WorldWideScience

Sample records for theragnostic hypoxia-based dose

  1. The 68Ga/177Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUVmax values and absorbed dose estimates.

    Science.gov (United States)

    Scarpa, Lorenza; Buxbaum, Sabine; Kendler, Dorota; Fink, Katharina; Bektic, Jasmin; Gruber, Leonhard; Decristoforo, Clemens; Uprimny, Christian; Lukas, Peter; Horninger, Wolfgang; Virgolini, Irene

    2017-05-01

    A targeted theragnostic approach based on increased expression of prostate-specific membrane antigen (PSMA) on PC cells is an attractive treatment option for patients with metastatic castration-resistant prostate cancer (mCRPC). Ten consecutive mCRPC patients were selected for 177Lu-PSMA617 therapy on the basis of PSMA-targeted 68Ga-PSMA-HBED-CC PET/CT diagnosis showing extensive and progressive tumour load. Following dosimetry along with the first therapy cycle restaging (68Ga-PSMA-HBED-CC and 18F-NaF PET/CT) was performed after 2 and 3 therapy cycles (each 6.1 ± 0.3 GBq, range 5.4-6.5 GBq) given intravenously over 30 minutes, 9 ± 1 weeks apart. PET/CT scans were compared to 177Lu-PSMA617 24-hour whole-body scans and contrast-enhanced dual-phase CT. Detailed comparison of SUVmax values and absorbed tumour doses was performed. 177Lu-PSMA617 dosimetry indicated high tumour doses for skeletal (3.4 ± 1.9 Gy/GBq; range 1.1-7.2 Gy/GBq), lymph node (2.6 ± 0.4 Gy/GBq; range 2.3-2.9 Gy/GBq) as well as liver (2.4 ± 0.8 Gy/GBq; range 1.7-3.3 Gy/GBq) metastases whereas the dose for tissues/organs was acceptable in all patients for an intention-to-treat activity of 18 ± 0.3 GBq. Three patients showed partial remission, three mixed response, one stable and three progressive disease. Decreased 177Lu-PSMA617 and 68Ga-PSMA-HBED-CC uptake (mean SUVmax values 20.2 before and 15.0 after 2 cycles and 11.5 after 3 cycles, p < 0.05) was found in 41/54 skeletal lesions, 12/13 lymph node metastases, 3/5 visceral metastases and 4/4 primary PC lesions. Due to substantial individual variance, dosimetry is mandatory for a patient-specific approach following 177Lu-PSMA617 therapy. Higher activities and/or shorter treatment intervals should be applied in a larger prospective study.

  2. The {sup 68}Ga/{sup 177}Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUV{sub max} values and absorbed dose estimates

    Energy Technology Data Exchange (ETDEWEB)

    Scarpa, Lorenza; Buxbaum, Sabine; Kendler, Dorota; Decristoforo, Clemens; Uprimny, Christian; Virgolini, Irene [Medical University Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Fink, Katharina [Medical University Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Medical University of Innsbruck, Department of Radiotherapy / Radiation Oncology, Innsbruck (Austria); Bektic, Jasmin; Horninger, Wolfgang [Medical University of Innsbruck, Department of Urology, Innsbruck (Austria); Gruber, Leonhard [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Lukas, Peter [Medical University of Innsbruck, Department of Radiotherapy / Radiation Oncology, Innsbruck (Austria)

    2017-05-15

    A targeted theragnostic approach based on increased expression of prostate-specific membrane antigen (PSMA) on PC cells is an attractive treatment option for patients with metastatic castration-resistant prostate cancer (mCRPC). Ten consecutive mCRPC patients were selected for {sup 177}Lu-PSMA617 therapy on the basis of PSMA-targeted {sup 68}Ga-PSMA-HBED-CC PET/CT diagnosis showing extensive and progressive tumour load. Following dosimetry along with the first therapy cycle restaging ({sup 68}Ga-PSMA-HBED-CC and {sup 18}F-NaF PET/CT) was performed after 2 and 3 therapy cycles (each 6.1 ± 0.3 GBq, range 5.4-6.5 GBq) given intravenously over 30 minutes, 9 ± 1 weeks apart. PET/CT scans were compared to {sup 177}Lu-PSMA617 24-hour whole-body scans and contrast-enhanced dual-phase CT. Detailed comparison of SUVmax values and absorbed tumour doses was performed. {sup 177}Lu-PSMA617 dosimetry indicated high tumour doses for skeletal (3.4 ± 1.9 Gy/GBq; range 1.1-7.2 Gy/GBq), lymph node (2.6 ± 0.4 Gy/GBq; range 2.3-2.9 Gy/GBq) as well as liver (2.4 ± 0.8 Gy/GBq; range 1.7-3.3 Gy/GBq) metastases whereas the dose for tissues/organs was acceptable in all patients for an intention-to-treat activity of 18 ± 0.3 GBq. Three patients showed partial remission, three mixed response, one stable and three progressive disease. Decreased {sup 177}Lu-PSMA617 and {sup 68}Ga-PSMA-HBED-CC uptake (mean SUVmax values 20.2 before and 15.0 after 2 cycles and 11.5 after 3 cycles, p < 0.05) was found in 41/54 skeletal lesions, 12/13 lymph node metastases, 3/5 visceral metastases and 4/4 primary PC lesions. Due to substantial individual variance, dosimetry is mandatory for a patient-specific approach following {sup 177}Lu-PSMA617 therapy. Higher activities and/or shorter treatment intervals should be applied in a larger prospective study. (orig.)

  3. Nanoparticles in oncology: the new theragnostic molecules.

    Science.gov (United States)

    Allegra, Alessandro; Penna, Giuseppa; Alonci, Andrea; Rizzo, Vincenzo; Russo, Sabina; Musolino, Caterina

    2011-09-01

    Cancer nanotherapeutics have shown promise in resolving some of the limitations of conventional drug delivery systems such as nonspecific biodistribution and targeting, lack of water solubility, low therapeutic indices, and poor oral bioavailability. Moreover, cancer nanotechnology has the potential of improving current approaches to cancer detection, diagnosis, and imaging. Recently, nanotechnology and molecular imaging have been combined to generate nanoparticles that simultaneously facilitate cancer therapy and diagnosis, the so called theragnostic nanoparticles. The aim of our review is to highlight recent developments within the context of the current knowledge of nanotechnology, to recall the experimental steps that have brought to the clinical development and application of nanoparticles, and explain the biological rationale for their use with oncologic patients. In particular, we summarize recent findings with respect to possible new applications for therapy and diagnosis, and their specific properties. Moreover, we report the more recent prospects in gene therapy, the possibility of using new drug delivery methods, the action of nanoparticles on the immune system and apoptosis, and the concrete possibility of detecting and characterizing circulating tumor cells or of developing new technologies in drug discovery.

  4. What the alcohol doctor ordered from the neuroscientist: Theragnostic biomarkers for personalized treatments.

    Science.gov (United States)

    Heilig, Markus; Leggio, Lorenzo

    2016-01-01

    Major advances in the neuroscientific understanding of alcohol actions have so far not translated into measurably improved clinical outcomes in alcoholism. Future treatment development should be guided by accumulating insights into a diverse range of biological mechanisms that maintain the pathophysiology of alcoholism in different individuals, but also at different points in time within any given patient. This biological diversity calls for the development and use of biological markers predictive of treatment response in the individual case, at the specific stage of the disease, here called "theragnostics." As novel therapeutic mechanisms and molecules targeting these mechanisms are discovered, the use of theragnostics will be critical for their successful clinical development, as well as their optimal subsequent clinical use. During clinical development, lest theragnostics are utilized, efficacy signals will risk remaining undetected when diluted in study populations that are not appropriately selected. Similarly, for treatments that reach approval, clinical acceptance, and optimal use will require the proper identification of responsive patients. Here, we discuss desirable properties of theragnostic biomarkers in alcohol addiction using two examples: alcohol-induced activation of brain reward circuitry as assessed using positron emission tomography of functional magnetic resonance imaging; and central glutamate tone, as assessed using MR spectroscopy. © 2016 Elsevier B.V. All rights reserved.

  5. NeoBOMB1, a GRPR-Antagonist for Breast Cancer Theragnostics: First Results of a Preclinical Study with [67Ga]NeoBOMB1 in T-47D Cells and Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Aikaterini Kaloudi

    2017-11-01

    Full Text Available Background: The GRPR-antagonist-based radioligands [67/68Ga/111In/177Lu]NeoBOMB1 have shown excellent theragnostic profiles in preclinical prostate cancer models, while [68Ga]NeoBOMB1 effectively visualized prostate cancer lesions in patients. We were further interested to explore the theragnostic potential of NeoBOMB1 in GRPR-positive mammary carcinoma, by first studying [67Ga]NeoBOMB1 in breast cancer models; Methods: We investigated the profile of [67Ga]NeoBOMB1, a [68Ga]NeoBOMB1 surrogate, in GRPR-expressing T-47D cells and animal models; Results: NeoBOMB1 (IC50s of 2.2 ± 0.2 nM and [natGa]NeoBOMB1 (IC50s of 2.5 ± 0.2 nM exhibited high affinity for the GRPR. At 37 °C [67Ga]NeoBOMB1 strongly bound to the T-47D cell-membrane (45.8 ± 0.4% at 2 h, internalizing poorly, as was expected for a radioantagonist. [67Ga]NeoBOMB1 was detected >90% intact in peripheral mouse blood at 30 min pi. In mice bearing T-47D xenografts, [67Ga]NeoBOMB1 specifically localized in the tumor (8.68 ± 2.9% ID/g vs. 0.6 ± 0.1% ID/g during GRPR-blockade at 4 h pi. The unfavorably high pancreatic uptake could be considerably reduced (206.29 ± 17.35% ID/g to 42.46 ± 1.31% ID/g at 4 h pi by increasing the NeoBOMB1 dose from 10 pmol to 200 pmol, whereas tumor uptake remained unaffected. Notably, tumor values did not decline from 1 to 24 h pi; Conclusions: [67Ga]NeoBOMB1 can successfully target GRPR-positive breast cancer in animals with excellent prospects for clinical translation.

  6. Gas-filled phospholipid nanoparticles conjugated with gadolinium play a role as a potential theragnostics for MR-guided HIFU ablation.

    Directory of Open Access Journals (Sweden)

    Se-Young Choi

    Full Text Available To develop a long-circulating theragnostics, meaning therapeutics and diagnostics for MR-guided HIFU ablation, we designed and prepared Gd-C(5F(12-phospholipid nanobubbles (PLNs 30-100 nm in diameter. The biochemical and physical characterization of Gd-C(5F(12-PLNs were performed. Since Gd-C(5F(12-PLN-50 (Φ = 50 nm and Gd-C(5F(12-PLN-100 (Φ = 100 nm enhanced the hyperthermal effect of HIFU size- and concentration-dependently in a tissue-mimicking phantom, its circulation, distribution, tumor accumulation and tumor ablation were examined in tumor-bearing mice. The plasma-half life of Gd-C(5F(12-PLNs was longer than 1.5 hrs. Gd-C(5F(12-PLNs mainly accumulated in the liver and the spleen, suggesting that they are slowly secreted through the hepatobiliary pathway. Monitored by the T1 signal intensity of MR, Gd-C(5F(12-PLNs accumulated in tumor tissues for 8 hours in mice. HIFU with Gd-C(5F(12-PLN-100 showed the increased tumor ablation area as compared with HIFU alone. The results suggest that Gd-C(5F(12-PLNs exhibit a potential theragnostics for MR-guided HIFU ablation.

  7. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle.

    Science.gov (United States)

    Kim, Jin Kyeoung; Choi, Kyung-Ju; Lee, Minhyung; Jo, Mi-hee; Kim, Soonhag

    2012-01-01

    MicroRNAs (miRNA, miR) have been reported as cancer biomarkers that regulate tumor suppressor genes. Hence, simultaneous detecting and inhibiting of miRNA function will be useful as a cancer theragnostics probe to minimize side effects and invasiveness. In this study, we developed a cancer-targeting therangostics probe in a single system using an AS1411 aptamer - and miRNA-221 molecular beacon (miR-221 MB)-conjugated magnetic fluorescence (MF) nanoparticle (MFAS miR-221 MB) to simultaneously target to cancer tissue, image intracellularly expressed miRNA-221 and treat miRNA-221-involved carcinogenesis. AS1411 aptamer-conjugated MF (MFAS) nanoparticles displayed a great selectivity and delivery into various cancer cell lines. The miR-221 MB detached from the MFAS miR-221 MB in the cytoplasm of C6 cells clearly imaged miRNA-221 biogenesis and simultaneously resulted in antitumor therapeutic effects by inhibiting miRNA function, indicating a successful astrocytoma-targeting theragnostics. MFAS miRNA MB can be easily applied to other cancers by simply changing a targeted miRNA highly expressed in cancers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Multiplex bioimaging of piRNA molecular pathway-regulated theragnostic effects in a single breast cancer cell using a piRNA molecular beacon.

    Science.gov (United States)

    Lee, Youn Jung; Moon, Sung Ung; Park, Min Geun; Jung, Woon Yong; Park, Yong Keun; Song, Sung Kyu; Ryu, Je Gyu; Lee, Yong Seung; Heo, Hye Jung; Gu, Ha Na; Cho, Su Jeong; Ali, Bahy A; Al-Khedhairy, Abdulaziz A; Lee, Ilkyun; Kim, Soonhag

    2016-09-01

    Recently, PIWI-interacting small non-coding RNAs (piRNAs) have emerged as novel cancer biomarkers candidate because of their high expression level in various cancer types and role in the control of tumor suppressor genes. In this study, a novel breast cancer theragnostics probe based on a single system targeting the piRNA-36026 (piR-36026) molecular pathway was developed using a piR-36026 molecular beacon (MB). The piR-36026 MB successfully visualized endogenous piR-36026 biogenesis, which is highly expressed in MCF7 cells (a human breast cancer cell line), and simultaneously inhibited piR-36026-mediated cancer progression in vitro and in vivo. We discovered two tumor suppressor proteins, SERPINA1 and LRAT, that were directly regulated as endogenous piR-36026 target genes in MCF7 cells. Furthermore, multiplex bioimaging of a single MCF7 cell following treatment with piR-36026 MB clearly visualized the direct molecular interaction of piRNA-36026 with SERPINA1 or LRAT and subsequent molecular therapeutic responses including caspase-3 and PI in the nucleus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Quantitative assessment of Zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach.

    Science.gov (United States)

    Even, Aniek J G; Hamming-Vrieze, Olga; van Elmpt, Wouter; Winnepenninckx, Véronique J L; Heukelom, Jolien; Tesselaar, Margot E T; Vogel, Wouter V; Hoeben, Ann; Zegers, Catharina M L; Vugts, Daniëlle J; van Dongen, Guus A M S; Bartelink, Harry; Mottaghy, Felix M; Hoebers, Frank; Lambin, Philippe

    2017-01-17

    Biomarkers predicting treatment response to the monoclonal antibody cetuximab in locally advanced head and neck squamous cell carcinomas (LAHNSCC) are lacking. We hypothesize that tumor accessibility is an important factor in treatment success of the EGFR targeting drug. We quantified uptake of cetuximab labeled with Zirconium-89 (89Zr) using PET/CT imaging.Seventeen patients with stage III-IV LAHNSCC received a loading dose unlabeled cetuximab, followed by 10 mg 54.5±9.6 MBq 89Zr-cetuximab. PET/CT images were acquired either 3 and 6 or 4 and 7 days post-injection. 89Zr-cetuximab uptake was quantified using standardized uptake value (SUV) and tumor-to-background ratio (TBR), and correlated to EGFR immunohistochemistry. TBR was compared between scan days to determine optimal timing.Uptake of 89Zr-cetuximab varied between patients (day 6-7: SUVpeak range 2.5-6.2). TBR increased significantly (49±28%, p < 0.01) between first (1.1±0.3) and second scan (1.7±0.6). Between groups with a low and high EGFR expression a significant difference in SUVmean (2.1 versus 3.0) and SUVpeak (3.2 versus 4.7) was found, however, not in TBR. Data is available at www.cancerdata.org (DOI: 10.17195/candat.2016.11.1).In conclusion, 89Zr-cetuximab PET imaging shows large inter-patient variety in LAHNSCC and provides additional information over FDG-PET and EGFR expression. Validation of the predictive value is recommended with scans acquired 6-7 days post-injection.

  10. Theragnostic ultrasound using microbubbles in the treatment of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hak Jong; Yoon, Young Il; Bae, Yun Jung [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-08-15

    The use of gas-filled microbubbles in perfusion monitoring as intravascular ultrasound contrast agents has recently become more common. Additionally, microbubbles are employed as carriers of pharmaceutical substances or genes. Microbubbles have great potential to improve the delivery of therapeutic materials into cells and to modify vascular permeability, causing increased extravasation of drugs and drug carriers. Prostate cancer is the most common neoplasm in Europe and America, with an incidence twice to three times that of lung and colorectal cancer. Its incidence is still rising in Asian countries, including Japan and Korea. In this review, we present current strategies regarding the synthesis of microbubbles with targeted ligands on their surfaces, with a focus on prostate cancer.

  11. An environmental dose experiment

    Science.gov (United States)

    Peralta, Luis

    2017-11-01

    Several radiation sources worldwide contribute to the delivered dose to the human population. This radiation also acts as a natural background when detecting radiation, for instance from radioactive sources. In this work a medium-sized plastic scintillation detector is used to evaluate the dose delivered by natural radiation sources. Calibration of the detector involved the use of radioactive sources and Monte Carlo simulation of the energy deposition per disintegration. A measurement of the annual dose due to background radiation to the body was then estimated. A dose value compatible with the value reported by the United Nations Scientific Committee on the Effects of Atomic Radiation was obtained.

  12. Fertilizer micro-dosing

    International Development Research Centre (IDRC) Digital Library (Canada)

    millet, sorghum) under micro-dosing and water harvesting. • Farmers' access to fertilizer has been improved by an innovative 'warrantage' credit scheme, that has enabled over 1,000 farmers (30% women), to purchase and use more fertilizer on food crops. Fertilizer micro-dosing: a profitable innovation for. Sahelian women.

  13. Clozapine dose for schizophrenia.

    Science.gov (United States)

    Subramanian, Selvizhi; Völlm, Birgit A; Huband, Nick

    2017-06-14

    Schizophrenia and related disorders such as schizophreniform and schizoaffective disorder are serious mental illnesses characterised by profound disruptions in thinking and speech, emotional processes, behaviour and sense of self. Clozapine is useful in the treatment of schizophrenia and related disorders, particularly when other antipsychotic medications have failed. It improves positive symptoms (such as delusions and hallucinations) and negative symptoms (such as withdrawal and poverty of speech). However, it is unclear what dose of clozapine is most effective with the least side effects. To compare the efficacy and tolerability of clozapine at different doses and to identify the optimal dose of clozapine in the treatment of schizophrenia, schizophreniform and schizoaffective disorders. We searched the Cochrane Schizophrenia Group's Study-Based Register of Trials (August 2011 and 8 December 2016). All relevant randomised controlled trials (RCTs), irrespective of blinding status or language, that compared the effects of clozapine at different doses in people with schizophrenia and related disorders, diagnosed by any criteria. We independently inspected citations from the searches, identified relevant abstracts, obtained full articles of relevant abstracts, and classified trials as included or excluded. We included trials that met our inclusion criteria and reported useable data. For dichotomous data, we calculated the relative risk (RR) and the 95% confidence interval (CI) on an intention-to-treat basis based on a random-effects model. For continuous data, we calculated mean differences (MD) again based on a random-effects model. We assessed risk of bias for included studies and created 'Summary of findings' tables using GRADE. We identified five studies that could be included. Each compared the effects of clozapine at very low dose (up to 149 mg/day), low dose (150 mg/day to 300 mg/day) and standard dose (301 mg/day to 600 mg/day). Four of the five included

  14. Developing vascular and hypoxia based theranostics in solid tumors

    Science.gov (United States)

    Koonce, Nathan A.

    Tissue hypoxia was recognized for its biological attenuating effects on ionizing radiation over a century ago and is a characteristic feature of many solid tumors. Clinical and experimental evidence indicates tumor hypoxia plays diverse and key roles in tumor progression, angiogenesis, and resistance to chemotherapy/radiotherapy. Hypoxia has known effects on progression and resistance to several standard treatment approaches and the significant history of study might suggest diagnostic imaging and therapeutic interventions would be routine in oncological practice. Curiously, this is not the case and the research results involved in this report will attempt to better understand and contribute to why this gap in knowledge exists and a rationale for harnessing the potential of detecting and targeting hypoxia. Despite the addition of oxygen and reversal of hypoxia being known as the best radiosensitizer, hypoxia remains unexploited in clinical cancer therapy. The studies reported herein detail development of a novel imaging technique to detect a subtype of tumor hypoxia, vascular hypoxia or hypoxemia, with a 17-fold increase (pradiotherapy resulted in a 5.25-fold growth delay that was found to be synergistic (p<0.05) and suggests clinical evaluation is warranted. An additional study to evaluate an approach to use thermal ablation of intratumoral hypoxia by an image-guided technique developed in our group is described along with a sequence dependence of radiation preceding ablation. A final study on the use of galectin-1 antagonist to significantly decrease (p<0.05) hypoxia in the tumor microenvironment by altering tumor vessel characteristics is illustrated in Chapter 5. Overall, this thesis details imaging approaches of tumor hypoxia and its detection, quantification and targeting in therapeutic approaches.

  15. Controllable dose; Dosis controlable

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T.; Anaya M, R.A. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail: jtar@nuclear.inin.mx

    2004-07-01

    With the purpose of eliminating the controversy about the lineal hypothesis without threshold which found the systems of dose limitation of the recommendations of ICRP 26 and 60, at the end of last decade R. Clarke president of the ICRP proposed the concept of Controllable Dose: as the dose or dose sum that an individual receives from a particular source which can be reasonably controllable by means of any means; said concept proposes a change in the philosophy of the radiological protection of its concern by social approaches to an individual focus. In this work a panorama of the foundations is presented, convenient and inconveniences that this proposal has loosened in the international community of the radiological protection, with the purpose of to familiarize to our Mexican community in radiological protection with these new concepts. (Author)

  16. Acetaminophen dosing for children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000783.htm Acetaminophen dosing for children To use the sharing features ... much of this medicine can be harmful. How Acetaminophen Can Help Your Child Acetaminophen is used to ...

  17. Utirik Atoll Dose Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other

  18. Argatroban dosing in obesity.

    Science.gov (United States)

    Elagizi, Stephanie; Davis, Kyle

    2018-01-09

    Obesity is associated with significant alterations in pharmacokinetic and pharmacodynamic properties. The use of weight based anticoagulants such as argatroban may put obese patients at an increased risk of hemorrhagic events. The purpose of this study was to evaluate argatroban dosing requirements in obese vs non-obese patients. This single-center, retrospective cohort study included patients ≥18 years with suspected HIT, treated with argatroban for ≥12 h. Patients were stratified by body mass index (BMI) into obese (BMI > 30 kg/m2) and non-obese (BMI ≤ 30 kg/m2) groups. The primary outcome was the median maintenance dose required to achieve two consecutive therapeutic activated partial thromboplastin times. A total of 121 patients were included. The median BMI in the obese vs non-obese groups was 35.8 vs 24.05 kg/m2 (p < .0001). Although statistically significant, there was no clinically significant difference in median maintenance argatroban dose in obese versus non-obese patients (1 vs 1 μg/kg/min; p = .01). In-hospital major bleeding and in-hospital thrombosis also did not differ between the two groups. Obese patients require similar median argatroban maintenance doses when compared to non-obese patients. Based on these results argatroban should be dosed using actual body weight regardless of BMI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Assessment of internal doses

    CERN Document Server

    Rahola, T; Falk, R; Isaksson, M; Skuterud, L

    2002-01-01

    There is a definite need for training in dose calculation. Our first course was successful and was followed by a second, both courses were fully booked. An example of new tools for software products for bioassay analysis and internal dose assessment is the Integrated Modules for Bioassay Analysis (IMBA) were demonstrated at the second course. This suite of quality assured code modules have been adopted in the UK as the standard for regulatory assessment purposes. The intercomparison measurements are an important part of the Quality Assurance work. In what is known as the sup O utside workers ' directive it is stated that the internal dose measurements shall be included in the European Unions supervision system for radiation protection. The emergency preparedness regarding internal contamination was much improved by the training with and calibration of handheld instruments from participants' laboratories. More improvement will be gained with the handbook giving practical instructions on what to do in case of e...

  20. Doses of Tktazzus Tbxoid '

    African Journals Online (AJOL)

    Summary. Famnde O], Familusi ]B. Post—neonatal Tetanus in Nigeria: A Need for Booster. Doses of Tetanus Toxoid. 1V1_'gen'an journal ofPaediatn'cs 2001; 28:35. Eighty-two (87 per cent) of the 94- cases of post-neonatal tetanus patients seen in the department of paediatrics,. University College Hospital, Ibadan, over an ...

  1. Ibuprofen dosing for children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000772.htm Ibuprofen dosing for children To use the sharing features on this page, ... much of this medicine can be harmful. How Ibuprofen can Help Your Child Ibuprofen is a type of nonsteroidal anti-inflammatory ...

  2. Biological dose estimation

    African Journals Online (AJOL)

    to this effect was found in at least 3 cases using biological dosimetric criteria, proving the ... The classification system described by Savage3 was used to determine the ... TABLE I. DISTANCE FROM RADIATION SOURCE, DETAILS OF CYTOGENETIC ANALYSIS AND BIOLOGICAL AND PHYSICAL. DOSE ESTIMATIONS.

  3. Dose Reduction Techniques

    CERN Document Server

    Waggoner, L O

    2000-01-01

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the sm...

  4. Dose specification for radiation therapy: dose to water or dose to medium?

    Science.gov (United States)

    Ma, C.-M.; Li, Jinsheng

    2011-05-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  5. Survey on immunotherapy practice patterns: dose, dose adjustments, and duration.

    Science.gov (United States)

    Larenas-Linnemann, Désirée E S; Gupta, Payel; Mithani, Sima; Ponda, Punita

    2012-05-01

    Practical issues dealing with the administration of allergen immunotherapy (AIT) by European and US allergists are not well known. Several concerns are only partially covered by guidelines. To survey AIT practice patterns among worldwide members of the American Academy of Allergy, Asthma and Immunology (AAAAI). A web-based survey was conducted among AAAAI members on dosing, dose adjustment after missed doses, and duration of AIT. A total of 1,201 replies (24.7% response rate of which 10% of responses were from non-US and non-Canada members). A total of 57% to 65% of the US-Canadian dosing falls within the recommended Practice Parameter ranges (9.4%-19% too low). Dose adjustment after missed doses is based on time elapsed since the last administered dose by 77% of US-Canadian and 58% of non-US-Canadian allergists. Doses are reduced when a patient comes in more than 14 days for 5 weeks after the last administration and initial dosing restarted after more than 30 days for 12 weeks since last administration during the build-up or maintenance stage. After missing 1 to 3 doses, the dosing schedules were mostly followed (build-up phase: repeat last dose, reduce by 1 dose, reduce by 2doses; maintenance phase: reduce by 1 dose, reduce by 2 doses, reduce by 3 doses). AIT is prescribed for a median of 3 years by non-US-Canadian allergists but for a median of 5 years by 75% of US-Canadian allergists. Main reasons for continuing beyond 5 years were "after stopping, symptoms reappeared" or "patient afraid to relapse." Many patients receive less than recommended doses. Two areas in which to plan further research are establishment of an optimal dose-adjustment plan for missed applications and exploration of the maximum appropriate duration of immunotherapy. Copyright © 2012 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Entrance surface dose according to dose calculation: Head and wrist

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ho Jin [Dept. Radiology, Chonnam National University Hospital, Gwangju (Korea, Republic of); Han, Jae Bok; Song, Jong Nam; Choi, Nam Gil [Dept. of Radiological Science, Dongshin University, Naju (Korea, Republic of)

    2016-09-15

    This study were compared with the direct measurement and indirect dose methods through various dose calculation in head and wrist. And, the modified equation was proposed considering equipment type, setting conditions, tube voltage, inherent filter, added filter and its accompanied back scatter factor. As a result, it decreased the error of the direct measurement than the existing dose calculation. Accordingly, diagnostic radiography patient dose comparison would become easier and radiographic exposure control and evaluation will become more efficient. The study findings are expected to be useful in patients' effective dose rate evaluation and dose reduction.

  7. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  8. Small dose... big poison.

    Science.gov (United States)

    Braitberg, George; Oakley, Ed

    2010-11-01

    It is not possible to identify all toxic substances in a single journal article. However, there are some exposures that in small doses are potentially fatal. Many of these exposures are particularly toxic to children. Using data from poison control centres, it is possible to recognise this group of exposures. This article provides information to assist the general practitioner to identify potential toxic substance exposures in children. In this article the authors report the signs and symptoms of toxic exposures and identify the time of onset. Where clear recommendations on the period of observation and known fatal dose are available, these are provided. We do not discuss management or disposition, and advise readers to contact the Poison Information Service or a toxicologist for this advice.

  9. First dose in man

    DEFF Research Database (Denmark)

    Hougaard Christensen, Mette Marie

    2011-01-01

    Du er blevet ansat som læge i et lægemiddelfirma med ansvar for planlægning og sikkerhed i fase 1 forsøg. Firmaet har udviklet tre dopamin D2-receptor antagonister til behandling af skizofreni. Lægemidlerne har undergået et omfattende farmakologisk, toksikologisk og farmaceutisk afprøvningsprogra...... fase 1 forsøg alias »First dose in man«....

  10. Transit dose calculation in high dose rate brachytherapy (HDR ...

    African Journals Online (AJOL)

    Transit doses around a high dose rate 192Ir brachytherapy source were calculated using Sievert Integral at positions where the moving source was located exactly between two adjacent dwell positions. The correspond-ing transit dose rates were obtained by using energy absorption coefficients. Discrete step sizes of 0.25 ...

  11. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research.

    Science.gov (United States)

    Liu, Yewei; Yin, Ting; Feng, Yuanbo; Cona, Marlein Miranda; Huang, Gang; Liu, Jianjun; Song, Shaoli; Jiang, Yansheng; Xia, Qian; Swinnen, Johannes V; Bormans, Guy; Himmelreich, Uwe; Oyen, Raymond; Ni, Yicheng

    2015-10-01

    Compared with transplanted tumor models or genetically engineered cancer models, chemically induced primary malignancies in experimental animals can mimic the clinical cancer progress from the early stage on. Cancer caused by chemical carcinogens generally develops through three phases namely initiation, promotion and progression. Based on different mechanisms, chemical carcinogens can be divided into genotoxic and non-genotoxic ones, or complete and incomplete ones, usually with an organ-specific property. Chemical carcinogens can be classified upon their origins such as environmental pollutants, cooked meat derived carcinogens, N-nitroso compounds, food additives, antineoplastic agents, naturally occurring substances and synthetic carcinogens, etc. Carcinogen-induced models of primary cancers can be used to evaluate the diagnostic/therapeutic effects of candidate drugs, investigate the biological influential factors, explore preventive measures for carcinogenicity, and better understand molecular mechanisms involved in tumor initiation, promotion and progression. Among commonly adopted cancer models, chemically induced primary malignancies in mammals have several advantages including the easy procedures, fruitful tumor generation and high analogy to clinical human primary cancers. However, in addition to the time-consuming process, the major drawback of chemical carcinogenesis for translational research is the difficulty in noninvasive tumor burden assessment in small animals. Like human cancers, tumors occur unpredictably also among animals in terms of timing, location and the number of lesions. Thanks to the availability of magnetic resonance imaging (MRI) with various advantages such as ionizing-free scanning, superb soft tissue contrast, multi-parametric information, and utility of diverse contrast agents, now a workable solution to this bottleneck problem is to apply MRI for noninvasive detection, diagnosis and therapeutic monitoring on those otherwise uncontrollable animal models with primary cancers. Moreover, it is foreseeable that the combined use of chemically induced primary cancer models and molecular imaging techniques may help to develop new anticancer diagnostics and therapeutics.

  12. Design of a PKCδ-specific small peptide as a theragnostic agent for glioblastoma.

    Science.gov (United States)

    Cho, Jun-Haeng; Ha, Na-Reum; Koh, Seong-Ho; Yoon, Moon-Young

    2016-03-01

    Glioblastoma is an aggressive malignant brain tumor that starts in the brain or spine and frequently recurs after anticancer treatment. The development of an accurate diagnostic system combined with effective cancer therapy is essential to improve prognosis of glioma patients. Peptides, produced from phage display, are attractive biomolecules for glioma treatment because of their biostability, nontoxicity, and small size. In this study, we employed phage display methodology to screen for peptides that specifically recognize the target PKCδ as a novel biomarker for glioma. The phage library screening yielded four different peptides displayed on phages with a 20- to 200-pM Kd value for the recombinant PKCδ catalytic domain. Among these four phage peptides, we selected one to synthesize and tagged it with fluorescein isothiocyanate (FITC) based on the sequence of the PKCδ-binding phage clone. The synthetic peptide showed a relative binding affinity for antibody and localization in the U373 glioma cell. The kinase activity of PKCδ was inhibited by FITC-labeled peptide with an IC50 of 1.4 μM in vitro. Consequently, the peptide found in this study might be a promising therapeutic agent against malignant brain tumor. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Peritoneal Dialysis Dose and Adequacy

    Science.gov (United States)

    ... Navigation Peritoneal Dialysis Peritoneal Dialysis: Dose & Adequacy Peritoneal Dialysis: Dose & Adequacy When kidneys fail, waste products such ... absorbed from the abdominal cavity. Types of Peritoneal Dialysis The two types of peritoneal dialysis differ mainly ...

  14. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, S.D.; Finch, S.M. (comps.)

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  15. Dose determination in high dose-rate brachytherapy.

    Science.gov (United States)

    Houdek, P V; Schwade, J G; Wu, X; Pisciotta, V; Fiedler, J A; Serago, C F; Markoe, A M; Abitbol, A A; Lewin, A A; Braunschweiger, P G

    1992-01-01

    Although high dose-rate brachytherapy with a single, rapidly moving radiation source is becoming a common treatment modality, a suitable formalism for determination of the dose delivered by a moving radiation source has not yet been developed. At present, brachytherapy software simulates high dose-rate treatments using only a series of stationary sources, and consequently fails to account for the dose component delivered while the source is in motion. We now describe a practical model for determination of the true, total dose administered. The algorithm calculates both the dose delivered while the source is in motion within and outside of the implanted volume (dynamic component), and the dose delivered while the source is stationary at a series of fixed dwell points. It is shown that the dynamic dose element cannot be ignored because it always increases the dose at the prescription points and, in addition, distorts the dose distribution within and outside of the irradiated volume. Failure to account for the dynamic dose component results in dosimetric errors that range from significant (> 10%) to negligible (source activity, and source speed as defined by the implant geometry.

  16. Solute clearance in CRRT: prescribed dose versus actual delivered dose.

    Science.gov (United States)

    Lyndon, William D; Wille, Keith M; Tolwani, Ashita J

    2012-03-01

    Substantial efforts have been made toward defining the dose threshold of continuous renal replacement therapy (CRRT) associated with improved survival in critically ill patients with acute kidney injury. Published studies have used prescribed effluent rates, expressed as total effluent volume (TEV) per weight and unit time (mL/kg/h), as a surrogate for dose. The purpose of this study was to compare differences in CRRT dose based on prescribed effluent rate, measured TEV and direct measurement of urea and creatinine clearance. We analyzed data that had been prospectively collected on 200 patients enrolled in a randomized trial comparing survival with a prescribed effluent rate of 20 mL/kg/h (standard dose) to 35 mL/kg/h (high dose) using pre-dilution continuous venovenous hemodiafiltration (CVVHDF). Filters were changed every 72 h. Blood urea nitrogen (BUN), serum creatinine (SCr), effluent urea nitrogen (EUN) and effluent creatinine (ECr) were collected daily. Actual delivered dose was calculated as: (EUN/BUN)*TEV for urea and (ECr/SCr)*TEV for creatinine. Data were available for 165 patients. In both groups, prescribed dose differed significantly from the measured TEV dose (P < 0.001). In the standard dose group, there was no difference between the measured TEV dose and actual delivered urea and creatinine clearances. However, in the high-dose group, measured TEV dose differed significantly from delivered urea clearance by 7.1% (P < 0.001) and creatinine clearance by 13.9% (P < 0.001). Dose based on prescribed effluent rate or measured TEV is a poor substitute for actual CVVHDF creatinine and urea clearance.

  17. Personalized exercise dose prescription.

    Science.gov (United States)

    Zubin Maslov, Petra; Schulman, Alexa; Lavie, Carl J; Narula, Jagat

    2017-12-28

    Physical activity (PA) is associated with increased longevity and decreased risk of cardiovascular disease, however, the majority of the general population is still sedentary. In order to maximize the health benefits of PA, health care practitioners should be familiarized with the appropriate dose of exercise for each healthy individual, depending on their habitual PA and relative fitness. The aim of this review is to quantitatively describe the lowest and the highest level of exercise that has health benefits, and what should hypothetically be considered 'the sweet spot'. Analysis of the current literature allows us to develop personalized 'exercise prescription' for healthy individuals. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2017. For permissions, please email: journals.permissions@oup.com.

  18. Experimental evaluation of neutron dose in radiotherapy patients: Which dose?

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Expósito, M., E-mail: mariateresa.romero@uab.cat; Domingo, C.; Ortega-Gelabert, O.; Gallego, S. [Grup de Recerca en Radiacions Ionizants (GRRI), Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193 (Spain); Sánchez-Doblado, F. [Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009 (Spain); Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41009 (Spain)

    2016-01-15

    Purpose: The evaluation of peripheral dose has become a relevant issue recently, in particular, the contribution of secondary neutrons. However, after the revision of the Recommendations of the International Commission on Radiological Protection, there has been a lack of experimental procedure for its evaluation. Specifically, the problem comes from the replacement of organ dose equivalent by the organ-equivalent dose, being the latter “immeasurable” by definition. Therefore, dose equivalent has to be still used although it needs the calculation of the radiation quality factor Q, which depends on the unrestricted linear energy transfer, for the specific neutron irradiation conditions. On the other hand, equivalent dose is computed through the radiation weighting factor w{sub R}, which can be easily calculated using the continuous function provided by the recommendations. The aim of the paper is to compare the dose equivalent evaluated following the definition, that is, using Q, with the values obtained by replacing the quality factor with w{sub R}. Methods: Dose equivalents were estimated in selected points inside a phantom. Two types of medical environments were chosen for the irradiations: a photon- and a proton-therapy facility. For the estimation of dose equivalent, a poly-allyl-diglicol-carbonate-based neutron dosimeter was used for neutron fluence measurements and, additionally, Monte Carlo simulations were performed to obtain the energy spectrum of the fluence in each point. Results: The main contribution to dose equivalent comes from neutrons with energy higher than 0.1 MeV, even when they represent the smallest contribution in fluence. For this range of energy, the radiation quality factor and the radiation weighting factor are approximately equal. Then, dose equivalents evaluated using both factors are compatible, with differences below 12%. Conclusions: Quality factor can be replaced by the radiation weighting factor in the evaluation of dose

  19. Organ Doses and Effective Doses in Pediatric Radiography: Patient-Dose Survey in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kiljunen, T.; Tietaevaeinen, A.; Parviainen, T.; Viitala, A.; Kortesniemi, M. (Radiation Practices Regulation, Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-01-15

    Background: Use of the effective dose in diagnostic radiology permits the radiation exposure of diverse diagnostic procedures to be quantified. Fundamental knowledge of patient doses enhances the implementation of the 'as low as reasonably achievable' (ALARA) principle. Purpose: To provide comparative information on pediatric examination protocols and patient doses in skull, sinus, chest, abdominal, and pelvic radiography examinations. Material and Methods: 24 Finnish hospitals were asked to register pediatric examination data, including patient information and examination parameters and specifications. The total number of examinations in the study was 1916 (1426 chest, 228 sinus, 96 abdominal, 94 skull, and 72 pelvic examinations). Entrance surface dose (ESD) and dose-area products (DAP) were calculated retrospectively or DAP meters were used. Organ doses and effective doses were determined using a Monte Carlo program (PCXMC). Results: There was considerable variation in examination protocols between different hospitals, indicating large variations in patient doses. Mean effective doses of different age groups ranged from 5 muSv to 14 muSv in skull and sinus examinations, from 25 muSv to 483 muSv in abdominal examinations, and from 6 muSv to 48 muSv in chest examinations. Conclusion: In chest and sinus examinations, the amount of data was extensive, allowing national pediatric diagnostic reference levels to be defined. Parameter selection in pediatric examination protocols should be harmonized in order to reduce patient doses and improve optimization

  20. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  1. REMEDIATION FACILITY WORKER DOSE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    V. Arakali; E. Faillace

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel in the Remediation Facility performing operations to receive, prepare, open, repair, recover, disposition, and correct off-normal and non-standard conditions with casks, canisters, spent nuclear fuel (SNF) assemblies, and waste packages (WP). The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the Remediation Facility and provide occupational dose estimates for the License Application.

  2. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional radiolo- gists, radiographers and nurses ...

  3. A dose error evaluation study for 4D dose calculations

    Science.gov (United States)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  4. EPA's Benchmark Dose Modeling Software

    Science.gov (United States)

    The EPA developed the Benchmark Dose Software (BMDS) as a tool to help Agency risk assessors facilitate applying benchmark dose (BMD) method’s to EPA’s human health risk assessment (HHRA) documents. The application of BMD methods overcomes many well know limitations ...

  5. Dose calculation of anticancer drugs

    NARCIS (Netherlands)

    Gao, Bo; Klumpen, Heinz-Josef; Gurney, Howard

    2008-01-01

    BACKGROUND: Anticancer drugs are characterized by a narrow therapeutic window and significant inter-patient variability in therapeutic and toxic effects. Current body surface area (BSA)-based dosing fails to standardize systemic anticancer drug exposure and other alternative dosing strategies also

  6. Evolution of radon dose evaluation

    Directory of Open Access Journals (Sweden)

    Fujimoto Kenzo

    2004-01-01

    Full Text Available The historical change of radon dose evaluation is reviewed based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR reports. Since 1955, radon has been recognized as one of the important sources of exposure of the general public. However, it was not really understood that radon is the largest dose contributor until 1977 when a new concept of effective dose equivalent was introduced by International Commission on Radiological Protection. In 1982, the dose concept was also adapted by UNSCEAR and evaluated per caput dose from natural radiation. Many researches have been carried out since then. However, lots of questions have remained open in radon problems, such as the radiation weighting factor of 20 for alpha rays and the large discrepancy of risk estimation among dosimetric and epidemiological approaches.

  7. Radiation dose estimates for radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E. [Oak Ridge Inst. of Science and Education, TN (United States). Radiation Internal Dose Information Center

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  8. Superficial dose evaluation of four dose calculation algorithms

    Science.gov (United States)

    Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei

    2017-08-01

    Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank

  9. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  10. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  11. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M. (comps.)

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  12. Minimal Erythema Dose (MED) testing.

    Science.gov (United States)

    Heckman, Carolyn J; Chandler, Rachel; Kloss, Jacqueline D; Benson, Amy; Rooney, Deborah; Munshi, Teja; Darlow, Susan D; Perlis, Clifford; Manne, Sharon L; Oslin, David W

    2013-05-28

    Ultraviolet radiation (UV) therapy is sometimes used as a treatment for various common skin conditions, including psoriasis, acne, and eczema. The dosage of UV light is prescribed according to an individual's skin sensitivity. Thus, to establish the proper dosage of UV light to administer to a patient, the patient is sometimes screened to determine a minimal erythema dose (MED), which is the amount of UV radiation that will produce minimal erythema (sunburn or redness caused by engorgement of capillaries) of an individual's skin within a few hours following exposure. This article describes how to conduct minimal erythema dose (MED) testing. There is currently no easy way to determine an appropriate UV dose for clinical or research purposes without conducting formal MED testing, requiring observation hours after testing, or informal trial and error testing with the risks of under- or over-dosing. However, some alternative methods are discussed.

  13. High dose irradiation with hyperfractionation

    Energy Technology Data Exchange (ETDEWEB)

    Asakura, Hideo; Kurashima, Shoji; Hasegawa, Maki; Akiyama, Kazuo (Sagamihara National Hospital, Kanagawa (Japan))

    1990-10-01

    From March 1988 to January 1990, 12 patients including 7 primary lung cancers, 2 lung metastases of colorectal cancer, and each 1 gall bladder cancer, ovarian cancer, and spinal cord metastasis of prostatic cancer, received {sup 60}Co-irradiation with high dose by hyperfractionation. This hyperfractionation consisted of 1.2 Gy per fraction, twice a day with 6 hour interval, and 5 days (10 fractions) a week. The total dose administered was 81.6{approx}100 Gy. The acute reaction of skin, lung, and intestines was tolerable, and it seemed that the late damage of normal tissues was slighter and the treatment result was favorable in comparison with the conventional fractionation, but this estimation was not definite because of short observation period. It was discussed that further reduction of dose per fraction (1 Gy or below) and more increased total dose (100 Gy or more) would be promising in hyperfractionation. (author).

  14. The dose makes the medicine.

    Science.gov (United States)

    Stumpf, Walter E

    2006-06-01

    Dose and time considerations in the development and use of a drug are important for assessing actions and side effects, as well as predictions of safety and toxicity. This article deals with epistemological aspects of dose selection by probing into the linguistic and cultural roots for the measure of medicine mediated by the medical doctor. Because toxicity is related to dose, historic and recent views suggest that less can be more. At low, medium and high dose levels, effects can differ not only quantitatively but also qualitatively. Dose-related target activation and recognition of enantiodromic thresholds between beneficial and toxic effects require elucidation of underlying events. Such studies, including hormesis and microdosing, call for extended ADME procedures with high-resolution methods in addition to the current low-resolution approaches. Improved information of drug logistics and target pharmacokinetics enables effective drug selection, dose determination and prediction. It also allows considerations of systems biology [i.e. integral (gestalt) pharmacology] exemplified by the drug homunculus, as in the case of vitamin D, that might lead to new paradigms and drug design.

  15. BENCHMARK DOSE TECHNICAL GUIDANCE DOCUMENT ...

    Science.gov (United States)

    The U.S. EPA conducts risk assessments for an array of health effects that may result from exposure to environmental agents, and that require an analysis of the relationship between exposure and health-related outcomes. The dose-response assessment is essentially a two-step process, the first being the definition of a point of departure (POD), and the second extrapolation from the POD to low environmentally-relevant exposure levels. The benchmark dose (BMD) approach provides a more quantitative alternative to the first step in the dose-response assessment than the current NOAEL/LOAEL process for noncancer health effects, and is similar to that for determining the POD proposed for cancer endpoints. As the Agency moves toward harmonization of approaches for human health risk assessment, the dichotomy between cancer and noncancer health effects is being replaced by consideration of mode of action and whether the effects of concern are likely to be linear or nonlinear at low doses. Thus, the purpose of this project is to provide guidance for the Agency and the outside community on the application of the BMD approach in determining the POD for all types of health effects data, whether a linear or nonlinear low dose extrapolation is used. A guidance document is being developed under the auspices of EPA's Risk Assessment Forum. The purpose of this project is to provide guidance for the Agency and the outside community on the application of the benchmark dose (BMD) appr

  16. Weldon Spring historical dose estimate

    Energy Technology Data Exchange (ETDEWEB)

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  17. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model

    National Research Council Canada - National Science Library

    Tanwiwat Jaikuna; Phatchareewan Khadsiri; Nisa Chawapun; Suwit Saekho; Ekkasit Tharavichitkul

    2017-01-01

      Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model...

  18. Dose assessments for SFR 1

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la (Facilia AB, Bromma (Sweden))

    2008-06-15

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  19. Radiation dose monitoring in the clinical routine

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika [UK Essen (Germany). Radiology

    2017-04-15

    Here we describe the first clinical experiences regarding the use of an automated radiation dose management software to monitor the radiation dose of patients during routine examinations. Many software solutions for monitoring radiation dose have emerged in the last decade. The continuous progress in radiological techniques, new scan features, scanner generations and protocols are the primary challenge for radiation dose monitoring software systems. To simulate valid dose calculations, radiation dose monitoring systems have to follow current trends and stay constantly up-to-date. The dose management software is connected to all devices at our institute and conducts automatic data acquisition and radiation dose calculation. The system incorporates 18 virtual phantoms based on the Cristy phantom family, estimating doses in newborns to adults. Dose calculation relies on a Monte Carlo simulation engine. Our first practical experiences demonstrate that the software is capable of dose estimation in the clinical routine. Its implementation and use have some limitations that can be overcome. The software is promising and allows assessment of radiation doses, like organ and effective doses according to ICRP 60 and ICRP 103, patient radiation dose history and cumulative radiation doses. Furthermore, we are able to determine local diagnostic reference doses. The radiation dose monitoring software systems can facilitate networking between hospitals and radiological departments, thus refining radiation doses and implementing reference doses at substantially lower levels.

  20. Fluzone High-Dose Seasonal Influenza Vaccine

    Science.gov (United States)

    ... Variant Pandemic Other Fluzone High-Dose Seasonal Influenza Vaccine Questions & Answers Language: English (US) Español Recommend on ... flu season. What is Fluzone High-Dose influenza vaccine? Fluzone High-Dose is an influenza vaccine, manufactured ...

  1. Radiological dose assessment for vault storage concepts

    Energy Technology Data Exchange (ETDEWEB)

    Richard, R.F.

    1997-02-25

    This radiological dose assessment presents neutron and photon dose rates in support of project W-460. Dose rates are provided for a single 3013 container, the ``infloor`` storage vault concept, and the ``cubicle`` storage vault concept.

  2. AGING FACILITY WORKER DOSE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Thacker

    2005-03-24

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  3. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    accurately measures the radiation emitted from the source. The study included the interventional radiolo ... mined as most sensitive to radiation. The use of a thyroid guard also decreases the effective dose by approx- ... al radiation is necessary. Thermo- luminescent dosimetry is used to measure radiation and the apparatus.

  4. Performance standard for dose Calibrator

    CERN Document Server

    Darmawati, S

    2002-01-01

    Dose calibrator is an instrument used in hospitals to determine the activity of radionuclide for nuclear medicine purposes. International Electrotechnical Commission (IEC) has published IEC 1303:1994 standard that can be used as guidance to test the performance of the instrument. This paper briefly describes content of the document,as well as explains the assessment that had been carried out to test the instrument accuracy in Indonesia through intercomparison measurement.Its is suggested that hospitals acquire a medical physicist to perform the test for its dose calibrator. The need for performance standard in the form of Indonesia Standard is also touched.

  5. Routine High Dose Excretory Urography

    Science.gov (United States)

    Gronner, Arthur T.; Arkoff, Robert S.; Burhenne, H. Joachim

    1967-01-01

    Radiologic evaluation of 316 excretory urograms utilizing a single 50 ml injection of a 50 to 60 per cent tri-iodinated contrast medium indicated that these studies are of better quality than those previously obtained with the injection of 30 ml. The low incidence of side effects coincides with recent reports in the literature that this dosage level is safe. High dose intravenous drip infusion pyelography was necessary only in selected cases. High dose excretory urography is recommended for routine use. ImagesFigure 1A, 1BFigure 2. PMID:6045483

  6. Confectionery-based dose forms.

    Science.gov (United States)

    Tangso, Kristian J; Ho, Quy Phuong; Boyd, Ben J

    2015-01-01

    Conventional dosage forms such as tablets, capsules and syrups are prescribed in the normal course of practice. However, concerns about patient preferences and market demands have given rise to the exploration of novel unconventional dosage forms. Among these, confectionery-based dose forms have strong potential to overcome compliance problems. This report will review the availability of these unconventional dose forms used in treating the oral cavity and for systemic drug delivery, with a focus on medicated chewing gums, medicated lollipops, and oral bioadhesive devices. The aim is to stimulate increased interest in the opportunities for innovative new products that are available to formulators in this field, particularly for atypical patient populations.

  7. LOW DOSE INTRAVAGINAL MISOPROSTOL VERSUS ...

    African Journals Online (AJOL)

    hi-tech

    2003-02-02

    Feb 2, 2003 ... for oxytocin augmentation was less in the misoprostol group (RR 0.76, 95% CI 0.64 to 0.91). No significant differences existed in rates for uterine hyperstimulation,. Caesarean section, maternal and neonatal morbidity. Conclusion: Intravaginal misoprostol in a low dose was compared to intracervical balloon.

  8. [Absorbed doses in dental radiology].

    Science.gov (United States)

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk.

  9. Sesame allergy threshold dose distribution.

    Science.gov (United States)

    Dano, D; Remington, B C; Astier, C; Baumert, J L; Kruizinga, A G; Bihain, B E; Taylor, S L; Kanny, G

    2015-09-01

    Sesame is a relevant food allergen in France. Compared to other allergens there is a lack of food challenge data and more data could help sesame allergy risk management. The aim of this study is to collect more sesame challenge data and investigate the most efficient food challenge method for future studies. Records of patients at University Hospital in Nancy (France) with objective symptoms to sesame challenges were collected and combined with previously published data. An estimation of the sesame allergy population threshold was calculated based on individual NOAELs and LOAELs. Clinical dosing schemes at Nancy were investigated to see if the optimal protocol for sesame is currently used. Fourteen patients (10 M/4 F, 22 ± 14.85 years old) with objective symptoms were added to previously published data making a total of 35 sesame allergic patients. The most sensitive patient reacted to the first dose at challenge of 1.02 mg sesame protein. The ED05 ranges between 1.2 and 4.0 mg of sesame protein (Log-Normal, Log-Logistic, and Weibull models) and the ED10 between 4.2 and 6.2 mg. The optimal food challenge dosing scheme for sesame follows semi-log dose increases from 0.3 to 3000 mg protein. This article provides a valuable update to the existing clinical literature regarding sesame NOAELs and LOAELs. Establishment of a population threshold for sesame could help in increasing the credibility of precautionary labelling and decrease the costs associated with unexpected allergic reactions. Also, the use of an optimal dosing scheme would decrease time spent on diagnostic and thereafter on the economic burden of sesame allergy diagnosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Investigations of peripheral dose for helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lissner, Steffen; Schubert, Kai; Sterzing, Florian; Herfarth, Klaus; Sroka-Perez, Gabriele; Debus, Juergen [University Hospital Heidelberg (Germany). Dept. of Radiation Oncology; Wiezorek, Tilo [University Hospital Jena (Germany). Dept. of Radiotherapy

    2013-07-01

    Purpose: Whenever treating a patient with percutaneous radiotherapy, a certain amount of dose is inevitably delivered to healthy tissue. This is mainly due to beam's entry and exit in the region of the target volume. In regions distant from the target volume, dose is delivered by leakage from the MLC and head scatter from the accelerator head and phantom scatter from the target volume (peripheral dose). Helical tomotherapy is a form of radiation therapy with a uniquely designed machine and delivery pattern which influence the peripheral dose. The goal of this work was to investigate peripheral dose in helical tomotherapy. The experiments were used to establish a complex characterization of the peripheral dose. Materials and methods: A 30*30*60cm{sup 3} slab phantom and TLD-100 (Lithium fluoride) were used for the experiments. Treatment procedures were generated with the tomotherapy planning system (TPS). Additionally, procedures were created on the Operator Station of the tomotherapy system without a calculation of the dose distribution. The peripheral dose which was produced by a typical tomotherapy treatment plan was measured. Furthermore, these procedures were used to differentiate the parts of the peripheral dose in phantom scatter dose and head scatter and leakage dose. Additionally, the relation between peripheral dose and treatment time and between peripheral dose and delivered dose was investigated. Additionally, the peripheral dose was measured in an Alderson phantom. Results: Distances of 30cm or more resulted in a decrease of the peripheral dose to less than 0.1% of the target dose. The measured doses have an offset of approximately 1cGy in comparison to the calculated doses from the TPS. The separated head scatter and leakage dose was measured in the range of 1cGy for typical treatments. Furthermore, the investigations show a linear correlation between head scatter leakage dose and treatment time and between scatter dose parts and delivered dose. A

  11. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  12. [Single dose treatment of trichomoniasis].

    Science.gov (United States)

    Erb, H

    1975-01-01

    The present regiman for the treatment of trichomoniasis with Tinidazol is 150 mg. twice daily for 7 days with a total dose of 2,100 mg. The success rate of this regimen is 85-90%. With a single dosage treatment of 2,000 mg. (Four 500 mg. tablets for the patient and her sexual partner) the success rate improved to 100%. Toxic side effects were not observed. The treatment was well tolerated and well accepted.

  13. Tolerance doses for treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, J.T.

    1985-10-01

    Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD/sub 5/) or 50% (TD/sub 50/) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs.

  14. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations

    Science.gov (United States)

    Siebers, J. V.; Keall, P. J.; Nahum, A. E.; Mohan, R.

    2000-04-01

    Current clinical experience in radiation therapy is based upon dose computations that report the absorbed dose to water, even though the patient is not made of water but of many different types of tissue. While Monte Carlo dose calculation algorithms have the potential for higher dose accuracy, they usually transport particles in and compute the absorbed dose to the patient media such as soft tissue, lung or bone. Therefore, for dose calculation algorithm comparisons, or to report dose to water or tissue contained within a bone matrix for example, a method to convert dose to the medium to dose to water is required. This conversion has been developed here by applying Bragg-Gray cavity theory. The dose ratio for 6 and 18 MV photon beams was determined by computing the average stopping power ratio for the primary electron spectrum in the transport media. For soft tissue, the difference between dose to medium and dose to water is approximately 1.0%, while for cortical bone the dose difference exceeds 10%. The variation in the dose ratio as a function of depth and position in the field indicates that for photon beams a single correction factor can be used for each particular material throughout the field for a given photon beam energy. The only exception to this would be for the clinically non-relevant dose to air. Pre-computed energy spectra for 60 Co to 24 MV are used to compute the dose ratios for these photon beams and to determine an effective energy for evaluation of the dose ratio.

  15. Loratadine: multiple-dose pharmacokinetics.

    Science.gov (United States)

    Radwanski, E; Hilbert, J; Symchowicz, S; Zampaglione, N

    1987-07-01

    The steady-state pharmacokinetics of loratadine (L), a new long-acting antihistamine devoid of CNS activity, was investigated in 12 healthy male volunteers. Each volunteer received 40-mg L capsules q24h for ten days. Blood samples were collected at various times on day 1, 5, 7, and 10 and assayed for L by radioimmunoassay (RIA) and for descarboethoxyloratadine (DCL), a known active metabolite, by high-performance liquid chromatography (HPLC). The plasma L and DCL concentration-time data in the disposition phases were fitted to a biexponential equation for pharmacokinetic analysis. Steady-state plasma L Cmax concentrations were reached at 1.5 hour (Tmax) after each dose. DCL steady-state Cmax values ranged 26 to 29 ng/mL at a Tmax ranging from 1.8 to 3 hours. The AUC at steady state, AUC tau, was 80 to 96 and 349 to 421 h X ng/mL for L and DCL, respectively. The accumulation indexes (Ra) based on AUC tau ratios, did not change for either compound after day 5. Ra values for L and DCL after the fifth dose were 1.4 and 1.9, respectively, indicating that there is little accumulation of either L or DCL after a multiple (once-a-day) dosage regimen. The t1/2 beta at steady state were 14.4 and 18.7 hours for L and DCL, respectively, which were similar to those reported following a single-dose L administration. Observed plasma drug concentrations were in good agreement with predicted values derived for pharmacokinetic parameters.

  16. Low-dose radiation exposure and carcinogenesis

    National Research Council Canada - National Science Library

    Suzuki, Keiji; Yamashita, Shunichi

    2012-01-01

    .... Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear...

  17. Dose-mapping distribution around MNSR

    CERN Document Server

    Jamal, M H

    2002-01-01

    The aim of this study is to establish the dose-rate map through the determination of radiological dose-rate levels in reactor hall, adjacent rooms, and outside the MNSR facility. Controlling dose rate to reactor operating personnel , dose map was established. The map covers time and distances in the reactor hall, during reactor operation at nominal power. Different measurement of dose rates in other areas of the reactor buildings was established. The maximum dose rate, during normal operation of the MNSR was 40 and 21 Sv/hr on the top of the reactor and near the pool fence, respectively. Whereas, gamma and neutron doses have not exceeded natural background in all rooms adjacent to the reactor hall or nearly buildings. The relation between the dose rate for gamma rays and neutron flux at the top of cover of reactor pool was studied as well. It was found that this relation is linear.

  18. Dose to water versus dose to medium in proton beam therapy

    Science.gov (United States)

    Paganetti, Harald

    2009-07-01

    Dose in radiation therapy is traditionally reported as the water-equivalent dose, or dose to water. Monte Carlo dose calculations report dose to medium and thus a methodology is needed to convert dose to medium into dose to water (or vice versa) for comparison of Monte Carlo results with results from planning systems. This paper describes the development of a formalism to convert dose to medium into dose to water for proton fields when simulating the dose with Monte Carlo techniques. The conversion is based on relative stopping power but also considers energy transferred via nuclear interactions. The influence of different interaction mechanisms of proton beams (electromagnetic versus nuclear) is demonstrated. Further, an approximate method for converting doses retroactively is presented. Based on the outlined formalism, five proton therapy patients with a total of 33 fields were analyzed. Dose distributions, dose volume histograms and absolute doses to assess the clinical significance of differences between dose to medium and dose to water are presented. We found that the difference between the two dose reporting definitions can be up to 10% for high CT numbers if analyzing the mean dose to the target. The difference is clinically insignificant for soft tissues. For the structures analyzed, the mean dose to water could be converted to dose to medium by applying a correction factor increasing linearly with increasing average CT number in the volume. We determined that an approximate conversion method, done retroactively with an energy-independent stopping power ratio and without considering nuclear interaction events separately (as compared to on-the-fly conversion during simulation), is sufficiently accurate to compute mean doses. It is insufficient, however, when analyzing the beam range. For proton beams stopping in bony anatomy, the predicted beam range can differ by 2-3 mm when comparing dose to tissue and dose to water.

  19. Genetic warfarin dosing: tables versus algorithms.

    Science.gov (United States)

    Finkelman, Brian S; Gage, Brian F; Johnson, Julie A; Brensinger, Colleen M; Kimmel, Stephen E

    2011-02-01

    The aim of this study was to compare the accuracy of genetic tables and formal pharmacogenetic algorithms for warfarin dosing. Pharmacogenetic algorithms based on regression equations can predict warfarin dose, but they require detailed mathematical calculations. A simpler alternative, recently added to the warfarin label by the U.S. Food and Drug Administration, is to use genotype-stratified tables to estimate warfarin dose. This table may potentially increase the use of pharmacogenetic warfarin dosing in clinical practice; however, its accuracy has not been quantified. A retrospective cohort study of 1,378 patients from 3 anticoagulation centers was conducted. Inclusion criteria were stable therapeutic warfarin dose and complete genetic and clinical data. Five dose prediction methods were compared: 2 methods using only clinical information (empiric 5 mg/day dosing and a formal clinical algorithm), 2 genetic tables (the new warfarin label table and a table based on mean dose stratified by genotype), and 1 formal pharmacogenetic algorithm, using both clinical and genetic information. For each method, the proportion of patients whose predicted doses were within 20% of their actual therapeutic doses was determined. Dosing methods were compared using McNemar's chi-square test. Warfarin dose prediction was significantly more accurate (all p algorithm (52%) than with all other methods: empiric dosing (37%; odds ratio [OR]: 2.2), clinical algorithm (39%; OR: 2.2), warfarin label (43%; OR: 1.8), and genotype mean dose table (44%; OR: 1.9). Although genetic tables predicted warfarin dose better than empiric dosing, formal pharmacogenetic algorithms were the most accurate. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Hanford Environmental Dose Reconstruction Project. Monthly report

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, S.D.; Finch, S.M. [comps.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  1. CT radiation dose and iterative reconstruction techniques.

    Science.gov (United States)

    Padole, Atul; Ali Khawaja, Ranish Deedar; Kalra, Mannudeep K; Singh, Sarabjeet

    2015-04-01

    1. CT radiation dose optimization is one of the major concerns for the scientific community. 2. CT image quality is dependent on the selected image reconstruction algorithm. 3. Iterative reconstruction algorithms have reemerged with the potential of radiation dose optimization by lowering image noise. 4. Tube current is the most common parameter used to reduce radiation dose along with iterative reconstruction. 5. Tube potential (kV) is also used for dose optimization with iterative reconstruction in CT angiography protocols and small patients.

  2. Adaption By Low Dose Radiation Exposure

    OpenAIRE

    Mitchel, Ron E.J.

    2015-01-01

    The procedures and dose limitations used for radiation protection in the nuclear industry are founded on the assumption that risk is directly proportional to dose, without a threshold. Based on this idea that any dose, no matter how small, will increase risk, radiation protection regulations generally attempt to reduce any exposure to ?as low as reasonably achievable? (ALARA). We know however, that these regulatory assumptions are inconsistent with the known biological effects of low doses. L...

  3. Low-Dose Pretreatment for Radiation Therapy

    OpenAIRE

    Blankenbecler, Richard

    2010-01-01

    In radiotherapy, a large radiation dose must be applied to both cancer and neighboring healthy cells. Recent experiments have shown that a low dose of ionizing radiation turns on certain protective mechanisms that allow a cell to better survive a subsequent high dose of radiation. This adaptive response can have important and positive consequences for radiotherapy. This paper describes a simple change in treatment procedures to make use of these beneficial effects. A low dose applied only to ...

  4. A dose monitoring system for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chena; Lee, Sam Sun; Kim, Jo Eun; Huh, Kyung Hoe; Yi, Woo Jin; Heo, Min Suk; Choi, Soon Chul [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Symkhampha, Khanthaly [Dept. of Oral and Maxillofacial Radiology, Department of Basic Science, Faculty of Dentistry, University of Health Sciences, Vientiane (Lao People' s Democratic Republic); Lee, Woo Jin [Dept. of Interdisciplinary Program in Radiation, Applied Life Sciences Major, College of Medicine, BK21, and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Yeom, Heon Young [School of Computer Science Engineering, Seoul National University, Seoul (Korea, Republic of)

    2016-06-15

    The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose.

  5. Failure-probability driven dose painting

    DEFF Research Database (Denmark)

    Vogelius, Ivan R; Håkansson, Katrin; Due, Anne K

    2013-01-01

    To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study...

  6. Chemical Dosing and First-Order Kinetics

    Science.gov (United States)

    Hladky, Paul W.

    2011-01-01

    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  7. Metrics, Dose, and Dose Concept: The Need for a Proper Dose Concept in the Risk Assessment of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Myrtill Simkó

    2014-04-01

    Full Text Available In order to calculate the dose for nanoparticles (NP, (i relevant information about the dose metrics and (ii a proper dose concept are crucial. Since the appropriate metrics for NP toxicity are yet to be elaborated, a general dose calculation model for nanomaterials is not available. Here we propose how to develop a dose assessment model for NP in analogy to the radiation protection dose calculation, introducing the so-called “deposited and the equivalent dose”. As a dose metric we propose the total deposited NP surface area (SA, which has been shown frequently to determine toxicological responses e.g. of lung tissue. The deposited NP dose is proportional to the total surface area of deposited NP per tissue mass, and takes into account primary and agglomerated NP. By using several weighting factors the equivalent dose additionally takes into account various physico-chemical properties of the NP which are influencing the biological responses. These weighting factors consider the specific surface area, the surface textures, the zeta-potential as a measure for surface charge, the particle morphology such as the shape and the length-to-diameter ratio (aspect ratio, the band gap energy levels of metal and metal oxide NP, and the particle dissolution rate. Furthermore, we discuss how these weighting factors influence the equivalent dose of the deposited NP.

  8. Dose Titration Algorithm Tuning (DTAT) should supersede 'the' Maximum Tolerated Dose (MTD) in oncology dose-finding trials.

    Science.gov (United States)

    Norris, David C

    2017-01-01

    Background. Absent adaptive, individualized dose-finding in early-phase oncology trials, subsequent 'confirmatory' Phase III trials risk suboptimal dosing, with resulting loss of statistical power and reduced probability of technical success for the investigational therapy. While progress has been made toward explicitly adaptive dose-finding and quantitative modeling of dose-response relationships, most such work continues to be organized around a concept of 'the' maximum tolerated dose (MTD). The purpose of this paper is to demonstrate concretely how the aim of early-phase trials might be conceived, not as 'dose-finding', but as dose titration algorithm (DTA)-finding. Methods. A Phase I dosing study is simulated, for a notional cytotoxic chemotherapy drug, with neutropenia constituting the critical dose-limiting toxicity. The drug's population pharmacokinetics and myelosuppression dynamics are simulated using published parameter estimates for docetaxel. The amenability of this model to linearization is explored empirically. The properties of a simple DTA targeting neutrophil nadir of 500 cells/mm 3 using a Newton-Raphson heuristic are explored through simulation in 25 simulated study subjects. Results. Individual-level myelosuppression dynamics in the simulation model approximately linearize under simple transformations of neutrophil concentration and drug dose. The simulated dose titration exhibits largely satisfactory convergence, with great variance in individualized optimal dosing. Some titration courses exhibit overshooting. Conclusions. The large inter-individual variability in simulated optimal dosing underscores the need to replace 'the' MTD with an individualized concept of MTD i . To illustrate this principle, the simplest possible DTA capable of realizing such a concept is demonstrated. Qualitative phenomena observed in this demonstration support discussion of the notion of tuning such algorithms. Although here illustrated specifically in relation to

  9. Dose Titration Algorithm Tuning (DTAT) should supersede ‘the’ Maximum Tolerated Dose (MTD) in oncology dose-finding trials

    Science.gov (United States)

    Norris, David C.

    2017-01-01

    Background. Absent adaptive, individualized dose-finding in early-phase oncology trials, subsequent ‘confirmatory’ Phase III trials risk suboptimal dosing, with resulting loss of statistical power and reduced probability of technical success for the investigational therapy. While progress has been made toward explicitly adaptive dose-finding and quantitative modeling of dose-response relationships, most such work continues to be organized around a concept of ‘the’ maximum tolerated dose (MTD). The purpose of this paper is to demonstrate concretely how the aim of early-phase trials might be conceived, not as ‘dose-finding’, but as dose titration algorithm (DTA)-finding. Methods. A Phase I dosing study is simulated, for a notional cytotoxic chemotherapy drug, with neutropenia constituting the critical dose-limiting toxicity. The drug’s population pharmacokinetics and myelosuppression dynamics are simulated using published parameter estimates for docetaxel. The amenability of this model to linearization is explored empirically. The properties of a simple DTA targeting neutrophil nadir of 500 cells/mm 3 using a Newton-Raphson heuristic are explored through simulation in 25 simulated study subjects. Results. Individual-level myelosuppression dynamics in the simulation model approximately linearize under simple transformations of neutrophil concentration and drug dose. The simulated dose titration exhibits largely satisfactory convergence, with great variance in individualized optimal dosing. Some titration courses exhibit overshooting. Conclusions. The large inter-individual variability in simulated optimal dosing underscores the need to replace ‘the’ MTD with an individualized concept of MTD i . To illustrate this principle, the simplest possible DTA capable of realizing such a concept is demonstrated. Qualitative phenomena observed in this demonstration support discussion of the notion of tuning such algorithms. Although here illustrated specifically

  10. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    We studied a 62-year-old female hemodialysis patient during initiation and maintenance of lithium carbonate therapy. Three different methods were applied to estimate the regimen: a scenario based on volume of distribution (V(d)), a scenario based on glomerular filtration rate (GFR), and a scenario...... estimates. Furthermore, the maintenance dose estimated from the central compartment (V1) led to plasma concentrations within the therapeutic range. Thus, a regimen where 12.2 mmol lithium was given after each hemodialysis session resulted in stable between-dialysis plasma lithium concentrations...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  11. The Dose Makes The Cooperation

    CERN Document Server

    Cetin, Uzay

    2016-01-01

    Explaining cooperation is one of the greatest challenges for basic scientific research. We proposed an agent-based model to study co-evolution of memory and cooperation. In our model, reciprocal agents with limited memory size play Prisoner's Dilemma Game iteratively. The characteristic of the environment, whether it is threatening or not, is embedded in the payoff matrix. Our findings are as follows. (i) Memory plays a critical role in the protection of cooperation. (ii) In the absence of threat, subsequent generations loose their memory and are consequently invaded by defectors. (iii) In contrast, the presence of an appropriate level of threat triggers the emergence of a self-protection mechanism for cooperation within subsequent generations. On the evolutionary level, memory size acts like an immune response of the population against aggressive defection. (iv) Even more extreme threat results again in defection. Our findings boil down to the following: The dose of the threat makes the cooperation.

  12. Ambient dose equivalents in TGFs

    Science.gov (United States)

    Celestin, Sebastien; Pincon, Jean-Louis; Trompier, Francois

    2017-04-01

    Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from the Earth's atmosphere in association with thunderstorm activity [e.g., Briggs et al., JGR, 118, 3805, 2013]. TGFs are associated with initial propagation stages of intracloud lightning, which represent the most frequent type of lightning discharges [e.g., Cummer et al., GRL, 42, 7792, 2015, and references therein]. TGFs are known to be produced inside common thunderclouds [e.g., Splitt et al., JGR, 115, A00E38, 2010] typically at altitudes ranging from 10 to 14 km [e.g., Cummer et al., GRL, 41, 8586, 2014]. The global TGF occurrence rate is estimated to be 400,000 per year concerning TGFs detectable by Fermi-GBM (Gamma ray Burst Monitor) [Briggs et al., 2013], but detailed analysis of satellite measurements [Østgaard et al., JGR, 117, A03327, 2012] and theoretical studies [Celestin et al., JGR, 120, 10712, 2015] suggest that it cannot be excluded that TGFs represent a part of a regular process taking place during the propagation of lightning discharges. It is important to assess the risk induced by TGFs for airline passengers and crews on board aircraft approaching thunderstorms. Dwyer et al. [JGR, 115, D09206, 2010] have estimated that if an aircraft were to find itself in the source electron beam giving rise to a TGF, passengers and crews might receive effective radiation doses above the regulatory limit depending on the beam diameter. Moreover, Tavani et al. [Nat. Hazards Earth Syst. Sci., 13, 1127, 2013] concluded that TGF-associated neutrons produced by photonuclear reactions would cause serious hazard on the aircraft avionics. In this work, we will present detailed simulation-based estimations of effective doses received by humans that would be irradiated by TGFs for various production altitudes and distances from the TGF source.

  13. Exposure- and Dose-response Analyses in Dose Selection and Labeling of FDA-approved Biologics.

    Science.gov (United States)

    Ogasawara, Ken; Breder, Christopher D; Lin, Dora H; Alexander, G Caleb

    2018-01-01

    Biological drug products, or products derived from living cells, represent an increasingly important part of the pharmaceutical market. Despite this, little is known about how sponsors determine the dose to be studied in registrational trials or to be proposed in labeling for biologics. We examined how exposure-response and dose-response analyses were used to determine dosing in pivotal trials or the labeling for all biologics approved by the Center for Drug Evaluation and Research, the US Food and Drug Administration (FDA) between 2003 and 2016. We extracted relevant characteristics of each biologic from its review package by FDA. We used descriptive statistics to characterize the rationale for the selected dose(s) in registration trials, with a particular focus on the role of exposure-response/dose-response analyses. We also examined how exposure-response/dose-response analyses were used to support the labeling dose and the basis for postmarketing requirements or commitments related to dose optimization. A total of 79 biologics license applications were examined. Dose selection in registrational trials was more often attributed to clinical efficacy (73% of applications) than to clinical safety (42%). The dosing of products whose dose was apparently selected based on clinical efficacy was often (72%) determined by the dose-response relationship. In support of doses that were described in labeling, exposure-response analyses for efficacy were performed more commonly (53%) than dose-response analyses (21%). This trend was apparent after 2012. This is the first study to summarize the justification of dose selection and the labeled dose of biologics approved by the FDA. Dose-response analyses have been often used as the rationale for dose selection of registrational studies, although exposure-response analyses are becoming more prevalent in support of the dosing guidelines in labeling. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.

  14. Prediction of midline dose from entrance ad exit dose using OSLD measurements for total irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Park, Jong Min; Park, So Yeon; Chun, Min Soo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-06-15

    This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

  15. Dose optimisation in single plane interstitial brachytherapy.

    Science.gov (United States)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette Benedicte; Nielsen, Søren Kynde; Olsen, Dag Rune; Grau, Cai; Lindegaard, Jacob Christian

    2006-10-01

    Brachytherapy dose distributions can be optimised by modulation of source dwell times. In this study dose optimisation in single planar interstitial implants was evaluated in order to quantify the potential benefit in patients. In 14 patients, treated for recurrent rectal and cervical cancer, flexible catheters were sutured intra-operatively to the tumour bed in areas with compromised surgical margin. Both non-optimised, geometrically and graphically optimised CT -based dose plans were made. The overdose index (OI), homogeneity index (HI), conformal index (COIN), minimum target dose, and high dose volumes were evaluated. The dependence of OI, HI, and COIN on target volume and implant regularity was evaluated. In addition, 12 theoretical implant configurations were analyzed. Geometrical and graphical optimisation improved the dose plans significantly with graphical optimisation being superior. Graphically optimised dose plans showed a significant decrease of 18%+/-9% in high dose volume (p<0.001). HI, COIN, and OI were significantly improved from 0.50+/-0.05 to 0.60+/-0.05, from 0.65+/-0.04 to 0.71+/-0.04, and from 0.19+/-0.03 to 0.15+/-0.03, respectively (p<0.001 for all). Moreover, minimum target dose increased significantly from 71%+/-5% to 80%+/-5% (p<0.001). The improvement in OI and HI obtained by optimisation depended on the regularity of the implant, such that the benefit of optimisation was larger for irregular implants. OI and HI correlated strongly with target volume limiting the usability of these parameters for comparison of dose plans between patients. Dwell time optimisation significantly improved the dose distribution regarding homogeneity, conformity, minimum target dose, and size of high dose volumes. Graphical optimisation is fast, reproducible and superior to geometric optimisation.

  16. Failure-probability driven dose painting

    Energy Technology Data Exchange (ETDEWEB)

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark); Berthelsen, Anne K. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark); Bentzen, Søren M. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Departments of Human Oncology and Medical Physics, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2013-08-15

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.

  17. Switching From Age-Based Stimulus Dosing to Dose Titration Protocols in Electroconvulsive Therapy: Empirical Evidence for Better Patient Outcomes With Lower Peak and Cumulative Energy Doses.

    Science.gov (United States)

    O'Neill-Kerr, Alex; Yassin, Anhar; Rogers, Stephen; Cornish, Janie

    2017-09-01

    The aim of this study was to test the proposition that adoption of a dose titration protocol may be associated with better patient outcomes, at lower treatment dose, and with comparable cumulative dose to that in patients treated using an age-based stimulus dosing protocol. This was an analysis of data assembled from archived records and based on cohorts of patients treated respectively on an age-based stimulus dosing protocol and on a dose titration protocol in the National Health Service in England. We demonstrated a significantly better response in the patient cohort treated with dose titration than with age-based stimulus dosing. Peak doses were less and the total cumulative dose was less in the dose titration group than in the age-based stimulus dosing group. Our findings are consistent with superior outcomes in patients treated using a dose titration protocol when compared with age-based stimulus dosing in a similar cohort of patients.

  18. Hanford Environmental Dose Reconstruction Project monthly report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M. [comp.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  19. Converting low dose radiation to redox signaling

    OpenAIRE

    Pristov, Jelena Bogdanović; Spasić, Mihajlo; Spasojević, Ivan

    2013-01-01

    In contrast to the damaging effects of high doses, low dose radiation (UV, gamma) has been reported to provoke constructive changes in plants. However, the mechanisms by which plants recognize and respond to low dose radiation are not understood. We have shown recently that polygalacturonic acid, cell wall polysaccharide, converts the highly reactive product of radiation - hydroxyl radical into superoxide which may be further dismutated to hydrogen peroxide. Superoxide has been proposed to ac...

  20. Neutrons in active proton therapy. Parameterization of dose and dose equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Uwe; Haelg, Roger A. [Univ. of Zurich (Switzerland). Dept. of Physics; Radiotherapy Hirslanden AG, Aarau (Switzerland); Lomax, Tony [Paul Scherrer Institute, Villigen (Switzerland). Center for Proton Therapy

    2017-08-01

    One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85 cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138 MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160 MeV or 177 MeV instead of 138 MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy.

  1. SU-E-I-33: Advances in Dose Metrics and Dose Reduction Strategies for Interventional Fluoroscopy.

    Science.gov (United States)

    Weir, V; Zhang, J; Bruner, A

    2012-06-01

    To explore recent advances in available dose metrics and dose reduction features and their impacts during various fluoroscopy procedures. Besides traditional dose metrics (cumulative dose, DAP, etc), recent methods such as real time dose mapping and dose calculation from DICOM information and their relevance to entrance skin exposure (ESE) are demonstrated. Dose reduction features and their potential effects on ESE are explored for different interventional procedures, including dose setting options, frame rate settings, wedges, software options and how these help reduce patient dose, etc. Real time dose monitoring techniques such as DoseAware are investigated. Dose alert such as flagging higher doses at about half of the Joint Commission sentinel event limit, Dose Index Registry and their impacts are discussed. Habit related practices, such as a physician leaning over patients, are highlighted, also taking foot off the fluoroscopy pedal when not needed, and best places to stand are illustrated. A practice improvement procedure involving measurement, analysis and improvement actions is instituted. We also discuss the impact of physician follow up letters to patients who might not have reached the JC Sentinel Event limits but may still have skin issues. In our institutes, these efforts have led to reduction of both patient dose and personnel exposure for interventional procedures. The recording of technical parameters and fluoroscopy dose by the staff has led to a better understanding of appropriate dose levels and technique settings for each procedure. This article can serve as a refresher for radiological staff on how to protect patients and themselves from high doses, while providing the best care possible. It can also serve as criteria for health care providers to institute changes and make quality improvement in interventional practices. © 2012 American Association of Physicists in Medicine.

  2. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  3. Reduction of extremity dose in the radiopharmacy.

    Science.gov (United States)

    Mackenzie, A

    1997-06-01

    With the future introduction of legislation originating from ICRP60 in mind, the operating procedures for the radiopharmacy were reviewed, with the intention of reducing extremity radiation dose. The radiopharmacist's index fingertip dose was measured using TLDs. The radiopharmacist received a mean dose of 0.7 mSv per 10 GBq of administered activity for the right (non-dominant hand) index finger and 0.2 mSv per 10 GBq for the left (dominant hand) index finger. These doses were comparable with other publications. The radiopharmacist received the largest part of the radiation dose during the preparation of 99Tc(m)-MDP. During this preparation, the saline was withdrawn into a syringe already containing 99Tc(m)-eluate, which results in a dose to the fingers. The technique was changed so that the saline and 99Tc(m)-eluate were withdrawn and injected separately into a MDP kit. This reduced the right finger radiation dose to 0.4 mSv per 10 GBq, while the left finger radiation dose remained at 0.2 mSv per 10 GBq. This shows that radiation doses can be effectively reduced using simple changes in procedure.

  4. Hanford Environmental Dose Reconstruction Project Monthly Report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M. (comp.)

    1991-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the technical tasks which correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environment monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 2 tabs.

  5. Applicability of OSL pre-dose phenomenon of quartz in the estimation of equivalent dose

    Energy Technology Data Exchange (ETDEWEB)

    Koul, D.K., E-mail: dkkoul@barc.gov.i [Astrophysical Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Chougaonkar, M.P. [Environmental Assessment Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Polymeris, G.S. [Archaeometry Laboratory, Cultural and Educational Technology Institute, R.C. ' Athena' , Tsimiski 58, GR-67100, Xanthi (Greece)

    2010-01-15

    The feasibility of utilizing the pre-dosed OSL signal in the estimation of the equivalent dose has been investigated. The results based on (i) the behavior of growth curve, (ii) dose recovery tests and (iii) non-bleachability of reservoir centres, R-centres, suggests that (i) the pre-dosed OSL does not seem to work satisfactorily in dose estimation unlike the pre-dosed 110 deg. C TL emission and (ii) it may not be applicable in case of bleached specimen.

  6. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections.

    Science.gov (United States)

    Berge, T I; Wøhni, T

    1984-02-01

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy.

  7. Estimate Of Reference Effective Dose And Renal Dose During Abdominal CT Scan For Dose Optimization Procedures In Ghana

    Directory of Open Access Journals (Sweden)

    Issahaku Shirazu

    2015-08-01

    Full Text Available The study is to estimate renal and effective dose during abdominal MDCT scan using image data for dose optimization for purposes of radiation protection in Ghana. In addition dose influencing parameters including CTDIVOL DLP and MSAD were recorded and compared with ICRPICRU AAPM EU and IAEA dose optimization recommendations. All the measurements were done during abdominal MDCT examination. The measured parameters were part of image data on the MeVisLab DICOM application software platform. The total photon fluence mAs per area and the photon energy fluence kVp per area on the abdominal and renal surface was also determined. Renal and effective dose were estimated using ICRP publication 103 recommendations. The results of the measured parameters based on the average renal surface area of 29.52cm2 and 30.67cm2 for the right and left kidney respectively shows that The mean dose parameters were 6.33mGy 7.78mGy 936.25mGy cm 5.76mGy 10.99mSv and 14.09mSv for CTDIV CTDIW DLP MSAD RD and E respectively. The average values were lower than the general recommended average critical values but this seems misleading based on the fact that 37 of the individual dose and exposure parameters exceeded the recommended critical values. A tradeoff between patient radiation dose and image quality in abdominal CT has been established. Where at a mean SNR of 6.6 decibels an adequate images were produce to answer all the clinical questions with an average effective dose of 14.09mSv and renal dose of 10.99mSv. Radiation dose during x-ray CT imaging is an important patient safety concern. Reducing radiation dose result in a reduction of the risk to patient however reducing dose also reduces the signal strength and thereby reduces the signal to noise ratio in the resulting CT image hence the image quality is affected. It is recommended that the established reference values be use as clinical advisory mechanism to protect patience and clinicians. It is also recommended that

  8. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials.

    Science.gov (United States)

    Lee, Shing M; Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-04-20

    The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. A total of 13,008 toxicities were captured: 46% of patients' first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m(2), the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. © 2016 by American Society of Clinical Oncology.

  9. Dose-ranging design and analysis methods to identify the minimum effective dose (MED).

    Science.gov (United States)

    Zhou, Yijie; Chen, Su; Sullivan, Danielle; Li, Yihan; Zhang, Ying; Xie, Wangang; Zhang, Hongtao; Tang, Yuanyuan; Wang, Li; Hartford, Alan; Yang, Bo

    2017-12-01

    In dose ranging clinical trials, it is critical to investigate the dose-response profile and to identify a minimum effective dose (MED) to guide the dose selection for phase 3 confirmatory trials. Traditional dose ranging trials focus on pairwise comparisons between placebo and each investigational dose, while in recent years MCP-Mod (Multiple Comparison Procedures & Modeling) arose and gained popularity in the design and analysis of dose ranging trials. Comprehensive comparison between MCP-Mod and other methods have been made on continuous variables assuming a normal distribution. In this article, we extend the comparison to binary/binomial response variables. Via simulation, the rate of correct and incorrect MED identification are compared for Dunnett's test, trend test and MCP-Mod for a variety of underlying dose response profiles including both monotone and non-monotone dose responses and are compared under a large number of trial design settings. The precision of MED estimation using MCP-Mod is also evaluated comparing the design options of more dose levels and smaller sample size per dose versus fewer dose levels and larger sample size per dose. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Comparison of TID Effects in Space-Like Variable Dose Rates and Constant Dose Rates

    Science.gov (United States)

    Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Evans, Robin W.; Jun, Insoo

    2008-01-01

    The degradation of the LM193 dual voltage comparator has been studied at different TID dose rate profiles, including several different constant dose rates and a variable dose rate that simulates the behavior of a solar flare. A comparison of results following constant dose rate vs. variable dose rates is made to explore how well the constant dose rates used for typical part testing predict the performance during a simulated space-like mission. Testing at a constant dose rate equal to the lowest dose rate seen during the simulated flare provides an extremely conservative estimate of the overall amount of degradation. A constant dose rate equal to the average dose rate is also more conservative than the variable rate. It appears that, for this part, weighting the dose rates by the amount of total dose received at each rate (rather than the amount of time at each dose rate) results in an average rate that produces an amount of degradation that is a reasonable approximation to that received by the variable rate.

  11. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic.

    Science.gov (United States)

    Poletti, Pierre-Alexandre; Platon, Alexandra; Rutschmann, Olivier T; Schmidlin, Franz R; Iselin, Christophe E; Becker, Christoph D

    2007-04-01

    The purpose of our study was to compare a low-dose abdominal CT protocol, delivering a dose of radiation close to the dose delivered by abdominal radiography, with standard-dose unenhanced CT in patients with suspected renal colic. One hundred twenty-five patients (87 men, 38 women; mean age, 45 years) who were admitted with suspected renal colic underwent both abdominal low-dose CT (30 mAs) and standard-dose CT (180 mAs). Low-dose CT and standard-dose CT were independently reviewed, in a delayed fashion, by two radiologists for the characterization of renal and ureteral calculi (location, size) and for indirect signs of renal colic (renal enlargement, pyeloureteral dilatation, periureteral or renal stranding). Results reported for low-dose CT, with regard to the patients' body mass indexes (BMIs), were compared with those obtained with standard-dose CT (reference standard). The presence of non-urinary tract-related disorders was also assessed. Informed consent was obtained from all patients. In patients with a BMI 3 mm. Low-dose CT was 100% sensitive and specific for depicting non-urinary tract-related disorders (n = 6). Low-dose CT achieves sensitivities and specificities close to those of standard-dose CT in assessing the diagnosis of renal colic, depicting ureteral calculi > 3 mm in patients with a BMI < 30, and correctly identifying alternative diagnoses.

  12. The use of modified single pencil beam dose kernels to improve IMRT dose calculation accuracy.

    Science.gov (United States)

    Bergman, Alanah M; Otto, Karl; Duzenli, Cheryl

    2004-12-01

    Intensity modulated radiation therapy (IMRT) is used to deliver highly conformal radiation doses to tumors while sparing nearby sensitive tissues. Discrepancies between calculated and measured dose distributions have been reported for regions of high dose gradients corresponding to complex radiation fluence patterns. For the single pencil beam convolution dose calculation algorithm, the ability to resolve areas of high dose structure is partly related to the shape of the pencil beam dose kernel (similar to how a photon detector's point spread function relates to imaging resolution). Improvements in dose calculation accuracy have been reported when the treatment planning system (TPS) is recommissioned using high-resolution measurement data as input. This study proposes to improve the dose calculation accuracy for IMRT planning by modifying clinical dose kernel shapes already present in the TPS, thus avoiding the need to reacquire higher resolution commissioning data. The in-house optimization program minimizes a cost-function based on a two-dimensional composite dose subtraction/distance-to-agreement (gamma) analysis. The final modified kernel shapes are reintroduced into the treatment planning system and improvements to the dose calcula tion accuracy for complex IMRT dose distributions evaluated. The central kernel value (radius =0 cm) has the largest effect on the dose calculation resolution and is the focus of this study.

  13. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    Science.gov (United States)

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  14. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  15. Multicriteria optimization of the spatial dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Schlaefer, Alexander [Medical Robotics Group, Universität zu Lübeck, Lübeck 23562, Germany and Institute of Medical Technology, Hamburg University of Technology, Hamburg 21073 (Germany); Viulet, Tiberiu [Medical Robotics Group, Universität zu Lübeck, Lübeck 23562 (Germany); Muacevic, Alexander; Fürweger, Christoph [European CyberKnife Center Munich, Munich 81377 (Germany)

    2013-12-15

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.

  16. Fewer Doses of HPV Vaccine Result in Immune Response Similar to Three-Dose Regimen

    Science.gov (United States)

    ... Press Releases NCI News Note Fewer doses of HPV vaccine result in immune response similar to three- ... report that two doses of a human papillomavirus (HPV) vaccine, trademarked as Cervarix, resulted in similar serum ...

  17. Absorbed radiation dose on LHC interconnects

    CERN Document Server

    Versaci, R; Vlachoudis, V; CERN. Geneva. ATS Department

    2011-01-01

    Here we present the results of our FLUKA simulations devoted to the evaluation of the peak dose absorbed by the busbar insulator in the LHC Interaction Region 7 interconnects. The peak dose absorbed by the cold magnet coils are also presented.

  18. Prediction ofamikacin dose requiretnents in neutropenic patients ...

    African Journals Online (AJOL)

    Prediction ofamikacin dose requiretnents in neutropenic patients with haetnatological disease. C. S. ZENT, R. ALLIN, P. I. FOLB. Abstract This study reports on the use of an easily applied. Bayesian forecasting ptogranune (OPT; Clyde- soft) to predict atnikacin dose requirements in 10 patients with haematological disease ...

  19. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D. [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  20. An updated dose assessment for Rongelap Island

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  1. Antiproton radiotherapy: peripheral dose from secondary neutrons

    DEFF Research Database (Denmark)

    Fahimian, Benjamin P.; DeMarco, John J.; Keyes, Roy

    2009-01-01

    is the normal tissue dose resulting from secondary neutrons produced in the annihilation of antiprotons on the nucleons of the target atoms. Here we present the first organ specific Monte Carlo calculations of normal tissue equivalent neutron dose in antiproton therapy through the use of a segmented CT...

  2. Low dose intravaginal misoprostol versus intracervical balloon ...

    African Journals Online (AJOL)

    Background:The efficacy and safety of low dose misoprostol as a ripening agent compared to the widely used balloon catheter in developing countries is undetermined. Objective:To compare the safety and efficacy of a low dose intravaginal misoprostol and intracervical Foley's catheter for cervical ripening. Design:A ...

  3. Dose mapping for documentation of radiation sterilization

    DEFF Research Database (Denmark)

    Miller, A.

    1999-01-01

    The radiation sterilization standards EN 552 and ISO 11137 require that dose mapping in real or simulated product be carried in connection with the process qualification. This paper reviews the recommendations given in the standards and discusses the difficulties and limitations of practical dose...

  4. A new method for effective dose calculation based on the ambient dose height distribution

    Directory of Open Access Journals (Sweden)

    Liebmann Mario

    2017-09-01

    Full Text Available The realistic determination of effective dose of the staff in diagnostic radiology has been a challenge both for personal dosimetry and ambient dose measurement. A model for dosimetry of occupational exposure is presented that allows direct determination of effective dose from measured or even manufacturer given ambient dose distribution in front of the personnel. This model considers a wide range of radiation energies, different radiation protection situations, and gender effects.

  5. Hanford Environmental Dose Reconstruction Project Monthly Report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M. (comp.)

    1990-05-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The US Department of Energy (DOE) funds the project. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks address each of the primary steps in the path from radioactive releases to dose estimates source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates.

  6. Pediatric Dosing and Body Size in Biotherapeutics

    Directory of Open Access Journals (Sweden)

    Hartmut Derendorf

    2010-12-01

    Full Text Available Although pediatric doses for biotherapeutics are often based on patients' body weight (mg/kg or body surface area (mg/m2, linear body size dose adjustment is highly empirical. Growth and maturity are also important factors that affect the absorption, distribution, metabolism and excretion (ADME of biologics in pediatrics. The complexity of the factors involved in pediatric pharmacokinetics lends to the reconsideration of body size based dose adjustment. A proper dosing adjustment for pediatrics should also provide less intersubject variability in the pharmacokinetics and/or pharmacodynamics of the product compared with no dose adjustment. Biological proteins and peptides generally share the same pharmacokinetic principle with small molecules, but the underlying mechanism can be very different. Here, pediatric and adult pharmacokinetic parameters are compared and summarized for selected biotherapeutics. The effect of body size on the pediatric pharmacokinetics for these biological products is discussed in the current review.

  7. Dose reduction at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J.W.; Dionne, B.J.

    1983-01-01

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

  8. Radiation Dose and Image Quality of Low-dose Protocol in Chest CT: Comparison of Standard-dose Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jeong [Occupational Lung Diseases Institute, KCOMWEL, Seoul (Korea, Republic of); Ahn, Bong Seon; Park, Young Sun [Department of Radiological Technology, Daejeon Health Science College, Daejeon (Korea, Republic of)

    2012-06-15

    The purpose of this study was to compare radiation dose and image quality between low-dose (LDP) and standard-dose protocol (SDP). LDP (120 kVp, 30 mAs, 2-mm thickness) and SDP (120 kVp, 180 mAs, 1.2-mm thickness) images obtained from 61 subjects were retrospectively evaluated at level of carina bifurcation, using multi-detector CT (Brilliance 16, Philips Medical Systems). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated at ascending aorta and infraspinatus muscle, from CT number and back-ground noise. Radiation dose from two protocols measured at 5-point using acrylic-phantom, and CT number and noise measured at 4-point using water-phantom. All statistical analysis were performed using SPSS 19.0 program. LDP images showed significantly more noise and a significantly lower SNR and CNR than did SDP images at ascending aorta and infraspinatus muscle. Noise, SNR and CNR were significantly correlated with body mass index (p<0.001). Radiation dose, SNR and CNR from phantom were significant differences between two protocols. LDP showed a significant reduction of radiation dose with a significant change in SNR and CNR compared with SDP. Therefore, exposure dose on LDP in clinical applications needs resetting highly more considering image quality.

  9. Effect of dose and dosing rate on the mutagenesis of nitric oxide in ...

    African Journals Online (AJOL)

    Effect of dose and dosing rate on the mutagenesis of nitric oxide in supF shuttle vector. Ji Hye Kim1 and ... Purpose: To determine how the dose and rate of NO• treatment affects mutagenic responses. Methods: Shuttle vector pSP189 was ... form a strong oxidant and nitrating agent, peroxynitrite (ONOO-), which can initiate.

  10. Assessment of a new p-Mosfet usable as a dose rate insensitive gamma dose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Vettese, F.; Donichak, C.; Bourgeault, P. [DGA/Centre d`etudes du Bouchet/DPN, 31 - Toulouse (France)

    1995-12-31

    Dosimetric response of unbiased MOS devices has been assessed at dose rates greater than 2000 cGy/h. Application have been made to a personal dosemeter / dose rate meter to measure the absorbed tissue dose received in the case of acute external irradiation. (D.L.). 10 refs.

  11. Optimizing dose prescription in stereotactic body radiotherapy for lung tumours using Monte Carlo dose calculation

    NARCIS (Netherlands)

    Widder, Joachim; Hollander, Miranda; Ubbels, Jan F.; Bolt, Rene A.; Langendijk, Johannes A.

    Purpose: To define a method of dose prescription employing Monte Carlo (MC) dose calculation in stereotactic body radiotherapy (SBRT) for lung tumours aiming at a dose as low as possible outside of the PTV. Methods and materials: Six typical T1 lung tumours - three small, three large - were

  12. Antimicrobial Doses in Continuous Renal Replacement Therapy: A Comparison of Dosing Strategies

    Directory of Open Access Journals (Sweden)

    Anna P. Kempke

    2016-01-01

    Full Text Available Purpose. Drug dose recommendations are not well defined in patients undergoing continuous renal replacement therapy (CRRT due to limited published data. Several guidelines and pharmacokinetic equations have been proposed as tools for CRRT drug dosing. Dose recommendations derived from these methods have yet to be compared or prospectively evaluated. Methods. A literature search of PubMed, Micromedex, and Embase was conducted for 40 drugs commonly used in the ICU to gather pharmacokinetic data acquired from patients with acute and chronic kidney disease as well as healthy volunteers. These data and that obtained from drug package inserts were gathered for use in three published CRRT drug dosing equations. Doses calculated for a model patient using each method were compared to doses suggested in a commonly used dosing text. Results. Full pharmacokinetic data was available for 18, 31, and 40 agents using acute kidney injury, end stage renal disease, and normal patient data, respectively. On average, calculated doses differed by 30% or more from the doses recommended by the renal dosing text for >50% of the medications. Conclusion. Wide variability in dose recommendations for patients undergoing CRRT exists when these equations are used. Alternate, validated dosing methods need to be developed for this at-risk patient population.

  13. Antimicrobial Doses in Continuous Renal Replacement Therapy: A Comparison of Dosing Strategies.

    Science.gov (United States)

    Kempke, Anna P; Leino, Abbie S; Daneshvar, Farzad; Lee, John Andrew; Mueller, Bruce A

    2016-01-01

    Purpose. Drug dose recommendations are not well defined in patients undergoing continuous renal replacement therapy (CRRT) due to limited published data. Several guidelines and pharmacokinetic equations have been proposed as tools for CRRT drug dosing. Dose recommendations derived from these methods have yet to be compared or prospectively evaluated. Methods. A literature search of PubMed, Micromedex, and Embase was conducted for 40 drugs commonly used in the ICU to gather pharmacokinetic data acquired from patients with acute and chronic kidney disease as well as healthy volunteers. These data and that obtained from drug package inserts were gathered for use in three published CRRT drug dosing equations. Doses calculated for a model patient using each method were compared to doses suggested in a commonly used dosing text. Results. Full pharmacokinetic data was available for 18, 31, and 40 agents using acute kidney injury, end stage renal disease, and normal patient data, respectively. On average, calculated doses differed by 30% or more from the doses recommended by the renal dosing text for >50% of the medications. Conclusion. Wide variability in dose recommendations for patients undergoing CRRT exists when these equations are used. Alternate, validated dosing methods need to be developed for this at-risk patient population.

  14. Patient radiation exposure in uterine artery embolization of leiomyomata: calculation of organ doses and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, S.; Strecker, E.P. [Department of Radiology, Diakonissenkrankenhaus, Diakonissenstrasse 28, 76199, Karlsruhe (Germany); Schultz, F.W.; Zoetelief, J. [Interfaculty Reactor Institute, Medical Physics, Delft University of Technology, 2629 JB, Delft (Netherlands)

    2004-05-01

    The goal of this study was estimation of patient effective dose from uterine artery embolization of leiomyomata. Parameters and data relevant to patient dose were recorded for 33 consecutive procedures. Using Monte Carlo simulation of radiation transport, organ and effective doses were calculated in detail for a subset of five procedures, to estimate the effective dose for all procedures. Mean dose area product was 59.9, median 23.4, and range 8.8-317.5 Gycm{sup 2}. Mean absorbed ovarian dose was calculated as 51 mGy in the five procedures. Using the dose conversion factor estimated from the Monte Carlo simulation for all procedures a mean estimated effective dose of 34 mSv (median 13 mSv, range 5-182 mSv) results, with a tendency to lower values regarding the succession of the procedures. Patients' radiation exposure level is up to twice of that of an abdominal CT examination. Angiographic equipment related dose-reducing features and radiographic technique essentially influence organ doses and effective dose. Consistent application of dose-reducing techniques and awareness of radiation exposure justifies uterine artery embolization as a therapeutic option for the treatment of uterine fibroids. (orig.)

  15. Fixed Dosing of Monoclonal Antibodies in Oncology.

    Science.gov (United States)

    Hendrikx, Jeroen J M A; Haanen, John B A G; Voest, Emile E; Schellens, Jan H M; Huitema, Alwin D R; Beijnen, Jos H

    2017-10-01

    Most monoclonal antibodies in oncology are administered in body-size-based dosing schedules. This is believed to correct for variability in both drug distribution and elimination between patients. However, monoclonal antibodies typically distribute to the blood plasma and extracellular fluids only, which increase less than proportionally with the increase in body weight. Elimination takes place via proteolytic catabolism, a nonspecific immunoglobulin G elimination pathway, and intracellular degradation after binding to the target. The latter is the primary route of elimination and is related to target expression levels rather than body size. Taken together, the minor effects of body size on distribution and elimination of monoclonal antibodies and their usually wide therapeutic window do not support body-size-based dosing. We evaluated effects of body weight on volume of distribution and clearance of monoclonal antibodies in oncology and show that a fixed dose for most of these drugs is justified based on pharmacokinetics. A survey of the savings after fixed dosing of monoclonal antibodies at our hospital showed that fixed dosing can reduce costs of health care, especially when pooling of preparations is not possible (which is often the case in smaller hospitals). In conclusion, based on pharmacokinetic parameters of monoclonal antibodies, there is a rationale for fixed dosing of these drugs in oncology. Therefore, we believe that fixed dosing is justified and can improve efficiency of the compounding. Moreover, drug spillage can be reduced and medication errors may become less likely. The currently available knowledge of elimination of monoclonal antibodies combined with the publicly available data from clinical trials and extensive population pharmacokinetic (PopPK) modeling justifies fixed dosing. Interpatient variation in exposure is comparable after body weight and fixed dosing and most monoclonal antibodies show relatively flat dose-response relationships

  16. Implications of nonuniform tumor doses for radioimmunotherapy.

    Science.gov (United States)

    O'Donoghue, J A

    1999-08-01

    This article describes a method of assessing the biologic consequences of nonuniform dose distributions produced in tumors by biologically targeted radionuclide therapy. The analysis is based on a simple mathematical model that assumes all tumor cells are uniformly radiosensitive. Using the linear-quadratic radiobiologic model, it is possible to represent an absorbed dose distribution by a biologically effective dose (BED) volume histogram (BVH). The Laplace transform of the BVH yields an equivalent uniform biologically effective dose. This is a one-number value that fully describes the biologic effect of a nonuniform absorbed dose distribution. In this article, for the purposes of exposition, nonuniform BED distributions are represented by normal distributions. Nonuniform absorbed dose distributions are inefficient in sterilizing tumors and become proportionately less effective as the mean dose increases. The loss in effectiveness is most severe for radiosensitive tumors. Several approaches may alleviate the consequences of dosimetric nonuniformity. These include the use of smaller targeting molecules, radionuclides with longer emission ranges, fractionated administration of biologically targeted radionuclide therapy and combined modality treatments.

  17. Variation in lunar neutron dose estimates.

    Science.gov (United States)

    Slaba, Tony C; Blattnig, Steve R; Clowdsley, Martha S

    2011-12-01

    The radiation environment on the Moon includes albedo neutrons produced by primary particles interacting with the lunar surface. In this work, HZETRN2010 is used to calculate the albedo neutron contribution to effective dose as a function of shielding thickness for four different space radiation environments and to determine to what extent various factors affect such estimates. First, albedo neutron spectra computed with HZETRN2010 are compared to Monte Carlo results in various radiation environments. Next, the impact of lunar regolith composition on the albedo neutron spectrum is examined, and the variation on effective dose caused by neutron fluence-to-effective dose conversion coefficients is studied. A methodology for computing effective dose in detailed human phantoms using HZETRN2010 is also discussed and compared. Finally, the combined variation caused by environmental models, shielding materials, shielding thickness, regolith composition and conversion coefficients on the albedo neutron contribution to effective dose is determined. It is shown that a single percentage number for characterizing the albedo neutron contribution to effective dose can be misleading. In general, the albedo neutron contribution to effective dose is found to vary between 1-32%, with the environmental model, shielding material and shielding thickness being the driving factors that determine the exact contribution. It is also shown that polyethylene or other hydrogen-rich materials may be used to mitigate the albedo neutron exposure.

  18. Topical Metered-dosing Dispenser Performance Evaluation.

    Science.gov (United States)

    Liu, Qiang; Kupiec, Thomas C; Vu, Nicole T

    2016-01-01

    Topical metered-dosing dispensers are designed for dosing accuracy and ease-of-use by the patients while protecting the packaged products from environmental exposure and contamination. The objective of this study was to evaluate the accuracy, precision, and residual of available topical metered-dosing dispensers with different types of topical cream for practical application. Triplicate samples of five different dispensers were tested. This test was completed using three types of commercial topical cream-bases of dissimilar Total Active Pharmaceutical Ingredient Load Percentages, Transdermal Penetration Percentages, and Specific Gravities. The dispensers were evaluated according to specified dose-uniformity criteria for a total dispensing capacity of 30 mL at 0.5 mL per dose for 60 doses. The study shows Topi-CLICK performed with the best precision and accuracy of dosing in comparison to the airless-pump type dispensers. While the dispensing was highly variable with airless pumps and may require calibration for each packaged product, remarkably the performance of Topi-CLICK was not affected by different types of cream-bases and does not require additional metering calibration. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  19. Brachytherapy dose measurements in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rubo, R., E-mail: gabrielpaivafonseca@gmail.com [Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo (Brazil)

    2014-08-15

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  20. Dosing of Enoxaparin in Renal Impairment.

    Science.gov (United States)

    Shaikh, Suhail A; Regal, Randolph E

    2017-04-01

    To review enoxaparin treatment dosing, pharmacokinetics, and clinical outcomes data in patients with renal impairment and to examine the current two-tiered dosing regimen approved by the Food and Drug Administration (FDA). A literature search of PubMed (1990-2016) was performed using the search terms low-molecular-weight heparin, unfractionated heparin, bleeding, enoxaparin, renal impairment, pharmacokinetics, and hemodialysis. All studies assessing the pharmacokinetic properties of enoxaparin in patients with renal impairment were evaluated. In addition, all retrospective and prospective studies assessing the safety and efficacy of enoxaparin treatment in this population were evaluated. Five pharmacokinetic studies evaluated changes in the pharmacokinetics of enoxaparin in patients with renal impairment. In these studies, enoxaparin clearance was reduced by 17% to 44% in patients with mild and moderate renal impairment. Six retrospective studies evaluated the safety of enoxaparin in patients with renal impairment. In one study, patients with moderate renal impairment were at increased risk of bleeding when using the current FDA-approved two-tiered scheme (odds ratio, 4.7; 95% confidence interval, 1.7-13.0; P = 0.002). Another study demonstrated that individualized enoxaparin dosing, when compared to FDA-approved dosing, resulted in a decreased risk of bleeding. Two retrospective studies evaluated efficacy. One of these studies compared reduced-dose enoxaparin with unfractionated heparin; there was a trend toward lower incidences of thromboembolism and 30-day mortality with reduced-dose enoxaparin. Hospital length of stay also decreased with reduced-dosed enoxaparin. This paper highlights the differences in the pharmacokinetic properties and safety and efficacy outcomes in multiple degrees of renal impairment when using treatment-dose enoxaparin. Given the literature highlighted in this review, a more multitiered enoxaparin renal dosing strategy-perhaps shifting

  1. Eye lens dose in interventional cardiology.

    Science.gov (United States)

    Principi, S; Delgado Soler, C; Ginjaume, M; Beltran Vilagrasa, M; Rovira Escutia, J J; Duch, M A

    2015-07-01

    The ICRP has recently recommended reducing the occupational exposure dose limit for the lens of the eye to 20 mSv y(-1), averaged over a period of 5 y, with no year exceeding 50 mSv, instead of the current 150 mSv y(-1). This reduction will have important implications for interventional cardiology and radiology (IC/IR) personnel. In this work, lens dose received by a staff working in IC is studied in order to determine whether eye lens dose monitoring or/and additional radiological protection measures are required. Eye lens dose exposure was monitored in 10 physicians and 6 nurses. The major IC procedures performed were coronary angiography and percutaneous transluminal coronary angioplasty. The personnel were provided with two thermoluminescent dosemeters (TLDs): one calibrated in terms of Hp(3) located close to the left ear of the operator and a whole-body dosemeter calibrated in terms of Hp(10) and Hp(0.07) positioned on the lead apron. The estimated annual eye lens dose for physicians ranged between 8 and 60 mSv, for a workload of 200 procedures y(-1). Lower doses were collected for nurses, with estimated annual Hp(3) between 2 and 4 mSv y(-1). It was observed that for nurses the Hp(0.07) measurement on the lead apron is a good estimate of eye lens dose. This is not the case for physicians, where the influence of both the position and use of protective devices such as the ceiling shield is very important and produces large differences among doses both at the eyes and on the thorax. For physicians, a good correlation between Hp(3) and dose area product is shown. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  3. A conversion coefficient from dose-area products to effective doses for patients in intraoral radiography

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kenji; Yosue, Takashi [Nippon Dental Univ., Tokyo (Japan); Sakaino, Rie; Harata, Yasuo [Showa Univ., Tokyo (Japan). School of Dentistry

    2002-06-01

    A conversion coefficient from dose-area products to effective doses was proposed as a practical estimator of patient health detriments from intraoral radiography. According to the tissue-dose data reported by Gibbs et al. (Dentomaxillofac. Radiol., 1987 and 1988) and the tissue weighting factors recommended in ICRP Publication 60, the effective doses and the dose-area products were calculated at 70, 80, and 90 kV for E-speed films employed at each of seven geometries using bisecting angle, paralleling, and bitewing techniques with round or rectangular collimated beams. The focus-skin distances were 20 cm for the short cone and 40 cm for the long cone, respectively. From a total of 90 sets of exposure factors in intraoral radiographic examinations for adults, the effective doses were in the range of 0.38 {mu}Sv to 8.0 {mu}Sv, and the corresponding dose-area products were 0.58 cGy{center_dot}cm{sup 2} and 7.6 cGy{center_dot}cm{sup 2}. The obtained linear regression coefficient to convert the dose-area product to the effective dose was 0.97 {mu}Sv/cGy{center_dot}cm{sup 2}. We conclude that effective doses can be estimated from the dose-area products if an uncertainty of a factor of two is acceptable in intraoral radiography. (author)

  4. Dose integration and dose rate characteristics of a NiPAM polymer gel MRI dosimeter system

    Science.gov (United States)

    Waldenberg, C.; Karlsson Hauer, A.; Gustafsson, C.; Ceberg, S.

    2017-05-01

    The normoxic polymer gel dosimeter based on N-isopropyl acrylamide (NiPAM) is a promising full 3D-dosimeter with high spatial resolution and near tissue equivalency. NiPAM gel samples were irradiated to different doses using a linear accelerator. The absorbed dose was evaluated using MRI and statistical significance of the analysed data was calculated. The analysis was carried out using an in-house developed software. It was found that the gel dosimeter responded linearly to the absorbed dose. The gel exhibited a dose rate dependence, as well as a dependence on the sequential beam irradiation scheme. A higher dose rate, as well as a higher dose per sequential beam, resulted in a lower dose response.

  5. Mercury dosing solutions for fluorescent lamps

    Science.gov (United States)

    Corazza, A.; Boffito, C.

    2008-07-01

    A review of the different technologies used to dose mercury in fluorescent lamps is presented. Conventional liquid mercury dosing is gradually being replaced with more reliable and environmentally friendly solutions that enable a significant reduction of the amount of mercury introduced in the lamp, so as to cope with more stringent regulations issued to minimize the environmental impact of exhausted lamps. This paper will review the most advanced novel methods to assure an accurate and fine dosing of mercury in fluorescent lamps, especially focusing on solutions based on the use of solid alloys.

  6. Topology optimization of inertia driven dosing units

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    2017-01-01

    This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization...... to the Brinkman penalized Navier-Stokes equation the design of the dosing units can be optimized with respect to dosing capability without initial design assumptions. The influence of flow resistance and speed is investigated to assess design performance under varying operating conditions....

  7. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  8. Location Modification Factors for Potential Dose Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew

    2017-01-01

    A Department of Energy facility must comply with the National Emission Standard for Hazardous Air Pollutants for radioactive air emissions. The standard is an effective dose of less than 0.1 mSv yr-1 to the maximum public receptor. Additionally, a lower dose level may be assigned to a specific emission point in a State issued permit. A method to efficiently estimate the expected dose for future emissions is described. This method is most appropriately applied to a research facility with several emission points with generally low emission levels of numerous isotopes.

  9. FUEL HANDLING FACILITY WORKER DOSE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    A. Achudume

    2004-08-09

    The purpose of this design calculation is to estimate radiation doses received by personnel working in the Fuel Handling Facility (FHF) of the Monitored Geological Repository (MGR). The FHF is a surface facility supporting waste handling operations i.e. receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results are also limited to normal operations only. Results of this calculation will be used to support the FHF design and License Application.

  10. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    D.T. Dexheimer

    2004-02-27

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application.

  11. Mercury dosing solutions for fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Corazza, A; Boffito, C [SAES Getters S.p.A., Viale Italia 77, Lainate (MI) 20020 (Italy)], E-mail: alessio_corazza@saes-group.com

    2008-07-21

    A review of the different technologies used to dose mercury in fluorescent lamps is presented. Conventional liquid mercury dosing is gradually being replaced with more reliable and environmentally friendly solutions that enable a significant reduction of the amount of mercury introduced in the lamp, so as to cope with more stringent regulations issued to minimize the environmental impact of exhausted lamps. This paper will review the most advanced novel methods to assure an accurate and fine dosing of mercury in fluorescent lamps, especially focusing on solutions based on the use of solid alloys.

  12. Influence of Genotype on Warfarin Maintenance Dose Predictions Produced Using a Bayesian Dose Individualization Tool.

    Science.gov (United States)

    Saffian, Shamin M; Duffull, Stephen B; Roberts, Rebecca L; Tait, Robert C; Black, Leanne; Lund, Kirstin A; Thomson, Alison H; Wright, Daniel F B

    2016-12-01

    A previously established Bayesian dosing tool for warfarin was found to produce biased maintenance dose predictions. In this study, we aimed (1) to determine whether the biased warfarin dose predictions previously observed could be replicated in a new cohort of patients from 2 different clinical settings, (2) to explore the influence of CYP2C9 and VKORC1 genotype on predictive performance of the Bayesian dosing tool, and (3) to determine whether the previous population used to develop the kinetic-pharmacodynamic model underpinning the Bayesian dosing tool was sufficiently different from the test (posterior) population to account for the biased dose predictions. The warfarin maintenance doses for 140 patients were predicted using the dosing tool and compared with the observed maintenance dose. The impact of genotype was assessed by predicting maintenance doses with prior parameter values known to be altered by genetic variability (eg, EC50 for VKORC1 genotype). The prior population was evaluated by fitting the published kinetic-pharmacodynamic model, which underpins the Bayesian tool, to the observed data using NONMEM and comparing the model parameter estimates with published values. The Bayesian tool produced positively biased dose predictions in the new cohort of patients (mean prediction error [95% confidence interval]; 0.32 mg/d [0.14-0.5]). The bias was only observed in patients requiring ≥7 mg/d. The direction and magnitude of the observed bias was not influenced by genotype. The prior model provided a good fit to our data, which suggests that the bias was not caused by different prior and posterior populations. Maintenance doses for patients requiring ≥7 mg/d were overpredicted. The bias was not due to the influence of genotype nor was it related to differences between the prior and posterior populations. There is a need for a more mechanistic model that captures warfarin dose-response relationship at higher warfarin doses.

  13. Validation of GPU based TomoTherapy dose calculation engine.

    Science.gov (United States)

    Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond

    2012-04-01

    The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) GPU dose engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.

  14. CT radiation dose and iterative reconstruction techniques

    National Research Council Canada - National Science Library

    Padole, Atul; Ali Khawaja, Ranish Deedar; Kalra, Mannudeep K; Singh, Sarabjeet

    2015-01-01

    .... CT image quality is dependent on the selected image reconstruction algorithm. 3. Iterative reconstruction algorithms have reemerged with the potential of radiation dose optimization by lowering image noise. 4...

  15. Hanford Environmental Dose Reconstruction Project. Monthly report

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M. [comps.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  16. Hanford Environmental Dose Reconstruction Project monthly report

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, A.H., Cannon, S.D.; Finch, S.M. (comps.)

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  17. Review of surface dose detectors in radiotherapy

    LENUS (Irish Health Repository)

    O'Shea, E.

    2006-11-20

    Several instruments have been used to measure absorbed radiation dose under non-electronic equilibrium conditions, such as in the build-up region or near the interface between two different media, including the surface. Many of these detectors are discussed in this paper. A common method of measuring the absorbed dose distribution and electron contamination in the build-up region of high-energy beams for radiation therapy is by means of parallel-plate ionisation chambers. Thermoluminescent dosimeters (TLDs), diodes and radiographic film have also been used to obtain surface dose measurements. The diamond detector was used recently by the author in an investigation on the effects of beam-modifying devices on skin dose and it is also described in this report

  18. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  19. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  20. Nurse dose: what's in a concept?

    Science.gov (United States)

    Manojlovich, Milisa; Sidani, Souraya

    2008-08-01

    Many researchers have sought to address the relationship between nursing care and patient outcomes, with inconsistent and contradictory findings. We conducted a concept analysis and concept derivation, basing our work on theoretical and empirical literature, to derive nurse dose as a concept that pulls into a coherent whole disparate variables used in staffing studies. We defined nurse dose as the level of nursing reflected in the purity, amount, frequency, and duration of nursing care needed to produce favorable outcomes. All four parameters of nurse dose used together can facilitate our understanding of how nursing contributes to patient outcomes. Ongoing investigation will help to identify the parameters of nurse dose that have the greatest effect on outcomes. 2008 Wiley Periodicals, Inc

  1. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  2. Dipyrone and acetaminophen: correct dosing by parents?

    Directory of Open Access Journals (Sweden)

    João Guilherme Bezerra Alves

    Full Text Available CONTEXT AND OBJECTIVE: Several studies in developed countries have documented that a significant percentage of children are given inappropriate doses of acetaminophen and ibuprofen. The objective of this paper was to investigate parents’ accuracy in giving dipyrone and acetaminophen to their children, in a poor region. DESIGN AND SETTING: Cross-sectional study at the pediatric emergency department of Instituto Materno-Infantil Prof. Fernando Figueira, a teaching hospital in Pernambuco. METHODS: The inclusion criteria were age between 3 and 36 months, main complaint of fever and at least one dose of dipyrone or acetaminophen given to the child during the 24 hours preceding their arrival at the emergency department. The mothers were asked for demographic information and about the antipyretic doses given, which were compared with the recommended dosage. RESULTS: Among the 200 patients studied, 117 received dipyrone and 83 received acetaminophen. Overall, 75 % received an incorrect dose of antipyretic. Of the patients who received dipyrone, 105 (89.7% were given an incorrect dose; 16 (15.2% received too little dipyrone, and 89 (84.8% received too much. Of the patients who received acetaminophen, 45 (54.2% were given an incorrect dose; 38 (84.4% received too little acetaminophen, and 7 (15.6% received too much. There were no differences in maternal and child characteristics between the groups receiving correct and incorrect doses of medication, except for the type of medication (dipyrone versus acetaminophen. CONCLUSIONS: Most of the children treated were given inappropriate doses, mainly dipyrone overdosing and acetaminophen underdosing.

  3. Radiation Doses to Skin from Dermal Contamination

    Science.gov (United States)

    2010-10-01

    Doses to Skin From Dermal Contamination HDTRA1-07-C-0015 A. Iulian Apostoaei and David C. Kocher Prepared by: SENES Oak Ridge, Inc. Center for Risk...5a. CONTRACT NUMBER HDTRA1-07-C-0015 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Radiation Doses to Skin from Dermal Contamination 5c... contamination due to a uniform deposition of airborne radioactive material in specific regions of the body. This methodology includes a model to estimate

  4. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  5. Radiation Biology Irradiator Dose Verification Survey.

    Science.gov (United States)

    Pedersen, Kurt H; Kunugi, Keith A; Hammer, Clifford G; Culberson, Wesley S; DeWerd, Larry A

    2016-02-01

    Interest in standardized dosimetry for radiobiological irradiators has expanded over the last decade. At a symposium held at NIST, "The Importance of Standardization of Dosimetry in Radiobiology", a set of 12 criteria necessary for adequate irradiation was developed by the authors. Here we report on our review of dosimetry methods from various peer-reviewed publications and found that none of them satisfied all 12 criteria set forth by the authors of the NIAD/NCI/NIST proceedings. The inadequate reporting of dosimetry methods in the literature raises questions regarding the accuracy of the dose delivered to animal test subjects and the resulting experimental results. For this reason, we investigated the level of accuracy of dose delivery in radiation biology studies. We performed an irradiator output verification study of 12 radiation biology laboratories (7 gamma and 5 X-ray units) using polymethyl methacrylate (PMMA) mouse phantoms and thermoluminescent dosimeters (TLDs) readouts at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The laboratories housing each of these irradiators were asked to deliver specific doses to individual mouse phantoms. Simultaneously, mouse phantoms at the UWMRRC were irradiated with NIST-traceable reference beams representative of the subject laboratories' beam energies. The irradiated mouse phantoms were returned from the various institutions to the UWMRRC and the TLDs were processed, with their measured dose response compared to the known dose response of the calibration phantom TLDs. Of the five facilities using X-ray irradiators, only one delivered an output within 5% of the target dose. The dose differences for the other four X-ray irradiators ranged from 12 to 42%. These results indicate the potential need for standardization of dose determination and additional oversight of radiobiology investigations.

  6. Vancomycin Utilization Evaluation: Are We Dosing Appropriately?

    Directory of Open Access Journals (Sweden)

    Ladan Ayazkhoo

    2015-10-01

    Full Text Available Background: Inappropriate use of vancomycin not only increase health care costs but also contribute to the emergence of resistant organisms. Higher trough serum vancomycin concentrations (>10mg/L has been recommended for avoidance of development of resistance. We aim to compare the administered dose with recommended doses based on guideline-recommended weight-based dosing.Methods: In a cross sectional study, all patients who received vancomycin between July and October 2013, in infectious disease, internal medicine wards and emergency department of a teaching hospital in Tehran, Iran were entered to the study. Indication of vancomycin and necessary data for dose calculation including height and serum creatinine were recorded. Prescribed doses were compared with recommended doses in guidelines and calculated Glomerular filtration rate (GFR for each patient.Results: One hundred and four patients (45 females and 59 males recruited in the study. Our results indicated that, from all administered doses of vancomycin, 64.4% and 88.8% differs significantly (more than 20% based on American Pharmacist Association (AphA vancomycin monograph and guideline-recommended, weight-based vancomycin dosing (for adults, respectively.Conclusion: Underdosing of vancomycin is a major risk factor for developing resistance of gram positive organisms to this glycopeptide. Our results showed that more than half of patients receiving vancomycin are in the risk of low drug levels based on guidelines. So, having a comprehensive plan for the proper use of this drug especially designing effective internal guidelines can prevent emergence of resistance to vancomycin in future.

  7. Defined daily doses (DDD) do not accurately reflect opioid doses used in contemporary chronic pain treatment.

    Science.gov (United States)

    Nielsen, Suzanne; Gisev, Natasa; Bruno, Raimondo; Hall, Wayne; Cohen, Milton; Larance, Briony; Campbell, Gabrielle; Shanahan, Marian; Blyth, Fiona; Lintzeris, Nicholas; Pearson, Sallie; Mattick, Richard; Degenhardt, Louisa

    2017-05-01

    To assess how well the defined daily dose (DDD) metric reflects opioid utilisation among chronic non-cancer pain patients. Descriptive, cross-sectional study, utilising a 7-day medication diary. Community-based treatment settings, Australia. A sample of 1101 people prescribed opioids for chronic non-cancer pain. Opioid dose data was collected via a self-completed 7-day medication diary capturing names, strengths and doses of each medication taken in the past week. Median daily dose was calculated for each opioid. Comparisons were made to the World Health Organization's (WHO) DDD metric. WHO DDDs ranged from 0.6 to 7.1 times the median opioid doses used by the sample. For transdermal fentanyl and oral hydromorphone, the median dose was comparable with the DDD. The DDD for methadone was 0.6 times lower than the median doses used by this sample of chronic pain patients. In contrast, the DDD for oxycodone and transdermal buprenorphine, the most commonly used strong opioids for chronic pain in Australia, was two to seven times higher than actual doses used. For many opioids, there are key differences between the actual doses used in clinical practice and the WHO's DDDs. The interpretation of opioid utilisation studies using population-level DDDs may be limited, and a recalibration of the DDD for many opioids or the reporting of opioid utilisation in oral morphine equivalent doses is recommended. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Vancomycin Dosing in Obese Patients: Special Considerations and Novel Dosing Strategies.

    Science.gov (United States)

    Durand, Cheryl; Bylo, Mary; Howard, Brian; Belliveau, Paul

    2017-12-01

    To review the literature regarding vancomycin pharmacokinetics in obese patients and strategies used to improve dosing in this population. PubMed, EMBASE (1974 to November 2017), and Google Scholar searches were conducted using the search terms vancomycin, obese, obesity, pharmacokinetics, strategy, and dosing. Additional articles were selected from reference lists of selected studies. Included articles were those published in English with a primary focus on vancomycin pharmacokinetic parameters in obese patients and practical vancomycin dosing strategies, clinical experiences, or challenges of dosing vancomycin in this population. Volume of distribution and clearance are the pharmacokinetic parameters that most often affect vancomycin dosing in obese patients; both are increased in this population. Challenges with dosing in obese patients include inconsistent and inadequate dosing, observations that the obese population may not be homogeneous, and reports of an increased likelihood of supratherapeutic trough concentrations. Investigators have revised and developed dosing and monitoring protocols to address these challenges. These approaches improved target trough attainment to varying degrees. Some of the vancomycin dosing approaches provided promising results in obese patients, but there were notable differences in methods used to develop these approaches, and sample sizes were small. Although some approaches can be considered for validation in individual institutions, further research is warranted. This may include validating approaches in larger populations with narrower obesity severity ranges, investigating target attainment in indication-specific target ranges, and evaluating the impact of different dosing weights and methods of creatinine clearance calculation.

  9. Chinese Herbal Medicines – Comparison of Doses Prescribed in ...

    African Journals Online (AJOL)

    questionnaire included doses of frequently-used Chinese herbs, cognition of current doses in clinical practice, and doctors' (practitioners') opinions on dose levels. The median of Chinese herbal medicines' dose prescribed by the participants was compared with the upper limit value (ULV) of stipulated doses in China ...

  10. 10 CFR 20.1004 - Units of radiation dose.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy... Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray (Gy) is the SI unit of absorbed dose. One gray is equal to an absorbed dose of 1 Joule/kilogram (100...

  11. Radiation Leukemogenesis at Low Dose Rates

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  12. Hanford Environmental Dose Reconstruction Project Monthly Report

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, B.S. (comp.)

    1990-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into technical tasks which address each of the primary steps in the path from radioactive releases to dose estimates. Included are source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates. The source terms task will develop estimates of radioactive emissions from Hanford facilities since 1944. The environmental transport task will reconstruct the movement of radioactive materials from the areas of release to populations via the atmosphere, surface water, and ground water. The environmental monitoring task will assemble, evaluate, and report historical environmental monitoring data. The demographics, agriculture, and food habits task will develop the data needed to determine the populations that could have been affected by the releases. Population and demographic information will be developed for the general population within the study area. In addition to population and demographic data, the food and water consumption patterns and sources of food and water for these populations must be estimated since these provide a primary pathway for the intake of radionuclides. The environmental pathways and dose estimates task will use the information produced by the other tasks to estimate the radiation doses populations could have received from Hanford. 1 tab., 1 fig.

  13. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  14. Dose escalation of a curcuminoid formulation

    Directory of Open Access Journals (Sweden)

    Crowell James

    2006-03-01

    Full Text Available Abstract Background Curcumin is the major yellow pigment extracted from turmeric, a commonly-used spice in India and Southeast Asia that has broad anticarcinogenic and cancer chemopreventive potential. However, few systematic studies of curcumin's pharmacology and toxicology in humans have been performed. Methods A dose escalation study was conducted to determine the maximum tolerated dose and safety of a single dose of standardized powder extract, uniformly milled curcumin (C3 Complex™, Sabinsa Corporation. Healthy volunteers were administered escalating doses from 500 to 12,000 mg. Results Seven of twenty-four subjects (30% experienced only minimal toxicity that did not appear to be dose-related. No curcumin was detected in the serum of subjects administered 500, 1,000, 2,000, 4,000, 6,000 or 8,000 mg. Low levels of curcumin were detected in two subjects administered 10,000 or 12,000 mg. Conclusion The tolerance of curcumin in high single oral doses appears to be excellent. Given that achieving systemic bioavailability of curcumin or its metabolites may not be essential for colorectal cancer chemoprevention, these findings warrant further investigation for its utility as a long-term chemopreventive agent.

  15. Radiation Dose Estimation by Automated Cytogenetic Biodosimetry.

    Science.gov (United States)

    Rogan, Peter K; Li, Yanxin; Wilkins, Ruth C; Flegal, Farrah N; Knoll, Joan H M

    2016-12-01

    The dose from ionizing radiation exposure can be interpolated from a calibration curve fit to the frequency of dicentric chromosomes (DCs) at multiple doses. As DC counts are manually determined, there is an acute need for accurate, fully automated biodosimetry calibration curve generation and analysis of exposed samples. Software, the Automated Dicentric Chromosome Identifier (ADCI), is presented which detects and discriminates DCs from monocentric chromosomes, computes biodosimetry calibration curves and estimates radiation dose. Images of metaphase cells from samples, exposed at 1.4-3.4 Gy, that had been manually scored by two reference laboratories were reanalyzed with ADCI. This resulted in estimated exposures within 0.4-1.1 Gy of the physical dose. Therefore, ADCI can determine radiation dose with accuracies comparable to standard triage biodosimetry. Calibration curves were generated from metaphase images in ~10 h, and dose estimations required ~0.8 h per 500 image sample. Running multiple instances of ADCI may be an effective response to a mass casualty radiation event. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Measurement of radiation dose in dental radiology.

    Science.gov (United States)

    Helmrot, Ebba; Alm Carlsson, Gudrun

    2005-01-01

    Patient dose audit is an important tool for quality control and it is important to have a well-defined and easy to use method for dose measurements. In dental radiology, the most commonly used dose parameters for the setting of diagnostic reference levels (DRLs) are the entrance surface air kerma (ESAK) for intraoral examinations and dose width product (DWP) for panoramic examinations. DWP is the air kerma at the front side of the secondary collimator integrated over the collimator width and an exposure cycle. ESAK or DWP is usually measured in the absence of the patient but with the same settings of tube voltage (kV), tube current (mA) and exposure time as with the patient present. Neither of these methods is easy to use, and, in addition, DWP is not a risk related quantity. A better method of monitoring patient dose would be to use a dose area product (DAP) meter for all types of dental examinations. In this study, measurements with a DAP meter are reported for intraoral and panoramic examinations. The DWP is also measured with a pencil ionisation chamber and the product of DWP and the height H (DWP x H) of the secondary collimator (measured using film) was compared to DAP. The results show that it is feasible to measure DAP using a DAP meter for both intraoral and panoramic examinations. The DAP is therefore recommended for the setting of DRLs.

  17. Radiation Dose Optimization For Critical Organs

    Science.gov (United States)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical

  18. Determining organ dose: the holy grail

    Energy Technology Data Exchange (ETDEWEB)

    Samei, Ehsan; Tian, Xiaoyu; Segars, W.P. [Duke University, Carl E. Ravin Advanced Imaging Laboratories, Departments of Radiology, Biomedical Engineering, Physics, and Electrical Engineering, Durham, NC (United States)

    2014-10-15

    Among the various metrics to quantify CT radiation dose, organ dose is generally regarded as one of the best to reflect patient radiation burden. Organ dose is dependent on two main factors, namely patient anatomy and irradiation field. An accurate estimation of organ dose requires detailed modeling of both factors. The modeling of patient anatomy needs to reflect the anatomical diversity and complexity across the population so that the attributes of a given clinical patient can be properly accounted for. The modeling of the irradiation field needs to accurately reflect the CT system condition, especially the tube current modulation (TCM) technique. We present an atlas-based method to model patient anatomy via a library of computational phantoms with representative ages, sizes and genders. A clinical patient is matched with a corresponding computational phantom to obtain a representation of patient anatomy. The irradiation field of the CT system is modeled using a validated Monte Carlo simulation program. The tube current modulation profiles are simulated using a manufacturer-generalizable ray-tracing algorithm. Combining the patient model, Monte Carlo results, and TCM profile, organ doses are obtained by multiplying organ dose values from a fixed mA scan (normalized to CTDI{sub vol}-normalized, denoted as h{sub organ}) and an adjustment factor that reflects the specific irradiation of each organ. The accuracy of the proposed method was quantified by simulating clinical abdominopelvic examinations of 58 patients. The predicted organ doses showed good agreement with simulated organ dose across all organs and modulation schemes. For an average CTDI{sub vol} of a CT exam of 10 mGy, the absolute median error across all organs was 0.64 mGy (-0.21 and 0.97 for 25th and 75th percentiles, respectively). The percentage differences were within 15%. The study demonstrates that it is feasible to estimate organ doses in clinical CT examinations for protocols without and with

  19. dose in cervical cancer intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Zahra Siavashpour

    2016-04-01

    Full Text Available Purpose: To analyze the optimum organ filling point for organs at risk (OARs dose in cervical cancer high-dose-rate (HDR brachytherapy. Material and methods : In a retrospective study, 32 locally advanced cervical cancer patients (97 insertions who were treated with 3D conformal external beam radiation therapy (EBRT and concurrent chemotherapy during 2010-2013 were included. Rotterdam HDR tandem-ovoid applicators were used and computed tomography (CT scanning was performed after each insertion. The OARs delineation and GEC-ESTRO-based clinical target volumes (CTVs contouring was followed by 3D forward planning. Then, dose volume histogram (DVH parameters of organs were recorded and patients were classified based on their OARs volumes, as well as their inserted tandem length. Results : The absorbed dose to point A ranged between 6.5-7.5 Gy. D 0.1cm ³ and D 2cm ³ of the bladder significantly increased with the bladder volume enlargement (p value < 0.05. By increasing the bladder volume up to about 140 cm3, the rectum dose was also increased. For the cases with bladder volumes higher than 140 cm3, the rectum dose decreased. For bladder volumes lower than 75 cm3, the sigmoid dose decreased; however, for bladder volumes higher than 75 cm3, the sigmoid dose increased. The D 2cm ³ of the bladder and rectum were higher for longer tandems than for shorter ones, respectively. The divergence of the obtained results for different tandem lengths became wider by the extension of the bladder volume. The rectum and sigmoid volume had a direct impact on increasing their D 0.1cm ³ and D 2cm ³, as well as decreasing their D 10 , D 30 , and D 50 . Conclusions : There is a relationship between the volumes of OARs and their received doses. Selecting a bladder with a volume of about 70 cm3 or less proved to be better with regards to the dose to the bladder, rectum, and sigmoid.

  20. Organ dose and effective dose with the EOS scanner in spine deformity surgery

    DEFF Research Database (Denmark)

    Heide Pedersen, Peter; Eiskjær, Søren Peter; Petersen, Asger Greval

    2016-01-01

    Organ dose and effective dose with the EOS scanner in spine deformity surgery. A study on anthropomorphic phantoms describing patient radiation exposure in full spine examinations. Authors: Peter Heide Pedersen, Asger Greval Petersen, Søren Peter Eiskjær. Background: Ionizing radiation potentially...... leads to tissue damage. It has been documented in large cohort studies that radiographic imaging during childhood for spinal deformities eg. scoliosis, increases the lifetime risk of breast cancer. The EOS biplane x-ray imaging system (EOS Imaging S.A, Paris France) has been developed to produce high...... quality images while at the same time reducing radiation dose. At our institution we use the EOS for pre- and postoperative full spine examinations. Purpose: The purpose of the study is to make first time organ dose and effective dose evaluations with micro-dose settings in full spine examinations. Our...

  1. Dose Effects of Ion Beam Exposure on Deinococcus Radiodurans: Survival and Dose Response

    Science.gov (United States)

    Song, Dao-jun; Wu, Li-fang; Wu, Li-jun; Yu, Zeng-liang

    2001-02-01

    To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+, N+(20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased with the increase in dose and then increased in the high dose range and finally decreased again in the higher dose range. Our experimental results suggest that D. radiodurans, which is considerably radio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.

  2. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved...... in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent...... of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...

  3. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  4. A decision tool to adjust the prescribed dose after change in the dose calculation algorithm

    Directory of Open Access Journals (Sweden)

    Abdulhamid Chaikh

    2014-12-01

    Full Text Available Purpose: This work aims to introduce a method to quantify and assess the differences in monitor unites MUs when changing to new dose calculation software that uses a different algorithm, and to evaluate the need and extent of adjustment of the prescribed dose to maintain the same clinical results. Methods: Doses were calculated using two classical algorithms based on the Pencil Beam Convolution PBC model, using 6 patients presenting lung cancers. For each patient, 3 treatment plans were generated: Plan 1 was calculated using reference algorithm PBC without heterogeneity correction, Plan 2 was calculated using test algorithm with heterogeneity correction, and in plan 3 the dose was recalculated using test algorithm and monitor unites MUs obtained from plan 1 as input. To assess the differences in the calculated MUs, isocenter dose, and spatial dose distributions using a gamma index were compared. Statistical analysis was based on a Wilcoxon signed rank test. Results: The test algorithm in plan 2 calculated significantly less MUs than reference algorithm in plan 1 by on average 5%, (p < 0.001. We also found underestimating dose for target volumes using 3D gamma index analysis. In this example, in order to obtain the same clinical outcomes with the two algorithms the prescribed dose should be adjusted by 5%.Conclusion: This method provides a quantitative evaluation of the differences between two dose calculation algorithms and the consequences on the prescribed dose. It could be used to adjust the prescribed dose when changing calculation software to maintain the same clinical results as obtained with the former software. In particular, the gamma evaluation could be applied to any situation where changes in the dose calculation occur in radiotherapy.

  5. Evaluation of the sterility of single-dose medications used in a multiple-dose fashion.

    Science.gov (United States)

    Martin, Elizabeth P; Mukherjee, Jean; Sharp, Claire R; Sinnott-Stutzman, Virginia B

    2017-11-01

    Bacterial proliferation was evaluated in single-dose medications used in a multi-dose fashion and when medications were intentionally inoculated with bacteria. Of 5 experimentally punctured medications, 1 of 75 vials (50% dextrose) became contaminated. When intentionally inoculated, hydroxyethyl starch and heparinized saline supported microbial growth. Based on these findings, it is recommended that hydroxyethyl starch and heparinized saline not be used in a multi-dose fashion.

  6. Radiation doses in low-dose pelvimetry using rare-earth screens.

    Science.gov (United States)

    Axelsson, B; Ohlsén, H

    1979-01-01

    A 'low-dose technique' of obstetric pelvimetry, using rare-earth screens and a reduced ambition level of image quality, yields an estimated absorbed dose to the maternal and foetal gonads of 0.9 and 0.01 mGy, respectively. The resulting risk for 'hereditary ill health' and the risk for induction of leukemia from the absorbed dose to the foetal red bone marrow, have been calculated to be at a very low level.

  7. Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2009-01-01

    Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.

  8. Antimicrobial Doses in Continuous Renal Replacement Therapy: A Comparison of Dosing Strategies

    OpenAIRE

    Kempke, Anna P.; Leino, Abbie S.; Daneshvar, Farzad; Lee, John Andrew; Mueller, Bruce A.

    2016-01-01

    Purpose. Drug dose recommendations are not well defined in patients undergoing continuous renal replacement therapy (CRRT) due to limited published data. Several guidelines and pharmacokinetic equations have been proposed as tools for CRRT drug dosing. Dose recommendations derived from these methods have yet to be compared or prospectively evaluated. Methods. A literature search of PubMed, Micromedex, and Embase was conducted for 40 drugs commonly used in the ICU to gather pharmacokinetic dat...

  9. Occupational Doses and the Contribution to the Population Dose in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Jae; Kyu, Hwan Jeong [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to evaluate the occupational exposure records in terms of the control of exposure for radiation workers and dose reduction. The study includes the estimates of the number of people exposed occupationally, the effective collective doses and mean doses to those exposed. In addition, the study includes an estimate of the contribution of occupational exposure to the Korean population dose. The exposure of radiation workers in occupational field includes medical radiology, industrial applications such as radiography, nuclear power, and some research activities. Occupational exposure from medical radiology practices includes the contributions from diagnostic x-ray procedures, dental radiography, nuclear medicine and radiation therapy. The control of exposure for radiation workers, and the measures necessary to maintain radiation exposure as low as reasonably achievable (ALARA) are specified in Subparagraph 3 and Subparagraph 4 of Article 91 (1) of the Korea Nuclear Safety Act (KNSA), respectively. Therefore, from a regulatory perspective, the exposure data of the workers are primarily for verification of the adequacy of the control of exposure, radiation protection and implementation of ALARA. The number of people exposed occupationally, the effective collective doses and mean doses to those exposed, and average effective doses from occupational exposure during the period of 2009 to 2013 have been evaluated. In general, radiation workers were increasing in number annually, but the mean doses for those exposed each year showed the control of exposures were mostly considered met within the dose limit in KNSA. Nevertheless, it was shown that the continuous efforts would be needed to reduce doses and thus to implement ALARA regulatory requirements. In radiation occupations, the application of ICRP radiation protection principles will ensure good practice and decreasing exposures. Over the period of 5 years, the contributions of the annual

  10. Replacing the Measles Ten-Dose Vaccine Presentation with the Single-Dose Presentation in Thailand

    OpenAIRE

    Lee, Bruce Y.; Assi, Tina-Marie; Rookkapan, Korngamon; Connor, Diana L.; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T.; Joel S. Welling; Bryan A. Norman; Chen, Sheng-I; Bailey, Rachel R; Wiringa, Ann E.; Wateska, Angela R.; Jana, Anirban; Willem G van Panhuis

    2011-01-01

    Introduced to minimize open vial wastage, single-dose vaccine vials require more storage space and therefore may affect vaccine supply chains (i.e., the series of steps and processes entailed to deliver vaccines from manufacturers to patients). We developed a computational model of Thailand’s Trang province vaccine supply chain to analyze the effects of switching from a ten-dose measles vaccine presentation to each of the following: a single-dose Measles-Mumps-Rubella vaccine (which Thailand ...

  11. Dose-response-a challenge for allelopathy?

    Science.gov (United States)

    Belz, Regina G; Hurle, Karl; Duke, Stephen O

    2005-04-01

    The response of an organism to a chemical depends, among other things, on the dose. Nonlinear dose-response relationships occur across a broad range of research fields, and are a well established tool to describe the basic mechanisms of phytotoxicity. The responses of plants to allelochemicals as biosynthesized phytotoxins, relate as well to nonlinearity and, thus, allelopathic effects can be adequately quantified by nonlinear mathematical modeling. The current paper applies the concept of nonlinearity to assorted aspects of allelopathy within several bioassays and reveals their analysis by nonlinear regression models. Procedures for a valid comparison of effective doses between different allelopathic interactions are presented for both, inhibitory and stimulatory effects. The dose-response applications measure and compare the responses produced by pure allelochemicals [scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one); DIBOA (2,4-dihydroxy-2H-1,4-benzoxaxin-3(4H)-one); BOA (benzoxazolin-2(3H)-one); MBOA (6-methoxy-benzoxazolin-2(3H)-one)], involved in allelopathy of grain crops, to demonstrate how some general principles of dose responses also relate to allelopathy. Hereupon, dose-response applications with living donor plants demonstrate the validity of these principles for density-dependent phytotoxicity of allelochemicals produced and released by living plants (Avena sativa L., Secale cereale L., Triticum L. spp.), and reveal the use of such experiments for initial considerations about basic principles of allelopathy. Results confirm that nonlinearity applies to allelopathy, and the study of allelopathic effects in dose-response experiments allows for new and challenging insights into allelopathic interactions.

  12. Dose-Response—A Challenge for Allelopathy?

    Science.gov (United States)

    Belz, Regina G.; Hurle, Karl; Duke, Stephen O.

    2005-01-01

    The response of an organism to a chemical depends, among other things, on the dose. Nonlinear dose-response relationships occur across a broad range of research fields, and are a well established tool to describe the basic mechanisms of phytotoxicity. The responses of plants to allelochemicals as biosynthesized phytotoxins, relate as well to nonlinearity and, thus, allelopathic effects can be adequately quantified by nonlinear mathematical modeling. The current paper applies the concept of nonlinearity to assorted aspects of allelopathy within several bioassays and reveals their analysis by nonlinear regression models. Procedures for a valid comparison of effective doses between different allelopathic interactions are presented for both, inhibitory and stimulatory effects. The dose-response applications measure and compare the responses produced by pure allelochemicals [scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one); DIBOA (2,4-dihydroxy-2H-1,4-benzoxaxin-3(4H)-one); BOA (benzoxazolin-2(3H)-one); MBOA (6-methoxy-benzoxazolin-2(3H)-one)], involved in allelopathy of grain crops, to demonstrate how some general principles of dose responses also relate to allelopathy. Hereupon, dose-response applications with living donor plants demonstrate the validity of these principles for density-dependent phytotoxicity of allelochemicals produced and released by living plants (Avena sativa L., Secale cereale L., Triticum L. spp.), and reveal the use of such experiments for initial considerations about basic principles of allelopathy. Results confirm that nonlinearity applies to allelopathy, and the study of allelopathic effects in dose-response experiments allows for new and challenging insights into allelopathic interactions. PMID:19330161

  13. Automated size-specific CT dose monitoring program: assessing variability in CT dose.

    Science.gov (United States)

    Christianson, Olav; Li, Xiang; Frush, Donald; Samei, Ehsan

    2012-11-01

    The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED(adj)). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED(adj) between scanner models and across institutions. No significant difference was found between computer measurements of patient thickness and observer measurements (p = 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED(adj) that differed by up to 44% from effective dose estimates that were not adjusted by patient size

  14. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  15. Committed equivalent organ doses and committed effective doses from intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed equivalent doses to individual organs for intakes by ingestion and inhalation of 1 mu m AMAD particles of 359 nuclides by infants aged 3 months, by children aged 1, 5, 10 and 15 years, and by adults. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on the way committed doses increase with the integration period is given in NRPB-M289. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  16. Computing proton dose to irregularly moving targets

    Science.gov (United States)

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-08-01

    Purpose: While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods: The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results: A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, 95.7% with 3 cm drift in the

  17. Evaluation of dose reduction and image quality in CT colonography: Comparison of low-dose CT with iterative reconstruction and routine-dose CT with filtered back projection

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Koichi [Kameda Medical Center, Department of Radiology, Kamogawa, Chiba (Japan); Jichi Medical University, Department of Radiology, Tochigi (Japan); National Cancer Center, Cancer Screening Technology Division, Research Center for Cancer Prevention and Screening, Tokyo (Japan); Fujiwara, Masanori; Mogi, Tomohiro; Iida, Nao [Kameda Medical Center Makuhari, Department of Radiology, Chiba (Japan); Kanazawa, Hidenori; Sugimoto, Hideharu [Jichi Medical University, Department of Radiology, Tochigi (Japan); Mitsushima, Toru [Kameda Medical Center Makuhari, Department of Gastroenterology, Chiba (Japan); Lefor, Alan T. [Jichi Medical University, Department of Surgery, Tochigi (Japan)

    2015-01-15

    To prospectively evaluate the radiation dose and image quality comparing low-dose CT colonography (CTC) reconstructed using different levels of iterative reconstruction techniques with routine-dose CTC reconstructed with filtered back projection. Following institutional ethics clearance and informed consent procedures, 210 patients underwent screening CTC using automatic tube current modulation for dual positions. Examinations were performed in the supine position with a routine-dose protocol and in the prone position, randomly applying four different low-dose protocols. Supine images were reconstructed with filtered back projection and prone images with iterative reconstruction. Two blinded observers assessed the image quality of endoluminal images. Image noise was quantitatively assessed by region-of-interest measurements. The mean effective dose in the supine series was 1.88 mSv using routine-dose CTC, compared to 0.92, 0.69, 0.57, and 0.46 mSv at four different low doses in the prone series (p < 0.01). Overall image quality and noise of low-dose CTC with iterative reconstruction were significantly improved compared to routine-dose CTC using filtered back projection. The lowest dose group had image quality comparable to routine-dose images. Low-dose CTC with iterative reconstruction reduces the radiation dose by 48.5 to 75.1 % without image quality degradation compared to routine-dose CTC with filtered back projection. (orig.)

  18. Agriculture-related radiation dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  19. Pathogenic effects of low dose irradiation: dose-effect relationships; Effets pathogenes d'un faible debit de dose: la relation ''dose-effet

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Academie des Technologies, 91 - Saint Michel sur Orge (France)

    2002-10-01

    There is no evidence of pathogenic effects in human groups exposed to less than 100 mSv at low dose-rate. The attributed effects are therefore the result of extrapolations from higher doses. The validity of such extrapolations is discussed from the point of view of epidemiology as well as cellular and molecular biology. The Chernobyl accident resulted in large excess of thyroid cancers in children; it also raised the point that some actual sanitary effects among distressed populations might be a direct consequence of low doses. Studies under the control of UN have not confirmed this point identifying no dose-effect relationship and 'severe socio-economic and psychological pressures... poverty, poor diet and living conditions, and lifestyle factors' as the main cause for depressed health. Some hypothesis are considered for explaining the dose-dependence and high prevalence of non-cancer causes of death among human groups exposed to more than 300 mSv. (author)

  20. Occupational doses from radon in Spanish spas.

    Science.gov (United States)

    Soto, J; Gómez, J

    1999-04-01

    Recent international recommendations have included exposure to natural radiation as one of the sources to monitor in certain occupationally exposed groups. Among those mentioned are workers in thermal spas, who may be exposed to high radiation doses due to the high concentration of radon in the indoor air of the spa. This paper presents the methodology and the results of an evaluation of radiation doses to the staff in different thermal spas in Spain. Different series of samples were collected and measurements made for the radon concentrations in water in 54 spas and in air in 20 spas. In six of the latter group, the air radon concentration was studied in different working areas occupied by the employees. The radon concentrations in water were between radon concentrations in air were between radon concentration in their main working area. By means of an exposure-dose conversion factor of 1.43 Sv per J h m(-3), the estimated effective doses were found to lie between 1 and 44 mSv y(-1). This upper limit is higher than the recommended annual limit of 20 mSv y(-1) for an occupational dose.

  1. DRY TRANSFER FACILITY WORKER DOSE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Tang

    2004-09-23

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Dry Transfer Facility No.1 (DTF-1) performing operations to receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. Doses received by workers due to maintenance operations are also included in this revision. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation, excluding the remediation area of the building. The results of this calculation will be used to support the design of the DTF-1 and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the Environmental and Nuclear Engineering.

  2. Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices.

    Science.gov (United States)

    Demb, Joshua; Chu, Philip; Nelson, Thomas; Hall, David; Seibert, Anthony; Lamba, Ramit; Boone, John; Krishnam, Mayil; Cagnon, Christopher; Bostani, Maryam; Gould, Robert; Miglioretti, Diana; Smith-Bindman, Rebecca

    2017-06-01

    Radiation doses for computed tomography (CT) vary substantially across institutions. To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After

  3. Radiation dose metrics in CT: assessing dose using the National Quality Forum CT patient safety measure.

    Science.gov (United States)

    Keegan, Jillian; Miglioretti, Diana L; Gould, Robert; Donnelly, Lane F; Wilson, Nicole D; Smith-Bindman, Rebecca

    2014-03-01

    The National Quality Forum (NQF) is a nonprofit consensus organization that recently endorsed a measure focused on CT radiation doses. To comply, facilities must summarize the doses from consecutive scans within age and anatomic area strata and report the data in the medical record. Our purpose was to assess the time needed to assemble the data and to demonstrate how review of such data permits a facility to understand doses. To assemble the data we used for analysis, we used the dose monitoring software eXposure to automatically export dose metrics from consecutive scans in 2010 and 2012. For a subset of 50 exams, we also collected dose metrics manually, copying data directly from the PACS into an excel spreadsheet. Manual data collection for 50 scans required 2 hours and 15 minutes. eXposure compiled the data in under an hour. All dose metrics demonstrated a 30% to 50% reduction between 2010 and 2012. There was also a significant decline and a reduction in the variability of the doses over time. The NQF measure facilitates an institution's capacity to assess the doses they are using for CT as part of routine practice. The necessary data can be collected within a reasonable amount of time either with automatic software or manually. The collection and review of these data will allow facilities to compare their radiation dose distributions with national distributions and allow assessment of temporal trends in the doses they are using. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyoung Dal; Jae, Young Wan; Yoon, Il Kyu; Lee, Jae Hee; Yoo, Suk Hyun [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2012-03-15

    To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileaf collimator. Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100

  5. Determinants of thiopental induction dose requirements.

    Science.gov (United States)

    Avram, M J; Sanghvi, R; Henthorn, T K; Krejcie, T C; Shanks, C A; Fragen, R J; Howard, K A; Kaczynski, D A

    1993-01-01

    Dose requirements for thiopental anesthetic induction have significant age- and gender-related variability. We studied the association of the patient characteristics age, gender, weight, lean body mass, and cardiac output with thiopental requirements. Doses of thiopental, infused at 150 mg/min, required to reach both a clinical end-point and an electroencephalographic (EEG) end-point were determined in 30 males and 30 females, aged 18-83 yr. Univariate least squares linear regression analysis revealed outliers in the relationships of age, weight, lean body mass, and cardiac output to thiopental dose at clinical and EEG endpoints. Differential weighting of data points minimized the effect of outliers in the construction of a robust multiple linear regression model of the relationship between several selected independent variables and the dependent variables thiopental dose at clinical and EEG endpoints. The multiple linear regression model for thiopental dose at the clinical end-point selecting the regressor variables age, weight, and gender (R2 = 0.76) was similar to that for age, lean body mass, and gender (R2 = 0.75). Thiopental dose at the EEG endpoint was better described by models selecting the variables age, weight, and cardiac output (R2 = 0.88) or age, lean body mass, and cardiac output (R2 = 0.87). Although cardiac output varied with age, age always remained a selected variable. Because weight and lean body mass differed with gender, their selection as variables in the model eliminated gender as a selected variable or minimized its importance.

  6. Measuring pacemaker dose: A clinical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org [Department of Radiation Oncology at the Jefferson Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); Xiao Ying; Harrison, Amy S. [Department of Radiation Oncology at the Jefferson Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States)

    2012-07-01

    Recently in our clinic, we have seen an increased number of patients presenting with pacemakers and defibrillators. Precautions are taken to develop a treatment plan that minimizes the dose to the pacemaker because of the adverse effects of radiation on the electronics. Here we analyze different dosimeters to determine which is the most accurate in measuring pacemaker or defibrillator dose while at the same time not requiring a significant investment in time to maintain an efficient workflow in the clinic. The dosimeters analyzed here were ion chambers, diodes, metal-oxide-semiconductor field effect transistor (MOSFETs), and optically stimulated luminescence (OSL) dosimeters. A simple phantom was used to quantify the angular and energy dependence of each dosimeter. Next, 8 patients plans were delivered to a Rando phantom with all the dosimeters located where the pacemaker would be, and the measurements were compared with the predicted dose. A cone beam computed tomography (CBCT) image was obtained to determine the dosimeter response in the kilovoltage energy range. In terms of the angular and energy dependence of the dosimeters, the ion chamber and diode were the most stable. For the clinical cases, all the dosimeters match relatively well with the predicted dose, although the ideal dosimeter to use is case dependent. The dosimeters, especially the MOSFETS, tend to be less accurate for the plans, with many lateral beams. Because of their efficiency, we recommend using a MOSFET or a diode to measure the dose. If a discrepancy is observed between the measured and expected dose (especially when the pacemaker to field edge is <10 cm), we recommend analyzing the treatment plan to see whether there are many lateral beams. Follow-up with another dosimeter rather than repeating multiple times with the same type of dosimeter. All dosimeters should be placed after the CBCT has been acquired.

  7. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  8. Fertility of tall girls treated with high-dose estrogen, a dose-response relationship

    NARCIS (Netherlands)

    A.E.J. Hendriks (Emile); S.L.S. Drop (Stenvert); J.S.E. Laven (Joop); A.M. Boot (Annemieke)

    2012-01-01

    textabstractContext: High-dose estrogen treatment to reduce final height of tall girls increases their risk for infertility in later life. Objective: The aim was to study the effect of estrogen dose on fertility outcome of these women. Design/Setting: We conducted a retrospective cohort study of

  9. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    Science.gov (United States)

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Assessment of dose uniformity around high dose rate 192Ir and 60Co stepping sources.

    Science.gov (United States)

    Farhood, Bagher; Ghorbani, Mahdi

    2017-12-01

    This study aimed to evaluate dose uniformity for 192Ir and 60Co stepping sources. High dose rate 192Ir and 60Co stepping sources were simulated by the MCNPX Monte Carlo code. To investigate dose uniformity, treatment lengths of 30, 50, 100, and 150 mm with stepping distances of 3, 5, 7, and 10 mm were considered. Finally, dose uniformity for the 192Ir and 60Co stepping sources with increasing distances from the source were assessed at these treatment lengths and steps. The findings showed that the dose distribution was non-uniform for regions in close vicinity of the source, especially in the high source steps, but for most points at distances >10 mm from the center of the source, the dose distribution was uniform. For most points, the dose uniformity increased with reduction of the source steps and increments of the transverse distance from the source. The dose non-uniformity was similar for most of the corresponding points of 60Co and 192Ir sources with the same treatment lengths and source steps, except at the distance of 150 mm. When using stepping technique for the treatment of tumors, more attention should be focused on treatment planning, especially with higher stepping distances and lower transverse distances from the source.

  11. A review of dose rate dependent effects of total ionizing dose /TID/ irradiations. [on semiconductor devices

    Science.gov (United States)

    Nichols, D. K.

    1980-01-01

    The basic effects of ionizing radiation are summarized. The problem of the existence of a true dose rate effect is examined. Consideration is given to the nature of long term annealing, which is sometimes manifested as an 'apparent' dose rate effect. Both analytical and experimental work is considered and the results are related to practical testing requirements.

  12. Lurasidone Dose Response in Bipolar Depression: A Population Dose-response Analysis.

    Science.gov (United States)

    Chapel, Sunny; Chiu, Yu-Yuan; Hsu, Jay; Cucchiaro, Josephine; Loebel, Antony

    2016-01-01

    Characterization of dose-response relationships for psychotropic agents may be difficult to determine based on results of individual clinical studies, particularly those with a flexible dose design. The goal of this pharmacometric analysis was to characterize the dose-response profile for lurasidone in patients with bipolar depression. The statistical modeling and simulation analyses reported here were derived from 2 randomized, 6-week, double-blind, placebo-controlled, flexible-dose studies (20-60 mg/d or 80-120 mg/d of lurasidone as monotherapy or 20-120 mg/d adjunct to lithium or valproate) in patients with bipolar depression. Pooled data included 5245 Montgomery-Åsberg Depression Rating Scale (MADRS) observations from 825 patients who had received lurasidone or placebo treatments, with or without lithium or valproate background medication. The time course of placebo effect on the MADRS score was adequately described by an exponential asymptotic placebo model. A linear dose-response model best described the effect of lurasidone. The net improvement in MADRS score due to lurasidone treatment (the drug effect) was significant (P related to demographic covariates. This population dose-response modeling analysis indicates that higher doses of lurasidone are likely to produce greater therapeutic effects in patients with bipolar depression. The linear dose response was consistent for both lurasidone monotherapy and adjunctive therapy in patients with bipolar depression. ClinicalTrials.gov identifiers: NCT00868452, NCT00868699. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Chlorpromazine equivalents versus defined daily doses : How to compare antipsychotic drug doses?

    NARCIS (Netherlands)

    Rijcken, CAW; Monster, TBM; Brouwers, JRBJ; de Jong-van den Berg, LTW

    2003-01-01

    Classic chlorpromazine (CPZ) equivalents can be used to chart relative antipsychotic potencies of antipsychotic drugs. Values of CPZ equivalents per drug are ambiguous in literature. In drug use evaluation studies, antipsychotic doses are frequently compared by use of the defined daily dose (DDD).

  14. Fertility of Tall Girls Treated with High-Dose Estrogen, a Dose-Response Relationship

    NARCIS (Netherlands)

    Hendriks, A. E. J.; Drop, S. L. S.; Laven, J. S. E.; Boot, A. M.

    Context: High-dose estrogen treatment to reduce final height of tall girls increases their risk for infertility in later life. Objective: The aim was to study the effect of estrogen dose on fertility outcome of these women. Design/Setting: We conducted a retrospective cohort study of university

  15. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    DEFF Research Database (Denmark)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dos...

  16. Cardiovascular abnormalities with single dose of tapentadol

    Directory of Open Access Journals (Sweden)

    A Vachhani

    2014-01-01

    Full Text Available This case represents the development of dizziness, palpitation, tightness in chest, flushing, and tremor on consumption of a single dose of tapentadol (100 mg for acute lower back pain. The patient was admitted in the intensive cardiac care unit for continuous monitoring. At admission, electrocardiogram showed tachycardia (140/min along with ST segment elevation in second chest lead (V 2 . The patient was monitored and advised not to take further doses of tapentadol. He was discharged after 36 hours of admission. Tapentadol should be used cautiously in patients with cardiovascular diseases and receiving sympathomimetic drugs.

  17. Evaluation of dose reduction and image quality in CT colonography: comparison of low-dose CT with iterative reconstruction and routine-dose CT with filtered back projection.

    Science.gov (United States)

    Nagata, Koichi; Fujiwara, Masanori; Kanazawa, Hidenori; Mogi, Tomohiro; Iida, Nao; Mitsushima, Toru; Lefor, Alan T; Sugimoto, Hideharu

    2015-01-01

    To prospectively evaluate the radiation dose and image quality comparing low-dose CT colonography (CTC) reconstructed using different levels of iterative reconstruction techniques with routine-dose CTC reconstructed with filtered back projection. Following institutional ethics clearance and informed consent procedures, 210 patients underwent screening CTC using automatic tube current modulation for dual positions. Examinations were performed in the supine position with a routine-dose protocol and in the prone position, randomly applying four different low-dose protocols. Supine images were reconstructed with filtered back projection and prone images with iterative reconstruction. Two blinded observers assessed the image quality of endoluminal images. Image noise was quantitatively assessed by region-of-interest measurements. The mean effective dose in the supine series was 1.88 mSv using routine-dose CTC, compared to 0.92, 0.69, 0.57, and 0.46 mSv at four different low doses in the prone series (p iterative reconstruction were significantly improved compared to routine-dose CTC using filtered back projection. The lowest dose group had image quality comparable to routine-dose images. Low-dose CTC with iterative reconstruction reduces the radiation dose by 48.5 to 75.1% without image quality degradation compared to routine-dose CTC with filtered back projection. • Low-dose CTC reduces radiation dose ≥ 48.5% compared to routine-dose CTC. • Iterative reconstruction improves overall CTC image quality compared with FBP. • Iterative reconstruction reduces overall CTC image noise compared with FBP. • Automated exposure control with iterative reconstruction is useful for low-dose CTC.

  18. Dose evaluation of organs at risk (OAR) cervical cancer using dose volume histogram (DVH) on brachytherapy

    Science.gov (United States)

    Arif Wibowo, R.; Haris, Bambang; Inganatul Islamiyah, dan

    2017-05-01

    Brachytherapy is one way to cure cervical cancer. It works by placing a radioactive source near the tumor. However, there are some healthy tissues or organs at risk (OAR) such as bladder and rectum which received radiation also. This study aims to evaluate the radiation dose of the bladder and rectum. There were 12 total radiation dose data of the bladder and rectum obtained from patients’ brachytherapy. The dose of cervix for all patients was 6 Gy. Two-dimensional calculation of the radiation dose was based on the International Commission on Radiation Units and Measurements (ICRU) points or called DICRU while the 3-dimensional calculation derived from Dose Volume Histogram (DVH) on a volume of 2 cc (D2cc). The radiation dose of bladder and rectum from both methods were analysed using independent t test. The mean DICRU of bladder was 4.33730 Gy and its D2cc was4.78090 Gy. DICRU and D2cc bladder did not differ significantly (p = 0.144). The mean DICRU of rectum was 3.57980 Gy and 4.58670 Gy for D2cc. The mean DICRU of rectum differed significantly from D2cc of rectum (p = 0.000). The three-dimensional method radiation dose of the bladder and rectum was higher than the two-dimensional method with ratios 1.10227 for bladder and 1.28127 for rectum. The radiation dose of the bladder and rectum was still below the tolerance dose. Two-dimensional calculation of the bladder and rectum dose was lower than three-dimension which was more accurate due to its calculation at the whole volume of the organs.

  19. Local dose assessment for a contaminated wound; Rvaluation de la dose locale pour une blessure contaminee

    Energy Technology Data Exchange (ETDEWEB)

    Piechowski, J. [CEA, 75 - Paris (France); Chaptinel, Y. [CEA Fontenay aux Roses, Dir. de la Protection et de la Surete Nucleaire (PMR/DPSN/SSR), 92 (France)

    2004-09-01

    Contaminated wounds present a great variability concerning the type of lesion. Assessment of the local dose is one amongst other factors for a decision as to the surgical operation. A simple model has been used to calculate the doses in a representative volume, that of a phalanx for instance. The dose rates are given for current radionuclides. The method of calculation is enough simple in order to allow the practitioners to use it in situations involving other radionuclides. Committed dose depends on the biological half-life which can be estimated from the local measurements. Some examples of calculation of committed dose are given considering half-lives characteristic of the compound. Transposition of the dose to the local risk is easy for the non-stochastic risk. Conversely, this is not the case for the risk of chronic inflammation or cancer. The latter question could only be solved by a feedback based on the analysis of real till now observed cases, nevertheless taking into account the fact that the available data are generally not so easy to make use for establishing an unquestionable dose - effect relation. A critical issue remains open as to the use of these doses for their comparison to the regulatory limits and for the subsequent decisions in case of exceeding the limits. The actual impact of an irradiation, especially by alpha particles, is not linked to the calculated dose in a simple and direct way. This question needs further consideration and perhaps a practical guide concerning this topic would be useful. The anatomical (surgical side effects), psychological and professional consequences should have a large weight relatively to the doses, obviously except for the cases, involving actually large contamination. (authors)

  20. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Calcina, Carmen S Guzman [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil); Almeida, Adelaide de [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil); Rocha, Jose R Oliveira [Setor de FIsica Medica-CEB-UNICAMP e Setor de Radioterapia-CAISM-UNICAMP (Brazil); Abrego, Felipe Chen [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil); Baffa, Oswaldo [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil)

    2005-03-21

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40)

  1. Retrospective study comparing low-dose versus standard dose of bortezomib in patients with multiple myeloma

    Directory of Open Access Journals (Sweden)

    Marcela Espinoza Zelada

    2015-03-01

    Full Text Available INTRODUCTION Bortezomib is a selective inhibitor of the proteosoma that is used in multiple myeloma. In combination with other antineoplastic drugs, it has a well-documented impact in progression-free survival rates and overall survival rates with standard doses (1.3-1.5 mg/m2. However, up to 88% of patients on standard doses have unwanted side effects (neutropenia, neuropathy or anemia. Standard dose (1.3 mg/m2 is used in almost all patients and low dose (0.7-0.8 mg/m2 is reserved for patients with kidney disease and neuropathy. OBJECTIVE We aim to describe clinical, cytological, and cytometric outcomes, as well as overall survival and side effects of low dose versus standard dose of bortezomib in our institution. METHODS Retrospective, descriptive study based on data recovered from clinical charts of 48 multiple myeloma patients treated in our hospital between 2011 and 2013. We included data on age, gender, type of multiple myeloma, serum albumin, serum creatinine, beta 2 microglobulin, calcemia, imaging studies, disease stage, pre-and post-therapy bone marrow studies, adverse events and rate of progression. We also recorded events like date of death or of the last medical appointment. RESULTS Forty-eight multiple myeloma patients were treated with bortezomib-cyclophosphamide-dexamethasone. Twenty-one patients received low dose and 27 patients were treated with the standard dose. No statistical differences between the two groups were found for clinical response (p=0.6, cytological response (p=0.28, flow cytometric response (p= 0.3, rate of adverse effects and overall survival rates. CONCLUSION This retrospective analysis suggests that lower doses of bortezomib have similar effects in disease control measured by flow cytometry and cytology compared to standard doses in multiple myeloma patients.

  2. Comparable cell survival between high dose rate flattening filter free and conventional dose rate irradiation.

    Science.gov (United States)

    Verbakel, Wilko F A R; van den Berg, Jaap; Slotman, Ben J; Sminia, Peter

    2013-04-01

    Investigation of clonogenic cell survival and cell proliferation following single dose and fractionated delivery of high dose rate flattening filter free (FFF) irradiation compared to conventional dose rates. The human astrocytoma D384, glioma T98 and lung carcinoma SW1573 cell lines were irradiated using either a single dose (0-12 Gy) or a fractionated protocol of 5 daily fractions of 2 Gy (D384) or 3 Gy (SW1573). Cells were irradiated inside a phantom using fixed gantry beams of a linear accelerator. A sliding window technique created homogeneous dose distributions over the surface of the cell cultures. Irradiations using standard beams (6 MV, 600 MU/min.) and high dose rate FFF beams (10 MV, 2400 MU/min.) were compared. Cell survival was determined by clonogenic assay. In the fractionated irradiation set-up, the number of clonogenic cells was estimated by including tumor cell proliferation during the overall treatment time in the analysis. All cell lines showed equal cell survival following irradiation using either the FFF beams or conventional flattened (FF) beams. This was observed after single dose exposure (0-12 Gy) as well as after fractionated irradiation (p = 0.08 for D384 and 0.20 for SW1373 cell lines). FFF irradiation with a dose rate of 2400 MU/min and four times higher dose per pulse compared to irradiation with FF beams did not change cell survival for three human cancer cell lines up to a fraction dose of 12 Gy compared to irradiation using FF beams.

  3. Inhomogeneous dose escalation increases expected local control for NSCLC patients with lymph node involvement without increased mean lung dose

    DEFF Research Database (Denmark)

    Nielsen, Tine B; Hansen, Olfred; Schytte, Tine

    2014-01-01

    but also for patients with involved lymph nodes. MATERIAL AND METHODS: Highly modulated IMRT plans with homogeneous dose distributions with a prescribed dose of 66Gy/33F were created for 20 NSCLC patients, staged T1b-T4 N0-N3, using standard PTV dose coverage of 95-107%. For each patient, an inhomogeneous......BACKGROUND: Higher doses to NSCLC tumours are required to increase the low control rates obtained with conventional dose prescriptions. This study presents the concept of inhomogeneous dose distributions as a general way to increase local control probability, not only for isolated lung tumours...... dose distribution was created with dose constraints of: PTV-coverage ≥ 95%, same mean lung dose as obtained in the homogeneous dose plan, maximum doses of 45 and 66 Gy to spinal canal and oesophagus, respectively, and V74Gy

  4. A single-aliquot OSL protocol using bracketing regenerative doses to accurately determine equivalent doses in quartz

    CERN Document Server

    Folz, E

    1999-01-01

    In most cases, sediments show inherent heterogeneity in their luminescence behaviours and bleaching histories, and identical aliquots are not available: single-aliquot determination of the equivalent dose (ED) is then the approach of choice and the advantages of using regenerative protocols are outlined. Experiments on five laboratory bleached and dosed quartz samples, following the protocol described by Murray and Roberts (1998. Measurement of the equivalent dose in quartz using a regenerative-dose single aliquot protocol. Radiation Measurements 27, 171-184), showed the hazards of using a single regeneration dose: a 10% variation in the regenerative dose yielded some equivalent dose estimates that differed from the expected value by more than 5%. A protocol is proposed that allows the use of different regenerative doses to bracket the estimated equivalent dose. The measured ED is found to be in excellent agreement with the known value when the main regeneration dose is within 10% of the true equivalent dose.

  5. Fully Automated Treatment Planning for Head and Neck Radiotherapy using a Voxel-Based Dose Prediction and Dose Mimicking Method

    CERN Document Server

    McIntosh, Chris; McNiven, Andrea; Jaffray, David A; Purdie, Thomas G

    2016-01-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present an atlas-based approach which learns a dose prediction model for each patient (atlas) in a training database, and then learns to match novel patients to the most relevant atlases. The method creates a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces any requirement for specifying dose-volume objectives for conveying the goals of treatment planning. A probabilistic dose distribution is inferred from the most relevant atlases, and is scalarized using a conditional random field to determine the most likely spatial distribution of dose to yield a specific dose prior (histogram) for relevant regions of interest. Voxel-based dose mimicking then converts the predicted dose distribution to a deliverable treatment plan dose distribution. In this study, we ...

  6. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    Science.gov (United States)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  7. In vivo dose verification method in catheter based high dose rate brachytherapy.

    Science.gov (United States)

    Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas

    2017-12-01

    In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was

  8. Visualization of a changing dose field.

    Energy Technology Data Exchange (ETDEWEB)

    Helm, T. M (Terry M.); Kornreich, D. E. (Drew E.)

    2002-01-01

    To help visualize the results of dose modeling for nuclear materials processing opcrations, we have developed an integrated model that uses a simple dosc calculation tool to obtain estimates of the dose field in a complex geomctry and then post-process the data to produce a video of the now time-dependent data. We generate two-dimensional radiation fields within an existing physical cnvironment and then analyze them using three-dimensional visualization techniques. The radiation fields are generated for both neutrons and photons. Standard monoenergetic diffusion theory is used to estimate the neutron dosc fields. The photon dose is estimated using a point-kernel formalism, with photon shielding effects and buildup taken into account. The radiation field dynamics are analyzed by interleaving individual 3D graphic 'snapshots' into a smoothed, lime dependent, video-based display. In-the-room workers are 'seen' in the radiation fields via a graphical, 3D fly-through rendering of the room. Worker dose levels can reveal surprising dependencies on operational source placement, source types, worker alignment, shielding alignments, and indirect operations from external workers.

  9. Update on low-dose corticosteroids.

    Science.gov (United States)

    Briegel, Josef; Bein, Thomas; Möhnle, Patrick

    2017-04-01

    Low-dose hydrocortisone is recommended in patients with septic shock unresponsive to fluid and vasopressor therapy. Recent research added new data for patients with septic shock and other target groups such as patients with severe sepsis, acute respiratory distress syndrome (ARDS), community-acquired pneumonia, and burns. The objective of this review is to summarize and comment recent findings on low-dose corticosteroids (LDC) in critically ill patients. In the last 2 years, a series of clinical trials and retrospective analyses investigated LDC therapy in critically ill patients with severe systemic inflammation of various origins. Improvement in morbidity has been demonstrated in ARDS and community-acquired pneumonia. Retrospective propensity-score analyses also suggest that LDC administered in severe septic shock or in septic shock due to community-acquired pneumonia or intestinal perforation may improve survival. Low-dose hydrocortisone or a corresponding low-dose corticosteroid therapy may improve morbidity in specific target groups of critically ill patients. Beneficial effects on mortality remain to be demonstrated in large-scale randomized controlled trials.

  10. Aerosol Therapy: Nebulizer vs Metered Dose Inhaler

    National Research Council Canada - National Science Library

    Newhouse, M; Dolovich, M

    1987-01-01

    ... aerosol generation using metered-dose inhalers. Previously, aerosol delivery by means of intermittent positive pressure breathing devices attached to nebulizers enjoyed unwarranted popularity for decades, only to be abandoned when convincing evidence became available that they were no better than nebulizers alone for administering bronchodilato...

  11. uv keratoconjunctivitis vs. established dose effect relationships

    Energy Technology Data Exchange (ETDEWEB)

    Gulvady, N.U.

    1976-08-01

    A patient who received a uv dose to his eyes 11 times greater than the photokeratitic threshold of Pitts and 4/sup 1///sub 2/ times the photokeratitic threshold as found by Leach. The patient had severe keratoconjunctivitis for 3 days and did not develop any keratitis.

  12. Focus and dose characterization of immersion photoclusters

    Science.gov (United States)

    Brunner, T. A.; Corliss, D.; Wiltshire, T.; Ausschnitt, C. P.

    2009-03-01

    The process window for state of the art chip manufacturing continues to decrease, driven by higher NA exposure tools and lower k1 values. The benefits of immersion lithography for Depth of Focus (DoF) are well known. Yet even with this immersion boost, NA=1.35 tools can push DoF into sub-100nm territory. In addition, immersion processes are subject to new sources of dose and focus variation. In order to realize the full potential of immersion lithography, it is necessary to characterize, understand and attack all sources of process variation. Previous work has established our dose/focus metrology capability1, in which we expose Process Monitor Grating (PMG) targets with high sensitivity to focus, measure the PMGs using scatterometry, and use the Ausschnitt dose/focus deconvolution approach to determine focus errors to within a few nm and dose errors to within 0.1%. In this paper, we concentrate on applying this capability to the detailed measurements of immersion photoclusters utilizing ASML exposure tools. Results will include: • comparison of Twinscan 1700i and 1900i focus capability • effectiveness of the Reticle Shape Correction (RSC) for non-flat reticles • visualization of non-flat wafer chucks, tilted image planes, and other systematic focus error components • tracking of tool trends over time, using automated monitor wafer flows The highly systematic nature of the observed focus errors suggest potential for future improvements in focus capability.

  13. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Purpose: This study aims to report the incidence of treatment-induced acute toxicities, local control and survival of patients with cervix cancer treated by external beam radiotherapy (EBR) and high-dose-rate (HDR) brachytherapy concomitant with weekly Cisplatin chemotherapy. Methods: Forty patients with FIGO Stages IB2 ...

  14. A Roadmap to Individualized Irinotecan Dosing

    NARCIS (Netherlands)

    F.A. de Jong (Floris)

    2006-01-01

    textabstractEver since its introduction to the drug-market in the late eighties, early nineties of the last century, irinotecan is fighting its image. Particularly, the unpredictable occurrence and severity of delayed-type diarrhea, its main dose-limiting adverse effect, remains a serious

  15. Charpak, Garwin, propose unit for radiation dose

    CERN Multimedia

    Feder, Toni

    2002-01-01

    Becquerels, curries, grays, rads, rems, roentgens, sieverts - even for specialists the units of radiation can get confusing. That's why two eminent physicists, Georges Charpak of France, and Richard Garwin, are proposing the DARI as a unit of radiation dose they hope will help the public evaluate the risks associated with low-level radiation exposure (1 page)

  16. Verification of Entrance Dose Measurements with ...

    African Journals Online (AJOL)

    In vivo dosimetry was carried out on various cancer patients at the radiotherapy department of Eko Hospitals, Lagos-Nigeria. The aim of this study is to verify whether a correct dose is actually being delivered to the tumor and also detect errors in individual treatment sessions that may arise in equipment malfunctioning and ...

  17. Dose-shaping using targeted sparse optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, George A.; Ruan, Dan [Department of Radiation Oncology, University of California - Los Angeles School of Medicine, 200 Medical Plaza, Los Angeles, California 90095 (United States)

    2013-07-15

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot

  18. Low dose intravaginal misoprostol versus intracervical balloon ...

    African Journals Online (AJOL)

    Need for oxytocin augmentation was less in the misoprostol group (RR 0.76, 95% CI 0.64 to 0.91). No significant differences existed in rates for uterine hyperstimulation, Caesarean section, maternal and neonatal morbidity. Conclusion:Intravaginal misoprostol in a low dose was compared to intracervical balloon catheter for ...

  19. High-Dose Phenobarbital for Ohtahara Syndrome

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-05-01

    Full Text Available Oral high-dose phenobarbital therapy was effective in the control of tonic spasms in a 1 month-old-infant with early infantile epileptic encephalopathy with suppression bursts (Ohtahara syndrome treated at Tokyo Metropolitan Hachioji Children’s Hospital, Tokyo, Japan.

  20. Measurement and evaluation of internal dose

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Young; Chang, S. Y.; Lee, J. I.; Song, M. Y. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-01-01

    This report describes the contents and results for implementation of internal radiating monitoring programme, measurement of uranium present in lung by lung counter and assessment of committed effective dose for radiation workers of KNFC. The aim of radiation protection was achieved by implementing this activity. 8 refs., 14 tabs. (Author)

  1. Threshold Dose Distribution in Walnut Allergy

    NARCIS (Netherlands)

    Blankestijn, Mark A; Remington, Benjamin C.; Houben, GF; Baumert, Joseph L.; Knulst, André C; Blom, W Marty; Klemans, Rob J B; Taylor, Steve L

    BACKGROUND: In food allergy, eliciting doses (EDs) of foods on a population level can improve risk management and labeling strategies for the food industry and regulatory authorities. Previously, data available for walnut were unsuitable to determine EDs. OBJECTIVE: The objective of this study was

  2. Radiation doses to neonates requiring intensive care

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A. (Weston Park Hospital, Sheffield (UK)); Dellagrammaticas, H.D. (Sheffield Univ. (UK))

    1983-06-01

    Radiological investigations have become accepted as an important part of the range of facilities required to support severely ill newborn babies. Since the infants are so small, many of the examinations are virtually ''whole-body'' irradiations and it was thought that the total doses received might be appreciable. A group of such babies admitted to the Neonatal Intensive Care Unit in Sheffield over a six-month period have been studied. X-ray exposure factors used for each examination have been noted and total skin, gonad and bone marrow doses calculated, supplemented by measurements on phantoms. It is concluded that in most cases doses received are of the same order as those received over the same period from natural background radiation and probably less than those received from prenatal obstetric radiography, so that the additional risks from the diagnostic exposure are small. The highest doses are received in CT scans and barium examinations and it is recommended that the need for these should be carefully considered.

  3. Recent patents in pressurised metered dose inhalers.

    Science.gov (United States)

    Ehtezazi, Touraj

    2012-04-01

    In this paper recent patents in pressurised metered dose inhalers have been reviewed. The patents are related to novel valves, dose-counters, formulations, add-on devices, reduction of propellant leakage and inkjet technology. Recently patented dose-counters provide mechanisms that are less susceptible to inaccuracy, and are battery-less electronic dose-counters with the help of miniature electromechanical generators. Regarding the formulation aspect, recent patents provide methods for combinational pMDIs and more stable products. Advantages of recently patented valves are being spring-free and less subject to loss of prime. Recent developments in micromachining have allowed patents that incorporate inkjet technology to develop inhalers that are similar to pMDIs, but produce uniform aerosol droplets. Coating canisters with suitable polymers has reduced need for excipients. Recently patented add-on devices reduce aerosol deposition in the spacer by creating turbulence on the walls of the chamber. Blockage of nozzles in actuators is prevented by providing tapered nozzle channels. In conclusion, these patents show better understanding of pMDIs and provide methods to achieve products with much improved reliability, aerosol performance and stability.

  4. Antimicrobial dosing in acute renal replacement.

    Science.gov (United States)

    Fissell, William H

    2013-01-01

    Acute kidney injury (AKI) is a common problem in hospitalized patients and is associated with significant morbidity and mortality. Two large trials showed no benefit from increased doses of renal replacement therapy (RRT) despite previous clinical data suggesting that increased clearance from RRT has beneficial effects. Since infection is the leading cause of death in AKI, my group and others hypothesized that increased RRT antibiotic clearance might create a competing morbidity. The data from my group, as well as those of other groups, show that many patients are underdosed when routine "1 size fits all" antibiotic dosing is used in patients with AKI receiving continuous RRT (CRRT). Here, concepts of drug distribution and clearance in AKI are briefly discussed and then 1 antibiotic (piperacillin) is discussed in depth to illustrate the challenges in applying the medical literature to clinical practice. The fact that published data on drug dosing in AKI and dialysis reflect the evolution of practice patterns and often do not apply to present prescribing habits is also discussed. A more general approach to drug dosing facilitates situation-specific prescribing by the nephrologist and critical care specialist. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Dose-shaping using targeted sparse optimization.

    Science.gov (United States)

    Sayre, George A; Ruan, Dan

    2013-07-01

    Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method. In designing the energy minimization objective (E tot (sparse)), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L1 norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E tot (sparse) improves tradeoff between

  6. Needed: A Dose of Assessment Literacy

    Science.gov (United States)

    Popham, James W.

    2006-01-01

    Government agencies administer exams to appraise educators' effectiveness. However, most teachers and administrators are unfamiliar with how such large-scale tests are put together or polished. A profession's adequacy is being judged on the basis of tools that the profession's members don't understand. As such, educators need to have a dose of…

  7. Dose-response analysis using R

    DEFF Research Database (Denmark)

    Ritz, Christian; Baty, Florent; Streibig, Jens Carl

    2015-01-01

    Dose-response analysis can be carried out using multi-purpose commercial statistical software, but except for a few special cases the analysis easily becomes cumbersome as relevant, non-standard output requires manual programming. The extension package drc for the statistical environment R provides...

  8. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  9. Low-dose CT in clinical diagnostics.

    Science.gov (United States)

    Fuentes-Orrego, Jorge M; Sahani, Dushyant V

    2013-09-01

    Computed tomography (CT) has become key for patient management due to its outstanding capabilities for detecting disease processes and assessing treatment response, which has led to expansion in CT imaging for diagnostic and image-guided therapeutic interventions. Despite these benefits, the growing use of CT has raised concerns as radiation risks associated with radiation exposure. The purpose of this article is to familiarize the reader with fundamental concepts of dose metrics for assessing radiation exposure and weighting radiation-associated risks. The article also discusses general approaches for reducing radiation dose while preserving diagnostic quality. The authors provide additional insight for undertaking protocol optimization, customizing scanning techniques based on the patients' clinical scenario and demographics. Supplemental strategies are postulated using more advanced post-processing techniques for achieving further dose improvements. The technologic offerings of CT are integral to modern medicine and its role will continue to evolve. Although, the estimated risks from low levels of radiation of a single CT exam are uncertain, it is prudent to minimize the dose from CT by applying common sense solutions and using other simple strategies as well as exploiting technologic innovations. These efforts will enable us to take advantage of all the clinical benefits of CT while minimizing the likelihood of harm to patients.

  10. Verification of Entrance Dose Measurements with ...

    African Journals Online (AJOL)

    Verification of Entrance Dose Measurements with Thermoluminescent Dosimeters in Conventional Radiotherapy Procedures Delivered with Co‑60 Teletherapy Machine. ... Subjects and Methods: Fifty‑seven patients with cancers of the breast, pelvis, head and neck were admitted for this study. TLD system at the Radiation ...

  11. REVIEW ARTICLE REVIE REVIEW A dose audit of fluoroscopy ...

    African Journals Online (AJOL)

    2009-08-06

    Aug 6, 2009 ... The large variability in the radia- tion dose delivered shows that fluoroscopic examinations stand to gain from dose optimisation. The usefulness and potential use of DAP meters for dose optimisation in radiology are shown. In line with efforts to opti- mise the dose from diagnostic radiography examinations, ...

  12. 10 CFR 20.1201 - Occupational dose limits for adults.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Occupational dose limits for adults. 20.1201 Section 20... Limits § 20.1201 Occupational dose limits for adults. (a) The licensee shall control the occupational dose to individual adults, except for planned special exposures under § 20.1206, to the following dose...

  13. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  14. Dose due to {sup 40}K

    Energy Technology Data Exchange (ETDEWEB)

    Escareno J, E.; Vega C, H. R., E-mail: edmundoej@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2011-10-15

    The dose due to {sup 40}K has been estimated. Potassium is one of the most abundant elements in nature, being approximately 2% of the Earth's crust. Potassium has three isotopes {sup 39}K, {sup 40}K and {sup 41}K, two are stable while {sup 40}K is radioactive with a half life of 1.2x10{sup 9} years; there is 0.0117% {sup 40}K-to-K ratio. Potassium plays an important role in plants, animals and humans growth and reproduction. Due to the fact that K is an essential element for humans, {sup 40}K is the most abundant radioisotope in human body. In order to keep good health conditions K must be intake at daily basis trough food and beverages, however when K in ingested above the requirements produce adverse health effects in persons with renal, cardiac and hypertension problems or suffering diabetes. In 89.3% {sup 40}K decays to {sup 40}C through {beta}-decay, in 10.3% decays through electronic capture and emitting 1.46 MeV {gamma}-ray. K is abundant in soil, construction materials, sand thus {gamma}-rays produced during {sup 40}K decay contribute to external dose. For K in the body practically all {sup 40}K decaying energy is absorbed by the body; thus {sup 40}K contributes to total dose in humans and it is important to evaluate its contribution. In this work a set of {sup 40}K sources were prepared using different amounts of KCl salt, a {gamma}-ray spectrometer with a NaI(Tl) was characterized to standardized the sources in order to evaluate the dose due to {sup 40}K. Using thermoluminescent dosemeters the dose due to {sup 40}K was measured and related to the amount of {sup 40}K {gamma}-ray activity. (Author)

  15. High dose rate brachytherapy for oral cancer

    Science.gov (United States)

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  16. Measurement of spatial dose distribution for evaluation operator dose during nero-interventional procedures

    Energy Technology Data Exchange (ETDEWEB)

    Han, Su Chul [Division of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Hong, Dong Hee [Dept. of Radiology Science, Far East University, Eumseong (Korea, Republic of)

    2016-09-15

    The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in 18.1±10.5%, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures.

  17. A dose verification method for high-dose-rate brachytherapy treatment plans.

    Science.gov (United States)

    Kumar, Rajesh; Sharma, S D; Vijaykumar, C; Deshpande, Sudesh; Sharma, P K; Vandana, S; Philomena, A; Chilkulwar, Ravi H

    2008-01-01

    To evolve a fast dose verification method for high-dose-rate (HDR) brachytherapy treatment plans and to demonstrate its applicability in different clinical cases. We developed a software tool in VC++ for the Varisource HDR unit for HDR dosimetry plan verification using TG-43 parameters. HDR treatment dosimetry of a number clinical cases using Varisource was verified by comparison with the treatment planning system (TPS). A number of different types of clinical cases treated by Varisource were evaluated. TPS calculated dose values and verification code calculated dose values were found to agree to within 3% for most of the dose calculation points. We have validated with clinical cases a fast and independent dose verification method of the dosimetry at selected points for HDR brachytherapy treatments plan using TG-43 parameters. This can be used for the verification of the TPS calculated dose at various points. The code is written to work with Varisource, but it can conceivably be modified for other sources also by using the fitted constant of the respective source.

  18. Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing.

    Science.gov (United States)

    Tian, Z; Zhang, M; Hrycushko, B; Albuquerque, K; Jiang, S B; Jia, X

    2016-01-01

    Current clinical brachytherapy dose calculations are typically based on the Association of American Physicists in Medicine Task Group report 43 (TG-43) guidelines, which approximate patient geometry as an infinitely large water phantom. This ignores patient and applicator geometries and heterogeneities, causing dosimetric errors. Although Monte Carlo (MC) dose calculation is commonly recognized as the most accurate method, its associated long computational time is a major bottleneck for routine clinical applications. This article presents our recent developments of a fast MC dose calculation package for high-dose-rate (HDR) brachytherapy, gBMC, built on a graphics processing unit (GPU) platform. gBMC-simulated photon transport in voxelized geometry with physics in (192)Ir HDR brachytherapy energy range considered. A phase-space file was used as a source model. GPU-based parallel computation was used to simultaneously transport multiple photons, one on a GPU thread. We validated gBMC by comparing the dose calculation results in water with that computed TG-43. We also studied heterogeneous phantom cases and a patient case and compared gBMC results with Acuros BV results. Radial dose function in water calculated by gBMC showed GPU-based MC dose calculation package, gBMC, for HDR brachytherapy make it attractive for clinical applications. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  20. TID Effects in Space-like Variable Dose Rates

    Science.gov (United States)

    Harris, Richard D.

    2008-01-01

    The degradation of the LM193 dual voltage comparator has been studied with different types of TID dose rates. These include several different constant dose rates and a variable dose rate that simulates the behavior of a solar flare. The varying dose rate of a solar flare is the type of real total dose exposure that a space mission might see in lunar or Martian orbit. A comparison of these types of dose rates is made to explore how well the constant dose rates used for typical part testing predicts the performance during a simulated space-like mission.

  1. Randomized Trial of 2 Versus 1 Dose of Measles Vaccine

    DEFF Research Database (Denmark)

    Brønd, Marie; Martins, Cesario L; Byberg, Stine

    2018-01-01

    Background: Two doses of measles vaccine (MV) might reduce the nonmeasles mortality rate more than 1 dose of MV does. The effect of 2 versus 1 dose on morbidity has not been examined. Within a randomized trial of the effect of 2 doses versus 1 dose of MV on mortality in Guinea-Bissau, we investig......Background: Two doses of measles vaccine (MV) might reduce the nonmeasles mortality rate more than 1 dose of MV does. The effect of 2 versus 1 dose on morbidity has not been examined. Within a randomized trial of the effect of 2 doses versus 1 dose of MV on mortality in Guinea-Bissau, we...... measles vaccination policy might reduce hospital admissions more than the current policy of providing the first MV at 9 months of age. Trial registration: ClinicalTrials.gov identifier NCT00168558....

  2. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    Science.gov (United States)

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  3. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    Science.gov (United States)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  4. Dose assessment in pediatric computerized tomography; Avaliacao de doses em tomografia computadorizada pediatrica

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Luisa Maria Auredine Lima

    2004-07-01

    The objective of this work was the evaluation of radiation doses in paediatric computed tomography scans, considering the high doses usually involved and the absence of any previous evaluation in Brazil. Dose values were determined for skull and abdomen examinations, for different age ranges, by using the radiographic techniques routinely used in the clinical centers investigated. Measurements were done using pencil shape ionization chambers inserted in polymethylmethacrylate (PMMA) phantoms. These were compact phantoms of different diameters were specially designed and constructed for this work, which simulate different age ranges. Comparison of results with published values showed that doses were lower than the diagnostic reference levels established to adults exams by the European Commission. Nevertheless, doses in paediatric phantoms were higher than those obtained in adult phantoms. The paediatric dose values obtained in Hospitals A and B were lower than the reference level (DRL) adopted by SHIMPTON for different age ranges. In the range 0 - 0.5 year (neonatal), the values of DLP in Hospital B were 94 por cent superior to the DRL For the 10 years old children the values of CTDI{sub w} obtained were inferior in 89 por cent for skull and 83 por cent for abdomen examinations, compared to the values published by SHRIMPTON and WALL. Our measured CTDI{sub w} values were inferior to the values presented for SHRIMPTON and HUDA, for all the age ranges and types of examinations. It was observed that the normalized dose descriptors values in children in the neonatal range were always superior to the values of doses for the adult patient. In abdomen examinations, the difference was approximately 90% for the effective dose (E) and of 57%.for CTDI{sub w} . (author)

  5. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  6. Dose reduction during CT coronary angiography; La reduction de dose en coroscanographie

    Energy Technology Data Exchange (ETDEWEB)

    Willoteaux, S.; Sibileau, E.; Caroff, J.; Nedelcu, C.; Thouveny, F. [Service de Radiologie, Hopital Larrey, CHU d' Angers, 49 - Angers (France); Abi Kalil, W.; Delepine, S. [Service de Cardiologie, Hopital Larrey, CHU d' Angers, 49 - Angers (France)

    2010-11-15

    Dose delivery during CT coronary angiography with retrospective ECG gating is high especially due to the important slice overlapping. Optimization of the acquisition parameters is necessary to reduce patient exposure. First, the height of the scan field should be limited to the heart. Both kV and mA should be adjusted based on patient morphology. ECG gated exposure modulation with mA reduction during systole, a technique most applicable for patients with slow and regular heart rate, can result in a dose reduction up to 50%. The use of prospective ECG gating can also reduce patient dose. This technique also requires patients with slow and regular heart rate. (authors)

  7. A model for low dose effects of low-LET radiation delivered at high dose rates

    Science.gov (United States)

    Schöllnberger, H.; Stewart, R.D.; Mitchel, R.E.J.

    2011-01-01

    In vitro studies show that protective tumour-reducing effects occur for low dose rates (mGy per minute). To account for these phenomena, we have previously developed stochastic and deterministic multi-stage cancer models that include radiation-induced adaptations in DNA repair processes and radical scavenging. Here, these models are extended to account for the induction of radioprotective mechanisms for low doses of low LET radiation delivered at high dose rates. Cellular adaptations in DNA repair are related to temporal changes in the amount of DNA damage in a cell. The combined effects of endogenous DNA damage, background radiation and artificial irradiation are considered. PMID:22318364

  8. Hanford Dose Overview Program. Comparison of AIRDOS-EPA and Hanford site dose codes

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Napier, B.A.

    1985-11-01

    Radiation dose commitments for persons in the Hanford environs calculated using AIRDOS-EPA were compared with those calculated using a suite of Hanford codes: FOOD, PABLM, DACRIN, and KRONIC. Dose commitments to the population and to the maximally exposed individual (MI) based on annual releases of eight radionuclides from the N-Reactor, were calculated by these codes. Dose commitments from each pathway to the total body, lung, thyroid, and lower large intestine (LLI) are given for the population and MI, respectively. 11 refs., 25 tabs.

  9. Pharmacokinetics and dose proportionality of ceftibuten in men.

    OpenAIRE

    Lin, C; Lim, J; Radwanski, E; Marco, A; Affrime, M

    1995-01-01

    The pharmacokinetics and dose proportionality of ceftibuten were evaluated in healthy male volunteers receiving single oral doses of 200, 400, and 800 mg of ceftibuten. The drug was absorbed with similar times to the maximum concentration of drug in plasma for all three doses. Concentrations of ceftibuten in plasma increased with increasing dose. Analysis of variance was carried out on the dose-adjusted values for the maximum concentration of drug in plasma and the area under the plasma conce...

  10. Dose Optimization for Computed Tomography Localizer Radiographs for Low-Dose Lung Computed Tomography Examinations.

    Science.gov (United States)

    Schmidt, Bernhard T; Hupfer, Martin; Saltybaeva, Natalia; Kolditz, Daniel; Kalender, Willi A

    2017-02-01

    Recent studies have shown a substantial reduction of radiation dose from computed tomography (CT) scans down to 0.1 mSv for lung cancer screening and cardiac examinations, when applying optimization techniques. Hence, CT localizer radiographs (LRs) might now be considered a significant contributor to the total dose of the CT examination. We investigated in our study the potential for reducing dose of the LRs by adapting the patient-specific acquisition parameters of the LR. Localizer radiographs covering the lungs were acquired on 2 clinical scanners (64 slices, conventional detector [CD]; 96 slices, fully integrated detector [ID]) for 3 semianthropomorphic phantoms, representing a slim, a normal, and an obese adult. Starting at 120-kV tube voltage and 250-mA current were reduced until the image quality of the LR, and thereby the accuracy of the automatic exposure control was compromised; this was defined as a deviation of measured attenuation values in the center of the LR of more than 5% from the reference values measured at the highest tube voltage and current. Subsequent Monte Carlo calculations on anthropomorphic phantoms were performed to calculate organ and effective dose values for the respective optimal settings. In addition, effective dose values normalized to CTDIvol for tube voltages ranging from 60 to 160 kV were determined for the different combinations of phantom sizes, sexes, and LR views to evaluate dose efficiency. For the CD scanner, the optimal LR settings depended strongly on phantom size. Higher tube voltage and current were necessary for the larger phantoms. The ID scanner showed uncompromised LR quality for all phantoms using the lowest possible tube voltage-tube current combination of 80 kV and 20 mA. Depending on patient size and LR direction, effective dose values for the optimal settings ranged from 6 to 53 μSv and 3 to 11 μSv for the CD and ID scanner, respectively. For the example of an anterior-posterior LR on a normal patient

  11. A new low-dose CT examination compared with standard-dose CT in the diagnosis of acute sinusitis

    Energy Technology Data Exchange (ETDEWEB)

    Hagtvedt, T.; Aaloekken, T.M.; Noetthellen, J.; Kolbenstvedt, A. [Department of Radiology, Rikshospitalet, 0027 Oslo (Norway)

    2003-05-01

    A low-dose CT of the paranasal sinuses was designed with few, thin sections, non-uniform intersection gaps, low milliampere settings and avoidance of direct radiation to the eye lens. The low-dose CT was prospectively compared with standard-dose CT in patients with suspicion of acute sinusitis. Forty-seven patients were examined with low-dose CT immediately after standard-dose CT. The effective dose and the lens dose were calculated and compared. Using standard-dose CT as a gold standard the sensitivity and specificity of low-dose CT was calculated for each sinus group. The effective dose and the lens dose of the low-dose CT were reduced to, respectively, 3 and 2% of the standard-dose CT. The diagnostic yield of the low-dose CT with regard to acute sinusitis was good with a high specificity ({>=}96%) for all sinus groups. The sensitivity was also high ({>=}95%) except for the frontal sinus where the sensitivity was 83%. Low-dose CT offers considerable dose reduction and should be the standard for imaging patients with suspected acute inflammatory paranasal disease. (orig.)

  12. Low-dose computed tomographic urography using adaptive iterative dose reduction 3-dimensional: comparison with routine-dose computed tomography with filtered back projection.

    Science.gov (United States)

    Juri, Hiroshi; Matsuki, Mitsuru; Inada, Yuki; Tsuboyama, Takahiro; Kumano, Seishi; Azuma, Haruhito; Narumi, Yoshifumi

    2013-01-01

    The aim of this study was to evaluate the image quality of low-dose computed tomographic (CT) urography using adaptive iterative dose reduction 3-dimensional (AIDR 3D) compared with routine-dose CT using filtered back projection (FBP). Thirty patients underwent low- and routine-dose CT scans in the nephrographic and excretory phases of CT urography. Low-dose CT was reconstructed with AIDR 3D, and routine-dose CT was reconstructed with FBP. In quantitative analyses, image noises were measured on the renal cortex, aorta, retroperitoneal fat, and psoas muscle in both CT scans and compared. Qualitative analyses of the urinary system were performed in both CT scans and compared. These results were compared on the basis of the body mass index (BMI) of the patients. The CT dose index (CTDIvol) was measured, and the dose reduction was calculated. In quantitative analyses, image noises in all organs on low-dose CT were less than those on routine-dose CT in both phases independently of the patient's BMI. There were no statistical differences between low- and routine-dose CT for diagnostic acceptability on all urinary systems in both phases independently of the patient's BMI. The average CTDIvol on routine-dose CT was 14.5 mGy in the nephrographic phase and 9.2 mGy in the excretory phase. The average CTDIvol on low-dose CT was 4.2 mGy in the nephrographic phase and 2.7 mGy in the excretory phase. Low-dose CT urography using AIDR 3D can offer diagnostic acceptability comparable with routine-dose CT urography with FBP with approximately 70% dose reduction.

  13. Dose estimation for paediatric cranial computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Curci Daros, K.A.; Bitelli Medeiros, R. [Sao Paulo Univ. Federal (Brazil); Curci Daros, K.A.; Oliveira Echeimberg, J. de [Centro Univ. Sao Camilo, Sao Paulo (Brazil)

    2006-07-01

    In the last ten years, the number of paediatric computed tomography (CT) scans have increased worldwide, contributing to higher population radiation dose. Technique diversification in paediatrics and different CT equipment technologies have led to various exposure levels complicating precise evaluation of doses and operational conditions necessary for good quality images. The objective of this study was to establish a quantitative relationship between absorbed dose and cranial region in children up to 6 years old undergoing CT exams. Methods: X-ray was measured on the cranial surface of 64 patients undergoing CT using thermoluminescent (T.L.) dosimeters. Forty T.L.D.100 thermoluminescent dosimeters (T.L.D.) were evenly distributed on each patients skin surface along the sagittal axis. Measurements were performed in facial regions exposed to scatter radiation and in the supratentorial and posterior fossa regions, submitted to primary radiation. T.L.D. were calibrated for 120 kV X-ray over the acrylic phantom. T.L. measurements were made with a Harshaw 4000 system. Patient mean T.L. readings were determined for position, pi, of T.L.D. and normalized to the maximum supratentorial reading. From integrating the linear T.L. density function (?) resulting from radiation distribution in each of the three exposed regions, dose fraction was determined in the region of interest, along with total dose under the technical conditions used in that specific exam protocol. For each T.L.D. position along the patient cranium, there were n T.L. measurements with 2% uncertainty due to T.L. reader, and 5% due to thermal treatment of dosimeters. Also, mean T.L. readings and their uncertainties were calculated for each patient at each position, p. Results: Mean linear T.L. density for the region exposed to secondary radiation defined by position, 0.3{<=}p{<=}6 cm, was {rho}((p)=7.9(4)x10{sup -2}+7(5)x10{sup -5}p{sup 4.5(4)} cm{sup -1}; exposed to primary X-ray for the posterior fossa

  14. Dose Estimation in Pediatric Nuclear Medicine.

    Science.gov (United States)

    Fahey, Frederic H; Goodkind, Alison B; Plyku, Donika; Khamwan, Kitiwat; O'Reilly, Shannon E; Cao, Xinhua; Frey, Eric C; Li, Ye; Bolch, Wesley E; Sgouros, George; Treves, S Ted

    2017-03-01

    The practice of nuclear medicine in children is well established for imaging practically all physiologic systems but particularly in the fields of oncology, neurology, urology, and orthopedics. Pediatric nuclear medicine yields images of physiologic and molecular processes that can provide essential diagnostic information to the clinician. However, nuclear medicine involves the administration of radiopharmaceuticals that expose the patient to ionizing radiation and children are thought to be at a higher risk for adverse effects from radiation exposure than adults. Therefore it may be considered prudent to take extra care to optimize the radiation dose associated with pediatric nuclear medicine. This requires a solid understanding of the dosimetry associated with the administration of radiopharmaceuticals in children. Models for estimating the internal radiation dose from radiopharmaceuticals have been developed by the Medical Internal Radiation Dosimetry Committee of the Society of Nuclear Medicine and Molecular Imaging and other groups. But to use these models accurately in children, better pharmacokinetic data for the radiopharmaceuticals and anatomical models specifically for children need to be developed. The use of CT in the context of hybrid imaging has also increased significantly in the past 15 years, and thus CT dosimetry as it applies to children needs to be better understood. The concept of effective dose has been used to compare different practices involving radiation on a dosimetric level, but this approach may not be appropriate when applied to a population of children of different ages as the radiosensitivity weights utilized in the calculation of effective dose are not specific to children and may vary as a function of age on an organ-by-organ bias. As these gaps in knowledge of dosimetry and radiation risk as they apply to children are filled, more accurate models can be developed that allow for better approaches to dose optimization. In turn, this

  15. Right dose, right now: using big data to optimize antibiotic dosing in the critically ill.

    Science.gov (United States)

    Elbers, Paul W G; Girbes, Armand; Malbrain, Manu L N G; Bosman, Rob

    2015-01-01

    Antibiotics save lives and are essential for the practice of intensive care medicine. Adequate antibiotic treatment is closely related to outcome. However this is challenging in the critically ill, as their pharmacokinetic profile is markedly altered. Therefore, it is surprising that critical care physicians continue to rely on standard dosing regimens for every patient, regardless of the actual clinical situation. This review outlines the pharmacokinetic and pharmacodynamic principles that underlie the need for individualized and personalized drug dosing. At present, therapeutic drug monitoring may be of help, but has major disadvantages, remains unavailable for most antibiotics and has produced mixed results. We therefore propose the AutoKinetics concept, taking decision support for antibiotic dosing back to the bedside. By direct interaction with electronic patient records, this opens the way for the use of big data for providing the right dose at the right time in each patient.

  16. Single-Dose and Multiple-Dose Pharmacokinetics of Nicotine 6 mg Gum.

    Science.gov (United States)

    Hansson, Anna; Rasmussen, Thomas; Kraiczi, Holger

    2017-04-01

    Under-dosing is a recognized problem with current nicotine replacement therapy (NRT). Therefore, a new 6mg nicotine gum has been developed. To compare the nicotine uptake from the 6mg gum versus currently available NRT products, two pharmacokinetic studies were performed. In one randomized crossover study, 44 healthy adult smokers received single doses of 6, 4, and 2mg nicotine gum, and 4mg nicotine lozenge on separate occasions. In a separate randomized crossover multiple-dose study over 11 hours, 50 healthy adult smokers received one 6mg gum every hour and 90 minutes, respectively, one 4mg gum every hour, and one 4mg lozenge every hour. In both studies, blood samples were collected over 12 hours to determine single-dose and multiple-dose pharmacokinetic variables. In the single-dose study, the amount of nicotine released from the 2, 4, and 6mg gums (1.44, 3.36, and 4.94mg) as well as the resulting maximum concentration and area under the curve (5.9, 10.1, and 13.8ng/mL, and 17.1, 30.7, 46.2ng/mL × h, respectively) increased with dose. The maximum concentration and area under the curve of the 6mg gum were 44% and 30% greater, respectively, than those for 4mg lozenge. Upon hourly administration, the steady-state average plasma nicotine concentration with 6mg gum (37.4ng/mL) was significantly higher than those for 4mg lozenge (28.3ng/mL) and 4mg gum (27.1ng/mL). Nicotine delivery via the 6mg gum results in higher plasma nicotine concentrations after a single dose and at steady state than with currently available oral NRT. Under-dosing is a recognized problem with current NRT. Therefore, a new 6mg nicotine gum has been developed. Our studies show that upon single-dose and multiple-dose administration, the 6mg gum releases and delivers more nicotine to the systemic circulation than 2mg gum, 4mg gum, and 4mg lozenge. Thus, each 6mg nicotine gum provides a higher degree of nicotine substitution and/or lasts for a longer period of time than currently available nicotine

  17. Is Dose Deformation-Invariance Hypothesis Verified in Prostate IGRT?

    Science.gov (United States)

    Simon, Antoine; Le Maitre, Amandine; Nassef, Mohamed; Rigaud, Bastien; Castelli, Joël; Acosta, Oscar; Haigron, Pascal; Lafond, Caroline; de Crevoisier, Renaud

    2017-03-15

    To assess dose uncertainties resulting from the dose deformation-invariance hypothesis in prostate cone beam computed tomography (CT)-based image guided radiation therapy (IGRT), namely to evaluate whether rigidly propagated planned dose distribution enables good estimation of fraction dose distributions. Twenty patients underwent a CT scan for planning intensity modulated radiation therapy-IGRT delivering 80 Gy to the prostate, followed by weekly CT scans. Two methods were used to obtain the dose distributions on the weekly CT scans: (1) recalculating the dose using the original treatment plan; and (2) rigidly propagating the planned dose distribution. The cumulative doses were then estimated in the organs at risk for each dose distribution by deformable image registration. The differences between recalculated and propagated doses were finally calculated for the fraction and the cumulative dose distributions, by use of per-voxel and dose-volume histogram (DVH) metrics. For the fraction dose, the mean per-voxel absolute dose difference was mean dose differences were correlated with gas volume for the rectum and patient external contour variations for the bladder. The mean absolute differences for the considered volume receiving greater than or equal to dose x (Vx) of the DVH were between 0.37% and 0.70% for the rectum and between 0.53% and 1.22% for the bladder. For the cumulative dose, the mean differences in the DVH were between 0.23% and 1.11% for the rectum and between 0.55% and 1.66% for the bladder. The largest dose difference was 6.86%, for bladder V80Gy. The mean dose differences were hypothesis was corroborated for the organs at risk in prostate IGRT except in cases of a large disappearance or appearance of rectal gas for the rectum and large external contour variations for the bladder. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method

    Science.gov (United States)

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.

    2017-08-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment

  19. Energies, health, medicine. Low radiation doses; Energies, sante, medecine. Les faibles doses de rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  20. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  1. High-dose neutron detector project update

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-10

    These are the slides for a progress review meeting by the sponsor. This is an update on the high-dose neutron detector project. In summary, improvements in both boron coating and signal amplification have been achieved; improved boron coating materials and procedures have increased efficiency by ~ 30-40% without the corresponding increase in the detector plate area; low dead-time via thin cell design (~ 4 mm gas gaps) and fast amplifiers; prototype PDT 8” pod has been received and testing is in progress; significant improvements in efficiency and stability have been verified; use commercial PDT 10B design and fabrication to obtain a faster path from the research to practical high-dose neutron detector.

  2. Disruptive Event Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-07-21

    This analysis report, ''Disruptive Event Biosphere Dose Conversion Factor Analysis'', is one of the technical reports containing documentation of the ERMYN (Environmental Radiation Model for Yucca Mountain Nevada) biosphere model for the geologic repository at Yucca Mountain, its input parameters, and the application of the model to perform the dose assessment for the repository. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of the two reports that develop biosphere dose conversion factors (BDCFs), which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the conceptual model as well as the mathematical model and lists its input parameters. Model input parameters are developed and described in detail in five analysis report (BSC 2003 [DIRS 160964], BSC 2003 [DIRS 160965], BSC 2003 [DIRS 160976], BSC 2003 [DIRS 161239], and BSC 2003 [DIRS 161241]). The objective of this analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors (DFs) for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). The volcanic ash exposure scenario is hereafter referred to as the volcanic ash scenario. For the volcanic ash scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in

  3. Hanford environmental dose reconstruction project: Monthly report

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, B.S. (comp.)

    1989-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by Pacific Northwest Laboratory under the direction of an independent Technical Steering Panel. During the reporting period, we continued revision of Work Plan to reflect phased approach, began incorporating comments from TSP Source Terms Subcommittee into a draft report, continued internal PNL clearance of a draft report, began preparing information to be presented at the May TSP meeting on the Columbia River (between Priest Rapids Dam and McNary Dam), completed a draft report summarizing the approach selected for atmospheric modeling, continued developing data bases on meteorological and numerical data, and met with representatives of the Colville, Spokane, Yakima, and Nez Perce tribes to discuss contracts, data collection, proposal revisions, and other aspects of the HEDR Project.

  4. Thyroid dose distribution in dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, R.G.; Wood, R.E.; Clark, G.M. (Ontario Cancer Institute, Toronto (Canada))

    1989-10-01

    The anatomic position and proven radiosensitivity of the thyroid gland make it an organ of concern in dental radiography. A calibrated thermoluminescent dosimetry system was used to investigate the absorbed dose (microGy) to the thyroid gland resultant from a minimum irradiated volume, intraoral full-mouth radiography technique with the use of rectangular collimation with a lead-backed image receptor, and conventional panoramic radiography performed with front and rear lead aprons. Use of the minimum irradiated volume technique resulted in a significantly decreased absorbed dose over the entire thyroid region ranging from 100% to 350% (p less than 0.05). Because this intraoral technique results in radiographs with greater image quality and also exposes the thyroid gland to less radiation than the panoramic, this technique may be an alternative to the panoramic procedure.

  5. Dose constraints for comforters and carers

    CERN Document Server

    Singleton, M; Morrison, G; Soanes, T

    2003-01-01

    This report has been prepared to enable guidance to be developed for employers, to assist them in meeting relevant legislative requirements for the exposure of persons who offer support and care to patients undergoing procedures involving ionising radiation where this would not be considered part of their occupation. The report identifies relevant legislation and guidance, discusses its interpretation, identifies circumstances in which these persons are exposed and presents information relating to the extent of these exposures, including results of dose measurements. Significant use of published information has been made, that has been supplemented wherever possible, with contributions from health care professionals. Our sincere thanks go to all persons who have contributed information or comments during the production of this report. Persons who have provided dose or related information included in this report are identified in Appendix B. This report and the work it describes was funded by the Health and Sa...

  6. Multi-parameter based coagulant dosing control.

    Science.gov (United States)

    Manamperuma, L; Wei, L; Ratnaweera, H

    2017-05-01

    The required coagulant dosage is strongly related to the quality of raw water or wastewater. Online sensors for most quality parameters are now readily available to treatment facilities, yet remain rarely used in treatment process control. This paper presents the evaluation of an advanced coagulant dosing control system based on online measurements in full-scale processes. The popular multivariate analytical method, partial least square regression, was used to build up the relationship between the coagulant dose and wastewater quality. The system was tested in two wastewater treatment plants (WWTPs) in Norway. Coagulant savings up to 30% in Norwegian plants were observed with feed forward calibrations. The considerable savings reduce sludge production, leading to further cost saving on sludge treatment. This paper presents the method, function and experiences of the full-scale implementation of the system in different WWTPs.

  7. p-MOSFET total dose dosimeter

    Science.gov (United States)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  8. Dose area product measurement for diagnostic reference levels and analysis of patient dose in dental radiography.

    Science.gov (United States)

    Han, Suchul; Lee, Boram; Shin, Gwisoon; Choi, Jonghak; Kim, Jungmin; Park, Changseo; Park, Hyok; Lee, Kisung; Kim, Youhyun

    2012-07-01

    In this study, diagnostic reference levels (DRLs) were suggested and patient doses were analysed through the dose-area product value in dental radiography. In intraoral radiography, at three sites, i.e. molar, premolar and incisor on the maxilla and acquired third quartile values: 55.5, 46 and 36.5 mGy cm(2), respectively, were measured. In panoramic, cephalometric and cone beam computed tomography, the values were 120.3, 146 and 3203 mGy cm(2) (16 × 18 cm), respectively. It has been shown that, in intraoral radiography, the patient dose changes proportionally to the value of mA s, but the change in extraoral radiography in response to mA s could not be confirmed. The authors could confirm, however, the difference in dose according to the manufacturer in all dental radiography examinations, except for panoramic radiography. Depending on the size of hospital, there were some differences in patient dose in intraoral radiography, but no difference in patient dose in extraoral radiography.

  9. [Study of appropriate dosing in consideration of image quality and patient dose on the digital radiography].

    Science.gov (United States)

    Kishimoto, Kenji; Ariga, Eiji; Ishigaki, Rikuta; Imai, Masatake; Kawamoto, Kiyosumi; Kobayashi, Kenichi; Sawada, Michito; Noto, Kimiya; Nakamae, Mitsuhiro; Higashide, Ryo

    2011-01-01

    Recently about 90% of radiographs have been taken by the digital radiographic system in Japan, but the exposure dose of the patients are about ten-times different among the systems. We understood it by a surveytaken in 2007. We studied the visual evaluation with varying exposure doses using the image phantom of the lumber AP, lumber lateral and hip AP. Additionally we measured quantum efficiency (DQE) of the digital systems. We also studied the exposure index (EI) of IEC standard to see whether it is able to be the sensitivity index among the digital systems. DQE in 1.0 cycle/mm of CR, FPD (GOS), FPD (CsI, a-Se) became 0.2-0.25, 0.3, 0.5, respectively. Our results display that the dose reduction is relative to DQE. The visual evaluation results also show that dose reduction is possible among the systems. From these results, we are able to reduce the exposure dose of the patients at the clinical site. We also suggest that we manage the exposure dose using the E.I of the IEC standard.

  10. Dose convolution filter: Incorporating spatial dose information into tissue response modeling

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yimei; Joiner, Michael; Zhao Bo; Liao Yixiang; Burmeister, Jay [Karmanos Cancer Center, Wayne State University, Detroit, Michigan 48202 (United States)

    2010-03-15

    Purpose: A model is introduced to integrate biological factors such as cell migration and bystander effects into physical dose distributions, and to incorporate spatial dose information in plan analysis and optimization. Methods: The model consists of a dose convolution filter (DCF) with single parameter {sigma}. Tissue response is calculated by an existing NTCP model with DCF-applied dose distribution as input. The authors determined {sigma} of rat spinal cord from published data. The authors also simulated the GRID technique, in which an open field is collimated into many pencil beams. Results: After applying the DCF, the NTCP model successfully fits the rat spinal cord data with a predicted value of {sigma}=2.6{+-}0.5 mm, consistent with 2 mm migration distances of remyelinating cells. Moreover, it enables the appropriate prediction of a high relative seriality for spinal cord. The model also predicts the sparing of normal tissues by the GRID technique when the size of each pencil beam becomes comparable to {sigma}. Conclusions: The DCF model incorporates spatial dose information and offers an improved way to estimate tissue response from complex radiotherapy dose distributions. It does not alter the prediction of tissue response in large homogenous fields, but successfully predicts increased tissue tolerance in small or highly nonuniform fields.

  11. A correlation study of eye lens dose and personal dose equivalent for interventional cardiologists.

    Science.gov (United States)

    Farah, J; Struelens, L; Dabin, J; Koukorava, C; Donadille, L; Jacob, S; Schnelzer, M; Auvinen, A; Vanhavere, F; Clairand, I

    2013-12-01

    This paper presents the dosimetry part of the European ELDO project, funded by the DoReMi Network of Excellence, in which a method was developed to estimate cumulative eye lens doses for past practices based on personal dose equivalent values, H(p)(10), measured above the lead apron at several positions at the collar, chest and waist levels. Measurement campaigns on anthropomorphic phantoms were carried out in typical interventional settings considering different tube projections and configurations, beam energies and filtration, operator positions and access routes and using both mono-tube and biplane X-ray systems. Measurements showed that eye lens dose correlates best with H(p)(10) measured on the left side of the phantom at the level of the collar, although this correlation implicates high spreads (41 %). Nonetheless, for retrospective dose assessment, H(p)(10) records are often the only option for eye dose estimates and the typically used chest left whole-body dose measurement remains useful.

  12. Dose estimation in interventional radiology; Estimativa de dose na radiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Nivia G.V.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Instrumentacao Nuclear]. E-mail: nvillela@con.ufrj.br; Vallim, Marcus A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Padilha Filho, Lucas Gomes; Azevedo, Feliciano S. [Hospital Universitario Clementino Fraga Filho (HUCFF/UFRJ), Rio de Janeiro, RJ (Brazil); Barroso, Regina C. Rodrigues [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Dept. de Fisica Aplicada

    2005-07-01

    Values of absorbed dose received for patients and professionals in interventionist radiology can be significant, therefore these procedures to spend of long times of fluoroscopy. There are diverse methods of estimate and reduce values dose in interventional radiology particularly because the fluoroscopy is responsible for the high contribution of dose in the patient and the professionals. The aim of the present work is using of thermoluminescent dosimetry in order to determine dose values in extremities (fingers) of professionals involved in interventional radiology and the dose-area (DAP) was also investigated, using a Diamentor. This evaluation of DAP is important because in this procedures there are interest in multiple regions of the organism. The estimated dose values for radiology professionals in the present study were: 137,25 mSv/years for doctors, 40,27 mSv/years for nurses and 51,95 mSv/years for the auxiliary doctor. These values are lower than the norm, but this study did not take into consideration for emergency examinations, because they are specific procedures. The DAP values obtained are elevated, for patients when they are associated with a cancer risk, but they are inside the same range of values as those encountered in the literature. (author)

  13. Assessment of organ equivalent doses and effective doses from diagnostic X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hyun

    2003-02-15

    The MIRD-type adult male, female and age 10 phantoms were constructed to evaluate organ equivalent dose and effective dose of patient due to typical diagnostic X-ray examination. These phantoms were constructed with external and internal dimensions of Korean. The X-ray energy spectra were generated with SPEC78. MCNP4B ,the general-purposed Monte Carlo code, was used. Information of chest PA , chest LAT, and abdomen AP diagnostic X-ray procedures was collected on the protocol of domestic hospitals. The results showed that patients pick up approximate 0.02 to 0.18 mSv of effective dose from a single chest PA examination, and 0.01 to 0.19 mSv from a chest LAT examination depending on the ages. From an abdomen AP examination, patients pick up 0.17 to 1.40 mSv of effective dose. Exposure time, organ depth from the entrance surface and X-ray beam field coverage considerably affect the resulting doses. Deviation among medical institutions is somewhat high, and this indicated that medical institutions should interchange their information and the need of education for medical staff. The methodology and the established system can be applied, with some expansion, to dose assessment for other medical procedures accompanying radiation exposure of patients like nuclear medicine or therapeutic radiology.

  14. The consequence of day-to-day stochastic dose deviation from the planned dose in fractionated radiation therapy.

    Science.gov (United States)

    Paul, Subhadip; Roy, Prasun Kumar

    2016-02-01

    Radiation therapy is one of the important treatment procedures of cancer. The day-to-day delivered dose to the tissue in radiation therapy often deviates from the planned fixed dose per fraction. This day-to-day variation of radiation dose is stochastic. Here, we have developed the mathematical formulation to represent the day-to-day stochastic dose variation effect in radiation therapy. Our analysis shows that that the fixed dose delivery approximation under-estimates the biological effective dose, even if the average delivered dose per fraction is equal to the planned dose per fraction. The magnitude of the under-estimation effect relies upon the day-to-day stochastic dose variation level, the dose fraction size and the values of the radiobiological parameters of the tissue. We have further explored the application of our mathematical formulation for adaptive dose calculation. Our analysis implies that, compared to the premise of the Linear Quadratic Linear (LQL) framework, the Linear Quadratic framework based analytical formulation under-estimates the required dose per fraction necessary to produce the same biological effective dose as originally planned. Our study provides analytical formulation to calculate iso-effect in adaptive radiation therapy considering day-to-day stochastic dose deviation from planned dose and also indicates the potential utility of LQL framework in this context.

  15. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiat...... at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  16. Dose optimisation in single plane interstitial brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette H

    2006-01-01

    on the       regularity of the implant, such that the benefit of optimisation was       larger for irregular implants. OI and HI correlated strongly with target       volume limiting the usability of these parameters for comparison of dose       plans between patients. CONCLUSIONS: Dwell time optimisation significantly...

  17. Proton Therapy Dose Characterization and Verification

    Science.gov (United States)

    2016-10-01

    of cell membrane biosynthesis and its metabolic turnover and is felt to reflect glial cell proliferation . There was no correlation with the dose... aspartate Cho choline Cr creatine rCBV relative cerebral blood volume rCBF relative cerebral blood flow FA functional anisotropy ADC...endothelial cells . Glial cells are also moderately sensitive resulting in disruption of neural myelination and of transmission of neuronal signals

  18. Low-dose Radiation Exposure and Carcinogenesis

    OpenAIRE

    Suzuki, Keiji; Yamashita, Shunichi

    2012-01-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-2013;response relationships for cancer induction and quantitati...

  19. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  20. Obstetric pharmacokinetic dosing studies are urgently needed

    Directory of Open Access Journals (Sweden)

    Shelley A. McCormack

    2014-02-01

    Full Text Available Use of pharmacotherapy during pregnancy is common and increasing. Physiologic changes during pregnancy may significantly alter overall systemic drug exposure, necessitating dose changes. A search of PubMed for pharmacokinetic studies showed 494 publications during pregnancy out of 35,921 total pharmacokinetic published studies (1.29%, from the late 1960s through August 31, 2013. Closer examination of pharmacokinetic studies in pregnant women published since 2008 (81 studies revealed that about a third of the trials were for treatment of acute labor and delivery issues, a third included studies of infectious disease treatment during pregnancy, and the remaining third were for varied antepartum indications. Approximately two-thirds of these recent studies were primarily funded by government agencies worldwide, one quarter were supported by private non-profit foundations or combinations of government and private funding, and slightly less than 10% were supported by pharmaceutical industry. As highlighted in this review, vast gaps exist in pharmacology information and evidence for appropriate dosing of medications in pregnant women. This lack of knowledge and understanding of drug disposition throughout pregnancy place both the mother and the fetus at risk for avoidable therapeutic misadventures – suboptimal efficacy or excess toxicity – with medication use in pregnancy. Increased efforts to perform and support obstetric dosing and pharmacokinetic studies are greatly needed.

  1. Deep learning for low-dose CT

    Science.gov (United States)

    Chen, Hu; Zhang, Yi; Zhou, Jiliu; Wang, Ge

    2017-09-01

    Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods. Especially, our method has been favorably evaluated in terms of noise suppression and structural preservation.

  2. Tobacco industry manipulation of nicotine dosing.

    Science.gov (United States)

    Wayne, Geoffrey Ferris; Carpenter, Carrie M

    2009-01-01

    For more than a half century, tobacco manufacturers have conducted sophisticated internal research to evaluate nicotine delivery, and modified their products to ensure availability of nicotine to smokers and to optimize its effects. Tobacco has proven to be a particularly effective vehicle for nicotine, enabling manipulation of smoke chemistry and of mechanisms of delivery, and providing sensory cues that critically inform patterns of smoking behavior as well as reinforce the impact of nicotine. A range of physical and chemical product design changes provide precise control over the quantity, form, and perception of nicotine dose, and support compensatory behavior, which is driven by the smoker's addiction to nicotine. Cigarette manufacturers also enhance the physiological effects of nicotine through the introduction and use of compounds that interact with nicotine but do not directly alter its form or delivery. A review of internal documents indicates important historical differences, as well as significant differences between commercial brands, underscoring the effectiveness of methods adopted by manufacturers to control nicotine dosing and target the needs of specific populations of smokers through commercial product development. Although the focus of the current review is on the manipulation of nicotine dosing characteristics, the evidence indicates that product design facilitates tobacco addiction through diverse addiction-potentiating mechanisms.

  3. PDT Dose Dosimeter for Pleural Photodynamic Therapy.

    Science.gov (United States)

    Kim, Michele M; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C; Zhu, Timothy C

    2016-03-17

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry.

  4. Ultraviolet radiation therapy and UVR dose models.

    Science.gov (United States)

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  5. Drug dosing during continuous renal replacement therapy.

    Science.gov (United States)

    Churchwell, Mariann D; Mueller, Bruce A

    2009-01-01

    Continuous renal replacement therapy (CRRT) has given clinicians an important option in the care of critically ill patients. The slow and continuous dialysate and ultrafiltrate flow rates that are employed with CRRT can yield drug clearances similar to an analogous glomerular filtration rate of the native kidneys. Advantages such as superior volume control, excellent metabolic control, and hemodynamic tolerance by critically ill patients are well documented, but an understanding of drug dosing for CRRT is still a bit of a mystery. Although some pharmaceutical companies have dedicated postmarket research in this direction, many pharmaceutical companies have chosen not to pursue this information as it is not mandated and represents a relatively small part of their market. This lack of valuable information has created many challenges in the care of the critically ill patient as intermittent hemodialysis drug dosing recommendations cannot be extrapolated to CRRT. This drug dosing review will highlight factors that clinicians should consider when determining a pharmacotherapy regimen for a patient receiving CRRT.

  6. Drug dosing during continuous renal replacement therapies.

    Science.gov (United States)

    Thompson, A Jill

    2008-04-01

    Continuous renal replacement therapies (CRRT) are used to manage fluid overload and/or renal failure. The continuous nature of the fluid and solute removal has less impact on hemodynamic variables in critically ill patients, making CRRT preferred over intermittent hemodialysis for some patients in the intensive care arena. The impact of CRRT on drug removal is variable depending on the CRRT modality, the ultrafiltrate and dialysate flow rates, the filter, and the patient's residual renal function; all of these may change from patient to patient or even in the same patient depending on the clinical status. However, CRRT modalities are generally more efficient than intermittent hemodialysis at drug removal, in some cases approximating or even exceeding normal renal function, resulting in a significant risk of subtherapeutic dosing if conventional hemodialysis dosing recommendations are followed. This annotated bibliography provides a summary of publications analyzing drug removal during CRRT, including CRRT settings and drug clearance values found in each study. Caution is warranted as findings from one study may not be generalizable to all patients due to the many factors that influence drug removal. Serum drug concentrations should be monitored when available, and patient clinical status is exceedingly important for following expected and unexpected responses to drug therapies. Reviews on general drug dosing calculations in CRRT are available elsewhere.

  7. Supplementary iron dose in pregnancy anemia prophylaxis.

    Science.gov (United States)

    Reddaiah, V P; Raj, P P; Ramachandran, K; Nath, L M; Sood, S K; Madan, N; Rusia, U

    1989-01-01

    This study was conducted to determine the optimum dose of supplemental iron for prophylaxis against pregnancy anemia. One hundred and ten pregnant women were randomly allocated to three groups: Group A receiving equivalent of 60 mg, group B 120 mg and Group C 240 mg, elemental iron as ferrous sulphate daily; the content of folic acid was constant in all the three groups (0.5 mg). These women had at least consumed 90 tablets in 100 +/- 10 days. Blood was drawn at the beginning and at the end of the treatment. Fifty percent were anemic (less than 11 g/100 ml). The hemoglobin levels rose similarly in all groups and the differences were statistically not significant. Fifty-six percent had depleted iron stores (serum ferritin value less than 12 micrograms/l) at the beginning of the study. Following therapy a statistically significant increase in iron stores was observed in group B and C as compared to group A. The difference between group B and C was not significant. The side effects increased with increasing doses of iron; 32.4%, 40.3% and 72% in group A, B and C respectively. Based on these findings, the authors advocate that optimum dose of iron should be 120 mg instead of 60 mg as is currently being used in the National Nutritional Anemia Prophylaxis Programme.

  8. Dose masking feature for BNCT radiotherapy planning

    Science.gov (United States)

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  9. 198 AAAAI Survey on Immunotherapy Practice Patterns Concerning Dosing, Dose-Adjustment after Missed Doses and Duration of Immunotherapy

    Science.gov (United States)

    Linnemann, Désirée Larenas; Gupta, Payel; Mithani, Sima; Ponda, Punita

    2012-01-01

    Background Several practical issues dealing with the exact application of allergen immunotherapy (AIT) among European and US allergists are not well known. Guidelines on AIT give recommendations and suggestions for only some of them. We present this unique survey with worldwide response. Methods The AAAAI immunotherapy committee conducted a web-based practice patterns survey (program: Survey Monkey) among all members in&outside US on dosing, dose-adjustment after missed doses and duration of AIT. Results 1201 Returned questionnaires (almost 25% response rate). 21% were non-US-Canada members. Maintenance doses in USCan are (mean/median): Dermatophagoides farinae (Df) combined with Dermatophagoides pteronyssinus (Dpt): 2155/1000AU; Df solo 2484/1000AU. Dpt when combined with Df 1937/1000AU; Dpt solo: 2183/1000AU.Cat 3224/2000BAU. Grass 11,410/4000BAU. 57-65% of the dosing falls within the recommended Practice Parameters recommended ranges. Non-USCan allergists expressed maintenance doses in many different units making analysis impossible. Dose-adjustment after missed doses is based on ‘time elapsed since the last applied dose’ by 77% of USCan and 58% of non-USCan allergists and on ‘time since missed scheduled dose’ by the rest. Doses are adjusted when a patient comes in more than 14 d/5 wk after the last administration at build-up/maintenance by both USCan and non-USCan colleagues. The mostly followed dose-adjustment schedules after 1, 2, 3 missed doses are: Build-up: repeat last dose, reduce by one dose, reduce by 2 doses; maintenance: reduce by one dose, reduce by 2 doses, reduce by 3 doses. 26% uses a different approach reducing doses by a certain percentage or volume. AIT is restarted after a gap in build-up of >30 days and of >12 weeks during maintenance in both groups (median). Outside USCan AIT is prescribed for 3 years (Median). However, 75% of USCan allergists prescribes AIT for 5 years. Main reasons why to continue AIT beyond 5 years:

  10. A practical approach to determine dose metrics for nanomaterials.

    Science.gov (United States)

    Delmaar, Christiaan J E; Peijnenburg, Willie J G M; Oomen, Agnes G; Chen, Jingwen; de Jong, Wim H; Sips, Adriënne J A M; Wang, Zhuang; Park, Margriet V D Z

    2015-05-01

    Traditionally, administered mass is used to describe doses of conventional chemical substances in toxicity studies. For deriving toxic doses of nanomaterials, mass and chemical composition alone may not adequately describe the dose, because particles with the same chemical composition can have completely different toxic mass doses depending on properties such as particle size. Other dose metrics such as particle number, volume, or surface area have been suggested, but consensus is lacking. The discussion regarding the most adequate dose metric for nanomaterials clearly needs a systematic, unbiased approach to determine the most appropriate dose metric for nanomaterials. In the present study, the authors propose such an approach and apply it to results from in vitro and in vivo experiments with silver and silica nanomaterials. The proposed approach is shown to provide a convenient tool to systematically investigate and interpret dose metrics of nanomaterials. Recommendations for study designs aimed at investigating dose metrics are provided. © 2015 SETAC.

  11. High-dose versus low-dose oxytocin for augmentation of delayed labour.

    Science.gov (United States)

    Kenyon, Sara; Tokumasu, Hironobu; Dowswell, Therese; Pledge, Debbie; Mori, Rintaro

    2013-07-13

    A major cause of failure to achieve spontaneous vaginal birth is delay in labour due to presumed inefficient uterine action. Oxytocin is given to increase contractions and high-dose regimens may potentially increase the number of spontaneous vaginal births, but as oxytocin can cause hyperstimulation of the uterus, there is a possibility of increased adverse events. To compare starting dose and increment dose of oxytocin for augmentation for women delayed in labour to determine whether augmentation by high-dose regimens of oxytocin improves labour outcomes and to examine the effect on both maternal/neonatal outcomes and women's birth experiences. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 May 2013) and reference lists of retrieved studies. We included all randomised and quasi-randomised controlled trials for women in delayed labour requiring augmentation by oxytocin comparing high-dose regimens (defined as starting dose and increment of equal to or more than 4 mU per minute) with low-dose regimens (defined as starting dose and an increment of less than 4 mU per minute). Increase interval: between 15 and 40 minutes. The separation of low- and high-dose regimens is based on an arbitrary decision. Four review authors undertook assessment of trial eligibility, risk of bias, and data extraction independently. We included four studies involving 644 pregnant women. Three studies were randomised controlled trials and one trial was a quasi-randomised study. A higher dose of oxytocin was associated with a significant reduction in length of labour reported from one trial (mean difference (MD) -3.50 hours; 95% confidence interval (CI) -6.38 to -0.62; one trial, 40 women). There was a decrease in the rate of caesarean section (risk ratio (RR) 0.62; 95% CI 0.44 to 0.86 four trials, 644 women) and an increase in the rate of spontaneous vaginal birth in the high-dose group (RR 1.35; 95% CI 1.13 to 1.62, three trials, 444 women), although for both

  12. Multiple-dose and double-dose versus single-dose administration of methotrexate for the treatment of ectopic pregnancy: a systematic review and meta-analysis.

    Science.gov (United States)

    Yang, Chun; Cai, Jing; Geng, Yuhong; Gao, Ying

    2017-04-01

    In this systematic review and meta-analysis, the effectiveness and safety among different dosage of methotrexate protocols for the treatment of unruptured tubal ectopic pregnancy was evaluated. Six studies of randomized contorlled trials were identified through searches conducted on PubMed, Embase and Cochrane Library between January 1974 and March 2016. The overall success rate of multiple-dose protocol was similar to the single-dose protocol (RR 1.07, 95% CI 0.99 to 1.17, I2 = 0%). The difference between double-dose and single-dose groups was not significant (RR 1.09, 95% CI 0.98 and 1.20, I2 = 0%). The incidence of side-effects of double-dose regimen was similar with single-dose regimen. Side-effects, however, are more common in multiple-dose regimen (RR 1.64, 95% CI 1.15 to 2.34, P = 0.006, I2 = 0%). This meta-analysis indicated that the incidence of side-effects of multiple-dose protocol was significantly higher than single-dose protocol, and the success rates between them were similar. The double-dose regimen was an efficient and safe alternative to the single-dose protocol. Further high-quality researches are needed to confirm our findings and to develop the optimal protocol. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast.

    Science.gov (United States)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-07-21

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  14. Low Dose Suppression of Neoplastic Transformation in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  15. Choline PET based dose-painting in prostate cancer - Modelling of dose effects

    Directory of Open Access Journals (Sweden)

    Belka Claus

    2010-03-01

    Full Text Available Abstract Background Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. Methods Based on different assumptions for α/β, γ50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB dose on tumor control probability (TCP was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. Results Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high γ50/ASTRO definition for tumor control to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition or from 13.2% to 6.0% (CN + 2 definition. Discussion Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on

  16. Choline PET based dose-painting in prostate cancer--modelling of dose effects.

    Science.gov (United States)

    Niyazi, Maximilian; Bartenstein, Peter; Belka, Claus; Ganswindt, Ute

    2010-03-18

    Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. Based on different assumptions for alpha/beta, gamma 50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB) dose on tumor control probability (TCP) was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high gamma 50/ASTRO definition for tumor control) to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control) or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition) or from 13.2% to 6.0% (CN + 2 definition). Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on choline PET seems less than intuitively expected. Only

  17. Choline PET based dose-painting in prostate cancer - Modelling of dose effects

    Science.gov (United States)

    2010-01-01

    Background Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. Methods Based on different assumptions for α/β, γ50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB) dose on tumor control probability (TCP) was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. Results Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high γ50/ASTRO definition for tumor control) to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control) or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition) or from 13.2% to 6.0% (CN + 2 definition). Discussion Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on choline PET seems less than

  18. Towards a new dose and dose-rate effectiveness factor (DDREF)? Some comments.

    Science.gov (United States)

    Chadwick, K H

    2017-06-26

    The aim of this article is to offer a broader, mechanism-based, analytical tool than that used by (Rühm et al 2016 Ann. ICRP 45 262-79) for the interpretation of cancer induction relationships. The article explains the limitations of this broader analytical tool and the implications of its use in view of the publications by Leuraud et al 2015 (Lancet Haematol. 2 e276-81) and Richardson et al 2015 (Br. Med. J. 351 h5359). The publication by Rühm et al 2016 (Ann. ICRP 45 262-79), which is clearly work in progress, reviews the current status of the dose and dose-rate effectiveness factor (DDREF) as recommended by the ICRP. It also considers the issues which might influence a reassessment of both the value of the DDREF as well as its application in radiological protection. In this article, the problem is approached from a different perspective and starts by commenting on the limited scientific data used by Rühm et al 2016 (Ann. ICRP 45 262-79) to develop their analysis which ultimately leads them to use a linear-quadratic dose effect relationship to fit solid cancer mortality data from the Japanese life span study of atomic bomb survivors. The approach taken here includes more data on the induction of DNA double strand breaks and, using experimental data taken from the literature, directly relates the breaks to cell killing, chromosomal aberrations and somatic mutations. The relationships are expanded to describe the induction of cancer as arising from radiation induced cytological damage coupled to cell killing since the cancer mutated cell has to survive to express its malignant nature. Equations are derived for the induction of cancer after both acute and chronic exposure to sparsely ionising radiation. The equations are fitted to the induction of cancer in mice to illustrate a dose effect relationship over the total dose range. The 'DDREF' derived from the two equations varies with dose and the DDREF concept is called into question. Although the equation for

  19. Disruptive Event Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis''. The objective of this

  20. How much dose can be saved in three-phase CT urography? A combination of normal-dose corticomedullary phase with low-dose unenhanced and excretory phases.

    Science.gov (United States)

    Dahlman, Pär; van der Molen, Aart J; Magnusson, Mats; Magnusson, Anders

    2012-10-01

    The purpose of this study was to investigate the degree to which the total radiation dose for CT urography can be lowered by selective reduction of the dose in the unenhanced and excretory phases when images in these phases are systematically evaluated alongside normal-dose corticomedullary phase images. Twenty-seven patients (mean age, 74±9 years) underwent single-bolus CT urography with acquisition in the unenhanced, corticomedullary, and 5-minute excretory phases. The scanning parameters for normal-dose CT urography were as follows: 16×0.75 mm, 120 kV, and automatic exposure control technique reference tube loads of 100, 120, and 100 effective mAs (mAseff). The patients also underwent low-dose unenhanced and excretory phase scanning, in which the dose was escalated stepwise from a volume CT dose index (CTDIvol) of 1.7 to 6.6 mGy (reference 20-40-60-80 mAseff). Images were analyzed for quality and diagnostic confidence. If low-dose scans of three patients were inadequate, the study continued to the next dose level. When 20 patients were successfully included in the unenhanced and excretory phase groups, the study ended. Doses were calculated with a CT patient dosimetry calculator. Combined with the normal dose for corticomedullary phase scanning, doses of CTDIvol 1.5 mGy for the unenhanced phase and CTDIvol 2.7 mGy for the excretory phase were sufficient. The effective dose for three-phase CT urography was lowered from 16.2 to 9.4 mSv, a decrease of 42%. Diagnostic confidence in low-dose images was equal to that in normal-dose images when low-dose unenhanced and excretory phase images were read along-side normal-dose corticomedullary phase images. With a three-phase CT urographic protocol, significant dose reductions in the unenhanced and excretory phases can be achieved when these phases are combined with a normal-dose corticomedullary phase.

  1. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on

  2. Six steps to a successful dose-reduction strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, M. [Rolls-Royce & Associates Ltd., Derby (United Kingdom)

    1995-03-01

    The increased importance of demonstrating achievement of the ALARA principle has helped produce a proliferation of dose-reduction ideas. Across a company there may be many dose-reduction items being pursued in a variety of areas. However, companies have a limited amount of resource and, therefore, to ensure funding is directed to those items which will produce the most benefit and that all areas apply a common policy, requires the presence of a dose-reduction strategy. Six steps were identified in formulating the dose-reduction strategy for Rolls-Royce and Associates (RRA): (1) collating the ideas; (2) quantitatively evaluating them on a common basis; (3) prioritizing the ideas in terms of cost benefit, (4) implementation of the highest priority items; (5) monitoring their success; (6) periodically reviewing the strategy. Inherent in producing the dose-reduction strategy has been a comprehensive dose database and the RRA-developed dose management computer code DOMAIN, which allows prediction of dose rates and dose. The database enabled high task dose items to be identified, assisted in evaluating dose benefits, and monitored dose trends once items had been implemented. The DOMAIN code was used both in quantifying some of the project dose benefits and its results, such as dose contours, used in some of the dose-reduction items themselves. In all, over fifty dose-reduction items were evaluated in the strategy process and the items which will give greatest benefit are being implemented. The strategy has been successful in giving renewed impetus and direction to dose-reduction management.

  3. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Granero, Domingo, E-mail: dgranero@eresa.com [Department of Radiation Physics, ERESA, Hospital General Universitario, 46014 Valencia (Spain); Perez-Calatayud, Jose [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Vijande, Javier [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and IFIC (UV-CSIC), Paterna 46980 (Spain); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  4. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  5. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations.

    Science.gov (United States)

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J

    2014-02-01

    In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR(60)Co and (192)Ir sources and a hypothetical (169)Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. For a 5 cm × 5 cm(192)Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about -3%. When the source was positioned at the skin surface, dose differences were smaller than -1% for (60)Co and (192)Ir, yet -3% for (169)Yb. For the interstitial implant, dose differences at the skin surface were -7% for (60)Co, -0.6% for (192)Ir, and -2.5% for (169)Yb. This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either (60)Co and (192)Ir. For lower energy radionuclides like (169)Yb, bolus may be needed; and (iii) for the interstitial case, at

  6. Replacing the measles ten-dose vaccine presentation with the single-dose presentation in Thailand.

    Science.gov (United States)

    Lee, Bruce Y; Assi, Tina-Marie; Rookkapan, Korngamon; Connor, Diana L; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T; Welling, Joel S; Norman, Bryan A; Chen, Sheng-I; Bailey, Rachel R; Wiringa, Ann E; Wateska, Angela R; Jana, Anirban; Van Panhuis, Willem G; Burke, Donald S

    2011-05-12

    Introduced to minimize open vial wastage, single-dose vaccine vials require more storage space and therefore may affect vaccine supply chains (i.e., the series of steps and processes involved in distributing vaccines from manufacturers to patients). We developed a computational model of Thailand's Trang province vaccine supply chain to analyze the effects of switching from a ten-dose measles vaccine presentation to each of the following: a single-dose measles-mumps-rubella vaccine (which Thailand is currently considering) or a single-dose measles vaccine. While the Trang province vaccine supply chain would generally have enough storage and transport capacity to accommodate the switches, the added volume could push some locations' storage and transport space utilization close to their limits. Single-dose vaccines would allow for more precise ordering and decrease open vial waste, but decrease reserves for unanticipated demand. Moreover, the added disposal and administration costs could far outweigh the costs saved from preventing open vial wastage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Fast dose optimization for rotating shield brachytherapy.

    Science.gov (United States)

    Cho, Myung; Wu, Xiaodong; Dadkhah, Hossein; Yi, Jirong; Flynn, Ryan T; Kim, Yusung; Xu, Weiyu

    2017-10-01

    To provide a fast computational method, based on the proximal graph solver (POGS) - A convex optimization solver using the alternating direction method of multipliers (ADMM), for calculating an optimal treatment plan in rotating shield brachytherapy (RSBT). RSBT treatment planning has more degrees of freedom than conventional high-dose-rate brachytherapy due to the addition of emission direction, and this necessitates a fast optimization technique to enable clinical usage. The multi-helix RSBT (H-RSBT) delivery technique was investigated for five representative cervical cancer patients. Treatment plans were generated for all patients using the POGS method and the commercially available solver IBM ILOG CPLEX. The rectum, bladder, sigmoid colon, high-risk clinical target volume (HR-CTV), and HR-CTV boundary were the structures included in our optimization, which applied an asymmetric dose-volume optimization with smoothness control. Dose calculation resolution was 1 × 1 × 3 mm3 for all cases. The H-RSBT applicator had 6 helices, with 33.3 mm of translation along the applicator per helical rotation and 1.7 mm spacing between dwell positions, yielding 17.5° emission angle spacing per 5 mm along the applicator. For each patient, HR-CTV D90 , HR-CTV D100 , rectum D2cc , sigmoid D2cc , and bladder D2cc matched within 1% for CPLEX and POGS methods. Also, similar EQD2 values between CPLEX and POGS methods were obtained. POGS was around 18 times faster than CPLEX. For all patients, total optimization times were 32.1-65.4 s for CPLEX and 2.1-3.9 s for POGS. POGS reduced treatment plan optimization time approximately 18 times for RSBT with similar HR-CTV D90 , organ at risk (OAR) D2cc values, and EQD2 values compared to CPLEX, which is significant progress toward clinical translation of RSBT. © 2017 American Association of Physicists in Medicine.

  8. Estimation of human dose to radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Shimo, Michikuni [Gifu Coll. of Medical Technology, Sekiichi, Gifu (Japan)

    1996-12-01

    The aim of the paper is the estimation of the effective dose due to radon progeny for Japanese population. The estimation was performed by a modified UNSCEAR equation. The equation was needed the radon concentration annual occupancy time and the tidal volume on Japanese people and the dose conversion coefficient are needed. Furthermore, not only these figures but also unattached fraction and aerosol distribution data obtained in Japan and the factor related to the Japanese living style were used in the calculation. We used following figures as representative value in Japan; radon concentration: 13(6 - 25) Bq/m{sup 3} indoors and 6.7(3.5 - 13) Bq/m{sup 3} outdoors; the equilibrium factor: 0.45(0.35 - 0.57) indoors and 0.70(0.50 - 0.90) outdoors; the occupancy factor: 0.87 indoors, 0.09 outdoors and 0.04 in vehicle for male and 0.91 indoors, 0.06 outdoors and 0.03 in vehicle for female; the tidal volume: 7,000 (4,000 - 8,000) m{sup 3} for male, 6,200 (3,500 - 7,500) m{sup 3} for female. The effective doses due to radon progeny were estimated to be 0.45 mSv/y for male and 0.40 mSv/y for female, and the variance was -80 - +130%. These values were 1/2 - 1/3 as small as values shown by UNSCEAR 1993 Report and estimated by ICRP Publication 65. (author)

  9. Energetic dose: Beyond fire and flint?

    Science.gov (United States)

    Linder, G.; Rattner, B.; Cohen, J.

    2000-01-01

    Nutritional and bioenergetic interactions influence exposure to environmental chemicals and may affect the risk realized when wildlife are exposed in the field. Here, food-chain analysis focuses on prairie voles (Microtus ochrogaster) and the evaluation of chemical risks associated with paraquat following 10-d dietary exposures. Reproductive effects were measured in 60-d trials that followed exposures to paraquat-tainted feed: control (untainted feed); 21 mg paraquat/kg feed; 63 mg paraquat/kg feed; and feed-restricted control (untainted feed restricted to 60% baseline consumption). Reproductive success was evaluated in control and treated breeding pairs, and a preliminary bioenergetics analysis was completed in parallel to derive exposure dose. Although reproductive performance differed among groups, feed-restriction appeared to be the dominant treatment effect observed in these 10-d feeding exposure/limited reproductive trials. Exposure dose ranged from 3.70-3.76 to 9.41-11.51 mg parquat/kg BW/day at 21 and 63 mg paraquat/kg feed stock exposures, respectively. Energetic doses as ug paraquat/kcal yielded preliminary estimates of energetic costs associated with paraquat exposure, and were similar within treatments for both sexes, ranging from 4.2-5.5 and 13.1-15.0 ug paraquat/kcal for voles exposed to 21 mg/kg feed stock and 63 mg/kg feed stock, respectively. Given the increasing likelihood that environmental chemicals will be found in wildlife habitat at 'acceptable levels', the critical role that wildlife nutrition plays in evaluating ecological risks should be fully integrated into the assessment process. Tools applied to the analysis of risk must gain higher resolution than the relatively crude methods we currently bring to the process.

  10. Thyroid absorbed dose using TLDs during mammography

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez A, M.; Melendez L, M. [IPN, Centro de Investigacion y de Estudios Avanzados, Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Mexico D. F. (Mexico); Davila M, P., E-mail: biomedica.sst@gmail.com [UNEME-DEDICAM de Ciudad Victoria, Circuito Medico s/n, 87087 Ciudad Victoria, Tamaulipas (Mexico)

    2015-10-15

    Full text: In this study, the mean glandular dose (MGD) and the thyroid dose (D Thy) were measured in 200 women screened with mammography in Cranio caudal (Cc) and mediolateral oblique projections. All mammograms were performed with Giotto-Ims (6000-14-M2 Model) equipment, which was verified to meet the criteria of quality of NOM-229-Ssa-2002. During audits performance and HVL, for each anode filter combinations was measured with the camera Radcal mammography equipment 10 X 6-6M (HVL = 0.26 mm Al). D Thy measurements were performed with TLD dosimeters (LiF:Mn) , that were read with the Harshaw 3500 TLD reader. The MGD, was obtained according to the UK and European protocols for mammographic dosimetry using a plane parallel chamber (Standard Imaging, Model A-600) calibrated by a radiation beam UW-23-Mo (= 0.279 mm Al HVL). A comparative statistical analysis was carried out with the measured MGD and D thy. The thyroid mean dose was 0.063 mGy and 0.078 mGy for Cc and mediolateral oblique respectively. There is a linear correlation between the MGD and the D Thy slightly influenced by the anode-filter combination. Using a 95% for the confidence interval in MGD (1.07 mGy), the 90% of measurements are in agreement with the established uncertainty limits. The D Thy are lower than the MGD. There is no risk for cancer induction in thyroid in women due to mammography screening. (Author)

  11. The chondrotoxicity of single-dose corticosteroids.

    Science.gov (United States)

    Dragoo, Jason L; Danial, Christina M; Braun, Hillary J; Pouliot, Michael A; Kim, Hyeon Joo

    2012-09-01

    Corticosteroids are commonly injected into the joint space. However, studies have not examined the chondrotoxicity of one-time injection doses. The purpose of this study is to evaluate the effect of dexamethasone sodium phosphate (Decadron), methylprednisolone acetate (Depo-Medrol), betamethasone sodium phosphate and betamethasone acetate (Celestone Soluspan), and triamcinolone acetonide (Kenalog) on human chondrocyte viability in vitro. Single-injection doses of each of the corticosteroids were separately delivered to human chondrocytes for their respective average duration of action and compared to controls using a bioreactor containing a continuous infusion pump constructed to mimic joint fluid metabolism. A 14-day time-controlled trial was also performed. A live/dead reduced biohazard viability/cytotoxicity assay was used to quantify chondrocyte viability. Over their average duration of action, betamethasone sodium phosphate/acetate solution and triamcinolone acetonide caused significant decreases in chondrocyte viability compared to control media (19.8 ± 2.9% vs. 5.2 ± 2.1%, P = 0.0025 and 10.2 ± 1.3% vs. 4.8 ± 0.9%, P = 0.0049, respectively). In the 14-day trial, only betamethasone sodium phosphate/acetate solution caused a significant decrease in chondrocyte viability compared to control media (21.5% vs. 4.6%, P < 0.001). A single-injection dose of betamethasone sodium phosphate and betamethasone acetate solution illustrated consistent and significant chondrotoxicity using a physiologically relevant in vitro model and should be used with caution. Given the observed chondrotoxicity of triamcinolone acetonide in a single trial, there may be some evidence that this medication is chondrotoxic. However, at 14 days, betamethasone sodium phosphate and betamethasone acetate was the only condition that caused significant cell death.

  12. Emissies en doses door procesindustrie. Jaarrapport 2004 'Beleidsmonitoring straling'

    NARCIS (Netherlands)

    Eleveld H; Tanzi CP; Dijk JWE van; Nuclear Research and; LSO

    2005-01-01

    The radiation dose for the Dutch population due to discharges and emissions from processing industries has decreased substantially since 1994. However, the processing industry still makes the largest industrial contribution to the radiation dose. Nuclear installations and medical institutions

  13. Bounding the total-dose response of modern bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kosier, S.L.; Wei, A.; Schrimpf, R.D. [Arizona Univ., Tucson, AZ (United States). Dept. of Electrical and Computer Engineering; Combs, W.E. [Naval Surface Warfare Center-Crane, Crane, IN (United States); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States); DeLaus, M. [Analog Devices, Inc., Wilmington, MA (United States); Pease, R.L. [RLP Research, Albuquerque, NM (United States)

    1994-03-01

    The base current in modern bipolar transistors saturates at large total doses once a critical oxide charge is reached. The saturated value of base current is dose-rate independent. Testing implications are discussed.

  14. Effluent volume and dialysis dose in CRRT: time for reappraisal.

    Science.gov (United States)

    Macedo, Etienne; Claure-Del Granado, Rolando; Mehta, Ravindra L

    2011-11-01

    The results of several studies assessing dialysis dose have dampened the enthusiasm of clinicians for considering dialysis dose as a modifiable factor influencing outcomes in patients with acute kidney injury. Powerful evidence from two large, multicenter trials indicates that increasing the dialysis dose, measured as hourly effluent volume, has no benefit in continuous renal replacement therapy (CRRT). However, some important operational characteristics that affect delivered dose were not evaluated. Effluent volume does not correspond to the actual delivered dose, as a decline in filter efficacy reduces solute removal during therapy. We believe that providing accurate parameters of delivered dose could improve the delivery of a prescribed dose and refine the assessment of the effect of dose on outcomes in critically ill patients treated with CRRT.

  15. Radiopharmaceuticals: introduction to drug evaluation and dose estimation

    National Research Council Canada - National Science Library

    Williams, Lawrence E

    2011-01-01

    ...), absorbed dose method for imaging agents, vivo methods for obtaining activity data, errors of activity estimation techniques, phantom-based and patient-based dose estimates and their associated...

  16. 2 Doses of HPV Shot Enough to Prevent Genital Warts

    Science.gov (United States)

    ... gov/news/fullstory_165905.html 2 Doses of HPV Shot Enough to Prevent Genital Warts: Study Findings ... rather than three, doses of the human papillomavirus (HPV) vaccine to protect against genital warts in preteens ...

  17. Direct determination of external radiation dose in human blood

    CERN Document Server

    Tanir, AG; Sahiner, E; Bolukdemir, MH; Koc, K; Meric, N; Keles, SK; Kucuk, O

    2014-01-01

    In this study it was shown that it is possible to determine radiation doses from external beam therapy both directly and retrospectively from a human blood sample. To the best of our knowledge no other studies exist on the direct measurement of doses received by a person from external beam therapy. Optically stimulated luminescence counts from a healthy blood sample exposed to an external radiation source were measured. Blood aliquots were given 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100 and 200Gy beta doses and their decay and dose-response curves were plotted. While the luminescence intensities were found to be relatively low for the doses smaller than 10Gy, they were measured considerably higher for doses greater than 10Gy. The dose received by the blood aliquots was determined by interpolating the luminescence counts of 10Gy to the dose-response curve. This study has important ramifications for healthcare, medicine and radiation protection

  18. Effects of Exposure Imprecision on Estimation of the Benchmark Dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    Environmental epidemiology; exposure measurement error; effect of prenatal mercury exposure; exposure standards; benchmark dose......Environmental epidemiology; exposure measurement error; effect of prenatal mercury exposure; exposure standards; benchmark dose...

  19. patient entrance skin doses at minna and ibadan for common ...

    African Journals Online (AJOL)

    DR. AMINU

    Correspondence author. ABSTRACT. Entrance surface dose from two diagnostic x-ray centers in ... and nuclear medicine contributed 96% to the collective effective dose from man made sources in the U.K. (National Radiological Protection Board, (NRPB), ...

  20. Low-dose rituximab as an adjuvant therapy in pemphigus

    Directory of Open Access Journals (Sweden)

    Jaya Gupta

    2017-01-01

    Conclusion: Our results show that low-dose rituximab is a well-tolerated and beneficial adjuvant therapy in recalcitrant pemphigus which helps reduce both the severity of disease as well as the dose of steroids and immunosuppressants.

  1. Threshold dose distributions for 5 major allergenic foods in children

    NARCIS (Netherlands)

    Blom, W.M.; Vlieg-Boerstra, B.J.; Kruizinga, A.G.; Heide, S. van der; Houben, G.F.; Dubois, A.E.J.

    2013-01-01

    Background: For most allergenic foods, insufficient threshold dose information within the population restricts the advice on levels of unintended allergenic foods which should trigger precautionary labeling on prepackaged foods. Objective: We wanted to derive threshold dose distributions for major

  2. Threshold dose distributions for 5 major allergenic foods in children

    NARCIS (Netherlands)

    Blom, W. Marty; Vlieg-Boerstra, Berber J.; Kruizinga, Astrid G.; van der Heide, Sicco; Houben, Geert F.; Dubois, Anthony E. J.

    Background: For most allergenic foods, insufficient threshold dose information within the population restricts the advice on levels of unintended allergenic foods which should trigger precautionary labeling on prepackaged foods. Objective: We wanted to derive threshold dose distributions for major

  3. Lowered ultraviolet minimal erythema dose in hemiplegia.

    Science.gov (United States)

    Cox, N. H.; Williams, S. J.

    1985-01-01

    In view of recent reports of increased tanning in hemiplegic limbs, we have investigated ultraviolet (u.v.) minimal erythema dose (MED) in hemiplegia using the bilateral comparison technique. Seven of 10 patients had a lower MED in the hemiplegic arm compared to the normal side, the mean reduction being 16% (range 0-33%, P = 0.003). No patients had a higher MED in the hemiplegic arm. We review the literature regarding other non-neurological features of hemiplegia, in particular asymmetry of temperature, oedema, and finger clubbing, and we propose a vasomotor or trophic aetiology for these findings. PMID:4022889

  4. Is there any cumulative dose for trastuzumab?

    Science.gov (United States)

    Mutlu, Hasan; Coşkun, Hasan Şenol

    2015-12-01

    Trastuzumab is one of the most important agents that target human epidermal growth factor receptor 2, but its cardiotoxic effect limits to use it. The mechanism of cardiac dysfunction-related trastuzumab is still unclear. In literature, there is no definite information about the cumulative dose of trastuzumab for cardiotoxicity. In presented case, we reported a breast cancer patient who has been receiving long-term trastuzumab. We have not found any cardiac problems for duration of over four years. According to our case and literature review, we may say that trastuzumab is safely used with periodically echocardiographic control in patients with breast cancer. © The Author(s) 2014.

  5. Single dose dipyrone for acute postoperative pain.

    Science.gov (United States)

    Edwards, Jayne; Meseguer, Fuensanta; Faura, Clara; Moore, R Andrew; McQuay, Henry J; Derry, Sheena

    2010-09-08

    Dipyrone (metamizole) is a non-steroidal anti-inflammatory drug used in some countries to treat pain (postoperative, colic, cancer, and migraine); it is banned in others because of an association with life-threatening blood agranulocytosis. This review updates a 2001 Cochrane review, and no relevant new studies were identified, but additional outcomes were sought. To assess the efficacy and adverse events of single dose dipyrone in acute postoperative pain. The earlier review searched CENTRAL, MEDLINE, EMBASE, LILACS and the Oxford Pain Relief Database to December 1999. For the update we searched CENTRAL, MEDLINE,EMBASE and LILACS to February 2010. Single dose, randomised, double-blind, placebo or active controlled trials of dipyrone for relief of established moderate to severe postoperative pain in adults. We included oral, rectal, intramuscular or intravenous administration of study drugs. Studies were assessed for methodological quality and data extracted by two review authors independently. Summed total pain relief over six hours (TOTPAR) was used to calculate the number of participants achieving at least 50% pain relief. Derived results were used to calculate, with 95% confidence intervals, relative benefit compared to placebo, and the number needed to treat (NNT) for one participant to experience at least 50% pain relief over six hours. Use and time to use of rescue medication were additional measures of efficacy. Information on adverse events and withdrawals was collected. Fifteen studies tested mainly 500 mg oral dipyrone (173 participants), 2.5 g intravenous dipyrone (101), 2.5 g intramuscular dipyrone (99); fewer than 60 participants received any other dose. All studies used active controls (ibuprofen, paracetamol, aspirin, flurbiprofen, ketoprofen, dexketoprofen, ketorolac, pethidine, tramadol, suprofen); eight used placebo controls.Over 70% of participants experienced at least 50% pain relief over 4 to 6 hours with oral dipyrone 500 mg compared to 30

  6. Dose de insulina prescrita versus dose de insulina aspirada Dosis de insulina prescrita versus dosis de insulina aspirada Prescribed insulin dose versus prepared insulin dose

    Directory of Open Access Journals (Sweden)

    Thaís Santos Guerra Stacciarini

    2011-01-01

    Full Text Available OBJETIVOS: Comparar a dose aspirada de insulina na seringa à dosagem prescrita entre os usuários que a autoaplicam; relacionar as divergências às variáveis sociodemográficas e clínicas e identificar as dificuldades referidas no procedimento. MÉTODOS: Participaram do estudo 169 usuários acompanhados pela Estratégia Saúde da Família (ESF de um município do Estado de Minas Gerais, entre agosto e outubro de 2006. RESULTADOS: Entre os usuários que aspiraram doses diferentes da prescrita (36,1%, 77% justificaram dificuldade para visualizar a escala graduada da seringa e 29,5%, dificuldades motoras para manusear precisamente a seringa. O sexo (feminino, a idade (>60 anos e a escolaridade (OBJETIVOS: Comparar la dosis aspirada de insulina en la jeringa en la dosis prescrita entre los usuarios que la autoaplican; relacionar las divergencias a las variables sociodemográficas y clínicas e identificar las dificultades referidas en el procedimiento. MÉTODOS: Participaron en el estudio 169 usuarios acompañados por la Estrategia Salud de la Familia (ESF de un municipio del Estado de Minas Gerais, entre agosto y octubre del 2006. RESULTADOS: Entre los usuarios que aspiraron dosis diferentes de la prescrita (36,1%, 77% justificaron dificultad para visualizar la escala graduada de la jeringa y el 29,5%, dificultades motoras para manejar con precisión la jeringa. El sexo (femenino, la edad (>60 años y la escolaridad (OBJECTIVES: To compare the dose of prepared insulin to the dosage prescribed among users who self-administer; the differences relate to sociodemographic and clinical variables and identify the difficulties related to the procedure. METHODS: The study included 169 users of the Family Health Strategy (ESF of a municipality in the state of Minas Gerais, between August and October 2006. RESULTS: Among the users who administered different doses than were prescribed (36.1%, 77% identified difficulty viewing the graduated scale of the

  7. Dose. Detriment. Limit assessment; Dosis. Schadensmass. Grenzwertsetzung

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, J. [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz (IMPS)

    2015-07-01

    One goal of radiation protection is the limitation of stochastic effects due to radiation exposure. The probability of occurrence of a radiation induced stochastic effect, however, is only one of several other parameters which determine the radiation detriment. Though the ICRP-concept of detriment is a quantitative definition, the kind of detriment weighting includes somewhat subjective elements. In this sense, the detriment-concept of ICRP represents already at the stage of effective dose a kind of assessment. Thus, by comparing radiation protection standards and concepts interconvertible or with those of environment or occupational protection one should be aware of the possibly different principles of detriment assessment.

  8. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    Energy Technology Data Exchange (ETDEWEB)

    Belley, Matthew D.; Wang, Chu [Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Nguyen, Giao; Gunasingha, Rathnayaka [Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710 (United States); Chao, Nelson J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 and Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Chen, Benny J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 (United States); Dewhirst, Mark W. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Yoshizumi, Terry T., E-mail: terry.yoshizumi@duke.edu [Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.

  9. Radiation absorbed dose during special extra-oral radiography

    Science.gov (United States)

    Farag, Hamed I.; Abdel Latif, Zeinab A. S.; Hamed, Abdel Fattah A.

    1996-05-01

    The absorbed dose from radiographic examinations of adult patients using extra-oral dental radiography as lateral-oblique and postero-anterior views was examined. The absorbed dose at various sites in the head and neck was measured with thermoluminescent dosimeters (TLD). The maximum absorbed dose for both radiographic views is located at the point of entry. The absorbed doses in the various sites are compared and discussed in both techniques.

  10. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M. (comps.)

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates.

  11. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M. [comps.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates.

  12. Corticosteroids in acute severe asthma: effectiveness of low doses.

    OpenAIRE

    Bowler, S D; Mitchell, C. A.; Armstrong, J. G.

    1992-01-01

    BACKGROUND: Although the need for corticosteroids in acute severe asthma is well established the appropriate dose is not known. METHODS: The response to intravenous hydrocortisone 50 mg (low dose), 100 mg (medium dose), and 500 mg (high dose), administered every six hours for 48 hours and followed by oral prednisone, was compared in patients with acute asthma in a double blind randomised study. After initial emergency treatment with bronchodilators subjects received oral theophylline or intra...

  13. Hanford Environmental Dose Reconstruction Project monthly report, February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, S.D.; Finch, S.M. [comps.

    1993-03-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project Is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  14. Hanford Environmental Dose Reconstruction Project monthly report, February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, S.D.; Finch, S.M. (comps.)

    1993-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project Is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  15. Obtaining the Optimal Dose in Alcohol Dependence Studies

    OpenAIRE

    Wages, Nolan A.; Lei eLiu; John eO'Quigley; Bankole eJohnson

    2012-01-01

    In alcohol dependence studies, the treatment effect at different dose levels remains to be ascertained. Establishing this effect would aid us in identifying the best dose that has satisfactory efficacy while minimizing the rate of adverse events. We advocate the use of dose-finding methodology that has been successfully implemented in the cancer and HIV settings to identify the optimal dose in a cost-effective way. Specifically, we describe the continual reassessment method (CRM), an adaptive...

  16. Hanford Environmental Dose Reconstruction Project. Monthly report, November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. [comps.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  17. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  18. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. [comps.

    1992-08-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  19. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions

    DEFF Research Database (Denmark)

    Thomsen, Kristina Jørkov; Murray, Andrew S.; Jain, Mayank

    2012-01-01

    The use of single grain quartz OSL dating has become widespread over the past decade, particularly with application to samples likely to have been incompletely bleached before burial. By reducing the aliquot size to a single grain the probability of identifying the grain population most likely...... to have been well-bleached at deposition is maximised and thus the accuracy with which the equivalent dose can be determined is – at least in principle – improved. However, analysis of single grain dose distributions requires knowledge of the dispersion of the well-bleached part of the dose distribution...... also show that the dim grains in the distributions have a greater over-dispersion than the bright grains, implying that insensitive samples will have greater values of over-dispersion than sensitive samples....

  20. Dose-area product and entrance surface dose in paediatric radiography

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A.; Komppa, T.; Parviainen, T.; Heikkilae, M. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2003-06-01

    Dose-area products (DAP) in paediatric radiography were measured in four university hospitals in Finland. The entrance surface dose (ESD) was calculated from the measured DAP value for each radiographic projection. The purpose was to combine the results with other European studies for development of diagnostic reference levels for paediatric X-ray examinations. The study included 740 paediatric patients, and a total of 1500 single projections were recorded, including 660 projections from extremities. Results were compared with recommended best practices and diagnostic reference levels for ESD. Ratios of DAP to ESD were studied to estimate the levels of DAP corresponding to recommended ESD reference levels. It is desirable for practical purposes that diagnostic reference levels for radiographic projections are also expressed in terms of dose-area product. (orig.)

  1. Dose-response relationship for breast cancer induction at radiotherapy dose

    Directory of Open Access Journals (Sweden)

    Gruber Günther

    2011-06-01

    Full Text Available Abstract Purpose Cancer induction after radiation therapy is known as a severe side effect. It is therefore of interest to predict the probability of second cancer appearance for the patient to be treated including breast cancer. Materials and methods In this work a dose-response relationship for breast cancer is derived based on (i the analysis of breast cancer induction after Hodgkin's disease, (ii a cancer risk model developed for high doses including fractionation based on the linear quadratic model, and (iii the reconstruction of treatment plans for Hodgkin's patients treated with radiotherapy, (iv the breast cancer induction of the A-bomb survivor data. Results The fitted model parameters for an α/β = 3 Gy were α = 0.067Gy-1 and R = 0.62. The risk for breast cancer is according to this model for small doses consistent with the finding of the A-bomb survivors, has a maximum at doses of around 20 Gy and drops off only slightly at larger doses. The predicted EAR for breast cancer after radiotherapy of Hodgkin's disease is 11.7/10000PY which can be compared to the findings of several epidemiological studies where EAR for breast cancer varies between 10.5 and 29.4/10000PY. The model was used to predict the impact of the reduction of radiation volume on breast cancer risk. It was estimated that mantle field irradiation is associated with a 3.2-fold increased risk compared with mediastinal irradiation alone, which is in agreement with a published value of 2.7. It was also shown that the modelled age dependency of breast cancer risk is in satisfying agreement with published data. Conclusions The dose-response relationship obtained in this report can be used for the prediction of radiation induced secondary breast cancer of radiotherapy patients.

  2. Dose-response relationship for breast cancer induction at radiotherapy dose

    Science.gov (United States)

    2011-01-01

    Purpose Cancer induction after radiation therapy is known as a severe side effect. It is therefore of interest to predict the probability of second cancer appearance for the patient to be treated including breast cancer. Materials and methods In this work a dose-response relationship for breast cancer is derived based on (i) the analysis of breast cancer induction after Hodgkin's disease, (ii) a cancer risk model developed for high doses including fractionation based on the linear quadratic model, and (iii) the reconstruction of treatment plans for Hodgkin's patients treated with radiotherapy, (iv) the breast cancer induction of the A-bomb survivor data. Results The fitted model parameters for an α/β = 3 Gy were α = 0.067Gy-1 and R = 0.62. The risk for breast cancer is according to this model for small doses consistent with the finding of the A-bomb survivors, has a maximum at doses of around 20 Gy and drops off only slightly at larger doses. The predicted EAR for breast cancer after radiotherapy of Hodgkin's disease is 11.7/10000PY which can be compared to the findings of several epidemiological studies where EAR for breast cancer varies between 10.5 and 29.4/10000PY. The model was used to predict the impact of the reduction of radiation volume on breast cancer risk. It was estimated that mantle field irradiation is associated with a 3.2-fold increased risk compared with mediastinal irradiation alone, which is in agreement with a published value of 2.7. It was also shown that the modelled age dependency of breast cancer risk is in satisfying agreement with published data. Conclusions The dose-response relationship obtained in this report can be used for the prediction of radiation induced secondary breast cancer of radiotherapy patients. PMID:21651799

  3. Analysis of Radiation Doses and Dose Reduction Strategies During Cerebral Digital Subtraction Angiography.

    Science.gov (United States)

    Yi, Ho Jun; Sung, Jae Hoon; Lee, Dong Hoon; Kim, Sang Wook; Lee, Sang Won

    2017-04-01

    Adverse effects of increased use of cerebral digital subtraction angiography (DSA) include radiation-induced skin reactions and increased risk of malignancy. This study aimed to identify a method for reducing radiation exposure during routine cerebral DSA. A retrospective review of 138 consecutive adult patients who underwent DSA with a biplane angiography system (Artis Zee, Siemens, Germany) from September 2015 to February 2016 was performed. In January 2016, the dose parameter was reset by the manufacturer from 2.4 μGy to 1.2 μGy. Predose (group 1) and postdose parameter reduction (group 2) groups were established. Angiograms and procedure examination protocols were reviewed according to patient age, gender, and diagnosis and angiography techniques were reviewed on the basis of the following radiation dose parameters: fluoroscopy time, reference point air kerma (Ka,r; in mGy), and kerma-area product (PKA; in μGym2). The mean Ka,r values in groups 1 and 2 were 1841.5 mGy and 1274.8 mGy, respectively. The mean PKA values in groups 1 and 2 were 23212.5 μGym2 and 14854.0 μGym2, respectively. Ka,r and PKA values were significantly lower in group 2 compared with group 1 (P strategies to reduce radiation dose, led to lower radiation doses for DSA. The use of appropriate examinations and low-dose parameters in fluoroscopy contributed significantly to the radiation dose reductions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Efficacy of a single high dose versus multiple low doses of LLLT on wounded skin fibroblasts

    Science.gov (United States)

    Hawkins, Denise H.; Abrahamse, Heidi

    2007-07-01

    Background/purpose: In vivo studies have demonstrated that phototherapy accelerates wound healing in the clinical environment; however the exact mechanism is still not completely understood. The main focus of this study was to use in vitro laboratory results to establish an effective treatment regimen that may be practical and applicable to the clinical environment. This in vitro study aimed to compare the cellular responses of wounded fibroblasts following a single exposure of 5 J/cm2 or multiple exposures of low doses (2.5 J/cm2 or 5 J/cm2) on one day of the week to a single application of a higher dose (16 J/cm2) on day 1 and day 4. Methodology: Cellular responses to Helium-Neon (632.8 nm) laser irradiation were evaluated by measuring changes in cell morphology, cell viability, cell proliferation, membrane integrity and DNA damage. Results: Wounded cells exposed to 5 J/cm2 on day 1 and day 4 showed an increase in cell viability, increase in the release of bFGF, increase in cell density, decrease in ALP enzyme activity and decrease in caspase 3/7 activity indicating a stimulatory effect. Wounded cells exposed to three doses of 5 J/cm2 on day 1 showed a decrease in cell viability and cell proliferation and an increase in LDH cytotoxicity and DNA damage indicating an inhibitory effect. Conclusion: Results indicate that cellular responses are influenced by the combination of dose administered, number of exposures and time between exposures. Single doses administered with sufficient time between exposures is more beneficial to restoring cell function than multiple doses within a short period. Although this work confirms previous reports on the cumulative effect of laser irradiation it provides essential information for the initiation of in vivo clinical studies.

  5. Moving towards dose individualization of tyrosine kinase inhibitors

    NARCIS (Netherlands)

    Klümpen, Heinz-Josef; Samer, Caroline F.; Mathijssen, Ron H. J.; Schellens, Jan H. M.; Gurney, Howard

    2011-01-01

    Molecular targeted therapies with tyrosine kinase inhibitors (TKIs) have been a recent breakthrough in cancer treatment. These small molecules are mainly used at a fixed dose ignoring the possible need for dose individualization. Fixed dosing may indeed result in suboptimal treatment or excessive

  6. Implication of fractionated dose exposures in therapeutic gain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin; Lee, Min-Ho; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Radiation therapy pursues killing tumor cells while sparing normal cells from the radiation exposure. Stereotactic radiosurgery (SRS) is a cancer treatment modality that delivers a high dose in a single operation. This high-dose single operation shortens the treatment course, but can increase the risk of normal cell damage. Normal cell damage can be reduced by employing multi-directional exposures for an increasing number of isocenters. In this study, we investigated whether therapeutic benefits would be expected by employing new dose fractionation patterns at a high-dose single operation. The conventional single-dose operation in brain tumor radiosurgery is performed by delivering fractionated uniform doses. According to Figs. 2 and 3, the conventional radiosurgery might have obtained some therapeutic benefit by employing the fractionated uniform-dose exposures instead of a single-dose exposure. We suggest that further therapeutic gain be expected by employing the fractionated radiation exposures in an increasing dose pattern. Until ensuring our suggestion, the significance in gain of cell surviving should be verified for all three dose patterns with both normal and tumor cells. The investigation whether normal and tumor cells show the same responses to the fractionated dose exposures at lower and higher than 15 Gy of total dose is also reserved for future work.

  7. Local skin and eye lens equivalent doses in interventional neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Sandborg, Michael [Linkoeping University, Department of Radiological Sciences, Radiation Physics and Center for Medical Image Science and Visualisation (CMIV), Linkoeping (Sweden); Linkoeping University Hospital, Department of Medical Physics, Linkoeping (Sweden); Rossitti, Sandro [Linkoeping University Hospital, Department of Neurosurgery, Linkoeping (Sweden); Pettersson, Haakan [Linkoeping University Hospital, Department of Medical Physics, Linkoeping (Sweden)

    2010-03-15

    To assess patient skin and eye lens doses in interventional neuroradiology and to assess both stochastic and deterministic radiation risks. Kerma-area product (P{sub KA}) was recorded and skin doses measured using thermoluminescence dosimeters. Estimated dose at interventional reference point (IRP) was compared with measured absorbed doses. The average and maximum fluoroscopy times were 32 and 189 min for coiling and 40 and 144 min for embolisation. The average and maximum P{sub KA} for coiling were 121 and 436 Gy cm{sup 2}, respectively, and 189 and 677 Gy cm{sup 2} for embolisation. The average and maximum values of the measured maximum absorbed skin doses were 0.72 and 3.0 Sv, respectively, for coiling and 0.79 and 2.1 Sv for embolisation. Two out of the 52 patients received skin doses in excess of 2 Sv. The average and maximum doses to the eye lens (left eye) were 51 and 515 mSv (coiling) and 71 and 289 mSv (embolisation). The ratio between the measured dose and the dose at the IRP was 0.44 {+-} 0.18 mSv/mGy indicating that the dose displayed by the x-ray unit overestimates the maximum skin dose but is still a valuable indication of the dose. The risk of inducing skin erythema and lens cataract during our hospital procedures is therefore small. (orig.)

  8. Determination of dose delivery accuracy in CT examinations

    Directory of Open Access Journals (Sweden)

    Francis Hasford

    2015-10-01

    Full Text Available Volume computed tomography dose index (CTDIvol represents an average dose within a scan volume for a standardized CTDI phantom. It is a useful indicator of the dose to the standardized phantom for a specific examination protocol. Dose index (CTDIvol for head and body PMMA phantoms have been estimated in this study and comparison made with corresponding console displayed doses. The study was performed on 40 slice CT system, and measurements were done with 100 mm long pencil ion chamber connected to an electrometer. Doses were estimated using the AAPM Report 96 formalism. Estimated dose for head scan technique (120 kV, 150 mAs was 44.30 mGy, deviating from the console displayed dose by 4.49%. The body (pelvic scan technique of 120 kV and 100 mAs produced a dose estimate of 20.08 mGy in the body phantom, deviating by 3.05% from the console displayed dose. The estimated head and body phantom doses were compared to selected international dose reference levels and varying deviations were observed.

  9. Clinical practitioners' knowledge of ionizing radiation doses in ...

    African Journals Online (AJOL)

    Background: Observation has shown a preponderance of irrelevant, unjustified and perhaps unnecessary radiological requests in the study area. The consequences of this on the patients' doses and population collective dose may be dire. Objective: To assess Clinicians/Referrers' knowledge of radiation doses of patients ...

  10. Calculation of the Transit Dose in HDR Brachytherapy Based on ...

    African Journals Online (AJOL)

    The Monte Carlo method, which is the gold standard for accurate dose calculations in radiotherapy, was used to obtain the transit doses around a high dose rate (HDR) brachytherapy implant with thirteen dwell points. The midpoints of each of the inter-dwell separations, of step size 0.25 cm, were representative of the ...

  11. Pharmacokinetics and dose proportionality of ceftibuten in men.

    Science.gov (United States)

    Lin, C; Lim, J; Radwanski, E; Marco, A; Affrime, M

    1995-01-01

    The pharmacokinetics and dose proportionality of ceftibuten were evaluated in healthy male volunteers receiving single oral doses of 200, 400, and 800 mg of ceftibuten. The drug was absorbed with similar times to the maximum concentration of drug in plasma for all three doses. Concentrations of ceftibuten in plasma increased with increasing dose. Analysis of variance was carried out on the dose-adjusted values for the maximum concentration of drug in plasma and the area under the plasma concentration-time curve; the results indicated that the concentrations in plasma after the 200- and 400-mg doses were dose proportional, and after the 800-mg of dose they were less than dose proportional. The elimination half-life from plasma ranged from 2.0 to 2.3 h and was independent of dose. The total excretion of unchanged ceftibuten in urine accounted for 53 to 68% of the dose, and the renal clearance was estimated to be 53 to 61 ml/min after all doses. The amount of ceftibuten-trans, the major in vitro and in vivo conversion product of ceftibuten, was low in both plasma and urine. PMID:7726498

  12. Effective dose in abdominal digital radiography: Patient factor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Sung; Koo, Hyun Jung; Park, Jung Hoon; Cho, Young Chul; Do, Kyung Hyun [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul(Korea, Republic of); Yang, Hyung Jin [Dept. of Medical Physics, Korea University, Seoul (Korea, Republic of)

    2017-08-15

    To identify independent patient factors associated with an increased radiation dose, and to evaluate the effect of patient position on the effective dose in abdominal digital radiography. We retrospectively evaluated the effective dose for abdominal digital radiography in 222 patients. The patients were divided into two groups based on the cut-off dose value of 0.311 mSv (the upper third quartile of dose distribution): group A (n = 166) and group B (n = 56). Through logistic regression, independent factors associated with a larger effective dose were identified. The effect of patient position on the effective dose was evaluated using a paired t-test. High body mass index (BMI) (≥ 23 kg/m2), presence of ascites, and spinal metallic instrumentation were significantly associated with a larger effective dose. Multivariate logistic regression analysis revealed that high BMI [odds ratio (OR), 25.201; p < 0.001] and ascites (OR, 25.132; p < 0.001) were significantly associated with a larger effective dose. The effective dose was significantly lesser (22.6%) in the supine position than in the standing position (p < 0.001). High BMI and ascites were independent factors associated with a larger effective dose in abdominal digital radiography. Significant dose reduction in patients with these factors may be achieved by placing the patient in the supine position during abdominal digital radiography.

  13. Effective dose estimation during conventional and CT urography

    Science.gov (United States)

    Alzimami, K.; Sulieman, A.; Omer, E.; Suliman, I. I.; Alsafi, K.

    2014-11-01

    Intravenous urography (IVU) and CT urography (CTU) are efficient radiological examinations for the evaluation of the urinary system disorders. However patients are exposed to a significant radiation dose. The objectives of this study are to: (i) measure and compare patient radiation dose by computed tomography urography (CTU) and conventional intravenous urography (IVU) and (ii) evaluate organ equivalent dose and cancer risks from CTU and IVU imaging procedures. A total of 141 patients were investigated. A calibrated CT machine (Siemens-Somatom Emotion duo) was used for CTU, while a Shimadzu X ray machine was used for IVU. Thermoluminescence dosimeters (TLD-GR200A) were used to measure patients' entrance surface doses (ESD). TLDs were calibrated under reproducible reference conditions. Patients radiation dose values (DLP) for CTU were 172±61 mGy cm, CTDIvol 4.75±2 mGy and effective dose 2.58±1 mSv. Patient cancer probabilities were estimated to be 1.4 per million per CTU examination. Patients ESDs values for IVU were 21.62±5 mGy, effective dose 1.79±1 mSv. CT involves a higher effective dose than IVU. In this study the radiation dose is considered low compared to previous studies. The effective dose from CTU procedures was 30% higher compared to IVU procedures. Wide dose variation between patient doses suggests that optimization is not fulfilled yet.

  14. Assessment of patient doses during mammography practice at ...

    African Journals Online (AJOL)

    Objective: To evaluate the average glandular dose (AGD) in mammography for craniocaudal (CC), medio-lateral oblique (MLO) projections and the dose per woman. Design: The average glandular dose, device performance, viewing box tests and image quality grading were carried out at the largest mammography facility ...

  15. Single dose pharmacokinetics of mefloquine in healthy Nigerian ...

    African Journals Online (AJOL)

    Single dose pharmacokinetics of mefloquine in healthy Nigerian male subjects. A Mustapha, JA Kolawole. Abstract. Single dose pharmacokinetics of mefloquine was determined in SJ ic healthy Nigerian male subjects. Mefloquine 500mg single dose was administered and blood sa mples were collected 11t intervals.

  16. EPA and EFSA approaches for Benchmark Dose modeling

    Science.gov (United States)

    Benchmark dose (BMD) modeling has become the preferred approach in the analysis of toxicological dose-response data for the purpose of deriving human health toxicity values. The software packages most often used are Benchmark Dose Software (BMDS, developed by EPA) and PROAST (de...

  17. Does size matter? : bridging and dose selection in paediatric trials

    NARCIS (Netherlands)

    Cella, Massimo

    2011-01-01

    “Does size matters? Bridging and dose selection in paediatric trials” investigates the use of pharmacokinetic (PK) modelling to support dosing recommendation in children during drug development. To date, empiricism still leads the choice of the dose to administer to children during clinical trials.

  18. Pharmacokinetics and dose proportionality of ceftibuten in men.

    Science.gov (United States)

    Lin, C; Lim, J; Radwanski, E; Marco, A; Affrime, M

    1995-02-01

    The pharmacokinetics and dose proportionality of ceftibuten were evaluated in healthy male volunteers receiving single oral doses of 200, 400, and 800 mg of ceftibuten. The drug was absorbed with similar times to the maximum concentration of drug in plasma for all three doses. Concentrations of ceftibuten in plasma increased with increasing dose. Analysis of variance was carried out on the dose-adjusted values for the maximum concentration of drug in plasma and the area under the plasma concentration-time curve; the results indicated that the concentrations in plasma after the 200- and 400-mg doses were dose proportional, and after the 800-mg of dose they were less than dose proportional. The elimination half-life from plasma ranged from 2.0 to 2.3 h and was independent of dose. The total excretion of unchanged ceftibuten in urine accounted for 53 to 68% of the dose, and the renal clearance was estimated to be 53 to 61 ml/min after all doses. The amount of ceftibuten-trans, the major in vitro and in vivo conversion product of ceftibuten, was low in both plasma and urine.

  19. Ablative Radiotherapy Doses for Locally Advanced: Pancreatic Cancer (LAPC).

    Science.gov (United States)

    Crane, Christopher H; O'Reilly, Eileen M

    Standard palliative doses of radiation for locally advanced unresectable pancreatic cancer have had minimal to no impact on survival. Randomized trials evaluating these palliative doses have not shown a significant survival benefit with the use of radiation as consolidation after chemotherapy. Results from nonrandomized studies of 3- to 5-fraction low-dose stereotactic radiation (SBRT) have likewise had a minimal impact, but with less toxicity and a shorter treatment time. Doses of SBRT have been reduced to half the level that is necessary (biological equivalent dose, BED of 53 Gy) to achieve tumor ablation in the treatment of other solid tumors (100 Gy BED) to protect the gastrointestinal (GI) tract. The survival benefit of these palliative options is modest. In contrast, ablative doses of radiation (100 Gy BED) can be delivered using the same SBRT technique in 15 to 25 fractions. In addition to precision tumor targeting and solutions for respiratory motion as with SBRT, the delivery of ablative doses takes advantage of heterogeneous dosing, increased fractionation, which allows higher doses to be given, as well as adaptive planning to address day-to-day GI tract motion in selected cases. These higher doses have resulted in encouraging long-term survival results in multiple studies. In this review, we discuss the critical concepts and components of techniques that can be used to deliver ablative radiotherapy doses for patients with pancreatic tumors: fractionation, intentional dose heterogeneity, respiratory gating, image guidance, and adaptive planning.

  20. The Influence of Dosing Modes of Coagulate on Arsenic Removal

    Directory of Open Access Journals (Sweden)

    Zhibin Zhang

    2014-01-01

    Full Text Available Three different dosing modes, including one single dosing mode and two sequential dosing modes, were applied in high-arsenic contaminated water treatment. The results illustrated that the As (V soluble and the As (V nonspecifically sorbed were the insignificant species from Fe-As (V samples in the sequential dosing mode, while they were higher in the single dosing mode. However, it could be further concluded that the mobility of the Fe-As (V in sequential dosing mode was greater than that in single dosing mode. Besides, the main arsenic speciation governing the arsenic-borne coagulates was the As (V associated with poorly crystalline hydrous oxides of Fe in sequential or single dosing mode. Moreover, the particle size distribution analysis indicated that the sequential dosing mode was more prevalent in neutralizing and adsorbing the As (V compared with the single dosing mode. In the FT-IR spectra, the presence of arsenic was highlighted by a well resolved band at 825–829 cm−1. The positions of the As–O stretching vibration bands were shifted gradually as the dosing mode changed from the single to the sequential. This result could be related to the distribution of arsenic speciation in different dosing modes.

  1. In vivo skin dose measurement in breast conformal radiotherapy

    Directory of Open Access Journals (Sweden)

    Shokouhozaman Soleymanifard

    2016-02-01

    Full Text Available Aim of the study: Accurate skin dose assessment is necessary during breast radiotherapy to assure that the skin dose is below the tolerance level and is sufficient to prevent tumour recurrence. The aim of the current study is to measure the skin dose and to evaluate the geometrical/anatomical parameters that affect it. Material and methods : Forty patients were simulated by TIGRT treatment planning system and treated with two tangential fields of 6 MV photon beam. Wedge filters were used to homogenise dose distribution for 11 patients. Skin dose was measured by thermoluminescent dosimeters (TLD-100 and the effects of beam incident angle, thickness of irradiated region, and beam entry separation on the skin dose were analysed. Results : Average skin dose in treatment course of 50 Gy to the clinical target volume (CTV was 36.65 Gy. The corresponding dose values for patients who were treated with and without wedge filter were 35.65 and 37.20 Gy, respectively. It was determined that the beam angle affected the average skin dose while the thickness of the irradiated region and the beam entry separation did not affect dose. Since the skin dose measured in this study was lower than the amount required to prevent tumour recurrence, application of bolus material in part of the treatment course is suggested for post-mastectomy advanced breast radiotherapy. It is more important when wedge filters are applied to homogenize dose distribution.

  2. Dose assessment due to terrestrial gamma radiation in Ibadan ...

    African Journals Online (AJOL)

    The activities of primordial radionuclides in surface soil at Ibadan, South-Western Nigeria have been measured with a 7.6cm x 7.6cm NaI(TL) detector. The mean absorbed dose rate, annual effective dose and the collective effective dose at Ibadan were evaluated from measurement of 40K; 238U; 232Th activities and their ...

  3. Entrance surface dose of the common radiological investigations in ...

    African Journals Online (AJOL)

    From this studies radiation doses delivered for routine investigations are generally lower than IAEA reference doses. Using these values for optimization of radiation protection practices for patient should be ensured since it does not rule out options for stochastic radiation. Keywords: Entrance Surface Dose, (ESD) Routine ...

  4. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion.

    Science.gov (United States)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas; Georg, Dietmar

    2015-09-01

    Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Current knowledge on RBE of (4)He together with linear energy transfer considerations motivated an empirical depth-dependent "zonal" RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of (4)He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and (4)He. Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ mean of 0.3, with 3.4% of the values above 1 and γ 1% of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for (4)He. Organ at risk (OAR) doses were generally reduced using (4)He, some by more than to 30%. Improvements of (4)He over protons were more pronounced for treatment plans taking biological effects into account. All OAR doses were within tolerances specified in the QUANTEC report. The

  5. Dose and dose reduction in computed tomography; Dosis und Dosisreduktion in der Computertomografie

    Energy Technology Data Exchange (ETDEWEB)

    Lell, Michael [Klinikum Nuernberg (Germany). Inst. fuer Radiologie und Nuklearmedizin; Paracelsus Medical Univ. Nuernberg (Germany); Wucherer, Michael [Klinikum Nuernberg (Germany). Inst. fuer Medizinische Physik; Kachelriess, Marc [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany)

    2017-06-15

    CT is widely used in medical imaging due to high availability, relatively low cost, and excellent diagnostic yield. Newer applications like coronary CTA, CT colonography, and CT perfusion imaging are integrated in clinical pathways. Although there is a high level of consensus that the benefits of CT exceeds the risks of radiation exposure for appropriate indications, concerns have been raised regarding the potential of cancer induction. Keeping dose as low as reasonably achievable remains the most important task. Dose reduction strategies are presented and discussed.

  6. Doses received by organs in interventional cardiology; Les doses recues aux organes en cardiologie interventionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Maccia, C. [Centre d' Assurance de qualite des Applications Technologiques dans le domaine de la Sante, (CAATS) - 43, Bd du Marechal Joffre, 92 - Bourg-La-Reine (France)

    2009-07-01

    After a discussion of several publications about patient dosimetry in interventional cardiology, the author recalls that the in vivo assessment of the dose received by some organs is uneasy because invasive. Therefore, the assessment requires the use of physical or mathematical dosimetric phantoms which simulate patient morphology as well as the incident photon attenuation phenomenon. He evokes some characteristics and applications of these phantoms. He outlines the different sources and origins of the dose received by the patient, and discusses results obtained by collecting data from 177 patients submitted to diagnosis or therapeutic procedures

  7. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  8. Regulatory requirements for marketing fixed dose combinations.

    Science.gov (United States)

    Jayasheel, B G

    2010-10-01

    The development of fixed-dose combinations (FDCs) is becoming increasingly important from a public health perspective. FDCs have advantages when there is an identifiable patient population for whom treatment with a particular combination of actives in a fixed ratio is safe and effective and when all of the actives contribute to the overall therapeutic effect. Such combinations of drugs are particularly useful in the management of chronic diseases. In addition, there can be real clinical benefits in the form of increased efficacy and/or a reduced incidence of adverse effects. Additional advantages of FDCs are potentially lower costs of manufacturing compared to the costs of producing separate products administered concurrently, simpler logistics of distribution and reduced development of resistance in the case of antimicrobials. Above all, FDC therapy reduces pill burden and improves medication compliance. Although, FDCs seem to be ideal under certain pre-defined circumstances, if a dosing adjustment is warranted, there may not be an FDC available in the most appropriate strength for the patient and if an adverse drug reaction occurs from using an FDC, it may be difficult to identify the active ingredient responsible for causing the reaction. Appendix VI of Schedule Y (Drugs & Cosmetics Rules 1945, India) states the requirements for marketing approval of various types of FDCs. The same is further elaborated in this article to provide a detailed guidance including the clinical trial requirements. However, the heterogeneity of the therapeutic field makes it difficult to develop a standard guidance document.

  9. Regulatory requirements for marketing fixed dose combinations

    Directory of Open Access Journals (Sweden)

    B G Jayasheel

    2010-01-01

    Full Text Available The development of fixed-dose combinations (FDCs is becoming increasingly important from a public health perspective. FDCs have advantages when there is an identifiable patient population for whom treatment with a particular combination of actives in a fixed ratio is safe and effective and when all of the actives contribute to the overall therapeutic effect. Such combinations of drugs are particularly useful in the management of chronic diseases. In addition, there can be real clinical benefits in the form of increased efficacy and/or a reduced incidence of adverse effects. Additional advantages of FDCs are potentially lower costs of manufacturing compared to the costs of producing separate products administered concurrently, simpler logistics of distribution and reduced development of resistance in the case of antimicrobials. Above all, FDC therapy reduces pill burden and improves medication compliance. Although, FDCs seem to be ideal under certain pre-defined circumstances, if a dosing adjustment is warranted, there may not be an FDC available in the most appropriate strength for the patient and if an adverse drug reaction occurs from using an FDC, it may be difficult to identify the active ingredient responsible for causing the reaction. Appendix VI of Schedule Y (Drugs & Cosmetics Rules 1945, India states the requirements for marketing approval of various types of FDCs. The same is further elaborated in this article to provide a detailed guidance including the clinical trial requirements. However, the heterogeneity of the therapeutic field makes it difficult to develop a standard guidance document.

  10. Single dose regorafenib-induced hypertensive crisis.

    Science.gov (United States)

    Yilmaz, B; Kemal, Y; Teker, F; Kut, E; Demirag, G; Yucel, I

    2014-06-01

    Gastrointestinal stromal tumors (GISTs) are uncommon tumors of the gastrointestinal (GI) tract. Regorafenib is a new multikinase inhibitor and is approved for the treatment of GISTs in patients who develop resistance to imatinib and sunitinib. The most common drug-related adverse events with regorafenib are hypertension, hand-foot skin reactions, and diarrhea. Grade IV hypertensive side effect has never been reported after a single dose. In this report, we present a case of Grade IV hypertensive side effect (hypertensive crisis and seizure) after a single dose of regorafenib. A 54-year-old male normotensive GIST patient was admitted to the emergency department with seizure and encephalopathy after the first dosage of regorafenib. His blood pressure was 240/140 mmHg upon admission. After intensive treatment with nitrate and nitroprusside, his blood pressure returned to normal levels in five days. Regorafenib was discontinued, and he did not experience hypertension again. This paper reports the first case of Grade IV hypertension after the first dosage of regorafenib. We can suggest that hypertension is an idiosyncratic side effect unrelated to the dosage.

  11. [Complications of low-dose amiodarone].

    Science.gov (United States)

    Feigl, D; Gilad, R; Katz, E

    1991-11-15

    Complications of low-dose amiodarone in 83 patients, in whom the drug was effective and who were followed for 1-13 years, are presented. Hypothyroidism was diagnosed in 11 (in 8 by the finding of elevated TSH). In 2 of the 3 in whom clinical signs of hypothyroidism were evident, amiodarone was continued, but thyroxine was also given. In 5 others thyrotoxicosis ensued. Propylthiouracil (PTU) was given and amiodarone was discontinued. PTU was then stopped within 4-8 months, without recurrence of the hyperthyroidism. In 1 patient pneumonitis resolved spontaneously a few weeks after stopping amiodarone. Because of gastrointestinal distress amiodarone was stopped in 1 patient. In none were liver enzymes elevated, nor was the nervous system affected clinically. Photosensitivity in 6 patients and skin discoloration in 2 did not necessitate discontinuation of the drug. Blurred vision was reported by 4, but its connection with amiodarone was not proven. There was sinus bradycardia in 2. There was no arrhythmic effect of amiodarone seen on ECG nor on Holter monitoring, nor was there any mortality. We conclude that amiodarone in low doses causes many complications, most of them mild and transient. However, in only a few cases is discontinuation of the drug indicated.

  12. Standardizing dose prescriptions: An ASTRO white paper.

    Science.gov (United States)

    Evans, Suzanne B; Fraass, Benedick A; Berner, Paula; Collins, Kevin S; Nurushev, Teamour; O'Neill, Michael J; Zeng, Jing; Marks, Lawrence B

    This white paper recommends the standardization (content and presentation order) of several "key components" of the radiation therapy prescription to facilitate accurate communication between radiation therapy care providers. The rationale, other similar efforts, and detailed considerations are described. In brief, the Task Force recommends that the prescription's "elements" include: treatment site, method of delivery, dose per fraction, total number of fractions, total dose (eg, right breast, tangent photons, 267 cGy * 16 = 4272 cGy). A similar formalism is recommended for brachytherapy (eg, cervix, Ir-192 brachytherapy, 600cGy * 5 = 3000 cGy) and other modalities. The white paper also considers future directions for other items such as the simulation order, treatment planning objectives, prescription point or volume, treatment schedule, localization imaging, laboratory monitoring, concurrent chemotherapy, patient instructions for treatment, etc. The intent of this white paper is to facilitate accurate communication among providers to support safe practice as well as to guide vendors in product development that is consistent with this standard prescription. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  13. Radiation dose to the eye lens

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; D. Nielsen, Kamilla

    2015-01-01

    Radiation Dose to the Eye Lens: Does Positioning Really Matter? C. Baun1, K. Falch1, K.D. Nielsen2, S. Shanmuganathan1, O. Gerke1, P.F. Høilund-Carlsen1 1Department of Nuclear Medicine, Odense University Hospital, Odense C, Denmark. 2University College Lillebaelt, Odense, Denmark. Aim: The scan...... field in oncology patients undergoing eyes-to-thighs PET/CT must always include the base of the scull according to department guidelines. The eye lens is sensitive to radiation exposure and if possible it should be avoided to scan the eye. If the patient’s head is kipped backwards during the scan one...... might avoid including the eye in the CT scan without losing sufficient visualization of the scull base. The aim of this study was to evaluate the possibility of decreasing the radiation dose to the eye lens, simply by changing the head position, when doing the PET/CT scan from the base of the scull...

  14. Fast Electron Beam Simulation and Dose Calculation

    CERN Document Server

    Trindade, A; Peralta, L; Lopes, M C; Alves, C; Chaves, A

    2003-01-01

    A flexible multiple source model capable of fast reconstruction of clinical electron beams is presented in this paper. A source model considers multiple virtual sources emulating the effect of accelerator head components. A reference configuration (10 MeV and 10x10 cm2 field size) for a Siemens KD2 linear accelerator was simulated in full detail using GEANT3 Monte Carlo code. Our model allows the reconstruction of other beam energies and field sizes as well as other beam configurations for similar accelerators using only the reference beam data. Electron dose calculations were performed with the reconstructed beams in a water phantom and compared with experimental data. An agreement of 1-2% / 1-2 mm was obtained, equivalent to the accuracy of full Monte Carlo accelerator simulation. The source model reduces accelerator simulation CPU time by a factor of 7500 relative to full Monte Carlo approaches. The developed model was then interfaced with DPM, a fast radiation transport Monte Carlo code for dose calculati...

  15. Initial experience with adaptive iterative dose reduction 3D to reduce radiation dose in computed tomographic urography.

    Science.gov (United States)

    Juri, Hiroshi; Matsuki, Mitsuru; Itou, Yasushi; Inada, Yuki; Nakai, Go; Azuma, Haruhito; Narumi, Yoshifumi

    2013-01-01

    This study aimed to investigate the feasibility of low-dose computed tomographic (CT) urography with adaptive iterative dose reduction 3D (AIDR 3D). Thirty patients underwent routine-dose CT scans with filtered back projection and low-dose CT scans with AIDR 3D in the excretory phase of CT urography. Visual evaluations were performed with respect to internal image noises, sharpness, streak artifacts, and diagnostic acceptability. Quantitative measures of the image noise and radiation dose were also obtained. All results were compared on the basis of body mass index (BMI). At visual evaluations, streak artifacts in the urinary bladder were statistically weaker on low-dose CT than on routine-dose CT in the axial and coronal images (P urography with AIDR 3D allows 45% reduction of radiation dose without degenerating of the image quality in the excretory phase independently to a BMI.

  16. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2010-03-15

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in {mu}Sv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  17. Dose-dependent changes in the locomotor responses to methamphetamine in BALB/c mice: low doses induce hypolocomotion.

    Science.gov (United States)

    Singh, Rana A K; Kosten, Therese A; Kinsey, Berma M; Shen, Xiaoyun; Lopez, Angel Y; Kosten, Thomas R; Orson, Frank M

    2012-12-01

    The overall goal of the present study was to determine the effects of different doses of (+)-methamphetamine (meth) on locomotor activity of Balb/C mice. Four experiments were designed to test a wide range of meth doses in BALB/c female mice. In Experiment 1, we examined locomotor activity induced by an acute administration of low doses of meth (0.01 and 0.03mg/kg) in a 90-min session. Experiment 2 was conducted to test higher meth doses (0.3-10mg/kg). In Experiment 3, separate sets of mice were pre-treated with various meth doses once or twice (one injection/week) prior to a locomotor challenge with a low meth dose. Finally, in Experiment 4, we tested whether locomotor activation would be affected by pretreatment with a low or moderate dose of meth one month prior to the low meth dose challenge. Results show that low doses of meth induce hypolocomotion whereas moderate to high doses induce hyperlocomotion. Prior exposure to either one moderate or high dose of meth or to two, low doses of meth attenuated the hypolocomotor effect of a low meth dose one week later. This effect was also attenuated in mice tested one month after administration of a moderate meth dose. These results show that low and high doses of meth can have opposing effects on locomotor activity. Further, prior exposure to the drug leads to tolerance, rather than sensitization, of the hypolocomotor response to low meth doses. Published by Elsevier Inc.

  18. Methodology of high dose research in medical radiodiagnostic; Metodologia de investigacao de doses elevadas em radiodiagnostico medico

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Adriana E.; Martins, Cintia P. de S., E-mail: ird@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-11-01

    This work has as main purpose to study occupational exposure in diagnostic radiology in medical cases of high doses recorded in 2011 at the national level . These doses were recorded by monitoring individual of the occupationally exposed individuals (OEI's). This monitoring of the doses received by ionizing radiation has as main objective to ensure that the principle of dose limitation is respected. In this study it were evaluated doses of 372 OEI's radiology in different Brazilian states. Doses were extracted from the database of Sector Management Doses of the Institute for Radioprotection and Dosimetry - IRD/CNEN-RJ, Brazil. The information from the database provide reports of doses from several states, which allows to quantify statistically, showing those with the highest doses in four areas: dose greater than or equal to 20 mSv apron and chest and dose greater than or equal to 100 mSv apron and chest. The identification of these states allows the respective Sanitary Surveillance (VISA), be aware of the events and make plans to reduce them. This study clarified the required procedures when there is a record of high dose emphasizing the importance of using protective radiological equipment, dosimeter and provide a safety environment work by maintaining work equipment. Proposes the ongoing training of professionals, emphasizing the relevance of the concepts of radiation protection and the use of the questionnaire with their investigative systematic sequence, which will allow quickly and efficiently the success the investigations.

  19. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Woloschak, Gayle E. [Northwestern University, Department of Radiation Oncology, Feinberg School of Medicine, Chicago, IL (United States); Shore, Roy E. [Radiation Effects Research Foundation (RERF), Hiroshima City (Japan); Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Grosche, Bernd [Federal Office for Radiation Protection, Oberschleissheim (Germany); Niwa, Ohtsura [Fukushima Medical University, Fukushima (Japan); Akiba, Suminori [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima City (Japan); Ono, Tetsuya [Institute for Environmental Sciences, Rokkasho, Aomori-ken (Japan); Suzuki, Keiji [Nagasaki University, Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki (Japan); Iwasaki, Toshiyasu [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo (Japan); Ban, Nobuhiko [Tokyo Healthcare University, Faculty of Nursing, Tokyo (Japan); Kai, Michiaki [Oita University of Nursing and Health Sciences, Department of Environmental Health Science, Oita (Japan); Clement, Christopher H.; Hamada, Nobuyuki [International Commission on Radiological Protection (ICRP), PO Box 1046, Ottawa, ON (Canada); Bouffler, Simon [Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot (United Kingdom); Toma, Hideki [JAPAN NUS Co., Ltd. (JANUS), Tokyo (Japan)

    2015-11-15

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. (orig.)

  20. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  1. Dose-response in direct comparisons of different doses of aspirin, ibuprofen and paracetamol (acetaminophen) in analgesic studies.

    Science.gov (United States)

    McQuay, Henry J; Moore, R Andrew

    2007-03-01

    Establishing the dose-response relationship for clinically useful doses of aspirin, ibuprofen and paracetamol has been difficult. Indirect comparison from meta-analysis is compromised by too little information at some doses. A systematic review of randomized, double-blind trials in acute pain comparing different doses of aspirin, ibuprofen and paracetamol was therefore undertaken. Fifty trials were found. Numerical superiority of higher over lower dose was found by the original authors in 37/50 trials (74%) and statistical superiority in 11/50 (22%). Twenty-eight trials had design, quality and data reporting characteristics to allow pooling of common doses; in 3/28 (11%) of the individual trials our calculations showed statistical superiority of higher over lower dose. Pooled comparison of 1000/1200 mg aspirin over 500/600 mg was statistically superior, with a number-needed-to-treat (NNT) for higher over lower dose of 16 (8 to > 100). Pooled comparison of 400 mg ibuprofen over 200 mg was statistically superior, with an NNT for higher over lower dose of 10 (6-23). Pooled comparison of 1000 mg paracetamol over 500 mg was statistically superior, with an NNT for higher over lower dose of 9 (6-20). Use of trials making direct comparison of two different doses of target drugs revealed the underlying dose-response curve for clinical analgesia.

  2. Low dose effects and non-monotonic dose responses for endocrine active chemicals: Science to practice workshop: Workshop summary

    DEFF Research Database (Denmark)

    Beausoleil, Claire; Ormsby, Jean-Nicolas; Gies, Andreas

    2013-01-01

    A workshop was held in Berlin September 12–14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses (“low dose hypothesis”) for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted...

  3. Doses from intakes of radionuclides by adults and young people

    CERN Document Server

    Greenhalgh, J R; Fell, T P

    1985-01-01

    This report describes a methodology for calculating doses from ingestion and inhalation of radionuclides by adults, children (aged 10) and infants (aged 1). The calculation scheme follows the procedures and uses the models described in ICRP Publication 30, except in a few instances which are discussed in detail. The methods described in this report have been used to calculate organ doses and effective doses per unit intake for a wide variety of nuclides and compounds. A selection of these doses is given in this report. It is intended that the full dose data base should be made generally available in due course.

  4. Low-dose CT denoising with convolutional neural network

    CERN Document Server

    Chen, Hu; Zhang, Weihua; Liao, Peixi; Li, Ke; Zhou, Jiliu; Wang, Ge

    2016-01-01

    To reduce the potential radiation risk, low-dose CT has attracted much attention. However, simply lowering the radiation dose will lead to significant deterioration of the image quality. In this paper, we propose a noise reduction method for low-dose CT via deep neural network without accessing original projection data. A deep convolutional neural network is trained to transform low-dose CT images towards normal-dose CT images, patch by patch. Visual and quantitative evaluation demonstrates a competing performance of the proposed method.

  5. Low-Dose CT via Deep Neural Network

    CERN Document Server

    Chen, Hu; Zhang, Weihua; Liao, Peixi; Li, Ke; Zhou, Jiliu; Wang, Ge

    2016-01-01

    In order to reduce the potential radiation risk, low-dose CT has attracted more and more attention. However, simply lowering the radiation dose will significantly degrade the imaging quality. In this paper, we propose a noise reduction method for low-dose CT via deep learning without accessing the original projection data. An architecture of deep convolutional neural network was considered to map the low-dose CT images into its corresponding normal-dose CT images patch by patch. Qualitative and quantitative evaluations demonstrate a state-the-art performance of the proposed method.

  6. Postoperative single-dose interstitial high-dose-rate brachytherapy in therapy-resistant keloids

    NARCIS (Netherlands)

    Hafkamp, C. J. H.; Lapid, O.; Dávila Fajardo, R.; van de Kar, A. L.; Koedooder, C.; Stalpers, L. J.; Pieters, B. R.

    2017-01-01

    Patients with keloids complain of the cosmetic aspect, pain, and pruritus. Many different therapies are being used for keloids. The aim of this study was to evaluate the recurrence rate and outcome after resection followed by a single-dose brachytherapy. Patients treated by resection of the keloid

  7. Prescribing and evaluating target dose in dose-painting treatment plans

    DEFF Research Database (Denmark)

    Håkansson, Katrin; Specht, Lena; Aznar, Marianne C

    2014-01-01

    of such plans. A quality volume histogram (QVH) tool for history-based evaluation is proposed. MATERIAL AND METHODS: Twenty head and neck cancer dose-painting plans with five prescription levels were evaluated, as well as clinically delivered simultaneous integrated boost (SIB) plans from 2010 and 2012. The QVH...

  8. Dosing of ACE inhibitors in left ventricular dysfunction : Does current clinical dosing provide optimal benefit?

    NARCIS (Netherlands)

    Pinto, YM; van Geel, PP; Alkfaji, H; van Veldhuisen, DJ; van Gilst, WH

    In the present review, we discuss the role of clinical dosing of angiotensin converting enzyme (ACE) inhibitors in the treatment of left ventricular dysfunction. Although the precise mechanism of action of ACE inhibitors is still unresolved, the clinical efficacy of ACE inhibitors in the treatment

  9. Assessment of patient dose in medical processes by in-vivo dose measuring devices: A review

    Directory of Open Access Journals (Sweden)

    Tuncel Nina

    2016-01-01

    Full Text Available In-vivo dosimetry (IVD in medicine especially in radiation therapy is a well-established and recommended procedure for the estimation of the dose delivered to a patient during the radiation treatment. It became even more important with the emerging use of new and more complex radiotherapy techniques such as intensity-modulated or image-guided radiation therapy. While IVD has been used in brachytherapy for decades and the initial motivation for performing was mainly to assess doses to organs at risk by direct measurements, it is now possible to calculate 3D for detection of deviations or errors. In-vivo dosimeters can be divided into real-time and passive detectors that need some finite time following irradiation for their analysis. They require a calibration against a calibrated ionization chamber in a known radiation field. Most of these detectors have a response that is energy and/or dose rate dependent and consequently require adjustments of the response to account for changes in the actual radiation conditions compared to the calibration situation. Correction factors are therefore necessary to take. Today, the most common dosimeters for patients’ dose verification through in-vivo measurements are semiconductor diodes, thermo-luminescent dosimeters, optically stimulated luminescence dosimeters, metal-oxide-semiconductor field-effect transistors and plastic scintillator detectors with small outer diameters.

  10. Current evaluation of dose rate calculation - analytical method; Visao atual do calculo de dose - metodo analitico

    Energy Technology Data Exchange (ETDEWEB)

    Tello, Marcos [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Grupo de Compatibilidade Eletromagnetica; Vilhena, Marco Tulio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Metalurgica e dos Materiais

    1996-12-31

    The accuracy of the dose calculations based on pencil beam formulas such as Fokker-Plank equations and Fermi equations for charged particle transport are studied and a methodology to solve the Boltzmann transport equation is suggested 4 refs., 3 figs., 1 tab.

  11. TSD-DOSE : a radiological dose assessment model for treatment, storage, and disposal facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Pfingston, M.

    1998-12-23

    In May 1991, the U.S. Department of Energy (DOE), Office of Waste Operations, issued a nationwide moratorium on shipping slightly radioactive mixed waste from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. Studies were subsequently conducted to evaluate the radiological impacts associated with DOE's prior shipments through DOE's authorized release process under DOE Order 5400.5. To support this endeavor, a radiological assessment computer code--TSD-DOSE (Version 1.1)--was developed and issued by DOE in 1997. The code was developed on the basis of detailed radiological assessments performed for eight commercial hazardous waste TSD facilities. It was designed to utilize waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste handling operations at a TSD facility. The code has since been released for use by DOE field offices and was recently used by DOE to evaluate the release of septic waste containing residual radioactive material to a TSD facility licensed under the Resource Conservation and Recovery Act. Revisions to the code were initiated in 1997 to incorporate comments received from users and to increase TSD-DOSE's capability, accuracy, and flexibility. These updates included incorporation of the method used to estimate external radiation doses from DOE's RESRAD model and expansion of the source term to include 85 radionuclides. In addition, a detailed verification and benchmarking analysis was performed.

  12. Fixed Dose Combination for TB treatment

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2003-06-01

    Full Text Available According to the World Health Organization, a third of the world’s population is infected with tuberculosis. The disease is responsible for nearly 2 million deaths each year and over 8 million were developing active diseases. Moreover, according to WHO (2000, tuberculosis deaths are estimated to increase to 35 million between 2000-2020. The majority of tuberculosis patients worldwide are still treated with single drugs, or with 2-drug fixed-dose combinations (FDCs. To improve tuberculosis treatment, 2- and 3-drug FDCs were recommended by the World Health Organization (WHO as part of the DOTS strategy. Since 1999 a 4-drug FDC was included on the WHO Model List of Essential Drugs. Today, FDCs are important tools to further improve the quality of care for people with TB, and accelerate DOTS expansion to reach the global TB control targets. Fixed dose combination TB drugs could simplifies both treatment and management of drug supply, and may prevent the emergence of drug resistance .Prevention of drug resistance is just one of the potential benefits of the use of FDCs. FDCs simplify administration of drugs by reducing the number of pills a patient takes each day and decreasing the risk of incorrect prescriptions. Most tuberculosis patients need only take 3–4 FDCs tablets per day during the intensive phase of treatment, instead of the 15–16 tablets per day that is common with single-drug formulations It is much simpler to explain to patients that they need to take four tablets of the same type and colour, rather than a mixture of tablets of different shapes, colours and sizes. Also, the chance of taking an incomplete combination of drugs is eliminated, since the four essential drugs are combined into one tablet. FDCs are also simpler for care-givers as they minimize the risk of confusion. Finally, drug procurement, in all its components (stock management, shipping, distribution, is simplified by FDCs. Adverse reactions to drugs are not more

  13. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle

  14. Dose-painting IMRT optimization using biological parameters.

    Science.gov (United States)

    Kim, Yusung; Tomé, Wolfgang A

    2010-11-01

    Our work on dose-painting based on the possible risk characteristics for local recurrence in tumor subvolumes and the optimization of treatment plans using biological objective functions that are region-specific are reviewed. A series of intensity modulated dose-painting techniques are compared to their corresponding intensity modulated plans in which the entire PTV is treated to a single dose level, delivering the same equivalent uniform dose (EUD) to the entire PTV. Iso-TCP and iso-NTCP maps are introduced as a tool to aid the planner in the evaluation of the resulting non-uniform dose distributions. Iso-TCP and iso-NTCP maps are akin to iso-dose maps in 3D conformal radiotherapy. The impact of the currently limited diagnostic accuracy of functional imaging on a series of dose-painting techniques is also discussed. Utilizing biological parameters (risk-adaptive optimization) in the generation of dose-painting plans results in an increase in the therapeutic ratio as compared to conventional dose-painting plans in which optimization techniques based on physical dose are employed. Dose-painting employing biological parameters appears to be a promising approach for individualized patient- and disease-specific radiotherapy.

  15. Buprenorphine dosing choices in specific populations: review of expert opinion.

    Science.gov (United States)

    Maremmani, Icro; Rolland, Benjamin; Somaini, Lorenzo; Roncero, Carlos; Reimer, Jens; Wright, Nat; Littlewood, Richard; Krajci, Peter; Alho, Hannu; D'Agnone, Oscar; Simon, Nicolas

    2016-09-01

    Treatment of opioid dependence with buprenorphine improves outcomes. Typical dosing ranges for all patients from clinical evidence and as defined in the product information are wide. For specific groups with complex clinical scenarios, there is no clear consensus on dosing choices to achieve best possible outcomes. The doses of buprenorphine used in 6 European countries was reviewed. A review of published evidence supported rapid induction with buprenorphine and the benefits of higher doses but did not identify clearly useful guidance on dosing choices for groups with complex clinical scenarios. An expert group of physicians with experience in addiction care participated in a discussion meeting to share clinical practice experience and develop a consensus on dosing choices. There was general agreement that treatment outcomes can be improved by optimising buprenorphine doses in specific subgroups. Specific groups in whom buprenorphine doses may be too low and who could have better outcomes with optimised dosing were identified on the basis of clinical practice experience. These groups include people with severe addiction, high tolerance to opioids, and psychiatric comorbidities. In these groups it is recommended to review dosing choices to ensure buprenorphine dosing is sufficient.

  16. Training dose as a factor in LSD-saline discrimination.

    Science.gov (United States)

    White, F J; Appel, J B

    1982-01-01

    To assess the effects of training dose on the discriminative stimulus properties of LSD, groups of rats (eight/group) were trained to discriminate each of three doses of LSD (0.02, 0.08 or 0.32 mg/kg) from saline. This was accomplished by using a method of progressively altering dose ("fading"). Dose-response tests revealed that the three LSD cues were specific to the dose used during training and that, as the training dose declined, the slope of the LSD dose-response curve became less steep. Substitution tests with direct serotonin (5-HT) agonists (quipazine, MK-212, 5-methoxy-N,N-dimethyltryptamine) and antagonism tests with central 5-HT antagonists (methiothepin and cyproheptadine) indicated that 5-HT is involved in mediating the in vivo effects of LSD and that training dose co-determines (along with the dose of the test compound) the extent of substitution or antagonism. In addition, substitution tests with the peripherally-active 5-HT agonist 5-methoxytryptamine and 5-HT antagonist xylamidine suggested that the peripheral serotonergic actions of LSD may be involved (in part) in the low dose (0.02 mg/kg) LSD cue. In contrast to 5-HT, dopamine (DA) did not appear to be involved in the discriminative stimulus properties of LSD, because no significant dose or group effects were seen during tests with the DA agonists apomorphine and d-amphetamine or the DA antagonist haloperidol.

  17. Non-linear dose-response of aluminium hydroxide adjuvant particles: Selective low dose neurotoxicity.

    Science.gov (United States)

    Crépeaux, Guillemette; Eidi, Housam; David, Marie-Odile; Baba-Amer, Yasmine; Tzavara, Eleni; Giros, Bruno; Authier, François-Jérôme; Exley, Christopher; Shaw, Christopher A; Cadusseau, Josette; Gherardi, Romain K

    2017-01-15

    Aluminium (Al) oxyhydroxide (Alhydrogel(®)), the main adjuvant licensed for human and animal vaccines, consists of primary nanoparticles that spontaneously agglomerate. Concerns about its safety emerged following recognition of its unexpectedly long-lasting biopersistence within immune cells in some individuals, and reports of chronic fatigue syndrome, cognitive dysfunction, myalgia, dysautonomia and autoimmune/inflammatory features temporally linked to multiple Al-containing vaccine administrations. Mouse experiments have documented its capture and slow transportation by monocyte-lineage cells from the injected muscle to lymphoid organs and eventually the brain. The present study aimed at evaluating mouse brain function and Al concentration 180days after injection of various doses of Alhydrogel(®) (200, 400 and 800μg Al/kg of body weight) in the tibialis anterior muscle in adult female CD1 mice. Cognitive and motor performances were assessed by 8 validated tests, microglial activation by Iba-1 immunohistochemistry, and Al level by graphite furnace atomic absorption spectroscopy. An unusual neuro-toxicological pattern limited to a low dose of Alhydrogel(®) was observed. Neurobehavioural changes, including decreased activity levels and altered anxiety-like behaviour, were observed compared to controls in animals exposed to 200μg Al/kg but not at 400 and 800μg Al/kg. Consistently, microglial number appeared increased in the ventral forebrain of the 200μg Al/kg group. Cerebral Al levels were selectively increased in animals exposed to the lowest dose, while muscle granulomas had almost completely disappeared at 6 months in these animals. We conclude that Alhydrogel(®) injected at low dose in mouse muscle may selectively induce long-term Al cerebral accumulation and neurotoxic effects. To explain this unexpected result, an avenue that could be explored in the future relates to the adjuvant size since the injected suspensions corresponding to the lowest dose

  18. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy.

    Directory of Open Access Journals (Sweden)

    Daniel G Zhang

    Full Text Available MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF and conventional flattened 6MV photon beams were used. High dose rate (HDR brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL would be needed.

  19. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy.

    Science.gov (United States)

    Zhang, Daniel G; Feygelman, Vladimir; Moros, Eduardo G; Latifi, Kujtim; Zhang, Geoffrey G

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed.

  20. Is There a Dose-Response Relationship for Heart Disease With Low-Dose Radiation Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eugene [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Corbett, James R. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Moran, Jean M. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Marsh, Robin B.; Feng, Mary; Jagsi, Reshma; Kessler, Marc L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ficaro, Edward C. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J., E-mail: ljpierce@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-03-15

    Purpose: To quantify cardiac radiation therapy (RT) exposure using sensitive measures of cardiac dysfunction; and to correlate dysfunction with heart doses, in the setting of adjuvant RT for left-sided breast cancer. Methods and Materials: On a randomized trial, 32 women with node-positive left-sided breast cancer underwent pre-RT stress single photon emission computed tomography (SPECT-CT) myocardial perfusion scans. Patients received RT to the breast/chest wall and regional lymph nodes to doses of 50 to 52.2 Gy. Repeat SPECT-CT scans were performed 1 year after RT. Perfusion defects (PD), summed stress defects scores (SSS), and ejection fractions (EF) were evaluated. Doses to the heart and coronary arteries were quantified. Results: The mean difference in pre- and post-RT PD was −0.38% ± 3.20% (P=.68), with no clinically significant defects. To assess for subclinical effects, PD were also examined using a 1.5-SD below the normal mean threshold, with a mean difference of 2.53% ± 12.57% (P=.38). The mean differences in SSS and EF before and after RT were 0.78% ± 2.50% (P=.08) and 1.75% ± 7.29% (P=.39), respectively. The average heart Dmean and D95 were 2.82 Gy (range, 1.11-6.06 Gy) and 0.90 Gy (range, 0.13-2.17 Gy), respectively. The average Dmean and D95 to the left anterior descending artery were 7.22 Gy (range, 2.58-18.05 Gy) and 3.22 Gy (range, 1.23-6.86 Gy), respectively. No correlations were found between cardiac doses and changes in PD, SSS, and EF. Conclusions: Using sensitive measures of cardiac function, no clinically significant defects were found after RT, with the average heart Dmean <5 Gy. Although a dose response may exist for measures of cardiac dysfunction at higher doses, no correlation was found in the present study for low doses delivered to cardiac structures and perfusion, SSS, or EF.

  1. In Vivo Mutagenic Effect of Very Low Dose Radiation

    Science.gov (United States)

    Sykes, Pamela J.; Day, Tanya K.; Swinburne, Sarah J.; Lane, Joanne M.; Morley, Alexander A.; Hooker, Antony M.; Bhat, Madhava

    2006-01-01

    Almost all of our knowledge about the mutational effect of radiation has come from high dose studies which are generally not relevant to public exposure. The pKZ1 mouse recombination mutagenesis assay enables study of the mutational effect of very low doses of low LET radiation (μGy to cGy range) in a whole animal model. The mutational end-point studied is chromosomal inversion which is a common mutation in cancer. We have observed 1) a non-linear dose response of induced inversions in pKZ1 mice exposed to a wide dose range of low LET radiation, 2) the ability of low priming doses to cause an adaptive response to subsequent higher test doses and 3) the effect of genetic susceptibility where animals that are heterozygous for the Ataxia Telangiectasia gene (Atm) exhibit different responses to low dose radiation compared to their normal litter-mates. PMID:18648587

  2. [Indications for low-dose CT in the emergency setting].

    Science.gov (United States)

    Poletti, Pierre-Alexandre; Andereggen, Elisabeth; Rutschmann, Olivier; de Perrot, Thomas; Caviezel, Alessandro; Platon, Alexandra

    2009-08-19

    CT delivers a large dose of radiation, especially in abdominal imaging. Recently, a low-dose abdominal CT protocol (low-dose CT) has been set-up in our institution. "Low-dose CT" is almost equivalent to a single standard abdominal radiograph in term of dose of radiation (about one sixth of those delivered by a standard CT). "Low-dose CT" is now used routinely in our emergency service in two main indications: patients with a suspicion of renal colic and those with right lower quadrant pain. It is obtained without intravenous contrast media. Oral contrast is given to patients with suspicion of appendicitis. "Low-dose CT" is used in the frame of well defined clinical algorithms, and does only replace standard CT when it can reach a comparable diagnostic quality.

  3. Low-dose effects of hormones and endocrine disruptors.

    Science.gov (United States)

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately. © 2014 Elsevier Inc. All rights reserved.

  4. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.

    Science.gov (United States)

    Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J

    2014-01-06

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  5. Measurement and comparison of skin dose using OneDose MOSFET and Mobile MOSFET for patients with acute lymphoblastic leukemia.

    Science.gov (United States)

    Mattar, Essam H; Hammad, Lina F; Al-Mohammed, Huda I

    2011-07-01

    Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to bone marrow transplant. It is involved in the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore measuring and monitoring the skin dose during the treatment is important. Two kinds of metal oxide semiconductor field effect transistor (OneDose MOSFET and mobile MOSEFT) dosimeter are used during the treatment delivery to measure the skin dose to specific points and compare it with the target prescribed dose. The objective of this study was to compare the variation of skin dose in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using OneDose MOSFET detectors and Mobile MOSFET, and then compare both results with the target prescribed dose. The measurements involved 32 patient's (16 males, 16 females), aged between 14-30 years, with an average age of 22.41 years. One-Dose MOSFET and Mobile MOSFET dosimetry were performed at 10 different anatomical sites on every patient. The results showed there was no variation between skin dose measured with OneDose MOSFET and Mobile MOSFET in all patients. Furthermore, the results showed for every anatomical site selected there was no significant difference in the dose delivered using either OneDose MOSFET detector or Mobile MOSFET as compared to the prescribed dose. The study concludes that One-Dose MOSFET detectors and Mobile MOSFET both give a direct read-out immediately after the treatment; therefore both detectors are suitable options when measuring skin dose for total body irradiation treatment.

  6. High-dose Helical Tomotherapy With Concurrent Full-dose Chemotherapy for Locally Advanced Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jee Suk [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Wang, Michael L.C. [Department of Radiation Oncology, National Cancer Centre (Singapore); Koom, Woong Sub; Yoon, Hong In; Chung, Yoonsun [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Si Young [Department of Internal Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Seong, Jinsil, E-mail: jsseong@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-08-01

    Purpose: To improve poor therapeutic outcome of current practice of chemoradiotherapy (CRT), high-dose helical tomotherapy (HT) with concurrent full-dose chemotherapy has been performed on patients with locally advanced pancreatic cancer (LAPC), and the results were analyzed. Methods and Materials: We retrospectively reviewed 39 patients with LAPC treated with radiotherapy using HT (median, 58.4 Gy; range, 50.8-59.9 Gy) and concomitant chemotherapy between 2006 and 2009. Radiotherapy was directed to the primary tumor with a 0.5-cm margin without prophylactic nodal coverage. Twenty-nine patients (79%) received full-dose (1000 mg/m{sup 2}) gemcitabine-based chemotherapy during HT. After completion of CRT, maintenance chemotherapy was administered to 37 patients (95%). Results: The median follow-up was 15.5 months (range, 3.4-43.9) for the entire cohort, and 22.5 months (range, 12.0-43.9) for the surviving patients. The 1- and 2-year local progression-free survival rates were 82.1% and 77.3%, respectively. Eight patients (21%) were converted to resectable status, including 1 with a pathological complete response. The median overall survival and progression-free survival were 21.2 and 14.0 months, respectively. Acute toxicities were acceptable with no gastrointestinal (GI) toxicity higher than Grade 3. Severe late GI toxicity ({>=}Grade 3) occurred in 10 patients (26%); 1 treatment-related death from GI bleeding was observed. Conclusion: High-dose helical tomotherapy with concurrent full-dose chemotherapy resulted in improved local control and long-term survival in patients with LAPC. Future studies are needed to widen the therapeutic window by minimizing late GI toxicity.

  7. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  8. Prescribing habits and caregiver satisfaction with resources for dosing children: rationale for more informative dosing guidance.

    Science.gov (United States)

    Barrett, Jeffrey S; Narayan, Mahesh; Patel, Dimple; Zuppa, Athena F; Adamson, Peter C

    2011-04-02

    Physicians, nurses and hospital pharmacists were surveyed to assess attitudes of hospital-based pediatric caregivers regarding the dosing of medicine to children. Our objectives were to gauge how current resources are utilized to guide the management of pediatric pharmacotherapy, assess drugs and drug classes where guidance is most critical and examine the prevalence and practice of dose adjustment in pediatric patients. Questionnaire categories included demographics, pharmacotherapy resources, dosing adjustment and modification, and valuation of additional tools to provide improved pharmacotherapy guidance. The questionnaire was developed in collaboration with representative nurse, pharmacist and physician team members using the SurveyMonkey.com site and survey tool. The survey link was distributed to caregivers via email. The questionnaire results of 303 respondents were collected into MS Excel and imported into SAS for data summarization. A total of 313 responses were obtained. Physician and nurse practitioner groups comprised the majority of the responses. Approximately 80% of the responders considered dosing adjustment important in pediatric pharmacotherapy. While there was general satisfaction with available resources, nearly 75% responded in support of access to predictive tools that facilitate individualized patient pharmacotherapy. The majority of respondents (> 65%) indicated that dosing outside standard practice occurs in 1-20% of their patients, while still a substantial number of respondents (a range of 8 to 20% reflecting the resident and fellow categories) estimated between 20 and 50% of their patients required adjustments outside the standard practice. Differences in prescribing habits based on caregiver role, specialty and location were small and likely require further exploration. Existing resources are generally viewed as helpful but inadequate to guide recommendations for individual patients. Decision support systems connected to hospital

  9. Prescribing habits and caregiver satisfaction with resources for dosing children: Rationale for more informative dosing guidance

    Directory of Open Access Journals (Sweden)

    Zuppa Athena F

    2011-04-01

    Full Text Available Abstract Background Physicians, nurses and hospital pharmacists were surveyed to assess attitudes of hospital-based pediatric caregivers regarding the dosing of medicine to children. Our objectives were to gauge how current resources are utilized to guide the management of pediatric pharmacotherapy, assess drugs and drug classes where guidance is most critical and examine the prevalence and practice of dose adjustment in pediatric patients. Methods Questionnaire categories included demographics, pharmacotherapy resources, dosing adjustment and modification, and valuation of additional tools to provide improved pharmacotherapy guidance. The questionnaire was developed in collaboration with representative nurse, pharmacist and physician team members using the SurveyMonkey.com site and survey tool. The survey link was distributed to caregivers via email. The questionnaire results of 303 respondents were collected into MS Excel and imported into SAS for data summarization. Results A total of 313 responses were obtained. Physician and nurse practitioner groups comprised the majority of the responses. Approximately 80% of the responders considered dosing adjustment important in pediatric pharmacotherapy. While there was general satisfaction with available resources, nearly 75% responded in support of access to predictive tools that facilitate individualized patient pharmacotherapy. The majority of respondents (> 65% indicated that dosing outside standard practice occurs in 1-20% of their patients, while still a substantial number of respondents (a range of 8 to 20% reflecting the resident and fellow categories estimated between 20 and 50% of their patients required adjustments outside the standard practice. Conclusions Differences in prescribing habits based on caregiver role, specialty and location were small and likely require further exploration. Existing resources are generally viewed as helpful but inadequate to guide recommendations for

  10. SU-E-T-280: Reconstructed Rectal Wall Dose Map-Based Verification of Rectal Dose Sparing Effect According to Rectum Definition Methods and Dose Perturbation by Air Cavity in Endo-Rectal Balloon

    Energy Technology Data Exchange (ETDEWEB)

    Park, J [Dept. of Pediatrics, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA (United States); Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Park, H [Dept. of Radiation Oncology, Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, J [Konkuk University Medical Center, Seoul (Korea, Republic of); Kang, S; Lee, M; Suh, T [Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Dept. of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Lee, B [Dept. of Bio-Convergence Engineering, Korea University, Seoul (Korea, Republic of); Dept. of Radiation Oncology, Sun Medical Center, Daejeon (Korea, Republic of)

    2014-06-01

    Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from the whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea

  11. Digital chest radiography: collimation and dose reduction

    DEFF Research Database (Denmark)

    Debess, Jeanne; Johnsen, Karen Kirstine; Vejle-Sørensen, Jens Kristian

    Purpose: Quality improvement of basic radiography focusing on collimation and dose reduction in digital chest radiography Methods and Materials:A retrospective study of digital chest radiography is performed to evaluate the primary x-ray tube collimation of the PA and lateral radiographs. Data from...... one hundred fifty self-reliant female patients between 15 and 55 years of age are included in the study. The clinical research is performed between September and November 2014 where 3rd year Radiography students collect data on four Danish x-ray departments using identical procedures under guidance...... of clinical supervisors. Optimal collimation is determined by European and Regional Danish guidelines. The areal between current and optimal collimation is calculated. The experimental research is performed in September - October 2014 Siemens Axiom Aristos digital radiography system DR using 150 kV, 1,25 -3...

  12. The Ozone Layer and Metered Dose Inhalers

    Directory of Open Access Journals (Sweden)

    Louis-Philippe Boulet

    1998-01-01

    Full Text Available The stratospheric ozone layer plays a crucial role in protecting living organisms against ultraviolet radiation. Chlorofluorocarbons (CFC contained in metered-dose inhalers (MDIs contribute to ozone depletion and in accordance with the Montreal Protocol on Substances That Deplete the Ozone Layer established 10 years ago, phase-out strageies have been developed worldwide for this category of agents. Alternatives to CFC-containing inhalers have been developed, such as powder inhalers and those using hydrofluoroalkanes (HFAs as propellants, which have been shown to be as safe and effective as CFC-containing inhalers and even offer interesting advantages over older inhalers. The transition to non-CFC MDIs requires a major effort to make the new products available and to ensure adequate comparision with the previous ones. It also requires a harmonization of actions taken by industry, government, licencing bodies and patients or health professional associations to ensure adequate information and education to the public and respiratory care providers.

  13. The application of high dose food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bruyn, I. De [Atomic Energy Corporation of South Africa LTD, Building 2000, P.O. Box 582, Pretoria 0001, (South Africa)

    1997-12-31

    During the 1950`s to end 1970`s the United States Army developed the basic methodology to produce shelf stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive `dried cooked` taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 25 to 45 kGy (depending on the product) at a temperature of between -20 and -40 Centigrade to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions. The product can be guaranteed for more than two years as long as the integrity of the packaging is maintained. (Author)

  14. Single dose oral diclofenac for postoperative pain.

    Science.gov (United States)

    Barden, J; Edwards, J; Moore, R A; McQuay, H J

    2004-01-01

    Diclofenac is a benzene-acetic acid derivative that acts, like other NSAIDs, by inhibiting cyclo-oxygenase isoforms that mediate the body's production of the prostaglandins implicated in pain and inflammation. Diclofenac is widely available as a sodium or potassium salt. Diclofenac potassium tablets are known as 'immediate-release' diclofenac as absorption takes place in the gastrointestinal tract whereas 'delayed-release' (enteric-coated) diclofenac tablets resist dissolution until reaching the duodenum. An existing review showed that diclofenac was an effective treatment for acute postoperative pain but did not address the distinction between potassium and sodium salts due to lack of data. The aim of this update is to gather and add appropriate information published subsequently and, data permitting, examine any potential differences between the two different diclofenac formulations. To assess single dose oral diclofenac for the treatment of acute postoperative pain and determine whether there are differences between the different formulations. We searched the Cochrane Library (Issue 2, 2003), MEDLINE (1966 to May 1996), EMBASE (1980 to 1996), Biological Abstracts (1985 to 2003), the Oxford Pain Relief Database (1950 to 1994), PubMed (1996 to 2003) and reference lists of articles. Randomised, double-blind, placebo-controlled clinical trials of single dose, oral diclofenac sodium or diclofenac potassium for acute postoperative pain in adults. Two reviewers independently assessed trials for inclusion in the review, quality and extracted data. The area under the pain relief versus time curve was used to derive the proportion of patients prescribed diclofenac or placebo with at least 50% pain relief over four to six hours using validated equations. The number needed to treat (NNT) was calculated. Information on adverse effects was also collected. One additional trial was included and added to the six trials included in the original review. All seven trials provided

  15. Assessment of internal doses in emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Rahola, T.; Muikku, M. [Radiation and Nuclear Safety Authority - STUK (Finland); Falk, R.; Johansson, J. [Swedish Radiation Protection Authority - SSI (Sweden); Liland, A.; Thorshaug, S. [NRPA (Norway)

    2006-04-15

    The need for assessing internal radiation doses in emergency situations was demonstrated after accidents in Brazil, Ukraine and other countries. Lately more and more concern has been expressed regarding malevolent use of radiation and radioactive materials. The scenarios for such use are more difficult to predict than for nuclear power plant or weapons accidents. Much of the results of the work done in the IRADES project can be adopted for use in various accidental situations involving radionuclides that are not addressed in this report. If an emergency situation occurs in only one or a few of the Nordic countries, experts from the other countries could be called upon to assist in monitoring. A big advantage is then our common platform. In the Nordic countries much work has been put down on quality assurance of measurements and on training of dose assessment calculations. Attention to this was addressed at the internal dosimetry course in October 2005. Nordic emergency preparedness exercises have so far not included training of direct measurements of people in the early phase of an emergency. The aim of the IRADES project was to improve the preparedness especially for thyroid measurements. The modest financial support did not enable the participants to make big efforts but certainly acted as a much appreciated reminder of the importance of being prepared also to handle situations with malevolent use of radioactive materials. It was left to each country to decide to which extent to improve the practical skills. There is still a need for detailed national implementation plans. Measurement strategies need to be developed in each country separately taking into account national regulations, local circumstances and resources. End users of the IRADES report are the radiation protection authorities. (au)

  16. Dose Reduction in Tomosynthesis of the Wrist.

    Science.gov (United States)

    Becker, Anton S; Martini, Katharina; Higashigaito, Kai; Guggenberger, Roman; Andreisek, Gustav; Frauenfelder, Thomas

    2017-01-01

    The purpose of this study was to quantitatively and qualitatively determine the impact of radiation dose reduction on the image noise and quality of tomosynthesis studies of the wrist. Imaging of six cadaver wrists was performed with tomosynthesis in anteroposterior position at a tube voltage of 60 kV and tube current of 80 mA and subsequently at 60 or 50 kV with different tube currents of 80, 40, or 32 mA. Dose-area products (DAP) were obtained from the electronically logged protocol. Image noise was measured with an ROI. Two independent and blinded readers evaluated all images. Interreader agreement was measured with a Cohen kappa. Readers assessed overall quality and delineation of soft tissue, cortical bone, and trabecular bone on a 4-point Likert scale. The highest DAP (3.892 ± 0.432 Gy · cm(2)) was recorded for images obtained with 60 kV and 80 mA; the lowest (0.857 ± 0.178 Gy · cm(2)) was recorded for images obtained with 50 kV and 32 mA. Noise was highest when a combination of 50 kV and 32 mA (389 ± 26.6) was used and lowest when a combination of 60 kV and 80 mA (218 ± 12.3) was used. The amount of noise on images acquired using 60 kV and 80 mA was statistically significantly different from the amount measured on all other images (p wrist is possible while image quality and delineation of anatomic structures remain preserved.

  17. [Usability of smartphones for dose alerts].

    Science.gov (United States)

    Kaireit, T; Stamm, G; Hoeschen, C; Wacker, F K

    2013-06-01

    Smartphone apps for measuring ionizing radiation use the capability of (CMOS) camera chips to detect not only perceivable light but also electromagnetic wave radiation. The present study evaluates the accuracy of hardware and software and defines possible applications for the detection of X-ray radiation fields. 2 apps and 2 different devices were tested in comparison with a calibrated ionization chamber and a personal electronic dosimeter. A calibration curve was determined for dose rates between 12 700 µSv/h and 5.7 µSv/h generated by a C-arm system. The measured scattered radiation produced by an Alderson-Rando phantom ranged from 117 µSv/h (at a distance of 2 m) to 5910 µSv/h (at a distance of 0.3 m) and was 1.4 times less than the values of the ionization chamber. The exposure rate for the operator's thyroid was within 4200 - 4400 µSv/h. We found a strong dependence of the measurements on the angulation of the Smartphone, especially for short distances from the phantom (at a distance of 0.3 m, a 45° rotation downwards in a vertical direction caused a decrease from 3000 µSv/h to 972 µSv/h, while an upwards rotation resulted in an increase to 5000 µSv/h). For a distance of 1 m, this effect was remarkably smaller. Smartphones can be used to detect ionizing radiation but showed limited accuracy and are heavily dependent on the angulation of the device. Qualitative measurements and utilization for dose alerts are possible. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Dose equivalent evaluation in a nuclear medicine service; Avaliacao de doses equivalentes num servico de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Sales, C.P. de; Almeida, A. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica; Santos, M.C.P.S.; Ciocchi, N.F.; Brochi, M.A.C.; Souza, J.F. [Sao Paulo Univ. (USP-FMRP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Centro de Ciencias das Imagens e Fisica Medica

    2004-07-01

    Nuclear Medicine occupational exposed workers equivalent doses, from official laboratories, were used in the dose analysis program developed using a Microsoft Excel program, in order to verify the Radiation Protection in the Nuclear Medicine Service of the Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto (HCFMRP-USP). From the results obtained, one can infer that: all the doses analyzed are lower than CNEN limit, the procedures to eluate 99m Tc and prepare radiopharmaceuticals deserve special attention from the Radioprotection, once higher doses belong to technicians and also, if a higher number of technicians and nursing auxiliaries could take turns, the equivalent doses would diminish. (author)

  19. Scientific Risk Estimation on Health Effects of Low Dose and Low Dose-Rate Radiation - An Overview

    Directory of Open Access Journals (Sweden)

    Tetsuya Ono

    2009-06-01

    Full Text Available Estimation of the scientific risks of high dose radiation has been successfully quantified by many studies using several different approaches. However, the risk for low and low dose-rate radiation is obscure because of a lack of evidence. This risk is currently estimated by extrapolating the radiation response at high doses into low dose ranges for practical purposes. Recent challenges to examine directly the biological responses to low dose radiation using newly developed technologies are unveiling interesting alterations at the molecular level. The interpretation of these data, however, needs careful consideration because they may not be related to any change in biological functions.

  20. An investigation of image guidance dose for breast radiotherapy.

    Science.gov (United States)

    Alvarado, Rosemerie; Booth, Jeremy T; Bromley, Regina M; Gustafsson, Helen B

    2013-05-06

    Cone-beam computed tomography (CBCT) is used for external-beam radiation therapy setup and target localization. As with all medical applications of ionizing radiation, radiation exposure should be managed safely and optimized to achieve the necessary image quality using the lowest possible dose. The present study investigates doses from standard kilovoltage kV radiographic and CBCT imaging protocol, and proposes two novel reduced dose CBCT protocols for the setup of breast cancer patients undergoing external beam radiotherapy. The standard thorax kV and low-dose thorax CBCT protocols available on Varian's On-Board Imaging system was chosen as the reference technique for breast imaging. Two new CBCT protocols were created by modifying the low-dose thorax protocol, one with a reduced gantry rotation range ("Under breast" protocol) and the other with a reduced tube current-time product setting ("Low dose thorax 10ms" protocol). The absorbed doses to lungs, heart, breasts, and skin were measured using XRQA2 radiochromic film in an anthropomorphic female phantom. The absorbed doses to lungs, heart, and breasts were also calculated using the PCXMC Monte Carlo simulation software. The effective dose was calculated using the measured doses to the included organs and the ICRP 103 tissue weighting factors. The deviation between measured and simulated organ doses was between 3% and 24%. Reducing the protocol exposure time to half of its original value resulted in a reduction in the absorbed doses of the organs of 50%, while the reduced rotation range resulted in a dose reduction of at least 60%. Absorbed doses obtained from "Low dose thorax 10ms" protocol were higher than the doses from our departments orthogonal kV-kV imaging protocol. Doses acquired from "Under breast" protocol were comparable to the doses measured from the orthogonal kV-kV imaging protocol. The effective dose per fraction using the CBCT for standard low-dose thorax protocol was 5.00 ± 0.30 mSv; for the

  1. Immunogenicity of Simulated PCECV Postexposure Booster Doses 1, 3, and 5 Years after 2-Dose and 3-Dose Primary Rabies Vaccination in Schoolchildren

    Directory of Open Access Journals (Sweden)

    Thavatchai Kamoltham

    2011-01-01

    Conclusion. ID rabies PrEP with PCECV is safe and immunogenic in schoolchildren and the anamnestic response to a two booster dose vaccination series was found to be adequate one, three, and five years after a two- or three-dose primary PrEP vaccination series.

  2. Development of the model MAAP5-DOSE for dose analysis in Cofrentes NPP; Desarrollo del modelo MAAP5-DOSE para analisis de dosis en C.N. Cofrentes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, C.; Diaz, P.; Ibanez, L.; Lamela, B.; Serrano, C.

    2013-07-01

    Iberdrola Ingenieria y Construccion has developed a model of Cofrentes NPP with code MAAP5-DOSE in order to be able to assess in realistic conditions the the expected dose in points and radiological consequences of severe accident of local action.

  3. Analysis on the entrance surface dose and contrast medium dose at computed tomography and angiography in cardiovascular examination

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Hyun [Dept. of Cardiovascular Center, Yeocheon Jeonnam Hospital, Yeosu (Korea, Republic of); Han, Jae Bok; Choi, Nam Gil; Song, Jong Nam [Dept. of Radiological Science, Dongshin University, Naju (Korea, Republic of)

    2016-12-15

    This study aimed to identify dose reduction measures by retrospectively analyzing the entrance surface dose at computed tomography and angiography in cardiovascular examination and to contribute the patients with renal impairmend and a high probability of side effects to determine the inspection's direction by measuring the contrast usages actually to active actions for the dose by actually measuring the contrast medium dose. The CTDIvol value and air kerma value, which are the entrance surface doses of the two examinations, and the contrast medium dose depending on the number of slides were compared and analyzed. This study was conducted in 21 subjects (11 males; 10 females) who underwent Cardiac Computed Tomographic Angiography (CCTA) and Coronary Angiography (CAG) in this hospital during the period from May 2014 to May 2016. The subject's age was 48-85 years old (mean 65±10 years old), and the weight was 37.6~83.3 kg (mean 63±6 kg). Dose reduction could be expected in the cardiovascular examination using CCTA rather than in the examination using CAG. In terms of contrast medium dose, CAG used a smaller dose than CCTA. In particular, as the number of slides increases at CAG, the contrast medium dose increases. Therefore, in order to reduce the contrast medium dose, the number of slides suitable for the scan range must be selected.

  4. Warfarin Dosing Algorithms Underpredict Dose Requirements in Patients Requiring ≥7 mg Daily: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Saffian, S M; Duffull, S B; Wright, Dfb

    2017-08-01

    There is preliminary evidence to suggest that some published warfarin dosing algorithms produce biased maintenance dose predictions in patients who require higher than average doses. We conducted a meta-analysis of warfarin dosing algorithms to determine if there exists a systematic under- or overprediction of dose requirements for patients requiring ≥7 mg/day across published algorithms. Medline and Embase databases were searched up to September 2015. We quantified the proportion of over- and underpredicted doses in patients whose observed maintenance dose was ≥7 mg/day. The meta-analysis included 47 evaluations of 22 different warfarin dosing algorithms from 16 studies. The meta-analysis included data from 1,492 patients who required warfarin doses of ≥7 mg/day. All 22 algorithms were found to underpredict warfarin dosing requirements in patients who required ≥7 mg/day by an average of 2.3 mg/day with a pooled estimate of underpredicted doses of 92.3% (95% confidence interval 90.3-94.1, I2 = 24%). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  5. The influence of the dose calculation resolution of VMAT plans on the calculated dose for eye lens and optic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min; Park, So Yeon; Kim, Jung In; Kim, Jin Ho [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Wu, Hong Gyun [Dept. of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-10-15

    Since those organs are small in volume, dose calculation for those organs seems to be more susceptible to the calculation grid size in the treatment planning system (TPS). Moreover, since they are highly radio-sensitive organs, especially eye lens, they should be considered carefully for radiotherapy. On the other hand, in the treatment of head and neck (H and N) cancer or brain tumor that generally involves radiation exposure to eye lens and optic apparatus, intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) techniques are frequently used because of the proximity of various radio-sensitive normal organs to the target volumes. Since IMRT and VMAT can deliver prescription dose to target volumes while minimizing dose to nearby organs at risk (OARs) by generating steep dose gradients near the target volumes, high dose gradient sometimes occurs near or at the eye lenses and optic apparatus. In this case, the effect of dose calculation resolution on the accuracy of calculated dose to eye lens and optic apparatus might be significant. Therefore, the effect of dose calculation grid size on the accuracy of calculated doses for each eye lens and optic apparatus was investigated in this study. If an inappropriate calculation resolution was applied for dose calculation of eye lens and optic apparatus, considerable errors can be occurred due to the volume averaging effect in high dose gradient region.

  6. A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.B.; Haskell, E.H.; Kenner, G.H. [Utah Univ., Salt Lake City, UT (United States)

    1996-01-01

    Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.

  7. Low-dose radiotherapy for primary cutaneous anaplastic large-cell lymphoma while on low-dose methotrexate.

    Science.gov (United States)

    Cornejo, Christine M; Novoa, Roberto A; Krisch, Robert E; Kim, Ellen J

    2016-10-01

    Primary cutaneous anaplastic large-cell lymphoma (pcALCL) is part of a spectrum of CD30+ primary cutaneous lymphoproliferative disorders (pcLPDs) that also includes lymphomatoid papulosis (LyP). Localized radiotherapy at doses of 34 to 44 Gy is first-line treatment of pcALCL, but the use of low-dose radiotherapy for pcALCL has not been reported. We present the case of a patient with a history of pcALCL/LyP who was treated with low-dose radiotherapy while on oral low-dose methotrexate (MTX) once weekly. This report suggests that low-dose radiotherapy can be an effective palliative treatment of pcALCL. Low-dose radiotherapy may offer certain advantages over traditional radiotherapy, such as a more economical and efficient treatment for patients, potentially fewer short-term and long-term side effects, and the potential for concomitant use with low-dose MTX.

  8. A dose verification tool for high-dose-rate interstitial brachytherapy treatment planning in accelerated partial breast irradiation.

    Science.gov (United States)

    Marqa, Mohamad Feras; Caudrelier, Jean-Michel; Betrouni, Nacim

    2012-01-01

    To develop a dose verification tool for high-dose-rate interstitial brachytherapy treatment planning in accelerated partial breast irradiation. We have developed a software tool for interstitial brachytherapy treatment planning assessment. The software contains a database of seven (192)Ir source models and is able to estimate the dose distribution using the Task Group 43 and the Sievert integral algorithms. Dose-volume histogram analysis and dose quality assurance (QA) criteria including conformity (COnformal INdex [COIN] and conformation number [CN]), homogeneity (homogeneity index [HI]) parameters were implemented in the software to evaluate and to compare between the doses estimated by the two algorithms and a dose extracted from an external treatment planning system (TPS). The tool was evaluated and validated on four clinical cases treated by high-dose-rate interstitial brachytherapy. The doses provided by the Task Group 43 and the Sievert integral algorithms were evaluated by establishing the dose-volume histogram analysis and then by calculating the QA criteria. The algorithms were validated by comparing the dose at different anatomic points with their corresponding dose points provided from TPS. The differences were considered in good agreement (within 5%). Pretreatment dose verification is an important step in the QA of brachytherapy accelerated partial breast irradiation. A simple, fast, and accurate method of dose verification is therefore needed. The software proposed in this study could fulfill these requirements. In addition, it is freely available for using by anyone wishing to do a QA on any TPS. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  9. SU-C-16A-05: OAR Dose Tolerance Recommendations for Prostate and Cervical HDR Brachytherapy: Dose Versus Volume Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Geneser, S; Cunha, J; Pouliot, J; Hsu, I [UC San Francisco, San Francisco, CA (United States)

    2014-06-15

    Purpose: HDR brachytherapy consensus dose tolerance recommendations for organs at risk (OARs) remain widely debated. Prospective trials reporting metrics must be sufficiently data-dense to assess adverse affects and identify optimally predictive tolerances. We explore the tradeoffs between reporting dose-metrics versus volume-metrics and the potential impact on trial outcome analysis and tolerance recommendations. Methods: We analyzed 26 prostate patients receiving 15 Gy HDR single-fraction brachytherapy boost to 45 Gy external beam radiation therapy and 28 cervical patients receiving 28 Gy HDR brachytherapy monotherapy in 4 fractions using 2 implants. For each OAR structure, a robust linear regression fit was performed for the dose-metrics as a function of the volume-metrics. The plan quality information provided by recommended dose-metric and volume-metric values were compared. Results: For prostate rectal dose, D2cc and V75 lie close to the regression line, indicating they are similarly informative. Two outliers for prostate urethral dose are substantially different from the remaining cohort in terms of D0.1cc and V75, but not D1cc, suggesting the choice of reporting dose metric is essential. For prostate bladder and cervical bladder, rectum, and bowel, dose outliers are more apparent via V75 than recommended dose-metrics. This suggests that for prostate bladder dose and all cervical OAR doses, the recommended volume-metrics may be better predictors of clinical outcome than dose-metrics. Conclusion: For plan acceptance criteria, dose and volume-metrics are reciprocally equivalent. However, reporting dosemetrics or volume-metrics alone provides substantially different information. Our results suggest that volume-metrics may be more sensitive to differences in planned dose, and if one metric must be chosen, volumemetrics are preferable. However, reporting discrete DVH points severely limits the ability to identify planning tolerances most predictive of adverse

  10. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  11. Ultra Low Dose CT Pulmonary Angiography with Iterative Reconstruction.

    Science.gov (United States)

    Sauter, Andreas; Koehler, Thomas; Fingerle, Alexander A; Brendel, Bernhard; Richter, Vivien; Rasper, Michael; Rummeny, Ernst J; Noël, Peter B; Münzel, Daniela

    2016-01-01

    Evaluation of a new iterative reconstruction algorithm (IMR) for detection/rule-out of pulmonary embolism (PE) in ultra-low dose computed tomography pulmonary angiography (CTPA). Lower dose CT data sets were simulated based on CTPA examinations of 16 patients with pulmonary embolism (PE) with dose levels (DL) of 50%, 25%, 12.5%, 6.3% or 3.1% of the original tube current setting. Original CT data sets and simulated low-dose data sets were reconstructed with three reconstruction algorithms: the standard reconstruction algorithm "filtered back projection" (FBP), the first generation iterative reconstruction algorithm iDose and the next generation iterative reconstruction algorithm "Iterative Model Reconstruction" (IMR). In total, 288 CTPA data sets (16 patients, 6 tube current levels, 3 different algorithms) were evaluated by two blinded radiologists regarding image quality, diagnostic confidence, detectability of PE and contrast-to-noise ratio (CNR). iDose and IMR showed better detectability of PE than FBP. With IMR, sensitivity for detection of PE was 100% down to a dose level of 12.5%. iDose and IMR showed superiority to FBP regarding all characteristics of subjective (diagnostic confidence in detection of PE, image quality, image noise, artefacts) and objective image quality. The minimum DL providing acceptable diagnostic performance was 12.5% (= 0.45 mSv) for IMR, 25% (= 0.89 mSv) for iDose and 100% (= 3.57 mSv) for FBP. CNR was significantly (p < 0.001) improved by IMR compared to FBP and iDose at all dose levels. By using IMR for detection of PE, dose reduction for CTPA of up to 75% is possible while maintaining full diagnostic confidence. This would result in a mean effective dose of approximately 0.9 mSv for CTPA.

  12. Shared dosimetry error in epidemiological dose-response analyses.

    Directory of Open Access Journals (Sweden)

    Daniel O Stram

    Full Text Available Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR model that allows for a linear dose response (risk in relation to radiation and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations as if it was true dose (ignoring both shared and unshared dosimetry errors gives asymptotically unbiased estimates (i.e. the score has expectation zero and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  13. Shared dosimetry error in epidemiological dose-response analyses.

    Science.gov (United States)

    Stram, Daniel O; Preston, Dale L; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  14. Monitoring the eye lens: which dose quantity is adequate?

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R [Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig (Germany); Dietze, G, E-mail: rolf.behrens@ptb.d [Paracelsusstrasse 7, D-38116 Braunschweig (Germany)

    2010-07-21

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity H{sub p}(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity H{sub p}(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of H{sub p}(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of H{sub p}(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of H{sub p}(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.

  15. The relative biological effectiveness of out-of-field dose

    Science.gov (United States)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions.

  16. Retrospective Reconstructions of Active Bone Marrow Dose-Volume Histograms

    Energy Technology Data Exchange (ETDEWEB)

    Veres, Cristina; Allodji, Rodrigue S.; Llanas, Damien; Vu Bezin, Jérémi [Radiation Epidemiology Group, Center for Research in Epidemiology and Population Health, Institut National de la Santé et de la Recherche Médicale, UMR 1018, Villejuif (France); Institut Gustave Roussy, Villejuif (France); University Paris-Sud XI, Villejuif (France); Chavaudra, Jean; Mège, Jean Pierre; Lefkopoulos, Dimitri [Institut Gustave Roussy, Villejuif (France); Quiniou, Eric [Institut National de la Santé et de la Recherche Médicale UMR 759, Orsay (France); Deutsh, Eric [Institut Gustave Roussy, Villejuif (France); Institut National de la Santé et de la Recherche Médicale, UMR 1030, Villejuif (France); Vathaire, Florent de [Radiation Epidemiology Group, Center for Research in Epidemiology and Population Health, Institut National de la Santé et de la Recherche Médicale, UMR 1018, Villejuif (France); Institut Gustave Roussy, Villejuif (France); University Paris-Sud XI, Villejuif (France); Diallo, Ibrahima, E-mail: ibrahim.diallo@gustaveroussy.fr [Radiation Epidemiology Group, Center for Research in Epidemiology and Population Health, Institut National de la Santé et de la Recherche Médicale, UMR 1018, Villejuif (France); Institut Gustave Roussy, Villejuif (France); University Paris-Sud XI, Villejuif (France)

    2014-12-01

    Purpose: To present a method for calculating dose-volume histograms (DVH's) to the active bone marrow (ABM) of patients who had undergone radiation therapy (RT) and subsequently developed leukemia. Methods and Materials: The study focuses on 15 patients treated between 1961 and 1996. Whole-body RT planning computed tomographic (CT) data were not available. We therefore generated representative whole-body CTs similar to patient anatomy. In addition, we developed a method enabling us to obtain information on the density distribution of ABM all over the skeleton. Dose could then be calculated in a series of points distributed all over the skeleton in such a way that their local density reflected age-specific data for ABM distribution. Dose to particular regions and dose-volume histograms of the entire ABM were estimated for all patients. Results: Depending on patient age, the total number of dose calculation points generated ranged from 1,190,970 to 4,108,524. The average dose to ABM ranged from 0.3 to 16.4 Gy. Dose-volume histograms analysis showed that the median doses (D{sub 50%}) ranged from 0.06 to 12.8 Gy. We also evaluated the inhomogeneity of individual patient ABM dose distribution according to clinical situation. It was evident that the coefficient of variation of the dose for the whole ABM ranged from 1.0 to 5.7, which means that the standard deviation could be more than 5 times higher than the mean. Conclusions: For patients with available long-term follow-up data, our method provides reconstruction of dose-volume data comparable to detailed dose calculations, which have become standard in modern CT-based 3-dimensional RT planning. Our strategy of using dose-volume histograms offers new perspectives to retrospective epidemiological studies.

  17. Dose-to-medium vs. dose-to-water: Dosimetric evaluation of dose reporting modes in Acuros XB for prostate, lung and breast cancer

    Directory of Open Access Journals (Sweden)

    Suresh Rana

    2014-12-01

    Full Text Available Purpose: Acuros XB (AXB dose calculation algorithm is available for external beam photon dose calculations in Eclipse treatment planning system (TPS. The AXB can report the absorbed dose in two modes: dose-to-water (Dw and dose-to-medium (Dm. The main purpose of this study was to compare the dosimetric results of the AXB_Dm with that of AXB_Dw on real patient treatment plans. Methods: Four groups of patients (prostate cancer, stereotactic body radiation therapy (SBRT lung cancer, left breast cancer, and right breast cancer were selected for this study, and each group consisted of 5 cases. The treatment plans of all cases were generated in the Eclipse TPS. For each case, treatment plans were computed using AXB_Dw and AXB_Dm for identical beam arrangements. Dosimetric evaluation was done by comparing various dosimetric parameters in the AXB_Dw plans with that of AXB_Dm plans for the corresponding patient case. Results: For the prostate cancer, the mean planning target volume (PTV dose in the AXB_Dw plans was higher by up to 1.0%, but the mean PTV dose was within ±0.3% for the SBRT lung cancer. The analysis of organs at risk (OAR results in the prostate cancer showed that AXB_Dw plans consistently produced higher values for the bladder and femoral heads but not for the rectum. In the case of SBRT lung cancer, a clear trend was seen for the heart mean dose and spinal cord maximum dose, with AXB_Dw plans producing higher values than the AXB_Dm plans. However, the difference in the lung doses between the AXB_Dm and AXB_Dw plans did not always produce a clear trend, with difference ranged from -1.4% to 2.9%. For both the left and right breast cancer, the AXB_Dm plans produced higher maximum dose to the PTV for all cases. The evaluation of the maximum dose to the skin showed higher values in the AXB_Dm plans for all 5 left breast cancer cases, whereas only 2 cases had higher maximum dose to the skin in the AXB_Dm plans for the right breast cancer

  18. Low-dose versus high-dose heparinization during arteriovenous carbon dioxide removal.

    Science.gov (United States)

    Murphy, J A; Savage, C M; Alpard, S K; Deyo, D J; Jayroe, J B; Zwischenberger, J B

    2001-11-01

    The purpose of this study was to compare low-dose (LD) and high-dose (HD) systemic heparinization in a prospective randomized study of arteriovenous carbon dioxide removal (AVCO2R) during acute respiratory distress syndrome, using a commercially available heparin-coated oxygenator. Adult sheep (n = 13) received an LD50 smoke inhalation and 40% TBSA third degree cutaneous flame burn injury. At 40-48 h post-injury, animals underwent cannulation of the carotid artery and jugular vein and were then randomized to HD heparin (activated clotting time, ACT > 300s, n = 6) and LD heparin (ACT heparin (ACT heparin-coated oxygenator does not increase thrombogenicity during AVCO2R for smoke/burn-induced severe lung injury in sheep.

  19. Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments

    Energy Technology Data Exchange (ETDEWEB)

    Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Dilling, Thomas; Stevens, Craig; Latifi, Kujtim; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2013-09-15

    Purpose: The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments.Methods: VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D{sub 99%}), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found.Results: For the motion amplitudes and periods obtained from

  20. Anthropomorphic phantom to investigate the bladder dose in gynecological high-dose-rate brachytherapy.

    Science.gov (United States)

    Silva, R M V; Belinato, W; Macedo, L E; Souza, D N

    2015-01-01

    This study presents a prototype of a phantom appropriate for experimental bladder dosimetry. This work presents details of the phantom construction and dosimetric results obtained using radiochromic film and optically stimulated luminescence dosimeters (OSLDs). The phantom was constructed of polymethyl methacrylate. Two artificial bladders were three-dimensional printed using previous computed tomography images. Radiochromic films and OSLDs were positioned on the artificial bladder walls, and the applicators were placed according to the original computed tomography image. The prototype phantom simulated the behavior of the dose on the bladder surface, enabling bladder movement in all directions. The dosimetric study that was performed using radiochromic film and OSLDs exhibited concordance, in most cases, with the results obtained from the planning system. The methodology presented offers conditions for researchers to investigate more accurately the behavior of the dose on the bladder surface during intracavitary brachytherapy procedures. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    and integrated into the treatment planning system Hyperion. METHODS: Current knowledge on RBE of (4)He together with linear energy transfer considerations motivated an empirical depth-dependent "zonal" RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2......) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and (4)He. RESULTS: Comparison of Monte Carlo and Hyperion calculated...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  2. Default Drug Doses in Anesthesia Information Management Systems.

    Science.gov (United States)

    Rodriquez, Luis I; Smaka, Todd J; Mahla, Michael; Epstein, Richard H

    2017-07-01

    In the United States, anesthesia information management systems (AIMS) are well established, especially within academic practices. Many hospitals are replacing their stand-alone AIMS during migration to an enterprise-wide electronic health record. This presents an opportunity to review choices made during the original implementation, based on actual usage. One area amenable to this informatics approach is the configuration in the AIMS of quick buttons for typical drug doses. The use of such short cuts, as opposed to manual typing of doses, simplifies and may improve the accuracy of drug documentation within the AIMS. We analyzed administration data from 3 different institutions, 2 of which had empirically configured default doses, and one in which defaults had not been set up. Our first hypothesis was that most (ie, >50%) of drugs would need at least one change to the existing defaults. Our second hypothesis was that for most (>50%) drugs, the 4 most common doses at the site lacking defaults would be included among the most common doses at the 2 sites with defaults. If true, this would suggest that having default doses did not affect the typical administration behavior of providers. The frequency distribution of doses for all drugs was determined, and the 4 most common doses representing at least 5% of total administrations for each drug were identified. The appropriateness of the current defaults was determined by the number of changes (0-4) required to match actual usage at the 2 hospitals with defaults. At the institution without defaults, the most frequent doses for the 20 most commonly administered drugs were compared with the default doses at the other institutions. At the 2 institutions with defaults, 84.7% and 77.5% of drugs required at least 1 change in the default drug doses (P < 10 for both compared with 50%), confirming our first hypothesis. At the institution lacking the default drug doses, 100% of the 20 most commonly administered doses (representing

  3. Dose rate in a deactivated uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner S.; Kelecom, Alphonse G.A.C.; Silva, Ademir X.; Marques, José M.; Carmo, Alessander S. do; Dias, Ayandra O., E-mail: pereiraws@gmail.com, E-mail: wspereira@inb.gov.br, E-mail: lararapls@hotmail.com, E-mail: Ademir@nuclear.ufrj.br, E-mail: marqueslopes@yahoo.com.br [Universidade Veiga de Almeida (UVA), Rio de Janeiro, RJ (Brazil); Indústrias Nucleares do Brasil (COMAP.N/FCN/INB), Resende RJ (Brazil). Fábrica de Combustível Nuclear. Coordenação de Meio Ambiente e Proteção Radiológica Ambiental; Universidade Federal Fluminense (LARARA-PLS/UFF), Niterói, RJ (Brazil). Laboratório de Radiobiologia e Radiometria; Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The Ore Treatment Unit is a deactivated uranium mine and milling situated in Caldas, MG, BR. Although disabled, there are still areas considered controlled and supervised from the radiological point of view. In these areas, it is necessary to keep an occupational monitoring program to ensure the workers' safety and to prevent the dispersion of radioactive material. For area monitoring, the dose rate, in μSv∙h{sup -1}, was measured with Geiger Müller (GM) area monitors or personal electronic monitors type GM and thermoluminescence dosimetry (TLD), in mSv∙month{sup -1}, along the years 2013 to 2016. For area monitoring, 577 samples were recorded; for personal dosimeters monitoring, 2,656; and for TLD monitoring type, 5,657. The area monitoring showed a mean dose rate of 6.42 μSv∙h{sup -1} associated to a standard deviation of 48 μSv∙h{sup -1} with a maximum recorded value of 685 μSv∙h{sup -1}. 96 % of the samples were below the derived limit per hour for workers (10 μSv∙h{sup -1}). For the personal electronic monitoring, the average of the data sampled was 15.86 μSv∙h{sup -1}, associated to a standard deviation of 61.74 μSv∙h{sup -1}. 80 % of the samples were below the derived limit and the maximum recorded was 1,220 μSv∙h{sup -1}. Finally, the TLD showed a mean of 0.01 mSv∙h{sup -1} (TLD detection limit is 0.2 mSv∙month{sup -1}), associated to a standard deviation of 0.08 mSv∙h{sup -1}. 98% of the registered values were below 0.2 mSv and less than 2 % of the measurements had values above the limit of detection. The samples show areas with low risk of external exposure, as can be seen by the TLD evaluation. Specific areas with greater risk of contamination have already been identified, as well as operations at higher risks. In these cases, the use of the individual electronic dosimeter is justified for a more effective monitoring. Radioprotection identified all risks and was able to extend individual electronic monitoring to all

  4. Warfarin Dose Model for the Prediction of Stable Maintenance Dose in Indian Patients.

    Science.gov (United States)

    Gaikwad, Tejasvita; Ghosh, Kanjaksha; Avery, Peter; Kamali, Farhad; Shetty, Shrimati

    2018-03-01

    The main aim of this study was to screen various genetic and nongenetic factors that are known to alter warfarin response and to generate a model to predict stable warfarin maintenance dose for Indian patients. The study comprised of 300 warfarin-treated patients. Followed by extensive literature review, 10 single-nucleotide polymorphisms, that is, VKORC1-1639 G>A (rs9923231), CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910), FVII R353Q (rs6046), GGCX 12970 C>G (rs11676382), CALU c.*4A>G (rs1043550), EPHX1 c.337T>C (rs1051740), GGCX: c.214+597G>A (rs12714145), GGCX: 8016G>A (rs699664), and CYP4F2 V433M (rs2108622), and 5 nongenetic factors, that is, age, gender, smoking, alcoholism, and diet, were selected to find their association with warfarin response. The univariate analysis was carried out for 15 variables (10 genetic and 5 nongenetic). Five variables, that is, VKORC1-1639 G>A, CYP2C9*2, CYP2C9*3, age, and diet, were found to be significantly associated with warfarin response in univariate analysis. These 5 variables were entered in stepwise and multiple regression analysis to generate a prediction model for stable warfarin maintenance dose. The generated model scored R 2 of .67, which indicates that this model can explain 67% of warfarin dose variability. The generated model will help in prescribing more accurate warfarin maintenance dosing in Indian patients and will also help in minimizing warfarin-induced adverse drug reactions and a better quality of life in these patients.

  5. Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy

    OpenAIRE

    Daniel G Zhang; Vladimir Feygelman; Moros, Eduardo G.; Kujtim Latifi; Zhang, Geoffrey G.

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon ...

  6. Pediatric patient doses in interventional cardiology procedures; Doses em paciente pediatrico em procedimentos de cardiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, R.B.; Murata, C.H.; Moreira, A.C., E-mail: rbitelli2012@gmail.com, E-mail: camila.murata@gmail.com, E-mail: antonio.xray@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Escola Pulista de Medicina; Khoury, H.J.; Borras, C., E-mail: hjkhoury@gmail.com, E-mail: cariborras@starpower.net [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Engenharia Nuclear; Silva, M.S.R da, E-mail: msrochas2003@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)

    2014-07-01

    The radiation doses from interventional procedures is relevant when treating children because of their greater radiosensitivity compared with adults. The purposes of this paper were to estimate the dose received by 18 pediatric patients who underwent cardiac interventional procedures and to correlate the maximum entrance surface air kerma (Ke,max), estimated with radiochromic films, with the cumulative air kerma values displayed at the end of procedures. This study was performed in children up to 6 years. The study was performed in two hospitals, one located in Recife and the other one in São Paulo. The x-ray imaging systems used were Phillips Allura 12 model with image intensifier system and a Phillips Allura FD10 flat panel system. To estimate the Ke,max on the patient’s skin radiochromic films(Gafchromic XR-RV2) were used. These values were estimated from the maximum optical density measured on film using a calibration curve. The results showed cumulative air kerma values ranging from 78.3- 500.0mGy, with a mean value of 242,3 mGy. The resulting Ke,max values ranged from 20.0-461.8 mGy, with a mean value of 208,8 mGy. The Ke,max values were correlated with the displayed cumulative air kerma values. The correlation factor R² was 0.78, meaning that the value displayed in the equipment’s console can be useful for monitoring the skin absorbed dose throughout the procedure. The routine fluoroscopy time records is not able by itself alert the physician about the risk of dose exceeding the threshold of adverse reactions, which can vary from an early erythema to serious harmful skin damage. (author)

  7. Reference dose levels for dental periapical radiography in Chonnam Province

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi Ra; Kang, Byung Cheol; Yoon, Suk Ja [Department of Oral and Maxillofacial Radiology, College of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju (Korea, Republic of); Lee, Jae Seo [Department of Oral and Maxillofacial Radiology, Chonnan National University Hospital, Gwangju (Korea, Republic of); Kim, Young Hee [Department of Oral and Maxillofacial Radiology, Hallym University Sacred Heart Hospital, Chuncheon (Korea, Republic of)

    2009-12-15

    To establish reference doses of periapical radiography in Chonnam Province, Korea. The target-skin distances were measured for dental patient's 1235 exposures including 345 mandibular molar areas. Each periapical radiation exposure was simulated with exactly the same patients exposure parameters and the simulated radiation doses were measured utilizing Mult-O-Meter (Unfors Instruments, Billadal, Sweden). The measurements were done in 44 dental clinics with 49 dental x-ray sets in Chonnam Province for one or two weeks at each dental clinic during year 2006. The third quartile patient surface doses were 2.8 mGy for overall periapical exposures and 3.2 mGy for periapical mandibular molar exposures. The third quartile patient surface doses in Chonnam Province can be used as a guide to accepted clinical practice to reduce patient radiation exposure for the surveyed reference doses were below the recommended dental periapical radiography dose of 7 mGy by IAEA.

  8. Technical Review of SRS Dose Reconstrruction Methods Used By CDC

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, Ali, A

    2005-07-20

    At the request of the Centers for Disease Control and Prevention (CDC), a subcontractor Advanced Technologies and Laboratories International, Inc.(ATL) issued a draft report estimating offsite dose as a result of Savannah River Site operations for the period 1954-1992 in support of Phase III of the SRS Dose Reconstruction Project. The doses reported by ATL differed than those previously estimated by Savannah River Site SRS dose modelers for a variety of reasons, but primarily because (1) ATL used different source terms, (2) ATL considered trespasser/poacher scenarios and (3) ATL did not consistently use site-specific parameters or correct usage parameters. The receptors with the highest dose from atmospheric and liquid pathways were within about a factor of four greater than dose values previously reported by SRS. A complete set of technical comments have also been included.

  9. Model Averaging Software for Dichotomous Dose Response Risk Estimation

    Directory of Open Access Journals (Sweden)

    Matthew W. Wheeler

    2008-02-01

    Full Text Available Model averaging has been shown to be a useful method for incorporating model uncertainty in quantitative risk estimation. In certain circumstances this technique is computationally complex, requiring sophisticated software to carry out the computation. We introduce software that implements model averaging for risk assessment based upon dichotomous dose-response data. This software, which we call Model Averaging for Dichotomous Response Benchmark Dose (MADr-BMD, fits the quantal response models, which are also used in the US Environmental Protection Agency benchmark dose software suite, and generates a model-averaged dose response model to generate benchmark dose and benchmark dose lower bound estimates. The software fulfills a need for risk assessors, allowing them to go beyond one single model in their risk assessments based on quantal data by focusing on a set of models that describes the experimental data.

  10. Survey of patient dose in computed tomography in Syria 2009.

    Science.gov (United States)

    Kharita, M H; Khazzam, S

    2010-09-01

    The radiation doses to patient in computed tomography (CT) in Syria have been investigated and compared with similar studies in different countries. This work surveyed 30 CT scanners from six different manufacturers distributed all over Syria. Some of the results in this paper were part of a project launched by the International Atomic Energy Agency in different regions of the world covering Asia, Africa and Eastern Europe. The dose quantities covered are CT dose index (CTDI(w)), dose-length product (DLP), effective dose (E) and collective dose. It was found that most CTDI(w) and DLP values were similar to the European reference levels and in line with the results of similar surveys in the world. The results were in good agreement with the UNSCEAR Report 2007. This study concluded a recommendation for national diagnostic reference level for the most common CT protocols in Syria. The results can be used as a base for future optimisation studies in the country.

  11. External doses from radioactive fallout. Dosimetry and levels

    Energy Technology Data Exchange (ETDEWEB)

    Woehni, T.

    1995-12-31

    The design, manufacture and calibration of a TL-based dosemeter for measurement of low level external photon radiation are presented. The dosemeter is based on CaF{sub 2} with 2 mm brass filter for energy compensation. It is able to resolve a 8% dose increase relative to natural background radiation. With this dosemeter external dose measurements were made in 6 villages in a heavily contaminated region in Russia (Chernobyl fallout), in order to assess external doses to the population. The results were analyzed in the light of additional existing information on radioactive deposition, social habits, decontamination measures and other influencing technical and physical factors. The observed dose values were lower than theoretical estimates of external doses based on published values for external dose levels relative to the level of contamination. 84 refs., 7 figs., 5 tabs.

  12. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    CERN Document Server

    Dobrescu, Lidia

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase of the annual collective dose. High doses of radiation are cumulated from Computed Tomography investigations. An integrated system for radiation safety of the patients investigated by radiological imaging methods, based on smart cards and Public Key Infrastructure allow radiation absorbed dose data storage.

  13. Assessment of Organ Radiation Dose Associated with Uterine Artery Embolization

    Energy Technology Data Exchange (ETDEWEB)

    Glomset, O.; Hellesnes, J.; Heimland, N.; Hafsahl, G.; Smith, H.J. [Rikshospitalet Univ. Hospital, Oslo (Norway). Dept. of Radiology and the Interventional Centre

    2006-03-15

    Purpose: To evaluate the radiation dose to the skin, uterus, and ovaries during uterine artery embolization. Material and Methods: Guided uterine artery embolization for leiomyomata and two types of X-ray equipment with different dose levels were utilized during fluoroscopy in 20 women (ages ranging from 32 to 52 years, body weights from 55 to 68 kg). The first 13 women were treated using a non-pulsed system A, with 3.3 mm Al filtering and, for simplicity, a fixed peak voltage 80 kV. During treatment of the other 7 women, a pulsed system B with 5.4 mm Al filtering and an identical fixed voltage was used. The dose area product (DAP) was recorded. The vaginal dose of the first 13 patients and the peak skin dose of all patients were measured with thermoluminescent dosimeters (TLDs). TLDs were placed in the posterior vaginal fornix and on the skin at the beam entrance site. The uterine and ovarian doses were estimated based on the measured skin doses, normalized depth dose, and organ depth values. The effective dose (D eff ) was estimated based on the observed DAP values. The measured vaginal doses and the corresponding estimated uterine doses were compared statistically, as were the DAP values from systems A and B. Results: For system A, the mean fluoroscopic time was 20.9 min (range 12.7-31.1), and for system B 35.9 min (range 16.4-55.4). The mean numbers of angiographic exposures for systems A and B were 82 (range 30-164) and 37 (range 20-72), respectively. The mean peak skin dose for system A was 601.5 mGy (range 279-1030) and for system B 453 mGy (range 257-875). The mean DAP for system A was 88.6 Gy cm{sup 2} (range 41.4-161.0) and for system B 52.5 Gy cm{sup 2} (range 20.1-107.9). Statistical analysis showed a significant difference between the DAP values, the DAP for system B being the lower one. The mean estimated effective doses from systems A and B were 32 mSv (range 15.1-58.4) and 22 mSv (range 9-46), respectively. The mean estimated maximum uterine and

  14. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    Science.gov (United States)

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Relative safety profiles of high dose statin regimens

    Directory of Open Access Journals (Sweden)

    Carlos Escobar

    2008-06-01

    Full Text Available Carlos Escobar, Rocio Echarri, Vivencio BarriosDepartment of Cardiology, Hospital Ramón y Cajal, Madrid, SpainAbstract: Recent clinical trials recommend achieving a low-density lipoprotein cholesterol level of <100 mg/dl in high-risk and <70 mg/dl in very high risk patients. To attain these goals, however, many patients will need statins at high doses. The most frequent side effects related to the use of statins, myopathy, rhabdomyolysis, and increased levels of transaminases, are unusual. Although low and moderate doses show a favourable profile, there is concern about the tolerability of higher doses. During recent years, numerous trials to analyze the efficacy and tolerability of high doses of statins have been published. This paper updates the published data on the safety of statins at high doses.Keywords: statins, high doses, tolerability, liver, muscle

  16. Dosimetric evaluation of the OneDoseTM MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures.

    Science.gov (United States)

    Ding, George X; Coffey, Charles W

    2010-09-01

    The purpose of this study is to investigate the feasibility of using a single-use dosimeter, OneDose MOSFET designed for in vivo patient dosimetry, for measuring the radiation dose from kilovoltage (kV) x rays resulting from image-guided procedures. The OneDose MOSFET dosimeters were precalibrated by the manufacturer using Co-60 beams. Their energy response and characteristics for kV x rays were investigated by using an ionization chamber, in which the air-kerma calibration factors were obtained from an Accredited Dosimetry Calibration Laboratory (ADCL). The dosimetric properties have been tested for typical kV beams used in image-guided radiation therapy (IGRT). The direct dose reading from the OneDose system needs to be multiplied by a correction factor ranging from 0.30 to 0.35 for kilovoltage x rays ranging from 50 to 125 kVp, respectively. In addition to energy response, the OneDose dosimeter has up to a 20% reduced sensitivity for beams (70-125 kVp) incident from the back of the OneDose detector. The uncertainty in measuring dose resulting from a kilovoltage beam used in IGRT is approximately 20%; this uncertainty is mainly due to the sensitivity dependence of the incident beam direction relative to the OneDose detector. The ease of use may allow the dosimeter to be suitable for estimating the dose resulting from image-guided procedures.

  17. Postoperative single-dose interstitial high-dose-rate brachytherapy in therapy-resistant keloids.

    Science.gov (United States)

    Hafkamp, C J H; Lapid, O; Dávila Fajardo, R; van de Kar, A L; Koedooder, C; Stalpers, L J; Pieters, B R

    Patients with keloids complain of the cosmetic aspect, pain, and pruritus. Many different therapies are being used for keloids. The aim of this study was to evaluate the recurrence rate and outcome after resection followed by a single-dose brachytherapy. Patients treated by resection of the keloid plus a single dose of 13 Gy high-dose-rate brachytherapy were evaluated at least 1 year after treatment. Clinical response and cosmesis were assessed by a plastic surgeon and by the patients using the Patient and Observer Scar Assessment Scale. Only 24 of the 61 invited patients responded to participate with the study; 29 keloids were evaluated. The recurrence rate was 24.1% after a median followup of 53 months (19-95 months). Patients scored on average 24.3 for their total Patient and Observer Scar Assessment Scale score (range 6-52), whereas the observer scored on average 14.6 (range 6-42). This treatment has a higher recurrence rate than that reported in most other studies. This may be explained by differences in recurrence definition, differences in followup time among studies, and selection bias because of not contributing to the study. The cosmetic outcome for evaluated patients is relatively good. This treatment policy has the advantage that patients are treated in a single day. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Dose estimation in postoperative keloid irradiation with special consideration of ovarian dose

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, W.F.O.; Hohenberg, G.; Handl-Zeller, L. (Vienna Univ. (Austria). Klinik fuer Strahlentherapie und Strahlenbiologie)

    1991-09-01

    For a long time now, surgery followed irradiation has been the preferred therapy in the treatment of keloids. Radiation can be administered by means of X-rays (energy level {<=} 100 KV), electrons (energy level {<=} 5 MeV) or {sup 191}Ir-wires. The choice of one of these methods depends on the availability of suitable facilities within a short period of time (<24 hours postoperatively), and the possibility of adapting the irradiation field quickly and easily to the scar. A further criterion is the dose received by underlying organs possibly, especially the ovaries of women of child-bearing age. It consists of primary and secondary (scattered) parts of radiation and was measured in two standard field sizes for the various types of radiation so as to allow a rapid evaluation. Apart from the types of radiation mentioned above, such measurements were also carried out for {sup 125}I seeds. With a field size of 20x1.5 cm{sup 2} and a surface dose of 10 Gy, ovaries at a depth of 10 cm in the central beam will receive a dose of between <1 mGy in electron therapy to around 1 Gy in X-ray therapy (100 KV). (orig.).

  19. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  20. Radiological Dose Calculations And Supplemental Dose Assessment Data For Neshap Compliance For SNL Nevada Facilities 1996.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    Operations of Sandia National Laboratories, Nevada (SNL/NV) at the Tonopah Test Range (TTR) resulted in no planned point radiological releases during 1996. Other releases from SNL/NV included diffuse transuranic sources consisting of the three Clean Slate sites. Air emissions from these sources result from wind resuspension of near-surface transuranic contaminated soil particulates. The total area of contamination has been estimated to exceed 20 million square meters. Soil contamination was documented in an aerial survey program in 1977 (EG&G 1979). Surface contamination levels were generally found to be below 400 pCi/g of combined plutonium-238, plutonium-239, plutonium-240, and americium-241 (i.e., transuranic) activity. Hot spot areas contain up to 43,000 pCi/g of transuranic activity. Recent measurements confirm the presence of significant levels of transuranic activity in the surface soil. An annual diffuse source term of 0.39 Ci of transuranic material was calculated for the cumulative release from all three Clean Slate sites. A maximally exposed individual dose of 1.1 mrem/yr at the TTR airport area was estimated based on the 1996 diffuse source release amounts and site-specific meteorological data. A population dose of 0.86 person-rem/yr was calculated for the local residents. Both dose values were attributable to inhalation of transuranic contaminated dust.

  1. The determination of effective antiviral doses using a computer program for sigmoid dose-response curves.

    Science.gov (United States)

    Taylor, J L; O'Brien, W J; Goldman, A I

    1984-05-01

    A computer program was designed to construct best fit sigmoid dose-response curves for determination of the dose required to reduce the yield of virus by 50%, effective antiviral dose (ED50). A single antiviral agent, 9-beta-D-arabinofuranosyladenine, was examined for effectiveness against four strains of herpes simplex virus type 1. The resulting ED50 values were compared with those obtained by probit analysis. The statistical parameters obtained from sigmoid curve fit program were utilized to evaluate statistical differences between ED50 values for resistant and sensitive virus strains and to evaluate the goodness-of-fit of the regression line to the data. In addition, using this analytical method, it was shown that a change in one experimental variable, i.e., multiplicity of infection, in the yield reduction assay significantly affected the apparent ED50 value. The computer program was easily utilized for analysis of data obtained from both plaque reduction and yield reduction assays and generated the parameters necessary for statistical comparison of relative antiviral activity of any antiviral agent.

  2. High-dose versus low-dose oxytocin infusion regimens for induction of labour at term.

    Science.gov (United States)

    Budden, Aaron; Chen, Lily J Y; Henry, Amanda

    2014-10-09

    When women require induction of labour, oxytocin is the most common agent used, delivered by an intravenous infusion titrated to uterine contraction strength and frequency. There is debate over the optimum dose regimen and how it impacts on maternal and fetal outcomes, particularly induction to birth interval, mode of birth, and rates of hyperstimulation. Current induction of labour regimens include both high- and low-dose regimens and are delivered by either continuous or pulsed infusions, with both linear and non-linear incremental increases in oxytocin dose. Whilst low-dose protocols bring on contractions safely, their potentially slow induction to birth interval may increase the chance of fetal infection and chorioamnionitis. Conversely, high-dose protocols may cause undue uterine hyperstimulation and fetal distress. To determine the effectiveness and safety of high- versus low-dose oxytocin for induction of labour at term We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 August 2014) and the reference lists of relevant papers. Randomised controlled trials and quasi-randomised controlled trials that compared oxytocin protocol for induction of labour for women at term, where high-dose oxytocin is at least 100 mU oxytocin in the first 40 minutes, with increments delivering at least 600 mU in the first two hours, compared with low-dose oxytocin, defined as less than 100 mU oxytocin in the first 40 minutes, and increments delivering less than 600 mU total in the first two hours. Two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. We have included nine trials, involving 2391 women and their babies in this review. Trials were at a moderate to high risk of bias overall.Results of primary outcomes revealed no significant differences in rates of vaginal delivery not achieved within 24 hours (risk ratio (RR) 0.94, 95% confidence interval

  3. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-10-14

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides.

  4. Development of Landscape Dose Factors for dose assessments in SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Rodolfo; Ekstroem, Per-Anders [Facilia AB, Bromma (Sweden); Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2006-08-15

    In previous safety assessments Ecosystem Dose Factors (EDFs), were derived from estimates of doses to the most exposed group resulting from constant unit radionuclide release rates over 10,000 years to various ecosystem types, e.g. mires, agricultural lands, lakes and marine ecosystems. A number of limitations of the EDF approach have been identified. The objectives of this report is to further develop the EDF approach, in order to resolve the identified limitations, and to use the improved approach for deriving Dose Conversion Factors for use in the SR-Can risk assessments. The Dose Conversion Factors derived in this report are named Landscape Dose Factors (LDFs). It involves modelling the fate of the radionuclides in the whole landscape, which develops from a sea to a inland situation during 20,000 years. Both candidate sites studies in SR-Can, Forsmark and Laxemar, are included in the study. As a basis for the modelling, the period starting at the beginning of the last interglacial (8,000 BC) is used, over which releases from a hypothetical repository were assumed to take place. For the present temperate period, the overall development of the biosphere at each site is outlined in a 1,000 year perspective and beyond, essentially based on the ongoing shoreline displacement and the understanding on the impact this has on the biosphere. The past development, i.e. from deglaciation to the present time, is inferred from geological records and associated reconstructions of the shore-line. For each time step of 1,000 years, the landscape at the site is described as a number of interconnected biosphere objects constituting an integrated landscape model of each site. The water fluxes through the objects were estimated from the average run-off at the site, the areas of the objects and their associated catchment areas. Radionuclides in both dissolved and particulate forms were considered in the transport calculations. The transformation between ecosystems was modelled as

  5. Towards more reliable automated multi-dose dispensing: retrospective follow-up study on medication dose errors and product defects.

    Science.gov (United States)

    Palttala, Iida; Heinämäki, Jyrki; Honkanen, Outi; Suominen, Risto; Antikainen, Osmo; Hirvonen, Jouni; Yliruusi, Jouko

    2013-03-01

    To date, little is known on applicability of different types of pharmaceutical dosage forms in an automated high-speed multi-dose dispensing process. The purpose of the present study was to identify and further investigate various process-induced and/or product-related limitations associated with multi-dose dispensing process. The rates of product defects and dose dispensing errors in automated multi-dose dispensing were retrospectively investigated during a 6-months follow-up period. The study was based on the analysis of process data of totally nine automated high-speed multi-dose dispensing systems. Special attention was paid to the dependence of multi-dose dispensing errors/product defects and pharmaceutical tablet properties (such as shape, dimensions, weight, scored lines, coatings, etc.) to profile the most suitable forms of tablets for automated dose dispensing systems. The relationship between the risk of errors in dose dispensing and tablet characteristics were visualized by creating a principal component analysis (PCA) model for the outcome of dispensed tablets. The two most common process-induced failures identified in the multi-dose dispensing are predisposal of tablet defects and unexpected product transitions in the medication cassette (dose dispensing error). The tablet defects are product-dependent failures, while the tablet transitions are dependent on automated multi-dose dispensing systems used. The occurrence of tablet defects is approximately twice as common as tablet transitions. Optimal tablet preparation for the high-speed multi-dose dispensing would be a round-shaped, relatively small/middle-sized, film-coated tablet without any scored line. Commercial tablet products can be profiled and classified based on their suitability to a high-speed multi-dose dispensing process.

  6. Gut Microbiota and Tacrolimus Dosing in Kidney Transplantation

    Science.gov (United States)

    Lee, John R.; Muthukumar, Thangamani; Dadhania, Darshana; Taur, Ying; Jenq, Robert R.; Toussaint, Nora C.; Ling, Lilan; Pamer, Eric; Suthanthiran, Manikkam

    2015-01-01

    Tacrolimus dosing to establish therapeutic levels in recipients of organ transplants is a challenging task because of much interpatient and intrapatient variability in drug absorption, metabolism, and disposition. In view of the reported impact of gut microbial species on drug metabolism, we investigated the relationship between the gut microbiota and tacrolimus dosing requirements in this pilot study of adult kidney transplant recipients. Serial fecal specimens were collected during the first month of transplantation from 19 kidney transplant recipients who either required a 50% increase from initial tacrolimus dosing during the first month of transplantation (Dose Escalation Group, n=5) or did not require such an increase (Dose Stable Group, n=14). We characterized bacterial composition in the fecal specimens by deep sequencing of the PCR amplified 16S rRNA V4-V5 region and we investigated the hypothesis that gut microbial composition is associated with tacrolimus dosing requirements. Initial tacrolimus dosing was similar in the Dose Escalation Group and in the Stable Group (4.2±1.1 mg/day vs. 3.8±0.8 mg/day, respectively, P=0.61, two-way between-group ANOVA using contrasts) but became higher in the Dose Escalation Group than in the Dose Stable Group by the end of the first transplantation month (9.6±2.4 mg/day vs. 3.3±1.5 mg/day, respectively, Ptacrolimus dosing at 1 month (R=0.57, P=0.01) and had a coefficient±standard error of 1.0±0.6 (P=0.08) after multivariable linear regression. Our novel observations may help further explain inter-individual differences in tacrolimus dosing to achieve therapeutic levels. PMID:25815766

  7. Estimation of the fetal dose by dose measurement during an irradiation of a parotid tumor; Estimation de la dose foetale par mesure de dose lors d'une irradiation d'une tumeur de la parotide

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, V.; Graff-Cailleaud, P.; Peiffert, D. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France); Noel, A. [Institut National Polytechnique de Lorraine, CRAN CNRS UMR-7039, 54 - Vandoeuvre-les-Nancy (France)

    2006-11-15

    The irradiation of a five months pregnant patient has been made for a right parotid attack. In conformation with the legislative texts relative to radiation protection ( publication 84 of the ICRP) an estimation of the dose received for the fetus has been led by dose measurement on phantom. With the dose limit ( 100 mGy) recommended in the publication 84 of the ICRP neither modification of the treatment nor abortion was necessary. (N.C.)

  8. Dose Equivalents for Antipsychotic Drugs: The DDD Method.

    Science.gov (United States)

    Leucht, Stefan; Samara, Myrto; Heres, Stephan; Davis, John M

    2016-07-01

    Dose equivalents of antipsychotics are an important but difficult to define concept, because all methods have weaknesses and strongholds. We calculated dose equivalents based on defined daily doses (DDDs) presented by the World Health Organisation's Collaborative Center for Drug Statistics Methodology. Doses equivalent to 1mg olanzapine, 1mg risperidone, 1mg haloperidol, and 100mg chlorpromazine were presented and compared with the results of 3 other methods to define dose equivalence (the "minimum effective dose method," the "classical mean dose method," and an international consensus statement). We presented dose equivalents for 57 first-generation and second-generation antipsychotic drugs, available as oral, parenteral, or depot formulations. Overall, the identified equivalent doses were comparable with those of the other methods, but there were also outliers. The major strength of this method to define dose response is that DDDs are available for most drugs, including old antipsychotics, that they are based on a variety of sources, and that DDDs are an internationally accepted measure. The major limitations are that the information used to estimate DDDS is likely to differ between the drugs. Moreover, this information is not publicly available, so that it cannot be reviewed. The WHO stresses that DDDs are mainly a standardized measure of drug consumption, and their use as a measure of dose equivalence can therefore be misleading. We, therefore, recommend that if alternative, more "scientific" dose equivalence methods are available for a drug they should be preferred to DDDs. Moreover, our summary can be a useful resource for pharmacovigilance studies. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Aspirin dose in Kawasaki disease - the ongoing battle.

    Science.gov (United States)

    Dhanrajani, Anita; Chan, Mercedes; Pau, Stephanie; Ellsworth, Janet; Petty, Ross; Guzman, Jaime

    2017-12-29

    Kawasaki disease (KD) is an acute childhood vasculitis that may result in coronary aneurysms. Treatment of Kawasaki disease (KD) with a single infusion of 2g/kg intravenous immunoglobulin (IVIG) is well established, but acetyl-salicylic acid (ASA) dose remains controversial. We reviewed charts of patients with KD from two Canadian centres to assess the impact of ASA dose on IVIG resistance (operationally defined as administration of a second dose of IVIG). Both centres used standard IVIG dosing, but centre 1 used low-dose ASA from diagnosis (3-5 mg/kg/day) while cent