Sample records for therapeutic monoclonal antibodies

  1. Therapeutic Recombinant Monoclonal Antibodies (United States)

    Bakhtiar, Ray


    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  2. Monoclonal antibodies: A review of therapeutic applications and ...

    African Journals Online (AJOL)

    The increasing demand for monoclonal antibodies (mAbs) used for diagnostic and therapeutic applications has led to the development of large scale manufacturing processes, with improvements in production achieved through continuous optimization of the inherent systems. The number of monoclonal antibodies (mAbs) ...

  3. Monoclonal Antibodies. (United States)

    Killington, R. A.; Powell, K. L.


    Monoclonal antibodies have provided an exciting addition to the "armory" of the molecular biologist and immunologist. This article discusses briefly the concept of, techniques available for, production of, and possible uses of monoclonal antibodies. (Author)

  4. Monoclonal Antibodies as Prophylactic and Therapeutic Agents Against Chikungunya Virus. (United States)

    Clayton, April M


    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is responsible for considerable epidemics worldwide and recently emerged in the Americas in 2013. CHIKV may cause long-lasting arthralgia after acute infection. With currently no licensed vaccines or antivirals, the design of effective therapies to prevent or treat CHIKV infection is of utmost importance and will be facilitated by increased understanding of the dynamics of chikungunya. In this article, monoclonal antibodies against CHIKV as viable prophylactic and therapeutic agents will be discussed. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail

  5. [Development of HPLC analysis methods for therapeutic monoclonal antibodies]. (United States)

    Todoroki, Kenichiro


    Therapeutic monoclonal antibody (mAb) preparations are produced from cultured cells; therefore, detailed and multidimensional analyses of their heterogeneities are required. We analyzed five commercially available mAb preparations by high-temperature reversed-phase LC using a wide-pore core-shell column for pluralistic quality assessment. At a highly elevated column temperature, isopropanol with high eluotropic strength coefficients and a wide-pore core-shell type octyl column showed good peak resolution of the investigated mAbs and their related constituents. We used this method to estimate the residual rate of intact mAbs after a heat aggregation treatment and conducted fragmentation analysis by analyzing their pepsin digests. Each peak component was identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. All results were compared with those of reversed-phase and size exclusion analyses.



    Collignon, Joëlle; Gennigens, Christine; Rorive, Andrée; Coucke, Philippe; Lifrange, Eric; Maweja, Sylvie; Fillet, Georges; Jerusalem, Guy


    About 9,500 new breast cancers are diagnosed in Belgium every year. Improvement of our knowledge of altered molecular events leading to the proliferation of tumor cells has resulted in the development of targeted therapies in subgroups of cancers. One of the first validation of targeted therapy is the anti-HER-2 monoclonal antibody trastuzumab (Herceptin) in patients with overexpression of human epidermal growth factor receptor type 2 (HER2) occurring in 20 to 25% of invasive breast carcinoma...

  7. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions. (United States)

    Rodgers, Kyla R; Chou, Richard C


    Biologics, both monoclonal antibodies (mAbs) and fusion proteins, have revolutionized the practice of medicine. This year marks the 30th anniversary of the Food and Drug Administration approval of the first mAb for human use. In this review, we examine the biotechnological breakthroughs that spurred the explosive development of the biopharmaceutical mAb industry, as well as how critical lessons learned about human immunology informed the development of improved biologics. We also discuss the most common mechanisms of action of currently approved biologics and the indications for which they have been approved to date. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster (United States)

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  9. Monoclonal Antibodies. (United States)

    Geskin, Larisa J


    Use of monoclonal antibodies (mAbs) has revolutionized cancer therapy. Approaches targeting specific cellular targets on the malignant cells and in tumor microenvironment have been proved to be successful in hematologic malignancies, including cutaneous lymphomas. mAb-based therapy for cutaneous T-cell lymphoma has demonstrated high response rates and a favorable toxicity profile in clinical trials. Several antibodies and antibody-based conjugates are approved for use in clinical practice, and many more are in ongoing and planned clinical trials. In addition, these safe and effective drugs can be used as pillars for sequential therapies in a rational stepwise manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The safety of therapeutic monoclonal antibodies: implications for cancer therapy including immuno-checkpoint inhibitors. (United States)

    Demlova, R; Valík, D; Obermannova, R; ZdraŽilová-Dubská, L


    Monoclonal antibody-based treatment of cancer has been established as one of the most successful therapeutic strategies for both hematologic malignancies and solid tumors. In addition to targeting cancer antigens antibodies can also modulate immunological pathways that are critical to immune surveillance. Antibody therapy directed against several negative immunologic regulators (checkpoints) is demonstrating significant success in the past few years. Immune checkpoint inhibitors, ipilimumab, pembrolizumab and nivolumab, have shown significant clinical benefit in several malignancies and are already approved for advanced melanoma and squamous NSCLC. Based on their mechanism of action, these agents can exert toxicities that are unlike conventional cytotoxic chemotherapy, whose nature is close to autoimmune diseases - immune related adverse events (irAEs). In this review we focus on the spectrum of irAEs associated with immune checkpoint antibodies, discussing the pharmacological treatment strategy and possible clinical impact.

  11. Lyophilized Silk Fibroin Hydrogels for the Sustained Local Delivery of Therapeutic Monoclonal Antibodies (United States)

    Guziewicz, Nicholas; Best, Annie; Perez-Ramirez, Bernardo; Kaplan, David L.


    The development of sustained delivery systems compatible with protein therapeutics continues to be a significant unmet need. A lyophilized silk fibroin hydrogel matrix (lyogel) for the sustained release of pharmaceutically relevant monoclonal antibodies is described. Sonication of silk fibroin prior to antibody incorporation avoids exposing the antibody to the sol-gel transition inducing shear stress. Fourier Transform Infrared (FTIR) analysis showed no change in silk structural composition between hydrogel and lyogel or with increasing silk fibroin concentration. Antibody release from hydrogels occurred rapidly over 10 days regardless of silk concentration. Upon lyophilization, sustained antibody release was observed over 38 days from lyogels containing 6.2% (w/w) silk fibroin and above. In 3.2% (w/w) silk lyogels, antibody release was comparable to hydrogels. Swelling properties of lyogels followed a similar threshold behavior. Lyogels at 3.2% (w/w) silk recovered approximately 90% of their fluid mass upon rehydration, while approximately 50% fluid recovery was observed at 6.2% (w/w) silk and above. Antibody release was primarily governed by hydrophobic/hydrophilic silk-antibody interactions and secondarily altered by the hydration resistance of the lyogel. Hydration resistance was controlled by altering β-sheet (crystalline) density of the matrix. The antibody released from lyogels maintained biological activity. Silk lyogels offer an advantage as a delivery matrix over other hydrogel materials for the slow release of the loaded protein, making lyogels suitable for long-term sustained release applications. PMID:21216004

  12. Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein

    Directory of Open Access Journals (Sweden)

    Gwerder Myriam


    Full Text Available Abstract Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection.

  13. Monoclonal Antibodies against Zika Virus: Therapeutics and Their Implications for Vaccine Design. (United States)

    Wang, Qihui; Yan, Jinghua; Gao, George Fu


    Zika virus (ZIKV) has caused global concern due to its association with neurological complications in newborns and adults. Although no vaccines or antivirals against ZIKV infection have been approved to date, hundreds of monoclonal antibodies (MAbs) have been developed in a short period. Here, we first present a complete picture of the ZIKV MAbs and then focus on the neutralizing mechanisms and immune hot spots uncovered through structural studies, which provide insight for therapeutics and vaccine design. Copyright © 2017 American Society for Microbiology.

  14. Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. (United States)

    Kuhn, Chantal; Weiner, Howard L


    The induction of tolerance is a major goal of immunotherapy. Investigations over the last 20 years have shown that anti-CD3 monoclonal antibodies (mAbs) effectively treat autoimmune disease in animal models and have also shown promise in clinical trials. Tolerance induction by anti-CD3 mAbs is related to the induction of Tregs that control pathogenic autoimmune responses. Here, we review preclinical and clinical studies in which intravenous or mucosal administration of anti-CD3 mAbs has been employed and provide an outlook on future developments to enhance the efficacy of this promising therapeutic approach.

  15. Two-stage chromatographic separation of aggregates for monoclonal antibody therapeutics. (United States)

    Kumar, Vijesh; Rathore, Anurag S


    Aggregates of monoclonal antibody (mAb) therapeutics, due to their perceived impact on immunogenicity, are recognized as a critical quality attribute by the regulatory authorities as well as the industry. Hence, removal of aggregates is a key objective of bioprocessing. At present, this is achieved by a combination of two or more orthogonal chromatographic steps with possible modalities of ion exchange, hydrophobic interaction and mixed mode. A two-stage chromatographic purification process consisting of ion-exchange and hydrophobic interaction modes is proposed in this paper for effective and efficient control of aggregates for a mAb therapeutic. The proposed scheme does not require any intermediate processing of the process stream. Further, baseline separation is achieved for monomer and aggregates resulting in robust performance. This was possible because the proposed operational scheme allowed for an addition of selectivities of the two chromatography modes vs. the traditional two column scheme where part of the separation of aggregates achieved by the first column is lost upon pooling. The proposed process scheme yielded improved separation of aggregates (0% vs. 1-2%) at >95% recovery and reduced overall process time (6h vs. 14 h) for a typical application. Further, clearance of host cell proteins was also shown to have improved with the suggested process scheme. Successful implementation of the proposed scheme has been demonstrated for two different monoclonal antibody therapeutic products. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus? (United States)

    Deligne, Claire; Milcent, Benoît; Josseaume, Nathalie; Teillaud, Jean-Luc; Sibéril, Sophie


    Clinical responses to anti-tumor monoclonal antibody (mAb) treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens.

  17. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus?

    Directory of Open Access Journals (Sweden)

    Claire Deligne


    Full Text Available Clinical responses to anti-tumor monoclonal antibody (mAb treatment have been regarded for many years only as a consequence of the ability of mAbs to destroy tumor cells by innate immune effector mechanisms. More recently, it has also been shown that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely responsible for durable clinical responses, a phenomenon that has been termed the vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed against molecules expressed both by tumor cells and normal immune cells, in particular lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have dramatic consequences on the adaptive immune cell network, its rebound, and its functional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal effect that has emerged from experimental preclinical studies and clinical trials but also the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host adaptive immunity. We will also discuss some of the molecular and cellular mechanisms of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and the relationship between the mAb-induced vaccinal effect and the immune response against self-antigens.

  18. The Therapeutic Value of Monoclonal Antibodies Directed Against Immunogenic Tumor Glycoproteins

    Directory of Open Access Journals (Sweden)

    Myron Arlen, Philip Arlen, Al Tsang, XuePing Wang, Rishab Gupta


    Full Text Available Monoclonal antibodies developed against immunogenic proteins (Tumor Specific Antigens/TSA's that are expressed in human cancers, display a unique behavioral pattern. They appear to serve in a dual role. This includes the early recognition of these immunogenic membrane proteins that can serve as diagnostic markers, and the targeting of such markers for the destruction of the tumor, primarily thru ADCC.The monoclonals (mAbs that we have developed against specific immunogenic tumor membrane proteins have been studied in detail. These tumor proteins, when first defined, were referred to as tumor associated antigens. With the ability of the mAbs to demonstrate therapeutic antitumor activity in those patients with relatively advanced malignancies, the term tumor specific was introduced. Monoclonals that we were able to develop from tumor specific proteins derived from colon and pancreas cancer were found capable of targeting those tumors to induce apoptosis. We were also able to define immunogenic membrane proteins from lung (squamous and adenoCa as well as prostate neoplasms. Monoclonals developed from these tumor antigens are in the initial phases of investigation with regard to their specificity and antitumor activity.Mabs capable of targeting the malignancies noted above were produced following immunization of BALBc mice with the Tumor Specific Antigens. The hybridomas that were screened and found to express the antibodies of interest appeared for the most part as IgG2a's. It became apparent after a short period of time that stability of the Fab CDR loops as well as the therapeutic efficacy of the hybridoma mAbs could be lost. Stability was achieved by chimerization and or humanization. The resulting mAbs were found to switch their isotypes to an IgG1 subsequent to chimerization and or humanization, when expressed in CHO cells. The monoclonals, so produced, were not only more efficient in controlling tumor growth but minimized the development of a

  19. Laser-induced breakdown detection of temperature-ramp generated aggregates of therapeutic monoclonal antibody. (United States)

    Menzen, Tim; Friess, Wolfgang; Niessner, Reinhard; Haisch, Christoph


    The detection and characterization of protein aggregation is essential during development and quality control of therapeutic proteins, as aggregates are typically inactive and may trigger anti-drug-antibody formation in patients. Especially large multi-domain molecules, such as the important class of therapeutic monoclonal antibodies (mAbs), can form various aggregates that differ in size and morphology. Although particle analysis advanced over the recent years, new techniques and orthogonal methods are highly valued. To our knowledge, the physical principle of laser-induced breakdown detection (LIBD) was not yet applied to sense aggregates in therapeutic protein formulations. We established a LIBD setup to monitor the temperature-induced aggregation of a mAb. The obtained temperature of aggregation was in good agreement with the results from previously published temperature-ramped turbidity and dynamic light scattering measurements. This study demonstrates the promising applicability of LIBD to investigate aggregates from therapeutic proteins. The technique is also adaptive to online detection and size determination, and offers interesting opportunities for morphologic characterization of protein particles and impurities, which will be part of future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Targeted therapies in hematological malignancies using therapeutic monoclonal antibodies against Eph family receptors. (United States)

    Charmsaz, Sara; Scott, Andrew M; Boyd, Andrew W


    The use of monoclonal antibodies (mAbs) and molecules derived from them has achieved considerable attention and success in recent years, establishing this mode of therapy as an important therapeutic strategy in many cancers, in particular hematological tumors. mAbs recognize cell surface antigens expressed on target cells and mediate their function through various mechanisms such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, or immune system modulation. The efficacy of mAb therapy can be improved when they are conjugated to a highly potent payloads, including cytotoxic drugs and radiolabeled isotopes. The Eph family of proteins has received considerable attention in recent years as therapeutic targets for treatment of both solid and hematological cancers. High expression of Eph receptors on cancer cells compared with low expression levels in normal adult tissues makes them an attractive candidate for cancer immunotherapy. In this review, we detail the modes of action of antibody-based therapies with a focus on the Eph family of proteins as potential targets for therapy in hematological malignancies. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  1. Therapeutic monoclonal antibody N-glycosylation - Structure, function and therapeutic potential. (United States)

    Cymer, Florian; Beck, Hermann; Rohde, Adelheid; Reusch, Dietmar


    Therapeutic antibodies (IgG-type) contain several post-translational modifications (PTMs) whereby introducing a large heterogeneity, both structural and functional, into this class of therapeutics. Of these modifications, glycosylation in the fragment crystallizable (Fc) region is the most heterogeneous PTM, which can affect the stability of the molecule and interactions with Fc-receptors in vivo. Hence, the glycoform distribution can affect the mode of action and have implications for bioactivity, safety and efficacy of the drug. Main topics of the manuscript include: What factors influence the (Fc) glycan pattern in therapeutic antibodies and how can these glycans be characterized? How does structure of the Fc-glycan relate to function and what methods are available to characterize those functions? Although heterogeneous in their scope, the different sections are intended to combine current knowledge on structure-function correlations of IgG glycan structures with regard to Fc (effector) functions, as well as basic aspects and methodologies for their assessment. Copyright © 2017. Published by Elsevier Ltd.

  2. Antibodies and Selection of Monoclonal Antibodies. (United States)

    Hanack, Katja; Messerschmidt, Katrin; Listek, Martin

    Monoclonal antibodies are universal binding molecules with a high specificity for their target and are indispensable tools in research, diagnostics and therapy. The biotechnological generation of monoclonal antibodies was enabled by the hybridoma technology published in 1975 by Köhler and Milstein. Today monoclonal antibodies are used in a variety of applications as flow cytometry, magnetic cell sorting, immunoassays or therapeutic approaches. First step of the generation process is the immunization of the organism with appropriate antigen. After a positive immune response the spleen cells are isolated and fused with myeloma cells in order to generate stable, long-living antibody-producing cell lines - hybridoma cells. In the subsequent identification step the culture supernatants of all hybridoma cells are screened weekly for the production of the antibody of interest. Hybridoma cells producing the antibody of interest are cloned by limited dilution till a monoclonal hybridoma is found. This is a very time-consuming and laborious process and therefore different selection strategies were developed since 1975 in order to facilitate the generation of monoclonal antibodies. Apart from common automation of pipetting processes and ELISA testing there are some promising approaches to select the right monoclonal antibody very early in the process to reduce time and effort of the generation. In this chapter different selection strategies for antibody-producing hybridoma cells are presented and analysed regarding to their benefits compared to conventional limited dilution technology.

  3. Protocols for the analytical characterization of therapeutic monoclonal antibodies. II - Enzymatic and chemical sample preparation. (United States)

    Bobaly, Balazs; D'Atri, Valentina; Goyon, Alexandre; Colas, Olivier; Beck, Alain; Fekete, Szabolcs; Guillarme, Davy


    The analytical characterization of therapeutic monoclonal antibodies and related proteins usually incorporates various sample preparation methodologies. Indeed, quantitative and qualitative information can be enhanced by simplifying the sample, thanks to the removal of sources of heterogeneity (e.g. N-glycans) and/or by decreasing the molecular size of the tested protein by enzymatic or chemical fragmentation. These approaches make the sample more suitable for chromatographic and mass spectrometric analysis. Structural elucidation and quality control (QC) analysis of biopharmaceutics are usually performed at intact, subunit and peptide levels. In this paper, general sample preparation approaches used to attain peptide, subunit and glycan level analysis are overviewed. Protocols are described to perform tryptic proteolysis, IdeS and papain digestion, reduction as well as deglycosylation by PNGase F and EndoS2 enzymes. Both historical and modern sample preparation methods were compared and evaluated using rituximab and trastuzumab, two reference therapeutic mAb products approved by Food and Drug Administration (FDA) and European Medicines Agency (EMA). The described protocols may help analysts to develop sample preparation methods in the field of therapeutic protein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Impact of Shed/Soluble targets on the PK/PD of approved therapeutic monoclonal antibodies. (United States)

    Samineni, Divya; Girish, Sandhya; Li, Chunze


    Suboptimal treatment for monoclonal antibodies (mAbs) directed against endogenous circulating soluble targets and the shed extracellular domains (ECD) of the membrane-bound targets is an important clinical concern due to the potential impact of mAbs on the in vivo efficacy and safety. Consequently, there are considerable challenges in the determination of an optimal dose and/or dosing regimen. Areas covered: This review outlines the impact of shed antigen targets from membrane-bound proteins and soluble targets on the PK and/or PD of therapeutic mAbs that have been approved in the last decade. We discuss various bioanalytical techniques that have facilitated the interpretation of the PK/PD properties of therapeutic mAbs and also considered the factors that may impact such measurements. Quantitative approaches include target-mediated PK models and bi- or tri-molecular interaction PK/PD models that describe the relationships between the antibody PK and the ensuing effects on PD biomarkers, to facilitate the mAb PK/PD characterization. Expert commentary: The proper interpretation of PK/PD relationships through the integrated PK/PD modeling and bioanalytical strategy facilitates a mechanistic understanding of the disease processes and dosing regimen optimization, thereby offering insights into developing effective therapeutic regimens. This review provides an overview of the impact of soluble targets or shed ECD on mAb PK/PD properties. We provide examples of quantitative approaches that facilitate the characterization of mAb PK/PD characteristics and their corresponding bioanalytical strategies.

  5. Protocols for the analytical characterization of therapeutic monoclonal antibodies. I - Non-denaturing chromatographic techniques. (United States)

    Goyon, Alexandre; D'Atri, Valentina; Bobaly, Balazs; Wagner-Rousset, Elsa; Beck, Alain; Fekete, Szabolcs; Guillarme, Davy


    Size-, charge- and hydrophobicity-related variants of a biopharmaceutical product have to be deeply characterized for batch consistency and for the assessment of immunogenicity and safety effects. Size exclusion chromatography (SEC) and ion exchange chromatography (IEX) are considered as the gold standard for the analysis of high molecular weight species (HMWS) and charge-related variants, respectively. Hydrophobic interaction chromatography (HIC) has drawn renewed attention to monitor the small drug payload distribution in the cysteine-linked antibody-drug conjugates (ADC). These three chromatographic techniques, namely SEC, HIC and IEX, are historical, non-denaturing and robust approaches widely used for the characterization of biopharmaceutical proteins. Despite the broad spectrum of monoclonal antibodies (mAbs) structures, isoelectric points (pIs) and hydrophobicities, generic protocols can be applied to separate their size-, charge- and hydrophobicity-related variants, using the last generation of chromatographic columns and appropriate mobile phase conditions. Straightforward protocols are described in this manuscript with representative chromatograms of ten distinct Food and Drug Administration (FDA) and European Medicines Agency (EMA) approved therapeutic mAb products to illustrate the performance of the SEC, IEX and HIC methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Small amounts of sub-visible aggregates enhance the immunogenic potential of monoclonal antibody therapeutics. (United States)

    Ahmadi, Maryam; Bryson, Christine J; Cloake, Edward A; Welch, Katie; Filipe, Vasco; Romeijn, Stefan; Hawe, Andrea; Jiskoot, Wim; Baker, Matthew P; Fogg, Mark H


    Determine the effect of minute quantities of sub-visible aggregates on the in vitro immunogenicity of clinically relevant protein therapeutics. Monoclonal chimeric (rituximab) and humanized (trastuzumab) antibodies were subjected to fine-tuned stress conditions to achieve low levels (aggregates. The effect of stimulating human dendritic cells (DC) and CD4(+) T cells with the aggregates was measured in vitro using cytokine secretion, proliferation and confocal microscopy. Due to its intrinsic high clinical immunogenicity, aggregation of rituximab had minimal effects on DC activation and T cell responses compared to monomeric rituximab. However, in the case of trastuzumab (low clinical immunogenicity) small quantities of aggregates led to potent CD4(+) T cell proliferation as a result of strong cytokine and co-stimulatory signals derived from DC. Consistent with this, confocal studies showed that stir-stressed rituximab was rapidly internalised and associated with late endosomes of DC. These data link minute amounts of aggregates with activation of the innate immune response, involving DC, resulting in T cell activation. Thus, when protein therapeutics with little or no clinical immunogenicity, such as trastuzumab, contain minute amounts of sub-visible aggregates, they are associated with significantly increased potential risk of clinical immunogenicity.

  7. Characterization of a Type-Common Human Recombinant Monoclonal Antibody to Herpes Simplex Virus with High Therapeutic Potential (United States)

    De Logu, Alessandro; Williamson, R. Anthony; Rozenshteyn, Roman; Ramiro-Ibañez, Fernando; Simpson, Cindy D.; Burton, Dennis R.; Paolo Sanna, Pietro


    We report the characterization of a type-common human recombinant monoclonal antibody previously isolated by antigen selection from a phage-displayed combinatorial antibody library established from a herpes simplex virus (HSV)-seropositive individual. Competition with well-characterized murine monoclonal antibodies and immunodetection of gD truncations revealed that this antibody recognizes the group Ib antigenic site of glycoprotein D, a highly conserved and protective type-common determinant. To our knowledge, this is the first human group Ib monoclonal antibody ever described. The antibody also displayed first-order neutralization kinetics and a high neutralization rate constant, was capable of completely inhibiting syncytium formation by a fusogenic strain of HSV type 1, and efficiently neutralized low-passage clinical isolates of both HSV serotypes. Taken together with our earlier observations of the in vivo antiviral activities of this human recombinant antibody in animal models of HSV infection, the present results support the high therapeutic potential of this antibody. PMID:9774565

  8. Intracellular reprogramming of expression, glycosylation, and function of a plant-derived antiviral therapeutic monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Jeong-Hwan Lee

    Full Text Available Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAb(Ps, provides a safe and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and biological properties of the anti-rabies virus mAb(P SO57 with or without an endoplasmic reticulum (ER-retention peptide signal (Lys-Asp-Glu-Leu; KDEL in transgenic tobacco plants (Nicotiana tabacum were analyzed. The expression levels of mAb(P SO57 with KDEL (mAb(PK were significantly higher than those of mAb(P SO57 without KDEL (mAb(P regardless of the transcription level. The Fc domains of both purified mAb(P and mAb(PK and hybridoma-derived mAb (mAb(H had similar levels of binding activity to the FcγRI receptor (CD64. The mAb(PK had glycan profiles of both oligomannose (OM type (91.7% and Golgi type (8.3%, whereas the mAb(P had mainly Golgi type glycans (96.8% similar to those seen with mAb(H. Confocal analysis showed that the mAb(PK was co-localized to ER-tracker signal and cellular areas surrounding the nucleus indicating accumulation of the mAb(P with KDEL in the ER. Both mAb(P and mAb(PK disappeared with similar trends to mAb(H in BALB/c mice. In addition, mAb(PK was as effective as mAb(H at neutralizing the activity of the rabies virus CVS-11. These results suggest that the ER localization of the recombinant mAb(P by KDEL reprograms OM glycosylation and enhances the production of the functional antivirus therapeutic antibody in the plant.

  9. Intracellular Reprogramming of Expression, Glycosylation, and Function of a Plant-Derived Antiviral Therapeutic Monoclonal Antibody (United States)

    Lee, Kyung-Jin; Kim, Young-Kwan; So, Yang-Kang; Ryu, Jae-Sung; Oh, Seung-Han; Han, Yeon-Soo; Ko, Kinarm; Choo, Young-Kug; Park, Sung-Joo; Brodzik, Robert; Lee, Kyoung-Ki; Oh, Doo-Byoung; Hwang, Kyung-A; Koprowski, Hilary; Lee, Yong Seong; Ko, Kisung


    Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAbPs), provides a safe and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and biological properties of the anti-rabies virus mAbP SO57 with or without an endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) in transgenic tobacco plants (Nicotiana tabacum) were analyzed. The expression levels of mAbP SO57 with KDEL (mAbPK) were significantly higher than those of mAbP SO57 without KDEL (mAbP) regardless of the transcription level. The Fc domains of both purified mAbP and mAbPK and hybridoma-derived mAb (mAbH) had similar levels of binding activity to the FcγRI receptor (CD64). The mAbPK had glycan profiles of both oligomannose (OM) type (91.7%) and Golgi type (8.3%), whereas the mAbP had mainly Golgi type glycans (96.8%) similar to those seen with mAbH. Confocal analysis showed that the mAbPK was co-localized to ER-tracker signal and cellular areas surrounding the nucleus indicating accumulation of the mAbP with KDEL in the ER. Both mAbP and mAbPK disappeared with similar trends to mAbH in BALB/c mice. In addition, mAbPK was as effective as mAbH at neutralizing the activity of the rabies virus CVS-11. These results suggest that the ER localization of the recombinant mAbP by KDEL reprograms OM glycosylation and enhances the production of the functional antivirus therapeutic antibody in the plant. PMID:23967055

  10. Monoclonal antibody "gold rush". (United States)

    Maggon, Krishan


    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  11. Optimized nonclinical safety assessment strategies supporting clinical development of therapeutic monoclonal antibodies targeting inflammatory diseases. (United States)

    Brennan, Frank R; Cauvin, Annick; Tibbitts, Jay; Wolfreys, Alison


    An increasing number of immunomodulatory monoclonal antibodies (mAbs) and IgG Fc fusion proteins are either approved or in early-to-late stage clinical trials for the treatment of chronic inflammatory conditions, autoimmune diseases and organ transplant rejection. The exquisite specificity of mAbs, in combination with their multi-functional properties, high potency, long half-life (permitting intermittent dosing and prolonged pharamcological effects), and general lack of off-target toxicity makes them ideal therapeutics. Dosing with mAbs for these severe and debilitating but often non life-threatening diseases is usually prolonged, for several months or years, and not only affects adults, including sensitive populations such as woman of child-bearing potential (WoCBP) and the elderly, but also children. Immunosuppression is usually a therapeutic goal of these mAbs and when administered to patients whose treatment program often involves other immunosuppressive therapies, there is an inherent risk for frank immunosuppression and reduced host defence which when prolonged increases the risk of infection and cancer. In addition when mAbs interact with the immune system they can induce other adverse immune-mediated drug reactions such as infusion reactions, cytokine release syndrome, anaphylaxis, immune-complex-mediated pathology and autoimmunity. An overview of the nonclinical safety assessment and risk mitigation strategies utilized to characterize these immunomodulatory mAbs and Fc fusion proteins to support first-in human (FIH) studies and futher clinical development in inflammatory disease indications is provided. Specific emphasis is placed on the design of studies to qualify animal species for toxicology studies, early studies to investigate safety and define PK/PD relationships, FIH-enabling and chronic toxicology studies, immunotoxicity, developmental, reproductive and juvenile toxicity studies and studies to determine the potential for immunosuppression and

  12. Aggregation Kinetics for IgG1-Based Monoclonal Antibody Therapeutics. (United States)

    Singla, A; Bansal, R; Joshi, Varsha; Rathore, Anurag S


    Monoclonal antibodies (mAbs) as a class of therapeutic molecules are finding an increasing demand in the biotechnology industry for the treatment of diseases like cancer and multiple sclerosis. A key challenge associated to successful commercialization of mAbs is that from the various physical and chemical instabilities that are inherent to these molecules. Out of all probable instabilities, aggregation of mAbs has been a major problem that has been associated with a change in the protein structure and is a hurdle in various upstream and downstream processes. It can stimulate immune response causing protein misfolding having deleterious and harmful effects inside a cell. Also, the extra cost incurred to remove aggregated mAbs from the rest of the batch is huge. Size exclusion chromatography (SEC) is a major technique for characterizing aggregation in mAbs where change in the aggregates' size over time is estimated. The current project is an attempt to understand the rate and mechanism of formation of higher order oligomers when subjected to different environmental conditions such as buffer type, temperature, pH, and salt concentration. The results will be useful in avoiding the product exposure to conditions that can induce aggregation during upstream, downstream, and storage process. Extended Lumry-Eyring model (ELE), Lumry-Eyring Native Polymerization model (LENP), and Finke-Watzky model (F-W) have been employed in this work to fit the aggregation experimental data and results are compared to find the best fit model for mAb aggregation to connect the theoretical dots with the reality.

  13. A generic sample preparation approach for LC–MS/MS bioanalysis of therapeutic monoclonal antibodies in serum applied to Infliximab

    Directory of Open Access Journals (Sweden)

    Anne J. Kleinnijenhuis


    Full Text Available In this study, we developed a generic bioanalytical workflow providing sensitive, specific, and accurate absolute quantification of therapeutic monoclonal antibodies in serum. The workflow involves magnetic beads coated with protein A to pull-down therapeutic monoclonal antibodies with affinity for protein A from the biological matrix, followed by tryptic digestion and LC-MS/MS quantification of a unique signature peptide, considering of course the matrix of interest and other present mAbs, if applicable. The feasibility of this approach was demonstrated for Infliximab (trade name Remicade in rat serum. The assigned signature peptide was monitored in the selected reaction monitoring (SRM mode. Assay variability was determined to be below 20%, except at the QC low level, which was provided through optimization of the sample preparation and monitoring of the LC-MS/MS using a stable isotope labeled signature peptide as internal standard. The 100 ng/ml lower limit of quantification using only 25 μl sample volume, is generally considered as sufficient for pharmaceutical development purposes for monoclonal antibodies.

  14. Bulky Polar Additives That Greatly Reduce the Viscosity of Concentrated Solutions of Therapeutic Monoclonal Antibodies. (United States)

    Larson, Alyssa M; Weight, Alisha K; Love, Kevin; Bonificio, Amanda; Wescott, Charles R; Klibanov, Alexander M


    The viscosity of concentrated aqueous solutions of 3 clinical monoclonal antibodies (mAbs), Erbitux®, Herceptin®, and Rituxan®, has been reduced up to over 10-fold by adding certain bulky polar additives instead of saline at isotonic levels. Because these additives are also found not to compromise mAbs' stability against aggregation induced by stresses, a drug-delivery modality switch from intravenous infusions to more convenient and inexpensive parenteral options like subcutaneous injections may become possible. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Monoclonal antibodies in myeloma

    DEFF Research Database (Denmark)

    Sondergeld, P.; van de Donk, N. W. C. J.; Richardson, P. G.


    The development of monoclonal antibodies (mAbs) for the treatment of disease goes back to the vision of Paul Ehrlich in the late 19th century; however, the first successful treatment with a mAb was not until 1982, in a lymphoma patient. In multiple myeloma, mAbs are a very recent and exciting add...

  16. The future of monoclonal antibody technology


    Zider, Alexander; Drakeman, Donald L


    With the rapid growth of monoclonal antibody-based products, new technologies have emerged for creating modified forms of antibodies, including fragments, conjugates and multi-specific antibodies. We created a database of 450 therapeutic antibodies in development to determine which technologies and indications will constitute the “next generation” of antibody products. We conclude that the antibodies of the future will closely resemble the antibodies that have already been approved for commer...

  17. Monoclonal Antibodies production technology

    Directory of Open Access Journals (Sweden)

    Flávia Rocha


    Full Text Available Since the first cells were capable of maintain a continuous antibody supply, developed by Köhler and Milstein in 1975, its use in medicine and industry showed a great potential. New researches were developed to enhance the use of such cells, including immunizations, mieloma cells, fusion methodology, screening techniques, cloning, culture media, among several details which enable and optimizes its use. Nowadays, monoclonal antibodies are a well-established tool for proteomics research and it have countless applications on several knowledge areas, mainly human and/or animal disease diagnostic, identification and tracking of allergenic compounds in food and residues in the environment. This review can be used by professionals, researches and students searching for a compiled papers contributing to the improvement of the monoclonal antibodies technology, used at different knowledge areas such as human diseases and diseases and disorders in agriculture and livestock chain.

  18. Transgenic mouse strains as platforms for the successful discovery and development of human therapeutic monoclonal antibodies. (United States)

    Green, Larry L


    Transgenic mice have yielded seven of the ten currently-approved human antibody drugs, making them the most successful platform for the discovery of fully human antibody therapeutics. The use of the in vivo immune system helps drive this success by taking advantage of the natural selection process that produces antibodies with desirable characteristics. Appropriately genetically-engineered mice act as robust engines for the generation of diverse repertoires of affinity- matured fully human variable regions with intrinsic properties necessary for successful antibody drug development including high potency, specificity, manufacturability, solubility and low risk of immunogenicity. A broad range of mAb drug targets are addressable in these mice, comprising both secreted and transmembrane targets, including membrane multi-spanning targets, as well as human target antigens that share high sequence identity with their mouse orthologue. Transgenic mice can routinely yield antibodies with sub-nanomolar binding affinity for their antigen, with lead candidate mAbs frequently possessing affinities for binding to their target of less than 100 picomolar, without requiring any ex vivo affinity optimization. While the originator transgenic mice platforms are no longer broadly available, a new generation of transgenic platforms is in development for discovery of the next wave of human therapeutic antibodies.

  19. Clinical management of multiple sclerosis and neuromyelitis optica with therapeutic monoclonal antibodies: approved therapies and emerging candidates. (United States)

    Dubey, Divyanshu; Kieseier, Bernd C; Hartung, Hans Peter; Hemmer, Bernhard; Miller-Little, William A; Stuve, Olaf


    Therapeutic monoclonal antibodies (mAbs) are a relatively novel class of drugs that has substantially advanced immunotherapy for patients with multiple sclerosis. The advantage of these agents is that they bind specifically and exclusively to predetermined proteins or cells. Natalizumab was the first mAb in neurology to obtain approval. It is also considered one of the most potent options for annualized relapse rate reduction among available therapeutic options. Alemtuzumab is currently also approved in several countries. Several mAbs have been tested in clinical studies in multiple sclerosis. Here, we review the history of drug development of therapeutic mAbs and their classification. Furthermore, we outline the putative mechanisms of action, clinical evidence and safety of approved mAbs and those in different stages of clinical development in multiple sclerosis and neuromyelitis optica.

  20. Therapeutic antitumor efficacy of monoclonal antibody against Claudin-4 for pancreatic and ovarian cancers. (United States)

    Suzuki, Masayo; Kato-Nakano, Mariko; Kawamoto, Shinobu; Furuya, Akiko; Abe, Yuzuru; Misaka, Hirofumi; Kimoto, Naoya; Nakamura, Kazuyasu; Ohta, So; Ando, Hiroshi


    Claudin-4 (CLDN4) is a tetraspanin transmembrane protein of tight junction structure and is highly expressed in pancreatic and ovarian cancers. In this study, we aimed to generate an anti-Claudin-4 monoclonal antibody (mAb) and evaluate its antitumor efficacy in vitro and in vivo. To isolate specific mAb, we generated CLDN3, 4, 5, 6, and 9, expressing Chinese hamster ovary (CHO) cells, and then used them as positive and negative targets through cell-based screening. As a result, we succeeded in isolating KM3900 (IgG2a), which specifically bound to CLDN4, from BXSB mice immunized with pancreatic cancer cells. Immunoprecipitation and flow cytometry analysis revealed that KM3900 recognized the conformational structure and bound to extracellular loop 2 of CLDN4. Furthermore, binding of KM3900 was detected on CLDN4-expressing pancreatic and ovarian cancer cells, but not on negative cells. Next, we made the mouse-human chimeric IgG1 (KM3934) and evaluated its antitumor efficacy. KM3934 induced dose-dependent antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro, and significantly inhibited tumor growth in MCAS or CFPAC-1 xenograft SCID mice in vivo (P < 0.05). These results suggest that mAb therapy against CLDN4 is promising for pancreatic and ovarian cancers.

  1. Selection of therapeutic H5N1 monoclonal antibodies following IgVH repertoire analysis in mice. (United States)

    Gray, Sean A; Moore, Margaret; VandenEkart, Emily J; Roque, Richard P; Bowen, Richard A; Van Hoeven, Neal; Wiley, Steven R; Clegg, Christopher H


    The rapid rate of influenza virus mutation drives the emergence of new strains that inflict serious seasonal epidemics and less frequent, but more deadly, pandemics. While vaccination provides the best protection against influenza, its utility is often diminished by the unpredictability of new pathogenic strains. Consequently, efforts are underway to identify new antiviral drugs and monoclonal antibodies that can be used to treat recently infected individuals and prevent disease in vulnerable populations. Next Generation Sequencing (NGS) and the analysis of antibody gene repertoires is a valuable tool for Ab discovery. Here, we describe a technology platform for isolating therapeutic monoclonal antibodies (MAbs) by analyzing the IgVH repertoires of mice immunized with recombinant H5N1 hemagglutinin (rH5). As an initial proof of concept, 35 IgVH genes were selected using a CDRH3 search algorithm and co-expressed in a murine IgG2a expression vector with a panel of germline murine kappa genes. Culture supernatants were then screened for antigen binding. Seventeen of the 35 IgVH MAbs (49%) bound rH5VN1203 in preliminary screens and 8 of 9 purified MAbs inhibited 3 heterosubtypic strains of H5N1 virus when assayed by HI. Two of these MAbs demonstrated prophylactic and therapeutic activity in virus-challenged mice. This is the first example in which an NGS discovery platform has been used to isolate anti-influenza MAbs with relevant therapeutic activity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody.

    Directory of Open Access Journals (Sweden)

    Fatemeh Torkashvand

    Full Text Available Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44 cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds.

  3. Medulloblastoma: evaluation of proliferative index by monoclonal antibody Mib-1, its prognostic correlation and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Ferrari Antonio Fernandes


    Full Text Available In the past few years, the monoclonal antibody MIB-1 has been used by researchers in order to retrospectively study paraffin imbibed tumor fragments. The medulloblastoma is the most common malignant central nervous system tumor in childhood. The objectives were: determination of the mean Mib-1 LI value from these patients, as well as the prognostic value of the method.This retrospective study represents an analysis of the cellular proliferation index of posterior fossa medulloblastomas collected from 22 patients at A.C. Camargo Hospital, from January 1990 to December 1999. The histopathological diagnosis was confirmed by H&E and proliferative index (LI was achived with Mib-1 which detects proliferating cells during G1, G2, S and M phases.The results demostrated that the mean Mib-1 was 30,1%, and ranged from 5,2% to 62,0%.In conclusion, this method has prognostic value, has to be used as routine for patients harboring medulloblastomas and the ones who have PI greater than the mean value found in this study, should be treated aggressively.

  4. Guardians at the gate: Biosimilar and patent reform legislation could fundamentally change the guards for therapeutic monoclonal antibodies--Part 2. (United States)

    McCabe, Kevin W


    Patent protection and FDA exclusivities are the two principal forms of protection available to companies that develop therapeutic monoclonal antibodies. Propo-sed changes to both forms of protection are currently being debated in the United States Congress. Specifically, Congress is presently debating both biosimilar and patent reform legislations. Although no bill has yet passed, it is expected that patent reform legislation should pass this year. It is less likely that a biosimilar bill will pass this year. However, when legislations are enacted, the changes will significantly impact the business of therapeutic monoclonal antibodies.

  5. Lysyl oxidase like-4 monoclonal antibody demonstrates therapeutic effect against head and neck squamous cell carcinoma cells and xenografts. (United States)

    Görögh, Tibor; Quabius, Elgar S; Heidebrecht, Hans; Nagy, Andreas; Muffels, Till; Haag, Jochen; Ambrosch, Petra; Hoffmann, Markus


    A new member of the lysyl oxidase (LOX) family, lysyl oxidase-like 4 (LOXL4), is overexpressed in head and neck squamous cell carcinoma (HNSCC) compared to normal squamous epithelium. A monoclonal antibody (mAb) derived from fusion of Balb/c mouse splenocytes immunized with LOXL4 specific peptide was used to evaluate its therapeutic efficacy in 15 HNSCC cell lines associated with LOXL4 overexpression. For xenograft experiments 41 severe combined immunodeficient (SCID) mice were used to analyze LOXL4-mAb mediated tumor regression. Cell viability was analyzed using cytotoxicity-, and clonogenic-assays. Significant suppression of tumor cell growth was observed in 12 out of 15 (80%) tumor cell lines after 48 hr exposure to the mAb (LD50 of 15 µg/ml to 45 µg/ml). The effect induced by the antibody could be blocked by pre-incubation of the antibody with the peptide used for immunization of the mice and antibody generation, indicating that the effect of the antibody is specific. In mice inoculated with HNSCC cells, i.v. injections of the LOXL4-mAb resulted within 70 days in extensive tumor destruction in all treated animals whereas no tumor regression occurred in control animals. In mice pre-immunized i.v. with LOXL4-mAb and subsequently injected with HNSCC cells, tumor development was considerably delayed in contrast to non LOXL4-mAb pre-immunized animals. These results demonstrate that the LOXL4-mAb has potent antitumor activity and suggest its suitability as a therapeutic immune agent applicable to HNSCC exhibiting tumor specific upregulation of LOXL4. © 2016 UICC.

  6. Therapeutic monoclonal antibodies: scFv patents as a marker of a new class of potential biopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Manuela Berto Pucca


    Full Text Available Monoclonal antibodies represent the fastest growing class of biopharmaceutical products and have a host of applications in medical research, diagnosis, therapy, and basic science. The production of recombinant monoclonal antibodies has revolutionized the generation of immunoglobulins, and their use represents a strategic breakthrough, affecting the global pharmaceutical market for therapeutic proteins. In the present work, a review of scFv, and the number of related patents, has been carried out. The results show that several countries have scFv patents, most notably the United States, China and United Kingdom. The target of these scFv antibodies was also assessed and the results demonstrate that most are directed toward cancer therapy.Anticorpos monoclonais representam a classe de maior crescimento em produtos de biofármacos e possuem várias aplicações em pesquisa médica, diagnóstico, terapias e ciência básica. A produção de anticorpos monoclonais recombinantes revolucionou a geração de imunoglobulinas e sua utilização implica em avanço estratégico, afetando o mercado farmacêutico global de proteínas terapêuticas. No presente trabalho, uma revisão sobre scFv e a relação do seu número de patentes foi analisada. Os resultados mostram que vários países apresentam patentes de scFv com destaque para os Estados Unidos, China e Reino Unido. Os alvos desses anticorpos também foram avaliados e as análises revelaram que a maioria é destinado a terapias contra o câncer.

  7. Therapeutic administration of a recombinant human monoclonal antibody reduces the severity of chikungunya virus disease in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Rebecca Broeckel


    Full Text Available Chikungunya virus (CHIKV is a mosquito-borne virus that causes a febrile syndrome in humans associated with acute and chronic debilitating joint and muscle pain. Currently no licensed vaccines or therapeutics are available to prevent or treat CHIKV infections. We recently isolated a panel of potently neutralizing human monoclonal antibodies (mAbs, one (4N12 of which exhibited prophylactic and post-exposure therapeutic activity against CHIKV in immunocompromised mice. Here, we describe the development of an engineered CHIKV mAb, designated SVIR001, that has similar antigen binding and neutralization profiles to its parent, 4N12. Because therapeutic administration of SVIR001 in immunocompetent mice significantly reduced viral load in joint tissues, we evaluated its efficacy in a rhesus macaque model of CHIKV infection. Rhesus macaques that were treated after infection with SVIR001 showed rapid elimination of viremia and less severe joint infiltration and disease compared to animals treated with SVIR002, an isotype control mAb. SVIR001 reduced viral burden at the site of infection and at distant sites and also diminished the numbers of activated innate immune cells and levels of pro-inflammatory cytokines and chemokines. SVIR001 therapy; however, did not substantively reduce the induction of CHIKV-specific B or T cell responses. Collectively, these results show promising therapeutic activity of a human anti-CHIKV mAb in rhesus macaques and provide proof-of-principle for its possible use in humans to treat active CHIKV infections.

  8. Therapeutic potential and challenges of targeting receptor tyrosine kinase ROR1 with monoclonal antibodies in B-cell malignancies.

    Directory of Open Access Journals (Sweden)

    Jiahui Yang

    Full Text Available Based on its selective cell surface expression in chronic lymphocytic leukemia (CLL and mantle cell lymphoma (MCL, receptor tyrosine kinase ROR1 has recently emerged as a promising target for therapeutic monoclonal antibodies (mAbs. To further assess the suitability of ROR1 for targeted therapy of CLL and MCL, a panel of mAbs was generated and its therapeutic utility was investigated.A chimeric rabbit/human Fab library was generated from immunized rabbits and selected by phage display. Chimeric rabbit/human Fab and IgG1 were investigated for their capability to bind to human and mouse ROR1, to mediate antibody-dependent cellular cytotoxicity (ADCC, complement-dependent cytotoxicity (CDC, and internalization, and to agonize or antagonize apoptosis using primary CLL cells from untreated patients as well as MCL cell lines. A panel of mAbs demonstrated high affinity and specificity for a diverse set of epitopes that involve all three extracellular domains of ROR1, are accessible on the cell surface, and mediate internalization. The mAb with the highest affinity and slowest rate of internalization was found to be the only mAb that mediated significant, albeit weak, ADCC. None of the mAbs mediated CDC. Alone, they did not enhance or inhibit apoptosis.Owing to its relatively low cell surface density, ROR1 may be a preferred target for armed rather than naked mAbs. Provided is a panel of fully sequenced and thoroughly characterized anti-ROR1 mAbs suitable for conversion to antibody-drug conjugates, immunotoxins, chimeric antigen receptors, and other armed mAb entities for preclinical and clinical studies.

  9. Therapeutic Activity of Agonistic, Human Anti-CD40 Monoclonal Antibodies Requires Selective FcγR Engagement. (United States)

    Dahan, Rony; Barnhart, Bryan C; Li, Fubin; Yamniuk, Aaron P; Korman, Alan J; Ravetch, Jeffrey V


    While engagement of the inhibitory Fcγ-receptor (FcγR) IIB is an absolute requirement for in vivo antitumor activity of agonistic mouse anti-CD40 monoclonal antibodies (mAbs), a similar requirement for human mAbs has been disputed. By using a mouse model humanized for its FcγRs and CD40, we revealed that FcγRIIB engagement is essential for the activity of human CD40 mAbs, while engagement of the activating FcγRIIA inhibits this activity. By engineering Fc variants with selective enhanced binding to FcγRIIB, but not to FcγRIIA, significantly improved antitumor immunity was observed. These findings highlight the necessity of optimizing the Fc domain for this class of therapeutic antibodies by using appropriate preclinical models that accurately reflect the unique affinities and cellular expression of human FcγR. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Human monoclonal antibodies: the residual challenge of antibody immunogenicity. (United States)

    Waldmann, Herman


    One of the major reasons for seeking human monoclonal antibodies has been to eliminate immunogenicity seen with rodent antibodies. Thus far, there has yet been no approach which absolutely abolishes that risk for cell-binding antibodies. In this short article, I draw attention to classical work which shows that monomeric immunoglobulins are intrinsically tolerogenic if they can be prevented from creating aggregates or immune complexes. Based on these classical studies two approaches for active tolerization to therapeutic antibodies are described.

  11. Polyclonal and monoclonal antibodies in clinic. (United States)

    Wootla, Bharath; Denic, Aleksandar; Rodriguez, Moses


    Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.

  12. Development and characterization of a pre-treatment procedure to eliminate human monoclonal antibody therapeutic drug and matrix interference in cell-based functional neutralizing antibody assays. (United States)

    Xu, Weifeng; Jiang, Hao; Titsch, Craig; Haulenbeek, Jonathan R; Pillutla, Renuka C; Aubry, Anne-Françoise; DeSilva, Binodh S; Arnold, Mark E; Zeng, Jianing; Dodge, Robert W


    Biological therapeutics can induce an undesirable immune response resulting in the formation of anti-drug antibodies (ADA), including neutralizing antibodies (NAbs). Functional (usually cell-based) NAb assays are preferred to determine NAb presence in patient serum, but are often subject to interferences from numerous serum factors, such as growth factors and disease-related cytokines. Many functional cell-based NAb assays are essentially drug concentration assays that imply the presence of NAbs by the detection of small changes in functional drug concentration. Any drug contained in the test sample will increase the total amount of drug in the assay, thus reducing the sensitivity of NAb detection. Biotin-drug Extraction with Acid Dissociation (BEAD) has been successfully applied to extract ADA, thereby removing drug and other interfering factors from human serum samples. However, to date there has been no report to estimate the residual drug level after BEAD treatment when the drug itself is a human monoclonal antibody; mainly due to the limitation of traditional ligand-binding assays. Here we describe a universal BEAD optimization procedure for human monoclonal antibody (mAb) drugs by using a LC-MS/MS method to simultaneously measure drug (a mutant human IgG4), NAb positive control (a mouse IgG), and endogenous human IgGs as an indicator of nonspecific carry-over in the BEAD eluate. This is the first report demonstrating that residual human mAb drug level in clinical sample can be measured after BEAD pre-treatment, which is critical for further BEAD procedure optimization and downstream immunogenicity testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Monoclonal antibodies to Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Halpern, J L; Lundgren, B


    To increase understanding of the antigenic structure of Pneumocystis carinii, we developed monoclonal antibodies to rat and human P. carinii. The specificity of the antibodies was demonstrated by immunofluorescence and immunoblot studies. Only one of five monoclonal antibodies to rat P. carinii...... reacted with human P. carinii, and none of four monoclonal antibodies to human P. carinii reacted with rat P. carinii. Two antibodies to human P. carinii reacted by immunofluorescence with only one human P. carinii isolate. Immunoblot studies identified major antigens of rat P. carinii with molecular...... antigenically different. Further studies with these antibodies should increase understanding of the antigenic nature of P. carinii and of the interaction of P. carinii with its host....

  14. Fragmentation of monoclonal antibodies (United States)

    Vlasak, Josef


    Fragmentation is a degradation pathway ubiquitously observed in proteins despite the remarkable stability of peptide bond; proteins differ only by how much and where cleavage occurs. The goal of this review is to summarize reports regarding the non-enzymatic fragmentation of the peptide backbone of monoclonal antibodies (mAbs). The sites in the polypeptide chain susceptible to fragmentation are determined by a multitude of factors. Insights are provided on the intimate chemical mechanisms that can make some bonds prone to cleavage due to the presence of specific side-chains. In addition to primary structure, the secondary, tertiary and quaternary structures have a significant impact in modulating the distribution of cleavage sites by altering local flexibility, accessibility to solvent or bringing in close proximity side chains that are remote in sequence. This review focuses on cleavage sites observed in the constant regions of mAbs, with special emphasis on hinge fragmentation. The mechanisms responsible for backbone cleavage are strongly dependent on pH and can be catalyzed by metals or radicals. The distribution of cleavage sites are different under acidic compared to basic conditions, with fragmentation rates exhibiting a minimum in the pH range 5–6; therefore, the overall fragmentation pattern observed for a mAb is a complex result of structural and solvent conditions. A critical review of the techniques used to monitor fragmentation is also presented; usually a compromise has to be made between a highly sensitive method with good fragment separation and the capability to identify the cleavage site. The effect of fragmentation on the function of a mAb must be evaluated on a case-by-case basis depending on whether cleavage sites are observed in the variable or constant regions, and on the mechanism of action of the molecule. PMID:21487244

  15. Fixed Dosing of Monoclonal Antibodies in Oncology. (United States)

    Hendrikx, Jeroen J M A; Haanen, John B A G; Voest, Emile E; Schellens, Jan H M; Huitema, Alwin D R; Beijnen, Jos H


    Most monoclonal antibodies in oncology are administered in body-size-based dosing schedules. This is believed to correct for variability in both drug distribution and elimination between patients. However, monoclonal antibodies typically distribute to the blood plasma and extracellular fluids only, which increase less than proportionally with the increase in body weight. Elimination takes place via proteolytic catabolism, a nonspecific immunoglobulin G elimination pathway, and intracellular degradation after binding to the target. The latter is the primary route of elimination and is related to target expression levels rather than body size. Taken together, the minor effects of body size on distribution and elimination of monoclonal antibodies and their usually wide therapeutic window do not support body-size-based dosing. We evaluated effects of body weight on volume of distribution and clearance of monoclonal antibodies in oncology and show that a fixed dose for most of these drugs is justified based on pharmacokinetics. A survey of the savings after fixed dosing of monoclonal antibodies at our hospital showed that fixed dosing can reduce costs of health care, especially when pooling of preparations is not possible (which is often the case in smaller hospitals). In conclusion, based on pharmacokinetic parameters of monoclonal antibodies, there is a rationale for fixed dosing of these drugs in oncology. Therefore, we believe that fixed dosing is justified and can improve efficiency of the compounding. Moreover, drug spillage can be reduced and medication errors may become less likely. The currently available knowledge of elimination of monoclonal antibodies combined with the publicly available data from clinical trials and extensive population pharmacokinetic (PopPK) modeling justifies fixed dosing. Interpatient variation in exposure is comparable after body weight and fixed dosing and most monoclonal antibodies show relatively flat dose-response relationships

  16. The value of non-human primates in the development of therapeutic monoclonal antibodies

    NARCIS (Netherlands)

    Van Meer, P.J.K.|info:eu-repo/dai/nl/34153790X; Kooijman, M.|info:eu-repo/dai/nl/322905788; Van Der Laan, J.W.|info:eu-repo/dai/nl/374879966; Moors, E.H.M.|info:eu-repo/dai/nl/20241664X; Schellekens, H.|info:eu-repo/dai/nl/068406762


    The pharmaceutical industry is increasingly focusing on the development of biological therapeutics. These molecules generally cause no off-target toxicity and are highly species specific. Therefore, non-human primates (NHPs) are often the only relevant species in which to conduct regulatory safety

  17. Dextrose-mediated aggregation of therapeutic monoclonal antibodies in human plasma: Implication of isoelectric precipitation of complement proteins (United States)

    Luo, Shen; Zhang, Baolin


    Many therapeutic monoclonal antibodies (mAbs) are clinically administered through intravenous infusion after mixing with a diluent, e.g., saline, 5% dextrose. Such a clinical setting increases the likelihood of interactions among mAb molecules, diluent, and plasma components, which may adversely affect product safety and efficacy. Avastin® (bevacizumab) and Herceptin® (trastuzumab), but not Remicade® (infliximab), were shown to undergo rapid aggregation upon dilution into 5% dextrose when mixed with human plasma in vitro; however, the biochemical pathways leading to the aggregation were not clearly defined. Here, we show that dextrose-mediated aggregation of Avastin or Herceptin in plasma involves isoelectric precipitation of complement proteins. Using mass spectrometry, we found that dextrose-induced insoluble aggregates were composed of mAb itself and multiple abundant plasma proteins, namely complement proteins C3, C4, factor H, fibronectin, and apolipoprotein. These plasma proteins, which are characterized by an isoelectronic point of 5.5–6.7, lost solubility at the resulting pH in the mixture with formulated Avastin (pH 6.2) and Herceptin (pH 6.0). Notably, switching formulation buffers for Avastin (pH 6.2) and Remicade (pH 7.2) reversed their aggregation profiles. Avastin formed little, if any, insoluble aggregates in dextrose-plasma upon raising the buffer pH to 7.2 or above. Furthermore, dextrose induced pH-dependent precipitation of plasma proteins, with massive insoluble aggregates being detected at pH 6.5–6.8. These data show that isoelectric precipitation of complement proteins is a prerequisite of dextrose-induced aggregation of mAb in human plasma. This finding highlights the importance of assessing the compatibility of a therapeutic mAb with diluent and human plasma during product development. PMID:26338058

  18. Dextrose-mediated aggregation of therapeutic monoclonal antibodies in human plasma: Implication of isoelectric precipitation of complement proteins. (United States)

    Luo, Shen; Zhang, Baolin


    Many therapeutic monoclonal antibodies (mAbs) are clinically administered through intravenous infusion after mixing with a diluent, e.g., saline, 5% dextrose. Such a clinical setting increases the likelihood of interactions among mAb molecules, diluent, and plasma components, which may adversely affect product safety and efficacy. Avastin® (bevacizumab) and Herceptin® (trastuzumab), but not Remicade® (infliximab), were shown to undergo rapid aggregation upon dilution into 5% dextrose when mixed with human plasma in vitro; however, the biochemical pathways leading to the aggregation were not clearly defined. Here, we show that dextrose-mediated aggregation of Avastin or Herceptin in plasma involves isoelectric precipitation of complement proteins. Using mass spectrometry, we found that dextrose-induced insoluble aggregates were composed of mAb itself and multiple abundant plasma proteins, namely complement proteins C3, C4, factor H, fibronectin, and apolipoprotein. These plasma proteins, which are characterized by an isoelectronic point of 5.5-6.7, lost solubility at the resulting pH in the mixture with formulated Avastin (pH 6.2) and Herceptin (pH 6.0). Notably, switching formulation buffers for Avastin (pH 6.2) and Remicade (pH 7.2) reversed their aggregation profiles. Avastin formed little, if any, insoluble aggregates in dextrose-plasma upon raising the buffer pH to 7.2 or above. Furthermore, dextrose induced pH-dependent precipitation of plasma proteins, with massive insoluble aggregates being detected at pH 6.5-6.8. These data show that isoelectric precipitation of complement proteins is a prerequisite of dextrose-induced aggregation of mAb in human plasma. This finding highlights the importance of assessing the compatibility of a therapeutic mAb with diluent and human plasma during product development.

  19. Expression and characterization of a therapeutic monoclonal antibody in mammalian cells


    Costa, A. R. [UNESP


    Doctoral dissertation for PhD degree in Biomedical Engineering The advent of therapeutic recombinant proteins has revolutionized modern medicine. Since the approval of recombinant insulin in 1982 to treat diabetes, many other recombinant proteins have emerged for a diversity of previously incurable conditions. In these years, the manufacturing processes have greatly evolved, but have also often disregarded product quality, an issue only recently addressed and currently a maj...

  20. Broadly neutralizing human monoclonal JC polyomavirus VP1–specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy (United States)

    Jelcic, Ivan; Combaluzier, Benoit; Jelcic, Ilijas; Faigle, Wolfgang; Senn, Luzia; Reinhart, Brenda J.; Ströh, Luisa; Nitsch, Roger M.; Stehle, Thilo; Sospedra, Mireia; Grimm, Jan; Martin, Roland


    In immunocompromised individuals, JC polyomavirus (JCPyV) may mutate and gain access to the central nervous system resulting in progressive multifocal leukoencephalopathy (PML), an often fatal opportunistic infection for which no treatments are currently available. Despite recent progress, the contribution of JCPyV-specific humoral immunity to controlling asymptomatic infection throughout life and to eliminating JCPyV from the brain is poorly understood. We examined antibody responses against JCPyV major capsid protein VP1 (viral protein 1) variants in the serum and cerebrospinal fluid (CSF) of healthy donors (HDs), JCPyV-positive multiple sclerosis patients treated with the anti-VLA-4 monoclonal antibody natalizumab (NAT), and patients with NAT-associated PML. Before and during PML, CSF antibody responses against JCPyV VP1 variants show “recognition holes”; however, upon immune reconstitution, CSF antibody titers rise, then recognize PML-associated JCPyV VP1 variants, and may be involved in elimination of the virus. We therefore reasoned that the memory B cell repertoire of individuals who recovered from PML could be a source for the molecular cloning of broadly neutralizing antibodies for passive immunization. We generated a series of memory B cell-derived JCPyV VP1-specific human monoclonal antibodies from HDs and a patient with NAT-associated PML-immune reconstitution inflammatory syndrome (IRIS). These antibodies exhibited diverse binding affinity, cross-reactivity with the closely related BK polyomavirus, recognition of PML-causing VP1 variants, and JCPyV neutralization. Almost all antibodies with exquisite specificity for JCPyV, neutralizing activity, recognition of all tested JCPyV PML variants, and high affinity were derived from one patient who had recovered from PML. These antibodies are promising drug candidates for the development of a treatment of PML. PMID:26400911

  1. Development of a novel anti-human aspartyl-(asparaginyl) β-hydroxylase monoclonal antibody with diagnostic and therapeutic potential. (United States)

    Huyan, Ting; Li, Qi; Dong, Dan-Dan; Yang, Hui; Xue, Xiao-Ping; Huang, Qing-Sheng


    Human aspartyl-(asparaginyl)-β-hydroxylase (HAAH) has recently been the subject of several studies, as it was previously observed to be overexpressed in numerous types of carcinoma cells and tissues in patient tumor samples. HAAH has been implicated in tumor invasion and metastasis, indicating that it may be an important target and biomarker for tumor diagnosis and treatment. However, the immunological tools currently available for the study of this protein, including monoclonal antibodies, are limited, as is the present knowledge regarding the role of HAAH in tumor therapy and diagnosis. In the present study, a recombinant C-terminal domain of HAAH was expressed in Pichia pastoris and a novel monoclonal antibody (mAb) targeting HAAH (HAAH-C) was constructed. Immunofluorescence and antibody-dependent cellular cytotoxicity (ADCC) assays were used to demonstrate the specificity and ADCC activity of this antibody. The results demonstrated that this anti-C-terminal HAAH mAB, in combination with an existing anti-N terminal HAAH mAb, exhibited a high response to native HAAH from carcinoma cell culture supernatant, as measured with a double antibody sandwich enzyme-linked immunosorbent assay. This validated novel mAB-HAAH-C may prompt further studies into the underlying mechanisms of HAAH, and the exploration of its potential in tumor diagnosis and therapy.

  2. Therapeutic monoclonal antibodies and the need for targeted pharmacovigilance in India. (United States)

    Kalaivani, M; Singh, Abhishank; Kalaiselvan, V


    A growing number of innovative mAb therapeutics are on the global market, and biosimilar versions have now also been approved, including in India. Although efficacy and safety is demonstrated prior to approval, targeted pharmacovigilance is essential for the identification and assessment of risk for any mAb products. We analyzed the ADR data related to mAbs reported to the NCC-PvPI through the spontaneous reporting system Vigiflow during April 2011 to February 2014 to identify mAbs with the highest number of ADR including fatal/serious ADR. Only 0.72% reports were related to mAbs. Although 15 mAbs are approved in the country, only 6 mAbs were reported through Vigiflow. Rituximab was highly reported, and no fatal/serious ADR related to any mAbs were reported during the study period. Our study shows that PvPI is effective and robust system in the detection and assessment of risks associated with the use of mAbs.

  3. Uses of monoclonal antibody 8H9 (United States)

    Cheung, Nai-Kong V.


    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  4. Detection of Campylobacter species using monoclonal antibodies (United States)

    Young, Colin R.; Lee, Alice; Stanker, Larry H.


    A panel of species specific monoclonal antibodies were raised to Campylobacter coli, Campylobacter jejuni and Campylobacter lari. The isotypes, and cross-reactivity profiles of each monoclonal antibody against an extensive panel of micro- organisms, were determined.

  5. Monoclonal antibodies: application in radiopharmacy. (United States)

    Ligiero, Thais Braga; de Souza Albernaz, Marta; de Carvalho, Samira Marques; de Oliveira, Silvia Maria Velasques; Santos-Oliveira, Ralph


    In this study was carried on a systematic review of the data was carried out in the topic of monoclonal antibodies in the last 40 years. All the data collected and summarized revealed that this new class of medicine may bring great advance in the field of radiopharmacy, oncology and imaging.

  6. Glycosylation profiling of a therapeutic recombinant monoclonal antibody with two N-linked glycosylation sites using liquid chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer. (United States)

    Lim, Amareth; Reed-Bogan, Angelia; Harmon, Bryan J


    Monoclonal antibodies have been used increasingly as therapeutic agents to target various diseases. Although most monoclonal antibodies have only one N-linked glycosylation site in the Fc region, N-linked glycosylation sites in the Fab region have also been observed. Because glycosylation of a monoclonal antibody can have a significant impact on its effector function, efficacy, clearance, and immunogenicity, it is essential to assess the glycosylation profile during cell line and clone selection studies and to assess the impact of cell culture conditions on the glycoform distribution during process optimization studies to ensure that the antibody is being produced with appropriate and consistent glycosylation. This article describes a liquid chromatography-mass spectrometry-based approach, in combination with papain digestion and partial reduction, to obtain site-specific glycosylation profile information for a therapeutic monoclonal antibody with two N-linked glycosylation sites in the heavy chain.

  7. Monoclonal antibodies in haematopathology

    Energy Technology Data Exchange (ETDEWEB)

    Grignani, F.; Martelli, M.F.; Mason, D.Y.


    This book contains over 40 selections. Some of the titles are: Oncogene (c-myc, c-myb) amplification in acute myelogenous leukaemia; Ultrastructural characterization of leukaemic cells with monoloclonal antibodies; Origin of B-cell malignancies; Immunohistology of gut lymphomas; and Spurious evidence of lineage infidelity in monocytic leukaemia.

  8. [Evolution of monoclonal antibodies in cancer treatment]. (United States)

    Kubczak, Małgorzata; Rogalińska, Małgorzata

    Since late 90s of last century the new age of directed therapy began using mainly biological constructs produced in rodents called monoclonal antibodies. The side effects of monoclonal antibodies were a challenge for pharmaceutical companies to improve the biological properties of these biological drugs. The humanization of monoclonal constructs was an idea to improve monoclonal antibodies next generation activity cancer cell reduction in humans. Moreover for some other patients sensitive for monoclonal antibodies therapy could also potentially induce immunological differences that might imply on human health. The new idea related to monoclonal antibodies was to design a small molecule constructs of nanoantibodies with ability to enter into cells. Such small molecules could find their targets inside human cells, even in nuclei leading to differences in cancer cells expression. The existing knowledge on monoclonal antibodies as well as directed activity of nanoantibodies could improve anticancer treatment efficancy of diseases.

  9. Aggregates in monoclonal antibody manufacturing processes. (United States)

    Vázquez-Rey, María; Lang, Dietmar A


    Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product. Copyright © 2011 Wiley Periodicals, Inc.

  10. Recent developments in monoclonal antibody radiolabeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Mease, R.C.


    Monoclonal antibodies (MAbs) have shown the potential to serve as selective carriers of radionuclides to specific in vivo antigens. Accordingly, there has been an intense surge of research activity in an effort to develop and evaluate MAb-based radiopharmaceuticals for tumor imaging (radioimmunoscintigraphy) and therapy (radioimmunotherapy), as well as for diagnosing nonmalignant diseases. A number of problems have recently been identified, related to the MAbs themselves and to radiolabeling techniques, that comprise both the selectivity and the specificity of the in vivo distribution of radiolabeled MAbs. This paper will address some of these issues and primarily discuss recent developments in the techniques for radiolabeling monoclonal antibodies that may help resolve problems related to the poor in vivo stability of the radiolabel and may thus produce improved biodistribution. Even though many issues are identical with therapeutic radionuclides, the discussion will focus mainly on radioimmunoscintigraphic labels. 78 refs., 6 tabs.

  11. Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Jose Luis Hernández

    Full Text Available S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF, via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.

  12. Prophylactic and therapeutic testing of Nicotiana-derived RSV-neutralizing human monoclonal antibodies in the cotton rat model. (United States)

    Zeitlin, Larry; Bohorov, Ognian; Bohorova, Natasha; Hiatt, Andrew; Kim, Do H; Pauly, Michael H; Velasco, Jesus; Whaley, Kevin J; Barnard, Dale L; Bates, John T; Crowe, James E; Piedra, Pedro A; Gilbert, Brian E


    Severe lower respiratory tract infection in infants and small children is commonly caused by respiratory syncytial virus (RSV). Palivizumab (Synagis(®)), a humanized IgG1 monoclonal antibody (mAb) approved for RSV immunoprophylaxis in at-risk neonates, is highly effective, but pharmacoeconomic analyses suggest its use may not be cost-effective. Previously described potent RSV neutralizers (human Fab R19 and F2-5; human IgG RF-1 and RF-2) were produced in IgG format in a rapid and inexpensive Nicotiana-based manufacturing system for comparison with palivizumab. Both plant-derived (palivizumab-N) and commercial palivizumab, which is produced in a mouse myeloma cell line, showed protection in prophylactic (p plant-derived human mAbs directed against alternative epitopes displayed neutralizing activity, but conferred less protection in vivo than palivizumab-N or palivizumab. Palivizumab remains one of the most efficacious RSV mAbs described to date. Production in plants may reduce manufacturing costs and improve the pharmacoeconomics of RSV immunoprophylaxis and therapy.

  13. Monoclonal Antibodies for Relapsing Multiple Sclerosis

    DEFF Research Database (Denmark)

    Blinkenberg, Morten; Soelberg Sørensen, Per


    leading to chronic central nervous system (CNS) demyelination, neural loss, and, finally, neurological disability. Although a number of disease-modifying treatments are available for the treatment of the inflammatory phase of MS, there is still a need for highly efficacious therapies with an acceptable...... safety profile in order to gain therapeutic control early in the disease course. Monoclonal antibodies have proven to be some of the most efficacious disease-modifying therapies in the field of MS, and recent developments in clinical research hold promise for new compounds fulfilling the need...

  14. Theranostics Using Antibodies and Antibody-Related Therapeutics

    NARCIS (Netherlands)

    Moek, Kirsten L; Giesen, Danique; Kok, Iris C; de Groot, Derk Jan A; Jalving, Mathilde; Fehrmann, Rudolf S N; Lub-de Hooge, Marjolijn N; Brouwers, Adrienne H; de Vries, Elisabeth G E

    In theranostics, radiolabeled compounds are used to determine a treatment strategy by combining therapeutics and diagnostics in the same agent. Monoclonal antibodies (mAbs) and antibody-related therapeutics represent a rapidly expanding group of cancer medicines. Theranostic approaches using these

  15. Application of Monoclonal Antibodies in Veterinary Parasitology

    Directory of Open Access Journals (Sweden)

    Gupta A.


    Full Text Available The discovery of hybridoma technology by Kohler and Milstein in 1975, heralded a new era in antibody research. Mouse hybridomas were the first reliable source of monoclonal antibodies. The generation of monoclonal antibodies from species other than rats and mice, has developed slowly over the last 30 years. The advent of antibody engineering and realization of the advantages of non murine antibodies has increased their relevance recently. However, in the area of veterinary parasitology, monoclonal antibodies are just beginning to fulfill the promises inherent in their great specificity for recognizing and selectively binding to antigens. This review describes the recent advances in the application of monoclonal antibodies for immunodiagnosis / prophylaxis and immunotherapy of parasitic diseases. [Vet. World 2011; 4(4.000: 183-188

  16. Monoclonal antibodies in chronic lymphocytic leukemia. (United States)

    Ferrajoli, Alessandra; Faderl, Stefan; Keating, Michael J


    Multiple options are now available for the treatment of chronic lymphocytic leukemia. Over the last 10 years, monoclonal antibodies have become an integral part of the management of this disease. Alemtuzumab has received approval for use in patients with fludarabine-refractory chronic lymphocytic leukemia. Rituximab has been investigated extensively in chronic lymphocytic leukemia both as a single agent and in combination with chemotherapy and other monoclonal antibodies. Epratuzumab and lumiliximab are newer monoclonal antibodies in the early phase of clinical development. This article will review the monoclonal antibodies more commonly used to treat chronic lymphocytic leukemia, the results obtained with monoclonal antibodies as single agents and in combination with chemotherapy, and other biological agents and newer compounds undergoing clinical trials.

  17. Improved monoclonal antibodies to halodeoxyuridine (United States)

    Vanderlaan, M.; Dolbeare, F.A.; Gray, J.W.; Thomas, C.B.


    The development, method of production, characterization and methods of use of two hybridomas, CIdU-1 (ATCC Accession No. HB-8321) and CIdU-2 (ATCC Accession No. HB-8320), are described. These secrete IgG/sub 1/(K) immunoglobulins that react with halodeoxyuridine (HdU or halodU) such as bromo, chloro, fluoro and iodo deoxyuridine (BrdU, CldU, FdU and IdU), whether these are free in solution or incorporated into single stranded DNA in whole cells. The antibodies do not react with naturally occurring free nucleic acids or with deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) polymers. These antibodies are suitable for use in enzyme immunoassays for free CldU, FdU, IdU and BrdU and for detecting cells with these nucleotides incorporated into them. The monoclonal antibodies are useful in the detection of the sensitivity of tumor cells to specific chemotherapeutic agents, in the measurement of the rate of cellular DNA synthesis, in the measurement of the rate of proliferation of normal and malignant cells and in the detection of HPRT deficiency in cells. 1 tab.

  18. Monoclonal antibodies in pediatric allergy

    Directory of Open Access Journals (Sweden)

    Amelia Licari


    Full Text Available Production of monoclonal antibodies (mAbs involving human-mouse hybrid cells was first described in 1970s, but these biologics are now used for a variety of diseases including cancers, autoimmune disorders and allergic diseases. The aim of this article is to review current and future applications of mAbs, in particular focusing on anti-IgE therapy, in the field of pediatric allergy. Proceedings of the 11th International Workshop on Neonatology and Satellite Meetings · Cagliari (Italy · October 26th-31st, 2015 · From the womb to the adultGuest Editors: Vassilios Fanos (Cagliari, Italy, Michele Mussap (Genoa, Italy, Antonio Del Vecchio (Bari, Italy, Bo Sun (Shanghai, China, Dorret I. Boomsma (Amsterdam, the Netherlands, Gavino Faa (Cagliari, Italy, Antonio Giordano (Philadelphia, USA

  19. A screening tool for therapeutic monoclonal antibodies: Identifying the most stable protein and its best formulation based on thioflavin T binding. (United States)

    Kayser, Veysel; Chennamsetty, Naresh; Voynov, Vladimir; Helk, Bernhard; Forrer, Kurt; Trout, Bernhardt L


    The lack of a fast selection method to identify the most stable protein is one of the major challenges for developing successful therapeutic protein formulations more rapidly. The swift and accurate detection of small amounts of aggregates is another problem since aggregates may trigger an immunological response and the aggregation decreases the biological activity of the antibody. Here we present an alternative method for initial screening of the aggregation propensity of proteins, using monoclonal antibodies (mAb) as an example and thioflavin T (ThT) binding. The major advantage of ThT binding is the short duration of testing compared with size-exclusion chromatography (SEC) measurements that can take 6 months or more even under accelerated conditions. The tendency to aggregate of each therapeutic human mAb probed with the ThT assay, together with SEC, is employed to formulate the ranking of mAb aggregation. ThT binding can determine the propensity of proteins to aggregate in a few days, illustrating that ThT binding would be a valuable screening tool. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A novel two-component Tobacco mosaic virus-based vector system for high-level expression of multiple therapeutic proteins including a human monoclonal antibody in plants. (United States)

    Roy, Gourgopal; Weisburg, Sangeetha; Rabindran, Shailaja; Yusibov, Vidadi


    Expression of multiple therapeutic proteins from Tobacco mosaic virus (TMV)-based vectors was not successful when plants were coinoculated with a mixture of two TMV vectors engineered to express two foreign genes individually. Here, we have engineered and developed a defective RNA (dRNA)-based TMV vector (dRT-V) that utilizes two components of the same virus, with the dRNA component depending on the helper virus for replication. Agrobacterium-mediated coinoculation of Nicotiana benthamiana plants with both components of the dRT-V resulted in high-level expression of a human growth hormone and a lichenase-fused lethal factor protein of Bacillus anthracis. Furthermore, both heavy and light chains were expressed and assembled into a monoclonal antibody (mAb) specific to the protective antigen of B. anthracis, and the average yield of the purified antibody obtained was 120 mg/kg of fresh tissue. Our data suggest that dRT-V has a potential for rapid, cost-effective, large-scale manufacturing of multiple therapeutic proteins including mAbs in response to any biological emergencies. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Monoclonal antibodies to immunodeterminants of lipoteichoic acids. (United States)

    Jackson, D E; Wong, W; Largen, M T; Shockman, G D


    Murine hybrid cell lines producing monoclonal antibodies directed against determinants present on lipoteichoic acids were generated. Hapten inhibition studies showed that one group of monoclonal antibodies was inhibited by deacylated cardiolipin, and the second group was inhibited by kojibiose. Thus, antibodies directed against the polyglycerophosphate chain, which is common to the lipoteichoic acids of many gram-positive species, and against the streptococcal group D antigen were obtained.

  2. Monoclonal antibodies to immunodeterminants of lipoteichoic acids.


    Jackson, D E; Wong, W; Largen, M T; Shockman, G. D.


    Murine hybrid cell lines producing monoclonal antibodies directed against determinants present on lipoteichoic acids were generated. Hapten inhibition studies showed that one group of monoclonal antibodies was inhibited by deacylated cardiolipin, and the second group was inhibited by kojibiose. Thus, antibodies directed against the polyglycerophosphate chain, which is common to the lipoteichoic acids of many gram-positive species, and against the streptococcal group D antigen were obtained.

  3. Therapeutic anti-IgE monoclonal antibody single chain variable fragment (scFv) safety and immunomodulatory effects after one time injection in four dogs. (United States)

    Hammerberg, Bruce; Eguiluz-Hernandez, Sitka


    The therapeutic monoclonal antibody omalizumab that is specific for IgE has proven to be an effective addition to the treatment of allergic disease in humans. The aims of this study were to demonstrate the safety and immunomodulating effects of a single injection of a monoclonal antibody single chain variable fragments (scFv) specific for canine IgE in normal dogs. Three normal dogs were bled for EDTA whole blood samples for 112 days post-injection (dpi). A fourth dog was monitored for 28 days. Anti-IgE scFv was pegylated to minimize scFv dimerization. Four normal dogs were injected once subcutaneously with anti-IgE scFv at 1 mg/kg. Flow cytometry was performed on whole blood. Plasma levels of IgE were measured by ELISA. None of the four dogs showed signs of anaphylaxis. All dogs demonstrated decreases in IgE(+) cells in lymphocyte-gated events by 14 dpi. Dogs C and D returned to pre-injection levels by 21 days, whereas dogs A and B remained below pre-injection levels until Day 112. Similar differences were seen in IgE-bearing granulocyte-gated cells. Free plasma IgE decreased below pre-injection levels by 47% in Dog A and by 52% in Dog B at 112 days. Dogs C and D did not change by more than 32% from preinjection levels. A single injection of monomeric, pegylated scFv with high affinity for dog IgE was demonstrated to be safe. Marked reduction in IgE-bearing lymphocytes and granulocytes accompanied by reduced "free" plasma IgE level in two of four dogs is analogous to omalizumab in humans. © 2016 ESVD and ACVD.

  4. Antibody Engineering and Therapeutics (United States)

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y


    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717

  5. Development of a therapeutic monoclonal antibody that targets secreted fatty acid-binding protein aP2 to treat type 2 diabetes. (United States)

    Burak, M Furkan; Inouye, Karen E; White, Ariel; Lee, Alexandra; Tuncman, Gurol; Calay, Ediz S; Sekiya, Motohiro; Tirosh, Amir; Eguchi, Kosei; Birrane, Gabriel; Lightwood, Daniel; Howells, Louise; Odede, Geofrey; Hailu, Hanna; West, Shauna; Garlish, Rachel; Neale, Helen; Doyle, Carl; Moore, Adrian; Hotamisligil, Gökhan S


    The lipid chaperone aP2/FABP4 has been implicated in the pathology of many immunometabolic diseases, including diabetes in humans, but aP2 has not yet been targeted for therapeutic applications. aP2 is not only an intracellular protein but also an active adipokine that contributes to hyperglycemia by promoting hepatic gluconeogenesis and interfering with peripheral insulin action. Serum aP2 levels are markedly elevated in mouse and human obesity and strongly correlate with metabolic complications. These observations raise the possibility of a new strategy to treat metabolic disease by targeting serum aP2 with a monoclonal antibody (mAb) to aP2. We evaluated mAbs to aP2 and identified one, CA33, that lowered fasting blood glucose, improved systemic glucose metabolism, increased systemic insulin sensitivity, and reduced fat mass and liver steatosis in obese mouse models. We examined the structure of the aP2-CA33 complex and resolved the target epitope by crystallographic studies in comparison to another mAb that lacked efficacy in vivo. In hyperinsulinemic-euglycemic clamp studies, we found that the antidiabetic effect of CA33 was predominantly linked to the regulation of hepatic glucose output and peripheral glucose utilization. The antibody had no effect in aP2-deficient mice, demonstrating its target specificity. We conclude that an aP2 mAb-mediated therapeutic constitutes a feasible approach for the treatment of diabetes. Copyright © 2015, American Association for the Advancement of Science.

  6. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma

    DEFF Research Database (Denmark)

    van de Donk, Niels W C J; Moreau, Philippe; Plesner, Torben


    Immunotherapeutic strategies are emerging as promising therapeutic approaches in multiple myeloma (MM), with several monoclonal antibodies in advanced stages of clinical development. Of these agents, CD38-targeting antibodies have marked single agent activity in extensively pretreated MM, and pre...

  7. Cold denaturation of monoclonal antibodies (United States)

    Lazar, Kristi L; Patapoff, Thomas W


    The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs. PMID:20093856

  8. Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stability. (United States)

    Goldberg, Deborah S; Bishop, Steven M; Shah, Ambarish U; Sathish, Hasige A


    In this work, we describe the application of two different high-throughput screening (HTS) techniques that can be used to determine protein stability during early formulation development. Differential scanning fluorescence (DSF) and differential static light scattering (DSLS) are used to determine the conformational and colloidal stability of therapeutic monoclonal antibodies (mAbs) during thermal denaturation in a high-throughput fashion. DSF utilizes SYPRO Orange, a polarity-sensitive extrinsic fluorescent probe, to monitor protein unfolding. We found that melting temperatures determined by DSF have a linear correlation with melting temperatures of the first domain unfolding determined by differential scanning calorimetry, establishing DSF as a reliable method for measuring thermal stability. The DSLS method employs static light scattering to evaluate protein stability during thermal denaturation in a 384-well format. Overall comparison between mAb aggregation under typical accelerated stress conditions (40°C) and the thermal stability obtained by DSF and DSLS is also presented. Both of these HTS methods are cost effective with high-throughput capability and can be implemented in any laboratory. Combined with other emerging HTS techniques, DSF and DSLS could be powerful tools for mAb formulation optimization. Copyright © 2010 Wiley-Liss, Inc.

  9. Monoclonal Antibody Therapy for Advanced Neuroblastoma (United States)

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  10. Monoclonal antibodies reactive with hairy cell leukemia

    NARCIS (Netherlands)

    Visser, L; Shaw, A; Slupsky, J; Vos, H; Poppema, S

    Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia.

  11. Therapeutic effects of anti-CD115 monoclonal antibody in mouse cancer models through dual inhibition of tumor-associated macrophages and osteoclasts.

    Directory of Open Access Journals (Sweden)

    Laetitia Fend

    Full Text Available Tumor progression is promoted by Tumor-Associated Macrophages (TAMs and metastasis-induced bone destruction by osteoclasts. Both myeloid cell types depend on the CD115-CSF-1 pathway for their differentiation and function. We used 3 different mouse cancer models to study the effects of targeting cancer host myeloid cells with a monoclonal antibody (mAb capable of blocking CSF-1 binding to murine CD115. In mice bearing sub-cutaneous EL4 tumors, which are CD115-negative, the anti-CD115 mAb depleted F4/80(+ CD163(+ M2-type TAMs and reduced tumor growth, resulting in prolonged survival. In the MMTV-PyMT mouse model, the spontaneous appearance of palpable mammary tumors was delayed when the anti-CD115 mAb was administered before malignant transition and tumors became palpable only after termination of the immunotherapy. When administered to mice already bearing established PyMT tumors, anti-CD115 treatment prolonged their survival and potentiated the effect of chemotherapy with Paclitaxel. As shown by immunohistochemistry, this therapeutic effect correlated with the depletion of F4/80(+CD163(+ M2-polarized TAMs. In a breast cancer model of bone metastasis, the anti-CD115 mAb potently blocked the differentiation of osteoclasts and their bone destruction activity. This resulted in the inhibition of cancer-induced weight loss. CD115 thus represents a promising target for cancer immunotherapy, since a specific blocking antibody may not only inhibit the growth of a primary tumor through TAM depletion, but also metastasis-induced bone destruction through osteoclast inhibition.

  12. Recent Advances in Monoclonal Antibody Therapies for Multiple Sclerosis. (United States)

    Wootla, Bharath; Watzlawik, Jens O; Stavropoulos, Nikolaos; Wittenberg, Nathan J; Dasari, Harika; Abdelrahim, Murtada A; Henley, John R; Oh, Sang-Hyun; Warrington, Arthur E; Rodriguez, Moses


    Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the CNS and results in neurological disability. Existing immunomodulatory and immunosuppressive approaches lower the number of relapses but do not cure or reverse existing deficits nor improve long-term disability in MS patients. Monogenic antibodies were described as treatment options for MS, however the immunogenicity of mouse antibodies hampered the efficacy of potential therapeutics in humans. Availability of improved antibody production technologies resulted in a paradigm shift in MS treatment strategies. In this review, an overview of immunotherapies for MS that use conventional monoclonal antibodies reactive to immune system and their properties and mechanisms of action will be discussed, including recent advances in MS therapeutics and highlight natural autoantibodies (NAbs) that directly target CNS cells. Recent challenges for MS therapy are the identification of relevant molecular and cellular targets, time frame of treatment, and antibody toxicity profiles to identify safe treatment options for MS patients. The application of monoclonal antibody therapies with better biological efficacy associated with minimum side effects possesses huge clinical potential. Advances in monoclonal antibody technologies that directly target cells of nervous system may promote the CNS regeneration field from bench to bedside.

  13. Recent Advances in Monoclonal Antibody Therapies for Multiple Sclerosis (United States)

    Stavropoulos, Nikolaos; Wittenberg, Nathan J.; Dasari, Harika; Abdelrahim, Murtada A.; Henley, John R.; Oh, Sang-Hyun; Warrington, Arthur E.; Rodriguez, Moses


    Introduction Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the CNS and results in neurological disability. Existing immunomodulatory and immunosuppressive approaches lower the number of relapses but do not cure or reverse existing deficits nor improve long-term disability in MS patients. Areas Covered Monogenic antibodies were described as treatment options for MS, however the immunogenicity of mouse antibodies hampered the efficacy of potential therapeutics in humans. Availability of improved antibody production technologies resulted in a paradigm shift in MS treatment strategies. In this review, an overview of immunotherapies for MS that use conventional monoclonal antibodies reactive to immune system and their properties and mechanisms of action will be discussed, including recent advances in MS therapeutics and highlight natural autoantibodies (NAbs) that directly target CNS cells. Expert Opinion Recent challenges for MS therapy are the identification of relevant molecular and cellular targets, time frame of treatment, and antibody toxicity profiles to identify safe treatment options for MS patients. The application of monoclonal antibody therapies with better biological efficacy associated with minimum side effects possesses huge clinical potential. Advances in monoclonal antibody technologies that directly target cells of nervous system may promote the CNS regeneration field from bench to bedside. PMID:26914737

  14. Combination of SDS-PAGE and intact mass analysis for rapid determination of heterogeneities in monoclonal antibody therapeutics. (United States)

    Yamada, Hideaki; Matsumura, Chiemi; Yamada, Keita; Teshima, Koichiro; Hiroshima, Takashi; Kinoshita, Mitsuhiro; Suzuki, Shigeo; Kakehi, Kazuaki


    mAbs are currently mainstream in biopharmaceuticals, and their market has been growing due to their high target specificity. Characterization of heterogeneities in mAbs is performed to secure their quality and safety by physicochemical analyses. However, they require time-consuming task, which often strain the resources of drug development in pharmaceuticals. Rapid and direct method to determine the heterogeneities should be a powerful tool for pharmaceutical analysis. Considering the advantages of electrophoresis and MS, this study addresses the combination of SDS-PAGE and intact mass analysis, which provides direct, rapid, and orthogonal determination of heterogeneities in mAb therapeutics. mAb therapeutics that migrated in SDS-PAGE were recovered from gel by treatment with SDC-containing buffer. Usage of SDC-containing buffer as extraction solvent and ethanol-based staining solution enhanced the recovery of intact IgG from SDS-PAGE gels. Recovery of mAbs reached more than 86% with 0.2% SD. The heterogeneities, especially N-glycan variants in the recovered mAb therapeutics, were clearly determined by intact mass analysis. We believe that the study is important in pharmaceuticals‧ perspective since orthogonal combination of gel electrophoresis and intact mass analysis should be pivotal role for rapid and precise characterization of mAbs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Production of Monoclonal Antibody against Human Nestin


    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah


    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140?250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such a...

  16. Generation of monoclonal antibodies against highly conserved antigens.

    Directory of Open Access Journals (Sweden)

    Hongzhe Zhou

    Full Text Available BACKGROUND: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry. Generating high-quality monoclonal antibodies against a given therapeutic target is very crucial for the success of the drug development. However, due to immune tolerance, some proteins that are highly conserved between mice and humans are not very immunogenic in mice, making it difficult to generate antibodies using a conventional approach. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the impaired immune tolerance of NZB/W mice was exploited to generate monoclonal antibodies against highly conserved or self-antigens. Using two highly conserved human antigens (MIF and HMGB1 and one mouse self-antigen (TNF-alpha as examples, we demonstrate here that multiple clones of high affinity, highly specific antibodies with desired biological activities can be generated, using the NZB/W mouse as the immunization host and a T cell-specific tag fused to a recombinant antigen to stimulate the immune system. CONCLUSIONS/SIGNIFICANCE: We developed an efficient and universal method for generating surrogate or therapeutic antibodies against "difficult antigens" to facilitate the development of therapeutic antibodies.

  17. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection. (United States)

    Wan, Shu-Wen; Chen, Pei-Wei; Chen, Chin-Yu; Lai, Yen-Chung; Chu, Ya-Ting; Hung, Chia-Yi; Lee, Han; Wu, Hsuan Franziska; Chuang, Yung-Chun; Lin, Jessica; Chang, Chih-Peng; Wang, Shuying; Liu, Ching-Chuan; Ho, Tzong-Shiann; Lin, Chiou-Feng; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Yeh, Trai-Ming; Lin, Yee-Shin


    Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. Antibody humanization methods for development of therapeutic applications. (United States)

    Ahmadzadeh, Vahideh; Farajnia, Safar; Feizi, Mohammad Ali Hosseinpour; Nejad, Ramezan Ali Khavari


    Recombinant antibody technologies are rapidly becoming available and showing considerable clinical success. However, the immunogenicity of murine-derived monoclonal antibodies is restrictive in cancer immunotherapy. Humanized antibodies can overcome these problems and are considered to be a promising alternative therapeutic agent. There are several approaches for antibody humanization. In this article we review various methods used in the antibody humanization process.

  19. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials (United States)

    Guziewicz, Nicholas A.; Massetti, Andrew J.; Perez-Ramirez, Bernardo J.; Kaplan, David L.


    The availability of stabilization and sustained delivery systems for antibody therapeutics remains a major clinical challenge, despite the growing development of antibodies for a wide range of therapeutic applications due to their specificity and efficacy. A mechanistic understanding of protein-matrix interactions is critical for the development of such systems and is currently lacking as a mode to guide the field. We report mechanistic insight to address this need by using well-defined matrices based on silk gels, in combination with a monoclonal antibody. Variables including antibody loading, matrix density, charge interactions, hydrophobicity and water access were assessed to clarify mechanisms involved in the release of antibody from the biomaterial matrix. The results indicate that antibody release is primarily governed by hydrophobic interactions and hydration resistance, which are controlled by silk matrix chemistry, peptide domain distribution and protein density. Secondary ionic repulsions are also critical in antibody stabilization and release. Matrix modification by free methionine incorporation was found to be an effective strategy for mitigating encapsulation induced antibody oxidation. Additionally, these studies highlight a characterization approach to improve the understanding and development of other protein sustained delivery systems, with broad applicability to the rapidly developing monoclonal antibody field. PMID:23859659

  20. Monoclonal Antibodies as Diagnostics; an Appraisal


    Siddiqui M


    Ever since the development of Hybridoma Technology in 1975 by Kohler and Milstein, our vision for antibodies as tools for research for prevention, detection and treatment of diseases, vaccine production, antigenic characterization of pathogens and in the study of genetic regulation of immune responses and disease susceptibility has been revolutionized. The monoclonal antibodies being directed against single epitopes are homogeneous, highly specific and can be produced in unlimited quantities....

  1. Strain differentiation of polioviruses with monoclonal antibodies.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); A.L. van Wezel; A.J.H. Stegmann; J.A.A.M. van Asten (Jack)


    textabstractPanels of monoclonal antibodies raised against different poliovirus type 1, 2 and 3 strains, were tested in a micro-neutralization test and in a micro-enzyme linked immunosorbent assay against a large number of poliovirus strains. The results were compared with those obtained with the

  2. Reactivity of commercially available monoclonal antibodies to ...

    African Journals Online (AJOL)

    Monoclonal antibodies (mAbs) to cell surface molecules have been proven as a key tool for phenotypic and functional characterization of the cellular immune response. One of the major difficulties in studying camel cellular immunity consists in the lack of mAbs that dtect their leukocyte differentiation antigens. In the present ...

  3. Reshaped Human Monoclonal Antibodies for Therapy and Passive Immunization (United States)


    Monoclonal Antibodies for Therapy and Passive Immunisation by Reshaping Rodent Monoclonal Antibodies". Two mouse monoclonal antibody producing cell...could be simply extended to make human monoclonals, but this has proved not to be the case. There are difficulties in finding appropriately immunised ...human donors and suitable fusion partners for the antibody producing cells. In vitro immunisation techniques have been tried, but only low affinity 1gM

  4. [Preparation of clenbuterol monoclonal antibody with subtractive immunization method]. (United States)

    Li, Xiao-Li; Li, Xiao-Fang; Ning, Bao-An; Wu, Da-Cheng; Wang, Hong-Yong; Chen, Xiang; Ma, Xin-Hua; Ou, Guo-Rong; Gau, Zhi-Xian


    To obtain Clenbuterol monoclonal antibodies. Clenbuterol complete antigen was prepared with diazotization method. BALB/c mice was immunized with subtractive immunization, Clenbuterol monoclonal antibody was prepared with rule hybridoma technique. The mice obtained tolerance to BSA by subtractive immunization. The rate of the hybridoma cell with positive reaction which had obtained was 8.2%, and the specific clenbuterol monoclonal antibody was obtained at last. Monoclonal antibodies to micromolecule contaminant be prepared by subtractive immunization, could decrease the workload in the bolting of monoclonal antibodies, and increase the chance to obtain the antibody of expected.

  5. Phase Separation in Solutions of Monoclonal Antibodies (United States)

    Benedek, George; Wang, Ying; Lomakin, Aleksey; Latypov, Ramil


    We report the observation of liquid-liquid phase separation (LLPS) in a solution of humanized monoclonal antibodies, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective inter-protein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.

  6. [Neutralizing Monoclonal and Chimeric Antibodies to Human IFN-γ]. (United States)

    Larina, M V; Aliev, T K; Solopova, O N; Pozdnyakova, L P; Korobova, S V; Yakimov, S A; Sveshnikov, P G; Dolgikh, D A; Kirpichnikov, M P


    Autoiminune disorders are chronic diseases characterized by abnormal immune response directed against self-antigens that leads to tissue damage and violation of its normal functioning. Such diseases often result in disability or even death of patients. Nowadays a number of monoclonal antibodies to pro-inflammatory cytokines and their receptors are successfully used for the targeted treatment of autoimmune diseases. One of the perspective targets in autoimmune disease therapy is interferon gamma, a key cytokine in Th1 cells differentiation, activation of macrophages, and inflammation. In the present work, 5 monoclonal antibodies to human IFN-γ were obtained. For the development of potential therapeutic agent, we have performed neutralizing activity and affinity analysis of the antibodies. Based on the data obtained, the monoclonal antibody F1 was selected. This antibody has a dissociation constant 1.7 x 10(-9) M and IC90 = 8.9 ± 2.0 nM measured upon antibody inhibition of the IFN-γ-induced HLA-DR expression on the surface of U937 cells. We have constructed a bicistronic vector for the production of recombinant chimeric Fab fragment F1 chim in E. coli cells. The recombinant chimeric Fab fragment Fl chim neutralizes IFN-γ activity in vitro and has a dissociation constant 1.8 x 10(-9) M.

  7. Monoclonal antibodies to Treponema Pallidum.

    NARCIS (Netherlands)

    H.J.M. van de Donk; J.D.A. van Embden; M.F. van Olderen; A.D.M.E. Osterhaus (Albert); J.C. de Jong (Jan)


    textabstractThree successive fusions of mouse myeloma cells and spleen lymphocytes of a mouse immunized with Treponema Pallidum resulted in one hybridoma producing anti T. pallidum antibodies for each fusion. The mice were immunized with live pallidum cells respectively 1, 3 and 5 months before

  8. Development of Biodegradable Nanocarriers Loaded with a Monoclonal Antibody

    Directory of Open Access Journals (Sweden)

    Andrew Gdowski


    Full Text Available Treatments utilizing monoclonal antibody therapeutics against intracellular protein-protein interactions in cancer cells have been hampered by several factors, including poor intracellular uptake and rapid lysosomal degradation. Our current work examines the feasibility of encapsulating monoclonal antibodies within poly(lactic-co-glycolic acid (PLGA nanoparticles using a water/oil/water double emulsion solvent evaporation technique. This method can be used to prepare protective polymeric nanoparticles for transporting functional antibodies to the cytoplasmic compartment of cancer cells. Nanoparticles were formulated and then characterized using a number of physical and biological parameters. The average nanoparticle size ranged from 221 to 252 nm with a low polydispersity index. Encapsulation efficiency of 16%–22% and antibody loading of 0.3%–1.12% were observed. The antibody molecules were released from the nanoparticles in a sustained manner and upon release maintained functionality. Our studies achieved successful formulation of antibody loaded polymeric nanoparticles, thus indicating that a PLGA-based antibody nanoformulation is a promising intracellular delivery vehicle for a large number of new intracellular antibody targets in cancer cells.

  9. SPECT assay of radiolabeled monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jaszczak, R.J.


    The accurate determination of the biodistribution of radiolabeled monoclonal antibodies (MoAbs) is important for calculation of dosimetry and evaluation of pharmacokinetic variables such as antibody dose and route of administration. The hypothesis of this application is that the biodistribution of radiolabeled monoclonal antibodies (MoAbs) can be quantitatively determined using single photon emission computed tomography (SPECT). The major thrusts during the third year include the continued development and evaluation of improved 3D SPECT acquisition and reconstruction approaches to improve quantitative imaging of radiolabeled monoclonal antibodies (MoAbs), and the implementation and evaluation of algorithms to register serial SPECT image data sets, or to register 3D SPECT images with 3D image data sets acquired from positron emission tomography (PEI) and magnetic resonance images (MRI). The research has involved the investigation of statistical models and iterative reconstruction algorithms that accurately account for the physical characteristics of the SPECT acquisition system. It is our belief that SPECT quantification can be improved by accurately modeling the physical processes such as attenuation, scatter, geometric collimator response, and other factors that affect the measured projection data.

  10. Humanization and simultaneous optimization of monoclonal antibody. (United States)

    Kuramochi, T; Igawa, T; Tsunoda, H; Hattori, K


    Antibody humanization is an essential technology for reducing the potential risk of immunogenicity associated with animal-derived antibodies and has been applied to a majority of the therapeutic antibodies on the market. For developing an antibody molecule as a pharmaceutical at the current biotechnology level, however, other properties also have to be considered in parallel with humanization in antibody generation and optimization. This section describes the critical properties of therapeutic antibodies that should be sufficiently qualified, including immunogenicity, binding affinity, physiochemical stability, expression in host cells and pharmacokinetics, and the basic methodologies of antibody engineering involved. By simultaneously optimizing the antibody molecule in the light of these properties, it should prove possible to shorten the research and development period necessary to identify a highly qualified clinical candidate and consequently accelerate the start of the clinical trial.

  11. Antigen-Specific Monoclonal Antibodies Isolated from B Cells Expressing Constitutively Active STAT5

    NARCIS (Netherlands)

    Scheeren, F.A.; van Geelen, C.M.M.; Yasuda, E.; Spits, H.; Beaumont, T.


    Background: Fully human monoclonal antibodies directed against specific pathogens have a high therapeutic potential, but are difficult to generate. Methodology/Principal Findings: Memory B cells were immortalized by expressing an inducible active mutant of the transcription factor Signal Transducer

  12. Development of Human Monoclonal Antibodies Against Respiratory Syncytial Virus Using a High Efficiency Human Hybridoma Technique. (United States)

    Alvarado, Gabriela; Crowe, James E


    Human monoclonal antibodies against RSV have high potential for use as prophylaxis or therapeutic molecules, and they also can be used to define the structure of protective epitopes for rational vaccine design. In the past, however, isolation of human monoclonal antibodies was difficult and inefficient. Here, we describe contemporary methods for activation and proliferation of primary human memory B cells followed by cytofusion to non-secreting myeloma cells by dielectrophoresis to generate human hybridomas secreting RSV-specific monoclonal antibodies. We also provide experimental methods for screening human B cell lines to obtain RSV-specific lines, especially lines secreting neutralizing antibodies.

  13. Nuclear oncology with monoclonal antibodies and peptides

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Makoto [Saitama Medical School, Kawagoe (Japan). Saitama Medical Center


    Imaging and therapy using radiolabeled monoclonal antibodies have proved useful in many clinical studies. However, immunogenicity of mouse antibodies to human and insufficient tumor-to-normal tissue ratios remained to be solved. Chimerization and humanization by genetic engineering, and multistep targeting techniques have enabled lower immunogenicity and higher tumor-to-normal tissue contrast. Peptides like somatostatin-analogs have been reportedly useful in imaging tumors, which are either somatostatin receptor positive or negative. Elevated normal tissue accumulation of radiolabeled peptides is a drawback in aiming internal radiation therapy. (author). 51 refs.

  14. Crystal clear: visualizing the intervention mechanism of the PD-1/PD-L1 interaction by two cancer therapeutic monoclonal antibodies. (United States)

    Tan, Shuguang; Chen, Danqing; Liu, Kefang; He, Mengnan; Song, Hao; Shi, Yi; Liu, Jun; Zhang, Catherine W-H; Qi, Jianxun; Yan, Jinghua; Gao, Shan; Gao, George F


    Antibody-based PD-1/PD-L1 blockade therapies have taken center stage in immunotherapies for cancer, with multiple clinical successes. PD-1 signaling plays pivotal roles in tumor-driven T-cell dysfunction. In contrast to prior approaches to generate or boost tumor-specific T-cell responses, antibody-based PD-1/PD-L1 blockade targets tumor-induced T-cell defects and restores pre-existing T-cell function to modulate antitumor immunity. In this review, the fundamental knowledge on the expression regulations and inhibitory functions of PD-1 and the present understanding of antibody-based PD-1/PD-L1 blockade therapies are briefly summarized. We then focus on the recent breakthrough work concerning the structural basis of the PD-1/PD-Ls interaction and how therapeutic antibodies, pembrolizumab targeting PD-1 and avelumab targeting PD-L1, compete with the binding of PD-1/PD-L1 to interrupt the PD-1/PD-L1 interaction. We believe that this structural information will benefit the design and improvement of therapeutic antibodies targeting PD-1 signaling.

  15. Crystal clear: visualizing the intervention mechanism of the PD-1/PD-L1 interaction by two cancer therapeutic monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Shuguang Tan


    Full Text Available Abstract Antibody-based PD-1/PD-L1 blockade therapies have taken center stage in immunotherapies for cancer, with multiple clinical successes. PD-1 signaling plays pivotal roles in tumor-driven T-cell dysfunction. In contrast to prior approaches to generate or boost tumor-specific T-cell responses, antibody-based PD-1/PD-L1 blockade targets tumor-induced T-cell defects and restores pre-existing T-cell function to modulate antitumor immunity. In this review, the fundamental knowledge on the expression regulations and inhibitory functions of PD-1 and the present understanding of antibody-based PD-1/PD-L1 blockade therapies are briefly summarized. We then focus on the recent breakthrough work concerning the structural basis of the PD-1/PD-Ls interaction and how therapeutic antibodies, pembrolizumab targeting PD-1 and avelumab targeting PD-L1, compete with the binding of PD-1/PD-L1 to interrupt the PD-1/PD-L1 interaction. We believe that this structural information will benefit the design and improvement of therapeutic antibodies targeting PD-1 signaling.

  16. Monoclonal antibodies and method for detecting dioxins and dibenzofurans (United States)

    Vanderlaan, Martin; Stanker, Larry H.; Watkins, Bruce E.; Bailey, Nina R.


    Compositions of matter are described which include five monoclonal antibodies that react with dioxins and dibenzofurans, and the five hybridomas that produce these monoclonal antibodies. In addition, a method for the use of these antibodies in a sensitive immunoassay for dioxins and dibenzofurans is given, which permits detection of these pollutants in samples at concentrations in the range of a few parts per billion.

  17. Emerging monoclonal antibodies against Clostridium difficile infection. (United States)

    Péchiné, Séverine; Janoir, Claire; Collignon, Anne


    Clostridium difficile infections are characterized by a high recurrence rate despite antibiotic treatments and there is an urgent need to develop new treatments such as fecal transplantation and immonotherapy. Besides active immunotherapy with vaccines, passive immunotherapy has shown promise, especially with monoclonal antibodies. Areas covered: Herein, the authors review the different assays performed with monoclonal antibodies against C. difficile toxins and surface proteins to treat or prevent primary or recurrent episodes of C. difficile infection in animal models and in clinical trials as well. Notably, the authors lay emphasis on the phase III clinical trial (MODIFY II), which allowed bezlotoxumab to be approved by the Food and Drug Administration and the European Medicines Agency. They also review new strategies for producing single domain antibodies and nanobodies against C. difficile and new approaches to deliver them in the digestive tract. Expert opinion: Only two human Mabs against TcdA and TcdB have been tested alone or in combination in clinical trials. However, many animal model studies have provided rationale for the use of Mabs and nanobodies in C. difficile infection and pave the way for further clinical investigation.

  18. Analysis of monoclonal antibodies by sedimentation velocity analytical ultracentrifugation. (United States)

    Stine, W Blaine


    Development of a thorough understanding of the solution polydispersity of therapeutic glycoproteins including monoclonal antibodies is an important and challenging undertaking. Degradation pathways involving fragmentation could result in loss of therapeutic efficacy. Protein aggregation on the other hand is frequently considered a critical quality attribute, and concerns exist that protein aggregates could result in undesirable immunological consequences (1). Sedimentation velocity analysis performed in the analytical ultracentrifuge (SV-AUC) provides a uniquely powerful first principal measure of the hydrodynamic size and shape of proteins under conditions that can come very close to the formulated drug product. This technique avoids the potential pitfalls associated with size exclusion chromatography (SEC) including on-column dilution, adsorption or disruption of species by a stationary phase, and the need to use high ionic strength mobile phases to screen unwanted electrostatic interactions (2, 3). Furthermore, not only does SV-AUC provide a quantitative size distribution analysis, but it also provides information about macromolecular conformation. For these reasons, use of SV-AUC for analysis of therapeutic monoclonal antibodies has become widespread throughout the biopharmaceutical industry and is one of the most common orthogonal techniques to SEC for measuring aggregate and fragment levels (4-9). The studies outlined in this chapter describe the basic principles of designing, collecting, and analyzing experimental data using SV-AUC with a focus on methods for therapeutic monoclonal antibodies and other similar biologics. Details are given that facilitate the acquisition of high quality data sets that in turn simplify data analysis resulting in robust and accurate measures of solution polydispersity.

  19. Amelioration of murine passive immune thrombocytopenia by IVIg and a therapeutic monoclonal CD44 antibody does not require the Myd88 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Andrew R Crow

    Full Text Available Immune thrombocytopenia (ITP is an autoimmune bleeding disorder characterized by a low platelet count and the production of anti-platelet antibodies. The majority of ITP patients have antibodies to platelet integrin α(IIbβ₃ (GPIIbIIIa which can direct platelet phagocytosis by macrophages. One effective treatment for patients with ITP is intravenous immunoglobulin (IVIg which rapidly reverses thrombocytopenia. The exact mechanism of IVIg action in human patients is unclear, although in mouse models of passive ITP, IVIg can rapidly increase platelet counts in the absence of adaptive immunity. Another antibody therapeutic that can similarly increase platelet counts independent of adaptive immunity are CD44 antibodies. Toll-like receptors (TLRs are pattern recognition receptors which play a central role in helping direct the innate immune system. Dendritic cells, which are notable for their expression of TLRs, have been directly implicated in IVIg function as an initiator cell, while CD44 can associate with TLR2 and TLR4. We therefore questioned whether IVIg, or the therapeutic CD44 antibody KM114, mediate their ameliorative effects in a manner dependent upon normal TLR function. Here, we demonstrate that the TLR4 agonist LPS does not inhibit IVIg or KM114 amelioration of antibody-induced thrombocytopenia, and that these therapeutics do not ameliorate LPS-induced thrombocytopenia. IVIg was able to significantly ameliorate murine ITP in C3H/HeJ mice which have defective TLR4. All known murine TLRs except TLR3 utilize the Myd88 adapter protein to drive TLR signaling. Employing Myd88 deficient mice, we found that both IVIg and KM114 ameliorate murine ITP in Myd88 deficient mice to the same extent as normal mice. Thus both IVIg and anti-CD44 antibody can mediate their ameliorative effects in murine passive ITP independent of the Myd88 signaling pathway. These data help shed light on the mechanism of action of IVIg and KM114 in the amelioration of

  20. The Role of Monoclonal Antibodies in the Management of Leukemia

    Directory of Open Access Journals (Sweden)

    Mohamad Cherry


    Full Text Available This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML. As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies.

  1. The Role of Monoclonal Antibodies in the Management of Leukemia (United States)

    Al-Ameri, Ali; Cherry, Mohamad; Al-Kali, Aref; Ferrajoli, Alessandra


    This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML). As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies.

  2. Induction and characterization of monoclonal anti-idiotypic antibodies reactive with idiotopes of canine parvovirus neutralizing monoclonal antibodies.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. van Es (Johan); G.A. Drost; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)


    textabstractMonoclonal anti-idiotypic (anti-Id) antibodies (Ab2) were generated against idiotypes (Id) of canine parvovirus (CPV) specific monoclonal antibodies (MoAbs). The binding of most of these anti-Id antibodies to their corresponding Id could be inhibited by antigen, thus classifying these

  3. Therapeutic Antibodies to Ganglioside GD2 Evolved from Highly Selective Germline Antibodies

    Directory of Open Access Journals (Sweden)

    Eric Sterner


    Full Text Available Antibodies play a crucial role in host defense and are indispensable research tools, diagnostics, and therapeutics. Antibody generation involves binding of genomically encoded germline antibodies followed by somatic hypermutation and in vivo selection to obtain antibodies with high affinity and selectivity. Understanding this process is critical for developing monoclonal antibodies, designing effective vaccines, and understanding autoantibody formation. Prior studies have found that antibodies to haptens, peptides, and proteins evolve from polyspecific germline antibodies. The immunological evolution of antibodies to mammalian glycans has not been studied. Using glycan microarrays, protein microarrays, cell binding studies, and molecular modeling, we demonstrate that therapeutic antibodies to the tumor-associated ganglioside GD2 evolved from highly specific germline precursors. The results have important implications for developing vaccines and monoclonal antibodies that target carbohydrate antigens. In addition, they demonstrate an alternative pathway for antibody evolution within the immune system that is distinct from the polyspecific germline pathway.

  4. Monitoring monoclonal antibody delivery in oncology: the example of bevacizumab.

    Directory of Open Access Journals (Sweden)

    Guillaume Nugue

    Full Text Available Developing therapeutic monoclonal antibodies paves the way for new strategies in oncology using targeted therapy which should improve specificity. However, due to a lack of biomarkers, a personalized therapy scheme cannot always be applied with monoclonal antibodies. As a consequence, the efficacy or side effects associated with this type of treatment often appear to be sporadic. Bevacizumab is a therapeutic monoclonal antibody targeting Vascular Endothelial Growth Factor (VEGF. It is used to limit tumor vascularization. No prognosis or response biomarker is associated with this antibody, we therefore assessed whether the administration protocol could be a possible cause of heterogeneous responses (or variable efficacy. To do this, we developed a bevacizumab assay with a broad sensitivity range to measure blood bevacizumab concentrations. We then analyzed bevacizumab concentrations in 17 patients throughout the first quarter of treatment. In line with previously published data, average blood concentrations were 88+/-27 mg/L following the first dose administered, and 213+/-105 mg/L after the last (6(th dose administered. However, the individual values were scattered, with a mean 4-fold difference between the lowest and the highest concentration for each dose administered. We demonstrated that the bevacizumab administration schedule results in a high inter-individual variability in terms of blood concentrations. Comparison of assay data with clinical data indicates that blood concentrations above the median are associated with side effects, whereas values below the median favor inefficacy. In conclusion, bevacizumab-based therapy could benefit from a personalized administration schedule including follow-up and adjustment of circulating bevacizumab concentrations.

  5. Monoclonal Antibodies Radiolabeling with Rhenium-188 for Radioimmunotherapy

    Directory of Open Access Journals (Sweden)

    Licia Uccelli


    Full Text Available Rhenium-188, obtained from an alumina-based tungsten-188/rhenium-188 generator, is actually considered a useful candidate for labeling biomolecules such as antibodies, antibody fragments, peptides, and DNAs for radiotherapy. There is a widespread interest in the availability of labeling procedures that allow obtaining Re188-labeled radiopharmaceuticals for various therapeutic applications, in particular for the rhenium attachment to tumor-specific monoclonal antibodies (MoAbs for immunotherapy. Different approaches have been developed in order to obtain Re188-radioimmunoconjugates in high radiochemical purity starting from the generator eluted Re188ReO4-. The aim of this paper is to provide a short overview on Re188-labeled (MoAbs, focusing in particular on the radiolabeling methods, quality control of radioimmunoconjugates, and their in vitro stability for radioimmunotherapy (RIT, with particular reference to the most important contributions published in literature in this topic.

  6. Monoclonal Antibodies Radiolabeling with Rhenium-188 for Radioimmunotherapy. (United States)

    Uccelli, Licia; Martini, Petra; Pasquali, Micol; Boschi, Alessandra


    Rhenium-188, obtained from an alumina-based tungsten-188/rhenium-188 generator, is actually considered a useful candidate for labeling biomolecules such as antibodies, antibody fragments, peptides, and DNAs for radiotherapy. There is a widespread interest in the availability of labeling procedures that allow obtaining 188Re-labeled radiopharmaceuticals for various therapeutic applications, in particular for the rhenium attachment to tumor-specific monoclonal antibodies (Mo)Abs for immunotherapy. Different approaches have been developed in order to obtain 188Re-radioimmunoconjugates in high radiochemical purity starting from the generator eluted [188Re]ReO4-. The aim of this paper is to provide a short overview on 188Re-labeled (Mo)Abs, focusing in particular on the radiolabeling methods, quality control of radioimmunoconjugates, and their in vitro stability for radioimmunotherapy (RIT), with particular reference to the most important contributions published in literature in this topic.

  7. Developments in therapy with monoclonal antibodies and related proteins. (United States)

    Shepard, H Michael; Phillips, Gail Lewis; D Thanos, Christopher; Feldmann, Marc


    Monoclonal antibody therapeutics have been approved for over 30 targets and diseases, most commonly cancer. Antibodies have become the new backbone of the pharmaceutical industry, which previously relied on small molecules. Compared with small molecules, monoclonal antibodies (mAbs) have exquisite target selectivity and hence less toxicity as a result of binding other targets. The clinical value of both mAbs and ligand traps has been proven. New applications of mAbs are being tested and mAbs have now been designed to target two (bi-specific, eg TNF-α and IL-17) or more targets simultaneously, augmenting their therapeutic potential. Because of space limitations and the wide ranging scope of this review there are regrettably, but inevitably, omissions and missing citations. We have chosen to highlight the first successes in inflammatory diseases and cancer, but a broader overview of approved mAbs and related molecules can be found in Table 1. © Royal College of Physicians 2017. All rights reserved.

  8. Plant Factories for the Production of Monoclonal Antibodies. (United States)

    Sheshukova, E V; Komarova, T V; Dorokhov, Y L


    Like animal cells, plant cells bear mechanisms for protein synthesis and posttranslational modification (glycosylation and phosphorylation) that allow them to be seriously considered as factories for therapeutic proteins, including antibodies, with the development of biotechnology. The plant platform for monoclonal antibody production is an attractive approach due to its flexibility, speed, scalability, low cost of production, and lack of contamination risk from animal-derived pathogens. Contemporary production approaches for therapeutic proteins rely on transgenic plants that are obtained via the stable transformation of plant cells as well as the transient (temporary) expression of foreign proteins. In this review, we discuss present-day approaches for monoclonal antibody production in plants (MAPP), features of carbohydrate composition, and methods for the humanization of the MAPP carbohydrate profile. MAPPs that have successfully passed preclinical studies and may be promising for use in clinical practice are presented here. Perspectives on using MAPPs are determined by analyzing their economic benefits and production rates, which are especially important in personalized cancer therapy as well as in cases of bioterrorism and pandemics.

  9. Alemtuzumab and Natalizumab: The Monoclonal Antibody Story Continues

    Directory of Open Access Journals (Sweden)

    BL Johnston


    Full Text Available In the July/August 2006 issue of this journal, the infectious complications associated with the use of infliximab, etanercept and adalimumab were reviewed (1. These represent only three of the many monoclonal antibodies either licensed or in clinical trials for therapeutic use in cancer and autoimmune disease or to prevent rejection in both solid organ and hematopoietic stem cell transplantation. While most of these agents have not been associated with increased infection rates, alemtuzumab and natalizumab have gained particular attention related to either the frequency or type of infection seen in some individuals who have received them.

  10. Therapeutic vaccine using a monoclonal antibody against a 70-kDa glycoprotein in mice infected with highly virulent Sporothrix schenckii and Sporothrix brasiliensis. (United States)

    de Almeida, José Roberto Fogaça; Kaihami, Gilberto Hideo; Jannuzzi, Grasielle Pereira; de Almeida, Sandro Rogerio


    Sporotrichosis is a chronic granulomatous mycosis caused by the dimorphic fungi that comprise the Sporothrix complex. The latter are widely distributed in nature, developing a saprophytic mycelial form on plant debris and soil. Formerly, the S. schenckii species was thought to be the only species capable of causing sporotrichosis. However, in recent years, the existence of a group of highly genotypically and phenotypically variable species has been reported as etiologic agents of this mycosis. Recently, it has become important to study aspects such as virulence and the immune response against key members of the Sporothrix complex and to observe the presence of glycoprotein (gp) 70 and efficacy of the P6E7 monoclonal antibody against more virulent strains. The data presented here demonstrate that the strain isolated from a case of feline sporotrichosis, that is, strain 5110 (American Type Culture Collection MYA-4823) is the most virulent and the only one able to secrete gp70. This glycoprotein is apparently an important factor in the virulence of Sporothrix spp. because treatment with MAb P6E7 resulted in the reduction of fungal burden in the analyzed organs. Additional studies of the role of gp70 in modulating the immune response of the host are needed to understand the pathology of sporotrichosis. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail:

  11. Prediction and Reduction of the Aggregation of Monoclonal Antibodies. (United States)

    van der Kant, Rob; Karow-Zwick, Anne R; Van Durme, Joost; Blech, Michaela; Gallardo, Rodrigo; Seeliger, Daniel; Aßfalg, Kerstin; Baatsen, Pieter; Compernolle, Griet; Gils, Ann; Studts, Joey M; Schulz, Patrick; Garidel, Patrick; Schymkowitz, Joost; Rousseau, Frederic


    Protein aggregation remains a major area of focus in the production of monoclonal antibodies. Improving the intrinsic properties of antibodies can improve manufacturability, attrition rates, safety, formulation, titers, immunogenicity, and solubility. Here, we explore the potential of predicting and reducing the aggregation propensity of monoclonal antibodies, based on the identification of aggregation-prone regions and their contribution to the thermodynamic stability of the protein. Although aggregation-prone regions are thought to occur in the antigen binding region to drive hydrophobic binding with antigen, we were able to rationally design variants that display a marked decrease in aggregation propensity while retaining antigen binding through the introduction of artificial aggregation gatekeeper residues. The reduction in aggregation propensity was accompanied by an increase in expression titer, showing that reducing protein aggregation is beneficial throughout the development process. The data presented show that this approach can significantly reduce liabilities in novel therapeutic antibodies and proteins, leading to a more efficient path to clinical studies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. A monoclonal antibody toolkit for C. elegans.

    Directory of Open Access Journals (Sweden)

    Gayla Hadwiger

    Full Text Available BACKGROUND: Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms. METHODOLOGY/PRINCIPAL FINDINGS: We report the production of monoclonal antibodies directed against a wide range of proteins that label specific subcellular and cellular components, and macromolecular complexes. Antibodies were made to synaptobrevin (SNB-1, a component of synaptic vesicles; to Rim (UNC-10, a protein localized to synaptic active zones; to transforming acidic coiled-coil protein (TAC-1, a component of centrosomes; to CENP-C (HCP-4, which in worms labels the entire length of their holocentric chromosomes; to ORC2 (ORC-2, a subunit of the DNA origin replication complex; to the nucleolar phosphoprotein NOPP140 (DAO-5; to the nuclear envelope protein lamin (LMN-1; to EHD1 (RME-1 a marker for recycling endosomes; to caveolin (CAV-1, a marker for caveolae; to the cytochrome P450 (CYP-33E1, a resident of the endoplasmic reticulum; to beta-1,3-glucuronyltransferase (SQV-8 that labels the Golgi; to a chaperonin (HSP-60 targeted to mitochondria; to LAMP (LMP-1, a resident protein of lysosomes; to the alpha subunit of the 20S subcomplex (PAS-7 of the 26S proteasome; to dynamin (DYN-1 and to the alpha-subunit of the adaptor complex 2 (APA-2 as markers for sites of clathrin-mediated endocytosis; to the MAGUK, protein disks large (DLG-1 and cadherin (HMR-1, both of which label adherens junctions; to a cytoskeletal linker of the ezrin-radixin-moesin family (ERM-1, which localized to apical membranes; to an ERBIN family protein (LET-413 which localizes to the basolateral membrane of epithelial cells and to an adhesion molecule (SAX-7 which localizes to the plasma membrane at cell-cell contacts. In addition to

  13. Crossreactivity of boar sperm monoclonal antibodies with human ...

    African Journals Online (AJOL)

    Monoclonal antibodies against the head (H mabs) and tail (Tmabs) of boar spermatozoa were produced. Spermatozoa from boar, stallion, bull, human, ram, goat and rabbit were independently incubated with the monoclonal antibodies and later stained by immunofluorescence method. There were positive reactions of the ...

  14. Monoclonal Antibodies Specific for Hippurate Hydrolase of Campylobacter jejuni


    Steele, Marina; Gyles, Carlton; Chan, Voon Loong; Odumeru, Joseph


    Eleven monoclonal antibodies raised against recombinant Campylobacter jejuni hippurate hydrolase were tested for binding to lysates from 19 C. jejuni strains, 12 other Campylobacter strains, and 21 non-Campylobacter strains. Several monoclonal antibodies bound to C. jejuni but not to other Campylobacter species and may be useful in a species-specific immunoassay.

  15. Monoclonal antibodies in immunodiagnostic assays: a review of ...

    African Journals Online (AJOL)

    Monoclonal antibodies (mAbs) have proven to be effective biological reagents in the immunodiagnostic assays. This is due to their binding accuracy to many pathogens, thus, making them valuable research tools. Since the discovery of hybridoma technology by Kohler and Milstein, the use of monoclonal antibodies ...

  16. Recognition of Coccidioides immitis Antigens with Monoclonal Antibodies. (United States)


    AD-A114 322 RECOGNITION OF COCCIDIOIDES IMMITIS ANTIGENS NITH 1/1 MONOCLONAL ANT ISODIESMU CALIFORNIA UNIV OAKLAND NAVAL SIOSCIENCES LAB S J KRAEGER...031 NR204-123_ 11 (1lEWnld SeuiyCasification) ([L ECOGNITIB’N OF COCCIDIQIDES IMMITIS ANTIGENS WITH MONOCLONAL ANTIBODIES 12 PERSONAL A THOR(S...specificity and suitability for diagnostic use of seven 1gM monoclonal antibodies (MAbs) prepared in 1984 with c. immitis Silveira spherules and

  17. Monoclonal Antibodies Follow Distinct Aggregation Pathways During Production-Relevant Acidic Incubation and Neutralization

    DEFF Research Database (Denmark)

    Pedersen, Thomas Skamris; Tian, Xinsheng; Thorolfsson, Matthias


    PURPOSE: Aggregation aspects of therapeutic monoclonal antibodies (mAbs) are of common concern to the pharmaceutical industry. Low pH treatment is applied during affinity purification and to inactivate endogenous retroviruses, directing interest to the mechanisms of acid-induced antibody aggregat...

  18. Immuno-PET : A navigator in monoclonal antibody development and applications

    NARCIS (Netherlands)

    van Dongen, Guus A. M. S.; Visser, Gerard W. M.; Hooge, Marjolijn N. Lub-de; Perk, Lars R.; de Vries, Elisabeth G. E.


    Monoclonal antibodies (mAbs) have been approved for use as diagnostics and therapeutics in a broad range of medical indications, but especially in oncology. In addition, hundreds of new mAbs, engineered mAb fragments, and nontraditional antibody-like scaffolds directed against either validated or

  19. New monoclonal antibodies on the horizon in multiple myeloma. (United States)

    O'Donnell, Elizabeth K; Raje, Noopur S


    Across all cancers, monoclonal antibodies have emerged as a potential strategy for cancer therapy. Monoclonal antibodies target antigens expressed on the surface of cancer cells and accessory cells. This targeted approach uses the host's immune system to promote the killing of cancer cells. Multiple myeloma (MM) is the second most common hematologic malignancy that remains incurable in the majority of patients. The treatment of MM has evolved dramatically over the past decade and continues to evolve with the approval of four new drugs in 2015. Most recently the United States Food and Drug Administration (US FDA) approved two monoclonal antibodies for the treatment of this disease. Monoclonal antibodies are generally well-tolerated and offer a novel method of action for treated relapsed and refractory disease and are now being studied in the upfront setting. In this article, we review the evidence for the existing approved monoclonal antibodies and discuss promising targeted therapies and innovative strategies for the treatment of MM.

  20. Immunohistochemical diagnosis of fusariosis with monoclonal antibodies

    DEFF Research Database (Denmark)

    Jensen, H.E.; Aalbæk, B.; Jungersen, Gregers

    for fusariosis. A panel of newly developed Mabs for immunohistochemical diagnosis of fusariosis was screened for specificity on experimentally infected laboratory animal tissue and on skin tissue biopsies from two neutropenic patients with Fusarium sepsis. Methods: Somatic antigens were made from F. solani (CBS...... for establishing an accurate diagnosis. Although molecular techniques (e.g. in situ hybridization and PCR) have been explored for diagnostic use, the development of specific monoclonal antibodies (Mabs) for immunohistochemical identification of Fusarium spp. will extend the availability of diagnostic options...... containing homologous (fusariosis) and heterologous (aspergillosis, candidosis, and scedosporidiosis) fungal elements. Tissue reactive Mabs were then tested on skin biopsies from two patients with fusariosis sepsis with dissemination to the skin In the patients, a diagnosis of fusariosis-sepsis had been...

  1. SPECT assay of radiolabeled monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jaszczak, R.J.


    The long-term goal of this research project is to develop methods to improve the utility of single photon emission computed tomography (SPECI) to quantify the biodistribution of monoclonal antibodies (MoAbs) labeled with clinically relevant radionuclides ({sup 123}I, {sup 131}I, and {sup 111}In) and with another radionuclide,{sup 211}At, recently used in therapy. We describe here our progress in developing quantitative SPECT methodology for {sup 111}In and {sup 123}I. We have focused our recent research thrusts on the following aspects of SPECT: (1) The development of improved SPECT hardware, such as improved acquisition geometries. (2) The development of better reconstruction methods that provide accurate compensation for the physical factors that affect SPECT quantification. (3) The application of carefully designed simulations and experiments to validate our hardware and software approaches.

  2. Monoclonal antibodies to Mycoplasma gallisepticum membrane proteins. (United States)

    Czifra, G; Tuboly, T; Sundquist, B G; Stipkovits, L


    Monoclonal antibodies (MAbs) were prepared to study the immunogenesis of Mycoplasma gallisepticum. Balb/c mice were immunized with M. gallisepticum immunostimulating complexes and the supernatant of heterokaryotes screened with M. gallisepticum and closely related M. synoviae as antigens in indirect enzyme-linked immunosorbent assay. All selected MAbs proved to be M. gallisepticum species-specific when they were tested against 10 different avian Mycoplasma species. After immunoblotting analysis, five polypeptides were identified with estimated molecular weights of 110,000, 66,000, 64,000, 56,000, and 50,000. Cell membrane localization of the recognized polypeptides was studied by immunoelectron microscopy. None of the MAbs inhibited the hemagglutinating activity of freshly prepared M. gallisepticum. However, one MAb (B3) specific for p56 agglutinated the stained M. gallisepticum antigen in the slide agglutination test. Results seemed to correlate with published information on the protein composition and agglutinating activity of Mycoplasma gallisepticum.

  3. [Improved protein-A chromatography for monoclonal antibody purification]. (United States)

    Chen, Quan; Toh, Phyllicia; Hoi, Aina; Xian, Mo; Peng, Xinying; Yang, Yuansheng; Zhang, Haibo; Nian, Rui; Zhang, Wei


    Therapeutic monoclonal antibodies become the major product class within the biopharmaceutical market. Protein A as the first capture step is still dominant in current platforms for purification of monoclonal antibodies. In this study, we developed a new antibody harvest process that incorporates acidic treatment of cell harvest, demonstrating high process yield, improved clearance of host cell associated contaminants, like non-histone host cell protein, histone, DNA and heteroaggregates. Host protein contamination was reduced about 10-fold compared to protein A loaded with harvest clarified by centrifugation and microfiltration. Turbidity increase of eluted IgG upon pH neutralization was nearly eliminated. Residual levels of impurities in the protein A eluate were achieved that potentially meet requirements of drug substance and thus alleviate the burden for further impurities removal in subsequent chromatography steps. The mechanism of host cell associated contaminants removal during acidic treatment was also explored. After a polishing step by Capto adhere, host cell protein was reduced to less than 5 ppm, DNA less than 1 ppb, histone to undetectable level, heteroaggregates less than 0.01% with total IgG recovery around 87%. This efficient process can be easily integrated into current IgG purification platforms, and may overcome downstream processing challenges.

  4. Potential therapeutic roles for antibody mixtures. (United States)

    Raju, T Shantha; Strohl, William R


    With the enormous success of recombinant monoclonal antibodies (rMAbs) as human therapeutics, there are increasing efforts underway to explore new molecular entities that mimic rMAbs to replicate this huge success. In addition to naked intact rMAbs, antibody drug conjugates (ADCs), FAb and F(ab')2 fragments and also Fc fusion proteins have been developed and/or marketed as human therapeutics to treat different human diseases, including life-threatening diseases such as cancer. Several hundreds more intact rMAbs, ADCs, FAb, F(ab')2 fragments and Fc fusion proteins are currently undergoing human clinical trials. In addition to these molecules, new type of antibody fragments such as single-chain Fvs (scFvs), VH, scFv-Fc, scFv-CH, scFAb, scFv-zipper, diabodies, bispecific antibodies and similar types of constructs are also being investigated to be developed as human monotherapeutics. Further, there are quite a few current examples of combinations of biologics being developed. For example, currently, several biopharmaceutical companies are developing combinations of antibody mixtures as human therapeutics. Accordingly, the question posed here is whether it is time to consider the possibility of developing a broader range of combinations of therapeutic biologics. Combinations of small organic molecules have been successfully used as therapeutics for many years to treat many diseases, so the context of using polypharmacology to treat human diseases is not novel. For the past several decades, intravenous immunoglobulins have successfully been used in treating various autoimmune diseases. In this context, several biotechnology companies are exploring the use of combinations of antibody mixtures as human therapeutics. This editorial discusses these current efforts and the potential future role of antibody mixtures as human therapeutics.

  5. Assay for the specificity of monoclonal antibodies in crossed immunoelectrophoresis

    DEFF Research Database (Denmark)

    Skjødt, K; Schou, C; Koch, C


    A method is described based on crossed immunoelectrophoresis of a complex antigen mixture in agarose gel followed by incubation of the gel with the monoclonal antibody. The bound monoclonal antibody is detected by the use of a secondary enzyme-labelled antibody. Using this technique we have been...... able to identify the precipitate arc in crossed immunoelectrophoresis of major histocompatibility complex (MHC) class I molecules in a mixture of all detergent solubilized cell membrane molecules by means of a monoclonal antibody, the specificity of which was known independently to be against MHC class...... I molecules. In other experiments using the same technique we demonstrated the reaction of a monoclonal antibody specific for chicken Ig light chains. Udgivelsesdato: 1984-Aug-3...

  6. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels. (United States)

    Wilkinson, Trevor C I


    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  7. Novel Cross-Reactive Monoclonal Antibodies against Ebolavirus Glycoproteins Show Protection in a Murine Challenge Model. (United States)

    Duehr, James; Wohlbold, Teddy John; Oestereich, Lisa; Chromikova, Veronika; Amanat, Fatima; Rajendran, Madhusudan; Gomez-Medina, Sergio; Mena, Ignacio; tenOever, Benjamin R; García-Sastre, Adolfo; Basler, Christopher F; Munoz-Fontela, Cesar; Krammer, Florian


    Out of an estimated 31,100 cases since their discovery in 1976, ebolaviruses have caused approximately 13,000 deaths. The vast majority (∼11,000) of these occurred during the 2013-2016 West African epidemic. Three out of five species in the genus are known to cause Ebola Virus Disease in humans. Several monoclonal antibodies against the ebolavirus glycoprotein are currently in development as therapeutics. However, there is still a paucity of monoclonal antibodies that can cross-react between the glycoproteins of different ebolavirus species, and the mechanism of these monoclonal antibody therapeutics is still not understood in detail. Here, we generated a panel of eight murine monoclonal antibodies (MAbs) utilizing a prime-boost vaccination regimen with a Zaire ebolavirus glycoprotein expression plasmid followed by infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. We tested the binding breadth of the resulting monoclonal antibodies using a set of recombinant surface glycoproteins from Reston, Taï Forest, Bundibugyo, Zaire, Sudan, and Marburg viruses and found two antibodies that showed pan-ebolavirus binding. An in vivo Stat2-/- mouse model was utilized to test the ability of these MAbs to protect from infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. Several of our antibodies, including the broadly binding ones, protected mice from mortality despite lacking neutralization capability in vitro, suggesting their protection may be mediated by Fc-FcR interactions. Indeed, three antibodies displayed cellular phagocytosis and/or antibody-dependent cell-mediated cytotoxicity in vitro Our antibodies, specifically the two identified cross-reactive monoclonal antibodies (KL-2E5 and KL-2H7), might add to the understanding of anti-ebolavirus humoral immunity.IMPORTANCE This study describes the generation of a panel of novel anti-ebolavirus glycoprotein monoclonal antibodies, including two

  8. Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies. (United States)

    Ulaeto, David O; Hutchinson, Alistair P; Nicklin, Stephen


    Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites.

  9. Monoclonal antibodies and Fc fragments for treating solid tumors

    Directory of Open Access Journals (Sweden)

    Eisenbeis AM


    Full Text Available Andrea M Eisenbeis, Stefan J GrauDepartment of Neurosurgery, University Hospital of Cologne, Cologne, GermanyAbstract: Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials.Keywords: targeted therapy, monoclonal antibodies, cancer, biological therapy

  10. From Monoclonal Antibodies to Chimeric Antigen Receptors for the Treatment of Human Malignancies


    Caruana, Ignazio; Diaconu, Iulia; Dotti, Gianpietro


    Monoclonal antibodies (mAbs) and their directly derived cell-based application known as chimeric antigen receptors (CARs) ensue from the need to develop novel therapeutic strategies that retain high anti-tumor activity, but carry reduced toxicity compared to conventional chemo- and radio-therapies. In this concise review article we will summarize the application of antibodies designed to target antigens expressed by tumor cells, and the transition from these antibodies to the generation of CARs.

  11. Molecular Insights into Fully Human and Humanized Monoclonal Antibodies: What are the Differences and Should Dermatologists Care? (United States)

    Mallbris, Lotus; Davies, Julian; Glasebrook, Andrew; Tang, Ying; Glaesner, Wolfgang; Nickoloff, Brian J


    In recent years, a large number of therapeutic monoclonal antibodies have come to market to treat a variety of conditions including patients with immune-mediated chronic inflammation. Distinguishing the relative clinical efficacy and safety profiles of one monoclonal antibody relative to another can be difficult and complex due to different clinical designs and paucity of head-to-head comparator studies. One distinguishing feature in interpreting clinical trial data by dermatologists may begin by determining whether a monoclonal antibody is fully human or humanized, which can be discerned by the generic name of the drug. Herein, this commentary highlights the distinctions and similarities of fully human and humanized monoclonal antibodies in their nomenclature, engineering, and clinical profiles. While there are a number of differences between these types of monoclonal antibodies, current evidence indicates that this designation does not impart any measurable impact on overall clinical efficacy and safety profiles of a given drug. Based on molecular insights provided in this commentary, it is clear that each monoclonal antibody, irrespective of being fully human or humanized, should be individually assessed for its clinical impact regarding safety and efficacy. Going beyond the type of generic name ascribed to a monoclonal antibody will be an ever-increasing theme for dermatologists as more therapeutic monoclonal antibodies emerge to potentially treat a wider scope of diseases with cutaneous manifestations.

  12. Generation of monoclonal antibodies to native active human glycosyltransferases

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Bennett, Eric Paul; Clausen, Henrik


    using monoclonal antibodies therefore provides an excellent strategy to analyze the glycosylation process in cells. A major drawback has been difficulties in generating antibodies to glycosyltransferases and validating their specificities. Here we describe a simple strategy for generating...... and characterizing monoclonal antibodies to human glycosyltransferases. This strategy includes a process for recombinant production and purification of enzymes for immunization, a simple selection strategy for isolation of antibodies with optimal properties for in situ detection of enzyme expression......, and a comprehensive strategy for characterizing the fine specificity of such antibodies....

  13. Antibodies in infectious diseases: polyclonals, monoclonals and niche biotechnology. (United States)

    Berry, Jody D; Gaudet, Ryan G


    Antibody preparations have a long history of providing protection from infectious diseases. Although antibodies remain the only natural host-derived defense mechanism capable of completely preventing infection, as products, they compete against inexpensive therapeutics such as antibiotics, small molecule inhibitors and active vaccines. The continued discovery in the monoclonal antibody (mAb) field of leads with broadened cross neutralization of viruses and demonstrable synergy of antibody with antibiotics for bacterial diseases, clearly show that innovation remains. The commercial success of mAbs in chronic disease has not been paralleled in infectious diseases for several reasons. Infectious disease immunotherapeutics are limited in scope as endemic diseases necessitate active vaccine development. Also, the complexity of these small markets draws the interest of niche companies rather than big pharmaceutical corporations. Lastly, the cost of goods for mAb therapeutics is inherently high for infectious agents due to the need for antibody cocktails, which better mimic polyclonal immunoglobulin preparations and prevent antigenic escape. In cases where vaccine or convalescent populations are available, current polyclonal hyperimmune immunoglobulin preparations (pIgG), with modern and highly efficient purification technology and standardized assays for potency, can make economic sense. Recent innovations to broaden the potency of mAb therapies, while reducing cost of production, are discussed herein. On the basis of centuries of effective use of Ab treatments, and with growing immunocompromised populations, the question is not whether antibodies have a bright future for infectious agents, but rather what formats are cost effective and generate safe and efficacious treatments to satisfy regulatory approval. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Monoclonal Antibodies for Systemic Lupus Erythematosus (SLE

    Directory of Open Access Journals (Sweden)

    Gabriella Moroni


    Full Text Available A number of monoclonal antibodies (mAb are now under investigation in clinical trials to assess their potential role in Systemic Lupus Erythematosus (SLE. The most frequently used mAb is rituximab, which is directed against CD20, a membrane protein expressed on B lymphocytes. Uncontrolled trials reported an improvement of SLE activity in non-renal patients and other studies even reported an improvement of severe lupus nephritis unresponsive to conventional treatments. However two randomized trials failed to show the superiority of rituximab over conventional treatment in non renal SLE and in lupus nephritis. Preliminary trials reported promising results with epratuzumab, a humanized mAb directed against CD22, and with belimumab, a human mAb that specifically recognizes and inhibits the biological activity of BLyS a cytokine of the tumornecrosis-factor (TNF ligand superfamily. Other clinical trials with mAb directed against TNF-alpha, interleukin-10 (Il-10, Il-6, CD154, CD40 ligand, IL-18 or complement component C5 are under way. At present, however, in spite of good results reported by some studies, no firm conclusion on the risk-benefit profile of these mAbs in patients with SLE can be drawn from the available studies.

  15. Monoclonal antibodies therapies for ovarian cancer. (United States)

    Leone Roberti Maggiore, Umberto; Bellati, Filippo; Ruscito, Ilary; Gasparri, Maria Luisa; Alessandri, Franco; Venturini, Pier Luigi; Ferrero, Simone


    Despite aggressive debulking surgery, intraperitoneal therapies and the use of new drugs for chemotherapy, patients with ovarian cancer (OC) still have poor prognosis and, therefore, new strategies for its management are needed. Molecular-targeted agents can be considered a new option in drug research. Several antigens related to OC have been isolated and they could be potential target of monoclonal antibodies (mAbs); therefore, different mAbs have been developed and are emerging as new potential OC treatments. This article aims to review the literature on the use of mAbs in the treatment of OC. The purposes of this manuscript are to offer a brief explanation of the mechanisms of action of mAbs and to help readers in understanding the current role of mAbs in the treatment of OC. A deeper knowledge of the molecular biology of OC has brought new developments in targeted therapies. Among these therapies, bevacizumab demonstrated the higher clinical efficacy. Further larger trials are needed to better define the role of the other mAbs in OC treatment. There is a strong need to identify and validate robust biomarkers for a more focused patient selection and for tailoring therapies, optimizing dose and assessing response.


    We have obtained a panel of monoclonal antibodies directed against fathead minnow vitellogenin (Vtg) for use in sensitive ELISAs to quantify the response of exposure in vivo to estrogen or estrogen mimics.

  17. [Monoclonal antibodies against PCSK9: from bench to clinic]. (United States)

    Guijarro Herraiz, Carlos


    Antibodies are glycoproteins with high specificity binding to multiple antigens due to the large number of structural conformations of the variable chains. Hybridoma technology (fusion of myeloma cells with immunoglobulin-producing lymphocytes) has allowed the synthesis of large quantities of unique antibodies (monoclonal [mAb]). mAbs were initially murine. Subsequently, chimeric mAbs were developed, followed by humanized mAbs and finally human mAbs. The high selectivity and good tolerance of human mAbs allows their therapeutic administration to block specific exogenous or endogenous molecules. Selective human mAbs to the catalytic domain of PCSK9 have recently been developed. These antibodies block PCSK9, favour low-density lipoprotein receptor recycling and markedly reduce circulating cholesterol. Preliminary studies indicate that lowering cholesterol through anti-PCSK9 antibodies may significantly reduce the cardiovascular complications of arteriosclerosis. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Arteriosclerosis. All rights reserved.

  18. New monoclonal antibodies on the horizon in multiple myeloma


    O’Donnell, Elizabeth K.; Raje, Noopur S.


    Across all cancers, monoclonal antibodies have emerged as a potential strategy for cancer therapy. Monoclonal antibodies target antigens expressed on the surface of cancer cells and accessory cells. This targeted approach uses the host’s immune system to promote the killing of cancer cells. Multiple myeloma (MM) is the second most common hematologic malignancy that remains incurable in the majority of patients. The treatment of MM has evolved dramatically over the past decade and continues to...

  19. The effect of immunoscintigraphy with monoclonal antibodies on assays of hormones and tumor markers. This is not the end of the matter!

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); P.J. Blankestijn (Peter); R. Docter (Roel); B.G. Blijenberg (Bert); S.W.J. Lamberts (Steven); E.P. Krenning (Eric)


    textabstractThe use of monoclonal antibodies in medicine for in-vivo diagnostic methods and for therapeutic purposes will increase in the future. Although monoclonal antibodies possess a high specificity, the animal origin of these antibodies remains a problem. Repeated

  20. [Monoclonal antibodies for the treatment of multiple sclerosis]. (United States)

    Sánchez-Seco, Victoria Galán; Casanova Peño, Ignacio; Arroyo González, Rafael


    Until the mid 1990s, with the appearance of interferon beta and glatiramer acetate, there was no treatment for multiple sclerosis (MS). However, due to their moderate therapeutic potential in some patients, a broad search was continued to find new and more effective treatment strategies, largely concentrated on monoclonal antibodies (MOAB). Natalizumab, the first MOAB for the treatment of MS, was approved at the end of 2004, representing a major advance in the field of neuroimmunology. Today, there is broad experience with natalizumab and other MOAB (alemtuzumab, daclizumab, rituximab, ocrelizumab, ofatumumab and anti-lingo-1) that are pending commercialization or are under phase II or III of development with promising results. The present review analyzes the efficacy and safety results of all these drugs. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  1. Monoclonal antibodies against genetically manipulated hepatitis B core antigen. (United States)

    Hlozánek, I; Korec, E; Dostálová, V; Stará, J; König, J; Bichko, V V; Seichertová, A; Gren, E J


    Four different hybridoma clones secreting anti-HBcAg antibodies were constructed by fusing cells of the mouse myeloma line SP2/0 with lymphocytes from mice immunized with bacterially produced HBcAg. The monoclonal antibodies were immunologically characterized and used for HBcAg detection by ELISA. This monoclonal-antibody-based assay was compared with ELISA based on polyclonal human anti-HBcAg IgG for sensitivity and specificity. The monoclonal antibody reacted specifically both with the bacterially produced HBcAg and HBcAg isolated from human liver, but did not react with HBeAg. The human polyclonal antibody reacted with HBcAg, but also with HBeAg.

  2. Frontier of therapeutic antibody discovery: The challenges and how to face them


    Lu, Zhi-Jian; Deng, Su-Jun; Huang, Da-Gang; He, Yun; Lei, Ming; Zhou, Li; Jin, Pei


    Therapeutic monoclonal antibodies have become an important class of modern medicines. The established technologies for therapeutic antibody discovery such as humanization of mouse antibodies, phage display of human antibody libraries and transgenic animals harboring human IgG genes have been practiced successfully so far, and many incremental improvements are being made constantly. These methodologies are responsible for currently marketed therapeutic antibodies and for the biopharma industry...

  3. When blood transfusion medicine becomes complicated due to interference by monoclonal antibody therapy

    NARCIS (Netherlands)

    Oostendorp, Marlies; Lammerts Van Bueren, Jeroen J.; Doshi, Parul; Khan, Imran; Ahmadi, Tahamtan; Parren, Paul W H I; Van Solinge, Wouter W.; De Vooght, Karen M K


    BACKGROUND Monoclonal antibodies (MoAbs) are increasingly integrated in the standard of care. The notion that therapeutic MoAbs can interfere with clinical laboratory tests is an emerging concern that requires immediate recognition and the development of appropriate solutions. Here, we describe that

  4. Intravenous cidofovir for resistant cutaneous warts in a patient with psoriasis treated with monoclonal antibodies.

    LENUS (Irish Health Repository)

    McAleer, M A


    Human papilloma virus is a common and often distressing cutaneous disease. It can be therapeutically challenging, especially in immunocompromised patients. We report a case of recalcitrant cutaneous warts that resolved with intravenous cidofovir treatment. The patient was immunocompromised secondary to monoclonal antibody therapy for psoriasis.

  5. Monoclonal Antibodies for Non-Hodgkin's Lymphoma: State of the Art and Perspectives

    Directory of Open Access Journals (Sweden)

    Giulia Motta


    Full Text Available Monoclonal antibodies have been the most successful therapeutics ever brought to cancer treatment by immune technologies. The use of monoclonal antibodies in B-cell Non-Hodgkin's lymphomas (NHL represents the greatest example of these advances, as the introduction of the anti-CD20 antibody rituximab has had a dramatic impact on how we treat this group of diseases today. Despite this success, several questions about how to optimize the use of monoclonal antibodies in NHL remain open. The best administration schedules, as well as the optimal duration of rituximab treatment, have yet to be determined. A deeper knowledge of the mechanisms underlying resistance to rituximab is also necessary in order to improve the activity of this and of similar therapeutics. Finally, new antibodies and biological agents are entering the scene and their advantages over rituximab will have to be assessed. We will discuss these issues and present an overview of the most significant clinical studies with monoclonal antibodies for NHL treatment carried out to date.

  6. A thermal-cycling method for disaggregating monoclonal antibody oligomers. (United States)

    Sadavarte, Rahul H; Ghosh, Raja


    Non-native oligomeric forms of biopharmaceutical proteins are therapeutically inactive, and potentially toxic and immunogenic, and therefore undesirable in pharmaceutical formulations. Immunoglobulin G class of antibodies are known to form stable nonnative oligomers through Fab-Fab interactions. In this paper, we investigate thermal-cycling as a technique for disaggregating antibody oligomers. Aggregate containing monoclonal antibody (mAb) samples were exposed to rapid heating and cooling cycles in a thermal-cycler. The heating phase of the thermal-cycle resulted in partial unfolding of the Fab domain, leading to the release of monomer from the oligomer complexes, whereas the rapid cooling that followed led to refolding and minimized the probability of protein reaggregation. The extent of mAb oligomer disaggregation was determined by size-exclusion chromatography and hydrophobic interaction membrane chromatography, whereas protein refolding was assessed by circular dichroism spectroscopy. The thermal-cycling technique in addition to being suitable for disaggregating protein oligomer samples could also potentially be useful for studying the mechanisms of protein aggregation and disaggregation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Palladium-109 labeled anti-melanoma monoclonal antibodies (United States)

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.


    The invention consists of new monoclonal antibodies labelled with Palladium 109, a beta-emitting radionuclide, the method of preparing this material, and its use in the radiotherapy of melanoma. The antibodies are chelate-conjugated and demonstrate a high uptake in melanomas. (ACR)

  8. Analysis of human chorionic gonadotropin-monoclonal antibody ...

    Indian Academy of Sciences (India)

    However we observed that in a high affinity antigen-antibody system [human chorionic gonadotropin-monoclonal antibody (hCG-mAb)] dissociation is insignificant and the sensogram data cannot be used to measure the equilibrium and kinetic parameters. At low concentrations of mAb the complete sensogram could be ...


    Directory of Open Access Journals (Sweden)

    Duarte Keila M.R.


    Full Text Available Monoclonal antibodies were obtained against Tomato mosaic tobamovirus (ToMV isolated in Brazil. One antibody (8G7G2 isotyped as IgG2b (kappa light chain showed strong specificity and very low cross reaction with the Tobacco mosaic virus (TMV. It can be used in identification of tomato mosaic virus (ToMV.

  10. High throughput production of mouse monoclonal antibodies using antigen microarrays

    DEFF Research Database (Denmark)

    De Masi, Federico; Chiarella, P.; Wilhelm, H.


    Recent advances in proteomics research underscore the increasing need for high-affinity monoclonal antibodies, which are still generated with lengthy, low-throughput antibody production techniques. Here we present a semi-automated, high-throughput method of hybridoma generation and identification...

  11. Ultrafast and high-throughput N-glycan analysis for monoclonal antibodies


    Yang, Xiaoyu; Kim, Sunnie Myung; Ruzanski, Richard; Chen, Yuetian; Moses, Sarath; Ling, Wai Lam; Li, Xiaojuan; Wang, Shao-Chun; Li, Huijuan; Ambrogelly, Alexandre; Richardson, Daisy; Shameem, Mohammed


    Glycosylation is a critical attribute for development and manufacturing of therapeutic monoclonal antibodies (mAbs) in the pharmaceutical industry. Conventional antibody glycan analysis is usually achieved by the 2-aminobenzamide (2-AB) hydrophilic interaction liquid chromatography (HILIC) method following the release of glycans. Although this method produces satisfactory results, it has limited use for screening a large number of samples because it requires expensive reagents and takes sever...

  12. Allergy to monoclonal antibodies: cutting-edge desensitization methods for cutting-edge therapies. (United States)

    Hong, David I; Bankova, Lora; Cahill, Katherine N; Kyin, Timothy; Castells, Mariana C


    Monoclonal antibodies are important therapeutic tools, but their usefulness is limited in patients who experience acute infusion reactions, most of which are consistent with type I hypersensitivity reactions including anaphylaxis. Patients who experience acute infusion reactions face the prospect of stopping treatment or switching to an alternative, and potentially more toxic or inferior treatment. Another option that overcomes the treatment hurdle of these reactions is rapid desensitization, a procedure in which the offending agent is re-administered in a step-wise, highly controlled fashion. While the risk of reactions is not completely eliminated, desensitization has proven to be a highly effective re-administration strategy for most patients who otherwise would not be able to tolerate their monoclonal antibody therapy owing to drug-induced anaphylaxis. This article reviews the current literature on desensitization and other readministration protocols to monoclonal antibodies with an emphasis on four agents: rituximab, infliximab, cetuximab and trastuzumab.

  13. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies (United States)

    Ferguson, Carly N.; Gucinski-Ruth, Ashley C.


    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.

  14. Distinct Therapeutic Mechanisms of Tau Antibodies (United States)

    Funk, Kristen E.; Mirbaha, Hilda; Jiang, Hong; Holtzman, David M.; Diamond, Marc I.


    Tauopathies are neurodegenerative diseases characterized by accumulation of Tau amyloids, and include Alzheimer disease and certain frontotemporal dementias. Trans-neuronal propagation of amyloid mediated by extracellular Tau may underlie disease progression. Consistent with this, active and passive vaccination studies in mouse models reduce pathology, although by unknown mechanisms. We previously reported that intracerebroventricular administration of three anti-Tau monoclonal antibodies (HJ8.5, HJ9.3, and HJ9.4) reduces pathology in a model overexpressing full-length mutant (P301S) human Tau. We now study effects of these three antibodies and a negative control antibody (HJ3.4) on Tau aggregate uptake into BV2 microglial-like cells and primary neurons. Antibody-independent Tau uptake into BV2 cells was blocked by heparin, consistent with a previously described role for heparan sulfate proteoglycans. Two therapeutic antibodies (HJ8.5 and HJ9.4) promoted uptake of full-length Tau fibrils into microglia via Fc receptors. Surprisingly, HJ9.3 promoted uptake of fibrils composed of the Tau repeat domain or Alzheimer disease-derived Tau aggregates, but failed to influence full-length recombinant Tau fibrils. Size fractionation of aggregates showed that antibodies preferentially promote uptake of larger oligomers (n ≥∼20-mer) versus smaller oligomers (n ∼10-mer) or monomer. No antibody inhibited uptake of full-length recombinant fibrils into primary neurons, but HJ9.3 blocked neuronal uptake of Tau repeat domain fibrils and Alzheimer disease-derived Tau. Antibodies thus have multiple potential mechanisms, including clearance via microglia and blockade of neuronal uptake. However these effects are epitope- and aggregate size-dependent. Establishing specific mechanisms of antibody activity in vitro may help in design and optimization of agents that are more effective in vivo. PMID:26126828

  15. [Monoclonal antibodies in [corrected] development in [corrected] multiple sclerosis]. (United States)

    Sastre-Garriga, J; Montalban, X


    The last fifteen years have see the gradual appearance of a number of different drugs that have been shown to be effective as disease modifying therapies in multiple sclerosis. The opening and subsequent widening of the therapeutic armamentarium in multiple sclerosis will continue on a expanding course in the next few years due to the already known positive results of phase III clinical trials with orally administered molecules. Along with these, we have also seen the appearance of a group of drugs which, instead of being defined by their route of administration, are considered together as a consequence of their similar design: the monoclonal antibodies. The principal safety and efficacy results of three of the monoclonal antibodies that have already obtained positive results in phase II studies will be reviewed in this paper: alemtuzumab, rituximab / ocrelizumab, and daclizumab. For the preparation of this paper, information was obtained from already published articles and from the following web pages: of the National Institute of Health of the U.S.A., the EMA (European Medicines Agency) web page and the Spanish Medicines Agency (Agencia Española del Medicamento) web page. Final results from the phase III clinical trials in progress are required to produce definitive statements on the efficacy and safety of the reviewed drugs. However, and subject to confirmation of the presently available data from phase II trials, it is likely that this group of drugs is to be placed one step beyond the currently available disease-modifying therapies in terms of efficacy, but with a safety pattern which will make careful monitoring of treated patients a mandatory requirement so as to obtain adequate risk/benefit profiles. Copyright © 2010 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  16. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM.

    Directory of Open Access Journals (Sweden)

    Xiang Xu

    Full Text Available The urokinase plasminogen activator receptor (uPAR plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268-275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM, a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR.

  17. Avian Diagnostic and Therapeutic Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, David Sherman [UND SMHS


    A number of infectious agents have the potential of causing significant clinical symptomology and even death, but dispite this, the number of incidence remain below the level that supports producing a vaccine. Therapeutic antibodies provide a viable treatment option for many of these diseases. We proposed that antibodies derived from West Nile Virus (WNV) immunized geese would be able to treat WNV infection in mammals and potential humans. We demonstrated that WNV specific goose antibodies are indeed successful in treating WNV infection both prophylactically and therapeutically in a golden hamster model. We demonstrated that the goose derived antibodies are non-reactogenic, i.e. do not cause an inflammatory response with multiple exposures in mammals. We also developed both a specific pathogen free facility to house the geese during the antibody production phase and a patent-pending purification process to purify the antibodies to greater than 99% purity. Therefore, the success of these study will allow a cost effective rapidly producible therapeutic toward clinical testing with the necessary infrastructure and processes developed and in place.

  18. Novel monoclonal antibodies to study tissue regeneration in planarians. (United States)

    Ross, Kelly G; Omuro, Kerilyn C; Taylor, Matthew R; Munday, Roma K; Hubert, Amy; King, Ryan S; Zayas, Ricardo M


    Planarians are an attractive model organism for studying stem cell-based regeneration due to their ability to replace all of their tissues from a population of adult stem cells. The molecular toolkit for planarian studies currently includes the ability to study gene function using RNA interference (RNAi) and observe gene expression via in situ hybridizations. However, there are few antibodies available to visualize protein expression, which would greatly enhance analysis of RNAi experiments as well as allow further characterization of planarian cell populations using immunocytochemistry and other immunological techniques. Thus, additional, easy-to-use, and widely available monoclonal antibodies would be advantageous to study regeneration in planarians. We have created seven monoclonal antibodies by inoculating mice with formaldehyde-fixed cells isolated from dissociated 3-day regeneration blastemas. These monoclonal antibodies can be used to label muscle fibers, axonal projections in the central and peripheral nervous systems, two populations of intestinal cells, ciliated cells, a subset of neoblast progeny, and discrete cells within the central nervous system as well as the regeneration blastema. We have tested these antibodies using eight variations of a formaldehyde-based fixation protocol and determined reliable protocols for immunolabeling whole planarians with each antibody. We found that labeling efficiency for each antibody varies greatly depending on the addition or removal of tissue processing steps that are used for in situ hybridization or immunolabeling techniques. Our experiments show that a subset of the antibodies can be used alongside markers commonly used in planarian research, including anti-SYNAPSIN and anti-SMEDWI, or following whole-mount in situ hybridization experiments. The monoclonal antibodies described in this paper will be a valuable resource for planarian research. These antibodies have the potential to be used to better understand

  19. Human monoclonal antibodies broadly neutralizing against influenza B virus.

    Directory of Open Access Journals (Sweden)

    Mayo Yasugi


    Full Text Available Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus.

  20. Monoclonal antibody-based therapies for microbial diseases (United States)

    Saylor, Carolyn; Dadachova, Ekaterina; Casadevall, Arturo


    The monoclonal antibody (mAb) revolution that currently provides many new options for the treatment of neoplastic and inflammatory diseases has largely bypassed the field of infectious diseases. Only one mAb is licensed for use against an infectious disease, although there are many in various stages of development. This situation is peculiar given that serum therapy was one of the first effective treatments for microbial diseases and that specific antibodies have numerous antimicrobial properties. The underdevelopment and underutilization of mAb therapies for microbial diseases has various complex explanations that include the current availability of antimicrobial drugs, small markets, high costs and microbial antigenic variation. However, there are signs that the climate for mAb therapeutics in infectious diseases is changing given increasing antibiotic drug resistance, the emergence of new pathogenic microbes for which no therapy is available, and development of mAb cocktail formulations. Currently, the major hurdle for the widespread introduction of mAb therapies for microbial diseases is economic, given the high costs of immunoglobulin preparations and relatively small markets. Despite these obstacles there are numerous opportunities for mAb development against microbial diseases and the development of radioimmunotherapy provides new options for enhancing the magic bullet. Hence, there is cautious optimism that the years ahead will see more mAbs in clinical use against microbial diseases. PMID:20006139

  1. Impact of cell culture on recombinant monoclonal antibody product heterogeneity. (United States)

    Liu, Hongcheng; Nowak, Christine; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa


    Recombinant monoclonal antibodies are commonly expressed in mammalian cell culture and purified by several steps of filtration and chromatography. The resulting high purity bulk drug substance still contains product variants differing in properties such as charge and size. Posttranslational modifications and degradations occurring during cell culture are the major sources of heterogeneity in bulk drug substance of recombinant monoclonal antibodies. The focus of the current review is the impact of cell culture conditions on the types and levels of various modifications and degradations of recombinant monoclonal antibodies. Understanding the relationship between cell culture and product variants can help to make consistently safe and efficacious products. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1103-1112, 2016. © 2016 American Institute of Chemical Engineers.

  2. Choriocarcinoma: blocking factor and monoclonal antibody iodine 131 imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pattillo, R.A.; Khazaeli, M.B.; Ruckert, A.C.; Hussa, R.O.; Collier, B.D.; Beierwaltes, W.; Mattingly, R.F.


    Postoperative iodine 131 monoclonal antibody localization in metastatic choriocarcinoma was accomplished in this study. The monoclonal antibody was prepared to male choriocarcinoma which cross reacted with gestational choriocarcinoma. The antibody was raised against whole choriocarcinoma cells and human chorionic gonadotropin (hCG) cross reactivity was excluded. The purified antibody was iodinated with /sup 131/I and successfully imaged BeWo choriocarcinoma transplanted in nude mice; however, imaging of choriocarcinoma in a patient was verified only after resection. It is our belief that failure to sufficiently concentrate the antibody in the tumor before operation was due to blocking factor in the serum of the patient. Blocking factor and hCG dropped postoperatively. Blocking factor activity in 15 patients with metastatic trophoblastic disease was monitored and, like hCG, was found to be a sensitive indicator of the presence of disease. Its efficacy may be in the small number of patients without hCG but with persistent disease.

  3. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, G.; Dierckx, R.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Conti, F. [Rheumatology Unit, I Faculty of Medicine and Surgery, Sapienza University of Rome (Italy); Chianelli, M. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Unit of Nuclear Medicine, Regina apostolorum Hospital, Albano, Rome (Italy); Scopinaro, F. [Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy); Signore, A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy)


    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-{alpha}, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with {sup 99m}Tc or {sup 111}In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for

  4. Dashboard systems: Pharmacokinetic/pharmacodynamic mediated dose optimization for monoclonal antibodies. (United States)

    Mould, Diane R; Dubinsky, Marla C


    Many marketed drugs exhibit high variability in exposure and response. While these drugs are efficacious in their approved indications, finding appropriate dose regimens for individual patients is not straightforward. Similar dose adjustment problems are also seen with drugs that have a complex relationship between exposure and response and/or a narrow therapeutic window. This is particularly true for monoclonal antibodies, where prolonged dosing at a sub-therapeutic dose can also elicit anti-drug antibodies which will further compromise safety and efficacy. Thus, finding appropriate doses quickly would represent a substantial improvement in healthcare. Dashboard systems, which are decision-support tools, offer an improved, convenient means of tailoring treatment for individual patients. This article reviews the clinical need for this approach, particularly with monoclonal antibodies, the design, development, and testing of such systems, and the likely benefits of dashboard systems in clinical practice. We focus on infliximab for reference. © 2015, The American College of Clinical Pharmacology.

  5. The Effects of Light-Accelerated Degradation on the Aggregation of Marketed Therapeutic Monoclonal Antibodies Evaluated by Size-Exclusion Chromatography With Diode Array Detection. (United States)

    Hernández-Jiménez, José; Salmerón-García, Antonio; Cabeza, José; Vélez, Celia; Capitán-Vallvey, Luis Fermín; Navas, Natalia


    Research into the effects that exposure to light can have on therapeutic proteins is essential for ensuring the quality and safety of the medicines in which they are used. It is important to understand the effects of light on aggregation to help avoid undesirable colloidal instabilities, both in the original medicines and in the formats in which they are finally administered. In this study, 5 marketed therapeutic mAbs, namely bevacizumab, cetuximab, infliximab, rituximab, and trastuzumab, were investigated for this purpose. The medicines and 2 diluted preparations in 0.9 NaCl (2 mg/mL and 5 mg/mL)-commonly used in clinical practice-were subjected to controlled light-accelerated degradation. The formation of aggregates was monitored by size-exclusion chromatography. The results indicated that light induced protein aggregation. This process of protein damage was influenced above all by mAb concentration, although the particular characteristics of each mAb were also important. Photodegradation also produced the fragmentation of the mAbs. The damage caused to the mAbs as a result of light-induced aggregation and/or fragmentation was demonstrated both in the medicines and in the diluted preparation forms. These findings should be carefully considered when handling the medicines for administration and when recommending beyond-use dates in normal hospital conditions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. The safety of monoclonal antibodies for treatment of colorectal cancer. (United States)

    Berger, Martin D; Lenz, Heinz-Josef


    Monoclonal antibodies such as bevacizumab, ramucirumab, cetuximab and panitumumab play an important role in the treatment of metastatic colorectal cancer (mCRC). With the introduction of these drugs considerable improvements in both progression-free survival (PFS) and overall survival (OS) were achieved. However these antibodies are associated with a unique side effect profile. This review provides an overview about drug efficacy of bevacizumab, cetuximab, panitumumab and ramucirumab in the treatment algorithm of mCRC. Additionally, we discuss the most common toxicites of these monoclonal antibodies. The most common toxicities associated with the VEGF-A directed antibody bevacizumab are hypertension, proteinuria, thromboembolism, bleeding, gastrointestinal perforation and prolonged wound healing. Similarly, the rate of hypertension and proteinuria is increased during treatment with the VEGFR2 antibody ramucirumab. On the other hand the most frequent side effects of EGFR targeted antibodies are skin rash, hypersensitivity reactions and hypomagnesemia. Due to the murine portions of cetuximab the incidence of infusion reactions is more frequent compared to panitumumab which is a pure human monoclonal antibody.

  7. Generation of human antigen-specific monoclonal IgM antibodies using vaccinated "human immune system" mice

    NARCIS (Netherlands)

    Becker, P.D.; Legrand, N.; van Geelen, C.M.M.; Noerder, M.; Huntington, N.D.; Lim, A.; Yasuda, E.; Diehl, S.A.; Scheeren, F.A.; Ott, M.; Weijer, K.; Wedemeyer, H.; Di Santo, J.P.; Beaumont, T.; Guzman, C.A.; Spits, H.


    Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can be exploited as a therapeutic tool. However, the 'humanization' of murine monoclonal antibodies (mAbs) is a time-consuming and expensive process that has the inherent drawback of

  8. Preparation and identification of monoclonal antibodies against ...

    African Journals Online (AJOL)


    The hybridoma cell lines were screened for HN-specific antibodies by indirect enzyme-linked immunosorbent assay (ELISA), and anti-HN mAb-producing hybridoma clones were obtained using a limiting dilution assay. The specificity and affinity of the antibodies were characterized by western blot assays and indirect ELISA ...

  9. Structural characterization of expressed monoclonal antibodies by single sample mass spectral analysis after IdeS proteolysis. (United States)

    Kirley, Terence L; Greis, Kenneth D; Norman, Andrew B


    Simple and rapid methods for analysis of monoclonal antibody structure and post-translational modifications are increasingly needed due to the explosion of therapeutic monoclonal antibodies and monoclonal antibody applications. Mass spectral analysis is a powerful method for characterizing monoclonal antibodies. Recent discovery and commercialization of the Immunoglobulin G-degrading enzyme of Streptococcus pyogene (IdeS protease) has facilitated and improved the generation of antibody fragments of suitable size to allow characterization of the structure of the entire antibody molecule via analysis of just a few fragments. In this study, we coupled IdeS fragmentation and simultaneous reduction and alkylation of the resultant fragments using tributylphosphine and iodoacetamide to prepare samples in about 2 h. Following simple introduction of a single, unseparated mixture of alkylated fragments into a mass spectrometer, detailed structural information is obtained, covering the entire antibody molecule. The large majority of the glycoforms present on the single, conserved N-linked glycosylation site of the heavy chain is elucidated, although some of the very low abundance glycoforms are not determined by this protocol. The ease, simplicity, speed, and power of this method make it attractive for analysis of the developmental stages and production batches of therapeutic monoclonal antibodies. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Monoclonal Antibodies Attached to Carbon Nanotube Transistors for Paclitaxel Detection (United States)

    Lee, Wonbae; Lau, Calvin; Richardson, Mark; Rajapakse, Arith; Weiss, Gregory; Collins, Philip; UCI, Molecular Biology; Biochemistry Collaboration; UCI, Departments of Physics; Astronomy Collaboration

    Paclitaxel is a naturally-occurring pharmaceutical used in numerous cancer treatments, despite its toxic side effects. Partial inhibition of this toxicity has been demonstrated using weakly interacting monoclonal antibodies (3C6 and 8A10), but accurate monitoring of antibody and paclitaxel concentrations remains challenging. Here, single-molecule studies of the kinetics of antibody-paclitaxel interactions have been performed using single-walled carbon nanotube field-effect transistors. The devices were sensitized with single antibody attachments to record the single-molecule binding dynamics of paclitaxel. This label-free technique recorded a range of dynamic interactions between the antibody and paclitaxel, and it provided sensitive paclitaxel detection for pM to nM concentrations. Measurements with two different antibodies suggest ways of extending this working range and uncovering the mechanistic differences among different antibodies.

  11. Potent Human Monoclonal Antibodies against SARS CoV, Nipah and Hendra Viruses (United States)

    Prabakaran, Ponraj; Zhongyu, Zhu; Xiao, Xiaodong; Biragyn, Arya; Dimitrov, Antony S.; Broder, Christopher C.; Dimitrov, Dimiter S.


    Polyclonal antibodies have a century-old history of being effective against some viruses; recently, monoclonal antibodies (mAbs) have also shown success. The humanized mAb Synagis (palivizumab) remains still the only mAb against respiratory syncytial virus (RSV) infections approved by the U.S. Food and Drug Administration (FDA). Recently, several potent human monoclonal antibodies (hmAbs) targeting the Severe Acute Respiratory Syndrome-Associated coronavirus (SARS CoV) S glycoproteins were developed quickly after the virus was identified in 2003. Among these antibodies, m396 and S230.15 exhibit exceptional potency and cross-reactivity as they neutralize isolates from the first and second outbreaks and from palm civets both in vitroand in mice. Similarly, the first fully hmAbs against two other paramyxoviruses, Hendra virus (HeV) and Nipah virus (NiV), which can cause up to 75% mortality, were recently developed; one of them, m102.4, shows exceptional cross-reactive potency against both NiV and HeV. Three-dimensional molecular structures of envelope glycoproteins from these viruses in complexes with antibodies and/or receptors were recently determined. Structural analyses along with other experiments have provided insights into the molecular mechanisms of receptor recognition and antibody neutralization, and suggested that these antibodies alone or in combination could successfully fight the viruses’ heterogeneity and mutability which is a major problem in the development of effective therapeutic agents against viruses, including therapeutic antibodies. PMID:19216624

  12. Management of Children with Hypersensitivity to Antibiotics and Monoclonal Antibodies. (United States)

    Norton, Allison Eaddy; Broyles, Ana Dioun


    Proper management of drug allergy in children is based on a thorough history, in vitro testing (if available), in vivo testing, and drug challenge. This approach has been well developed with beta-lactam drugs but not with non-beta-lactam drugs and monoclonal antibodies. Children commonly develop rashes during an antibiotic course, which can lead to misdiagnosis of drug allergy. Clinical reactions to monoclonal antibodies vary and are managed depending on the type. A better knowledge of drug reactions that can occur in antibiotic allergy and monoclonal allergy can aid a provider in better management of their drug-allergic pediatric patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. From monoclonal antibodies to chimeric antigen receptors for the treatment of human malignancies. (United States)

    Caruana, Ignazio; Diaconu, Iulia; Dotti, Gianpietro


    Monoclonal antibodies (mAbs) and their directly derived cell-based application known as chimeric antigen receptors (CARs) ensue from the need to develop novel therapeutic strategies that retain high anti-tumor activity, but carry reduced toxicity compared to conventional chemo- and radiotherapies. In this concise review article, we will summarize the application of antibodies designed to target antigens expressed by tumor cells, and the transition from these antibodies to the generation of CARs. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Monoclonal antibodies for the detection of Puccinia striiformis urediniospores

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hearty, Stephen


    The fungal pathogen Pst causes yellow rust disease in wheat plants leading to crop losses. The organism spreads by releasing wind-dispersed urediniospores from infected plants. In this study a library of novel monoclonal antibodies (mAbs) was developed against Pst urediniospores. Nine m...

  15. Indium-111 labeled anti-melanoma monoclonal antibodies (United States)

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.


    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  16. Generation and characterization of a monoclonal antibody to ...

    African Journals Online (AJOL)



    May 24, 2010 ... generate and characterize a monoclonal antibody to penicillic acid for the efficient detection of penicillic acid from Penicillium ... barley, oats, wheat, corn and rice, are able to produce penicillic acid with a high output and ... dissolved in hot water, ethanol, ether and chloroform but not in pentane or hexane.

  17. Generation and characterization of a monoclonal antibody to ...

    African Journals Online (AJOL)

    Penicillic acid is one of the main mycotoxins in moldy feedstuff and has toxic effect on livestock and poultry and probably humans due to food chain transmission. The objective of this study was to generate and characterize a monoclonal antibody to penicillic acid for the efficient detection of penicillic acid from Penicillium ...

  18. Production and potential use of monoclonal antibodies against polio viruses.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); A.L. van Wezel; G. van Steenis (Bert); A.G. Hazendonk


    textabstractLymphocyte hybridomas secreting monoclonal antibodies against different strains of polio virus type 1, 2, or 3 have been produced. For this purpose Balb/C mice were immunized with purified and inactivated virus suspensions and their splenocytes were fused with P3X63Ag8 mouse myeloma

  19. A mouse monoclonal antibody against Alexa Fluor 647. (United States)

    Wuethrich, Irene; Guillen, Eduardo; Ploegh, Hidde L


    Fluorophores are essential tools in molecular and cell biology. However, their application is mostly confined to the singular exploitation of their fluorescent properties. To enhance the versatility and expand the use of the fluorophore Alexa Fluor 647 (AF647), we generated a mouse monoclonal antibody against it. We demonstrate its use of AF647 for immunoblot, immunoprecipitation, and cytofluorimetry.

  20. Monoclonal antibodies in clinical diagnosis: A brief review application

    African Journals Online (AJOL)



    Apr 17, 2008 ... Monoclonal antibodies (mAb) have been an invaluable tool that has added to our biological knowledge for over a decade. mAb are important diagnostic reagents used in biomedical research, microbiological research in diagnosis of Hepatitis, AIDs, influenza, herpes simplex, Chlamydia infections and in.

  1. Immunohistochemical diagnosis of systemic bovine zygomycosis by murine monoclonal antibodies

    DEFF Research Database (Denmark)

    Jensen, H.E.; Aalbaek, B.; Lind, Peter


    Murine monoclonal antibodies (Mabs) against water-soluble somatic antigens (WSSA) and the wall fraction (WF) from Rhizopus arrhizus (Rhizopus oryzae) were produced in vitro by fusion of splenocytes from immunized BALB/c mice with mouse myeloma X63-Ag 8.653 cells. Supernatants reacting only...

  2. Monoclonal antibodies for the detection of Puccinia striiformis urediniospores

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Frøkiær, Hanne; Hearty, Stephen


    The fungal pathogen Pst causes yellow rust disease in wheat plants leading to crop losses. The organism spreads by releasing wind-dispersed urediniospores from infected plants. In this study a library of novel monoclonal antibodies (mAbs) was developed against Pst urediniospores. Nine mAb-produci...

  3. Monoclonal antibodies specific for the organophosphate pesticide azinphos-methyl

    NARCIS (Netherlands)

    Jones, WT; Harvey, D; Jones, SD; Ryan, GB; Wynberg, H; TenHoeve, W; Reynolds, PHS


    2-(2-Mercapto-5-methyl-1,3,2-dioxaphosphorinan-5-yl,2-sulphide) methoxyacetic acid has been synthesized and used to prepare an azinphos hapten and protein conjugates. Monoclonal antibodies of high affinity against the pesticide azinphos-methyl were prepared from mice immunized with the

  4. Understanding the impact of different bioprocess conditions on monoclonal antibody glycosylation in CHO cell cultures through experimental and computational analyses

    National Research Council Canada - National Science Library

    Si N Sou; Christopher Sellick; Ken Lee; Alison Mason; Sarantos Kyriakopoulos; Karen M Polizzi; Cleo Kontoravdi


      Key Words: Monoclonal antibody glycosylation, stable & transient gene expression, mild hypothermia, mathematical modelling, flux balance analysis With positive outcomes from medical treatments, monoclonal antibodies (mAbs...

  5. Production of monoclonal antibodies against Mycobacterium leprae and armadillo-derived mycobacteria

    NARCIS (Netherlands)

    Kolk, A. H.; Ho, M. L.; Klatser, P. R.; Eggelte, T. A.; Portaels, F.


    Six monoclonal antibodies to Mycobacterium leprae and armadillo-derived mycobacteria were produced. The monoclonal antibodies were characterized by an immunofluorescence assay using 22 mycobacterial strains. One monoclonal antibody, F47-21-3, reacted only with M. leprae; two, F45-9 and F45-15,

  6. 78 FR 7438 - Prospective Grant of Exclusive License: Development of Human Monoclonal Antibodies Against DR4 (United States)


    ... Human Monoclonal Antibodies Against DR4 AGENCY: National Institutes of Health, Public Health Service... Monoclonal Antibodies Against DR4'' (HHS Ref. No. E-158-2010/0) to Customized Biosciences, Inc., which is... relates to the development of two human monoclonal antibodies (mAbs) that bind to death receptor 4 (``DR4...

  7. Anti-CD20 monoclonal antibodies in multiple sclerosis. (United States)

    Moreno Torres, Irene; García-Merino, Antonio


    The therapeutic utility of the anti-CD20 monoclonal antibodies (mAbs) is currently being evaluated in multiple sclerosis (MS) in line with the better understanding of the role of B lymphocytes in MS pathogenesis. Area covered: We conducted a literature search using Medline/Pub Med database of basic research and available controlled trials about anti-CD20 mAbs in MS. Additionally, ongoing studies were identified in the database. B cells exert multiple inflammatory and regulatory functions playing an important role in MS pathogenesis as is demonstrated by the production of autoantibodies, infiltration of B cells in MS lesions and the formation of ectopic B cell follicle-like structures in meninges, among others. B-cell depletion by anti-CD20 mAbs has been shown to have an impact on these pathogenic mechanisms. The efficacy of three of them, rituximab, ocrelizumab and ofatumumab in MS has been confirmed by placebo-controlled clinical trials demonstrating a significant reduction of the annualized relapsing rate (ARR), new gadolinium-enhancing (GdE) and T2 lesions. There have been no significant safety problems so far but the overall benefit to risk profile is still to be determined. Expert commentary: After recent good results of these agents in MS therapy, questions related to maintenance therapy, markers of response and control of B cells values remain unanswered.

  8. Role of cosolutes in the aggregation kinetics of monoclonal antibodies. (United States)

    Nicoud, Lucrèce; Sozo, Margaux; Arosio, Paolo; Yates, Andrew; Norrant, Edith; Morbidelli, Massimo


    We propose a general strategy based on kinetic analysis to investigate how cosolutes affect the aggregation behavior of therapeutic proteins. We apply this approach to study the impact of NaCl and sorbitol on the aggregation kinetics of two monoclonal antibodies, an IgG1 and an IgG2. By using a combination of size exclusion chromatography and light scattering techniques, we study the impact of the cosolutes on the monomer depletion, as well as on the formation of dimers, trimers, and larger aggregates. We analyze these macroscopic effects in the frame of a kinetic model based on Smoluchowski's population balance equations modified to account for nucleation events. By comparing experimental data with model simulations, we discriminate the effect of cosolutes on the elementary steps which contribute to the global aggregation process. In the case of the IgG1, it is found that NaCl accelerates the kinetics of aggregation by promoting specifically aggregation events, while sorbitol delays the kinetics of aggregation by specifically inhibiting protein unfolding. In the case of the IgG2, whose monomer depletion kinetics is limited by dimer formation, NaCl and sorbitol are found respectively to accelerate and inhibit conformational changes and aggregation events to the same extent.

  9. The use of combinations of monoclonal antibodies in clinical oncology. (United States)

    Henricks, Linda M; Schellens, Jan H M; Huitema, Alwin D R; Beijnen, Jos H


    Treatment with monoclonal antibodies is becoming increasingly important in clinical oncology. These antibodies specifically inhibit signaling pathways in tumor growth and/or induce immunological responses against tumor cells. By combining monoclonal antibodies several pathways may be targeted simultaneously, potentially leading to additive or synergistic effects. Theoretically, antibodies are very suitable for use in combination therapy, because of limited overlapping toxicity and lack of pharmacokinetic interactions. In this article an overview is given of preclinical and clinical data on twenty-five different combinations of antibodies in oncology. Some of these combinations have proven clinical benefit, for example the combination of trastuzumab and pertuzumab in HER2-positive breast cancer, which exemplifies an additive or synergistic effect on antitumor activity in clinical studies and the combination of nivolumab and ipilimumab, which results in significant increases in progression-free and overall survival in patients with advanced melanoma. However, other combinations may lead to unfavorable results, such as bevacizumab with cetuximab or panitumumab in advanced colorectal cancer. These combinations result in shorter progression-free survival and increased toxicity compared to therapy with a single antibody. In summary, the different published studies showed widely varying results, depending on the combination of antibodies, indication and patient population. More preclinical and clinical studies are necessary to unravel the mechanisms behind synergistic or antagonistic effects of combining monoclonal antibodies. Most research on combination therapies is still in an early stage, but it is expected that for several tumor types the use of combination therapy of antibodies will become standard of care in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Application of Tryptophan Fluorescence Bandwidth-Maximum Plot in Analysis of Monoclonal Antibody Structure. (United States)

    Huang, Cheng-Yen; Hsieh, Ming-Ching; Zhou, Qinwei


    Monoclonal antibodies have become the fastest growing protein therapeutics in recent years. The stability and heterogeneity pertaining to its physical and chemical structures remain a big challenge. Tryptophan fluorescence has been proven to be a versatile tool to monitor protein tertiary structure. By modeling the tryptophan fluorescence emission envelope with log-normal distribution curves, the quantitative measure can be exercised for the routine characterization of monoclonal antibody overall tertiary structure. Furthermore, the log-normal deconvolution results can be presented as a two-dimensional plot with tryptophan emission bandwidth vs. emission maximum to enhance the resolution when comparing samples or as a function of applied perturbations. We demonstrate this by studying four different monoclonal antibodies, which show the distinction on emission bandwidth-maximum plot despite their similarity in overall amino acid sequences and tertiary structures. This strategy is also used to demonstrate the tertiary structure comparability between different lots manufactured for one of the monoclonal antibodies (mAb2). In addition, in the unfolding transition studies of mAb2 as a function of guanidine hydrochloride concentration, the evolution of the tertiary structure can be clearly traced in the emission bandwidth-maximum plot.

  11. New monoclonal antibodies for the treatment of acute lymphoblastic leukemia. (United States)

    Farhadfar, Nosha; Litzow, Mark R


    Monoclonal antibodies represent a major advance in treatment of acute lymphoblastic leukemia (ALL). Targeted delivery of these agents based on leukemic cell-surface receptor recognition, improves efficacy and minimizes off-target toxicity. The antigens CD19, CD20, CD22 and CD52, are the most common antigens to which monoclonal antibodies in B-cell ALL have been directed. Rituximab, an anti-CD20 antibody, in combination with conventional chemotherapy has been shown to improve survival in newly diagnosed CD20 positive B-cell ALL. Blinatumomab, a bispecific T-cell engager, as monotherapy in relapsed and refractory B-cell ALL resulted in prolonged relapse free survival. Inotuzumab ozogamicin, an anti-CD22 antibody, alone and in combination with chemotherapy has been promising in relapsed and refractory B-cell ALL. The effectiveness and safety of several newer monoclonal antibodies including ofatumumab, obinutuzumab, epratuzumab, denintuzumab mafodotin and moxetumomab pasudotox as single agents or in combination with a chemotherapeutic back bone are currently under investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Monoclonal antibodies to hepatitis B surface antigen: production and characterization. (United States)

    Hlozánek, I; Dostálová, V; Korec, E; Zelený, V; König, J; Nĕmecek, V


    Hybridomas secreting anti-HBsAg antibodies were produced by fusion of the mouse myeloma cell line SP2/0 with lymphocytes from mice immunized with purified HBsAg. All clones produced antibodies of the IgG1 idiotype that react with the subtype a determinant of HBsAg. An enzyme immunoassay for detection of HBsAg in human sera using monoclonal antibodies was developed and compared with commercial Sevatest ELISA HBsAg/micro I kit for detection of HBsAg in clinical serum samples.

  13. Synthesis of a monoclonal antibody-indium-111-porphyrin conjugate. (United States)

    Bedel-Cloutour, C H; Maneta-Peyret, L; Pereyre, M; Bezian, J H


    Antibodies were labelled with indium-111 with a view to their use in the radio-immunodetection of cancers. The covalent coupling between indium-111 porphyrin and monoclonal antibodies (IgG and F(ab')2 fragment) was achieved using the ester activated method [N-hydroxy-succinimide/1-ethyl-3-(3-dimethylaminopropyl)carbodiimide]. After purification, this provided conjugated with specific activities of 6 muCi/micrograms Mab (9.3 molecules per Mab) or 1 muCi/microgram (F(ab')2 fragment (1.5 molecule per F(ab')2). ELISA procedures suggested the full retention of immunoreactivity by the radiolabelled antibodies.

  14. Production and characterization of monoclonal antibodies against mink leukocytes

    DEFF Research Database (Denmark)

    Chen, W.S.; Pedersen, Mikael; Gram-Nielsen, S.


    Three monoclonal antibodies (mAbs) were generated against mink leukocytes. One antibody reacted with all T lymphocytes, one with all monocytes and one had platelet reactivity. Under reducing conditions, the T lymphocyte reactive antibody immunoprecipitated 18 kDa, 23 kDa, 25 kDa and 32-40 k...... leukocytes of human and various animal species have been analysed for cross-reactivity to mink leukocytes. We found eight to cross-react with mink. Of particular importance was an anticanine CD11a mAb, an antihuman CD79a mAb and an antihuman bcl-2 mAb....

  15. Strategy for the treatment of multiple myeloma utilizing monoclonal antibodies: A new era begins. (United States)

    Magarotto, Valeria; Salvini, Marco; Bonello, Francesca; Bringhen, Sara; Palumbo, Antonio


    Novel agents, such as immunomodulantory drugs (IMiDs) and proteasome inhibitors (PI), have significantly improved overall survival of multiple myeloma (MM) patients. Yet, MM remains an incurable disease, relapse inevitably occurs and patients tend to become resistant to subsequent treatments. This led to the evaluation of new treatment strategies. The recent development of monoclonal antibodies is changing the treatment algorithm of MM by increasing the therapeutic armamentarium. Elotuzumab and Daratumumab were shown to be very effective and are likely to be soon approved by the FDA. Other antibodies are in pre-clinical or early clinical phases of evaluation and further investigation and more robust data are needed. This review will give an overview of the most active monoclonal antibodies against MM.

  16. Safety profile and practical considerations of monoclonal antibody treatment. (United States)

    Casanova Estruch, B


    Monoclonal antibodies are immunoglobulins specially designed to act against specific targets, in such a way that their administration stops a specific pathogenic process, stimulates a particular cellular action, or changes a cell mechanism to another pathway of interest. Their production is based on the establishment of modified immortal B lymphocytes to produce a specific immunoglobulin. Depending on the level of purity, this immunoglobulin may be murine complement (ending in "o", for example muromonab); chimeric, in which all the immunoglobulin is human, except in the variable region which is murine (ending in "xi", for example, rituximab); humanised, in which all the immunoglobulin is human, except in the variable complement region which remains murine (ending in "zu", for example, natalizumab); and human complement (ending in "u", for example, adalimumab). Therefore, there will be two types of secondary effects: those arising from the action of the antibody, such as opportunistic infections due to immunosuppression, and those arising from the administration of a protein, such as anaphylactic reactions. The sources used for the present articles were articles published in PubMed, located by searching for "Monoclonal antibodies and Secondary effects", and the web pages of the European Medicines Agency (EMEA) and the US Food and Drus Administration (FDA). The secondary effects arising from the mechanisms of action were opportunistic infections, common infections, development of tumours and autoimmune phenomena, and those arising from the administration of proteins: anaphylactic reaction, cytokine release syndrome, and the development of neutralising antibodies. Finally, the management of monoclonal antibodies in clinical practice and in special situations is discussed, including administering vaccines, pregnancy and paediatric use. Reference will be made to immune recovery syndrome. Monoclonal antibodies are highly effective drugs when specifically indicated, but

  17. Preparation and identification of monoclonal antibodies against ...

    African Journals Online (AJOL)

    HN), BALB/c mice were immunized with the purified pet-44a-HN in adjuvant and their splenic lymphocytes were fused with myeloma SP2/0 cells. The hybridoma cell lines were screened for HN-specific antibodies by indirect enzyme-linked ...

  18. Arginine Modifications by Methylglyoxal: Discovery in a Recombinant Monoclonal Antibody and Contribution to Acidic Species


    Chumsae, Chris; Gifford, Kathreen; Lian, Wei; Liu, Hongcheng; Radziejewski, Czeslaw H.; Zhou, Zhaohui Sunny


    Heterogeneity is common among protein therapeutics. For example, the so-called acidic species (charge variants) are typically observed when recombinant monoclonal antibodies (mAbs) are analyzed by weak-cation exchange chromatography (WCX). Several protein post-translational modifications have been established as contributors, but still cannot completely account for all heterogeneity. As reported herein, an unexpected modification by methylglyoxal (MGO) was identified, for the first time, in a...

  19. The state-of-play and future of antibody therapeutics. (United States)

    Elgundi, Zehra; Reslan, Mouhamad; Cruz, Esteban; Sifniotis, Vicki; Kayser, Veysel


    It has been over four decades since the development of monoclonal antibodies (mAbs) using a hybridoma cell line was first reported. Since then more than thirty therapeutic antibodies have been marketed, mostly as oncology, autoimmune and inflammatory therapeutics. While antibodies are very efficient, their cost-effectiveness has always been discussed owing to their high costs, accumulating to more than one billion dollars from preclinical development through to market approval. Because of this, therapeutic antibodies are inaccessible to some patients in both developed and developing countries. The growing interest in biosimilar antibodies as affordable versions of therapeutic antibodies may provide alternative treatment options as well potentially decreasing costs. As certain markets begin to capitalize on this opportunity, regulatory authorities continue to refine the requirements for demonstrating quality, efficacy and safety of biosimilar compared to originator products. In addition to biosimilars, innovations in antibody engineering are providing the opportunity to design biobetter antibodies with improved properties to maximize efficacy. Enhancing effector function, antibody drug conjugates (ADC) or targeting multiple disease pathways via multi-specific antibodies are being explored. The manufacturing process of antibodies is also moving forward with advancements relating to host cell production and purification processes. Studies into the physical and chemical degradation pathways of antibodies are contributing to the design of more stable proteins guided by computational tools. Moreover, the delivery and pharmacokinetics of antibody-based therapeutics are improving as optimized formulations are pursued through the implementation of recent innovations in the field. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Detection of Tilletia controversa using immunofluorescent monoclonal antibodies. (United States)

    Gao, L; Feng, C; Li, B; Liu, T; Liu, B; Chen, W


    Tilletia controversa is an internationally quarantined pathogenic fungus that causes dwarf bunt of wheat and is similar to Tilletia caries in both teliospore morphology and genetic structure. This study developed a rapid and sensitive immunofluorescence method for differentiating the teliospores of T. controversa from T. caries. The method utilizes monoclonal antibody D-1 against teliospores of T. controversa as well as a PE-Cy3-conjugated goat anti-mouse antibody (overlapping light excitation of 495 and 555 nm). The orange cycle fluorescent signal was stronger against T. controversa teliospores in the outer spore wall and net ridge, whereas only the green signal was observed for the protoplasm of T. caries teliospores. The detection limit of this method was 2.0 μg ml(-1) of the D-1 monoclonal antibody. This study describes the production and diagnostic application of a novel mouse monoclonal antibody specific to T. controversa teliospores. This method could be used for the on-site identification of T. controversa teliospores in the near future and will help in selecting fungicides to control dwarf bunt of wheat as further technical developments are achieved. © 2014 The Society for Applied Microbiology.

  1. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments

    NARCIS (Netherlands)

    Huls, GA; Heijnen, IAFM; Cuomo, ME; Koningsberger, JC; Boel, E; de Vries, ARV; Loyson, SAJ; Helfrich, W; Henegouwen, GPV; van Meijer, M; de Kruif, J; Logtenberg, T

    A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab), The purified huMab had an affinity of 5 nM and effectively mediated tumor cell

  2. Production of a Chaetomium globosum Enolase Monoclonal Antibody


    Green, Brett J.; Nayak, Ajay P.; Lemons, Angela R.; Rittenour, William R.; Justin M. Hettick; Beezhold, Donald H.


    Chaetomium globosum is a hydrophilic fungal species and a contaminant of water-damaged building materials in North America. Methods to detect Chaetomium species include subjective identification of ascospores, viable culture, or molecular-based detection methods. In this study, we describe the production and initial characterization of a monoclonal antibody (MAb) for C. globosum enolase. MAb 1C7, a murine IgG1 isotype MAb, was produced and reacted with recombinant C. globosum enolase (rCgEno)...

  3. Monoclonal antibodies to Nocardia asteroides and Nocardia brasiliensis antigens.


    Jiménez, T; Díaz, A M; Zlotnik, H


    Nocardia asteroides and Nocardia brasiliensis whole-cell extracts were used as antigens to generate monoclonal antibodies (MAbs). Six stable hybrid cell lines secreting anti-Nocardia spp. MAbs were obtained. These were characterized by enzyme-linked immunosorbent assay, Western blot (immunoblot), and immunofluorescence assay. Although all the MAbs exhibited different degrees of cross-reactivity with N. asteroides and N. brasiliensis antigens as well as with culture-filtrate antigens from Myco...

  4. Production of Monoclonal Antibodies in Plants for Cancer Immunotherapy


    Ghislain Moussavou; Kisung Ko; Jeong-Hwan Lee; Young-Kug Choo


    Plants are considered as an alternative platform for recombinant monoclonal antibody (mAb) production due to the improvement and diversification of transgenic techniques. The diversity of plant species offers a multitude of possibilities for the valorization of genetic resources. Moreover, plants can be propagated indefinitely, providing cheap biomass production on a large scale in controlled conditions. Thus, recent studies have shown the successful development of plant systems for the produ...

  5. [Monoclonal antibodies to type A, B, E and F botulinum neurotoxins]. (United States)

    Abbasova, S G; Ruddenko, N V; Gorokhovatskiĭ, A Iu; Kapralova, M V; Vinogradova, I D; Vertiev, Iu V; Nesmeianov, V A; Grishin, E V


    Mouse monoclonal antibodies against the most acutely toxic substances, botulinum neurotoxins (BoNTs) of types A, B, E, and F, was generated and characterized, that recognize their respective toxins in natural toxin complex. Based on these antibodies, we developed sandwich-ELISA for quantitative detection of these toxins. For each respective toxin the detection limit of the assay was: BoNT/A - 0.4 ng/ml, BoNT/B - 0.5 ng/ml; BoNT/E - 0.1 ng/ml; and for BoNT/F - 2.4 ng/ml. The developed assays permitted quantitative identification of the BoNTs in canned meat and vegetables. The BNTA-4.1 and BNTA-9.1 antibodies possessed neutralizing activity against natural complex of the botulinium toxin type A in vivo, both individually and in mixture, the mixture of the antibodies neutralized the higher dose of the toxin. The BNTA-4.1 antibody binds specifically the light chain (the chain with protease activity) of the toxin, whereas BNTA-9.1 interacts with the heavy chain. We believe that the BNTA-4.1 and BNTA-9.1 monoclonal antibodies are prospective candidates for development of humanized therapeutic antibodies for treatment of BoNT/A-caused botulism.

  6. Monoclonal antibodies for the treatment of Ebola virus disease. (United States)

    Moekotte, A L; Huson, M A M; van der Ende, A J; Agnandji, S T; Huizenga, E; Goorhuis, A; Grobusch, M P


    To date, the management of patients with suspected or confirmed Ebolavirus disease (EVD) depends on quarantine, symptomatic management and supportive care, as there are no approved vaccines or treatments available for human use. However, accelerated by the recent large outbreak in West Africa, significant progress has been made towards vaccine development but also towards specific treatment with convalescent plasma and monoclonal antibodies. Areas covered: We describe recent developments in monoclonal antibody treatment for EVD, encompassing mAb114 and the MB-003, ZMAb, ZMapp™ and MIL-77E cocktails. Expert opinion: Preventive measures, are, and will remain essential to curb EVD outbreaks; even more so with vaccine development progressing. However, research for treatment options must not be neglected. Small-scale animal and individual human case studies show that monoclonal antibodies (mAbs) can be effective for EVD treatment; thus justifying exploration in clinical trials. Potential limitations are that high doses may be needed to yield clinical efficacy; epitope mutations might reduce efficacy; and constant evolution of (outbreak-specific) mAb mixtures might be required. Interim advice based on the clinical experience to date is that treatment of patients with mAbs is sensible, provided those could be made available in the necessary amounts in time.

  7. Production of monoclonal antibodies in plants for cancer immunotherapy. (United States)

    Moussavou, Ghislain; Ko, Kisung; Lee, Jeong-Hwan; Choo, Young-Kug


    Plants are considered as an alternative platform for recombinant monoclonal antibody (mAb) production due to the improvement and diversification of transgenic techniques. The diversity of plant species offers a multitude of possibilities for the valorization of genetic resources. Moreover, plants can be propagated indefinitely, providing cheap biomass production on a large scale in controlled conditions. Thus, recent studies have shown the successful development of plant systems for the production of mAbs for cancer immunotherapy. However, their several limitations have to be resolved for efficient antibody production in plants.

  8. Production of Monoclonal Antibodies in Plants for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Ghislain Moussavou


    Full Text Available Plants are considered as an alternative platform for recombinant monoclonal antibody (mAb production due to the improvement and diversification of transgenic techniques. The diversity of plant species offers a multitude of possibilities for the valorization of genetic resources. Moreover, plants can be propagated indefinitely, providing cheap biomass production on a large scale in controlled conditions. Thus, recent studies have shown the successful development of plant systems for the production of mAbs for cancer immunotherapy. However, their several limitations have to be resolved for efficient antibody production in plants.

  9. Monoclonal antibodies in animal production : their use in diagnostics and passive immunization

    NARCIS (Netherlands)

    Booman, P.


    One of the landmarks in immunology was the invention and development of monoclonal antibody-secreting hybridomas by Milstein and his coworkers. The enormous promise of monoclonal antibody technology, which became apparent soon after its discovery, may explain the unusual speed with which monoclonal

  10. 75 FR 3244 - Prospective Grant of Exclusive License: Monoclonal Antibodies Against Smallpox/Orthopoxviruses (United States)


    ... in the following patent applications: E-145-2004/0,1,2,3,4, Purcell et al., ``Monoclonal Antibodies... limited to monoclonal antibodies against orthopoxviruses (smallpox) for use in humans. Properly filed... HUMAN SERVICES National Institutes of Health Prospective Grant of Exclusive License: Monoclonal...

  11. Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody (United States)


    Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called “acidic species” that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity. PMID:25136741

  12. Antibody-mediated immune suppression is improved when blends of anti-RBC monoclonal antibodies are used in mice. (United States)

    Bernardo, Lidice; Amash, Alaa; Marjoram, Danielle; Lazarus, Alan H


    Although the prevention of hemolytic disease of the fetus and newborn is highly effective using polyclonal anti-D, a recombinant alternative is long overdue. Unfortunately, anti-D monoclonal antibodies have been, at best, disappointing. To determine the primary attribute defining an optimal antibody, we assessed suppression of murine red blood cell (RBC) immunization by single-monoclonal antibodies vs defined blends of subtype-matched antibodies. Allogeneic RBCs expressing the HOD antigen (hen egg lysozyme [HEL]-ovalbumin-human transmembrane Duffy(b)) were transfused into naïve mice alone or together with selected combinations of HEL-specific antibodies, and the resulting suppressive effect was assessed by evaluating the antibody response. Polyclonal HEL antibodies dramatically inhibited the antibody response to the HOD antigen, whereas single-monoclonal HEL antibodies were less effective despite the use of saturating doses. A blend of monoclonal HEL-specific antibodies reactive with different HEL epitopes significantly increased the suppressive effect, whereas a blend of monoclonal antibodies that block each other's binding to the HEL protein did not increase suppression. In conclusion, these data show that polyclonal antibodies are superior to monoclonal antibodies at suppressing the immune response to the HOD cells, a feature that can be completely recapitulated using monoclonal antibodies to different epitopes. © 2016 by The American Society of Hematology.

  13. Enhanced antibody-dependent cellular phagocytosis by chimeric monoclonal antibodies with tandemly repeated Fc domains. (United States)

    Nagashima, Hiroaki; Ootsubo, Michiko; Fukazawa, Mizuki; Motoi, Sotaro; Konakahara, Shu; Masuho, Yasuhiko


    We previously reported that chimeric monoclonal antibodies (mAbs) with tandemly repeated Fc domains, which were developed by introducing tandem repeats of Fc domains downstream of 2 Fab domains, augmented binding avidities for all Fcγ receptors, resulting in enhanced antibody (Ab)-dependent cellular cytotoxicity. Here we investigated regarding Ab-dependent cellular phagocytosis (ADCP) mediated by these chimeric mAbs, which is considered one of the most important mechanisms that kills tumor cells, using two-color flow cytometric methods. ADCP mediated by T3-Ab, a chimeric mAb with 3 tandemly repeated Fc domains, was 5 times more potent than that by native anti-CD20 M-Ab (M-Ab hereafter). Furthermore, T3-Ab-mediated ADCP was resistant to competitive inhibition by intravenous Ig (IVIG), although M-Ab-mediated ADCP decreased in the presence of IVIG. An Fcγ receptor-blocking study demonstrated that T3-Ab mediated ADCP via both FcγRIA and FcγRIIA, whereas M-Ab mediated ADCP exclusively via FcγRIA. These results suggest that chimeric mAbs with tandemly repeated Fc domains enhance ADCP as well as ADCC, and that Fc multimerization may significantly enhance the efficacy of therapeutic Abs. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Adsorption and recovery issues of recombinant monoclonal antibodies in reversed-phase liquid chromatography. (United States)

    Fekete, Szabolcs; Beck, Alain; Wagner, Elsa; Vuignier, Karine; Guillarme, Davy


    The poor recovery of large biomolecules is a well-known issue in reversed-phase liquid chromatography. Several papers have reported this problem, but the reasons behind this behavior are not yet fully understood. In the present study, state-of-the-art reversed-phase wide-pore stationary phases were used to evaluate the adsorption of therapeutic monoclonal antibodies. These biomolecules possess molar mass of approximately 150,000 g/mol and isoelectric points between 6.6 and 9.3. Two types of stationary phases were tested, the Phenomenex Aeris Widepore (silica based), with 3.6 μm superficially porous particles, and the Waters Acquity BEH300 (ethylene-bridged hybrid), with 1.7 μm fully porous particles. A systematic investigation was carried out using 11 immunoglobulin G1, G2, and G4 antibodies, namely, panitumumab, natalizumab, cetuximab, bevacizumab, trastuzumab, rituximab, palivizumab, belimumab, adalimumab, denosumab, and ofatumumab. All are approved by the Food and Drug Administration and the European Medicines Agency in various therapeutic indications and are considered as reference antibodies. Several test proteins, such as human serum albumin, transferrin, apoferritin, ovalbumin, and others, possessing a molar mass between 42,000 and 443,000 g/mol were also evaluated to draw reliable conclusions. The purpose of this study was to find a correlation between the adsorption of monoclonal antibodies and their physicochemical properties. Therefore, the impact of isoelectric point, molar mass, protein glycosylation, and hydrophobicity was investigated. The adsorption of intact antibodies on the stationary phase was significantly higher than that of proteins of similar size, isoelectric point, or hydrophobicity. The present study also demonstrates the unique behavior of monoclonal antibodies, contributing some unwanted and unpredictable strong secondary interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. [Characterisation of a monoclonal antibody against Trypanosoma evansi and its application for detecting circulating antibodies]. (United States)

    Monzón, C M


    Monoclonal antibodies were obtained against Trypanosoma evansi. The 2-4F6 IgM monoclonal antibody (Mab) was chosen for the study because of its ability to detect antigens and its specificity (as it did not recognise T. cruzi, T. equiperdum, Babesia equi or B. caballi). The immunoblot test revealed that the 2-4F6 IgM Mab recognises epitopes in two antigenic bands, one measuring 85 kDa and the other 122 kDa. An immunoassay for antigen detection in serum using polyclonal antibodies for capture, the Mab 2-4F6 as primary antibody and an antimouse IgM as secondary antibody gave positive results in 10 of the 11 equidae infected with T. evansi, whereas 20 controls gave negative results. These research results show that the Mab 2-4F6 and the antigen it recognises are useful in identifying equidae infected with T. evansi.

  16. Ofatumumab: a novel monoclonal anti-CD20 antibody

    Directory of Open Access Journals (Sweden)

    Thomas S Lin


    Full Text Available Thomas S LinGlaxoSmithKline Oncology R&D, Collegeville, PA, USAAbstract: Ofatumumab, a novel humanized monoclonal anti-CD20 antibody, was recently approved by the FDA for the treatment of fludarabine and alemtuzumab refractory chronic lymphocytic leukemia (CLL. Ofatumumab effectively induces complement-dependent cytotoxicity (CDC in vitro, and recent studies demonstrated that ofatumumab also effectively mediates antibody-dependent cellular cytotoxicity (ADCC. Pharmacokinetic studies indicated that increased exposure to the antibody correlated with improved clinical outcome in CLL. Thus, pharmacogenomics may be important in identifying which patients are more likely to respond to ofatumumab therapy, although such studies have not yet been performed. Patients with the high-affinity FCGR3a 158 V/V polymorphism may be more likely to respond to therapy, if ADCC is the primary in vivo mechanism of action of ofatumumab. Patients with increased expression of the complement defense proteins CD55 and CD59 may be less likely to respond if ofatumumab works in vivo primarily via CDC. Patients with increased metabolism and clearance of ofatumumab may have lower exposure and be less likely to respond clinically. Thus, pharmacogenomics may determine the responsiveness of patients to ofatumumab therapy.Keywords: monoclonal antibody, CD20, CLL, NHL, lymphoma

  17. Functional analysis of the anti-adalimumab response using patient-derived monoclonal antibodies. (United States)

    van Schouwenburg, Pauline A; Kruithof, Simone; Votsmeier, Christian; van Schie, Karin; Hart, Margreet H; de Jong, Rob N; van Buren, Esther E L; van Ham, Marieke; Aarden, Lucien; Wolbink, Gertjan; Wouters, Diana; Rispens, Theo


    The production of antibodies to adalimumab in autoimmune patients treated with adalimumab is shown to diminish treatment efficacy. We previously showed that these antibodies are almost exclusively neutralizing, indicating a restricted response. Here, we investigated the characteristics of a panel of patient-derived monoclonal antibodies for binding to adalimumab. Single B-cells were isolated from two patients, cultured, and screened for adalimumab specificity. Analysis of variable region sequences of 16 clones suggests that the immune response against adalimumab is broad, involving multiple B-cell clones each using different combinations of V(D)J segments. A strong bias for replacement mutations in the complementarity determining regions was found, indicating an antigen-driven response. We recombinantly expressed 11 different monoclonal antibodies and investigated their affinity and specificity. All clones except one are of high affinity (Kd between 0.6 and 233 pm) and compete with TNF as well as each other for binding to adalimumab. However, binding to a panel of single-point mutants of adalimumab indicates markedly different fine specificities that also result in a differential tendency of each clone to form dimeric and multimeric immune complexes. We conclude that although all anti-adalimumab antibodies compete for binding to TNF, the response is clonally diverse and involves multiple epitopes on adalimumab. These results are important for understanding the relationship between self and non-self or idiotypic determinants on therapeutic antibodies and their potential immunogenicity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α (United States)


    Background One-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. However, many tumors are either natively resistant or acquire resistance against Trastuzumab. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. For example, Pertuzumab that binds to subdomain II of HER2 extracellular domain and inhibits receptor dimerization is under clinical trial. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α). Methods Mice were immunized against SK-BR-3 cells and recombinant HER2 extracellular domain protein to produce monoclonal antibodies. Anti-HER2 antibodies were characterized with breast cancer cell lines using immunofluorescence, flow cytometry, immunoprecipitation, western blot techniques. Antibody epitopes were localized using plasmids encoding recombinant HER2 protein variants. Antibodies, either alone or in combination with TNF-α, were tested for their effects on breast cancer cell proliferation. Results We produced five new anti-HER2 monoclonal antibodies, all directed against conformational epitope or epitopes restricted to the native form of the extracellular domain. When tested alone, some antibodies inhibited modestly but significantly the growth of SK-BR-3, BT-474 and MDA-MB-361 cells displaying ERBB2 amplification. They had no detectable effect on MCF-7 and T47D cells lacking ERBB2 amplification. When tested in combination with TNF-α, antibodies acted synergistically on SK-BR-3 cells, but antagonistically on BT

  19. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Ceran Ceyhan


    Full Text Available Abstract Background One-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. However, many tumors are either natively resistant or acquire resistance against Trastuzumab. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. For example, Pertuzumab that binds to subdomain II of HER2 extracellular domain and inhibits receptor dimerization is under clinical trial. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α. Methods Mice were immunized against SK-BR-3 cells and recombinant HER2 extracellular domain protein to produce monoclonal antibodies. Anti-HER2 antibodies were characterized with breast cancer cell lines using immunofluorescence, flow cytometry, immunoprecipitation, western blot techniques. Antibody epitopes were localized using plasmids encoding recombinant HER2 protein variants. Antibodies, either alone or in combination with TNF-α, were tested for their effects on breast cancer cell proliferation. Results We produced five new anti-HER2 monoclonal antibodies, all directed against conformational epitope or epitopes restricted to the native form of the extracellular domain. When tested alone, some antibodies inhibited modestly but significantly the growth of SK-BR-3, BT-474 and MDA-MB-361 cells displaying ERBB2 amplification. They had no detectable effect on MCF-7 and T47D cells lacking ERBB2 amplification. When tested in combination with TNF-α, antibodies acted synergistically on SK-BR-3 cells

  20. Automated pipeline for rapid production and screening of HIV-specific monoclonal antibodies using pichia pastoris. (United States)

    Shah, Kartik A; Clark, John J; Goods, Brittany A; Politano, Timothy J; Mozdzierz, Nicholas J; Zimnisky, Ross M; Leeson, Rachel L; Love, J Christopher; Love, Kerry R


    Monoclonal antibodies (mAbs) that bind and neutralize human pathogens have great therapeutic potential. Advances in automated screening and liquid handling have resulted in the ability to discover antigen-specific antibodies either directly from human blood or from various combinatorial libraries (phage, bacteria, or yeast). There remain, however, bottlenecks in the cloning, expression and evaluation of such lead antibodies identified in primary screens that hinder high-throughput screening. As such, "hit-to-lead identification" remains both expensive and time-consuming. By combining the advantages of overlap extension PCR (OE-PCR) and a genetically stable yet easily manipulatable microbial expression host Pichia pastoris, we have developed an automated pipeline for the rapid production and screening of full-length antigen-specific mAbs. Here, we demonstrate the speed, feasibility and cost-effectiveness of our approach by generating several broadly neutralizing antibodies against human immunodeficiency virus (HIV). © 2015 Wiley Periodicals, Inc.

  1. Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and Checkpoint Strategies for AML. (United States)

    Masarova, Lucia; Kantarjian, Hagop; Garcia-Mannero, Guillermo; Ravandi, Farhad; Sharma, Padmanee; Daver, Naval


    Acute myeloid leukemia (AML) is the most common leukemia among adults and is associated with a poor prognosis, especially in patients with adverse prognostic factors, older age, or relapsed disease. The last decade has seen a surge in successful immune-based therapies in various solid tumors; however, the role of immune therapies in AML remains poorly defined. This chapter describes the rationale, clinical data, and toxicity profiles of immune-based therapeutic modalities in AML including naked and conjugated monoclonal antibodies, bispecific T-cell engager antibodies, chimeric antigen receptor (CAR)-T cells, and checkpoint blockade via blockade of PD1/PDL1 or CTLA4. Monoclonal antibodies commonly used in AML therapy target highly expressed "leukemia" surface antigens and include (1) naked antibodies against common myeloid markers such as anti-CD33 (e.g., lintuzumab), (2) antibody-drug conjugates linked to either, (a) a highly potent toxin such as calicheamicin, pyrrolobenzodiazepine, maytansine, or others in various anti-CD33 (gemtuzumab ozogamicin, SGN 33A), anti-123 (SL-401), and anti-CD56 (lorvotuzumab mertansine) formulations, or (b) radioactive particles, such as 131I, 213Bi, or 225Ac-labeled anti-CD33 or CD45 antibodies. Novel monoclonal antibodies that recruit and promote proximity-induced cytotoxicity of tumor cells by T cells (bispecific T-cell engager [BiTE] such as anti CD33/CD3, e.g., AMG 330) or block immune checkpoint pathways such as CTLA4 (e.g., ipilimumab) or PD1/PD-L1 (e.g., nivolumab) unleashing the patients T cells to fight leukemic cells are being evaluated in clinical trials in patients with AML. The numerous ongoing clinical trials with immunotherapies in AML will improve our understanding of the biology of AML and allow us to determine the best approaches to immunotherapy in AML.

  2. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy. (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław


    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  3. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells. (United States)

    Meng, Weixu; Li, Leike; Xiong, Wei; Fan, Xuejun; Deng, Hui; Bett, Andrew J; Chen, Zhifeng; Tang, Aimin; Cox, Kara S; Joyce, Joseph G; Freed, Daniel C; Thoryk, Elizabeth; Fu, Tong-Ming; Casimiro, Danilo R; Zhang, Ningyan; A Vora, Kalpit; An, Zhiqiang


    Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs.

  4. Synthetic methyl hexagalacturonate hapten inhibitors of antihomogalacturonan monoclonal antibodies LM7, JIM5 and JIM7

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig; Willats, William George Tycho; Knox, J. Paul


    A range of synthetic methyl hexagalacturonates were used as potential hapten inhibitors in competitive-inhibition enzyme-linked immunosorbent assays (ELISAs) with anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. The selective inhibition of these antibodies by different haptens...... provides insight into the structures of the partially methyl-esterified pectin epitopes of these widely used monoclonal antibodies....

  5. An ELISA-inhibition test using monoclonal antibody for the serology of leprosy

    NARCIS (Netherlands)

    Klatser, P. R.; de Wit, M. Y.; Kolk, A. H.


    In this study a mouse monoclonal antibody (47-9) is described, which recognized an epitope on the 36 kD protein antigen of M. leprae. The monoclonal antibody showed specificity for M. leprae. An ELISA-inhibition test based on the competitive inhibition by antibodies from human test sera of the

  6. Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq. (United States)

    Busby, Michele; Xue, Catherine; Li, Catherine; Farjoun, Yossi; Gienger, Elizabeth; Yofe, Ido; Gladden, Adrianne; Epstein, Charles B; Cornett, Evan M; Rothbart, Scott B; Nusbaum, Chad; Goren, Alon


    The robustness of ChIP-seq datasets is highly dependent upon the antibodies used. Currently, polyclonal antibodies are the standard despite several limitations: They are non-renewable, vary in performance between lots and need to be validated with each new lot. In contrast, monoclonal antibody lots are renewable and provide consistent performance. To increase ChIP-seq standardization, we investigated whether monoclonal antibodies could replace polyclonal antibodies. We compared monoclonal antibodies that target five key histone modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac and H3K27me3) to their polyclonal counterparts in both human and mouse cells. Overall performance was highly similar for four monoclonal/polyclonal pairs, including when we used two distinct lots of the same monoclonal antibody. In contrast, the binding patterns for H3K27ac differed substantially between polyclonal and monoclonal antibodies. However, this was most likely due to the distinct immunogen used rather than the clonality of the antibody. Altogether, we found that monoclonal antibodies as a class perform equivalently to polyclonal antibodies for the detection of histone post-translational modifications in both human and mouse. Accordingly, we recommend the use of monoclonal antibodies in ChIP-seq experiments.

  7. A novel human anti-interleukin-1β neutralizing monoclonal antibody showing in vivo efficacy. (United States)

    Goh, Angeline X H; Bertin-Maghit, Sebastien; Ping Yeo, Siok; Ho, Adrian W S; Derks, Heidi; Mortellaro, Alessandra; Wang, Cheng-I


    The pro-inflammatory cytokine interleukin (IL)-1β is a clinical target in many conditions involving dysregulation of the immune system; therapeutics that block IL-1β have been approved to treat diseases such as rheumatoid arthritis (RA), neonatal onset multisystem inflammatory diseases, cryopyrin-associated periodic syndromes, active systemic juvenile idiopathic arthritis. Here, we report the generation and engineering of a new fully human antibody that binds tightly to IL-1β with a neutralization potency more than 10 times higher than that of the marketed antibody canakinumab. After affinity maturation, the derived antibody shows a>30-fold increased affinity to human IL-1β compared with its parent antibody. This anti-human IL-1β IgG also cross-reacts with mouse and monkey IL-1β, hence facilitating preclinical development. In a number of mouse models, this antibody efficiently reduced or abolished signs of disease associated with IL-1β pathology. Due to its high affinity for the cytokine and its potency both in vitro and in vivo, we propose that this novel fully human anti-IL-1β monoclonal antibody is a promising therapeutic candidate and a potential alternative to the current therapeutic arsenal.

  8. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture. (United States)

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M


    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Novel conformation-specific monoclonal antibodies against amyloidogenic forms of transthyretin. (United States)

    Higaki, Jeffrey N; Chakrabartty, Avi; Galant, Natalie J; Hadley, Kevin C; Hammerson, Bradley; Nijjar, Tarlochan; Torres, Ronald; Tapia, Jose R; Salmans, Joshua; Barbour, Robin; Tam, Stephen J; Flanagan, Ken; Zago, Wagner; Kinney, Gene G


    Transthyretin amyloidosis (ATTR amyloidosis) is caused by the misfolding and deposition of the transthyretin (TTR) protein and results in progressive multi-organ dysfunction. TTR epitopes exposed by dissociation and misfolding are targets for immunotherapeutic antibodies. We developed and characterized antibodies that selectively bound to misfolded, non-native conformations of TTR. Antibody clones were generated by immunizing mice with an antigenic peptide comprising a cryptotope within the TTR sequence and screened for specific binding to non-native TTR conformations, suppression of in vitro TTR fibrillogenesis, promotion of antibody-dependent phagocytic uptake of mis-folded TTR and specific immunolabeling of ATTR amyloidosis patient-derived tissue. Four identified monoclonal antibodies were characterized. These antibodies selectively bound the target epitope on monomeric and non-native misfolded forms of TTR and strongly suppressed TTR fibril formation in vitro. These antibodies bound fluorescently tagged aggregated TTR, targeting it for phagocytic uptake by macrophage THP-1 cells, and amyloid-positive TTR deposits in heart tissue from patients with ATTR amyloidosis, but did not bind to other types of amyloid deposits or normal tissue. Conformation-specific anti-TTR antibodies selectively bind amyloidogenic but not native TTR. These novel antibodies may be therapeutically useful in preventing deposition and promoting clearance of TTR amyloid and in diagnosing TTR amyloidosis.

  10. Emerging monoclonal antibodies for the treatment of renal cell carcinoma (RCC). (United States)

    Atkins, Michael B; Philips, George K


    Advanced renal cell carcinoma (RCC) was considered refractory to most cancer therapies until the 1980s, after which immune modulating agents and targeted agents were developed. Recently the rapid development of therapeutic monoclonal antibodies targeting immune checkpoint pathways has provided significant clinical benefit in patients with many distinct cancer types. Nivolumab, an anti-PD1 monoclonal antibody showed improvement in response rate and overall survival in patients with previously treated RCC and received US FDA approval in late 2015. Current efforts with anti-PD1-based therapy include combinations with ipilimumab and with VEGF pathway blockers in the hopes on building on the activity of single agent therapy. We describe our current understanding of tumor immunology including the basis of the tumor-specific immune response and the adaptive mechanisms used by the tumor for immune escape. We describe the mechanisms of action as well as the therapeutic application of the antibodies, ipilimumab, nivolumab and atezolizumab in patients with RCC. We identify key areas of active research in biomarker development and combination therapies. Clinical trials and the field of RCC therapeutics are expected to move in the direction of combination therapies using immune checkpoint inhibitors, extending overall survival as a benchmark for new drug approvals, and biomarker validation for improved selection of patients for specific therapies.

  11. A monoclonal antibody against the plant growth regulator, abscisic acid. (United States)

    Banowetz, G M; Hess, J R; Carman, J G


    Monoclonal antibodies were prepared against the plant growth regulator abscisic acid (ABA) conjugated to keyhole limpet hemocyanin through C-4. One of these antibodies was characterized for use in a competition fluorescence enzyme-linked immunosorbent assay (F-ELISA). The antibody detected femtomole quantities of ABA when used in the F-ELISA and showed minimal cross-reactivity with ABA metabolites and structural analogs. Dilution analysis suggested that the F-ELISA could be used to determine the ABA content of methanolic extracts of crude samples of wheat seeds without further purification. The F-ELISA was used to determine the effect of seed priming on ABA levels in wheat seeds. The antibody also was used in a modified noncompetitive indirect ELISA to measure ABA content of wheat caryopses. The noncompetitive ELISA was more sensitive than the F-ELISA, although the F-ELISA had a broader measuring range. When our anti-ABA antibody and a commercially available anti-ABA antibody were compared by indirect ELISA, there were no significant differences between the ABA estimates.

  12. 77 FR 9678 - Prospective Grant of Exclusive License: The Development of Human Anti-CD22 Monoclonal Antibodies... (United States)


    ... Human Anti-CD22 Monoclonal Antibodies for the Treatment of Human Cancers and Autoimmune Disease AGENCY... Monoclonal Antibodies Against CD22'' , U.S. patent application 12/934,214 entitled ``Human Monoclonal... and m972 (SMB-002) monoclonal antibodies as therapies for the treatment of B cell cancers and...

  13. Monoclonal anti-elastin antibody labelled with technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcia B.N. de; Silva, Claudia R. da; Araujo, Adriano C. de; Bernardo Filho, Mario [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Instituto de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia; Porto, Luis Cristovao M.S.; Gutfilen, Bianca [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Instituto de Biologia Roberto Alcantara Gomes; Souza, J.E.Q. [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil). Centro de Pesquisa Basica; Frier, Malcolm [University Hospital, Nottingham (United Kingdom). Dept. of Medical Physics


    Technetium-99m ({sup 99m} Tc) is widely employed in nuclear medicine due to its desirable physical, chemical and biological properties. Moreover, it is easily available and normally is inexpensive. A reducing agent is necessary to label cells and molecules with {sup 99m} Tc and stannous chloride (Sn C L{sub 2}) is usually employed. Elastin is the functional protein component of the elastic fiber and it is related with some diseases such as arteriosclerosis, pulmonary emphysema and others. The present study refers to the preparation of the {sup 99m} Tc labeled monoclonal anti-elastin antibody. The monoclonal antibody was incubated with an excess of 2-iminothiolane. The free thiol groups created, were capable of binding with the reduced technetium. Labeling was an exchange reaction with {sup 99m} Tc-glucoheptonate. The labeled preparation was left at 4 deg C for one hour. Then, it was passed through a Sephadex G50 column. Various fractions were collected and counted. A peak corresponding to the radiolabeled antibody was obtained. Stability studies of the labelled anti-elastin were performed at 0,3 6, 24 hours, at both 4 deg C or room temperature. The biodistribution pattern of the {sup 99m} Tc-anti-elastin was studied in healthy male Swiss mice. The immunoreactivity was also determined. An useful labeled-anti-elastin was obtained to future immunoscintigraphic investigations. (author) 4 refs., 7 figs., 6 tabs.

  14. Monoclonal Antibodies to Shigella Lipopolysaccharide Are Useful for Vaccine Production. (United States)

    Lin, Jisheng; Smith, Mark A; Benjamin, William H; Kaminski, Robert W; Wenzel, Heather; Nahm, Moon H


    There is a significant need for an effective multivalent Shigella vaccine that targets the most prevalent serotypes. Most Shigella vaccines under development utilize serotype-specific lipopolysaccharides (LPSs) as a major component based on protection and epidemiological data. As vaccine formulations advance from monovalent to multivalent, assays and reagents need to be developed to accurately and reproducibly quantitate the amount of LPSs from multiple serotypes in the final product. To facilitate this effort, we produced 36 hybridomas that secrete monoclonal antibodies (MAbs) against the O antigen on the LPS from Shigella flexneri 2a, Shigella flexneri 3a, and Shigella sonnei We used six of these monoclonal antibodies for an inhibition enzyme-linked immunosorbent assay (iELISA), measuring LPSs with high sensitivity and specificity. It was also demonstrated that the Shigella serotype-specific MAbs were useful for bacterial surface staining detected by flow cytometry. These MAbs are also useful for standardizing the serum bactericidal assay (SBA) for Shigella Functional assays, such as the in vitro bactericidal assay, are necessary for vaccine evaluation and may serve as immunological correlates of immunity. An S. flexneri 2a-specific monoclonal antibody killed S. flexneri 2b isolates, suggesting that S. flexneri 2a LPS may induce cross-protection against S. flexneri 2b. Overall, the Shigella LPS-specific MAbs described have potential utility to the vaccine development community for assessing multivalent vaccine composition and as a reliable control for multiple immunoassays used to assess vaccine potency. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Structural analysis of hepatitis B surface antigen by monoclonal antibodies. (United States)

    Ben-Porath, E; Wands, J R; Marciniak, R A; Wong, M A; Hornstein, L; Ryder, R; Canlas, M; Lingao, A; Isselbacher, K J


    A method has been developed for the analysis of hepatitis B surface antigen (HBsAg) antigenic structure at the molecular level that creates "fingerprints" or "signatures" of various hepatitis B viral (HBV) strains. This technique employs high affinity IgM and IgG monoclonal antibodies (anti-HBs) directed against distinct and separate determinants on HBsAg. In performing this antigenic structural analysis, separate binding curves for different monoclonal anti-HBs are generated by measuring immunoreactivity in serial dilutions of HBsAg-positive serum by radioimmunoassay. Since the HBsAg concentration in serum is unknown, the binding profiles of groups of samples are aligned by an iterative least-squares procedure to generate the numerical signature characteristic of the viral strain. The numerical signatures are then displayed on a computer-graphic plot. The signature profiles of HBsAg subtypes are a true reflection of their antigenic structure, and in vertical and horizontal transmission studies the molecular characteristics of the viral epitopes are conserved. By signature analysis we found substantial antigenic heterogeneity among the ayw3 strain both in the U.S. and France, as well as in populations of the Far East and Africa. Populations in Ethiopia, Gambia, and the Philippines were infected with two antigenically distinct HBV strains. In some newly identified HBV strains, it was found that epitopes identified by some monoclonal antibodies were absent or substantially reduced, which suggested that a genetic mutation may have occurred. Thus this study suggests that there is far more antigenic heterogeneity in HBV than previously recognized. These variants are antigenically distinct from each other at the epitope level, and were heretofore unrecognized by polyvalent anti-HBsAg antibodies.

  16. The present state of the art in expression, production and characterization of monoclonal antibodies. (United States)

    Gaughan, Christopher L


    Monoclonal antibodies (MAb's) have become one the most powerful therapeutic and diagnostic tools in modern medicine. Some estimates target the worldwide market of MAb's on the order of $125 billion in the next four years. Recent advances in molecular biology, immunology, and development of robust production platforms will drive the development of more MAb's suitable to treat an ever increasing number of disease states. This circumstance combined with the fact that many of the original antibody therapies from the 1980 s and 1990 s will soon be coming off patent will attract a great deal of investment in the development of larger industrial facilities to increase monoclonal antibody to meet increasing demand. In this review, the present state of the science that underlies the development of new antibodies therapies in Chinese hamster ovary cells combined with a description of the present challenges facing the industry in terms of the limitations of output and compliance with current good manufacturing practices and FDA regulations. Also addressed are future challenges to overcome production bottlenecks, description of critical quality control attributes particular to antibodies, and detailed treatment of scale-up considerations.

  17. Adverse Events of Monoclonal Antibodies Used for Cancer Therapy


    Mei Guan; Yan-Ping Zhou; Jin-Lu Sun; Shu-Chang Chen


    In 1997, the first monoclonal antibody (MoAb), the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug administration for use in cancer patients. Since then, the panel of MoAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has continued to expand, currently encompassing a stunning amount of 20 distinct molecules for 11 targets. We provide a brief scientific background on the use of MoAbs in cancer thera...

  18. The combination of external beam radiotherapy and experimental radioimmunotargeting with a monoclonal anticytokeratin antibody

    National Research Council Canada - National Science Library

    Johansson, Amanda; Eriksson, David; Ullén, Anders; Löfroth, Per‐Olov; Johansson, Lennart; Riklund‐Åhlström, Katrine; Stigbrand, Torgny


    .... The purpose of this study was to detect potential benefits with different treatment timing strategies when combining external beam radiotherapy and radioimmunotargeting, with the anticytokeratin monoclonal antibody (MAb...

  19. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Felix Hart


    Full Text Available IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich and hematological (CD20 cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  20. New structural formats of therapeutic antibodies for rheumatology. (United States)

    Dumet, Christophe; Pottier, Jérémy; Gouilleux, Valérie; Watier, Hervé


    Pharmaceutical companies strive continuously to develop better medications in order to remain competitive. In the arena of monoclonal antibodies and related biologics (fusion proteins containing an IgG Fc fragment), the thrust is not only toward identifying new targets, but also toward developing new molecular formats. Here, new-generation antibodies used to treat rheumatic diseases are discussed, with emphasis on relations linking structure to pharmacological effects and on the improvements expected from the new formats. Isotypic and allotypic antibody diversity has pharmacological implications and is already exploited in commercially available antibodies. Efforts to engineer the Fc fragment of the various immunoglobulin G subclasses are reviewed with reference to abatacept, ixekizumab, other mutated IgG4 antibodies currently in development, sapelizumab, anifrolumab, and tanezumab. Bispecific antibodies are a focus of increasing interest (particularly those binding to both IL-17 and TNFα) and may earn a place in the therapeutic armamentarium as a means of avoiding the use of antibody combinations. However, the construction and production of bispecific antibodies continues to raise major technological challenges. Other molecular formats involve the fusion of antibodies to cytokines or the use of nanobodies and peptibodies. These new formats are at the very early stages of development, and their clinical relevance remains unclear. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  1. Moving through three-dimensional phase diagrams of monoclonal antibodies. (United States)

    Rakel, Natalie; Baum, Miriam; Hubbuch, Jürgen


    Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three-dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however. © 2014 American Institute of Chemical Engineers.

  2. Epitope Mapping of Monoclonal Antibody PMab-38 Against Dog Podoplanin. (United States)

    Chang, Yao-Wen; Yamada, Shinji; Kaneko, Mika K; Kato, Yukinari


    Podoplanin (PDPN), a type I transmembrane sialoglycoprotein, is extensively expressed by normal lymphatic endothelial cells, renal podocytes, and pulmonary type I alveolar cells. Nevertheless, increased expression of PDPN in malignant tumors not only associates with poor prognosis but also facilitates hematogenous metastasis through interaction with C-type lectin-like receptor-2 presented on platelets, followed by PDPN-mediated platelet activation. We previously reported a novel PMab-38 antibody, an anti-dog PDPN (dPDPN) monoclonal antibody, which specifically recognizes PDPN in squamous cell carcinomas melanomas and cancer-associated fibroblasts in canine cancer tissues. However, the specific binding with the epitope of PMab-38 remains undefined. In this study, flow cytometry was utilized to investigate the epitope of PMab-38, which was determined using a series of deletion or point mutants of dPDPN. The results revealed that the critical epitope of PMab-38 is Tyr67 and Glu68 of dPDPN.

  3. Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset. (United States)

    Chen, Zhe; Bao, Linlin; Chen, Cong; Zou, Tingting; Xue, Ying; Li, Fengdi; Lv, Qi; Gu, Songzhi; Gao, Xiaopan; Cui, Sheng; Wang, Jianmin; Qin, Chuan; Jin, Qi


    Middle East respiratory syndrome coronavirus (MERS-CoV) infection in humans is highly lethal, with a fatality rate of 35%. New prophylactic and therapeutic strategies to combat human infections are urgently needed. We isolated a fully human neutralizing antibody, MCA1, from a human survivor. The antibody recognizes the receptor-binding domain of MERS-CoV S glycoprotein and interferes with the interaction between viral S and the human cellular receptor human dipeptidyl peptidase 4 (DPP4). To our knowledge, this study is the first to report a human neutralizing monoclonal antibody that completely inhibits MERS-CoV replication in common marmosets. Monotherapy with MCA1 represents a potential alternative treatment for human infections with MERS-CoV worthy of evaluation in clinical settings. © Crown copyright 2017.

  4. Desensitization for Drug Hypersensitivity to Chemotherapy and Monoclonal Antibodies. (United States)

    Bonamichi-Santos, Rafael; Castells, Mariana


    Chemotherapies drugs and monoclonal antibodies are key components of the treatment of cancer patients and patients with chronic inflammatory conditions to provide increase in life expectancy and quality of life. Their increased use has lead to an increase in drugs hypersensitivity reactions (DHR) worldwide. DHR to those agents prevented their use and promoted the use of second line therapies to protect patients' hypersensitive reactions and anaphylaxis. Second line medications may not fully address the patients' medical condition and it is desirable to keep patients on first line therapy. Drug hypersensitivity symptoms can range from mild cutaneous reactions to life-threatening anaphylaxis. Rapid drug desensitization (RDD) is a novel approach to the management of drug hypersensitivity reactions which are IgE and non-IgE mediated. Through the diferent desensitization protocols patients can receive the full dose of the medications that they have presented a hypersensitive reaction and been protected against anaphylaxis. This review looks at the current literature on hypersensitivity reactions (HSR) to chemotherapy drugs and monoclonal antibodies and the potential use of RDD for their management. Copyright© Bentham Science Publishers; For any queries, please email at

  5. Monoclonal antibodies directed to fucoidan preparations from brown algae.

    Directory of Open Access Journals (Sweden)

    Thomas A Torode

    Full Text Available Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance.

  6. Monoclonal antibodies specific to heat-treated porcine blood. (United States)

    Raja Nhari, Raja Mohd Hafidz; Hamid, Muhajir; Rasli, Nurmunirah Mohamad; Omar, Abdul Rahman; El Sheikha, Aly Farag; Mustafa, Shuhaimi


    Porcine blood is potentially being utilized in food as a binder, gelling agent, emulsifier or colorant. However, for certain communities, the usage of animal blood in food is strictly prohibited owing to religious concerns and health reasons. This study reports the development of monoclonal antibodies (MAbs) against heat-treated soluble proteins (HSPs) of autoclaved porcine blood; characterization of MAbs against blood, non-blood and plasma from different animal species using qualitative indirect non-competitive enzyme-linked immunosorbent assay (ELISA); and immunoblotting of antigenic components in HSPs of porcine blood. Fifteen MAbs are specific to heat-treated and raw porcine blood and not cross-reacted with other animal blood and non-blood proteins (meat and non-meat). Twelve MAbs are specific to porcine plasma, while three MAbs specific to porcine plasma are cross-reacted with chicken plasma. Immunoblotting revealed antigenic protein bands (∼60, ∼85-100 and ∼250 kDa) in porcine blood and plasma recognized by the MAbs. Selection of MAbs that recognized 60 kDa HSPs of porcine blood and plasma as novel monoclonal antibodies would be useful for detection of porcine plasma in processed food using the immunoassay method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Development of a novel monoclonal antibody with reactivity to a wide range of Venezuelan equine encephalitis virus strains

    Directory of Open Access Journals (Sweden)

    Phelps Amanda L


    Full Text Available Abstract Background There is currently a requirement for antiviral therapies capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV, as a licensed vaccine is not available for general human use. Monoclonal antibodies are increasingly being developed as therapeutics and are potential treatments for VEEV as they have been shown to be protective in the mouse model of disease. However, to be truly effective, the antibody should recognise multiple strains of VEEV and broadly reactive monoclonal antibodies are rarely and only coincidentally isolated using classical hybridoma technology. Results In this work, methods were developed to reliably derive broadly reactive murine antibodies. A phage library was created that expressed single chain variable fragments (scFv isolated from mice immunised with multiple strains of VEEV. A broadly reactive scFv was identified and incorporated into a murine IgG2a framework. This novel antibody retained the broad reactivity exhibited by the scFv but did not possess virus neutralising activity. However, the antibody was still able to protect mice against VEEV disease induced by strain TrD when administered 24 h prior to challenge. Conclusion A monoclonal antibody possessing reactivity to a wide range of VEEV strains may be of benefit as a generic antiviral therapy. However, humanisation of the murine antibody will be required before it can be tested in humans. Crown Copyright © 2009

  8. Single-domain monoclonal antibodies for the treatment of hepatocellular carcinoma | NCI Technology Transfer Center | TTC (United States)

    The National Cancer Institute seeks parties to license human monoclonal antibodies and immunoconjugates and co-develop, evaluate, and/or commercialize large-scale antibody production and hepatocellular carcinoma (HCC) xenograft mouse models.

  9. Arginine modifications by methylglyoxal: discovery in a recombinant monoclonal antibody and contribution to acidic species. (United States)

    Chumsae, Chris; Gifford, Kathreen; Lian, Wei; Liu, Hongcheng; Radziejewski, Czeslaw H; Zhou, Zhaohui Sunny


    Heterogeneity is common among protein therapeutics. For example, the so-called acidic species (charge variants) are typically observed when recombinant monoclonal antibodies (mAbs) are analyzed by weak-cation exchange chromatography (WCX). Several protein post-translational modifications have been established as contributors but still cannot completely account for all heterogeneity. As reported herein, an unexpected modification by methylglyoxal (MGO) was identified, for the first time, in a recombinant monoclonal antibody expressed in Chinese hamster ovary (CHO) cells. Modifications of arginine residues by methylglyoxal lead to two adducts (dihydroxyimidazolidine and hydroimidazolone) with increases of molecular weights of 72 and 54 Da, respectively. In addition, the modification by methylglyoxal causes the antibody to elute earlier in the weak cation exchange chromatogram. Consequently, the extent to which an antibody was modified at multiple sites corresponds to the degree of shift in elution time. Furthermore, cell culture parameters also affected the extent of modifications by methylglyoxal, a highly reactive metabolite that can be generated from glucose or lipids or other metabolic pathways. Our findings again highlight the impact that cell culture conditions can have on the product quality of recombinant protein pharmaceuticals.

  10. Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus. (United States)

    Swanstrom, J A; Plante, J A; Plante, K S; Young, E F; McGowan, E; Gallichotte, E N; Widman, D G; Heise, M T; de Silva, A M; Baric, R S


    Zika virus (ZIKV) is a mosquito-borne flavivirus responsible for thousands of cases of severe fetal malformations and neurological disease since its introduction to Brazil in 2013. Antibodies to flaviviruses can be protective, resulting in lifelong immunity to reinfection by homologous virus. However, cross-reactive antibodies can complicate flavivirus diagnostics and promote more severe disease, as noted after serial dengue virus (DENV) infections. The endemic circulation of DENV in South America and elsewhere raises concerns that preexisting flavivirus immunity may modulate ZIKV disease and transmission potential. Here, we report on the ability of human monoclonal antibodies and immune sera derived from dengue patients to neutralize contemporary epidemic ZIKV strains. We demonstrate that a class of human monoclonal antibodies isolated from DENV patients neutralizes ZIKV in cell culture and is protective in a lethal murine model. We also tested a large panel of convalescent-phase immune sera from humans exposed to primary and repeat DENV infection. Although ZIKV is most closely related to DENV compared to other human-pathogenic flaviviruses, most DENV immune sera (73%) failed to neutralize ZIKV, while others had low (50% effective concentration [EC50], 1:100 serum dilution; 9%) levels of cross-neutralizing antibodies. Our results establish that ZIKV and DENV share epitopes that are targeted by neutralizing, protective human antibodies. The availability of potently neutralizing human monoclonal antibodies provides an immunotherapeutic approach to control life-threatening ZIKV infection and also points to the possibility of repurposing DENV vaccines to induce cross-protective immunity to ZIKV. ZIKV is an emerging arbovirus that has been associated with severe neurological birth defects and fetal loss in pregnant women and Guillain-Barré syndrome in adults. Currently, there is no vaccine or therapeutic for ZIKV. The identification of a class of antibodies (envelope

  11. Characterization and evaluation of monoclonal antibodies developed for typing influenza A and influenza B viruses.


    Walls, H H; Harmon, M.W.; Slagle, J J; Stocksdale, C; Kendal, A P


    Monoclonal antibodies that are broadly reactive with influenza A or influenza B viruses were produced as stable reagents for typing influenza viruses. Monoclonal antibodies to influenza A were specific for either matrix protein or nucleoprotein. The antibodies to influenza B were specific for nucleoprotein or hemagglutinin protein. In an enzyme immunoassay procedure, influenza A antibodies detected H1N1, H2N2, and H3N2 influenza A virus strains collected between 1934 and 1984. Each of the inf...

  12. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. (United States)

    Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad


    The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross

  13. Monoclonal antibodies against large oval aggregates of Aβ1-42. (United States)

    Shimizu, Takenori; Yoshimune, Kazuaki; Komoriya, Tomoe; Akiyama, Takahiro; Ye, Xujun; Kohno, Hideki


    Abnormal cerebral accumulation of amyloid beta protein(1-42) (Aβ(1-42)) is one of the hallmarks of Alzheimer's disease (AD). Aβ(1-42) aggregates exist in two distinct forms: fibrils that are composed of highly ordered β-sheets and amorphous aggregates that differ in size and toxicity. Here, we generated large oval aggregates (LOA) 369 ± 81 nm and 224 ± 92 nm in size on their major and minor axes, respectively, as measured by tapping-mode atomic force microscopy. LOA were produced by slow rotation of high concentrations (0.22 mM, 1.0 mg/mL) of Aβ(1-42) for 16 h at 37°C in the presence of 2.2 mM Aβ(16-20), which prevents the fibril formation, and purified with 0.22-μm filters. Analysis with thioflavin T showed that LOA have little β-sheet structure on their surfaces. Monoclonal antibodies that react with LOA, but not the fibril forms, were screened from 960 mouse hybridoma cell lines, and seven antibodies consisting of four IgG and three IgM antibodies were obtained. Four IgG monoclonal antibodies showed cross-reactivity of aggregates that passed through 0.22-μm filters. Among the four antibodies, the antibody that was designated as 31-2 exhibited the highest reactivity against LOA and showed the lowest reactivity against the fibril forms. On the basis of these results, a unique epitope on the surface of LOA was suggested. The 31-2 antibody may be useful for future basic research and therapeutic applications for AD. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Recognition of multiple Mycoplasma bovis antigens by monoclonal antibodies. (United States)

    Dénes, Béla; Tenk, Miklós; Tekes, Lajos; Varga, Ildikó; Ferenczné, Ildikó P; Stipkovits, László


    To produce monoclonal antibodies (MAbs), Balb/c AnN Crl BR mice were inoculated with the cell suspension of a Hungarian Mycoplasma bovis strain designated 26034. Three days after the last immunization the spleen of the immunized mouse was removed aseptically. The fusion of spleen cells with Sp2/0-Ag14 murine myeloma cells was performed in the presence of polyethylene glycol. The obtained hybrid cells were selected with hipoxantine, aminopterine and thymidine (HAT) medium. Two weeks after the fusion, the supernatants of the grown cells were tested by a self-developed indirect enzyme-linked immunosorbent assay (ELISA). The results showed that 63 antibody-producing hybridomas had been obtained. For accurate determination of the molecular weight of antigen determinants, the supernatants giving positive reaction in the ELISA were tested by Western blotting. According to the results, the obtained MAbs recognize the antigen determinants of the following molecular weights: 1B11: 63 kDa, 1C7: 63 kDa, 2C5: 22, 25 and 27 kDa, 2C9: 69 kDa, 3G12: 67, 69 and 72 kDa, 4H9: 63 kDa, 5B8: 22, 25 and 27 kDa, 5D3: 22, 25 and 27 kDa, 5C11: 69 kDa, 5E5: 22, 25 and 27 kDa, 6F11: 63 kDa, and 6H10: 22, 25 and 27 kDa. The 12 cell groups selected on the basis of the Western blotting were cloned twice by end-point dilution method. The cloned cells were propagated, and with 5 cell lines antibodies were produced in the CELLine bioreactor (Integra Biosciences, Zurich, Switzerland). Cell line 3G12 showed the highest productivity with an average daily output of 1.5 mg immunoglobulin. Cell line 5E5 produced 1.1 mg, 6H10 0.8 mg, 2C9 0.47 mg and 6F11 0.4 mg antibody per day. The isotype of the antibodies was determined by ELISA. The antibodies produced by the 12 cell lines tested were assigned to the IgG(1) subclass according to the heavy chain. Ten cell lines produced kappa and two produced lambda light-chain antibody. Possible cross-reactions of the produced monoclonal anti-M. bovis antibodies with

  15. Using monoclonal antibodies as an international standard for the measurement of anti-adalimumab antibodies. (United States)

    van Schouwenburg, Pauline A; Kruithof, Simone; Wolbink, Gertjan; Wouters, Diana; Rispens, Theo


    Comparing studies investigating anti-drug antibody (ADA) formation is hampered by the lack of comparability between study protocols, assay formats, and standardized reference materials. In this respect, the use of an international standard would mean a major step forward. Here we compared 11 fully human monoclonal antibodies against adalimumab in two assays commonly used for ADA measurement; the bridging ELISA and the antigen binding test (ABT). Our results show non-parallel titration of the monoclonal antibodies in both assays, which we also find for polyclonal ADA sources. Moreover, we observed that the output of the bridging ELISA depends to a large degree on the affinity of the monoclonal antibody. For the ABT, results reflect a combination of affinity and avidity. This suggests that rather than reporting ADA values in nanogram per milliliter, arbitrary units may be more appropriate. Together our data highlight the difficulty of ADA standardization by identifying several pitfalls that should be taken into account when selecting a standard for ADA testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Monoclonal antibodies to cyclodiene insecticides and method for detecting the same (United States)

    Stanker, Larry H.; Vanderlaan, Martin; Watkins, Bruce E.


    Methods are described for making specific monoclonal antibodies useful for detection of cyclodienes in foods and environmental samples. Monoclonal antibodies specifically reactive with cyclodienes can detect accumulated pesticides in food, tissue or environmental samples. Extraction and preparation of organic samples for immunoassay in a polar-nonpolar reaction medium permits detection of halogenated organic ring structures at concentrations in samples.

  17. Development and characterization of mouse monoclonal antibodies specific for chicken interleukin 18 (United States)

    Four mouse monoclonal antibodies (mAbs) which are specific for chicken interleukin 18 (chIL18) were produced and characterized by enzyme-linked immunosorbent assay (ELISA), Western blotting, quantitative real-time PCR and neutralization assays. Monoclonal antibodies specific for chIL18 identified a ...

  18. Effect of monoclonal antibodies on phagocytosis and killing of Toxoplasma gondii by normal macrophages.


    Hauser, W E; Remington, J S


    Treatment of intact toxoplasma tachyzoites with individual mouse monoclonal antibodies to toxoplasma which are directed against individual membrane-associated antigenic determinants facilitated the phagocytosis of toxoplasma and also prepared the toxoplasma for intracellular destruction by nonelicited mouse peritoneal macrophages. In instances in which the organisms survived intracellularly, their multiplication was significantly reduced. Such monoclonal antibodies should be useful in further...

  19. Two monoclonal anti-CD3 antibodies can induce different events in human T lymphocyte activation

    NARCIS (Netherlands)

    Roosnek, E. E.; van Lier, R. A.; Aarden, L. A.


    Two monoclonal antibodies, WT32 and CLB-T3/4.2a, directed against the CD3 complex were used to study the mechanism of activation of human peripheral T lymphocytes. WT32, a mouse monoclonal IgG2a antibody with a low avidity (much less than OKT3) for the CD3 complex, effectively induces mitogenesis of

  20. High-throughput assay for measuring monoclonal antibody self-association and aggregation in serum. (United States)

    Li, Xiaoning; Geng, Steven B; Chiu, Mark L; Saro, Dorina; Tessier, Peter M


    Subcutaneous delivery is one of the preferred administration routes for therapeutic monoclonal antibodies (mAbs). High antibody dosing requirements and small injection volumes necessitate formulation and delivery of highly concentrated mAb solutions. Such elevated antibody concentrations can lead to undesirable solution behaviors such as mAb self-association and aggregation, which are relatively straightforward to detect using various biophysical methods because of the high purity and concentration of antibody formulations. However, the biophysical properties of mAbs in serum can also impact antibody activity, but these properties are less well understood because of the difficulty characterizing mAbs in such a complex environment. Here we report a high-throughput assay for directly evaluating mAb self-association and aggregation in serum. Our approach involves immobilizing polyclonal antibodies specific for human mAbs on gold nanoparticles, and then using these conjugates to capture human antibodies at a range of subsaturating to saturating mAb concentrations in serum. Antibody aggregation is detected at subsaturating mAb concentrations via blue-shifted plasmon wavelengths due to the reduced efficiency of capturing mAb aggregates relative to monomers, which reduces affinity cross-capture of mAbs by multiple conjugates. In contrast, antibody self-association is detected at saturating mAb concentrations via red-shifted plasmon wavelengths due to attractive interparticle interactions between immobilized mAbs. The high-throughput nature of this assay along with its compatibility with unusually dilute mAb solutions (0.1-10 μg per mL) should make it useful for identifying antibody candidates with high serum stability during early antibody discovery.

  1. Oncology monoclonal antibodies expenditure trends and reimbursement projections in the emerging Balkan market

    Directory of Open Access Journals (Sweden)

    Mihajlo B Jakovljevic


    Full Text Available Monoclonal antibodies applied in clinical oncology present a therapeutic promise for many patients with cancer. Nevertheless these expensive protocols are associated with extremely high acquisition and administration costs. The issue of societal affordability of such treatment options is particularly at stake among middle income European economies. Medicines Agency of Serbia issues regular annual reports on public expenditure on pharmaceuticals since 2004. According to these official data total public expenditure on drugs doubled from 2004-2012 (from € 339,279,304 to € 742,013,976. During the same nine years public expenditure on antineoplastic pharmaceuticals was rising at much faster pace, approximately five times from € 10,297,616 in 2004 to € 51,223,474 in 2012. Absolutely record growth belongs to the value of turnover of monoclonal antibodies indicated in diverse malignancies. These costs became almost twenty times higher in 2012 compared to 2004 (€ 19,687,454 towards € 1,033,313 in the past. National pharmaceutical expenditure trend projections in this country show strong recovery in 2012 after severe blow to the overall health care market imposed by the worldwide crisis. Universal health insurance coverage and sustainable health care financing provision will remain difficult issues for Balkan economies in years to come. Although monoclonal antibodies exhibit undisputed therapeutic efficiency in certain malignant disorders, cost-effectiveness estimates must be taken into consideration by policy makers deciding on reimbursement.

  2. Rapid high yield production of different glycoforms of Ebola virus monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Alexandra Castilho

    Full Text Available Fc-glycosylation of monoclonal antibodies (mAbs has profound implications on the Fc-mediated effector functions. Alteration of this glycosylation may affect the efficiency of an antibody. However, difficulties in the production of mAbs with homogeneous N-glycosylation profiles in sufficient amounts hamper investigations of the potential biological impact of different glycan residues.Here we set out to evaluate a transient plant viral based production system for the rapid generation of different glycoforms of a monoclonal antibody. Ebola virus mAb h-13F6 was generated using magnICON expression system in Nicotiana benthamiana, a plant species developed for commercial scale production of therapeutic proteins. h-13F6 was co-expressed with a series of modified mammalian enzymes involved in the processing of complex N-glycans. Using wild type (WT plants and the glycosylation mutant ΔXTFT that synthesizes human like biantennary N-glycans with terminal N-acetylglucosamine on each branch (GnGn structures as expression hosts we demonstrate the generation of h-13F6 complex N-glycans with (i bisected structures, (ii core α1,6 fucosylation and (iii β1,4 galactosylated oligosaccharides. In addition we emphasize the significance of precise sub Golgi localization of enzymes for engineering of IgG Fc-glycosylation.The method described here allows the efficient generation of a series of different human-like glycoforms at large homogeneity of virtually any antibody within one week after cDNA delivery to plants. This accelerates follow up functional studies and thus may contribute to study the biological role of N-glycan residues on Fcs and maximizing the clinical efficacy of therapeutic antibodies.

  3. Use of commercially available rabbit monoclonal antibodies for immunofluorescence double staining

    DEFF Research Database (Denmark)

    Bzorek, M.; Stamp, I.M.; Frederiksen, L.


    Immunohistochemistry, that is, the use of polyclonal and monoclonal antibodies to detect cell and tissue antigens at a microscopical level is a powerful tool for both research and diagnostic purposes. Especially in the field of hematologic disease, there is often a need to detect several antigens...... synchronously, and we report here a fast and easy technique for demonstrating more than 1 antigen in 1 slide using immunofluorescence. We have used commercially available rabbit monoclonal antibodies (Cyclin D1, CD3, CD5, CD23, etc.) paired with mouse monoclonal antibodies (CD7, CD20, CD79a, Pax-5, etc.......) for double immunofluorescence labeling on paraffin-embedded tissue sections. Commercially available rabbit monoclonal antibodies in combination with mouse monoclonal antibodies proved useful in double immunofluorescence labeling on paraffin-embedded tissue, and all combinations used yielded excellent results...

  4. Immunotherapy of melanoma with the immune costimulatory monoclonal antibodies targeting CD137

    Directory of Open Access Journals (Sweden)

    Li SY


    Full Text Available Shi-Yan Li, Yizhen Liu Cancer Research Institute, Scott and White Healthcare, Temple, TX, USA Abstract: Knowledge of how the immune system recognizes and attempts to control cancer growth and development has improved dramatically. The advent of immunotherapies for cancer has resulted in robust clinical responses and confirmed that the immune system can significantly inhibit tumor progression. Until recently, metastatic melanoma was a disease with limited treatment options and a poor prognosis. CD137 (also known as 4-1BB a member of the tumor necrosis factor (TNF receptor superfamily, is an activation-induced T cell costimulator molecule. Growing evidence indicates that anti-CD137 monoclonal antibodies possess strong antitumor properties, the result of their powerful capability to activate CD8+ T cells, to produce interferon (IFN-γ, and to induce cytolytic markers. Combination therapy of anti-CD137 with other anticancer agents, such as radiation, has robust tumor-regressing abilities against nonimmunogenic or poorly immunogenic tumors. Of importance, targeting CD137 eliminates established tumors, and the fact that anti-CD137 therapy acts in concert with other anticancer agents and/or radiation therapy to eradicate nonimmunogenic and weakly immunogenic tumors is an additional benefit. Currently, BMS-663513, a humanized anti-CD137 antibody, is in clinical trials in patients with solid tumors, including melanoma, renal carcinoma, ovarian cancer, and B-cell malignancies. In this review, we discuss the basis of the therapeutic potential of targeting CD137 in cancer treatment, focusing in particular, on BMS-663513 as an immune costimulatory monoclonal antibody for melanoma immunotherapy. Keywords: anti-CD137 monoclonal antibodies, immune costimulator molecule, BMS-663513

  5. A monoclonal antibody to triplex DNA binds to eucaryotic chromosomes. (United States)

    Lee, J S; Burkholder, G D; Latimer, L J; Haug, B L; Braun, R P


    A monoclonal antibody (Jel 318) was produced by immunizing mice with poly[d(TmC)].poly[d(GA)].poly[d(mCT) which forms a stable triplex at neutral pH. Jel 318 did not bind to calf thymus DNA or other non pyrimidine.purine DNAs such as poly[d(TG)].poly[d(CA)]. In addition the antibody did not recognize pyrimidine.purine DNAs containing mA (e.g. poly[d(TC)].poly[d(GmA)]) which cannot form a triplex since the methyl group blocks Hoogsteen base-pairing. The binding of Jel 318 to chromosomes was assessed by immunofluorescent microscopy of mouse myeloma cells which had been fixed in methanol/acetic acid. An antibody specific for duplex DNA (Jel 239) served as a control. The fluorescence due to Jel 318 was much weaker than that of Jel 239 but binding to metaphase chromosomes and interphase nuclei was observed. The staining by Jel 318 was unaffected by addition of E. coli DNA but it was obliterated in the presence of triplex. Since an acid pH favours triplex formation, nuclei were also prepared from mouse melanoma cells by fixation in cold acetone. Again Jel 318 showed weak but consistent staining of the nuclei. Therefore it seems likely that triplexes are an inherent feature of the structure of eucaryotic DNA. Images PMID:2434928

  6. [Identification and production of monoclonal antibody of Siberian tiger's immunoglobulin]. (United States)

    Zhang, Yaonglong; Zhang, Duanling; Zhou, Ming; Xue, Yuan; Hua, Yuping; Ma, Jianzhang


    To purify immunoglobulin (Ig) of Siberian Tiger and prepare monoclonal antibody (mAb) against the Ig,which can be used to develop immunological diagnostic kits for diagnosing infectious disease in Siberian Tiger. The Ig of Siberian tigers was purified with saturated ammonium sulfate combined with recombinant Protein G. The C57BL/6 mice were immunized with the purified Ig. Spleno-cytes of the mice immunized were collected and fused with the mouse myeloma cell line (Sp2/0-Ag14). The positive hybridoma clones were selected by ELISA and were identified by western blot. The sandwich ELISA was used to detect immunocompetence of the purified Ig and the mAb. We obtained three mouse hybridoma clones that produced mAbs against Ig of Siberian Tiger. The derived McAbs could recognize Ig heavy chain of Siberian Tiger specifically. The biological activity of the Ig and obtained McAbs also could be identified by detecting the antibody induced by panleukopenia virus (FPV-HLJ) vaccine in Siberian Tiger. The antibody also would be useful for assess the vaccine efficacy against the infectious disease on the Siberian Tiger. Protein G can be used in Ig purification of Siberian Tiger. The obtained McAbs from the hybridoma ADT11 in this study owned strong ability to bind Ig of Siberian Tiger and have a stable immunocompetence. They can be used to develop diagnostic methods for detecting infectious disease in Siberian Tiger and vaccine research.

  7. Detection of Parasite Antigens in Leishmania infantum–Infected Spleen Tissue by Monoclonal Antibody-, Piezoelectric-Based Immunosensors

    National Research Council Canada - National Science Library

    G. Cabral-Miranda; J. R. de Jesus; P. R. S. Oliveira; G. S. G. Britto; L. C. Pontes-de-Carvalho; R. F. Dutra; N. M. Alcântara-Neves


    .... The use of monoclonal antibodies has ensured high specificity to immunodiagnosis. The development of an immunosensor, coupling a monoclonal antibody to a bioelectronic device capable of quickly detecting Leishmania sp...

  8. The use of monoclonal antibodies to treat Castleman's disease. (United States)

    Robey, Rebecca C; Mletzko, Salvinia; Colley, Charlotte; Balachandran, Kirsty; Bower, Mark


    Multicentric Castleman's disease (MCD) is a rare lymphoproliferative disorder presenting with heterogeneous clinical features and with a complex etiology. MCD incidence is increased in people living with HIV/AIDS when it is causally associated with Kaposi's sarcoma-associated herpes virus (KSHV). HIV-seronegative individuals present with either idiopathic or KSHV-associated MCD. Central to MCD pathology is altered expression and signaling of IL-6, which promotes B-cell proliferation and causes systemic manifestations. KSHV encodes a viral homolog of human IL-6, accounting for its role in MCD, while recent evidence shows an association between IL-6 receptor polymorphisms and idiopathic MCD. The increased understanding of mechanisms underlying the pathogenesis of MCD has guided the use of new monoclonal antibody therapies for treating this complex disorder.

  9. Monoclonal Antibodies as Treatment Modalities in Head and Neck Cancers

    Directory of Open Access Journals (Sweden)

    Vivek Radhakrishnan


    Full Text Available The standard treatments of surgery, radiation, and chemotherapy in head and neck squamous cell carcinomas (HNSCC causes disturbance to normal surrounding tissues, systemic toxicities and functional problems with eating, speaking, and breathing. With early detection, many of these cancers can be effectively treated, but treatment should also focus on retaining the function of the proximal nerves, tissues and vasculature surrounding the tumor. With current research focused on understanding pathogenesis of these cancers in a molecular level, targeted therapy using monoclonal antibodies (MoAbs, can be modified and directed towards tumor genes, proteins and signal pathways with the potential to reduce unfavorable side effects of current treatments. This review will highlight the current MoAb therapies used in HNSCC, and discuss ongoing research efforts to develop novel treatment agents with potential to improve efficacy, increase overall survival (OS rates and reduce toxicities.

  10. Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues

    DEFF Research Database (Denmark)

    Couchman, J R; Caterson, B; Christner, J E


    Chondroitin sulphate proteoglycans are widespread connective tissue components and chemical analysis of cartilage and other proteoglycans has demonstrated molecular speciation involving the degree and position of sulphation of the carbohydrate chains. This may, in turn, affect the properties...... organizations on the GAG molecule endowed by the sulphate groups. So far, it has not been possible to identify and map chondroitins of differing sulphation in tissues, but we have now raised three monoclonal antibodies which specifically recognize unsulphated, 4-sulphated and 6-sulphated chondroitin...... and dermatan sulphate. These provide novel opportunities to study the in vivo distribution of chondroitin sulphate proteoglycans. We demonstrate that chondroitin sulphates exhibit remarkable connective tissue specificity and furthermore provide evidence that some proteoglycans may predominantly carry only one...

  11. Monoclonal antibodies against VP7 of bluetongue virus. (United States)

    Wang, Wen-Shi; Sun, En-Cheng; Liu, Ni-Hong; Yang, Tao; Xu, Qing-Yuan; Qin, Yong-Li; Zhao, Jing; Feng, Yu-Fei; Li, Jun-Pin; Wei, Peng; Zhang, Cui-Yun; Wu, Dong-Lai


    VP7 is a major group-specific protein of the bluetongue virus (BTV), and is therefore a candidate for use as a diagnostic reagent. In this study, BALB/c mice were immunized with BTV16, and the lymphocyte hybridoma technique and indirect ELISA screening method were employed to obtain two strains of hybridoma cells secreting specific monoclonal antibodies (MAbs) to BTV16. Eukaryotic recombinant plasmids coding for 10 segments of BTV16 separately were transfected into BHK-21 cells, respectively, followed by immunofluorescence, showing that two MAbs only reacted with BTV-VP7. Western blot analysis showed the same result. Indirect immunofluorescence results indicated that two of the MAbs present different response spectrums with BTV1~24 serotypes. These results indicate that these MAbs may be good candidates for a specific diagnostic method and functional exploration of the VP7 protein.

  12. Selection of Ceratitis capitata (Diptera: Tephritidae) Specific Recombinant Monoclonal Phage Display Antibodies for Prey Detection Analysis (United States)

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro


    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators. PMID:23272105

  13. Considerations for extraction of monoclonal antibodies targeted to different subcellular compartments in transgenic tobacco plants. (United States)

    Hassan, Sally; van Dolleweerd, Craig J; Ioakeimidis, Fotis; Keshavarz-Moore, Eli; Ma, Julian K-C


    Monoclonal antibody production from transgenic tobacco plants offers many advantages over other heterologous production systems, creating the prospect of production at a scale that will allow new prophylactic and therapeutic applications in global human and animal health. However, information on the major processing factors to consider for large-scale purification of antibodies from transgenic plants is currently limited, and is in urgent need of attention. The purpose of this project was to investigate methods for the initial extraction of recombinant immunoglobulin G (IgG) antibodies from transgenic tobacco leaf tissue. Three different transgenic plant lines were studied in order to establish the parameters for optimal extraction of monoclonal antibodies that accumulate in the apoplasm, at the plasma membrane or within the endoplasmic reticulum. For each transgenic line, seven techniques for physical extraction were compared. The factors that determine the optimal extraction of antibodies from plants have a direct influence on the initial choice of expression strategy, and so must be considered at an early stage. The use of small-scale techniques that are applicable to large-scale purification was a particularly important consideration. The optimal extraction technique varied with the target location of IgG in the plant cell, and the dependence of antibody yield on the physical extraction methodology employed, the pH of the extraction buffer and the extraction temperature was demonstrated in each case. The addition of detergent to the extraction buffer may improve the yield, but this was found to be dependent on the site of accumulation of IgG within the plant cell.

  14. Use of Monoclonal Antibodies in the Sensitive Detection and Neutralization of Botulinum Neurotoxin Serotype B. (United States)

    Cheng, Luisa W; Henderson, Thomas D; Lam, Tina I; Stanker, Larry H


    Botulinum neurotoxins (BoNT) are some of nature's most potent toxins. Due to potential food contamination, and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed a sensitive electrochemiluminescent (ECL) immunoassay for BoNT/B, using monoclonal antibodies (mAbs) MCS6-27 and anti-BoNT/B rabbit polyclonal antibodies as the capture and detector. The ECL assay detected as little as 1 pg/mL BoNT/B in the buffer matrix, surpassing the detection sensitivities of the gold standard mouse bioassays. The ECL assay also allowed detection of BoNT/B in sera matrices of up to 100% sera with negligible matrix effects. This highly-sensitive assay allowed the determination of the biological half-lives of BoNT/B holotoxin in vivo. We further tested the toxin neutralization potential of our monoclonal antibodies using the mouse systemic and oral intoxication models. A combination of mAbs protected mice in both pre- and post-exposure models to lethal doses of BoNT/B. MAbs were capable of increasing survival of animals when administered even 10 h post-intoxication in an oral model, suggesting a likely time for BoNT/B complexes to reach the blood stream. More sensitive detection assays and treatments against BoNT intoxication will greatly enhance efforts to combat botulism.

  15. Drug insight: antiangiogenic therapies for gastrointestinal cancers--focus on monoclonal antibodies. (United States)

    Reinacher-Schick, Anke; Pohl, Michael; Schmiegel, Wolff


    Tumor angiogenesis is strongly induced by vascular endothelial growth factor (VEGF), which is overexpressed in most human gastrointestinal cancers. VEGF overexpression is known to be associated with poor prognosis and survival in patients with various solid tumors. The humanized monoclonal anti-VEGF antibody bevacizumab (Avastin, Genentech Inc., South San Francisco, CA) is a prototypic antiangiogenic compound, and has proven therapeutic benefit combined with conventional chemotherapy-namely, significantly improved progression-free survival in patients with metastatic colorectal cancer. Bevacizumab is the only anti-VEGF antibody that has been approved by the FDA and the European Medicines Agency for the treatment of metastatic colorectal cancer. Several ongoing clinical studies are evaluating the potential of bevacizumab therapy for other gastrointestinal cancers, in combination with chemotherapy, other targeted therapies and/or radiation. Soluble chimeric receptors, tyrosine kinase inhibitors, and monoclonal antibodies against VEGF and molecular targets in the integrin and Delta-like protein 4-Notch pathways are being developed. As tumors acquire resistance to anti-VEGF therapy, further development of antiangiogenic and vascular targets and therapy is warranted.

  16. Probing Functional Changes in Exocyst Configuration with Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Shivangi M. Inamdar


    Full Text Available Spatial regulation of exocytosis relies on the exocyst, a hetero-octameric protein complex that tethers vesicles to fusion sites at the plasma membrane. Nevertheless, our understanding of mechanisms regulating exocyst assembly/disassembly, localization and function are incomplete. Here, we have exploited a panel of anti-Sec6 monoclonal antibodies (mAbs to probe possible configurational changes accompanying transitions in exocyst function in epithelial MDCK cells. Sec6 is quantitatively associated with Sec8 in high molecular weight complexes, as shown by gel filtration and co-immunoprecipitation studies. We mapped epitopes recognized by more than twenty distinct mAbs to one of six Sec6 segments. Surprisingly, mAbs that bound epitopes in each segment labeled distinct subcellular structures. Antibodies to epitopes in N-terminal domains labeled Sec6 in either cytosolic or nuclear pools, whereas those that bound epitopes in C-terminal domains labeled membrane-associated Sec6. In this latter group, we identified antibodies that labeled distinct Sec6 populations at the apical junctional complex, desmosomes, endoplasmic reticulum and vimentin-type intermediate filaments. That each antibody was specific was verified by both Sec6 RNAi and competition with fusion proteins containing each domain. Comparison of non-polarized and polarized cells revealed that many Sec6 epitopes either redistribute or become concealed during epithelial polarization. Transitions in exocyst configurations may be regulated in part by the actions of Ral GTPases, because the exposure of Sec6 C-terminal domain epitopes at the plasma membrane is significantly reduced upon RalA RNAi. To determine whether spatio-temporal changes in epitope accessibility was correlated with differential stability of interactions between Sec6 and other exocyst subunits, we quantified relative amounts of each subunit that co-immunoprecipitated with Sec6 when antibodies to N-terminal or C-terminal epitopes

  17. Antibodies to poliovirus detected by immunoradiometric assay with a monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, M.; Fossati, C.A.; Schild, G.C.; Spitz, L.; Brasher, M. (National Inst. for Biological Standards and Control, London (UK))


    An immunoradiometric assay (IRMA) for the assay of antibodies to poliovirus antigens is described. Dilutions of the test sera or whole (finger prick) blood samples were incubated with the poliovirus antigen bound to a solid phase and the specific antibody was detected by the addition of a mouse anti-human IgG monoclonal antibody (McAb), which was itself revealed by iodinated sheep IgG antimouse F(ab). The authors have shown that this technique is suitable for the estimation of IgG anti-poliovirus antibodies induced in children following polio vaccine. The present study shows that SPRIA provides a simple and inexpensive method for serological studies with poliovirus particularly for use in large-scale surveys.

  18. Monoclonal antibody fragment removal mediated by mixed mode resins. (United States)

    O'Connor, Ellen; Aspelund, Matthew; Bartnik, Frank; Berge, Mark; Coughlin, Kelly; Kambarami, Mutsa; Spencer, David; Yan, Huiming; Wang, William


    Efforts to increase monoclonal antibody expression in cell culture can result in the presence of fragmented species requiring removal in downstream processing. Capto adhere, HEA Hypercel, and PPA Hypercel anion exchange/hydrophobic interaction mixed mode resins were evaluated for their fragment removal capabilities and found to separate large hinge IgG1 antibody fragment (LHF) from monomer. Removal of greater than 75% of LHF population occurred at pH 8 and low conductivity. The mechanism of fragment removal was investigated in two series of experiments. The first experimental series consisted of comparison to chromatographic behavior on corresponding single mode resins. Both single mode anion exchange and hydrophobic interaction resins failed to separate LHF. The second experimental series studied the impact of phase modifiers, ethylene glycol, urea, and arginine on the mixed mode mediated removal. The addition of ethylene glycol decreased LHF removal by half. Further decreases in LHF separation were seen upon incubation with urea and arginine. Therefore, it was discovered that the purification is the result of a mixed mode phenomena dominated by hydrophobic interaction and hydrogen bonding effects. The site of interaction between the LHF and mixed mode resin was determined by chemical labeling of lysine residues with sulfo-NHS acetate. The labeling identified the antibody hinge and light chain regions as mediating the fragment separation. Sequence analysis showed that under separation conditions, a hydrophobic proline patch and hydrogen bonding serine and threonine residues mediate the hinge interaction with the Capto adhere ligand. Additionally, a case study is presented detailing the optimization of fragment removal using Capto adhere resin to achieve purity and yield targets in a manufacturing facility. This study demonstrated that mixed mode resins can be readily integrated into commercial antibody platform processes when additional chromatographic abilities

  19. Production and immunohistochemical characterization of monoclonal antibodies directed against renal basement membranes of rats


    Hinsch, Klaus-Dieter; Hansen, Diethelm; Zimmermann, Astrid; Bruchhausen, Franz V.


    Basement membranes were separated from rat glomeruli and purified by mild procedures, which led to a highly enriched basement membrane fraction. Here, the production and characterization of five monoclonal antibodies against tubular and glomerular basement membranes are described. These antibodies were analyzed immunohistochemically on frozen sections of rat, bovine, and human kidneys as well as on rat embryos. One monoclonal antibody (BM 0 11) exclusively ...

  20. Human anti-plague monoclonal antibodies protect mice from Yersinia pestis in a bubonic plague model.

    Directory of Open Access Journals (Sweden)

    Xiaodong Xiao


    Full Text Available Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252 and two anti-V-specific human mAb (m253, m254 by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans.

  1. [Using HTS-ELISA method to make anti-aflatoxin M1 monoclonal antibody]. (United States)

    Pei, Shichun; He, Na; Zhang, Lijun; Lu, Mason


    To prepare high-affinity anti-aflatoxin M1 monoclonal antibodies by High Throughput Screening ELISA (HTS-ELISA) METHODS: Balb/C mice were immunized by aflatoxin M1-bovine serum albumin conjugate, and screen secret anti-aflatoxin M1 monoclonal antibody hybridoma by HTS-ELISA. The antibody was characterized. Fourteen hybridoma cell lines which could secret high activity anti-aflatoxin M1 monoclonal antibodies were obtained. The affinity of the purified monoclonal antibody was 5.5 x 10(-10) mol/L. The cross-reactivity of the monoclonal antibody clone against aflatoxin M1, aflatoxin M2, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, deoxynivalenol and BSA was 100%, 4.5%, 21.5%, 1.0%, 16.6%, 1.0%, 0%, 0%, respectively. The sensitivity of the anti-AFM1 monoclonal antibody binding to aflatoxin M1 was 0.01 microg/L and the linear range for developed indirect competitive ELISA was 0.1 - 10 microg/L aflatoxin M1. The binding inhibition IC50 of the anti-aflatoxin M1 monoclonal antibody was 0.82 microg/L. Assays of milk samples mixed with AFM1 ranging in concentration from 0.25 to 5.0 microg/L gave mean indirect competitive ELISA recovery of 60.3% - 152.8%. HTS-ELISA can be used for the preparation of the high-affinity anti-aflatoxin M1 monoclonal antibodies. The anti-aflatoxin M1 monoclonal antibody could be provided as the high quality material in the system of aflatoxin M1 immune detection.

  2. Monoclonal Antibody Recognizing a Core Epitope on Mucin

    Directory of Open Access Journals (Sweden)

    Peter L. Devine


    Full Text Available Monoclonal antibody TH1 (IgM was prepared by immunizing mice with deglycosylated (TFMSA-treated cystic fibrosis mucin. TH1 reacted strongly with TFMSA treated cystic fibrosis mucin but not with the fully glycosylated mucin, indicating reactivity with a core mucin epitope. TH1 showed no reactivity with ovine mucin (98% of glycans as sialyl-Tn but reacted strongly with desialylated ovine mucin, indicating the epitope for this mab was the Tn-antigen (O-linked GalNAc. However, TH1 showed no reactivity with Tn-positive red blood cells, and the binding of TH1 was not inhibited by GalNAc at 2.5 mg/ml, illustrating the importance of the peptide sequence to which the GalNAc is attached. TH1 stained the majority of cancers of the colon, lung, stomach, ovary, breast, and cervix, and the cellular distribution of this antigen in normal tissue suggested reactivity with immature mucin. This antibody appears to be a useful reagent for the detection of immature mucin.

  3. Analysis of viral clearance unit operations for monoclonal antibodies. (United States)

    Miesegaes, George; Lute, Scott; Brorson, Kurt


    Demonstration of viral clearance is a critical step in assuring the safety of biotechnology products. We generated a viral clearance database that contains product information, unit operation process parameters, and viral clearance data from monoclonal antibody and antibody-related regulatory submissions to FDA. Here we present a broad overview of the database and resulting analyses. We report that the diversity of model viruses tested expands as products transition to late-phase. We also present averages and ranges of viral clearance results by Protein A and ion exchange chromatography steps, low pH chemical inactivation, and virus filtration, focusing on retro- and parvoviruses. For most unit operations, an average log reduction value (LRV, a measure of clearance power) for retrovirus of >4 log(10) were measured. Cases where clearance data fell outside of the anticipated range (i.e., outliers) were rationally explained. Lastly, a historical analysis did not find evidence of any improvement trend in viral clearance over time. The data collectively suggest that many unit operations in general can reliably clear viruses.

  4. Monoclonal Antibodies for the Diagnosis of Borrelia crocidurae. (United States)

    Fotso Fotso, Aurélien; Mediannikov, Oleg; Nappez, Claude; Azza, Saïd; Raoult, Didier; Drancourt, Michel


    Relapsing fever borreliae, produced by ectoparasite-borne Borrelia species, cause mild to deadly bacteremia and miscarriage. In the perspective of developing inexpensive assays for the rapid detection of relapsing fever borreliae, we produced 12 monoclonal antibodies (MAbs) against Borrelia crocidurae and characterized the two exhibiting the highest titers. P3A10 MAb reacts with the 35.6-kDa flagellin B (flaB) of B. crocidurae while P6D9 MAb recognizes a 35.1-kDa variable-like protein (Vlp) in B. crocidurae and a 35.2-kDa Vlp in Borrelia duttonii. Indirect immunofluorescence assay incorporating relapsing fever and Lyme group borreliae and 11 blood-borne organisms responsible for fever in West Africa confirmed the reactivity of these two MAbs. Combining these two MAbs in indirect immunofluorescence assays detected relapsing fever borreliae including B. crocidurae in ticks and the blood of febrile Senegalese patients. Both antibodies could be incorporated into inexpensive and stable formats suited for the rapid point-of-care diagnosis of relapsing fever. These first-ever MAbs directed against African relapsing fever borreliae are available for the scientific community to promote research in this neglected field. © The American Society of Tropical Medicine and Hygiene.

  5. Reversing EGFR Mediated Immunoescape by Targeted Monoclonal Antibody Therapy

    Directory of Open Access Journals (Sweden)

    Fernando Concha-Benavente


    Full Text Available Uncontrolled growth is a signature of carcinogenesis, in part mediated by overexpression or overstimulation of growth factor receptors. The epidermal growth factor receptor (EGFR mediates activation of multiple oncogenic signaling pathways and escape from recognition by the host immune system. We discuss how EGFR signaling downregulates tumor antigen presentation, upregulates suppressive checkpoint receptor ligand programmed death ligand (PD-L1, induces secretion of inhibitory molecules such as transforming growth factor beta (TGFβ and reprograms the metabolic pathways in cancer cells to upregulate aerobic glycolysis and lactate secretion that ultimately lead to impaired cellular immunity mediated by natural killer (NK cell and cytotoxic T lymphocytes (CTL. Ultimately, our understanding of EGFR-mediated escape mechanisms has led us to design EGFR-specific monoclonal antibody therapies that not only inhibit tumor cell metabolic changes and intrinsic oncogenic signaling but also activates immune cells that mediate tumor clearance. Importantly, targeted immunotherapy may also benefit from combination with antibodies that target other immunosuppressive pathways such PD-L1 or TGFβ and ultimately enhance clinical efficacy.

  6. Monoclonal antibody against Mycoplasma fermentans-specific aminoglycoglycerolipid. (United States)

    Matsuda, K; Li, J L; Ichinose, S; Harasawa, R; Saito, M; Yamamoto, N


    Previously, we reported that Mycoplasma fermentans has specific antigens (phosphocholine-containing glycoglycerolipids: GGPL-I and GGPL-III) and discussed the possibility of their pathogenic role. In this paper, we report the characterization of a monoclonal antibody (MF-III-1) specific to GGPL-III (phosphocholine-containing aminoglycoglycerolipid) using methods of electron microscopy, immunofluorescence cell surface staining, laser scanning microscopy, immunoelectron microscopy, and thin-layer chromatography immunostaining. The MF-III-1 antibody specifically recognized M. fermentans attached to the surface of HTLV-I-infected human helper T-cells, and it did not cross-react with other lipids nor with human T-cell antigens. Since MF-III-1 distinguishes GGPL-III from GGPL-I, the binding site may include a serinol (2-amino-1,3-propanediol) residue of GGPL-III. MF-III-1 is useful for the in vitro study of M. fermentans, and may also be useful as a tool for the study of the involvement of M. fermentans in human diseases.

  7. Defining process design space for monoclonal antibody cell culture. (United States)

    Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A


    The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.

  8. Selectivity verification of cardiac troponin monoclonal antibodies for cardiac troponin detection by using conventional ELISA (United States)

    Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Adzhri, R.; Ruslinda, A. R.; Hashim, U.


    This paper presents preparation and characterization of conventional enzyme-linked immunosorbent assay (ELISA) for cardiac troponin detection to determine the selectivity of the cardiac troponin monoclonal antibodies. Monoclonal antibodies, used to capture and bind the targets in this experiment, are cTnI monoclonal antibody (MAb-cTnI) and cTnT monoclonal antibody (MAb-cTnT), while both cardiac troponin I (cTnI) and T (cTnT) are used as targets. ELISA is performed inside two microtiter plates for MAb-cTnI and MAb-cTnT. For each plate, monoclonal antibodies are tested by various concentrations of cTnI and cTnT ranging from 0-6400 µg/l. The binding selectivity and level of detection between monoclonal antibodies and antigen are determined through visual observation based on the color change inside each well on the plate. ELISA reader is further used to quantitatively measured the optical density of the color changes, thus produced more accurate reading. The results from this experiment are utilized to justify the use of these monoclonal antibodies as bio-receptors for cardiac troponin detection by using field-effect transistor (FET)-based biosensors coupled with substrate-gate in the future.

  9. Obinutuzumab: A FDA approved monoclonal antibody in the treatment of untreated chronic lymphocytic leukemia. (United States)

    Sachdeva, Mamta; Dhingra, Sameer


    Chronic lymphocytic leukemia (CLL) is an adult lymphoid malignancy with a variable clinical course. There is considerable interest in the identification of new treatments, as most current approaches are not curative. While most patients respond to initial chemotherapy, relapsed disease is often resistant to the drugs commonly used in CLL and patients are left with limited therapeutic options. Obinutuzumab is recently approved in combination with chlorambucil for people with previously untreated CLL and is additionally being investigated in a large clinical program, including multiple head-to-head phase III studies compared with Rituxan in indolent non-Hodgkin's lymphoma and diffuse large B-cell lymphoma. In this article, author has made an attempt to review the therapeutic profile of this newly approved monoclonal antibody in the treatment of CLL.

  10. Monoclonal Antibodies for the Treatment of Myeloma: Targeting SLAMF7 and CD38. (United States)

    Lonial, Sagar


    The recent explosion of immune-based treatments for cancer has significantly impacted remission durations and overall survival for many diseases. Multiple myeloma is no exception to this trend, with several immune-based treatments including checkpoint blockade, cellular therapy, and most advanced now antibody-based treatment coming to fruition. While the use of monoclonal antibodies has been a significant interest in myeloma for some time, identifying the ideal target has been an issue. Given the dependence of plasma cells on interleukin 6 signaling for survival and proliferation, there were several trials testing both single agent and combination therapy effects of anti-interleukin 6 antibodies, which did not demonstrate significant clinical activity; however, more recent antibodies targeting receptors such as CD38 and SLAMF7 (previously known as CS1) are demonstrating significant clinical benefit. In this article, we briefly review the preclinical and clinical data surrounding these 2 important targets and the antibodies that clinically will be used as therapeutic agents in the context of multiple myeloma.

  11. Immunoscintigraphy and radioimmunotherapy in Cuba: experiences with labeled monoclonal antibodies for cancer diagnosis and treatment (1993-2013). (United States)

    Peña, Yamilé; Perera, Alejandro; Batista, Juan F


    INTRODUCTION The availability of monoclonal antibodies in Cuba has facilitated development and application of innovative techniques (immunoscintigraphy and radioimmunotherapy) for cancer diagnosis and treatment. Objective Review immunoscintigraphy and radioimmunotherapy techniques and analyze their use in Cuba, based on the published literature. In this context, we describe the experience of Havana's Clinical Research Center with labeled monoclonal antibodies for cancer diagnosis and treatment during the period 1993-2013. EVIDENCE ACQUISITION Basic concepts concerning cancer and monoclonal antibodies were reviewed, as well as relevant international and Cuban data. Forty-nine documents were reviewed, among them 2 textbooks, 34 articles by Cuban authors and 13 by international authors. All works published by the Clinical Research Center from 1993 through 2013 were included. Bibliography was obtained from the library of the Clinical Research Center and Infomed, Cuba's national health telematics network, using the following keywords: monoclonal antibodies, immunoscintigraphy and radioimmunotherapy. RESULTS Labeling the antibodies (ior t3, ior t1, ior cea 1, ior egf/r3, ior c5, h-R3, 14F7 and rituximab) with radioactive isotopes was a basic line of research in Cuba and has fostered their use as diagnostic and therapeutic tools. The studies conducted demonstrated the good sensitivity and diagnostic precision of immunoscintigraphy for detecting various types of tumors (head and neck, ovarian, colon, breast, lymphoma, brain). Obtaining different radioimmune conjugates with radioactive isotopes such as 99mTc and 188Re made it possible to administer radioimmunotherapy to patients with several types of cancer (brain, lymphoma, breast). The objective of 60% of the clinical trials was to determine pharmacokinetics, internal dosimetry and adverse effects of monoclonal antibodies, as well as tumor response; there were few adverse effects, no damage to vital organs, and a positive

  12. Development of new staining technology "eastern blotting" using monoclonal antibody. (United States)

    Morinaga, Osamu; Shoyama, Yukihiro


    Ginsenosides contained in Panax species were separated by silica gel TLC blotted to a polyvinylidene difluoride (PVDF) membrane which was dipped in a sodium periodide (NaIO(4)) solution and reacted with protein, preparing a ginsenoside-protein conjugate for binding a ginsenoside on a PVDF membrane. The blotted spots were stained by anti-ginsenoside-Rb1 monoclonal antibody (MAb) and anti-ginsenoside-Rg1MAb, respectively. The newly established immunostaining method, eastern blotting was applied for the determination of ginsenosides possessing protopanaxadiol and/or protopanaxatriol. Double staining of eastern blotting for ginsenosides using anti-ginsenoside-Rb1 MAb and anti-ginsenoside-Rg1 MAb promoted complete identification of ginsenosides in Panax species. This technique has been devised for the chromatographic separation and identification of ginsenosides using polyethersulfone (PES) membrane. It caused an acceptable separation of ginsenoside-Rb1, -Rc and -Rd in various ginseng extracts. Newly developed technique is quite simple and applies for immunoassay system. Ginsenosides separated using a PES membrane were directly treated with a NaIO(4) solution and then reacted with bovine serum albumin (BSA) for making a ginsenoside-protein conjugate. After the blocking, anti-ginsenoside-Rb1 MAb recognized a ginsenoside on a PES membrane and then a sec-ond antibody labeled with enzyme reacted to the first antibody. Finally a substrate was oxidized with the enzyme and de-veloped the staining of ginsenosides. The staining spots of ginsenosides on membrane were quantitatively evaluated by NIH Image indicating at least 62.5 ng of each ginsenoside-Rb1, -Rc and -Rd were detected with clarity. The determination range of three ginsenosides was from 0.125 to 2.0 µg of direct amount on PES membrane.

  13. Generation and applications of monoclonal antibodies for livestock production. (United States)

    Van Der Lende, T


    Monoclonal antibodies (MCAs) have found widespread applications in livestock production. Although the generation of murine MCAs is at present a routine, the production of homologous MCAs, especially important for in vivo applications, is still hampered by the lack of efficient homologous fusion partners for immortalization of antibody producing lymphocytes of livestock species. At present, MCAs are used in immunodiagnostic tests e.g. to monitor livestock reproduction and quality of livestock products. In the future MCAs will also be used in immunosensors for real-time and on-site applications in the same areas. The commercial application of MCAs for the immunomodulation of (pharmacologically induced) physiological processes underlying important (re)production traits is at present limited to the use of anti-PMSG MCAs in PMSG-induced superovulation. However, many potentially interesting applications are under investigation (e.g. immunopotentiation of growth hormone to enhance growth; immunocytolysis of adipocytes to increase lean meat production; immunoneutralization of GnRH for immunocastration; immunoimitation of hormone activity with anti-idiotype antibodies). Attempts to use specific MCAs for the sexing of embryos have been disappointing, mainly because of the relatively low accuracy. In the future, MCAs against membrane proteins which are specific for X- or Y-chromosome bearing spermatozoa might be used for bulk separation of livestock sperm. In general, it is expected that engineered (homologous) recombinant MCAs will largely contribute to the development of a new generation of rapid immunodiagnostic tests and effective immunomodulation applications. They will further increase the use of MCAs in livestock production.

  14. Yellow fever monoclonal antibodies: type-specific and cross-reactive determinants identified by immunofluorescence. (United States)

    Monath, T P; Schlesinger, J J; Brandriss, M W; Cropp, C B; Prange, W C


    Monoclonal antibodies directed against the envelope glycoprotein and the NV3 non-structural viral protein of yellow fever (YF) were tested by the indirect fluorescent antibody technique against a variety of YF virus strains and heterologous flaviviruses. Monoclonal antibodies directed against the envelope glycoprotein exhibited YF strain-specificity, YF type-specificity, broad group cross-reactivity, or limited subgroup reactivity (YF + Banzi or YF + Koutango + Zika + Usutu + Uganda S). Monoclonal antibodies directed against NV3 reacted either with YF + Koutango or with YF + Banzi. These findings generally correlated with the results of biological tests reported previously. Monoclonal antibodies that were type-specific to YF will be useful for the rapid specific identification of YF virus isolates and are available from the Centers for Disease Control on request.

  15. [Determination of tetanus toxin and toxoid by ELISA using monoclonal antibodies]. (United States)

    Burkin, M A; Sviridov, V V; Perelygina, O V


    The procedure of obtaining monoclonal antibodies TT-1, TT-2, and TT-3 against tetanus toxin/toxoid is described. It is shown that both commercial DTP vaccine and tetanus toxoid conjugated with a low-molecular-weight hapten can be used an immunogens. Monoclonal antibodies TT-1 and TT-2 neutralized tetanus toxin in vivo. The monoclonal antibodies obtained were used to design and compare several schemes of quantitative determination of tetanus toxoid and toxin by ELISA. A more sensitive competitive ELISA allowed detecting as much as 0.01 EC/ml toxoid and 50 LD50/ml toxin.

  16. The Use of Humanized Monoclonal Antibodies for the Prevention of Respiratory Syncytial Virus Infection

    Directory of Open Access Journals (Sweden)

    Marcello Lanari


    Full Text Available Monoclonal antibodies are widely used both in infants and in adults for several indications. Humanized monoclonal antibodies (palivizumab have been used for many years for the prevention of respiratory syncytial virus infection in pediatric populations (preterm infants, infants with chronic lung disease or congenital heart disease at high risk of severe and potentially lethal course of the infection. This drug was reported to be safe, well tolerated and effective to decrease the hospitalization rate and mortality in these groups of infants by several clinical trials. In the present paper we report the development and the current use of monoclonal antibodies for prophylaxis against respiratory syncytial virus.

  17. Affinity maturation to improve human monoclonal antibody neutralization potency and breadth against hepatitis C virus. (United States)

    Wang, Yong; Keck, Zhen-yong; Saha, Anasuya; Xia, Jinming; Conrad, Fraser; Lou, Jianlong; Eckart, Michael; Marks, James D; Foung, Steven K H


    A potent neutralizing antibody to a conserved hepatitis C virus (HCV) epitope might overcome its extreme variability, allowing immunotherapy. The human monoclonal antibody HC-1 recognizes a conformational epitope on the HCV E2 glycoprotein. Previous studies showed that HC-1 neutralizes most HCV genotypes but has modest potency. To improve neutralization, we affinity-matured HC-1 by constructing a library of yeast-displayed HC-1 single chain Fv (scFv) mutants, using for selection an E2 antigen from one of the poorly neutralized HCVpp. We developed an approach by parallel mutagenesis of the heavy chain variable (VH) and κ-chain variable (Vk) genes separately, then combining the optimized VH and Vk mutants. This resulted in the generation of HC-1-related scFv variants exhibiting improved affinities. The best scFv variant had a 92-fold improved affinity. After conversion to IgG1, some of the antibodies exhibited a 30-fold improvement in neutralization activity. Both surface plasmon resonance and solution kinetic exclusion analysis showed that the increase in affinity was largely due to a lowering of the dissociation rate constant, Koff. Neutralization against a panel of HCV pseudoparticles and infectious 2a HCV virus improved with the affinity-matured IgG1 antibodies. Interestingly, some of these antibodies neutralized a viral isolate that was not neutralized by wild-type HC-1. Moreover, propagating 2a HCVcc under the selective pressure of WT HC-1 or affinity-matured HC-1 antibodies yielded no viral escape mutants and, with the affinity-matured IgG1, needed 100-fold less antibody to achieve complete virus elimination. Taken together, these findings suggest that affinity-matured HC-1 antibodies are excellent candidates for therapeutic development.

  18. Monoclonal Antibodies Production Against a 40KDa Band of Hydatid Cyst Fluid. (United States)

    Sharafi, Seyedeh Maryam; Shirzad, Hedayat; Khanahmad, Hossein; Ataei, Behrooz; Darani, Hossein Yousofi


    Hydatid cyst is the larval stage of the tapeworm Echinococcus granulosus. Hydatid cyst fluid, cyst membrane and Protoscolices, contain a complex mixture of antigens that can induce immune responses in the host. Anti-cancer properties of Protoscolices and hydatid cyst fluid has been shown. In order to identify antigens of hydatid cyst fluid that have anti-cancer effect, in this study production of monoclonal antibodies against one of the hydatid cyst fluid band (40KDa) has been investigated. There are many published patents about applications of monoclonal antibodies. In this experimental study, 40KDa band of hydatid cyst fluid that has cross reaction with sera of patients with breast cancer was used as antigen. A group of mice were immunized with this antigen, and then their spleen cells were extracted and fused with SP2 cells. Monoclonal antibodies production was checked in wells with signs of cell growth using ELISA and western blotting. The reaction of the produced monoclonal antibodies with breast cancer cells was tested using flow cytometry method. Finally, effect of the monoclonal antibodies on growth of breast cancer cells was investigated in vitro. The results of this study showed that in the first plate antibody against 40KDa was detected in several wells. In the second plate monoclonal antibodies with high titer was detected in one well. The produced monoclonal antibodies reacted with the surface of breast cancer cells. However, they had no significant effect on growth of breast cancer cells in culture medium. Monoclonal antibodies against hydatid cyst fluid 40KDa band were produced. These antibodies reacted with the surface of breast cancer cells but had no significant effect on growth of these cells. Copyright© Bentham Science Publishers; For any queries, please email at

  19. A monoclonal antibody that neutralizes poliovirus by cross-linking virions.


    Thomas, A A; Brioen, P; Boeyé, A


    The neutralization of type 1 poliovirus by monoclonal antibody 35-1f4 was studied. The virions were rapidly linked by antibody into oligomers and larger aggregates, followed by slow redistribution of antibody between the immune complexes. The antibody content and infectivity of immune complexes were determined. Remaining single virions were fully infectious and free of antibody. The oligomers and larger aggregates did not significantly contribute to the residual infectivity, which therefore c...

  20. Determination of critical quality attributes for monoclonal antibodies using quality by design principles. (United States)

    Alt, Nadja; Zhang, Taylor Y; Motchnik, Paul; Taticek, Ron; Quarmby, Valerie; Schlothauer, Tilman; Beck, Hermann; Emrich, Thomas; Harris, Reed J


    Quality by design (QbD) is a global regulatory initiative with the goal of enhancing pharmaceutical development through the proactive design of pharmaceutical manufacturing process and controls to consistently deliver the intended performance of the product. The principles of pharmaceutical development relevant to QbD are described in the ICH guidance documents (ICHQ8-11). An integrated set of risk assessments and their related elements developed at Roche/Genentech were designed to provide an overview of product and process knowledge for the production of a recombinant monoclonal antibody. This chapter describes the identification of critical quality attributes (CQAs) as an important first step for QbD development of biopharmaceuticals. A systematic scientific based risk ranking and filtering approach allows a thorough understanding of quality attributes and an assignment of criticality for their impact on drug safety and efficacy. To illustrate the application of the approach and tools, a few examples from monoclonal antibodies are shown. The identification of CQAs is a continuous process and will further drive the structure and function characterization of therapeutic proteins. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. Discovery of monoclonal antibodies cross-reactive to novel subserotypes of K. pneumoniae O3. (United States)

    Guachalla, Luis M; Stojkovic, Katarina; Hartl, Katharina; Kaszowska, Marta; Kumar, Yadhu; Wahl, Benjamin; Paprotka, Tobias; Nagy, Eszter; Lukasiewicz, Jolanta; Nagy, Gábor; Szijártó, Valéria


    Klebsiella pneumoniae is responsible for nosocomial infections causing significant morbidity and mortality. Treatment of newly emerging multi-drug resistant strains is hampered due to severely limited antibiotic choices. Passive immunization targeting LPS O-antigens has been proposed as an alternative therapeutic option, given the limited variability of Klebsiella O-antigens. Here we report that the O3 serogroup, previously considered to have uniform O-antigen built of mannan, represents three different subtypes differing in the number of mannose residues within the O-antigen repeating units. Genetic analysis of the genes encoding mannose polymerization revealed differences that underline the observed structural alterations. The O3 variants represent antigenically different types based on the different reactivity pattern of murine monoclonal antibodies raised against a K. pneumoniae O3 strain. Typing of a collection of K. pneumoniae O3 clinical isolates showed that strains expressing the novel O3b antigen, the tri-mannose form, were more prevalent than those having the penta-mannose form, traditionally called O3, while the tetra-mannose variant, termed here O3a, seems to be rare. A monoclonal antibody cross-reacting with all three O3 sub-serogroups was also selected and shown to bind to the surface of various K. pneumoniae strains expressing different O3 subtypes and capsular antigens.

  2. Strategic deployment of CHO expression platforms to deliver Pfizer's Monoclonal Antibody Portfolio. (United States)

    Scarcelli, John J; Shang, Tanya Q; Iskra, Tim; Allen, Martin J; Zhang, Lin


    Development of stable cell lines for expression of large-molecule therapeutics represents a significant portion of the time and effort required to advance a molecule to enabling regulatory toxicology studies and clinical evaluation. Our development strategy employs two different approaches for cell line development based on the needs of a particular project: a random integration approach for projects where high-level expression is critical, and a site-specific integration approach for projects in which speed and reduced employee time spend is a necessity. Here we describe both our random integration and site-specific integration platforms and their applications in support of monoclonal antibody development and production. We also compare product quality attributes of monoclonal antibodies produced with a nonclonal cell pool or clonal cell lines derived from the two platforms. Our data suggests that material source (pools vs. clones) does not significantly alter the examined product quality attributes. Our current practice is to leverage this observation with our site-specific integration platform, where material generated from cell pools is used for an early molecular assessment of a given candidate to make informed decisions around development strategy. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.

  3. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies (United States)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.


    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.


    NARCIS (Netherlands)


    In this study, the effect of antibody adsorption on physicochemical properties of Streptococcus sobrinus was studied. Bacteria were preincubated with polyclonal antibodies or with OMVU10, a monoclonal antibody (MAb) reactive with S. sobrinus. The zeta potentials and the hydrophobicity as determined

  5. Evaluation of a monoclonal antibody able to detect live Listeria monocytogenes and Listeria innocua

    DEFF Research Database (Denmark)

    Sølve, Marianne; Boel, Jeppe; Nørrung, Birgit


    A monoclonal Listeria antibody, designated B4, was evaluated. The ability of the antibody to bind to viable bacteria belonging to Listeria spp, compared to bacteria of the same species killed by beat treatment, acid or base treatment, sanitizers, and irradiation was examined. The antibody was found...

  6. Detection of antibodies to hepatitis B surface antigen (HBsAg) using monoclonal antibody and the avidin-biotin system. (United States)

    Korec, E; Hlozánek, I; Mach, O; Stará, J; Nĕmecek, V; König, J


    A direct ELISA using biotinylated HBsAg and a competitive ELISA using biotinylated monoclonal antibody were developed for the detection of antibodies to HBsAg. Both tests are capable of detecting 0.1 I.U. of anti-HBsAg antibody/ml. The direct ELISA was compared with a SPRIA test for anti-HBsAg antibody in human sera.

  7. Monoclonal antibodies that define canine homologues of human CD antigens: summary of the First International Canine Leukocyte Antigen Workshop (CLAW). (United States)

    Cobbold, S; Metcalfe, S


    A panel of 127 monoclonal antibodies against canine leukocyte antigens, including controls, was distributed to 29 laboratories that performed a variety of experiments to identify groups of antibodies against the canine equivalents of some of the human CD antigens. Cluster analysis was performed centrally, using the submitted antibody binding data from immunofluorescence, ELISA and immuno-histology experiments. Immunoprecipitation for molecular weight determination was also performed centrally with T-cell blasts and a B-cell line as the sources of antigen. Clusters of three or more antibodies were found that defined the canine equivalents of the CD5, CD4, CD8 and Thy-1 antigens, and these could be used to label T-cell subsets from the peripheral blood. Other groups of monoclonal antibodies recognized the canine homologues of the CD11/18 group of antigens, CD44 and the CD45/CD45R antigen family: these should be useful in isolating functional subsets of CD4+ helper T cells. There was a cluster of four antibodies that bound strongly to platelets (probably CD41 antigen), three antibodies that were specific to B cells (including CD21) and two antibodies against a granulocyte antigen (possibly CD15). A number of reagents were found against canine MHC-II and immunoglobulin, with some of the latter able to distinguish between Ig subclasses. Properties of each of the canine antigens defined by these monoclonal antibodies are discussed and compared with other species. The availability of such a panel of reagents should allow rapid improvements in the immunological diagnosis of canine disease, and there might now be a potential for testing novel therapeutic strategies in a clinical veterinary setting.

  8. Characterization of monoclonal antibodies against waterfowl parvoviruses VP3 protein

    Directory of Open Access Journals (Sweden)

    Yin Xiuchen


    Full Text Available Abstract Background The VP3 protein of goose parvovirus (GPV or Muscovy duck parvovirus (MDPV, a major structural protein, can induce neutralizing antibodies in geese and ducks, but monoclonal antibodies (MAbs against VP3 protein has never been characterized. Results Three hybridoma cell lines secreting anti-GPV VP3 MAbs were obtained and designated 4A8, 4E2, and 2D5. Immunoglobulin subclass tests differentiated them as IgG2b (4A8 and 4E2 and IgG2a (2D5. Dot blotting assays showed that three MAbs reacted with His-VP3 protein in a conformation-independent manner. A competitive binding assay indicated that the MAbs delineated two epitopes, A and B of VP3. Immunofluorescence assay showed that MAbs 4A8, 4E2, and 2D5 could specifically bind to goose embryo fibroblast cells (GEF or duck fibroblast cells (DEF infected with GPV and MDPV. Dot blotting also showed that the MAbs recognized both nature GPV and MDPV antigen. Western blotting confirmed that the MAbs recognized VP3 proteins derived from purified GPV and MDPV particles. The MAbs 4A8 and 2D5 had universal reactivity to heterologous GPV and MDPV tested in an antigen-capture enzyme-linked immunosorbent assay. Conclusions Preparation and characterization of these the MAbs suggests that they may be useful for the development of a MAb-capture ELISA for rapid detection of both GPV and MDPV. Virus isolation and PCR are reliable for detecting GPV and MDPV infection, but these procedures are laborious, time-consuming, and requiring instruments. These diagnosis problems highlight the ongoing demand for rapid, reproducible, and automatic methods for the sensitive detection of both GPV and MDPV infection.

  9. The classification of Sejroe group serovars of Leptospira interrogans with monoclonal antibodies

    NARCIS (Netherlands)

    Terpstra, W. J.; Korver, H.; van Leeuwen, J.; Klatser, P. R.; Kolk, A. H.


    Using the hybridoma technique we produced monoclonal antibodies to serovars of Leptospira interrogans. We focussed on serovar hardjo which is an important pathogen for humans and animals, and on other serovars of the Sejroe group. With combinations of monoclonals, characteristic patterns of

  10. Production of a Chaetomium globosum enolase monoclonal antibody. (United States)

    Green, Brett J; Nayak, Ajay P; Lemons, Angela R; Rittenour, William R; Hettick, Justin M; Beezhold, Donald H


    Chaetomium globosum is a hydrophilic fungal species and a contaminant of water-damaged building materials in North America. Methods to detect Chaetomium species include subjective identification of ascospores, viable culture, or molecular-based detection methods. In this study, we describe the production and initial characterization of a monoclonal antibody (MAb) for C. globosum enolase. MAb 1C7, a murine IgG1 isotype MAb, was produced and reacted with recombinant C. globosum enolase (rCgEno) in an enzyme-linked immunosorbent assay and with a putative C. globosum enolase in a Western blot. Epitope mapping showed MAb 1C7 specific reactivity to an enolase decapeptide, LTYEELANLY, that is highly conserved within the fungal class Sordariomycetes. Cross-reactivity studies showed MAb 1C7 reactivity to C. atrobrunneum but not C. indicum. MAb 1C7 did not react with enolase from Aspergillus fumigatus, which is divergent in only two amino acids within this epitope. The results of this study suggest potential utility of MAb 1C7 in Western blot applications for the detection of Chaetomium and other Sordariomycetes species.

  11. Generation and Application of Monoclonal Antibody Against Lycopene. (United States)

    Tsibezov, Valeriy V; Bashmakov, Yuriy K; Pristenskiy, Dmitry V; Zigangirova, Naylia A; Kostina, Ludmila V; Chalyk, Natalya E; Kozlov, Alexey Y; Morgunova, Elena Y; Chernyshova, Marina P; Lozbiakova, Marina V; Kyle, Nigel H; Petyaev, Ivan M


    A monoclonal antibody (Mab) against lycopene was developed from hybridoma clones obtained from BALB/c mice immunized with trans-isomer of lycopene (t-lycopene, t-LC) conjugated with colloidal gold particles. An alternating immunization schedule which included injection of both formulations of immunogen (without and with Freund's adjuvant) was most effective in the elucidation of a measurable immune response to the t-Lycopene conjugate. Selected hybridoma clones were able to produce an Mab positive in competition assay. In particular, preincubation of 6B9 Mabs with t-LC abolished the ability of 6B9 Mabs to bind LC in the competition assay. Mabs produced by other clones (4F10, 4A3, and 3B12) worked similarly. Analysis of antigen specificity showed that 6B9 Mab raised against t-LC did not recognize other carotenoids such as lutein and carotene. Mab 6B9 was shown to recognize lycopene on a glass surface and in the settings of indirect immunofluorescence experiments performed in cultured hepatocytes and alveolar macrophages incubated with and without lycopene, as well as in sebum and corneocyte specimens from the skin of volunteers supplemented with nutraceutical formulation of lycopene. Newly generated Mabs against lycopene may provide a valuable tool for different analytical assays of lycopene content in various biological, agricultural, and food products.

  12. Antigen-specific human monoclonal antibodies from transgenic mice. (United States)

    Mompó, Susana Magadán; González-Fernández, Africa


    Due to the difficulties found when generating fully human monoclonal antibodies (mAbs) by the traditional method, several efforts have attempted to overcome these problems, with varying levels of success. One approach has been the development of transgenic mice carrying immunoglobulin (Ig) genes in germ line configuration. The engineered mouse genome can undergo productive rearrangement in the B cell population, with the generation of mouse B lymphocytes expressing human Ig (hIg) chains. To avoid the expression of mouse heavy or light chains, the endogenous mouse Ig (mIg) loci must be silenced by gene-targeting techniques. Subsequently, to obtain antigen-specific mAbs, conventional immunization protocols can be followed and the mAb technique used (fusion of activated B cells with mouse myeloma cells, screening, cloning, freezing, and testing) with these animals expressing human Ig genes. This chapter describes the type of transgenic knockout mice generated for various research groups, provides examples of human mAbs developed by research groups and companies, and includes protocols of immunization, generation, production, and purification of human mAbs from such mice. In addition, it also addresses the problems detected, and includes some of the methods that can be used to analyze functional activities with human mAbs.

  13. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. (United States)

    Gharwan, Helen; Groninger, Hunter


    Molecularly targeted cancer therapies, such as small-molecule kinase inhibitors and monoclonal antibodies, constitute a rapidly growing and an important part of the oncology armamentarium. Unlike conventional (cytotoxic) chemotherapeutics, targeted therapies were designed to disrupt cancer cell pathogenesis at specific biological points essential for the development and progression of the tumour. These agents were developed to disrupt specific targets with the aim of minimizing treatment burden compared with conventional chemotherapy. Nevertheless the increasingly common use of targeted therapies has revealed some unanticipated, often clinically significant toxic effects, as well as compromising effective palliative and end-of-life management approaches. Although patients and clinicians welcome improvements in cancer prognosis, these changes can also impact patient quality-of-life. Therefore, as demand for oncology expertise increases, physicians need to apprise themselves of targeted therapies and their clinical implications, including drug-specific side effects, impact on quality of life, and cost issues, especially in relation to end-of-life care. This Review provides a useful summary and guide for professionals treating patients with malignant diseases.

  14. Monoclonal antibodies and other targeted therapies for pancreatic cancer. (United States)

    Cinar, Pelin; Tempero, Margaret A


    Pancreatic cancer continues to be a challenging disease to treat because of its aggressive nature, advanced stage at the time of diagnosis, and limited treatment options that are available. Traditional cytotoxic chemotherapy provides modest benefit to patients with pancreatic adenocarcinoma. Recently, a FOLFIRINOX regimen revealed improved response in overall and progression-free survival over single-agent gemcitabine in metastatic pancreatic cancer, but there is still much needed advancement in the systemic treatment of pancreatic cancer. There is a growing interest in the development of novel agents, while our understanding of molecular pathogenesis of pancreatic adenocarcinoma continues to expand. With identification of various molecular pathways in pancreatic cancer tumorigenesis, potential targets for drug development have been pursued with the use of monoclonal antibodies and small-molecule inhibitors. Although preclinical studies with multiple targeted therapies demonstrated encouraging results in pancreatic cancer, only erlotinib, an epidermal growth factor receptor inhibitor, showed a marginal survival benefit in a phase III clinical trial, when combined with gemcitabine. As further signaling pathways and their importance in pancreatic cancer tumorigenesis are better understood, further clinical trials will need to be designed to study these targeted agents as single agents, in combination with other novel agents or in combination with cytotoxic chemotherapy. In this review, we present the current knowledge on targeted therapy in pancreatic adenocarcinoma and its application in clinical practice.

  15. Biosimilar monoclonal antibodies: the scientific basis for extrapolation. (United States)

    Schellekens, Huub; Lietzan, Erika; Faccin, Freddy; Venema, Jaap


    Biosimilars are biologic products that receive authorization based on an abbreviated regulatory application containing comparative quality and nonclinical and clinical data that demonstrate similarity to a licensed biologic product. Extrapolation of safety and efficacy has emerged as an important way to simplify biosimilar development. Regulatory authorities have generally reached the consensus that extrapolation of similarity from one indication to other approved indications of the reference product can be permitted if it is scientifically justified. Recently, the first biosimilar, biosimilar infliximab (Remsima/Inflectra) to the innovator monoclonal antibody infliximab (Remicade), was approved in the European Union, Canada and South Korea; the USA subsequently approved its first biosimilar, a less complex molecule (filgrastim-sndz). Based on two clinical trials of biosimilar infliximab in patients with rheumatoid arthritis and ankylosing spondylitis, the European Medicines Agency allowed extrapolation to all eight approved indications for innovator infliximab, whereas Health Canada did not permit extrapolation to the indications for ulcerative colitis and Crohn's disease. These differing decisions on extrapolation of indications for biosimilar infliximab highlight important unanswered regulatory and scientific questions. Here, we propose substantive scientific considerations for indication extrapolation. The preclinical and clinical criteria that are currently required to merit indication extrapolation have not been rigorously evaluated.

  16. Production of monoclonal antibodies reactive with ovine eosinophils

    Directory of Open Access Journals (Sweden)

    Meeusen Els NT


    Full Text Available Abstract Background There is strong evidence implicating eosinophils in host defence against parasites as well as allergic disease pathologies. However, a lack of reagents such as monoclonal antibodies (mAbs specific for eosinophils has made it difficult to confirm the functional role of eosinophils in such disease conditions. Using an established mammary model of allergic inflammation in sheep, large numbers of inflammatory cells enriched for eosinophils were collected from parasite-stimulated mammary glands and used for the generation of mAbs against ovine eosinophils. Results A panel of mAbs was raised against ovine eosinophils of which two were shown to be highly specific for eosinophils. The reactivity of mAbs 3.252 and 1.2 identified eosinophils from various cell and tissue preparations with no detectable reactivity on cells of myeloid or lymphoid lineage, tissue mast cells, dendritic cells, epithelial cells or other connective tissues. Two other mAbs generated in this study (mAbs 4.4 and 4.10 were found to have reactivity for both eosinophils and neutrophils. Conclusion This study describes the production of new reagents to identify eosinophils (as well as granulocytes in sheep that will be useful in studying the role of eosinophils in disease pathologies in parasite and allergy models.

  17. Immunomodulatory Monoclonal Antibodies in Combined Immunotherapy Trials for Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Mariana Aris


    Full Text Available In the last few years, there has been a twist in cancer treatment toward immunotherapy thanks to the impressive results seen in advanced patients from several tumor pathologies. Cutaneous melanoma is a highly mutated and immunogenic tumor that has been a test field for the development of immunotherapy. However, there is still a way on the road to achieving complete and long-lasting responses in most patients. It is desirable that immunotherapeutic strategies induce diverse immune reactivity specific to tumor antigens, including the so-called neoantigens, as well as the blockade of immunosuppressive mechanisms. In this review, we will go through the role of promising monoclonal antibodies in cancer immunotherapy with immunomodulatory function, especially blocking of the inhibitory immune checkpoints CTLA-4 and PD-1, in combination with different immunotherapeutic strategies such as vaccines. We will discuss the rational basis for these combinatorial approaches as well as different schemes currently under study for cutaneous melanoma in the clinical trials arena. In this way, the combination of “push and release” immunomodulatory therapies can contribute to achieving a more robust and durable antitumor immune response in patients.


    Directory of Open Access Journals (Sweden)

    Vasiliki KYRIAZI


    Full Text Available Monoclonal antibodies (MoAbs have been widely used in clinical hematology. As foreign macro-molecules, they can cause infusional reactions during the administration or within 24 hours after the infusion, which encompass a spectrum of mechanisms. Although most of these reactions are non-allergic, are often indistinguishable from true allergic reactions mediated by IgE immunoglobulins. The diagnosis is often challenging and relies mainly on clinical criteria. They occur during the first doses, soon after the initiation of treatment. The symptoms are usually well controlled by the immediate drug discontinuation or reduction of the infusion rate. The management remains largely supportive, consisting of oxygen, intravenous fluids, bronchodilators, antihistamines and steroids. Most of MoAb protocols recommend premedication with steroids and antihistamines and gradually escalating infusion rates. Increased medical and nursing vigilance is required and resuscitative equipment should always be readily available. These events affect patients' quality of life, leading to treatment delay or discontinuation and series of tests. The decision to rechallenge the treatment depends on severity grading, clinical parameters and treatment goals. This article provides an update of MoAbs used in clinical hematology. It summarizes the pathophysiology, the diagnostic approach, the preventive measures and treatment of MoAb-related reactions.

  19. Characterization of Endotrypanum Parasites Using Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Ramos Franco Antonia Maria


    Full Text Available A large number of Endotrypanum stocks (representing an heterogeneous population of strains have been screened against a panel of monoclonal antibodies (MAbs derived for selected species of Endotrypanum or Leishmania, to see whether this approach could be used to group/differentiate further among these parasites. Using different immunological assay systems, MAbs considered specific for the genus Endotrypanum (E-24, CXXX-3G5-F12 or strain M6159 of E. schaudinni (E-2, CXIV-3C7-F5 reacted variably according to the test used but in the ELISA or immunofluorescence assay both reacted with all the strains tested. Analyses using these MAbs showed antigenic diversity occurring among the Endotrypanum strains, but no qualitative or quantitative reactivity pattern could be consistently related to parasite origin (i.e., host species involved or geographic area of isolation. Western blot analyses of the parasites showed that these MAbs recognized multiple components. Differences existed either in the epitope density or molecular forms associated with the antigenic determinants and therefore allowed the assignment of the strains to specific antigenic groups. Using immunofluorescence or ELISA assay, clone E-24 produced reaction with L. equatorensis (which is a parasite of sloth and rodent, but not with other trypanosomatids examined. Interestingly, the latter parasite and the Endotrypanum strains cross-reacted with a number of MAbs that were produced against members of the L. major-L. tropica complex

  20. Reactivity of eleven anti-human leucocyte monoclonal antibodies with lymphocytes from several domestic animals

    DEFF Research Database (Denmark)

    Aasted, Bent; Blixenkrone-Møller, Merete; Larsen, Else Bang


    Nine commercially available monoclonal antibodies and two monoclonal antibodies from The American Type Culture Collection, raised against various human leucocyte surface antigens, were tested on lymphocytes from cow, sheep, goat, swine, horse, cat, dog, mink, and rabbit as well as man. Four...... antibodies bound to lymphocytes from some of the animals. These were the antibodies against CD8 and CD4 antigen, the antibody to C3b-receptor, and the antibody to the HLA-DR antigen. The CD8 antigen-reactive antibody reacted with lymphocytes from mink, cat, dog, and sheep, while the CD4 antigen......-reactive antibody reacted with lymphocytes from mink. The anti-C3b-R antibody reacted with lymphocytes from horse, swine, dog, and cat, and the anti-HLA-DR reacted with lymphocytes from cow, goat, sheep, horse, dog, cat, and mink....

  1. Anti-Mesothelin Monoclonal Antibodies for the Treatment of Cancer | NCI Technology Transfer Center | TTC (United States)

    The National Cancer Institute, Laboratory of Molecular Biology is seeking parties interested in collaborative research to further co-develop monoclonal antibodies for the treatment of mesothelin-expressing cancers.

  2. Improved detection of Pneumocystis carinii by an immunofluorescence technique using monoclonal antibodies

    DEFF Research Database (Denmark)

    Orholm, M; Holten-Andersen, W; Lundgren, Jens Dilling


    To assess whether a recently developed indirect immunofluorescent stain using monoclonal antibodies was more sensitive in detecting Pneumocystis carinii than the combination of Giemsa and methenamine silver nitrate stains which has routinely been used in the laboratory, 88 lavage fluid specimens...... and 34 induced sputum specimens were examined. All specimens were stained by five techniques: immunofluorescence using a combination of three monoclonal antibodies (from the National Institutes of Health, USA), immunofluorescence using a single monoclonal antibody (from Dakopatts), Giemsa, methenamine...... silver nitrate and toluidine blue O. Immunofluorescence using the monoclonal antibodies from the NIH was significantly more sensitive than any other single staining method and than the combination of Giemsa and methenamine silver nitrate staining. The study also showed that the cytospin centrifuge...

  3. Specific MR imaging of human-lymphocytes by monoclonal antibody-guided dextran-magnetite particles

    NARCIS (Netherlands)

    Bulte, J. W. M.; Hoekstra, Y; Kamman, R. L.; Magin, R. L.; Webb, A. G.; Briggs, R. W.; Go, K. G.; Hulstaert, C. E.; Miltenyi, S.; The, T. Hauw; de Leij, L

    Human lymphocytes were labeled with biotinylated anti-lymphocyte-directed monoclonal antibodies, to which streptavidin and subsequently biotinylated dextran-magnetite particles were coupled. This labeling resulted in a strong and selective negative contrast enhancement of lymphocyte suspensions at

  4. The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody

    National Research Council Canada - National Science Library

    Costa, Ana Rita; Withers, Joanne; Rodrigues, Maria Elisa; McLoughlin, Niaobh; Henriques, Mariana; Oliveira, Rosário; Rudd, Pauline M; Azeredo, Joana


    .... Consequently, in this work, the glycosylation profile of a monoclonal antibody (mAb) produced by adherent CHO-K1 cells grown in Cytodex 3 was evaluated under different conditions, and compared to that obtained of typical adherent cultures...

  5. Use of monoclonal-antibodies for the detection of fecal bacteria in water

    CSIR Research Space (South Africa)

    Kfir, R


    Full Text Available Monoclonal antibodies (MAbs) against heat-killed Escherichia coli and Klebsiella oxytoca originating from wastewater effluent were raised in BALB/C mice. The fusion was highly successful and three hybridomas cloned were selected to study...

  6. Purification of a Mycoplasma pneumoniae adhesin by monoclonal antibody affinity chromatography.


    Leith, D K; Baseman, J B


    A 165,000-dalton surface protein of Mycoplasma pneumoniae, designated protein P1, appears to be the major attachment ligand of the pathogen. We employed monoclonal antibody affinity chromatography to obtain purified protein P1.

  7. Humanization and Characterization of an Anti-Human TNF-α Murine Monoclonal Antibody (United States)

    Chiu, Wei-Chun; Lai, Ya-Ping; Chou, Min-Yuan


    A murine monoclonal antibody, m357, showing the highly neutralizing activities for human tumor necrosis factor (TNF-α) was chosen to be humanized by a variable domain resurfacing approach. The non-conserved surface residues in the framework regions of both the heavy and light chain variable regions were identified via a molecular modeling of m357 built by computer-assisted homology modeling. By replacing these critical surface residues with the human counterparts, a humanized version, h357, was generated. The humanized h357 IgG1 was then stably expressed in a mammalian cell line and the purified antibody maintained the high antigen binding affinity as compared with the parental m357 based on a soluble TNF-α neutralization bioassay. Furthermore, h357 IgG1 possesses the ability to mediate antibody-dependent cell-mediated cytotoxicity and complement dependent cytotoxicity upon binding to cells bearing the transmembrane form of TNF-α. In a mouse model of collagen antibody-induced arthritis, h357 IgG significantly inhibited disease progression by intra-peritoneal injection of 50 µg/mouse once-daily for 9 consecutive days. These results provided a basis for the development of h357 IgG as therapeutic use. PMID:21305012

  8. Monoclonal antibodies to human butyrylcholinesterase reactive with butyrylcholinesterase in animal plasma. (United States)

    Peng, Hong; Brimijoin, Stephen; Hrabovska, Anna; Krejci, Eric; Blake, Thomas A; Johnson, Rudolph C; Masson, Patrick; Lockridge, Oksana


    Five mouse anti-human butyrylcholinesterase (BChE) monoclonal antibodies bind tightly to native human BChE with nanomolar dissociation constants. Pairing analysis in the Octet system identified the monoclonal antibodies that bind to overlapping and independent epitopes on human BChE. The nucleotide and amino acid sequences of 4 monoclonal antibodies are deposited in GenBank. Our goal was to determine which of the 5 monoclonal antibodies recognize BChE in the plasma of animals. Binding of monoclonal antibodies 11D8, B2 18-5, B2 12-1, mAb2 and 3E8 to BChE in animal plasma was measured using antibody immobilized on Pansorbin cells and on Dynabeads Protein G. A third method visualized binding by the shift of BChE activity bands on nondenaturing gels stained for BChE activity. Gels were counterstained for carboxylesterase activity. The three methods agreed that B2 18-5 and mAb2 have broad species specificity, but the other monoclonal antibodies interacted only with human BChE, the exception being 3E8, which also bound chicken BChE. B2 18-5 and mAb2 recognized BChE in human, rhesus monkey, horse, cat, and tiger plasma. A weak response was found with rabbit BChE. Monoclonal mAb2, but not B2 18-5, bound pig and bovine BChE. Gels stained for carboxylesterase activity confirmed that plasma from humans, monkey, pig, chicken, and cow does not contain carboxylesterase, but plasma from horse, cat, tiger, rabbit, guinea pig, mouse, and rat has carboxylesterase. Rabbit plasma carboxylesterase hydrolyzes butyrylthiocholine. In conclusion monoclonal antibodies B2 18-5 and mAb2 can be used to immuno extract BChE from the plasma of humans, monkey and other animals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores.

    Directory of Open Access Journals (Sweden)

    Sindy Liao-Chan

    Full Text Available Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of internalization of labeled antibodies, an assay based on internalized and quenched fluorescence was developed. For this approach, we generated novel anti-Alexa Fluor monoclonal antibodies (mAbs that effectively and specifically quench cell surface-bound Alexa Fluor 488 or Alexa Fluor 594 fluorescence. Utilizing Alexa Fluor-labeled mAbs against the EphA2 receptor tyrosine kinase, we showed that the anti-Alexa Fluor reagents could be used to monitor internalization quantitatively over time. The anti-Alexa Fluor mAbs were also validated in a proof of concept dual-label internalization assay with simultaneous exposure of cells to two different mAbs. Importantly, the unique anti-Alexa Fluor mAbs described here may also enable other single- and dual-label experiments, including label detection and signal enhancement in macromolecules, trafficking of proteins and microorganisms, and cell migration and morphology.

  10. Immunogenicity of therapeutic antibodies : Immunological mechanisms & clinical consequences

    NARCIS (Netherlands)

    van Schie, K.A.J.


    Monoclonal antibody therapy has revolutionized the treatment of many diseases, including chronic inflammatory diseases and cancer. Antibody therapy can unfortunately also elicit an unwanted immune response, leading to anti-drug antibodies (ADA). It is well known that ADA can lower the level of free

  11. Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma

    Directory of Open Access Journals (Sweden)

    Larysa Sanchez


    Full Text Available Abstract Daratumumab is a human monoclonal antibody that targets CD38, a cell surface protein that is overexpressed on multiple myeloma (MM cells. Preclinical studies have shown that daratumumab induces MM cell death through several mechanisms, including complement-dependent cytotoxicity (CDC, antibody-dependent cell-mediated cytotoxicity (ADCC, antibody-dependent cellular phagocytosis (ADCP, and apoptosis. Given the encouraging efficacy and acceptable safety profile of daratumumab demonstrated in clinical trials, daratumumab has emerged as a novel treatment option for myeloma and became the first monoclonal antibody approved by the FDA for the treatment of MM.

  12. Monoclonal antibodies to the reactive centre loop (RCL) of human corticosteroid-binding globulin (CBG) can protect against proteolytic cleavage. (United States)

    Lewis, John G; Elder, Peter A


    Corticosteroid-binding globulin (CBG) binds most of the cortisol in circulation and is a non-functional member of the family of serine protease inhibitors (serpins) with an exposed elastase sensitive reactive centre loop (RCL). The RCL can be cleaved by human neutrophil elastase, released from activated neutrophils, and can also be cleaved at nearby site(s) by elastase released by Pseudomonas aeruginosa, and at two further sites, also within the RCL, by bovine chymotrypsin. Cleavage of the RCL results in a conformational change accompanied by a marked decrease in affinity for cortisol and hence its release at the site of proteolysis. These cleavages are irreversible and the similar half-lives of cleaved and intact CBG could mean that there may be some advantage in slowing the rate of CBG cleavage in acute inflammation thereby increasing the proportion of intact CBG in circulation. Here we show, for the first time, that pre-incubation of tethered human CBG with two monoclonal antibodies to the RCL of CBG protects against cleavage by all three enzymes. Furthermore, in plasma, pre-incubation with both RCL monoclonal antibodies delays neutrophil elastase cleavage of the RCL and one of these RCL monoclonal antibodies also delays bovine chymotrypsin cleavage of the RCL. These findings may provide a basis and rationale for the concept of the use of RCL antibodies as therapeutic agents to effectively increase the proportion of intact CBG in circulation which may be of benefit in acute inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Comparison of SEC and CE-SDS methods for monitoring hinge fragmentation in IgG1 monoclonal antibodies. (United States)

    Dada, Oluwatosin O; Rao, Romesh; Jones, Natalie; Jaya, Nomalie; Salas-Solano, Oscar


    Fragmentation of monoclonal antibodies is a critical quality attribute routinely monitored to assess the purity and integrity of the product from development to commercialization. Cleavage in the upper hinge region of IgG1 monoclonal antibodies is a common fragmentation pattern widely studied by size exclusion chromatography (SEC). Capillary electrophoresis with sodium dodecylsulfate (CE-SDS) is a well-established technique commonly used for monitoring antibody fragments as well, but its comparability to SEC in monitoring hinge fragments has not been established until now. We report a characterization strategy that establishes the correlation between hinge region fragments analyzed by SEC and CE-SDS. Monoclonal antibodies with elevated hinge fragments were generated under low pH stress conditions and analyzed by SEC and CE-SDS. The masses of the fragments generated were determined by LC-MS. Electrophoretic migration of the hinge fragmentation products in CE-SDS were determined based on their mass values. Comparative assessment of fragments by SEC, and CE-SDS showed similar correlation with incubation time. This study demonstrates that CE-SDS can be employed as a surrogate technique to SEC for monitoring hinge region fragments. Most importantly, combination of these techniques can be used to obtain comprehensive understanding of fragment related characteristics of therapeutic protein products. Copyright © 2017 Elsevier B.V. All rights reserved.


    NARCIS (Netherlands)


    We have been searching for antibodies reactive with rat endothelial cells. Two monoclonal antibodies (mAb), named RECA-1 and RECA-2 were produced and tested in immunoperoxidase staining on frozen sections of various rat tissues. Staining patterns were compared to those obtained with the mAbs OX-2,

  15. IgA as therapeutic antibody

    NARCIS (Netherlands)

    Leusen, Jeanette H W


    This review is focused on the promises of IgA as a new therapeutic antibody. For more than 30 years IgG molecules have been used in the clinic in the fields of oncology, hematology, auto immune diseases and infections. However, IgA might be a good alternative, since it recruits different effector

  16. A novel mouse monoclonal antibody targeting ErbB2 suppresses breast cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, Seiji [Division of Oncology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639 (Japan); Matsushita, Hirohisa; Ohbayashi, Hirokazu [Department of Research and Development, Nichirei Biosciences Inc., Tokyo 104-8402 (Japan); Semba, Kentaro [Department of Life Science and Medical Bio-Science, School of Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Yamamoto, Tadashi, E-mail: [Division of Oncology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639 (Japan)


    Overexpression of ErbB2 in breast cancer is associated with increased recurrence and worse prognosis. Accumulating evidences suggest that molecular targeted therapy is a promising anticancer strategy. In this study, we produced a novel anti-ErbB2 monoclonal antibody, 6G10, that recognized an epitope distinct from the trastuzumab binding site. 6G10 induced aggregation of BT474 breast cancer cells and inhibited proliferation of various breast cancer cell lines including BT474. A growth inhibition assay showed that 6G10 had EC{sub 50} values comparable to trastuzumab, indicating that the drugs have a similar level of potency. Furthermore, intraperitoneal administration of 6G10 completely inhibited the growth of xenografted tumors derived from BT474 and SK-BR-3 cells. These data suggested that 6G10 has great therapeutic potential and could be administered to patients alternatively, or synergistically, with trastuzumab.

  17. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components (United States)

    Torkashvand, Fatemeh; Vaziri, Behrouz


    The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final product through the development stage. An important step in QbD is determination of the main quality attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern, charge variants, aggregates, and low-molecular-weight species, could be significantly altered. Here, we provide an overview of how cell culture medium components affects the main quality attributes of the mAbs. Knowing the relationship between the culture media components and the main quality attributes could be successfully utilized for a rational optimization of mammalian cell culture media for industrial mAbs production.

  18. Patent disclosure requirements for therapeutic antibody patents. (United States)

    De Luca, Carmela; Trifonova, Anastassia


    Therapeutic antibodies have grown to become an important product class within the biopharmaceutical market. A prerequisite to their commercialization is adequate patent protection. Disclosure requirements and the types of claims available in different jurisdictions can impact the scope of protection available for antibodies. Areas covered: A comparative review of statutory bases, patent office practices and selected decisions in Canada, the United States and the United Kingdom related to disclosure requirements is provided. Expert opinion: Differences in disclosure requirements exist in different jurisdictions which can impact the type of claims obtained and their survival when attacked in litigation. Including a wide variety of claim types is a key strategy to ensuring therapeutic antibodies are adequately protected. Method of use claims may provide advantages and broader protection in some circumstances and should also be considered.

  19. Development of Antibody Arrays for Monoclonal Antibody Higher Order Structure Analysis

    Directory of Open Access Journals (Sweden)

    Xing eWang


    Full Text Available Antibody arrays were developed to probe a monoclonal antibody’s three-dimensional structure (3-D structure. Peptides with overlapping regions were designed to cover the whole mAb light chain and heavy chain respectively and used to generate polyclonal antibodies after the conjugation of the peptides to a carrier protein, KLH. It was shown that good peptide specificity was achieved from the antibodies generated. Using more than 30 different polyclonal antibodies to measure the surface epitope distribution, it was shown that the mAb antibody array can detect epitope exposure as low as 0.1% of defined mAb populations. This ELISA-based analysis of mAb epitope exposure can be considered as a measurement of conformational impurity in biologics development, similar to the analysis of other product-related impurities such as different forms of glycosylation, deamidation and oxidation. This analysis of conformational impurity could provide valuable information on the mAb conformational comparability for biosimilar mAbs as well as novel mAbs, especially in the area of protein immunogenicity. Furthermore, stability studies indicated that there are several conformational hot spots in many mAbs tested, especially in the hinge region. This antibody array technology can be used for novel mAb Higher Order Structure (HOS analysis during process and formulation development. Another important area of application is for biosimilar mAb development where the innovator molecule and biosimilar molecule could be compared based on their systemic fingerprint from the 30 plus antibodies.

  20. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants.


    Hehle, VK; Paul, MJ; Roberts, VA; van Dolleweerd, CJ; Ma, JK


    This study examined the degradation pattern of a murine IgG1? monoclonal antibody expressed in and extracted from transformed Nicotiana tabacum. Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody...

  1. High-Sensitivity Monoclonal Antibodies Specific for Homoserine Lactones Protect Mice from Lethal Pseudomonas aeruginosa Infections (United States)

    Downham, Christina; Broadbent, Ian; Charlton, Keith; Porter, Andrew J.


    A number of bacteria, including pathogens like Pseudomonas aeruginosa, utilize homoserine lactones (HSLs) as quorum sensing (QS) signaling compounds and engage in cell-to-cell communication to coordinate their behavior. Blocking this bacterial communication may be an attractive strategy for infection control as QS takes a central role in P. aeruginosa biology. In this study, immunomodulation of HSL molecules by monoclonal antibodies (MAbs) was used as a novel approach to prevent P. aeruginosa infections and as tools to detect HSLs in bodily fluids as a possible first clue to an undiagnosed Gram-negative infection. Using sheep immunization and recombinant antibody technology, a panel of sheep-mouse chimeric MAbs were generated which recognized HSL compounds with high sensitivity (nanomolar range) and cross-reactivity. These MAbs retained their nanomolar sensitivity in complex matrices and were able to recognize HSLs in P. aeruginosa cultures grown in the presence of urine. In a nematode slow-killing assay, HSL MAbs significantly increased the survival of worms fed on the antibiotic-resistant strain PA058. The therapeutic benefit of these MAbs was further studied using a mouse model of Pseudomonas infection in which groups of mice treated with HSL-2 and HSL-4 MAbs survived, 7 days after pathogen challenge, in significantly greater numbers (83 and 67%, respectively) compared with the control groups. This body of work has provided early proof-of-concept data to demonstrate the potential of HSL-specific, monoclonal antibodies as theranostic clinical leads suitable for the diagnosis, prevention, and treatment of life-threatening bacterial infections. PMID:24185854

  2. Detection of Abrin Holotoxin Using Novel Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Xiaohua He


    Full Text Available Abrin, a member of the ribosome-inactivating protein family, is produced by the Abrus precatorius plant. Having the potential to pose a severe threat to both human and animal health, abrin is classified as a Select Agent by the U.S. Department of Health and Human Services. However, an immunoassay that is specific for intact abrin holotoxin has not yet been reported. In this study, seven new monoclonal antibodies (mAbs, designated as Abrin-1 through Abrin-7 have been developed. Isotyping analyses indicate these mAbs have IgG1, IgG2a, or IgG2b heavy-chains and kappa light-chains. Western blot analyses identified two abrin A-chain specific mAbs, Abrin-1 and Abrin-2, and four B-chain specific mAbs (Abrin-3, -5, -6, and -7. A sandwich enzyme-linked immunosorbent assay (ELISA, capable of detecting a mixture of abrin isoforms and agglutinins was developed using B-chain specific Abrin-3 for capture and A-chain specific Abrin-2 as detector. The ELISA is highly sensitive and detects 1 ng/mL of the abrin holotoxin in phosphate-buffered saline, nonfat milk, and whole milk, significantly below concentrations that would pose a health concern for consumers. This ELISA also detects native abrin in plant extracts with a very low background signal. The new abrin mAbs and ELISA should be useful for detecting this potent toxin in the milk supply chain and other complex matrices.

  3. Comparison of three methods for competitive binding of monoclonal antibodies - The localization of antigenic sites for monoclonal antibodies on Panulirus interruptus hemocyanin

    NARCIS (Netherlands)

    Perton, FG; Dijkema, JH; Smilda, T; vanUffelen, BE; Beintema, JJ


    The competitive binding of a panel of monoclonal antibodies against hemocyanin of Panulirus interruptus hemocyanin was investigated with three different methods, A competitive-binding immunoassay method was more successful in the determination of ternary complexes than gel electrophoresis and gel

  4. Monoclonal antibodies to polioviruses; comparison of intratypic strain differentiation of poliovirus type 1 using monoclonal antibodies versus cross-absorbed antisera.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); A.L. van Wezel; T.G. Hazendonk; F.G.C.M. Uytdehaag (Fons); J.A.A.M. van Asten (Jack); G. van Steenis (Bert)


    textabstractA panel of 10 monoclonal antibodies raised to 3 different poliovirus type 1 strains was tested in a micro-enzyme-linked immunosorbent assay and in a micro-neutralization test against 87 poliovirus type 1 strains. The results, evaluated in a newly developed system for intratypic strain

  5. Developability studies before initiation of process development: improving manufacturability of monoclonal antibodies. (United States)

    Yang, Xiaoyu; Xu, Wei; Dukleska, Svetlana; Benchaar, Sabrina; Mengisen, Selina; Antochshuk, Valentyn; Cheung, Jason; Mann, Leslie; Babadjanova, Zulfia; Rowand, Jason; Gunawan, Rico; McCampbell, Alexander; Beaumont, Maribel; Meininger, David; Richardson, Daisy; Ambrogelly, Alexandre


    Monoclonal antibodies constitute a robust class of therapeutic proteins. Their stability, resistance to stress conditions and high solubility have allowed the successful development and commercialization of over 40 antibody-based drugs. Although mAbs enjoy a relatively high probability of success compared with other therapeutic proteins, examples of projects that are suspended due to the instability of the molecule are not uncommon. Developability assessment studies have therefore been devised to identify early during process development problems associated with stability, solubility that is insufficient to meet expected dosing or sensitivity to stress. This set of experiments includes short-term stability studies at 2-8 þC, 25 þC and 40 þC, freeze-thaw studies, limited forced degradation studies and determination of the viscosity of high concentration samples. We present here three case studies reflecting three typical outcomes: (1) no major or unexpected degradation is found and the study results are used to inform early identification of degradation pathways and potential critical quality attributes within the Quality by Design framework defined by US Food and Drug Administration guidance documents; (2) identification of specific degradation pathway(s) that do not affect potency of the molecule, with subsequent definition of proper process control and formulation strategies; and (3) identification of degradation that affects potency, resulting in program termination and reallocation of resources.

  6. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    Energy Technology Data Exchange (ETDEWEB)

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Oshita, Masatoshi; Ideno, Shoji [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Yunoki, Mikihiro [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Kuhara, Motoki [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano 396-0002 (Japan); Yamamoto, Naomasa [Department of Biochemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima 963-8611 (Japan); Okuno, Yoshinobu [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa 768-0061 (Japan); Ikuta, Kazuyoshi, E-mail: [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan)


    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  7. Strategies to Obtain Diverse and Specific Human Monoclonal Antibodies From Transgenic Animals. (United States)

    Brüggemann, Marianne; Osborn, Michael J; Ma, Biao; Buelow, Roland


    Techniques to obtain large quantities of antigen-specific monoclonal antibodies (mAbs) were first established in the 1970s when Georges Köhler and César Milstein immortalized antibody-producing mouse B-lymphocytes by fusion with myeloma cells ( Combined with the expression of human antibodies in transgenic animals, this technique allowed upon immunization the generation of highly specific fully human mAbs for therapeutic applications. Apart from being extremely beneficial, mAbs are a huge success commercially. However, despite cell fusion generating many useful mAbs questions have been asked about which types of cells are prone to fuse and whether other methods may identify a wider range of binders. The discovery that expression libraries, using Escherichia coli or yeast, produced different specificities was intriguing and more recently Next-Generation Sequencing has identified wide-ranging usage with highly diverse and unique repertoires. Another strategy is the combination of flow cytometry sorting of antigen-binding B lymphocytes and single-cell reverse transcription polymerase chain reaction followed by reexpression, which has identified many high-affinity mAbs.

  8. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever. (United States)

    Marzi, Andrea; Yoshida, Reiko; Miyamoto, Hiroko; Ishijima, Mari; Suzuki, Yasuhiko; Higuchi, Megumi; Matsuyama, Yukie; Igarashi, Manabu; Nakayama, Eri; Kuroda, Makoto; Saijo, Masayuki; Feldmann, Friederike; Brining, Douglas; Feldmann, Heinz; Takada, Ayato


    Ebola virus (EBOV) is the causative agent of severe hemorrhagic fever in primates, with human case fatality rates up to 90%. Today, there is neither a licensed vaccine nor a treatment available for Ebola hemorrhagic fever (EHF). Single monoclonal antibodies (MAbs) specific for Zaire ebolavirus (ZEBOV) have been successfully used in passive immunization experiments in rodent models, but have failed to protect nonhuman primates from lethal disease. In this study, we used two clones of human-mouse chimeric MAbs (ch133 and ch226) with strong neutralizing activity against ZEBOV and evaluated their protective potential in a rhesus macaque model of EHF. Reduced viral loads and partial protection were observed in animals given MAbs ch133 and ch226 combined intravenously at 24 hours before and 24 and 72 hours after challenge. MAbs circulated in the blood of a surviving animal until virus-induced IgG responses were detected. In contrast, serum MAb concentrations decreased to undetectable levels at terminal stages of disease in animals that succumbed to infection, indicating substantial consumption of these antibodies due to virus replication. Accordingly, the rapid decrease of serum MAbs was clearly associated with increased viremia in non-survivors. Our results indicate that EBOV neutralizing antibodies, particularly in combination with other therapeutic strategies, might be beneficial in reducing viral loads and prolonging disease progression during EHF.

  9. Humanization and characterization of an anti-ricin neutralization monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Wei-Gang Hu

    Full Text Available Ricin is regarded as a high terrorist risk for the public due to its high toxicity and ease of production. Currently, there is no therapeutic or vaccine available against ricin. D9, a murine monoclonal antibody developed previously in our laboratory, can strongly neutralize ricin and is therefore a good candidate for humanization. Humanization of D9 variable regions was achieved by a complementarity-determining region grafting approach. The humanized D9 (hD9 variable regions were further grafted onto human heavy and light chain constant regions to assemble the complete antibody gene. A foot-and-mouth-disease virus-derived 2A self-processing sequence was introduced between heavy and light chain DNA sequences to cleave the recombinant protein into a functional full-length antibody molecule from a single open reading frame driven by a single promoter in an adenoviral vector. After expression in mammalian cells and purification, the hD9 was demonstrated to have equimolar expression of the full-length antibody heavy and light chains. More importantly, the hD9 exhibited high affinity to ricin with K(D of 1.63 nM, comparable to its parental murine D9 (2.55 nM. In a mouse model, intraperitoneal (i.p. administration of hD9, at a low dose of 5 µg per mouse, 4 hours after the i.p. challenge with 5×LD50 ricin was found to rescue 100% of the mice. In addition, administered 6 hours post-challenge, hD9 could still rescue 50% of the mice. The hD9 has the potential to be used for prophylactic or therapeutic purposes against ricin poisoning.

  10. Humanization and characterization of an anti-ricin neutralization monoclonal antibody. (United States)

    Hu, Wei-Gang; Yin, Junfei; Chau, Damon; Negrych, Laurel M; Cherwonogrodzky, John W


    Ricin is regarded as a high terrorist risk for the public due to its high toxicity and ease of production. Currently, there is no therapeutic or vaccine available against ricin. D9, a murine monoclonal antibody developed previously in our laboratory, can strongly neutralize ricin and is therefore a good candidate for humanization. Humanization of D9 variable regions was achieved by a complementarity-determining region grafting approach. The humanized D9 (hD9) variable regions were further grafted onto human heavy and light chain constant regions to assemble the complete antibody gene. A foot-and-mouth-disease virus-derived 2A self-processing sequence was introduced between heavy and light chain DNA sequences to cleave the recombinant protein into a functional full-length antibody molecule from a single open reading frame driven by a single promoter in an adenoviral vector. After expression in mammalian cells and purification, the hD9 was demonstrated to have equimolar expression of the full-length antibody heavy and light chains. More importantly, the hD9 exhibited high affinity to ricin with K(D) of 1.63 nM, comparable to its parental murine D9 (2.55 nM). In a mouse model, intraperitoneal (i.p.) administration of hD9, at a low dose of 5 µg per mouse, 4 hours after the i.p. challenge with 5×LD50 ricin was found to rescue 100% of the mice. In addition, administered 6 hours post-challenge, hD9 could still rescue 50% of the mice. The hD9 has the potential to be used for prophylactic or therapeutic purposes against ricin poisoning.

  11. A survey of manufacturing and handling practices for monoclonal antibodies by pharmacy, nursing and medical personnel. (United States)

    Alexander, M; King, J; Lingaratnam, S; Byrne, J; MacMillan, K; Mollo, A; Kirsa, S; Green, M


    There is a paucity of data available to assess the occupational health and safety risk associated with exposure to monoclonal antibodies. Industry standards and published guidelines are conflicting or outdated. Guidelines offer contrary recommendations based on an array of methodological approaches. This survey aimed to describe current practices, beliefs and attitudes relating to the handling of monoclonal antibodies by Australian medical, nursing and pharmacy clinicians. An electronic survey was distributed between June and September 2013. Respondents were surveyed on three focus areas: institutional guideline availability and content, current practices and attitudes. Demographic data relating to respondent and primary place of practice were also collected. A total of 222 clinicians completed the survey, with representation from all targeted professional groups and from a variety of geographic locations. 92% of respondents reported that their institution prepared or administered monoclonal antibodies, with 87% specifically handling anti-cancer monoclonal antibodies. Monoclonal antibodies were mostly prepared onsite (84-90%) and mostly within pharmacy clean-rooms (75%) and using cytotoxic cabinets (61%). 43% of respondents reported access to institutional monoclonal antibody handling guidelines with risk reduction strategies including training and education (71%), spill and waste management (71%), procedures for transportation (57%) and restricted handling (50%). Nurses had a stronger preference towards pharmacy manufacturing than both doctors and pharmacists for a range of clinical scenarios. 95% of all respondents identified that professional or regulatory body guidelines are an important resource when considering handling practices. Monoclonal antibodies are most commonly handled according to cytotoxic drug standards and often in the absence of formal guidelines. © The Author(s) 2014.

  12. Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma | NCI Technology Transfer Center | TTC (United States)

    Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

  13. Development of Monoclonal Antibodies Which Specifically Recognize Entamoeba histolytica in Preserved Stool Samples


    Yau, Yvonne C. W.; Crandall, Ian; Kain, Kevin C.


    We report the generation of monoclonal antibodies against a recombinant 170-kDa subunit of the Gal or GalNAc lectin of Entamoeba histolytica that specifically recognize E. histolytica but not Entamoeba dispar in preserved stool samples. These antibodies do not cross-react with other bowel protozoa, including Entamoeba coli, Giardia lamblia, and Dientamoeba fragilis.

  14. Development of monoclonal antibodies which specifically recognize Entamoeba histolytica in preserved stool samples. (United States)

    Yau, Y C; Crandall, I; Kain, K C


    We report the generation of monoclonal antibodies against a recombinant 170-kDa subunit of the Gal or GalNAc lectin of Entamoeba histolytica that specifically recognize E. histolytica but not Entamoeba dispar in preserved stool samples. These antibodies do not cross-react with other bowel protozoa, including Entamoeba coli, Giardia lamblia, and Dientamoeba fragilis.

  15. Preliminary characterisation of Toxoplasma gondii isolates from Zimbabwe, with stage-specific monoclonal antibodies

    DEFF Research Database (Denmark)

    Hove, T.; Lind, Peter; Mukaratirwa, S.


    Cell-culture-derived clones of eight Toxoplasma gondii isolates from Zimbabwe were characterised in IFAT with a panel of five monoclonal antibodies (mAb). Each clone had been established from a single murine brain cyst. The antibodies were bradyzoite-specific (4.3), tachyzoite-specific (4.25, 5...

  16. Development of a monoclonal antibody against viral haemorrhagic septicaemia virus (VHSV) genotype IVa

    DEFF Research Database (Denmark)

    Ito, T.; Olesen, Niels Jørgen; Skall, Helle Frank


    IVa) from diseased farmed Japanese flounder. Ten hybridoma clones secreting monoclonal antibodies (MAbs) against VHSV were established. One of these, MAb VHS-10, reacted only with genotype IVa in indirect fluorescent antibody technique (IFAT) and ELISA. Using cell cultures that were transfected...

  17. Production and characterisation of monoclonal antibodies against native and disassembled human catalase

    NARCIS (Netherlands)

    Wiemer, E. A.; Ofman, R.; Middelkoop, E.; de Boer, M.; Wanders, R. J.; Tager, J. M.


    Catalase isolated from human erythrocytes was used to immunise mice, in order to generate hybridomas producing specific monoclonal antibodies to the enzyme. Hybridomas secreting anti-(catalase) antibodies were identified by a modified enzyme-linked immunosorbent assay (ELISA) using either

  18. B lymphocyte depletion with the monoclonal antibody rituximab in Graves' disease: a controlled pilot study

    DEFF Research Database (Denmark)

    El Fassi, Daniel; Nielsen, Claus H; Bonnema, Steen J


    Graves' disease (GD) is a common TSH receptor autoantibody (TRAb)-mediated disorder. Because B lymphocytes are important self-antigen presenting cells and precursors for antibody-secreting plasma cells, temporary B-lymphocyte depletion with the monoclonal antibody rituximab (RTX) might...

  19. B lymphocyte depletion with the monoclonal antibody rituximab in Graves' disease: a controlled pilot study

    DEFF Research Database (Denmark)

    El Fassi, Daniel; Nielsen, Claus H; Bonnema, Steen Joop


    CONTEXT: Graves' disease (GD) is a common TSH receptor autoantibody (TRAb)-mediated disorder. Because B lymphocytes are important self-antigen presenting cells and precursors for antibody-secreting plasma cells, temporary B-lymphocyte depletion with the monoclonal antibody rituximab (RTX) might...

  20. Immunoreactivity of skate electrocytes towards monoclonal antibodies against human dystrophin and dystrophin-related (DMDL) protein. (United States)

    Dowdall, M J; Ellis, J M; Nguyen thi Man; Morris, G E


    Monoclonal antibodies against human dystrophin have been used to demonstrate the existence of a dystrophin-like protein in the electrocytes of skate electric organ. This protein is also present in skate muscle and resembles that found in Torpedo electric organ. Monoclonal antibodies against a human autosomal homologue of dystrophin (DMDL protein) did not detect a similar protein in skate or Torpedo. Immunocytochemical staining of the innervated and non-innervated faces of the electrocyte membrane was obtained using the anti-dystrophin antibodies only.

  1. Localisation of lung cancer by a radiolabelled monoclonal antibody against the c-myc oncogene product

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S.Y.T.; Evan, G.I.; Ritson, A.; Watson, J.; Wraight, P.; Sikora, K.


    A set of mouse monoclonal antibodies against the c-myc oncogene product, a 62,000 dalton nuclear binding protein involved in cell cycle control, has been constructed by immunisation with synthetic peptide fragments. One such antibody, CT14, was radiolabelled with /sup 131/I and administered to 20 patients with different malignant diseases. Good tumour localisation was observed in 12 out of 14 patients with primary bronchial carcinoma but not in patients with pulmonary metastases from primary tumours elsewhere. Successfully localised tumours were all 3 cm or more in diameter. Monoclonal antibodies against oncogene products may provide novel selective tools for the diagnosis and therapy of cancer.

  2. Targeted immunotherapy for high-risk neuroblastoma--the role of monoclonal antibodies. (United States)

    Parsons, Kerry; Bernhardt, Brooke; Strickland, Brandy


    To systematically review clinical trials evaluating anti-disialoganglioside (GD2) antibodies in treating high-risk neuroblastoma in children. A literature search was conducted in PubMed/MEDLINE, International Pharmaceutical Abstracts, and Cumulative Index of Nursing and Allied Health Literature (all searches 1990-August 2012) using the terms neuroblastoma, immunotherapy, 3F8, ch14.18, and hu14.18. Meeting abstracts presented between 1990 and 2012 from the American Society of Clinical Oncology, European Society for Medical Oncology, the American Society of Pediatric Hematology Oncology, Society of Surgical Oncology, and the American Society of Hematology were also evaluated. All completed and ongoing clinical trials of anti-GD2 antibodies in neuroblastoma were included. References from selected articles were also reviewed to identify additional citations. In 1999, the results of a Children's Cancer Group trial established that consolidation therapy after induction, surgery, and radiation should include purged autologous stem cell rescue followed by maintenance with isotretinoin. Overall survival at 7 years with this regimen remains below 30%. Over the following decade, antibodies targeting GD2, a surface antigen found on the surface of neuroblastoma cells, have emerged as a major therapeutic development for high-risk neuroblastoma. Anti-GD2 antibodies incite immune-mediated cytotoxicity toward neuroblastoma cells when given as monotherapy or in combination with cytokines such as sargramostim (granulocyte-macrophage colony-stimulating factor) or aldesleukin (interleukin-2). Responses to anti-GD2 agents appear most notable in patients with minimal residual disease following standard therapy. A chimeric preparation, ch14.18, is the only anti-GD2 antibody to be evaluated in a large controlled clinical trial, in which it demonstrated overall survival of 86% at 2 years in patients with high-risk neuroblastoma. Older nonrandomized studies of ch14.18 monotherapy and 3F8, a

  3. Mammalian tissue distribution of a large heparan sulfate proteoglycan detected by monoclonal antibodies

    DEFF Research Database (Denmark)

    Couchman, J R; Ljubimov, A V


    A panel of nine monoclonal antibodies has been characterized, all of which have reactivity with the core protein of a large heparan sulfate proteoglycan derived from the murine EHS tumor matrix. These rat monoclonal antibodies stained mouse basement membranes intensely, including those of all...... muscle, endothelia, peripheral nerve fibers and epithelia so far examined. In addition, two of the monoclonal antibodies show cross-species reactivity, staining bovine and human basement membranes, and immunoprecipitating proteoglycans from human endothelial cell cultures. These antibodies do not......, however, cross-react with avian tissues. These results show the ubiquitous distribution of a heparan sulfate proteoglycan in mammalian tissues, which will be useful in vitro and in vivo for studies on the biology of basement membrane proteoglycans and investigations of possible roles of these molecules...

  4. A rapid and scalable method for selecting recombinant mouse monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Wright Gavin J


    Full Text Available Abstract Background Monoclonal antibodies with high affinity and selectivity that work on wholemount fixed tissues are valuable reagents to the cell and developmental biologist, and yet isolating them remains a long and unpredictable process. Here we report a rapid and scalable method to select and express recombinant mouse monoclonal antibodies that are essentially equivalent to those secreted by parental IgG-isotype hybridomas. Results Increased throughput was achieved by immunizing mice with pools of antigens and cloning - from small numbers of hybridoma cells - the functionally rearranged light and heavy chains into a single expression plasmid. By immunizing with the ectodomains of zebrafish cell surface receptor proteins expressed in mammalian cells and screening for formalin-resistant epitopes, we selected antibodies that gave expected staining patterns on wholemount fixed zebrafish embryos. Conclusions This method can be used to quickly select several high quality monoclonal antibodies from a single immunized mouse and facilitates their distribution using plasmids.

  5. Impact of IgG Fc-Oligosaccharides on Recombinant Monoclonal Antibody Structure, Stability, Safety, and Efficacy. (United States)

    Liu, Hongcheng; Nowak, Christine; Andrien, Bruce; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa


    Glycosylation of the conserved asparagine residue in the CH2 domain is the most common posttranslational modification of recombinant monoclonal antibodies. Ideally, a consistent oligosaccharide profile should be maintained from early clinical material to commercial material for the development of recombinant monoclonal therapeutics, though variation in the profile is a typical result of process changes. The risk of oligosaccharide variation posed to further development is required to be thoroughly evaluated based on its impact on antibody structure, stability, efficacy and safety. The variation should be controlled within a range so that there is no detrimental impact on safety and efficacy and thus allowing the use of early phase safety and efficacy data to support project advancement to later phase. This review article focuses on the current scientific understanding of the commonly observed oligosaccharides found in recombinant monoclonal antibodies and their impact on structure, stability and biological functions, which are the basis to evaluate safety and efficacy. It also provides a brief discussion on critical quality attribute (CQA) assessment with regard to oligosaccharides based on the mechanism of action (MOA). © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1173-1181, 2017. © 2017 American Institute of Chemical Engineers.

  6. Protection of rabbits and immunodeficient mice against lethal poxvirus infections by human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Lindsay Crickard

    Full Text Available Smallpox (variola virus is a bioweapon concern. Monkeypox is a growing zoonotic poxvirus threat. These problems have resulted in extensive efforts to develop potential therapeutics that can prevent or treat potentially lethal poxvirus infections in humans. Monoclonal antibodies (mAbs against smallpox are a conservative approach to this problem, as the licensed human smallpox vaccine (vaccinia virus, VACV primarily works on the basis of protective antibody responses against smallpox. Fully human mAbs (hmAbs against vaccinia H3 (H3L and B5 (B5R, targeting both the mature virion (MV and extracellular enveloped virion (EV forms, have been developed as potential therapeutics for use in humans. Post-exposure prophylaxis was assessed in both murine and rabbit animal models. Therapeutic efficacy of the mAbs was assessed in three good laboratory practices (GLP studies examining severe combined immunodeficiency mice (SCID given a lethal VACV infection. Pre-exposure combination hmAb therapy provided significantly better protection against disease and death than either single hmAb or vaccinia immune globulin (VIG. Post-exposure combination mAb therapy provided significant protection against disease and death, and appeared to fully cure the VACV infection in ≥50% of SCID mice. Therapeutic efficacy was then assessed in two rabbit studies examining post-exposure hmAb prophylaxis against rabbitpox (RPXV. In the first study, rabbits were infected with RPVX and then provided hmAbs at 48 hrs post-infection, or 1 hr and 72 hrs post-infection. Rabbits in both groups receiving hmAbs were 100% protected from death. In the second rabbitpox study, 100% of animal treated with combination hmAb therapy and 100% of animals treated with anti-B5 hmAb were protected. These findings suggest that combination hmAb treatment may be effective at controlling smallpox disease in immunocompetent or immunodeficient humans.

  7. Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections. (United States)

    Xiao, Yuhong; Isaacs, Stuart N


    Despite the eradication of smallpox several decades ago, variola and monkeypox viruses still have the potential to become significant threats to public health. The current licensed live vaccinia virus-based smallpox vaccine is extremely effective as a prophylactic vaccine to prevent orthopoxvirus infections, but because of safety issues, it is no longer given as a routine vaccine to the general population. In the event of serious human orthopoxvirus infections, it is important to have treatments available for individual patients as well as their close contacts. The smallpox vaccine and vaccinia immune globulin (VIG) were used in the past as therapeutics for patients exposed to smallpox. VIG was also used in patients who were at high risk of developing complications from smallpox vaccination. Thus post-exposure vaccination and VIG treatments may again become important therapeutic modalities. This paper summarizes some of the historic use of the smallpox vaccine and immunoglobulins in the post-exposure setting in humans and reviews in detail the newer animal studies that address the use of therapeutic vaccines and immunoglobulins in orthopoxvirus infections as well as the development of new therapeutic monoclonal antibodies.

  8. Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections

    Directory of Open Access Journals (Sweden)

    Stuart N. Isaacs


    Full Text Available Despite the eradication of smallpox several decades ago, variola and monkeypox viruses still have the potential to become significant threats to public health. The current licensed live vaccinia virus-based smallpox vaccine is extremely effective as a prophylactic vaccine to prevent orthopoxvirus infections, but because of safety issues, it is no longer given as a routine vaccine to the general population. In the event of serious human orthopoxvirus infections, it is important to have treatments available for individual patients as well as their close contacts. The smallpox vaccine and vaccinia immune globulin (VIG were used in the past as therapeutics for patients exposed to smallpox. VIG was also used in patients who were at high risk of developing complications from smallpox vaccination. Thus post-exposure vaccination and VIG treatments may again become important therapeutic modalities. This paper summarizes some of the historic use of the smallpox vaccine and immunoglobulins in the post-exposure setting in humans and reviews in detail the newer animal studies that address the use of therapeutic vaccines and immunoglobulins in orthopoxvirus infections as well as the development of new therapeutic monoclonal antibodies.

  9. Analysis of Monoclonal Antibodies in Human Serum as a Model for Clinical Monoclonal Gammopathy by Use of 21 Tesla FT-ICR Top-Down and Middle-Down MS/MS (United States)

    He, Lidong; Anderson, Lissa C.; Barnidge, David R.; Murray, David L.; Hendrickson, Christopher L.; Marshall, Alan G.


    With the rapid growth of therapeutic monoclonal antibodies (mAbs), stringent quality control is needed to ensure clinical safety and efficacy. Monoclonal antibody primary sequence and post-translational modifications (PTM) are conventionally analyzed with labor-intensive, bottom-up tandem mass spectrometry (MS/MS), which is limited by incomplete peptide sequence coverage and introduction of artifacts during the lengthy analysis procedure. Here, we describe top-down and middle-down approaches with the advantages of fast sample preparation with minimal artifacts, ultrahigh mass accuracy, and extensive residue cleavages by use of 21 tesla FT-ICR MS/MS. The ultrahigh mass accuracy yields an RMS error of 0.2-0.4 ppm for antibody light chain, heavy chain, heavy chain Fc/2, and Fd subunits. The corresponding sequence coverages are 81%, 38%, 72%, and 65% with MS/MS RMS error 4 ppm. Extension to a monoclonal antibody in human serum as a monoclonal gammopathy model yielded 53% sequence coverage from two nano-LC MS/MS runs. A blind analysis of five therapeutic monoclonal antibodies at clinically relevant concentrations in human serum resulted in correct identification of all five antibodies. Nano-LC 21 T FT-ICR MS/MS provides nonpareil mass resolution, mass accuracy, and sequence coverage for mAbs, and sets a benchmark for MS/MS analysis of multiple mAbs in serum. This is the first time that extensive cleavages for both variable and constant regions have been achieved for mAbs in a human serum background.

  10. Universal influenza virus vaccines and therapeutic antibodies. (United States)

    Nachbagauer, R; Krammer, F


    Current influenza virus vaccines are effective when well matched to the circulating strains. Unfortunately, antigenic drift and the high diversity of potential emerging zoonotic and pandemic viruses make it difficult to select the right strains for vaccine production. This problem causes vaccine mismatches, which lead to sharp drops in vaccine effectiveness and long response times to manufacture matched vaccines in case of novel pandemic viruses. To provide an overview of universal influenza virus vaccines and therapeutic antibodies in preclinical and clinical development. PubMed and were used as sources for this review. Universal influenza virus vaccines that target conserved regions of the influenza virus including the haemagglutinin stalk domain, the ectodomain of the M2 ion channel or the internal matrix and nucleoproteins are in late preclinical and clinical development. These vaccines could confer broad protection against all influenza A and B viruses including drift variants and thereby abolish the need for annual re-formulation and re-administration of influenza virus vaccines. In addition, these novel vaccines would enhance preparedness against emerging influenza virus pandemics. Finally, novel therapeutic antibodies against the same conserved targets are in clinical development and could become valuable tools in the fight against influenza virus infection. Both universal influenza virus vaccines and therapeutic antibodies are potential future options for the control of human influenza infections. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Rapid Isolation of Monoclonal Antibodies Specific for Cell Surface Differentiation Antigens (United States)

    Barclay, Stephen L.; Smith, Alan M.


    Two immunization procedures were compared for their ability to yield monoclonal antibodies that react with plasma membrane-bound differentiation antigens of Dictyostelium. In the first method, hybridomas prepared from BALB/c mice immunized with aggregating amoebae produced monoclonal antibodies that recognized antigens present on both growing and aggregating Dictyostelium amoebae. None of the monoclonal antibodies reacted with only the injected aggregation-stage cell type. In contrast, monoclonal antibodies that reacted with differentiation antigens were easily obtained by primary immunization of BALB/c mice with living aggregation-stage cells, followed by secondary immunization with a preparation of plasma membrane from aggregating cells or intact aggregating cells mixed with polyclonal BALB/c antiserum raised against undifferentiated cells. By this method, approximately 20% of all anti-Dictyostelium monoclonal antibodies obtained in a fusion are specific for differentiation antigens. The properties and developmental regulation of several of these antigens are described. The possible uses of this immunological method to detect unique determinants on other kinds of cells and the likely immune mechanisms that make it successful are discussed.

  12. Drug desensitization in the management of hypersensitivity reactions to monoclonal antibodies and chemotherapy. (United States)

    Mezzano, Veronica; Giavina-Bianchi, Pedro; Picard, Matthieu; Caiado, Joana; Castells, Mariana


    Hypersensitivity reactions to monoclonal antibodies and chemotherapy, which may vary in severity from mild to life-threatening, can lead to their discontinuation and replacement by alternative agents that are often less effective, more toxic, and/or more expensive. Drug desensitization has emerged as the best treatment modality capable of allowing re-introduction of the hypersensitivity reaction-inducing medication in highly sensitized patients in need of first line therapies. In recent years, the availability of new anti-neoplastic drugs and therapeutic monoclonal antibodies has increased, as has the potential for hypersensitivity reactions. Development of desensitization protocols for these new medications requires a careful assessment of the potential risks and benefits. The purposes of this review are to provide an overview of the presentation of hypersensitivity reactions amenable to desensitization and to increase awareness of the indications for and outcomes of desensitization protocols. Rapid drug desensitization has proven to be a safe and effective way of administering first line therapy to patients with hypersensitivity reactions, providing an extremely powerful treatment modality for patients for whom alternative drugs are deemed unacceptable. Rapid drug desensitization protocols should be administered only by highly trained allergists and nurses who have experience in determining which reactions are amenable to desensitization, and can identify high risk patients and provide them with appropriate care. Efforts should be made to increase awareness of the remarkable safety and efficacy of rapid drug desensitization among non-allergists, especially in the fields of oncology and rheumatology, so as to favor its universal application. Development of desensitization units to provide state-of-the-art care is possible only through coordinated teamwork.

  13. Prestalk and prespore differentiation in Dictyostelium as detected by cell type-specific monoclonal antibodies


    Tasaka, Masao; Noce, Toshiaki; Takeuchi, Ikuo


    Monoclonal antibodies specifically reactive against prestalk and prespore cells of the cellular slime mold Dictyostelium discoideum were obtained. By the use of these antibodies, we examined processes of differentiation of the two cell types during development. Cells stained with prespore-specific antibodies first appeared after 12-14 hr of starvation within cell aggregates with tips, coincidentally with the appearance of other prespore markers. The number of prespore cells then increased to ...

  14. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor.


    Soos, M A; Siddle, K; Baron, M D; Heward, J M; Luzio, J P; Bellatin, J; Lennox, E S


    Monoclonal antibodies for the human insulin receptor were produced following immunization of mice with IM-9 lymphocytes and/or purified placental receptor. Four separate fusions yielded 28 antibodies, all of which reacted with receptor from human placenta, liver and IM-9 cells. Some antibodies cross-reacted to varying degrees with receptor from rabbit, cow, pig and sheep, but none reacted with rat receptor. At least 10 distinct epitopes were recognized as indicated by species specificity and ...

  15. Anti-CD25 monoclonal antibody Fc variants differentially impact regulatory T cells and immune homeostasis. (United States)

    Huss, David J; Pellerin, Alex F; Collette, Brian P; Kannan, Arun K; Peng, Liaomin; Datta, Abhishek; Wipke, Brian T; Fontenot, Jason D


    Interleukin-2 (IL-2) is a critical regulator of immune homeostasis through its non-redundant role in regulatory T (Treg) cell biology. There is major interest in therapeutic modulation of the IL-2 pathway to promote immune activation in the context of tumour immunotherapy or to enhance immune suppression in the context of transplantation, autoimmunity and inflammatory diseases. Antibody-mediated targeting of the high-affinity IL-2 receptor α chain (IL-2Rα or CD25) offers a direct mechanism to target IL-2 biology and is being actively explored in the clinic. In mouse models, the rat anti-mouse CD25 clone PC61 has been used extensively to investigate the biology of IL-2 and Treg cells; however, there has been controversy and conflicting data on the exact in vivo mechanistic function of PC61. Engineering antibodies to alter Fc/Fc receptor interactions can significantly alter their in vivo function. In this study, we re-engineered the heavy chain constant region of an anti-CD25 monoclonal antibody to generate variants with highly divergent Fc effector function. Using these anti-CD25 Fc variants in multiple mouse models, we investigated the in vivo impact of CD25 blockade versus depletion of CD25(+) Treg cells on immune homeostasis. We report that immune homeostasis can be maintained during CD25 blockade but aberrant T-cell activation prevails when CD25(+) Treg cells are actively depleted. These results clarify the impact of PC61 on Treg cell biology and reveal an important distinction between CD25 blockade and depletion of CD25(+) Treg cells. These findings should inform therapeutic manipulation of the IL-2 pathway by targeting the high-affinity IL-2R. © 2016 John Wiley & Sons Ltd.

  16. Naturalizing activity and safety of human monoclonal antibodies against of hepatitis C virus. (United States)

    Abelhafez, Tawfeek H; Tabll, Ashraf A; El-Awady, Mostafa K; Mashaly, Mohammad M; El Shenawy, Reem; El-Abd, Yasmine S; Shaker, Maysa H; Abdel Malak, Camelia A


    Assessment of neutralizing activity of the human monoclonal antibodies against HCV and also study its safety in experimental small animals (Swiss mice). Assessment of neutralizing activity of the human monoclonal antibodies against HCV envelope regions (E1, E2) by two methods (by HCV cc infectious system and by using positive HCV positive serum as source of HCV particles (neutralizing assay 2). Dot ELISA were used to study the activity of the generated antibodies. We tested the safety and toxicity of the generated human antibodies by assessment the changes in biochemistry of liver function tests and changes in kidney function test, Complete blood counts (CBC) and study the pathological changes with different concentration of purified human antibodies. Human Abs # 5 & 11 showed neutralizing activity by (neutralizing assay 2) but were not neutralizing by HCV cc assay. Human Abs # 12 & 15 showed neutralizing activity by two methods i.e our generated human antibodies Abs# 5 &11 & 12 & 15 were neutralizing for HCV genotype 4a and Abs # 12 & 15 were neutralizing for HCV genotypes 4a and 2a. Liver and kidney functions and CBC results indicated that doses of 10 μg, 100 μg were safe. The histopathological results indicated that the dose of 10 μg of purified human monoclonal antibodies per mouse body weight was safe. The generated human monoclonal antibodies can be used to develop a potent immunotherapy that can be administrated for the post-transplantation patients to prevent the recurrence of HCV infection. Also, the monoclonal antibodies can be used to develop a vaccine against HCV.

  17. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. (United States)

    Carnahan, Josette; Wang, Paul; Kendall, Richard; Chen, Ching; Hu, Sylvia; Boone, Tom; Juan, Todd; Talvenheimo, Jane; Montestruque, Silvia; Sun, Jilin; Elliott, Gary; Thomas, John; Ferbas, John; Kern, Brent; Briddell, Robert; Leonard, John P; Cesano, Alessandra


    Epratuzumab is a novel humanized antihuman CD22 IgG1 antibody that has recently shown promising clinical activity, both as a single agent and in combination with rituximab, in patients with non-Hodgkin's lymphomas (NHL). In an attempt to better understand the mode of action of epratuzumab, the antibody was tested in vitro in a variety of cell-based assays similar to those used to evaluate the biological activity of other therapeutic monoclonal antibodies, including rituximab. In this report, we present epratuzumab activities as they relate to binding, signaling, and internalization of the receptor CD22. Chinese hamster ovary-expressed CD22 extracellular domain was used to measure epratuzumab affinity on Biacore. CD22 receptor density and internalization rate were measured indirectly using a monovalently labeled, noncompeting (with epratuzumab) anti-CD22 antibody on Burkitt lymphoma cell lines, primary B cells derived from fresh tonsils, and B cells separated from peripheral blood samples obtained from patients with chronic lymphocytic leukemia or healthy volunteers. Epratuzumab-induced CD22 phosphorylation was measured by immunoprecipitation/Western blot and compared with that induced by anti-IgM stimulation. Epratuzumab binds to CD22-extracellular domain, with an affinity of K(D) = 0.7 nM. Binding of epratuzumab to B cell lines, or primary B cells from healthy individuals and patients with NHL, results in rapid internalization of the CD22/antibody complex. Internalization appears to be faster at early time points in cell lines than in primary B cells and NHL patient-derived B cells, but the maximum internalization reached is comparable for all B cell populations after several hours of treatment and appears to reach saturation at antibody concentrations of 1-5 micro g/ml. Finally, epratuzumab binding results in modest but significant CD22 phosphorylation. Epratuzumab represents an excellent anti-CD22 ligating agent, highly efficacious in inducing CD22

  18. Identification of a human monoclonal antibody to replace equine diphtheria antitoxin for treatment of diphtheria intoxication. (United States)

    Sevigny, Leila M; Booth, Brian J; Rowley, Kirk J; Leav, Brett A; Cheslock, Peter S; Garrity, Kerry A; Sloan, Susan E; Thomas, William; Babcock, Gregory J; Wang, Yang


    Diphtheria antitoxin (DAT) has been the cornerstone of the treatment of Corynebacterium diphtheriae infection for more than 100 years. Although the global incidence of diphtheria has declined steadily over the last quarter of the 20th century, the disease remains endemic in many parts of the world, and significant outbreaks still occur. DAT is an equine polyclonal antibody that is not commercially available in the United States and is in short supply globally. A safer, more readily available alternative to DAT would be desirable. In the current study, we obtained human monoclonal antibodies (hMAbs) directly from antibody-secreting cells in the circulation of immunized human volunteers. We isolated a panel of diverse hMAbs that recognized diphtheria toxoid, as well as a variety of recombinant protein fragments of diphtheria toxin. Forty-five unique hMAbs were tested for neutralization of diphtheria toxin in in vitro cytotoxicity assays with a 50% effective concentration of 0.65 ng/ml for the lead candidate hMAb, 315C4. In addition, 25 μg of 315C4 completely protected guinea pigs from intoxication in an in vivo lethality model, yielding an estimated relative potency of 64 IU/mg. In comparison, 1.6 IU of DAT was necessary for full protection from morbidity and mortality in this model. We further established that our lead candidate hMAb binds to the receptor-binding domain of diphtheria toxin and physically blocks the toxin from binding to the putative receptor, heparin-binding epidermal growth factor-like growth factor. The discovery of a specific and potent human neutralizing antibody against diphtheria toxin holds promise as a potential therapeutic.

  19. Structural and dynamic properties of monoclonal antibodies immobilized on CNTs: a computational study. (United States)

    De Leo, Federica; Sgrignani, Jacopo; Bonifazi, Davide; Magistrato, Alessandra


    Due to the widespread application of carbon nanotube (CNT)-based materials in nanomedicine, it is nowadays of paramount importance to unravel at the atomistic level of detail the structural properties of such bioconjugates in order to rationalize and predict the effect exerted by the graphitic framework on the bio-active counterpart. In this paper, we report for the first time all-atom explicit solvent molecular dynamics (MD) simulations investigating the structural and dynamic properties of a noncovalent bioconjugate in which the monoclonal Cetuximab antibody (Ctx) is adsorbed on a CNT surface. Upon selection of the three most representative adsorption modes as obtained by docking studies, force-field MD and DFT simulations unambiguously showed that hydrophobic interactions mainly govern the adsorption of the protein on the graphitic surface. Two main adsorption poses have been predicted: a pose-fab (p-fab) and pose-fc (p-fc) (fab = fragment antigen binding region; fc = fragment crystallizable region), the former being favored with small-diameter tubes (≤40 Å). In all the predicted poses, the secondary structure of Ctx is largely unaffected by the presence of the graphitic surface and, consistently with previous literature studies, our simulations reveal that positively charged amino acidic residues, such as Lys and Arg, predominantly contribute to the stabilization of the CNT⋅Ctx complex acting like surfactants. The predicted structural models are consistent with the experimental data, for which the immobilization of the antibody on CNTs does not disrupt the structural and recognition properties of the Ctx, consequently supporting the reliability of the used bioconjugation strategy for engineering stable and responsive hybrid nanomaterials for therapeutic applications. Moreover, a remarkable structural similarity of Ctx with antibodies of different isotypes suggests that in principle the CNT framework can interact in the same manner with all antibodies

  20. A Highly Specific Monoclonal Antibody for Botulinum Neurotoxin Type A-Cleaved SNAP25

    Directory of Open Access Journals (Sweden)

    Catherine Rhéaume


    Full Text Available Botulinum neurotoxin type-A (BoNT/A, as onabotulinumtoxinA, is approved globally for 11 major therapeutic and cosmetic indications. While the mechanism of action for BoNT/A at the presynaptic nerve terminal has been established, questions remain regarding intracellular trafficking patterns and overall fate of the toxin. Resolving these questions partly depends on the ability to detect BoNT/A’s location, distribution, and movement within a cell. Due to BoNT/A’s high potency and extremely low concentrations within neurons, an alternative approach has been employed. This involves utilizing specific antibodies against the BoNT/A-cleaved SNAP25 substrate (SNAP25197 to track the enzymatic activity of toxin within cells. Using our highly specific mouse monoclonal antibody (mAb against SNAP25197, we generated human and murine recombinant versions (rMAb using specific backbone immunoglobulins. In this study, we validated the specificity of our anti-SNAP25197 rMAbs in several different assays and performed side-by-side comparisons to commercially-available and in-house antibodies against SNAP25. Our rMAbs were highly specific for SNAP25197 in all assays and on several different BoNT/A-treated tissues, showing no cross-reactivity with full-length SNAP25. This was not the case with other reportedly SNAP25197-selective antibodies, which were selective in some, but not all assays. The rMAbs described herein represent effective new tools for detecting BoNT/A activity within cells.

  1. Monoclonal Antibodies against Aβ42 Fibrils Distinguish Multiple Aggregation State Polymorphisms in Vitro and in Alzheimer Disease Brain* (United States)

    Hatami, Asa; Albay, Ricardo; Monjazeb, Sanaz; Milton, Saskia; Glabe, Charles


    Amyloidogenic proteins generally form intermolecularly hydrogen-bonded β-sheet aggregates, including parallel, in-register β-sheets (recognized by antiserum OC) or antiparallel β-sheets, β-solenoids, β-barrels, and β-cylindrins (recognized by antiserum A11). Although these groups share many common properties, some amyloid sequences have been reported to form polymorphic structural variants or strains. We investigated the humoral immune response to Aβ42 fibrils and produced 23 OC-type monoclonal antibodies recognizing distinct epitopes differentially associated with polymorphic structural variants. These mOC antibodies define at least 18 different immunological profiles represented in aggregates of amyloid-β (Aβ). All of the antibodies strongly prefer amyloid aggregates over monomer, indicating that they recognize conformational epitopes. Most of the antibodies react with N-terminal linear segments of Aβ, although many recognize a discontinuous epitope consisting of an N-terminal domain and a central domain. Several of the antibodies that recognize linear Aβ segments also react with fibrils formed from unrelated amyloid sequences, indicating that reactivity with linear segments of Aβ does not mean the antibody is sequence-specific. The antibodies display strikingly different patterns of immunoreactivity in Alzheimer disease and transgenic mouse brain and identify spatially and temporally unique amyloid deposits. Our results indicate that the immune response to Aβ42 fibrils is diverse and reflects the structural polymorphisms in fibrillar amyloid structures. These polymorphisms may contribute to differences in toxicity and consequent effects on pathological processes. Thus, a single therapeutic monoclonal antibody may not be able to target all of the pathological aggregates necessary to make an impact on the overall disease process. PMID:25281743

  2. Monoclonal antibodies against Aβ42 fibrils distinguish multiple aggregation state polymorphisms in vitro and in Alzheimer disease brain. (United States)

    Hatami, Asa; Albay, Ricardo; Monjazeb, Sanaz; Milton, Saskia; Glabe, Charles


    Amyloidogenic proteins generally form intermolecularly hydrogen-bonded β-sheet aggregates, including parallel, in-register β-sheets (recognized by antiserum OC) or antiparallel β-sheets, β-solenoids, β-barrels, and β-cylindrins (recognized by antiserum A11). Although these groups share many common properties, some amyloid sequences have been reported to form polymorphic structural variants or strains. We investigated the humoral immune response to Aβ42 fibrils and produced 23 OC-type monoclonal antibodies recognizing distinct epitopes differentially associated with polymorphic structural variants. These mOC antibodies define at least 18 different immunological profiles represented in aggregates of amyloid-β (Aβ). All of the antibodies strongly prefer amyloid aggregates over monomer, indicating that they recognize conformational epitopes. Most of the antibodies react with N-terminal linear segments of Aβ, although many recognize a discontinuous epitope consisting of an N-terminal domain and a central domain. Several of the antibodies that recognize linear Aβ segments also react with fibrils formed from unrelated amyloid sequences, indicating that reactivity with linear segments of Aβ does not mean the antibody is sequence-specific. The antibodies display strikingly different patterns of immunoreactivity in Alzheimer disease and transgenic mouse brain and identify spatially and temporally unique amyloid deposits. Our results indicate that the immune response to Aβ42 fibrils is diverse and reflects the structural polymorphisms in fibrillar amyloid structures. These polymorphisms may contribute to differences in toxicity and consequent effects on pathological processes. Thus, a single therapeutic monoclonal antibody may not be able to target all of the pathological aggregates necessary to make an impact on the overall disease process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Limited cross-reactivity of mouse monoclonal antibodies against Dengue virus capsid protein among four serotypes

    Directory of Open Access Journals (Sweden)

    Noda M


    Full Text Available Megumi Noda,1 Promsin Masrinoul,1 Chaweewan Punkum,1 Chonlatip Pipattanaboon,2,3 Pongrama Ramasoota,2,4 Chayanee Setthapramote,2,3 Tadahiro Sasaki,6 Mikiko Sasayama,1 Akifumi Yamashita,1,5 Takeshi Kurosu,6 Kazuyoshi Ikuta,6 Tamaki Okabayashi11Mahidol-Osaka Center for Infectious Diseases, 2Center of Excellence for Antibody Research, 3Department of Microbiology and Immunology, 4Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; 5Graduate School of Life Science, Tohoku University, Sendai, Miyagi, 6Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, JapanBackground: Dengue illness is one of the important mosquito-borne viral diseases in tropical and subtropical regions. Four serotypes of dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4 are classified in the Flavivirus genus of the family Flaviviridae. We prepared monoclonal antibodies against DENV capsid protein from mice immunized with DENV-2 and determined the cross-reactivity with each serotype of DENV and Japanese encephalitis virus.Methods and results: To clarify the relationship between the cross-reactivity of monoclonal antibodies and the diversity of these viruses, we examined the situations of flaviviruses by analyses of phylogenetic trees. Among a total of 60 prepared monoclonal antibodies specific for DENV, five monoclonal antibodies stained the nuclei of infected cells and were found to be specific to the capsid protein. Three were specific to DENV-2, while the other two were cross-reactive with DENV-2 and DENV-4. No monoclonal antibodies were cross-reactive with all four serotypes. Phylogenetic analysis of DENV amino acid sequences of the capsid protein revealed that DENV-2 and DENV-4 were clustered in the same branch, while DENV-1 and DENV-3 were clustered in the other branch. However, these classifications of the capsid protein were different from those of the

  4. Production and Purification of Monoclonal Antibody Against Tumor Marker of TPA

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Abbas Ghodrat


    Full Text Available Considering the invasive nature of cancer cells, one of the most important and best indicator of them is the markers inside them. One of the most important markers that observed in some types of cancer cells in various parts of the body is the Cytokeratin. Tissue plasminogen activator antigen (TPA is a Cytokeratin composed of molecules with various molecular weights. The level of TPA serum as associated with cellular growth level and tumorization of cells. In this research, the hybrid of spleen cells in BALB/c female mouse with myeloma cells was conducted with a ratio of 10:1. The resulting monoclonal antibodies were confirmed by SDS-PAGE and western blot. Protein G chromatography was utilized to purify monoclonal antibodies. The results for determining isotypes showed IgM and IgG classes. The titer of the antibody obtained from various clones was capable of identifying Cytokeratin antigen with a dilution of 1/10000. The resulting antibodies were finally confirmed by western blot and all the 5 resulting monoclonal antibodies were capable of identifying a 48 kDa protein. The results indicate that with the help of TPA marker and the monoclonal antibodies produced against them, this marker can be recognized quickly with great accuracy in suspicious cases of cancer. Thus, appropriate measures will be taken to prevent and fight off its probable side effects. This factor can be further used to build a diagonal kit with high sensitivity.

  5. Radioimmunotherapy with [sup 90]Y-labeled monoclonal antibodies in a nude mouse ovarian cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Kairemo, K. (Dept. of Clinical Chemistry, Helsinki Univ. Central Hospital (Finland)); Ljunggren, K. (Dept. of Radiation Physics, Lund Univ. (Sweden)); Strand, S.E. (Dept. of Radiation Physics, Lund Univ. (Sweden)); Hiltunen, J. (MAP Medical Technologies, Jyvaeskylae (Finland)); Penttilae, P. (MAP Medical Technologies, Jyvaeskylae (Finland)); Nikula, T. (MAP Medical Technologies, Jyvaeskylae (Finland)); Laine, A. (Cancer Research Lab., Orion/Farmos-Group Ltd., Turku (Finland)); Wahlstroem, T. (Dept. of Obstetrics and Gynecology, Helsinki Univ. Central Hospital (Finland))


    Tumor stroma contains much fibrin, and so monoclonal antifibrin antibody can accumulate in tumors. We treated nude mice bearing human ovarian carcinoma xenografts with [sup 90]Y-labeled monoclonal antifibrin antibody Fab fragments administered intratumorally. The survival time vs. a control group was significantly prolonged and tumor growth rate was decreased. Another group of animals was treated with [sup 90]Y-labeled OC 125-monoclonal antibody; these mice received the antibodies intratumorally, intraperitoneally or intravenously. The survival time was longest in the intratumorally treated group. There was no significant difference in survival between [sup 90]Y-labeled OC 125 and antifibrin in the intratumorally treated animal groups. The tissue activity distribution studies revealed that bone marrow is the critical organ. Intratumorally injected monoclonal [sup 90]Y-antifibrin antibodies were retained at least 36 h (up to 50% of injected activity per gram tumor tissue) in the xenograft after one treatment, causing cell death. Beta-camera imaging and immunohistochemistry were performed for studies of the correlation between [sup 90]Y activity and fibrin distribution in tumor specimens. These results were in concordance. In conclusion, intratumoral administration seems suitable for radioimmunotherapy, with an antibody that targets stromal structures. The accumulation can be successfully monitored by a beta-camera. (orig.).

  6. Development, characterization, and use of monoclonal and polyclonal antibodies against the myxosporean, Ceratomyxa shasta (United States)

    Bartholomew, J.L.; Rohovec, J.S.; Fryer, J.L.


    Both monoclonal and polyclonal antisera were produced against Ceratomyxa shasta. Ascites containing trophozoites of the parasite was collected from infected fish and used as antigen for immunization of mice. The resulting monoclonal antibodies reacted specifically with trophozoite and sporoblast stages but did not react with C. shasta spores by either indirect fluorescent antibody techniques or in Western blots. This indicates that some C. shasta antigens are specific to certain life stages of the parasite. Polyclonal antiserum was produced in a rabbit by injecting a spore protein electro-eluted from an SDS-polyacrylamide gel. This antiserum reacted with both trophozoites and spores by indirect fluorescent antibody techniques and in Western blots. All antisera were tested for cross-reactivity to trout white blood cells, a contaminant of the ascites, and to other myxosporea. Two monoclonal antibodies reacted with white blood cells and myxosporea of the genera Sphaerospora and Myxobilatus. One hybridoma produced antibodies of high specificity for C. shasta pre-spore stages. This is the first report of a monoclonal antibody produced against a myxosporean parasite.

  7. Free light chain content in culture media reflects recombinant monoclonal antibody productivity and quality. (United States)

    Bhoskar, Prachi; Belongia, Brett; Smith, Robert; Yoon, Seongkyu; Carter, Tyler; Xu, Jin


    Monoclonal antibodies (mAbs) are currently the dominant class of biopharmaceuticals. Due to the high dosage requirements of most mAb therapeutics, high productivity and low aggregation are prevailing criteria during cell line generation and process development. Given that light chains (LCs) play an important role in antibody folding and assembly, and that most mAb producing cell lines also manufacture free LCs, we sought to investigate whether there was a relationship between free LC levels in cell culture media and mAb productivity/quality. To this end, a series of analytical methods were developed in order to quantify free LC content in cell culture media and assess mAb productivity and aggregation levels. Afterwards, conditioned media samples from different cell lines at identical culturing conditions and a single clone under varying culturing conditions were analyzed. Higher LC expression was found to correlate with higher cell viability, higher mAb productivity, and lower aggregation. While LC expression cannot yet be definitively considered the root cause of these phenomena, these results are consistent with the role of LCs in mAb production, suggesting that free LC expression levels may potentially serve as a parameter for cell line generation and cell culture process optimization. © 2013 American Institute of Chemical Engineers.

  8. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation

    DEFF Research Database (Denmark)

    Kousted, Tina Mostrup; Skjoedt, K; Petersen, S V


    of the serpin presenting its so-called reactive centre loop as a substrate to its target protease, resulting in a covalent complex with the inactivated enzyme. Previously, three mechanisms have been proposed for the inactivation of serpins by monoclonal antibodies: steric blockage of protease recognition......, conversion to an inactive conformation or induction of serpin substrate behaviour. Until now, no inhibitory antibodies against PN-1 have been thoroughly characterised. Here we report the development of three monoclonal antibodies binding specifically and with high affinity to human PN-1. The antibodies all...... abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between...

  9. Production and Characterization of Monoclonal Antibodies against Aspartate Aminotransferase-P1 from Lupin Root Nodules. (United States)

    Jones, W. T.; Jones, S. D.; Harvey, D.; Rodber, K. R.; Ryan, G. B.; Reynolds, PHS.


    Six hybridoma clones were obtained that secreted monoclonal antibodies against the aspartate aminotransferase-P1 (AAT-P1) isoenzyme from root nodules of Lupinus angustifolius [L.] cv Uniharvest. This enzyme is found constitutively in the plant cytosol fraction. The monoclonal antibodies produced were all of the immunoglobulin G1 class, recognized two distinct epitopes on the protein, and represented the major paratopes found in the immunoglobulin fraction of sera taken from mice and rabbits immunized with the pure AAT-P1 protein. One of these epitopes was unique to lupin nodule AAT-P1. The other epitope was shown to be present on enzyme from lupin bean, white clover and tobacco leaves, lupin roots and nodules, and potato tubers. Both epitopes were recognized by the appropriate monoclonal antibodies in both their native and denatured forms. None of the monoclonal antibodies produced reacted with Rhizobium lupini NZP2257, Escherichia coli extracts, or with the inducible aspartate aminotransferase-P2 (AAT-P2) isoform also found in root nodules. A sandwich enzyme-linked immunosorbent assay utilizing two monoclonal antibodies recognizing the two distinct epitopes was developed and was capable of quantitating AAT-P1 in plant extracts. The limit of detection of AAT-P1 was less than 15 pg/mL and AAT-P1 protein could be quantified in the range 80 to 1000 pg/mL. Using this assay, AAT-P1 protein was shown to remain relatively constant during nodule development. Use of an AAT-P2-specific monoclonal antibody that inhibits the enzyme activity of this isoform enabled the direct determination of AAT-P1 enzyme activity in nodule extracts. Using these assays, specific activities of the individual isoforms were calculated; that of the AAT-P1 isoform was shown to be 7.5-fold higher than that of the AAT-P2 isoform. PMID:12232065

  10. Purification of the therapeutic antibody trastuzumab from genetically modified plants using safflower Protein A-oleosin oilbody technology. (United States)

    McLean, Michael D; Chen, Rongji; Yu, Deqiang; Mah, Kor-Zheng; Teat, John; Wang, Haifeng; Zaplachinski, Steve; Boothe, Joseph; Hall, J Christopher


    Production of therapeutic monoclonal antibodies using genetically modified plants may provide low cost, high scalability and product safety; however, antibody purification from plants presents a challenge due to the large quantities of biomass that need to be processed. Protein A column chromatography is widely used in the pharmaceutical industry for antibody purification, but its application is limited by cost, scalability and column fouling problems when purifying plant-derived antibodies. Protein A-oleosin oilbodies (Protein A-OB), expressed in transgenic safflower seeds, are relatively inexpensive to produce and provide a new approach for the capture of monoclonal antibodies from plants. When Protein A-OB is mixed with crude extracts from plants engineered to express therapeutic antibodies, the Protein A-OB captures the antibody in the oilbody phase while impurities remain in the aqueous phase. This is followed by repeated partitioning of oilbody phase against an aqueous phase via centrifugation to remove impurities before purified antibody is eluted from the oilbodies. We have developed this purification process to recover trastuzumab, an anti-HER2 monoclonal antibody used for therapy against specific breast-cancers that over express HER2 (human epidermal growth factor receptor 2), from transiently infected Nicotiana benthamiana. Protein A-OB overcomes the fouling problem associated with traditional Protein A chromatography, allowing for the development of an inexpensive, scalable and novel high-resolution method for the capture of antibodies based on simple mixing and phase separation.

  11. Design and Characterization of a Human Monoclonal Antibody that Modulates Mutant Connexin 26 Hemichannels Implicated in Deafness and Skin Disorders

    Directory of Open Access Journals (Sweden)

    Liang Xu


    Full Text Available Background: Mutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26, a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins. In particular, molecules that specifically modulate connexin hemichannel function without affecting gap junction channels are considered of primary importance for the study of connexin hemichannel role in physiological as well as pathological conditions. Monoclonal antibodies developed in the last three decades have become the most important class of therapeutic biologicals. Recombinant methods permit rapid selection and improvement of monoclonal antibodies from libraries with large diversity.Methods: By screening a combinatorial library of human single-chain fragment variable (scFv antibodies expressed in phage, we identified a candidate that binds an extracellular epitope of Cx26. We characterized antibody action using a variety of biochemical and biophysical assays in HeLa cells, organotypic cultures of mouse cochlea and human keratinocyte-derived cells.Results: We determined that the antibody is a remarkably efficient, non-toxic, and completely reversible inhibitor of hemichannels formed by connexin 26 and does not affect direct cell-cell communication via gap junction channels. Importantly, we also demonstrate that the antibody efficiently inhibits hyperative mutant Cx26 hemichannels implicated in autosomal dominant non-syndromic hearing impairment accompanied by keratitis and hystrix-like ichthyosis-deafness (KID/HID syndrome. We solved the crystal structure of the antibody, identified residues that are critical for binding and used molecular dynamics to uncover its mechanism of action

  12. Dual salt mixtures in mixed mode chromatography with an immobilized tryptophan ligand influence the removal of aggregated monoclonal antibodies. (United States)

    Vajda, Judith; Mueller, Egbert; Bahret, Eva


    In downstream processing of monoclonal antibodies, proper aggregate removal is crucial. Mixed mode ligands such as immobilized tryptophan have been developed to satisfy the need for efficient removal of antibody aggregates. However, method development for mixed mode applications is complicated, since protein binding and elution can be modulated by an increased set of parameters. In the current study, we investigate the effect of different dual salt mixtures on mixed mode chromatography using TOYOPEARL MX-Trp-650M resin, with respect to the dynamic binding capacity, resolution and monomer purity of two different humanized immunoglobulins. Binding capacities varying by more than 50% were observed for different salt mixtures. Furthermore, antibody monomer and aggregate resolution deviated by 30% for different salt mixtures and linear gradient elution. Similar trends were obtained using an immobilized carboxymethyl ligand for the same set of experiments, but the overall resolution was lower. Less kosmotropic salt systems emphasize the electrostatic binding of the relatively hydrophobic mAbs and reduce hydrophobic attraction to a selectivity-determining constraint. Kosmotropic salts such as citrate appear to cause dominating hydrophobic interactions in protein adsorption that hinder electrostatic protein-ligand interactions. This effect may depend on the ionic and hydrophobic site distribution of a protein. The data presented here are important for the further improvement of downstream processing of therapeutic monoclonal antibodies. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Production and Characterization of Monoclonal Antibodies to Soluble Rat Lung Guanylate Cyclase (United States)

    Brandwein, Harvey; Lewicki, John; Murad, Ferid


    Four monoclonal antibodies to rat lung soluble guanylate cyclase [GTP pyrophosphate-lyase (cyclizing) EC] have been produced by fusing spleen cells from immunized BALB/c mice with SP-2/0 myeloma cells. The antibodies were detected by their ability to bind immobilized guanylate cyclase and by immunoprecipitation of purified enzyme in the presence of second (rabbit anti-mouse) antibody. After subcloning by limiting dilution, hybridomas were injected intraperitoneally into mice to produce ascitic fluid containing 2-5 mg of antibody per ml. The four antibodies obtained had titers of between 1:1580 and 1:3160 but were detectable at dilutions greater than 1:20,000. Soluble guanylate cyclase from several rat tissues were crossreactive with the four monoclonal antibodies, suggesting that the soluble enzyme from different rat tissues is antigenically similar. The antibodies also recognized soluble lung enzyme from rat, beef, and pig, while enzyme from rabbit was not crossreactive and mouse enzyme was recognized by only one of the antibodies. Particulate guanylate cyclase from a number of tissues had only minimal crossreactivity with the antibodies. Immunoprecipitated guanylate cyclase retained catalytic activity, could be activated with sodium nitroprusside, and was inhibited by cystamine. None of the antibodies were inhibitory under the conditions examined. These antibodies will be useful probes for the study of guanylate cyclase regulation and function under a variety of physiological conditions.

  14. Monoclonal antibodies against a synthetic peptide from human immunodeficiency virus type 1 Nef protein

    DEFF Research Database (Denmark)

    Steinaa, L; Wulff, A M; Saermark, T


    Monoclonal antibodies against a synthetic peptide (aa 138-152) from HIV-1 Nef protein were produced and characterized. Three hybridoma lines producing monoclonal antibodies (MAbs) against the synthetic peptide were generated by fusion between P3-X63 Ag8.653 myeloma cells and BALB/c splenocytes from...... mice immunized with the synthetic peptide coupled to keyhole limpet hemocyanin (KLH). The hybridomas were screened and selected by ELISA with the peptide coupled to bovine serum albumin (BSA) immobilized to the polystyrene surface and specificity for the peptide was confirmed by competitive ELISA...

  15. High Resolution Mapping of Bactericidal Monoclonal Antibody Binding Epitopes on Staphylococcus aureus Antigen MntC.


    Alexey V Gribenko; Kevin Parris; Lidia Mosyak; Sheng Li; Luke Handke; Julio C Hawkins; Elena Severina; Yury V Matsuka; Annaliesa S Anderson


    The Staphylococcus aureus manganese transporter protein MntC is under investigation as a component of a prophylactic S.aureus vaccine. Passive immunization with monoclonal antibodies mAB 305-78-7 and mAB 305-101-8 produced using MntC was shown to significantly reduce S. aureus burden in an infant rat model of infection. Earlier interference mapping suggested that a total of 23 monoclonal antibodies generated against MntC could be subdivided into three interference groups, representing three i...

  16. [A therapeutic Trojan horse: intracellular antibodies]. (United States)

    Teillaud, J L


    Intracellular immunization is a novel therapeutic approach based on intracellular expression of recombinant antibody fragments, either Fab or single chain Fv (scFv generated by the assembly of the VH with the VL region), targeted to the desired cell compartment (cytosol, nucleus, endoplasmic reticulum ...) using appropriate targeting sequences. Due to their exquisite specificity, these intracellular antibodies can be used to neutralize or modulate the functional activity of the target molecule. Intracellular immunization strategies currently under investigation in the field of oncology are directed against mutated oncogenic molecules such as ErbB-2, p21ras, and p53, as well as against apoptosis-inhibiting molecules such as Bcl-2. The first Phase I clinical trials on intracellular immunization are under way in the United States.

  17. Possible Future Monoclonal Antibody (mAb-Based Therapy against Arbovirus Infections

    Directory of Open Access Journals (Sweden)

    Giuseppe Sautto


    Full Text Available More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminary in vitro and in vivo models of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.

  18. The Structural Properties and Stability of Monoclonal Antibodies at Freezing Conditions (United States)

    Perevozchikova, Tatiana; Zarraga, Isidro; Scherer, Thomas; Wagner, Norman; Liu, Yun


    Monoclonal Antibodies (MAb) have become a crucial therapeutic agent in a number of anti-cancer treatments. Due to the inherent unstable nature of proteins in an aqueous formulation, a freeze-drying method has been developed to maintain long-term stability of biotherapeutics. The microstructural changes in Mabs during freezing, however, remain not fully described, and it was proposed that the formed morphology of freeze drying samples could affect the final product quality after reconstitution. Furthermore, it is well known that proteins tend to aggregate during the freezing process if a careful processing procedure is not formulated. Small Angle Neutron Scattering (SANS) is a powerful tool to investigate the structural properties and interactions of Mabs during various stages of lyophilization in situ. Here we present the SANS results of freeze-thaw studies on two MAbs at several different freezing temperatures. While the chosen proteins share a significant sequence homology, their freezing properties are found to be strikingly distinctive. We also show the effect of excipients, concentration and quenching speed on the final morphology of the frozen samples. These findings provide critical information for more effective lyophilization schemes for therapeutic proteins, as well as increase our understanding on structural properties of proteins under cryogenic conditions.

  19. Mouse in Vivo Neutralization of Escherichia coli Shiga Toxin 2 with Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Larry H. Stanker


    Full Text Available Shiga toxin-producing Escherichia coli (STEC food contaminations pose serious health concerns, and have been the subject of massive food recalls. STEC has been identified as the major cause of the life-threatening complication of hemolytic uremic syndrome (HUS. Besides supportive care, there currently are no therapeutics available. The use of antibiotics for combating pathogenic E. coli is not recommended because they have been shown to stimulate toxin production. Clearing Stx2 from the circulation could potentially lessen disease severity. In this study, we tested the in vivo neutralization of Stx2 in mice using monoclonal antibodies (mAbs. We measured the biologic half-life of Stx2 in mice and determined the distribution phase or t1/2 α to be 3 min and the clearance phase or t1/2 β to be 40 min. Neutralizing mAbs were capable of clearing Stx2 completely from intoxicated mouse blood within minutes. We also examined the persistence of these mAbs over time and showed that complete protection could be passively conferred to mice 4 weeks before exposure to Stx2. The advent of better diagnositic methods and the availability of a greater arsenal of therapeutic mAbs against Stx2 would greatly enhance treatment outcomes of life threatening E. coli infections.

  20. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. (United States)

    Lai, Huafang; He, Junyun; Engle, Michael; Diamond, Michael S; Chen, Qiang


    Pharmaceutical protein production in plants has been greatly promoted by the development of viral-based vectors and transient expression systems. Tobacco and related Nicotiana species are currently the most common host plants for the generation of plant-made pharmaceutical proteins (PMPs). Downstream processing of target PMPs from these plants, however, is hindered by potential technical and regulatory difficulties owing to the presence of high levels of phenolics and toxic alkaloids. Here, we explored the use of lettuce, which grows quickly yet produces low levels of secondary metabolites and viral vector-based transient expression systems to develop a robust PMP production platform. Our results showed that a geminiviral replicon system based on the bean yellow dwarf virus permits high-level expression in lettuce of virus-like particles (VLP) derived from the Norwalk virus capsid protein and therapeutic monoclonal antibodies (mAbs) against Ebola and West Nile viruses. These vaccine and therapeutic candidates can be readily purified from lettuce leaves with scalable processing methods while fully retaining functional activity. Furthermore, this study also demonstrated the feasibility of using commercially produced lettuce for high-level PMP production. This allows our production system to have access to unlimited quantities of inexpensive plant material for large-scale production. These results establish a new production platform for biological pharmaceutical agents that are effective, safe, low cost, and amenable to large-scale manufacturing. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  1. Affinity isolation of antigen-specific circulating B cells for generation of phage display-derived human monoclonal antibodies

    DEFF Research Database (Denmark)

    Ditzel, Henrik


    A method is described for affinity isolation of antigen-specific circulating B cells of interest for subsequent generation of immune antibody phage display libraries. This approach should overcome the problem of low yields of monoclonal antibodies of interest in the libraries generated from...... the frequency of antibody phage particles of interest in the library and allow for efficient isolation monoclonal antibodies with the predefined specificity....

  2. Influence of osmolarity and pH increase to achieve a reduction of monoclonal antibodies aggregates in a production process


    Franco, Rognoni; Daniela, Gianesello; Fabrizio, Maddalena; Ilaria, Giuntini; Detlev, Herbst


    Anti PSA monoclonal antibodies for diagnostic use were produced in an in vitro system. After purification using Protein G affinity chromatography a percentage of about 10% of antibody aggregates remained. The use of monoclonal antibodies containing aggregates as a capture antibody in a diagnostic kit reduces the performance of the test making it often unacceptable. The aggregates could be eliminated using gel filtration chromatography but, in that way, the final recovery of the whole producti...

  3. Use of a monoclonal antibody to distinguish between precursor and mature forms of human lysosomal alpha-glucosidase

    NARCIS (Netherlands)

    Oude Elferink, R. P.; Strijland, A.; Surya, I.; Brouwer-Kelder, E. M.; Kroos, M.; Hilkens, J.; Hilgers, J.; Reuser, A. J.; Tager, J. M.


    The maturation of lysosomal alpha-glucosidase in cultured human skin fibroblasts was studied using a monoclonal antibody that distinguishes between the precursor and mature forms of the enzyme. Monoclonal antibodies against alpha-glucosidase isolated from placenta were produced by the hybridoma

  4. In-situ Detection of Squalane in Sedimentary Organic Matter Using Monoclonal Antibodies (United States)

    Bailey, J. V.; Corsetti, F. A.; Moldowan, J. M.; Fago, F.; Caron, D.


    Sedimentary geolipids can serve as powerful tools for reconstructing ancient ecosystems, but only if investigators can demonstrate that the hydrocarbons are indigenous to their host rocks. The association of molecules with primary sedimentary fabrics could indicate a syngenetic relationship. However, traditional biomarker analyses require extraction from large quantities of powdered rock, confounding detailed spatial correlations. Biological studies commonly use antibodies as extremely sensitive molecular probes. When coupled with fluorescent labels, antibodies allow for the visual localization of molecules. Here we show that monoclonal antibodies that bind specifically to geolipid compounds can be used for in situ detection and labeling of such compounds in mineral-bound organic macerals. Monoclonal antibodies to squalene, produced for human health studies, also react with the geolipid, squalane. We show that squalene antibodies do not react with other common sedimentary hydrocarbons. We also show that squalane antibodies bind specifically to isolated organic-rich lamina in Eocene-age, squalane-containing rocks. These results suggest that squalane is confined to discrete organo-sedimentary fabrics within those rocks, providing evidence for its syngeneity. The chemical similarity of squalane to other sedimentary hydrocarbons hints at the potential for developing monoclonal antibodies to a variety of biomarkers that could then be localized in rocks, sediments, and extant cells.

  5. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. (United States)

    Hehle, Verena K; Paul, Matthew J; Roberts, Victoria A; van Dolleweerd, Craig J; Ma, Julian K-C


    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformedNicotiana tabacum Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy's 13 antibody heavy and light chain mutant combinations were expressed transiently inN. tabacumand demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.-Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. © The Author(s).

  6. Generation and characterization of anti-Adeno-associated virus serotype 8 (AAV8) and anti-AAV9 monoclonal antibodies. (United States)

    Tseng, Yu-Shan; Vliet, Kim Van; Rao, Lavanya; McKenna, Robert; Byrne, Barry J; Asokan, Aravind; Agbandje-McKenna, Mavis


    Adeno-associated viruses (AAVs) are promising viral vectors for therapeutic gene delivery, and the approval of an AAV1 vector for the treatment of lipoprotein lipase deficiency has heralded a new and exciting era for this system. However, preclinical and clinical studies show that neutralization from pre-existing antibodies is detrimental for medical application and this hurdle must be overcome before full clinical realization can be achieved. Thus the binding sites for capsid antibodies must be identified and eliminated through capsid engineering. Towards this goal and to recapitulate patient polyclonal responses, a panel of six new mouse monoclonal antibodies (MAbs) has been generated against AAV8 and AAV9 capsids, two vectors being developed for therapeutic application. Native (capsid) dot blot assays confirmed the specificity of these antibodies for their parental serotypes, with the exception of one MAb, HL2372, selected to cross-react against both capsids. Furthermore, in vitro assays showed that these MAbs are capable of neutralizing virus infection. These MAbs will be utilized for structural mapping of antigenic footprints on their respective capsids to inform development of the next generation of rAAV vectors capable of evading antibody neutralization while retaining parental tropism. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice (United States)

    Filipe, Vasco; Jiskoot, Wim; Basmeleh, Abdul Hafid; Halim, Andhyk; Schellekens, Huub; Brinks, Vera


    The presence of protein aggregates in biopharmaceutical formulations is of great concern for safety and efficacy reasons. The aim of this study was to correlate the type and amount of IgG monoclonal antibody aggregates with their immunogenic potential. IgG degradation was obtained by freeze-thawing cycles, pH-shift cycles, heating, shaking and metal-catalyzed oxidation. The size, amount, morphology and type of intermolecular bonds of aggregates, as well as structural changes and epitope integrity were characterized. These formulations were injected in mice transgenic (TG) for human genes for Ig heavy and light chains and their non-transgenic (NTG) counterparts. Anti-drug antibody (ADA) titers were determined by bridging ELISA. Both unstressed IgG and freeze-thawed formulation did not induce measurable ADA levels. A mild antibody response was obtained in a fairly small percentage of mice, when injected with shaken, pH-shifted and heated formulations. The metal-catalyzed oxidized IgG formulation was the most immunogenic one, in both ADA titers and number of responders. The overall titers of NTG responders were significantly higher than the ones produced by TG mice, whereas there was no significant difference between the overall number of TG and NTG responders. This study reinforces the important role of protein aggregates on immunogenicity of therapeutic proteins and provides new insight into the immunogenic potential of different types of IgG aggregates. The results indicate that the quality of the IgG aggregates has more impact on the development of an immune response than their quantity or size. PMID:22951518

  8. Characterization of a human monoclonal antibody against Shiga toxin 2 expressed in Chinese hamster ovary cells. (United States)

    Akiyoshi, D E; Rich, C M; O'Sullivan-Murphy, S; Richard, L; Dilo, J; Donohue-Rolfe, A; Sheoran, A S; Chapman-Bonofiglio, S; Tzipori, S


    Shiga toxin-producing Escherichia coli infections can often lead to the development of hemolytic-uremic syndrome (HUS) in a small percentage of infected humans. Patients with HUS receive only supportive treatment as the benefit of antibiotic therapy remains uncertain. We have previously reported the generation and preclinical evaluation of neutralizing human monoclonal antibodies (HuMAbs) against the Shiga toxins (Stx). In this paper, we describe the expression in Chinese hamster ovary (CHO) cells of 5C12 HuMAb, which is directed against the A subunit of Stx2. The cDNAs of the light and heavy chain immunoglobulin (Ig) variable regions of 5C12 HuMAb were isolated and cloned into an expression vector containing human IgG1 constant regions. The vector was transfected into CHO cells, and transfectants secreting Stx2-specific antibody were screened by an Stx2-specific enzyme-linked immunosorbent assay. The CHO-produced recombinant 5C12 (r5C12) showed similar specificity and binding affinity to Stx2 as the parent hybridoma-produced 5C12. More significantly, the r5C12 displayed the same neutralizing activity as the parent 5C12 in vitro and in vivo. In the mouse toxicity model, both antibodies significantly and equally prolonged survival at a dose of 0.312 microg/mouse. The data showed that since r5C12, produced in CHO cells, was equally effective as the parent 5C12, it is our choice candidate as a potential prophylactic or therapeutic agent against hemolytic-uremic syndrome.

  9. Production of monoclonal antibodies with a controlled N-glycosylation pattern in seeds of Arabidopsis thaliana. (United States)

    Loos, Andreas; Van Droogenbroeck, Bart; Hillmer, Stefan; Grass, Josephine; Kunert, Renate; Cao, Jingyuan; Robinson, David G; Depicker, Ann; Steinkellner, Herta


    Seed-specific expression is an appealing alternative technology for the production of recombinant proteins in transgenic plants. Whereas attractive yields of recombinant proteins have been achieved by this method, little attention has been paid to the intracellular deposition and the quality of such products. Here, we demonstrate a comparative study of two antiviral monoclonal antibodies (mAbs) (HA78 against Hepatitis A virus; 2G12 against HIV) expressed in seeds of Arabidopsis wild-type (wt) plants and glycosylation mutants lacking plant specific N-glycan residues. We demonstrate that 2G12 is produced with complex N-glycans at great uniformity in the wt as well as in the glycosylation mutant, carrying a single dominant glycosylation species, GnGnXF and GnGn, respectively. HA78 in contrast, contains additionally to complex N-glycans significant amounts of oligo-mannosidic structures, which are typical for endoplasmic reticulum (ER)-retained proteins. A detailed subcellular localization study demonstrated the deposition of both antibodies virtually exclusively in the extracellular space, illustrating their efficient secretion. In addition, although a KDEL-tagged version of 2G12 exhibited an ER-typical N-glycosylation pattern, it was surprisingly detected in protein storage vacuoles. The different antibody variants showed different levels of degradation with hardly any degradation products detectable for HA78 carrying GnGnXF glycans. Finally, we demonstrate functional integrity of the HA78 and 2G12 glycoforms using viral inhibition assays. Our data therefore demonstrate the usability of transgenic seeds for the generation of mAbs with a controlled N-glycosylation pattern, thus expanding the possibilities for the production of optimally glycosylated proteins with enhanced biological activities for the use as human therapeutics. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell

  10. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans

    DEFF Research Database (Denmark)

    Caterson, B; Christner, J E; Baker, J R


    Monoclonal antibodies have been raised against determinants present in cartilage proteoglycan. Characterization of the specificity of these antibodies indicated that they recognize determinants present in the keratan sulfate glycosaminoglycan chain and on chondroitin sulfate oligosaccharide stubs...... attached to the proteoglycan core protein after chondroitinase digestion of the proteoglycan (i.e., delta-unsaturated 4- and 6-sulfated and unsulfated chondroitin sulfate on the proteoglycan core). The antibody recognizing keratan sulfate has been used to demonstrate the presence of a keratan sulfate......-rich proteoglycan subpopulation that increases with increasing age of animal compared with chondroitin sulfate-rich proteoglycans. Monoclonal antibodies recognizing determinants on chondroitinase-treated proteoglycan have been used in immunohistochemical localization studies determining the differential...

  11. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof (United States)

    Jensen, Ronald H.; Vanderlaan, Martin; Bigbee, William L.; Stanker, Larry H.; Branscomb, Elbert W.; Grabske, Robert J.


    The present invention provides monoclonal antibodies specific to and distinguish between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype.

  12. Monoclonal antibodies against hepatitis B e antigen: production, characterization, and use for diagnosis. (United States)

    Korec, E; Dostálová, V; Korcová, J; Mancal, P; König, J; Borisova, G; Cibinogen, V; Pumpen, P; Gren, E; Hlozánek, I


    Five different hybridoma clones secreting anti-HBeAg antibody were constructed by fusing cells of mouse myeloma line SP2/0 with splenocytes from BALB/c mice immunized with recombinant HBeAg. The monoclonal antibodies obtained were characterized immunologically and one was used to develop ELISA for detection of HBeAg and anti-HBeAg antibody. These monoclonal assays enabled the detection of 3 U HBeAg/ml and 1 U anti-HBeAg/ml with reference to standards of the Paul Ehrlich Institute, Frankfurt, F.R.G. Both assays compared well with a commercially available kit (Abbott Laboratory) and were used for detection of HBeAg and anti-HBeAg antibody in clinical serum samples.

  13. Production of monoclonal and polyclonal antibodies against a ...

    African Journals Online (AJOL)

    Banana streak virus is serologically and genomically heterogenous worldwide and there has been the need to produce antibodies that can detect all known serotypes of this virus. Antibody production requires purified virus, since BSV titre is low in Musa tissues, there was the need for an efficient method of purifying the virus ...

  14. The Effects of Anti-Hcg Monoclonal Antibodies on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Mirshahi M


    Full Text Available Background: Human cancer cell lines express human choriogonadotropin (hCG, its subunits and derivatives, regardless of their origin and type. It appears that hCG is a common phenotype in human cancer cell lines. In this research, the effects of hCG targeting monoclonal antibodies (7D9, T18H7 and T8B12 on human cancer cell lines were evaluated. Methods: Monoclonal antibody secreting hybridomas were proliferated and injected intraperitoneally to Balb/C mice after treatment with pristine. Two weeks later, ascites fluid was collected. Purification of aforementioned antibodies from ascites fluid was performed using G-protein affinity followed by ion exchange chromatography. SDS-PAGE and ELISA confirmed the structure and functional integrity of the purified antibodies, respectively. Two human cancer cell lines "Hela" and "MDA" were treated by the purified antibodies. Three days later, different wells were imaged and the cells counted. Results: SDS-PAGE gel (None-reducing indicated consistency of band migration patterns with control antibodies. ELISA test using hCG antigens indicated that the produced antibodies could detect hCG antigens. Cell lines were cultured and treated with different concentrations of each antibody. Counting and imaging different wells of treated plates, indicated that 7D9 antibody had a more significant (P<0.01 cytotoxic effect on cancer cell lines than the control cells. Conclusion: HCG targeting monoclonal antibodies can be used for targeted cancer therapy, as human cancer cells express hCG gene. 7D9 antibody that exhibits protease activity is a proper candidate for this purpose, as it possesses both antagonistic and enzymatic properties.

  15. Isolation of highly active monoclonal antibodies against multiresistant gram-positive bacteria.

    Directory of Open Access Journals (Sweden)

    Friederike S Rossmann

    Full Text Available Multiresistant nosocomial pathogens often cause life-threatening infections that are sometimes untreatable with currently available antibiotics. Staphylococci and enterococci are the predominant Gram-positive species associated with hospital-acquired infections. These infections often lead to extended hospital stay and excess mortality. In this study, a panel of fully human monoclonal antibodies was isolated from a healthy individual by selection of B-cells producing antibodies with high opsonic killing against E. faecalis 12030. Variable domains (VH and VL of these immunoglobulin genes were amplified by PCR and cloned into an eukaryotic expression vector containing the constant domains of a human IgG1 molecule and the human lambda constant domain. These constructs were transfected into CHO cells and culture supernatants were collected and tested by opsonophagocytic assay against E. faecalis and S. aureus strains (including MRSA. At concentrations of 600 pg/ml, opsonic killing was between 40% and 70% against all strains tested. Monoclonal antibodies were also evaluated in a mouse sepsis model (using S. aureus LAC and E. faecium, a mouse peritonitis model (using S. aureus Newman and LAC and a rat endocarditis model (using E. faecalis 12030 and were shown to provide protection in all models at a concentration of 4 μg/kg per animal. Here we present a method to produce fully human IgG1 monoclonal antibodies that are opsonic in vitro and protective in vivo against several multiresistant Gram-positive bacteria. The monoclonal antibodies presented in this study are significantly more effective compared to another monoclonal antibody currently in clinical trials.

  16. Glycan modulation and sulfoengineering of anti–HIV-1 monoclonal antibody PG9 in plants


    Loos, Andreas; Gach, Johannes S.; Hackl, Thomas; Maresch, Daniel; Henkel, Theresa; Porodko, Andreas; Bui-Minh, Duc; Sommeregger, Wolfgang; Wozniak-Knopp, Gordana; Forthal, Donald N.; Altmann, Friedrich; Steinkellner, Herta; Mach, Lukas


    The broadly neutralizing anti–HIV-1 monoclonal antibody (mAb) PG9 requires multiple posttranslational modifications to exhibit its full biological activity, including proper N-glycosylation and tyrosine sulfation. We now describe a technology that permits the controlled synthesis of these modifications in Nicotiana benthamiana. This technology allowed us to show that sulfated PG9 neutralizes HIV-1 with much higher potency than unsulfated antibody. We also found that glycooptimized mAb version...

  17. Treatment of refractory antibody mediated autoimmune disorders with an anti-CD20 monoclonal antibody (rituximab) (United States)

    Arzoo, K; Sadeghi, S; Liebman, H


    Patients: Because of its novel mechanism of action, rituximab was used to treat three patients with refractory systemic antibody mediated autoimmune disorders. The first patient, a 71 year old woman with idiopathic type II mixed essential cryoglobulinaemia, had both dermatological and neurological manifestations with marked renal disease attributed to her cryoglobulinaemia. Patient 2, a 73 year old woman with Goodpasture's syndrome, was refractory to conventional treatment (cyclophosphamide, prednisone, plasmapheresis). She had persistent haemoptysis and haematuria and positive antiglomerular basement membrane antibodies. The third patient, a 75 year old man with primary biliary cirrhosis, myelodysplasia, and systemic immune complex vasculitis, had progressive renal insufficiency, a macular erythematous rash, and severe thrombocytopenia. Results: Treatment with rituximab resolved all clinical and laboratory manifestations in the three patients. Conclusions: Rituximab may be an important therapeutic agent for the treatment of patients refractory or intolerant to corticosteroid or cytotoxic treatment, or both. PMID:12228164

  18. Assessment of absorbed dose and therapeutic response of tumor in repeated high-dose I-131 anti-CD20 monoclonal antibody (rituximab) radioimmunotherapy for non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun; Lim, Sang Moo; Kim, Kyeong Min [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)


    We assessed the therapeutic dose absorbed to the tumor and response in repeated RIT with I-131 rituximab for NHL. Patients with NHL (n=6) were administered a therapeutic dose of I-131 rituximab (192.527.0 mCi). The number of repeated administration was 3 for all patients. Total 12 measurable tumor regions were assessed at the time of each RIT. Whole-body (WB) planar images with anterior and posterior views were acquired sequentially at 5 min, 5hr, 24hr, 48hr, and 72hr post-injection using gamma camera. F-18-FDG PET/CT was performed before (within 7 days) and after (on Day 30) RIT. From PET/CT image acquired before RIT, maximum intensity projection (MIP) image of coronal view was acquired. Serial WB planar images were overlaid to the coronal MIP PET image, respectively, by means of registration using 4 fiducial marks (bilateral shoulder and buttock) implemented in AMIDE software. On registered MIP PET and WB planar images, both 2D-ROIs were drawn on the region of tumor and background nearby tumor. The shape of 2D-ROI of tumor was determined from the MIP PET image. The volume of tumor was measured from the CT image, the % change of tumor volume before and after RIT was used in evaluation of the therapeutic response. The values of CT-based tumor volume were 8.216.3cc. The values of absorbed dose for tumor and the % changes of tumor volume before and after RIT were 231.8603.0rad, and 55.548.7%, respectively, and did not show the linear relationship (r=0.2787). The values of absorbed dose for tumor and the % changes of tumor volume did not correlate with the number of repeated administration (p>0.05, ANOVA). Aligning PET and planar images could estimate the quantitative values of absorbed dose to tumor. The data suggest that repeated RIT with I-131 rituximab is necessary for NHL, because single-RIT is insufficient to achieve remission of disease.

  19. Production and immunohistochemical characterization of monoclonal antibodies directed against renal basement membranes of rats. (United States)

    Hinsch, K D; Hansen, D; Zimmermann, A; von Bruchhausen, F


    Basement membranes were separated from rat glomeruli and purified by mild procedures, which led to a highly enriched basement membrane fraction. Here, the production and characterization of five monoclonal antibodies against tubular and glomerular basement membranes are described. These antibodies were analyzed immunohistochemically on frozen sections of rat, bovine, and human kidneys as well as on rat embryos. One monoclonal antibody (BM O II) exclusively recognized the glomerular basement membranes, another one (BM O VII) bound to tubular basement membranes and to Bowman's capsule. Three antibodies (BM O IV, BM M II, BM M III) recognized their antigens in both glomerular and tubular basement membranes as well as in mesangial cells. The BM O II antibody showed a stringent species specificity and bound only to glomerular basement membranes of the rat. The other four antibodies cross-reacted with human and bovine glomerular basement membrane and mesangial antigens; they also bound to other tissues in the developing rat embryo. Antibody binding to specific purified components of the basement membranes such as collagen type IV, laminin, heparan sulphate proteoglycan, and fibronectin was investigated by enzyme-linked immunosorbent assay (ELISA). None of these antibodies reacted with any of these known basement membrane components, indicating that the antibodies may serve as useful tools in future investigations of so far unidentified components of basement membranes.

  20. Obinutuzumab: a new class of anti-CD20 monoclonal antibody. (United States)

    Gagez, Anne-Laure; Cartron, Guillaume


    Obinutuzumab is a new anti-CD20 monoclonal antibody which demonstrated clinical superiority compared with rituximab in a recent phase III study. There is a need to better understand how this antibody differs from rituximab and why it could modify the landscape of the treatment of CD20 malignancies in the near future. Antibody-dependent cellular cytotoxicity plays a critical role in clinical activity of rituximab. To increase antibody-dependent cellular cytotoxicity, a strategy improving the affinity between the Fc portion of the antibody and FcγRIIIa expressed by effector cells has been recently developed. This strategy modifies the carbohydrate located between the two Fc arms. Thus, the lack of fucose on IgG oligosaccharide improves binding to FcγRIII and antibody-dependent cellular cytotoxicity. Obinutuzumab recognized a CD20 epitope different from that bound by rituximab. This property confers different features to obinutuzumab mechanisms of action with a noncaspase-dependent direct-cell death and the lack of complement-dependent cytotoxicity. Obinutuzumab demonstrated significant activity in animal models, and phase I or II studies showed clinical activity in different subtypes of CD20 diseases. Obinutuzumab, a type II glycoengineered monoclonal antibody, is characterized by an increased antibody-dependent cellular cytotoxicity and direct-cell death but no complement-dependent cytotoxicity. Recent clinical data demonstrated a superiority of obinutuzumab compared with rituximab, suggesting that this antibody should be, in the future, the backbone of the treatment of B-lymphoproliferative disorders.

  1. Analysis of reduced monoclonal antibodies using size exclusion chromatography coupled with mass spectrometry (United States)

    Liu, Hongcheng; Gaza-Bulseco, Georgeen; Chumsae, Chris


    Size-exclusion chromatography (SEC) has been widely used to detect antibody aggregates, monomer, and fragments. SEC coupled to mass spectrometry has been reported to measure the molecular weights of antibody; antibody conjugates, and antibody light chain and heavy chain. In this study, separation of antibody light chain and heavy chain by SEC and direct coupling to a mass spectrometer was further studied. It was determined that employing mobile phases containing acetonitrile, trifluoroacetic acid, and formic acid allowed the separation of antibody light chain and heavy chain after reduction by SEC. In addition, this mobile phase allowed the coupling of SEC to a mass spectrometer to obtain a direct molecular weight measurement. The application of the SEC-MS method was demonstrated by the separation of the light chain and the heavy chain of multiple recombinant monoclonal antibodies. In addition, separation of a thioether linked light chain and heavy chain from the free light chain and the free heavy chain of a recombinant monoclonal antibody after reduction was also achieved. This optimized method provided a separation of antibody light chain and heavy chain based on size and allowed a direct measurement of molecular weights by mass spectrometry. In addition, this method may help to identify peaks eluting from SEC column directly.


    Stachybotrys chartarum is known to produce the hemolysin stachylysin and its detection in human serum has been proposed as a biomarker for exposure to the fungus. In this study we report the initial characterization of monoclonal antibodies (mAbs) against stachylysin and the dev...

  3. Monoclonal antibodies to synthetic pyrethroids and method for detecting the same (United States)

    Stanker, Larry H.; Vanderlaan, Martin; Watkins, Bruce E.; Van Emon, Jeanette M.; Bigbee, Carolyn L.


    Methods are described for making specific monoclonal antibodies which may be used in a sensitive immunoassay for detection of synthetic pyrethroids in foods and environmental samples. Appropriate sample preparation and enzyme amplification of the immunoassay for this widely-used class of pesticides permits detection at low levels in laboratory and field tested samples.

  4. Production and Characterization of Monoclonal Antibodies Against the Protective Antigen Component of Bacillus anthracis Toxin (United States)


    characterization of monoclonal antibodies against Clostridium perfringens type A enterotoxin. Infect. Immun. 50:442-448. 32. Wright, 6. 6., and 6. L...and inhibits growth of certain cell lines (15). No enzymatic activity has been identified for LF. Both the lethal and edema toxins inhibit the

  5. Common and specific epitopes of Campylobacter flagellin recognized by monoclonal antibodies.


    Nachamkin, I; Hart, A M


    Murine monoclonal antibodies to Campylobacter jejuni recognized a flagellin epitope common to most Campylobacter species and an epitope restricted to C. jejuni and C. coli. These epitopes are distinct from the serotype-specific epitope recently detected on the flagellin and have not been described previously.

  6. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants

    NARCIS (Netherlands)

    ter Meulen, Jan; van den Brink, Edward N.; Poon, Leo L. M.; Marissen, Wilfred E.; Leung, Cynthia S. W.; Cox, Freek; Cheung, Chung Y.; Bakker, Arjen Q.; Bogaards, Johannes A.; van Deventer, Els; Preiser, Wolfgang; Doerr, Hans Wilhelm; Chow, Vincent T.; de Kruif, John; Peiris, Joseph S. M.; Goudsmit, Jaap


    BACKGROUND: Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of

  7. A monoclonal antibody to feruloylated (1→4)-β-D-galactan

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig; Ralet, Marie-Christine; Willats, William G. T.


    We report the isolation and characterization of a monoclonal antibody, designated LM9, against feruloylated-(1-->4)-beta-D-galactan. This epitope is a structural feature of cell wall pectic polysaccharides of plants belonging to the family Amaranthaceae (including the Chenopodiaceae). Immuno-assa...

  8. Detection of primary colorectal cancer with indium 111 monoclonal antibody B72. 3

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, R.J.; Abdel-Nabi, H.; Baker, J.M.; Steinberg, S. (Veterans Affairs Medical Center, Buffalo, NY (USA))


    B72.3 is a murine monoclonal antibody of the immunoglobulin subclass IgG1 directed against TAG-72, a cell surface antigen present on colorectal carcinoma cells. We investigated the utility of scanning with indium 111-labeled B72.3 in 16 patients with a high clinical suspicion of or biopsy-proven primary colorectal cancer. Each patient received 1 or 2 mg of B72.3 monoclonal antibody labeled with 152 MBq of indium 111. Patients underwent scanning 2 to 3 days and 7 days after infusion by planar and emission computed tomography. Nineteen lesions were confirmed in 12 patients. Three patients with benign polyps had true-negative monoclonal antibody scans. Indium 111-labeled imaging of B72.3 detected nine of 19 lesions. Unsuspected tumor sites were identified by monoclonal antibody scan in three patients. By detection of additional abdominal disease and extra-abdominal spread, indium 111-labeled scanning of B72.3 directly affected treatment in 18% of patients.

  9. Molecular mechanism for the action of the anti-CD44 monoclonal antibody MEM-85

    Czech Academy of Sciences Publication Activity Database

    Škerlová, Jana; Král, Vlastimil; Kachala, M.; Fábry, Milan; Bumba, Ladislav; Svergun, D.I.; Tosner, Z.; Veverka, V.; Řezáčová, Pavlína


    Roč. 191, č. 2 (2015), s. 214-223 ISSN 1047-8477 R&D Projects: GA ČR(CZ) GA15-11851S EU Projects: European Commission 264257 Institutional support: RVO:68378050 ; RVO:61388971 Keywords : CD44 * Epitope mapping * Monoclonal antibody * MEM-85 * SAXS * NMR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.570, year: 2015

  10. Molecular mechanism for the action of the anti-CD44 monoclonal antibody MEM-85

    Czech Academy of Sciences Publication Activity Database

    Škerlová, Jana; Král, V.; Kachala, M.; Fábry, M.; Bumba, L.; Svergun, D. I.; Tošner, Z.; Veverka, Václav; Řezáčová, Pavlína


    Roč. 191, č. 2 (2015), s. 214-223 ISSN 1047-8477 R&D Projects: GA MŠk(CZ) LK11205; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : CD44 * epitope mapping * monoclonal antibody * MEM-85 * NMR * SAXS Subject RIV: CE - Biochemistry Impact factor: 2.570, year: 2015

  11. A human monoclonal antibody cocktail as a novel component of rabies postexposure prophylaxis

    NARCIS (Netherlands)

    de Kruif, John; Bakker, Alexander B. H.; Marissen, Wilfred E.; Kramer, R. Arjen; Throsby, Mark; Rupprecht, Charles E.; Goudsmit, Jaap


    The currently recommended treatment for individuals exposed to rabies virus is the combined administration of rabies vaccine and rabies immune globulin (RIG). This review sets out the criteria used to guide development of a cocktail of human monoclonal antibodies as a replacement for RIG. Using this

  12. Purification of infectious canine parvovirus from cell culture by affinity chromatography with monoclonal antibodies.

    NARCIS (Netherlands)

    J. Groen (Jan); N. Juntti; J.S. Teppema; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert); G.F. Rimmelzwaan (Guus)


    textabstractImmuno affinity chromatography with virus neutralizing monoclonal antibodies, directed to the haemagglutinating protein of canine parvovirus (CPV) was used to purify and concentrate CPV from infected cell culture. The procedure was monitored by testing the respective fractions in an

  13. Practical Considerations for the Use of Daratumumab, a Novel CD38 Monoclonal Antibody, in Myeloma

    DEFF Research Database (Denmark)

    Moreau, Philippe; van de Donk, Niels W C J; San Miguel, Jesus


    Monoclonal antibodies (mAbs) are a recent addition to multiple myeloma (MM) therapies and a number of mAbs directed at myeloma cell surface molecules are in development. Daratumumab is a CD38 mAb that has demonstrated substantial activity and good tolerability in four phase I, phase I/II and phas...

  14. Purification process monitoring in monoclonal antibody preparation: contamination with viruses, DNA and peptide growth factors.

    NARCIS (Netherlands)

    A.R. ter Avest (Anja); E.J.J. van Zoelen (Everardus); A.D.M.E. Osterhaus (Albert); C.F. van Kreyl; G. van Steenis (Bert); H.E.M. Spijkers (Ine)


    textabstractAdministration in vivo of monoclonal antibodies to humans is challenged by considerations regarding their safety. Contamination with viruses, potentially oncogenic nucleic acids and biologically active components like growth factors and hormones forms a serious point of concern in this

  15. Comprehensive analysis of varicella-zoster virus proteins using a new monoclonal antibody collection

    NARCIS (Netherlands)

    T.L. Roviš (Tihana Lenac); S.M. Bailer (Susanne); V.R. Pothineni (Venkata R); W.J.D. Ouwendijk (Werner ); H. Šimić (Hrvoje); M. Babić (Marina); K. Miklić (Karmela); S. Malić (Suzana); M.C. Verweij; M. Baiker (Martin); O. Gonzalez (Orland); A. Brunn (Albrecht von); R. Zimmer; K. Früh (Klaus); G.M.G.M. Verjans (George); S. Jonjic (Stipan); J. Haasb (Jürgeni)


    textabstractVaricella-zoster virus (VZV) is the etiological agent of chickenpox and shingles. Due to the virus's restricted host and cell typetropism and the lack of tools for VZV proteomics, it is one of the least-characterized human herpesviruses. We generated 251monoclonal antibodies (MAbs)

  16. A novel monoclonal antibody to a defined peptide epitope in MUC16

    DEFF Research Database (Denmark)

    Marcos-Silva, Lara; Ricardo, Sara; Chen, Kowa


    immunodominant linear peptide epitopes within the tandem repeat. We developed one monoclonal antibody, 5E11, reactive with a minimum epitope with the sequence FNTTER. This sequence contains potential N- and O-glycosylation sites and, interestingly, glycosylation blocked binding of 5E11. In immunochemistry...

  17. Characterisation of different morphological features of black tiger shrimp (Penaeus monodon) haemocytes using monoclonal antibodies

    NARCIS (Netherlands)

    Braak, van de C.B.T.; Taverne, N.; Botterblom, M.H.A.; Knaap, van der W.P.W.; Rombout, J.H.W.M.


    Monoclonal antibodies (mabs) specific for Penaeus monodon haemocytes were produced by immunising mice with membrane lysates of shrimp haemocytes. Four mabs (WSH 6, WSH 7, WSH 8 and WSH 16) were characterised using flow cytometry, light microscopy, laser scanning microscopy, electron microscopy and

  18. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C


    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N...

  19. Monoclonal Antibodies Against IL-13 and IL-31RA in Development for Atopic Dermatitis

    DEFF Research Database (Denmark)

    Hamann, Carsten R; Thyssen, Jacob P


    The IL-13 and IL-31 cytokines and inflammatory pathways have been identified as important for atopic dermatitis (AD) pathophysiology. Monoclonal antibodies against IL-13 have been studied for the treatment of asthma since 2011. More recently, two phase two trials have been completed with these an...

  20. Anti-CD45RB monoclonal antibody prolongs renal allograft survival in cynomolgus monkeys

    NARCIS (Netherlands)

    Chen, G.; Luke, P. P. W.; Yang, H.; Visser, L.; Sun, H.; Garcia, B.; Qian, H.; Xiang, Y.; Huang, X.; Liu, W.; Senaldi, G.; Schneider, A.; Poppema, S.; Wang, H.; Jevnikar, A. M.; Zhong, R.

    Previously, an anti-CD45RB monoclonal antibody (mAb) has been shown to induce murine allograft tolerance. The present study was performed to assess the ability of an anti-human CD45RB mAb to prevent rejection in a monkey MHC-mismatched kidney transplant model. The recipients were allocated into the

  1. Data on the characterization of follicle-stimulating hormone monoclonal antibodies and localization in Japanese eel pituitary

    Directory of Open Access Journals (Sweden)

    Dae-Jung Kim


    In support of our recent publication, "Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica" [1], it was important to characterize the specificity of eel follicle-stimulating hormone antibodies. Here, the production and ELISA system of these monoclonal antibodies are presented. The affinity-purified monoclonal antibodies specifically detected eel rec-FSH in ELISA and on western blots of rec-FSH produced from CHO cells. Immunohistochemical analysis revealed that FSH staining was specifically localized in the eel pituitary.

  2. Cross-protection of newly emerging HPAI H5 viruses by neutralizing human monoclonal antibodies: A viable alternative to oseltamivir. (United States)

    Ren, Huanhuan; Wang, Guiqin; Wang, Shuangshuang; Chen, Honglin; Chen, Zhiwei; Hu, Hongxing; Cheng, Genhong; Zhou, Paul


    Newly emerging highly pathogenic avian influenza (HPAI) H5N2, H5N3, H5N5, H5N6, H5N8 and H5N9 viruses have been spreading in poultry and wild birds. The H5N6 viruses have also caused 10 human infections with 4 fatal cases in China. Here, we assessed the cross-neutralization and cross-protection of human and mouse monoclonal antibodies against 2 viruses: a HPAI H5N8 virus, A/chicken/Netherlands/14015526/2014 (NE14) and a HPAI H5N6 virus, A/Sichuan/26221/2014 (SC14). The former was isolated from an infected chicken in Netherlands in 2014 and the latter was isolated from an infected human patient in Sichuan, China. We show that antibodies FLA5.10, FLD21.140, 100F4 and 65C6, but not AVFluIgG01, AVFluIgG03, S139/1 and the VRC01 control, potently cross-neutralize the H5N8 NE14 and H5N6 SC14 viruses. Furthermore, we show that a single injection of >1 mg/kg of antibody 100F4 at 4 hours before, or 20 mg/kg antibody 100F4 at 72 hours after, a lethal dose of H5N8 NE14 enables mice to withstand the infection. Finally, we show that a single injection of 0.5 or 1 mg/kg antibody 100F4 prophylactically or 10 mg/kg 100F4 therapeutically outperforms a 5-day course of 10 mg/kg/day oseltamivir treatment against lethal H5N8 NE14 or H5N6 SC14 infection in mice. Our results suggest that further preclinical evaluation of human monoclonal antibodies against newly emerging H5 viruses is warranted.

  3. Research and Diagnostic Applications of Monoclonal Antibodies to Coccidioides immitis. (United States)


    NR204-123 11. TITLE (Include Security Classification) (U) RESEARCH AND DIAGNOSTIC APPLICATIONS IF MONOLCONAL ANTIBODIES TO COCCIDIOIDES IMMITIS 12...FIELD GROUP SUB-GROUP Keywords: Monocfonal Antibodies, Antigens, C. immitis 06 .03 19. ABSTRACT (Continue on reverse if necessary and identify by block...filtrates and soluble extracts of spherule-phase C. immitis . DTiC C SEP 0 1 1987 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY

  4. Lymphocyte antigens targetable by monoclonal antibodies in non-systemic vasculitic neuropathy. (United States)

    Schneider, Christian; Wunderlich, Gilbert; Bleistein, Johannes; Fink, Gereon R; Deckert, Martina; Brunn, Anna; Lehmann, Helmar Christoph


    To identify the most relevant antigens for monoclonal antibodies in lymphocytic infiltrates in non-systemic vasculitic neuropathy (NSVN). Current immunosuppressive treatment for NSVN is insufficient. Monoclonal antibodies might be a treatment option, but the expression profile for targetable antigens on lymphocytic infiltrates in NSVN is unknown. Sural nerve biopsies from a cohort of patients with NSVN were immunohistochemically studied for the expression of potential candidate antigens in perivascular and intramural lymphocytic infiltrates and correlated with neurological and electrophysiological parameters. 20 patients with treatment naïve NSVN and 5 patients with idiopathic axonal neuropathy were included. The CD52, BAFF and CD49d antigens were expressed in epineurial, perivascular or intramural lymphocytes of all (20/20) patients. CD52 was most prominently expressed in 21.49% of all inflammatory infiltrates. BAFF and CD49d were detected in 11.25% and 10.99% of these lymphocytes, respectively. The CD20, CD25 and CD126 antigens were found less frequently and at low levels only (CD20: 10/20 patients, 5.84% of lymphocytes; CD25: 17/20 patients, 5.22% of lymphocytes; CD126: 3/20 patients, 0.15% of lymphocytes). This is the first study in NSVN that identifies antigens expressed by pathogenic lymphocytes, which are potential targets for future monoclonal antibody treatment. Our data suggest that NSVN is amenable to monoclonal antibodies and, moreover, that targeting CD52 may be particularly promising. Our results strongly warrant future clinical trials in NSVN with monoclonal antibodies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Treatment of Lassa virus infection in outbred guinea pigs with first-in-class human monoclonal antibodies. (United States)

    Cross, Robert W; Mire, Chad E; Branco, Luis M; Geisbert, Joan B; Rowland, Megan M; Heinrich, Megan L; Goba, Augustine; Momoh, Mambu; Grant, Donald S; Fullah, Mohamed; Khan, Sheik Humarr; Robinson, James E; Geisbert, Thomas W; Garry, Robert F


    Lassa fever is a significant health threat to West African human populations with hundreds of thousands of annual cases. There are no approved medical countermeasures currently available. Compassionate use of the antiviral drug ribavirin or transfusion of convalescent serum has resulted in mixed success depending on when administered or the donor source, respectively. We previously identified several recombinant human monoclonal antibodies targeting the glycoprotein of Lassa virus with strong neutralization profiles in vitro. Here, we demonstrate remarkable therapeutic efficacy using first-in-class human antibodies in a guinea pig model of Lassa infection thereby presenting a promising treatment alternative. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Monoclonal antibodies: Principles and applications of immmunodiagnosis and immunotherapy for hepatitis C virus (United States)

    Tabll, Ashraf; Abbas, Aymn T; El-Kafrawy, Sherif; Wahid, Ahmed


    Hepatitis C virus (HCV) is a major health problem worldwide. Early detection of the infection will help better management of the infected cases. The monoclonal antibodies (mAb) of mice are predominantly used for the immunodiagnosis of several viral, bacterial, and parasitic antigens. Serological detection of HCV antigens and antibodies provide simple and rapid methods of detection but lack sensitivity specially in the window phase between the infection and antibody development. Human mAb are used in the immunotherapy of several blood malignancies, such as lymphoma and leukemia, as well as for autoimmune diseases. In this review article, we will discuss methods of mouse and human monoclonal antibody production. We will demonstrate the role of mouse mAb in the detection of HCV antigens as rapid and sensitive immunodiagnostic assays for the detection of HCV, which is a major health problem throughout the world, particularly in Egypt. We will discuss the value of HCV-neutralizing antibodies and their roles in the immunotherapy of HCV infections and in HCV vaccine development. We will also discuss the different mechanisms by which the virus escape the effect of neutralizing mAb. Finally, we will discuss available and new trends to produce antibodies, such as egg yolk-based antibodies (IgY), production in transgenic plants, and the synthetic antibody mimics approach. PMID:26464752

  7. Nivolumab and pembrolizumab: Monoclonal antibodies against programmed cell death-1 (PD-1) that are interchangeable. (United States)

    Prasad, Vinay; Kaestner, Victoria


    Nivolumab (Opdivo, Bristol Meyer Squibb, New York, NY) and pembrolizumab (Keytruda, Merck, Kenilworth, NJ) are the first two US Food and Drug Administration (FDA)-approved monoclonal antibodies targeting programmed death-1 (PD-1). Nivolumab and pembrolizumab work by interfering with the interaction between PD-1 and programmed death ligand-1 (PD-L1), whose unimpeded interaction downregulates T cells allowing cancer cells to evade immune surveillance. These drugs have earned a series of FDA approvals for melanoma, non-small cell lung cancer (NSCLC), head and neck squamous cell cancer (HNSCC), urothelial cancer, classical Hodgkin lymphoma, and renal cell cancer. In this review we will summarize the data for efficacy and toxicity for these two agents. We conclude that they represent two valuable but interchangeable alternatives to target their approved indications. We will discuss how this can help global payers seeking to contain the cost of cancer therapeutics that continues to spiral out of control. Copyright © 2017. Published by Elsevier Inc.

  8. Kinetic exclusion assay of monoclonal antibody affinity to the membrane protein Roundabout 1 displayed on baculovirus. (United States)

    Kusano-Arai, Osamu; Fukuda, Rie; Kamiya, Wakana; Iwanari, Hiroko; Hamakubo, Takao


    The reliable assessment of monoclonal antibody (mAb) affinity against membrane proteins in vivo is a major issue in the development of cancer therapeutics. We describe here a simple and highly sensitive method for the evaluation of mAbs against membrane proteins by means of a kinetic exclusion assay (KinExA) in combination with our previously developed membrane protein display system using budded baculovirus (BV). In our BV display system, the membrane proteins are displayed on the viral surface in their native form. The BVs on which the liver cancer antigen Roundabout 1 (Robo1) was displayed were adsorbed onto magnetic beads without fixative (BV beads). The dissociation constant (Kd, ∼10(-11) M) that was measured on the Robo1 expressed BV beads correlated well with the value from a whole cell assay (the coefficient of determination, R(2) = 0.998) but not with the value for the soluble extracellular domains of Robo1 (R(2) = 0.834). These results suggest that the BV-KinExA method described here provides a suitably accurate Kd evaluation of mAbs against proteins on the cell surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Structural and Antigenic Definition of Hepatitis C Virus E2 Glycoprotein Epitopes Targeted by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Giuseppe Sautto


    Full Text Available Hepatitis C virus (HCV is the major cause of chronic liver disease as well as the major indication for liver transplantation worldwide. Current standard of care is not completely effective, not administrable in grafted patients, and burdened by several side effects. This incomplete effectiveness is mainly due to the high propensity of the virus to continually mutate under the selective pressure exerted by the host immune response as well as currently administered antiviral drugs. The E2 envelope surface glycoprotein of HCV (HCV/E2 is the main target of the host humoral immune response and for this reason one of the major variable viral proteins. However, broadly cross-neutralizing monoclonal antibodies (mAbs directed against HCV/E2 represent a promising tool for the study of virus-host interplay as well as for the development of effective prophylactic and therapeutic approaches. In the last few years many anti-HCV/E2 mAbs have been evaluated in preclinical and clinical trials as possible candidate antivirals, particularly for administration in pre- and post-transplant settings. In this review we summarize the antigenic and structural characteristics of HCV/E2 determined through the use of anti-HCV/E2 mAbs, which, given the absence of a crystal structure of this glycoprotein, represent currently the best tool available.

  10. Generation and characterization of neutralizing monoclonal antibodies against baculo-expressed HPV 16 VLPs. (United States)

    Vidyasagar, P; Sridevi, V N; Rajan, S; Praveen, A; Srikanth, A; Abhinay, G; Siva Kumar, V; Verma, R R; Rajendra, L


    Human papillomavirus (HPV) is the well-known second most cause of cervical cancer in women worldwide. According to the WHO survey, 70% of the total cervical cancers are associated with types HPV 16 and 18. Presently used prophylactic vaccine for HPV contains mainly capsid protein of L1 virus like particles (VLPs). Correct folding of VLPs and display of neutralizing epitopes are the major constraint for VLP-based vaccines. Further, monoclonal antibodies (mAbs) play a vital role in developing therapeutics and diagnostics. mAbs are also useful for the demonstration of VLP conformation, virus typing and product process assessment as well. In the present study, we have explored the usefulness of mAbs generated against sf-9 expressed HPV 16 VLPs demonstrated as type-specific and conformational dependent against HPV 16 VLPs by ELISA. High affinity and high pseudovirion neutralization titer of mAbs indicated their potential for the development of prophylactic vaccines for HPV. Also, the type-specific and conformational reactivity of the mAbs to HPV 16 VLPs in sf-9 cells by immunofluorescence assay proved their diagnostic potential.

  11. Preparation of clinical grade monoclonal antibodies from serum-containing cell culture supernatants. (United States)

    Jiskoot, W; Van Hertrooij, J J; Hoven, A M; Klein Gebbinck, J W; Van der Velden-de Groot, T; Crommelin, D J; Beuvery, E C


    Three mouse monoclonal antibodies (Mab), RIV6, MN12, and WT31, were purified from cell culture supernatants containing foetal bovine serum (FBS) by two-step purification protocols, involving protein A affinity and ion exchange chromatography. Provided that the purification conditions were adapted to the physico-chemical properties of the individual Mab, clinical grade products could be obtained. The residual levels of bovine IgG originating from FBS were below 1% on a protein basis. Endotoxin levels were below 1 ng/ml. The contents of other serum proteins, DNA, and protein A were below or near the detection limits. The final products met the requirements for therapeutic Mab. Special attention was paid to the behaviour of foetal bovine IgG in the different purification steps. Large variations in the IgG contents of different batches of FBS were observed. However, the properties of the IgG fractions of the batches were very similar. A major IgG fraction with a low affinity for protein A and with components with relatively acidic isoelectric points (pIs) was distinguished from a minor fraction exhibiting a high affinity for protein A and a more diverse pI pattern. The impact of these findings on the purification strategy used for the Mab is discussed.

  12. Physical and structural stability of the monoclonal antibody, trastuzumab (Herceptin®), intravenous solutions. (United States)

    Pabari, Ritesh M; Ryan, Benedict; Ahmad, Wazir; Ramtoola, Zebunnissa


    A major limitation of biological therapeutics is their propensity for degradation particularly in aqueous solutions hence resulting in their short shelf-life. In this study, the stability of trastuzumab (Herceptin®) intravenous (i.v.) solutions, an IgG1 monoclonal antibody (mAb), indicated for the treatment of HER2 positive breast cancer, stored under refrigerated conditions, was evaluated over 28 days. No change in visual appearance or average particle size was observed. The pH values of the trastuzumab i.v. solutions remained stable over time. Interestingly, no change in trastuzumab monomer concentration was observed throughout the 28-day study, as determined by SEC-HPLC. SDSPAGE showed only a monomer band corresponding to the molecular weight of trastuzumab. Circular dichroism spectra obtained following 28-day storage demonstrated integrity of the secondary structural conformation of trastuzumab. Results from this study show that trastuzumab i.v. solutions remain physically and structurally stable on storage at 2-8°C for 28 days. These findings suggest that trastuzumab in solution may not be as sensitive to degradation as expected for a mAb and therefore may have important implications in extending trastuzumab shelf life for clinical use and reducing associated healthcare cost.

  13. Application of Dual Protease Column for HDX-MS Analysis of Monoclonal Antibodies. (United States)

    Nirudodhi, Sasidhar N; Sperry, Justin B; Rouse, Jason C; Carroll, James A


    A co-immobilized, dual protease column was developed and implemented to more efficiently digest IgG molecules for hydrogen/deuterium exchange mass spectrometry (HDX-MS). The low-pH proteolytic enzymes pepsin and type XIII protease from Aspergillus were packed into a single column to most effectively combine the complementary specificities. The method was optimized using an IgG2 monoclonal antibody as a substrate because they are known to be more difficult to efficiently digest. The general applicability of the method was then demonstrated using IgG1 and IgG4 mAbs. The dual protease column and optimized method yielded improved digestion efficiency, as measured by the increased number of smaller, overlapping peptides in comparison with pepsin or type XIII alone, making HDX-MS more suitable for measuring deuterium uptake with higher resolution. The enhanced digestion efficiency and increased sequence coverage enables the routine application of HDX-MS to all therapeutic IgG molecules for investigations of higher order structure, especially when posttranslational and storage-induced modifications are detected, providing further product understanding for structure-function relationships and ultimately ensuring clinical safety and efficacy. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. The anti-CD20 monoclonal antibody rituximab to treat acquired haemophilia A. (United States)

    D'arena, Giovanni; Grandone, Elvira; Di Minno, Matteo N D; Musto, Pellegrino; Di Minno, Giovanni


    Acquired haemophilia A (AHA) is a rare bleeding disorder caused by the development of specific autoantibodies against naturally occurring factor VIII (FVIII). Although about half of cases are idiopathic, AHA may be associated with several non-neoplastic conditions, autoimmune disorders, as well as haematological malignancies, such as chronic lymphocytic leukaemia and lymphoma. The long-term suppression of inhibitors is one of the mainstays of the treatment of AHA. Apart from standard immunosuppressive treatments, rituximab has been proven to be effective in AHA. The aim of this review is to provide a systematic description of data available in the literature on this topic. To do so, we performed a search using the indexed online database Medline/PubMed, without temporal limits, matching the words "rituximab" and "acquired h(a)emophilia". Furthermore, additional published studies were identified in the reference list of the publications found in PubMed. The review of the literature confirms that rituximab may be a safe and useful treatment for AHA. Although rituximab is not a standard therapy for AHA, it may be useful in resistant cases. However, the definitive place of this monoclonal antibody in the therapeutic strategy for AHA (first or second-line, alone or in combination with other drugs) remains to be determined more precisely and warrants further investigation.

  15. Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer (United States)

    Meyer, Saskia; Leusen, Jeanette HW; Boross, Peter


    The complement system is a powerful tool of the innate immune system to eradicate pathogens. Both in vitro and in vivo evidence indicates that therapeutic anti-tumor monoclonal antibodies (mAbs) can activate the complement system by the classical pathway. However, the contribution of complement to the efficacy of mAbs is still debated, mainly due to the lack of convincing data in patients. A beneficial role for complement during mAb therapy is supported by the fact that cancer cells often upregulate complement-regulatory proteins (CRPs). Polymorphisms in various CRPs were previously associated with complement-mediated disorders. In this review the role of complement in anti-tumor mAb therapy will be discussed with special emphasis on strategies aiming at modifying complement activity. In the future, clinical efficacy of mAbs with enhanced effector functions together with comprehensive analysis of polymorphisms in CRPs in mAb-treated patients will further clarify the role of complement in mAb therapy. PMID:25517299

  16. Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. (United States)

    Nandi, Somen; Kwong, Aaron T; Holtz, Barry R; Erwin, Robert L; Marcel, Sylvain; McDonald, Karen A

    Plant-based biomanufacturing of therapeutic proteins is a relatively new platform with a small number of commercial-scale facilities, but offers advantages of linear scalability, reduced upstream complexity, reduced time to market, and potentially lower capital and operating costs. In this study we present a detailed process simulation model for a large-scale new "greenfield" biomanufacturing facility that uses transient agroinfiltration of Nicotiana benthamiana plants grown hydroponically indoors under light-emitting diode lighting for the production of a monoclonal antibody. The model was used to evaluate the total capital investment, annual operating cost, and cost of goods sold as a function of mAb expression level in the plant (g mAb/kg fresh weight of the plant) and production capacity (kg mAb/year). For the Base Case design scenario (300 kg mAb/year, 1 g mAb/kg fresh weight, and 65% recovery in downstream processing), the model predicts a total capital investment of $122 million dollars and cost of goods sold of $121/g including depreciation. Compared with traditional biomanufacturing platforms that use mammalian cells grown in bioreactors, the model predicts significant reductions in capital investment and >50% reduction in cost of goods compared with published values at similar production scales. The simulation model can be modified or adapted by others to assess the profitability of alternative designs, implement different process assumptions, and help guide process development and optimization.

  17. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. (United States)

    Schähs, Matthias; Strasser, Richard; Stadlmann, Johannes; Kunert, Renate; Rademacher, Thomas; Steinkellner, Herta


    In recent years, plants have become an attractive alternative for the production of recombinant proteins. However, their inability to perform authentic mammalian N-glycosylation may cause limitations for the production of therapeutics. A major concern is the presence of beta1,2-xylose and core alpha1,3-fucose residues on complex N-linked glycans, as these N-glycan epitopes are immunogenic in mammals. In our attempts towards the humanization of plant N-glycans, we have generated an Arabidopsis thaliana knockout line that synthesizes complex N-glycans lacking immunogenic xylose and fucose epitopes. Here, we report the expression of a monoclonal antibody in these glycan-engineered plants that carry a homogeneous mammalian-like complex N-glycan pattern without beta1,2-xylose and core alpha1,3-fucose. Plant and Chinese hamster ovary (CHO)-derived immunoglobulins (IgGs) exhibited no differences in electrophoretic mobility and enzyme-linked immunosorbent specificity assays. Our results demonstrate the feasibility of a knockout strategy for N-glycan engineering of plants towards mammalian-like structures, thus providing a significant improvement in the use of plants as an expression platform.

  18. Identification and Characterization of Host Cell Protein Product-Associated Impurities in Monoclonal Antibody Bioprocessing (United States)

    Levy, Nicholas E.; Valente, Kristin N.; Choe, Leila H.; Lee, Kelvin H.; Lenhoff, Abraham M.


    Downstream processing of monoclonal antibodies (mAbs) has evolved to allow the specific process for a new product to be developed largely by empirical specialization of a platform process that enables removal of impurities of different kinds. A more complete characterization of impurities and the product itself would provide insights into the rational design of efficient downstream processes. This work identifies and characterizes host cell protein (HCP) product associated impurities, i.e., HCP species carried through the downstream processes via direct interactions with the mAb. Interactions between HCP and mAbs are characterized using cross interaction chromatography under solution conditions typical of those used in downstream processing. The interacting species are then identified by two dimensional gel electrophoresis and mass spectrometry. This methodology has been applied to identify product associated impurities in one particular purification step, namely protein A affinity chromatography, for four therapeutic mAbs as well as the Fab and Fc domains of one of these mAbs. The results show both the differences in HCP-mAb interactions among different mAbs, and the relative importance of product association compared to co-elution in protein A affinity chromatography. PMID:24254318

  19. B-cell display-based one-step method to generate chimeric human IgG monoclonal antibodies


    Lin, Waka; Kurosawa, Kohei; Murayama, Akiho; Kagaya, Eri; Ohta, Kunihiro


    The recent development of screening strategies based on the generation and display of large libraries of antibody fragments has allowed considerable advances for the in vitro isolation of monoclonal antibodies (mAbs). We previously developed a technology referred to as the ‘ADLib (Autonomously Diversifying Library) system’, which allows the rapid screening and isolation in vitro of antigen-specific monoclonal antibodies (mAbs) from libraries of immunoglobulin M (IgM) displayed by the chicken ...

  20. Different types of monoclonal antibodies to Ogawa-specific and group-specific antigens of Vibrio cholerae O1.


    Ito, T; Yokota, T


    Nine monoclonal antibodies to Ogawa-specific antigenic determinants of Vibrio cholerae O1 and seven monoclonal antibodies to the Ogawa-Inaba common antigenic determinants were obtained. Specificities and reactivities were examined by slide or microdilution agglutination methods, along with enzyme-linked immunosorbent assays and immunoblotting analysis. In both the Ogawa-specific and Ogawa-Inaba common groups, it was revealed that there were two types of antibodies. One type showed strong aggl...

  1. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor. (United States)

    Soos, M A; Siddle, K; Baron, M D; Heward, J M; Luzio, J P; Bellatin, J; Lennox, E S


    Monoclonal antibodies for the human insulin receptor were produced following immunization of mice with IM-9 lymphocytes and/or purified placental receptor. Four separate fusions yielded 28 antibodies, all of which reacted with receptor from human placenta, liver and IM-9 cells. Some antibodies cross-reacted to varying degrees with receptor from rabbit, cow, pig and sheep, but none reacted with rat receptor. At least 10 distinct epitopes were recognized as indicated by species specificity and binding competition experiments. All of these epitopes appeared to be on extracellular domains of the receptor as shown by binding of antibodies to intact cells. In some cases the epitopes were further localized to alpha or beta subunits by immunoblotting. Several antibodies inhibited binding of 125I-insulin to the receptor, some had no effect on binding, and others enhanced the binding of 125I-insulin. It is concluded that these antibodies will be valuable probes of receptor structure and function.

  2. Development and characterisation of monoclonal antibodies reactive with porcine CSF1R (CD115). (United States)

    Moffat, L; Rothwell, L; Garcia-Morales, C; Sauter, K A; Kapetanovic, R; Gow, D J; Hume, D A


    Macrophage colony-stimulating factor (CSF1) controls the proliferation and differentiation of cells of the mononuclear phagocyte system. CSF1, alongside a second ligand, interleukin-34 (IL-34), acts by binding to a cell surface receptor (CSF1R). We previously cloned and expressed pig CSF1 and IL-34. Here we produced a pig CSF1R-Ig+pFUSE Fc fusion protein and used it as an immunogen to produce three monoclonal antibodies (ROS8G11, ROS3A5 and ROS3B10) targeted against porcine CSF1R. Specific binding of each monoclonal antibody was confirmed by ELISA, Western blot, flow cytometry and immunocytochemistry. The antibodies did not block CSF1 signalling. The surface expression of CSF1R in pig peripheral blood was restricted to CD14-positive monocytes and was also detected on lung macrophages. These antibodies provided an opportunity to investigate the increase of available CSF1R during pig BMDM differentiation. The new monoclonal antibodies provide useful reagents to support the study of monocyte and macrophage biology in the pig. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  3. Generation and Characterization of Anti-CD34 Monoclonal Antibodies that React with Hematopoietic Stem Cells. (United States)

    Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Movassaghpour, Aliakbar; Abdolalizadeh, Jalal


    CD34 is a type I membrane protein with a molecular mass of approximately 110 kDa. This antigen is associated with human hematopoietic progenitor cells and is a differentiation stage-specific leukocyte antigen. In this study we have generated and characterized monoclonal antibodies (mAbs) directed against a CD34 marker. Mice were immunized with two keyhole lympet hemocyanin (KLH)-conjugated CD34 peptides. Fused cells were grown in hypoxanthine, aminopterine and thymidine (HAT) selective medium and cloned by the limiting dilution (L.D) method. Several monoclones were isolated by three rounds of limited dilutions. From these, we chose stable clones that presented sustained antibody production for subsequent characterization. Antibodies were tested for their reactivity and specificity to recognize the CD34 peptides and further screened by enzyme-linked immunosorbent assay (ELISA) and Western blotting analyses. One of the mAbs (3D5) was strongly reactive against the CD34 peptide and with native CD34 from human umbilical cord blood cells (UCB) in ELISA and Western blotting analyses. The results have shown that this antibody is highly specific and functional in biomedical applications such as ELISA and Western blot assays. This monoclonal antibodies (mAb) can be a useful tool for isolation and purification of human hematopoietic stem cells (HSCs).

  4. Development of a monoclonal antibody against glucosyltransferase D of Streptococcus mutans GS 5. (United States)

    Kim, Mi-Ah; Yang, Yeon-Mi; So, Yu-Ryeo; Ko, Young-Han; Lim, Su-Min; Lee, Kyung-Yeol; Kim, Jae-Gon


    Glucosyltransferases GtfB, GtfC, and GtfD of Streptococcus mutans are virulent factors involved in dental caries. Consequently, they are considered to be target molecules in the development of vaccines against dental caries. Among them, GtfD plays a significant role in the sucrose-dependent cellular adhesion of S. mutans, and a number of studies have suggested that the N-terminus of GtfD is an important part of its role in enzymatic activity. In this study, we generated monoclonal antibodies against the N-terminus of GtfD (anti-GtfDN antibody) in an initial attempt to investigate its preventive efficacy against dental caries. To obtain anti-GtfDN monoclonal antibodies, the gene for the N-terminus of gtfD (2 kb) was cloned into an Escherichia coli expression vector, pQE30; then the expressed protein (about 75 kDa) was purified. The purified GtfDN protein was injected into BALB/c mice, and hybridoma clones were established. We obtained three hybridoma clones (HDN9, HDN11, and HDN28) capable of producing anti-GtfDN antibodies. Their binding specificity was characterized by ELISA, dot blot, and Western blot analysis after purification using affinity column chromatography. The isotype of the monoclonal antibodies was confirmed to be IgG2a.

  5. Development of rabbit monoclonal antibodies for detection of alpha-dystroglycan in normal and dystrophic tissue.

    Directory of Open Access Journals (Sweden)

    Marisa J Fortunato

    Full Text Available Alpha-dystroglycan requires a rare O-mannose glycan modification to form its binding epitope for extracellular matrix proteins such as laminin. This functional glycan is disrupted in a cohort of muscular dystrophies, the secondary dystroglycanopathies, and is abnormal in some metastatic cancers. The most commonly used reagent for detection of alpha-dystroglycan is mouse monoclonal antibody IIH6, but it requires the functional O-mannose structure for recognition. Therefore, the ability to detect alpha-dystroglycan protein in disease states where it lacks the full O-mannose glycan has been limited. To overcome this hurdle, rabbit monoclonal antibodies against the alpha-dystroglycan C-terminus were generated. The new antibodies, named 5-2, 29-5, and 45-3, detect alpha-dystroglycan from mouse, rat and pig skeletal muscle by Western blot and immunofluorescence. In a mouse model of fukutin-deficient dystroglycanopathy, all antibodies detected low molecular weight alpha-dystroglycan in disease samples demonstrating a loss of functional glycosylation. Alternately, in a porcine model of Becker muscular dystrophy, relative abundance of alpha-dystroglycan was decreased, consistent with a reduction in expression of the dystrophin-glycoprotein complex in affected muscle. Therefore, these new rabbit monoclonal antibodies are suitable reagents for alpha-dystroglycan core protein detection and will enhance dystroglycan-related studies.

  6. Analytical protein a chromatography as a quantitative tool for the screening of methionine oxidation in monoclonal antibodies. (United States)

    Loew, Caroline; Knoblich, Constanze; Fichtl, Jürgen; Alt, Nadja; Diepold, Katharina; Bulau, Patrick; Goldbach, Pierre; Adler, Michael; Mahler, Hanns-Christian; Grauschopf, Ulla


    The presence of oxidized methionine residues in therapeutic monoclonal antibodies can potentially impact drug efficacy, safety, as well as antibody half-life in vivo. Therefore, methionine oxidation of antibodies is a strong focus during pharmaceutical development and a well-known degradation pathway. The monitoring of methionine oxidation is currently routinely performed by peptide mapping/liquid chromatography-mass spectrometry techniques, which are laborious and time consuming. We have established analytical protein A chromatography as a method of choice for fast and quantitative screening of total Fc methionine oxidation during formulation and process development. The principle of this method relies on the lower binding affinity of protein A for immunoglobulin G-Fc domains containing oxidized methionines, compared with nonoxidized Fc domains. Our data reveal that highly conserved Fc methionines situated close to the binding site to protein A can serve as marker for the oxidation of other surface-exposed methionine residues. In case of poor separation of oxidized species by protein A chromatography, analytical protein G chromatography is proposed as alternative. We demonstrate that analytical protein A chromatography, and alternatively protein G chromatography, is a valuable tool for the screening of methionine oxidation in therapeutic antibodies during formulation and process development. Copyright © 2012 Wiley Periodicals, Inc.

  7. Understanding Transcriptional Enhancement in Monoclonal Antibody-Producing Chinese Hamster Ovary Cells (United States)

    Nicoletti, Sarah E.

    With the demand for monoclonal antibody (mAB) therapeutics continually increasing, the need to better understand what makes a high productivity clone has gained substantial interest. Monoclonal antibody producing Chinese hamster ovary (CHO) cells with different productivities were provided by a biopharmaceutical company for investigation. Gene copy numbers, mRNA levels, and mAb productivities were previously determined for two low producing clones and their amplified progeny. These results showed an increase in mRNA copy number in amplified clones, which correlated to the observed increases in specific productivity of these clones. The presence of multiple copies of mRNA per one copy of DNA in the higher productivity clones has been coined as transcriptional enhancement. The methylation status of the CMV promoter as well as transcription factor/promoter interactions were evaluated to determine the cause of transcriptional enhancement. Methylation analysis via bisulfite sequencing revealed no significant difference in overall methylation status of the CMV promoter. These data did, however, reveal the possibility of differential interactions of transcription factors between the high and low productivity cell clones. This finding was further supported by chromatin immunoprecipitations previously performed in the lab, as well as literature studies. Transcription activator-like effector (TALE) binding proteins were constructed and utilized to selectively immunoprecipitate the CMV promoter along with its associated transcription factors in the different CHO cell clones. Cells were transfected with the TALE proteins, harvested and subjected to a ChIP-like procedure. Results obtained from the TALE ChIP demonstrated the lack of binding of the protein to the promoter and the need to redesign the TALE. Overall, results obtained from this study were unable to give a clear indication as to the causes of transcriptional enhancement in the amplified CHO cell clones. Further

  8. HDAC6 inhibition upregulates CD20 levels and increases the efficacy of anti-CD20 monoclonal antibodies. (United States)

    Bobrowicz, Malgorzata; Dwojak, Michal; Pyrzynska, Beata; Stachura, Joanna; Muchowicz, Angelika; Berthel, Elise; Dalla-Venezia, Nicole; Kozikowski, Mieszko; Siernicka, Marta; Miazek, Nina; Zapala, Piotr; Domagala, Antoni; Bojarczuk, Kamil; Malenda, Agata; Barankiewicz, Joanna; Graczyk-Jarzynka, Agnieszka; Zagozdzon, Agnieszka; Gabrysiak, Magdalena; Diaz, Jean-Jacques; Karp, Marta; Lech-Maranda, Ewa; Firczuk, Malgorzata; Giannopoulos, Krzysztof; Efremov, Dimitar G; Laurenti, Luca; Baatout, Dunja; Frenzel, Lukas; Malinowska, Agata; Slabicki, Mikolaj; Zenz, Thorsten; Zerrouqi, Abdessamad; Golab, Jakub; Winiarska, Magdalena


    Downregulation of CD20, a molecular target for monoclonal antibodies (mAbs), is a clinical problem leading to decreased efficacy of anti-CD20-based therapeutic regimens. The epigenetic modulation of CD20 coding gene (MS4A1) has been proposed as a mechanism for the reduced therapeutic efficacy of anti-CD20 antibodies and confirmed with nonselective histone deacetylase inhibitors (HDACis). Because the use of pan-HDACis is associated with substantial adverse effects, the identification of particular HDAC isoforms involved in CD20 regulation seems to be of paramount importance. In this study, we demonstrate for the first time the role of HDAC6 in the regulation of CD20 levels. We show that inhibition of HDAC6 activity significantly increases CD20 levels in established B-cell tumor cell lines and primary malignant cells. Using pharmacologic and genetic approaches, we confirm that HDAC6 inhibition augments in vitro efficacy of anti-CD20 mAbs and improves survival of mice treated with rituximab. Mechanistically, we demonstrate that HDAC6 influences synthesis of CD20 protein independently of the regulation of MS4A1 transcription. We further demonstrate that translation of CD20 mRNA is significantly enhanced after HDAC6 inhibition, as shown by the increase of CD20 mRNA within the polysomal fraction, indicating a new role of HDAC6 in the posttranscriptional mechanism of CD20 regulation. Collectively, our findings suggest HDAC6 inhibition is a rational therapeutic strategy to be implemented in combination therapies with anti-CD20 monoclonal antibodies and open up novel avenues for the clinical use of HDAC6 inhibitors. © 2017 by The American Society of Hematology.

  9. Neutralizing monoclonal antibodies recognize antigenic variants among isolates of infectious hematopoietic necrosis virus (United States)

    Winton, J.R.; Arakawa, C.N.; Lannan, C.N.; Fryer, J.L.


    eutralizing monoclonal antibodies were developed against strains of infectious hematopoietic necrosis virus (IHNV) from steelhead trout Salmo gairdneri in the Deschutes River of Oregon, chinook salmon Oncorhynchus tshawytscha in the Sacramento River of California, and rainbow trout Salmo gairdneri reared in the Hagerman Valley of Idaho, USA. These antibodies were tested for neutralization of 12 IHNV isolates obtained from salmonids in Japan, Alaska, Washington, Oregon, California, and Idaho. The antibodies recognized antigenic variants among the isolates and could be used to separate the viruses into 4 groups. The members of each group tended to be related by geographic area rather than by source host species, virulence, or date of isolation.

  10. Monoclonal antibodies for the separate detection of halodeoxyuridines and method for their use (United States)

    Vanderlaan, M.; Watkins, B.E.; Stanker, L.H.


    Monoclonal antibodies are described which have specific affinities for halogenated nucleoside analogs and are preferentially selective for one particular halogen. Such antibodies, when incorporated into immunochemical reagents, may be used to identify and independently quantify the cell division character of more than one population or subpopulation in flow cytometric measurements. Independent assessment of division activity in cell sub-populations facilitates selection of appropriate time and dose for administration of anti-proliferative agents. The hybridomas which secrete halogen selective antibodies and the method of making them are described. 14 figures.

  11. Monoclonal antibodies produced against antigenic determinants present in complex mixtures of proteins. (United States)

    King, S W; Morrow, K J


    This overview provides information concerning the production of monoclonal antibodies (MAbs) against specific antigenic determinants present in complex mixtures of proteins. We review five specific techniques for the production of these antibodies (Abs): (a) So-called "shotgun," non-selective approach; (b) cascade procedure; (c) lymphocyte "panning"; (d) cyclophosphamide elimination of unwanted Ab producers; and finally (e) use of polyclonal antisera to extinguish unwanted antibody production. We discuss the relative advantages and disadvantages of these various procedures, and suggest alternative strategies by which specific MAbs might be generated.

  12. Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Aβ oligomers

    Directory of Open Access Journals (Sweden)

    Yeung Stephen


    Full Text Available Abstract Background Age-related neurodegenerative diseases share a number of important pathological features, such as accumulation of misfolded proteins as amyloid oligomers and fibrils. Recent evidence suggests that soluble amyloid oligomers and not the insoluble amyloid fibrils may represent the primary pathological species of protein aggregates. Results We have produced several monoclonal antibodies that specifically recognize prefibrillar oligomers and do not recognize amyloid fibrils, monomer or natively folded proteins. Like the polyclonal antisera, the individual monoclonals recognize generic epitopes that do not depend on a specific linear amino acid sequence, but they display distinct preferences for different subsets of prefibrillar oligomers. Immunological analysis of a number of different prefibrillar Aβ oligomer preparations show that structural polymorphisms exist in Aβ prefibrillar oligomers that can be distinguished on the basis of their reactivity with monoclonal antibodies. Western blot analysis demonstrates that the conformers defined by the monoclonal antibodies have distinct size distributions, indicating that oligomer structure varies with size. The different conformational types of Aβ prefibrillar oligomers can serve as they serve as templates for monomer addition, indicating that they seed the conversion of Aβ monomer into more prefibrillar oligomers of the same type. Conclusions These results indicate that distinct structural variants or conformers of prefibrillar Aβ oligomers exist that are capable of seeding their own replication. These conformers may be analogous to different strains of prions.

  13. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. (United States)

    Padhi, Desmond; Jang, Graham; Stouch, Brian; Fang, Liang; Posvar, Edward


    Sclerostin, an osteocyte-secreted protein, negatively regulates osteoblasts and inhibits bone formation. In this first-in-human study, a sclerostin monoclonal antibody (AMG 785) was administered to healthy men and postmenopausal women. In this phase I, randomized, double-blind, placebo-controlled, ascending, single-dose study, 72 healthy subjects received AMG 785 or placebo (3:1) subcutaneously (0.1, 0.3, 1, 3, 5, or 10 mg/kg) or intravenously (1 or 5 mg/kg). Depending on dose, subjects were followed for up to 85 days. The effects of AMG 785 on safety and tolerability (primary objectives) and pharmacokinetics, bone turnover markers, and bone mineral density (secondary objectives) were evaluated. AMG 785 generally was well tolerated. One treatment-related serious adverse event of nonspecific hepatitis was reported and was resolved. No deaths or study discontinuations occurred. AMG 785 pharmacokinetics were nonlinear with dose. Dose-related increases in the bone-formation markers procollagen type 1 N-propeptide (P1NP), bone-specific alkaline phosphatase (BAP), and osteocalcin were observed, along with a dose-related decrease in the bone-resorption marker serum C-telopeptide (sCTx), resulting in a large anabolic window. In addition, statistically significant increases in bone mineral density of up to 5.3% at the lumbar spine and 2.8% at the total hip compared with placebo were observed on day 85. Six subjects in the higher-dose groups developed anti-AMG 785 antibodies, 2 of which were neutralizing, with no discernible effect on the pharmacokinetics or pharmacodynamics. In summary, single doses of AMG 785 generally were well tolerated, and the data support further clinical investigation of sclerostin inhibition as a potential therapeutic strategy for conditions that could benefit from increased bone formation. © 2011 American Society for Bone and Mineral Research.

  14. Molecular mechanism for the action of the anti-CD44 monoclonal antibody MEM-85. (United States)

    Škerlová, Jana; Král, Vlastimil; Kachala, Michael; Fábry, Milan; Bumba, Ladislav; Svergun, Dmitri I; Tošner, Zdeněk; Veverka, Václav; Řezáčová, Pavlína


    The hyaluronate receptor CD44 plays role in cell adhesion and migration and is involved in tumor metastasis. The extracellular domain of CD44 comprises the hyaluronate-binding domain (HABD) and the membrane-proximal stem region; the short intracellular portion interacts with adaptor proteins and triggers signaling pathways. Binding of hyaluronate to CD44 HABD induces an allosteric conformational change, which results in CD44 shedding. A poorly characterized epitope in human CD44 HABD is recognized by the murine monoclonal antibody MEM-85, which cross-blocks hyaluronate binding to CD44 and also induces CD44 shedding. MEM-85 is of therapeutic interest, as it inhibits growth of lung cancer cells in murine models. In this work, we employed a combination of biophysical methods to determine the MEM-85 binding epitope in CD44 HABD and to provide detailed insight into the mechanism of MEM-85 action. In particular, we constructed a single-chain variable fragment (scFv) of MEM-85 as a tool for detailed characterization of the CD44 HABD-antibody complex and identified residues within CD44 HABD involved in the interaction with scFv MEM-85 by NMR spectroscopy and mutational analysis. In addition, we built a rigid body model of the CD44 HABD-scFv MEM-85 complex using a low-resolution structure obtained by small-angle X-ray scattering. The MEM-85 epitope is situated in the C-terminal part of CD44 HABD, rather than the hyaluronate-binding groove, and the binding of MEM-85 induces a structural reorganization similar to that induced by hyaluronate. Therefore, the mechanism of MEM-85 cross-blocking of hyaluronate binding is likely of an allosteric, relay-like nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Evaluation of the aggregation states of monoclonal antibodies by diverse and complementary methods. (United States)

    Yoshino, Tetsuya; Ishikawa, Tomoyoshi; Ishihara, Takashi; Takeuchi, Yoshimi; Yoshikawa, Hitomi; Yoshida, Hideaki; Yoshida, Hitoshi; Wakamatsu, Kaori


    Therapeutic monoclonal antibodies (MAbs) with high specificity and fewer adverse effects are becoming widely used for the treatment of various diseases. MAbs need to be stored and administered at high concentrations in solution, the conditions under which MAbs may aggregate. As aggregated MAbs compromise their safety and efficacy, aggregation should be prevented; thus, it is important to analyze the aggregation states of MAbs in detail. We obtained 2 MAbs against dinitrophenol (DNP) that exhibited different aggregation properties: anti-DNP1 exhibited a much higher aggregate content (dimer or trimer) than anti-DNP2 when analyzed by size-exclusion chromatography (SEC). As anti-DNP1 had a longer complementarity-determining region 3 (CDR3) light chain than anti-DNP2 by 2 amino acid residues, we hypothesized that the increased aggregation of DNP1 was due to these extra residues; therefore, we prepared mutant antibodies with shorter CDR3s to compare their aggregation properties. Anti-DNP1-ΔEI, with the same CDR3 length as anti-DNP2, exhibited no aggregates as expected. Anti-DNP1-ΔI, with 1 additional residue, exhibited a smaller peak than wild-type (WT) in SEC, whereas this mutant exhibited stronger thioflavin T fluorescence than WT, which is indicative of amyloid formation. In addition, the anti-DNP1-ΔI solution (but not others) became opalescent at 4°C and exhibited large visible particles, which are undetectable by SEC. The fragment antigen-binding region of this mutant was found to have lower thermal stability than the others by differential scanning calorimetry. These data suggest that diverse analytical methods should be applied to evaluate MAb aggregation, in addition to the commonly used SEC.

  16. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies. (United States)

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon


    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity.

  17. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies (United States)

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon


    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  18. Investigation of the Influence of Protein-Losing Enteropathy on Monoclonal Antibody Pharmacokinetics in Mice. (United States)

    Yang, Yujie; Li, Tommy R; Balthasar, Joseph P


    Protein losing enteropathy (PLE), which is characterized by substantial loss of plasma proteins into the gastrointestinal (GI) tract, is a complication of a variety of GI diseases, including inflammatory bowel disease. Clinical studies have found that the clearance of monoclonal antibodies (mAb) is often increased in subjects with diseases known to cause PLE; however, direct relationships between PLE and mAb pharmacokinetics have not been demonstrated. This study employed a murine model of colitis to examine the influence of PLE on mAb pharmacokinetics. Mice were given dextran sodium sulfate (DSS, 2% w/v) supplemented tap water as drinking source for 6 days to induce colitis and PLE. Mice were then intravenously injected with 8C2, a murine IgG1 mAb. 8C2 plasma concentrations were measured up to 14 days post injection. Fecal alpha-1-antitrypsin (A1AT) clearance was measured as biomarker for PLE. DSS-treated mice developed PLE of clinically relevant severity. They also showed a transient increase in 8C2 plasma clearance and a decrease in 8C2 plasma exposure. The area under the 8C2 plasma concentration-time curve for the length of the study (AUC0-14d) reduced from 1368 ± 255 to 594 ± 224 day μg/ml following DSS treatment (p = 0.001). A quantitative relationship between A1AT clearance and 8C2 clearance was obtained via population pharmacokinetic modeling. DSS treatment substantially increased 8C2 clearance and reduced 8C2 exposure. Increased mAb plasma clearance was highly correlated with A1AT fecal clearance, suggesting the possible utility of A1AT fecal clearance as a mechanistic biomarker to predict the pharmacokinetics of therapeutic antibodies.

  19. Epitope dampening monotypic measles virus hemagglutinin glycoprotein results in resistance to cocktail of monoclonal antibodies. (United States)

    Lech, Patrycja J; Tobin, Gregory J; Bushnell, Ruth; Gutschenritter, Emily; Pham, Linh D; Nace, Rebecca; Verhoeyen, Els; Cosset, François-Loïc; Muller, Claude P; Russell, Stephen J; Nara, Peter L


    The measles virus (MV) is serologically monotypic. Life-long immunity is conferred by a single attack of measles or following vaccination with the MV vaccine. This is contrary to viruses such as influenza, which readily develop resistance to the immune system and recur. A better understanding of factors that restrain MV to one serotype may allow us to predict if MV will remain monotypic in the future and influence the design of novel MV vaccines and therapeutics. MV hemagglutinin (H) glycoprotein, binds to cellular receptors and subsequently triggers the fusion (F) glycoprotein to fuse the virus into the cell. H is also the major target for neutralizing antibodies. To explore if MV remains monotypic due to a lack of plasticity of the H glycoprotein, we used the technology of Immune Dampening to generate viruses with rationally designed N-linked glycosylation sites and mutations in different epitopes and screened for viruses that escaped monoclonal antibodies (mAbs). We then combined rationally designed mutations with naturally selected mutations to generate a virus resistant to a cocktail of neutralizing mAbs targeting four different epitopes simultaneously. Two epitopes were protected by engineered N-linked glycosylations and two epitopes acquired escape mutations via two consecutive rounds of artificial selection in the presence of mAbs. Three of these epitopes were targeted by mAbs known to interfere with receptor binding. Results demonstrate that, within the epitopes analyzed, H can tolerate mutations in different residues and additional N-linked glycosylations to escape mAbs. Understanding the degree of change that H can tolerate is important as we follow its evolution in a host whose immunity is vaccine induced by genotype A strains instead of multiple genetically distinct wild-type MVs.

  20. Development of monoclonal antibodies and serological assays specific for Barley yellow dwarf virus GAV strain. (United States)

    Li, Na; Chen, Zhe; Liu, Yan; Liu, Yong; Zhou, Xueping; Wu, Jianxiang


    Barley yellow dwarf virus (BYDV) is one of the most devastating plant viruses and belongs to a ubiquitous plant virus group. In China, four BYDV strains (GPV, GAV, PAV and RMV) have been identified based on their specific aphid vectors and serological properties. Among the four identified strains, the GAV is the most common BYDV strain in China. To diagnose, forecast of BYDV GAV, two reliable serological assays for BYDV GAV detection were established. We purified virion from a confirmed BYDV GAV source and used it as the immunogen to produce monoclonal antibodies against the virus. Using the hybridoma technology, three highly specific murine monoclonal antibodies were produced and two serological assays [antigen-coated-plate enzyme-linked immunosorbent assay (ACP-ELISA) and dot enzyme-linked immunosorbent assay (dot-ELISA)] were established for the BYDV GAV detection. All three monoclonal antibodies reacted strongly and specifically with the BYDV GAV strain in crude leaf extracts. Titers of the monoclonal antibodies in ascitic fluids were up to 10(-7) by indirect-ELISA. These three monoclonal antibodies (18A1, 18A9 and 12A11) all belonged to the isotype IgG1, kappa light chain. The highest dilution points for the three antibodies during the ACP-ELISA using infected crude leaf extracts were 1:163,840, 1:81,920 and 1:81,920 (w/v, g · mL(-1)), respectively. Result of dot-ELISA showed a successful detection of BYDV GAV strain in 1:5,120 (w/v, g · mL(-1)) diluted wheat leaf crude extracts. Analysis of 22 field wheat leaf samples and 33 aphid samples from the Shaanxi Province in China, using the two newly developed assays confirmed the presence of BYDV GAV in about 80 % of the wheat samples and 18 % of the aphid samples. All three monoclonal antibodies are highly sensitive and specific to the BYDV GAV. The two newly developed serological assays are simple and effective. These two assays, particularly the dot-ELISA, are useful for high throughput detection of