a concomitant chemotherapy face to an adjuvant chemotherapy in locally evolved nasopharynx cancer. The second one ( Singapore) has compared radiotherapy and radiotherapy with concomitant chemotherapy by cisplatin. Concerning the prostate cancer, the question of dose escalation is developed, followed by a comparison between radiotherapy and hormonotherapy with goserelin. About the breast cancer, two canadian tests are related: the first one concerns the comparison between a conformal radiotherapy with intensity modulation a classical radiotherapy with two tangential beams. The results are in favour of R.C.M.I ( conformal radiotherapy with intensity modulation). The second tests compared a chemotherapy with tamoxifen with and without radiotherapy, the conclusions are in favour of chemotherapy with radiotherapy. The last part was devoted to the anal channel, and compared two chemotherapy with radiotherapy, one using 5-fluoro-uracil and mitomycin, the second one 5-fluoro-uracil and cisplatin. The treatment with 5-fluoro-uracil and mitomycin stays the preferred one. (N.C.)

  16. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice

    OpenAIRE

    Judge, Adam D.; Robbins, Marjorie; Tavakoli, Iran; Levi, Jasna; Hu, Lina; Fronda, Anna; Ambegia, Ellen; McClintock, Kevin; MacLachlan, Ian

    2009-01-01

    siRNAs that specifically silence the expression of cancer-related genes offer a therapeutic approach in oncology. However, it remains critical to determine the true mechanism of their therapeutic effects. Here, we describe the preclinical development of chemically modified siRNA targeting the essential cell-cycle proteins polo-like kinase 1 (PLK1) and kinesin spindle protein (KSP) in mice. siRNA formulated in stable nucleic acid lipid particles (SNALP) displayed potent antitumor efficacy in b...

  17. Quality of systematic reviews in pediatric oncology - A systematic review

    NARCIS (Netherlands)

    Lundh, Andreas; Knijnenburg, Sebastiaan L.; Jørgensen, Anders W.; van Dalen, Elvira C.; Kremer, Leontien C. M.

    2009-01-01

    Background: To ensure evidence-based decision making in pediatric oncology systematic reviews are necessary. The objective of our study was to evaluate the methodological quality of all currently existing systematic reviews in pediatric oncology. Methods: We identified eligible systematic reviews

  18. Pediatric Oncology Branch - training- resident electives | Center for Cancer Research

    Science.gov (United States)

    Resident Electives Select pediatric residents may be approved for a 4-week elective rotation at the Pediatric Oncology Branch. This rotation emphasizes the important connection between research and patient care in pediatric oncology. The resident is supervised directly by the Branch’s attending physician and clinical fellows. Residents attend daily in-patient and out-patient

  19. [Burnout effect on academic progress of Oncology medical residents].

    Science.gov (United States)

    González-Ávila, Gabriel; Bello-Villalobos, Herlinda

    2014-01-01

    In the formative period of the courses taken in medical specializations, new and greater responsibilities are accepted by physicians in personal and academic spheres. The interaction of several factors that encompass the practice of these physicians could surpass their capacity to cope, causing on these professionals a high level of stress and professional exhaustion, which will affect their academic development. The objective of this research was to establish if the occupational stress of these medical residents affects their academic progress. We administered the Spanish version of the Maslach Burnout Inventory (MBI) to 52 residents of three specializations in Oncology (Medical Oncology, Surgical Oncology, and Radio-Oncology). These residents accepted voluntarily at the same time of their third cognitive exam. The prevalence of burnout syndrome was 13.5 %, with a high frequency among medical residents of first degree. Medical Oncology residents showed a higher emotional exhaustion and lower personal fulfillment. Considering the three specializations, the academic progress was higher in the third year, with a significant difference to Surgical Oncology and Medical Oncology (p = 0.026 and 0.015, respectively). No significant difference was found between burnout syndrome, academic progress and sociodemographic characteristics. The presence of burnout syndrome does not affect the academic progress of Oncology medical residents.

  20. The experiential world of the oncology nurse | Van Rooyen | Health ...

    African Journals Online (AJOL)

    In her1 experiential world, the oncology nurse experiences unique, challenging and rewarding relationships in a multidimensional, dynamic way. The aim of this study was to describe, from her viewpoint and perspective, how she experiences and reacts to this world. Through this study the researcher wants the oncology ...

  1. Approaching airways in oncology surgery of the head and neck

    International Nuclear Information System (INIS)

    Lopez Rabassa, Sahily Irene; Diaz Mediondo, Miosotis; Diez Sanchez, Yanelys

    2013-01-01

    A descriptive prospective study was conducted in 'Maria Curie' Oncology Teaching Provincial Hospital during the period from January 2010 to December 2010. The sample included 210 patients studied with the purpose of identifying morbimortality of the difficult airway in Oncology Surgery of the head and neck in our institution

  2. Global Oncology; Harvard Global Health Catalyst summit lecture notes

    Science.gov (United States)

    Ngwa, Wilfred; Nguyen, Paul

    2017-08-01

    The material presented in this book is at the cutting-edge of global oncology and provides highly illuminating examples, addresses frequently asked questions, and provides information and a reference for future work in global oncology care, research, education, and outreach.

  3. Effects of Age Expectations on Oncology Social Workers' Clinical Judgment

    Science.gov (United States)

    Conlon, Annemarie; Choi, Namkee G.

    2014-01-01

    Objective: This study examined the influence of oncology social workers' expectations regarding aging (ERA) and ERA with cancer (ERAC) on their clinical judgment. Methods: Oncology social workers (N = 322) were randomly assigned to one of four vignettes describing a patient with lung cancer. The vignettes were identical except for the patent's age…

  4. 75 FR 81283 - Oncologic Drugs Advisory Committee; Cancellation

    Science.gov (United States)

    2010-12-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Oncologic Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Oncologic Drugs Advisory Committee scheduled for February 9, 2011, is...

  5. 77 FR 63839 - Oncologic Drugs Advisory Committee; Cancellation

    Science.gov (United States)

    2012-10-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Oncologic Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Oncologic Drugs Advisory Committee Meeting scheduled for November 8, 2012, is...

  6. Immuno-oncology: A changing paradigm in cancer therapy

    Directory of Open Access Journals (Sweden)

    Omar Abdel-Rahman

    2016-12-01

    , the use of this biomarker has been criticized for the lack of consistency and standardization, and it is expected to take a while before a general consensus can be established on this particular point[19].The issue of toxicity is another important point of consideration associated with the use of immune check point inhibitors. Contrary to traditional cytotoxic chemotherapy, check point inhibition is linked to a wide spectrum of immune-related toxicities including those of endocrine, cutaneous, pulmonary, hepatic, ocular, and neurological, which necessitate proper diagnosis and treatment[20-27]. In conclusion, the advancement of immuno-oncology is transforming the field of oncology worldwide. It remains to be seen whether developing countries are capable of coping with the escalating prices of these newer immuno-therapeutics and more importantly, it is crucial to identify measures that can be taken by the global oncology community to deliver these life-saving drugs to all patients in need, irrespective of their financial circumstances.

  7. Thailand's nuclear research centre

    International Nuclear Information System (INIS)

    Yamkate, P.

    2001-01-01

    The Office of Atomic Energy for Peace, Thailand, is charged with three main tasks, namely, Nuclear Energy development Plan, Utilization of Nuclear Based technology Plan and Science and Technology Plan. Its activities are centred around the research reactor TRR-1/M1. The main areas of contribution include improvement in agricultural production, nuclear medicine and nuclear oncology, health care and nutrition, increasing industrial productivity and efficiency and, development of cadre competent in nuclear science and technology. The office also has the responsibility of ensuring nuclear safety, radiation safety and nuclear waste management. The office has started a new project in 1997 under which a 10 MWt research reactor, an isotope production facility and a waste processing and storage facility would be set up by General Atomic of USA. OAEP has a strong linkage with the IAEA and has been an active participant in RCA programmes. In the future OAEP will enhance its present capabilities in the use of radioisotopes and radiation and look into the possibility of using nuclear energy as an alternative energy resource. (author)

  8. Navigation in musculoskeletal oncology: An overview

    Directory of Open Access Journals (Sweden)

    Guy Vernon Morris

    2018-01-01

    Full Text Available Navigation in surgery has increasingly become more commonplace. The use of this technological advancement has enabled ever more complex and detailed surgery to be performed to the benefit of surgeons and patients alike. This is particularly so when applying the use of navigation within the field of orthopedic oncology. The developments in computer processing power coupled with the improvements in scanning technologies have permitted the incorporation of navigational procedures into day-to-day practice. A comprehensive search of PubMed using the search terms “navigation”, “orthopaedic” and “oncology” yielded 97 results. After filtering for English language papers, excluding spinal surgery and review articles, this resulted in 38 clinical studies and case reports. These were analyzed in detail by the authors (GM and JS and the most relevant papers reviewed. We have sought to provide an overview of the main types of navigation systems currently available within orthopedic oncology and to assess some of the evidence behind its use.

  9. Advances in imaging for oncology guidance

    International Nuclear Information System (INIS)

    Amies, Christopher J.

    2008-01-01

    Over the last 30 years major improvements in medical imaging have played a significant role to help advance the management of oncology diseases. These advances have covered the continuum of care from screening, diagnosis, staging, treatment planning and intervention. More recently image guided radiation therapy (IGRT) has placed sophisticated imaging closer to the treatment event. The opportunity to improve care seems obvious; however the clinical benefits of IGRT are at present not easily proven and yet contribute to the complexity of treatment and the rising costs of care. It is proposed that this is in part due to the present immaturity of IGRT technology development, which is predominantly determined by the challenge of achieving precise delivery of radiation in one or many episodes (fractions) for very different diseases. There is no single type or mode of imaging that will be suitable to address all radiotherapy guidance challenges whether defined by the general criteria identified for a specific disease or the unique characteristics encountered with an individual patient. Finally the wide adoption of this or any medical technology general requires the attainment of a sufficient degree of safety and efficiency. I present the challenges faced by industry as well as select interesting technology based solutions and concepts that may help advance the field of oncology guidance

  10. Clinical outcomes research in gynecologic oncology.

    Science.gov (United States)

    Melamed, Alexander; Rauh-Hain, J Alejandro; Schorge, John O

    2017-09-01

    Clinical outcomes research seeks to understand the real-world manifestations of clinical care. In particular, outcomes research seeks to reveal the effects of pharmaceutical, procedural, and structural aspects of healthcare on patient outcomes, including mortality, disease control, toxicity, cost, and quality of life. Although outcomes research can utilize interventional study designs, insightful use of observational data is a defining feature of this field. Many questions in gynecologic oncology are not amenable to investigation in randomized clinical trials due to cost, feasibility, or ethical concerns. When a randomized trial is not practical or has not yet been conducted, well-designed observational studies have the potential to provide the best available evidence about the effects of clinical care. Such studies may use surveys, medical records, disease registries, and a variety of administrative data sources. Even when a randomized trial has been conducted, observational studies can be used to estimate the real-world effect of an intervention, which may differ from the results obtained in the controlled setting of a clinical trial. This article reviews the goals, methodologies, data sources, and limitations of clinical outcomes research, with a focus on gynecologic oncology. Copyright © 2017. Published by Elsevier Inc.

  11. [Introduction of emotional labour into oncology].

    Science.gov (United States)

    Lazányi, Kornélia; Molnár, Péter; Szluha, Kornélia

    2007-06-03

    Health care professionals do not have emotional labour obligations in their employment contract. However, in everyday work it is often inevitable for them to change their true feelings. This is critically true for professionals treating chronic or cancer patients. The suitable emotional state of the treatment staff does not only influence the practitioner-patient relationship but the process of recovery as well. Depending on the way one might get into the appropriate emotional state, the literature distinguishes between surface, deep and genuine acting. While surface and deep emotional labour has numerous negative psychological consequences genuine acting is usually accompanied by positive side effects. For those working in the field of oncology, emotional labour is a part of the role expectations of the professionals. This is how the appropriate attitude is a fundamental part of the professionals' essence. For the in depth analysis of subjects related to emotional labour, the authors adopted ideas from L. Festinger 's cognitive dissonance theory. The best way to alleviate cognitive dissonance and the negative side effects of emotional labour is to prevent the emergence of them. Oncology professionals should fit their role expectations genuinely, without particular efforts. If this was impossible, or the particular life situations did not allow genuine acting, it is the employer's and the workmates' common duty to help professionals, to ease the load of emotional labour, to diminish the occurring cognitive dissonance with the help of appropriate recompense.

  12. Social Interaction and Collaboration among Oncology Nurses.

    Science.gov (United States)

    Moore, Jane; Prentice, Dawn; McQuestion, Maurene

    2015-01-01

    Collaboration is a complex process influenced by organizational, professional, interpersonal, and personal factors. Research has demonstrated that collaboration may also be influenced by social factors. Nurses spend much of their time working in collaborative teams, yet little is known about how they socially interact in practice. This qualitative case study explored nurse perceptions of social interaction in relation to collaboration. Data were collected using telephone interviews and documentary reviews from fourteen oncology nurses employed at one cancer center in Canada. Thematic analysis revealed two themes: knowing you is trusting you and formal and informal opportunities. Nurses reported that social interaction meant getting to know someone personally as well as professionally. Social interaction was enacted inside of work during breaks/meals and outside of work at planned events. Social interaction was facilitated by having a long-term current and/or previous professional and personal relationship. The barriers to social interaction included a lack of time to get to know each other, workload issues, and poor interpersonal skills. Findings suggest that social interaction is an important factor in the collaborative relationship among oncology nurses. Nurse leaders need to promote social interaction opportunities and facilitate educational sessions to improve social and interpersonal skills.

  13. Maintenance of Certification for Radiation Oncology

    International Nuclear Information System (INIS)

    Kun, Larry E.; Ang, Kian; Erickson, Beth; Harris, Jay; Hoppe, Richard; Leibel, Steve; Davis, Larry; Hattery, Robert

    2005-01-01

    Maintenance of Certification (MOC) recognizes that in addition to medical knowledge, several essential elements involved in delivering quality care must be developed and maintained throughout one's career. The MOC process is designed to facilitate and document professional development of American Board of Radiology (ABR) diplomates in the essential elements of quality care in Radiation Oncology and Radiologic Physics. ABR MOC has been developed in accord with guidelines of the American Board of Medical Specialties. All Radiation Oncology certificates issued since 1995 are 10-year, time-limited certificates; diplomates with time-limited certificates who wish to maintain specialty certification must complete specific requirements of the American Board of Radiology MOC program. Diplomates with lifelong certificates are not required to participate but are strongly encouraged to do so. Maintenance of Certification is based on documentation of participation in the four components of MOC: (1) professional standing, (2) lifelong learning and self-assessment, (3) cognitive expertise, and (4) performance in practice. Through these components, MOC addresses six competencies-medical knowledge, patient care, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice. Details of requirements for components 1, 2, and 3 of MOC are outlined along with aspects of the fourth component currently under development

  14. Apps for Radiation Oncology. A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    J.J. Calero

    2017-02-01

    Full Text Available Introduction: Software applications executed on a smart-phone or mobile device (“Apps” are increasingly used by oncologists in their daily work. A comprehensive critical review was conducted on Apps specifically designed for Radiation Oncology, which aims to provide scientific support for these tools and to guide users in choosing the most suited to their needs. Material and methods: A systematic search was conducted in mobile platforms, iOS and Android, returning 157 Apps. Excluding those whose purpose did not match the scope of the study, 31 Apps were methodically analyzed by the following items: Objective Features, List of Functionalities, Consistency in Outcomes and Usability. Results: Apps are presented in groups of features, as Dose Calculators (7 Apps, Clinical Calculators (4, Tools for Staging (7, Multipurpose (7 and Others (6. Each App is presented with the list of attributes and a brief comment. A short summary is provided at the end of each group. Discussion and Recommendations: There are numerous Apps with useful tools at the disposal of radiation oncologists. The most advisable Apps do not match the more expensive. Three all-in-one apps seem advisable above all: RadOnc Reference (in English, Easy Oncology (in German and iOncoR (in Spanish. Others recommendations are suggested for specific tasks: dose calculators, treatment-decision and staging.

  15. The role of PDGF in radiation oncology

    International Nuclear Information System (INIS)

    Li, Minglun; Jendrossek, Verena; Belka, Claus

    2007-01-01

    Platelet-derived growth factor (PDGF) was originally identified as a constituent of blood serum and subsequently purified from human platelets. PDGF ligand is a dimeric molecule consisting of two disulfide-bonded chains from A-, B-, C- and D-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors. PDGF is a potent mitogen and chemoattractant for mesenchymal cells and also a chemoattractant for neutrophils and monocytes. In radiation oncology, PDGF are important for several pathologic processes, including oncogenesis, angiogenesis and fibrogenesis. Autocrine activation of PDGF was observed and interpreted as an important mechanism involved in brain and other tumors. PDGF has been shown to be fundamental for the stability of normal blood vessel formation, and may be essential for the angiogenesis in tumor tissue. PDGF also plays an important role in the proliferative disease, such as atherosclerosis and radiation-induced fibrosis, regarding its proliferative stimulation of fibroblast cells. Moreover, PDGF was also shown to stimulate production of extracellular matrix proteins, which are mainly responsible for the irreversibility of these diseases. This review introduces the structural and functional properties of PDGF and PDGF receptors and discusses the role and mechanism of PDGF signaling in normal and tumor tissues under different conditions in radiation oncology

  16. The Value of Specialty Oncology Drugs

    Science.gov (United States)

    Goldman, Dana P; Jena, Anupam B; Lakdawalla, Darius N; Malin, Jennifer L; Malkin, Jesse D; Sun, Eric

    2010-01-01

    Objective To estimate patients' elasticity of demand, willingness to pay, and consumer surplus for five high-cost specialty medications treating metastatic disease or hematologic malignancies. Data Source/Study Setting Claims data from 71 private health plans from 1997 to 2005. Study Design This is a revealed preference analysis of the demand for specialty drugs among cancer patients. We exploit differences in plan generosity to examine how utilization of specialty oncology drugs varies with patient out-of-pocket costs. Data Collection/Extraction Methods We extracted key variables from administrative health insurance claims records. Principal Findings A 25 percent reduction in out-of-pocket costs leads to a 5 percent increase in the probability that a patient initiates specialty cancer drug therapy. Among patients who initiate, a 25 percent reduction in out-of-pocket costs reduces the number of treatments (claims) by 1–3 percent, depending on the drug. On average, the value of these drugs to patients who use them is about four times the total cost paid by the patient and his or her insurer, although this ratio may be lower for oral specialty therapies. Conclusions The decision to initiate therapy with specialty oncology drugs is responsive to price, but not highly so. Among patients who initiate therapy, the amount of treatment is equally responsive. The drugs we examine are highly valued by patients in excess of their total costs, although oral agents warrant further scrutiny as copayments increase. PMID:19878344

  17. [Artificial intelligence applied to radiation oncology].

    Science.gov (United States)

    Bibault, J-E; Burgun, A; Giraud, P

    2017-05-01

    Performing randomised comparative clinical trials in radiation oncology remains a challenge when new treatment modalities become available. One of the most recent examples is the lack of phase III trials demonstrating the superiority of intensity-modulated radiation therapy in most of its current indications. A new paradigm is developing that consists in the mining of large databases to answer clinical or translational issues. Beyond national databases (such as SEER or NCDB), that often lack the necessary level of details on the population studied or the treatments performed, electronic health records can be used to create detailed phenotypic profiles of any patients. In parallel, the Record-and-Verify Systems used in radiation oncology precisely document the planned and performed treatments. Artificial Intelligence and machine learning algorithms can be used to incrementally analyse these data in order to generate hypothesis to better personalize treatments. This review discusses how these methods have already been used in previous studies. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  18. Acute Thoracic Findings in Oncologic Patients.

    Science.gov (United States)

    Carter, Brett W; Erasmus, Jeremy J

    2015-07-01

    Cancer is the second most common cause of mortality in the United States, with >500,000 deaths reported annually. Acute or emergent findings in this group of patients can be a life-threatening phenomenon that results from malignancy or as a complication of therapy. In many cases, these events can be the first clinical manifestation of malignant disease. Oncologic emergencies have been classified as metabolic, hematologic, and structural emergencies. Within the thorax, most acute oncologic findings involve the lungs and airways in the form of drug toxicity, pulmonary infections, or malignant airway compression; the cardiovascular system in the form of pulmonary embolism, superior vena cava syndrome, cardiac tamponade, or massive hemoptysis; the mediastinum in the form of esophageal perforation, acute mediastinitis, or esophagorespiratory fistula; and the osseous spine and spinal cord in the form of invasion and cord compression. Given the life-threatening nature of many of these disease processes, awareness of such complications is critical to making an accurate diagnosis and formulating appropriate treatment strategies.

  19. Meta-iodobenzylguanidine (MIBG) and staging in pediatric oncology

    International Nuclear Information System (INIS)

    Nagel, M.; Mende, T.

    2002-01-01

    Aim: MIBG is primarily used in children to image neuroblastoma. Other APUD cell line tumors demonstrate uptake of the tracer less frequently. Adrenal medullary hyperplasia may also be imaged. Actual we have estimate the significance of the receptor scintigraphy with meta-iodobenzylguanidine in the former patient group. Material and Methods: We have retrospectively analysed the data of 86 investigations from 30 patients over a period from 1995, June to 2002, January. The age ranged from 2,4 month to 17,6 years. Respectively we have applied a total dose ranged from 0,75 mCi to 6,5 mCi 123-iodine, adapted at body weight. All of the investigations were made at the double-head camera Multispect II (Siemens). The image analysis was assessed as positive when the investigations both at 4 and 24 hours post injection could reliable demonstrate a pathological tracer uptake, SPECT imaging included. Results: From the 30 patients 21 were assessed as positive for MIBG-receptor imaging. 18 patients were suspicious to have a neuroblastoma. The other three were investigated for pheochromocytoma, other neuroendocine tumor than neuroblastoma and elevated tumor marker levels. Interestingly only one patient was false positive: the suspected metastasis in the liver after a neuroblastoma therapy 10 years before is emerged as focal nodular hyperplasia of the liver. The other nine patients having minor symptoms for any neuroblastoma-like changes such as nephroblastoma, regional tumor of the chest, unclear blood changes had no positive image results. Therefore we have to determine the sensitivity and specificity to 100% resp. 90% at the first investigation. The results with regard to the origin of the first investigation are presented. Conclusion: The nuclear medicine diagnostic in pediatric oncology with meta-iodobezylguanidine allows the precise staging in the special patient group with clinical suspicious for neuroblastoma. Recommendable is the SPECT-technique and iterative reconstruction

  20. VIIIth international symposium on nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    The conference proceedings contain 92 abstracts of submitted papers dealing with various applications of radioisotopes in diagnosis and therapy. The papers were devoted to scintiscanning, radioimmunoassay, tomography, the applications of nuclear magnetic resonance and electron microscopy in different branches - oncology, cardiology, neurology, histology, gynecology, internal medicine, etc. (M.D.)